at v5.13 7.5 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_CPUSET_H 3#define _LINUX_CPUSET_H 4/* 5 * cpuset interface 6 * 7 * Copyright (C) 2003 BULL SA 8 * Copyright (C) 2004-2006 Silicon Graphics, Inc. 9 * 10 */ 11 12#include <linux/sched.h> 13#include <linux/sched/topology.h> 14#include <linux/sched/task.h> 15#include <linux/cpumask.h> 16#include <linux/nodemask.h> 17#include <linux/mm.h> 18#include <linux/jump_label.h> 19 20#ifdef CONFIG_CPUSETS 21 22/* 23 * Static branch rewrites can happen in an arbitrary order for a given 24 * key. In code paths where we need to loop with read_mems_allowed_begin() and 25 * read_mems_allowed_retry() to get a consistent view of mems_allowed, we need 26 * to ensure that begin() always gets rewritten before retry() in the 27 * disabled -> enabled transition. If not, then if local irqs are disabled 28 * around the loop, we can deadlock since retry() would always be 29 * comparing the latest value of the mems_allowed seqcount against 0 as 30 * begin() still would see cpusets_enabled() as false. The enabled -> disabled 31 * transition should happen in reverse order for the same reasons (want to stop 32 * looking at real value of mems_allowed.sequence in retry() first). 33 */ 34extern struct static_key_false cpusets_pre_enable_key; 35extern struct static_key_false cpusets_enabled_key; 36static inline bool cpusets_enabled(void) 37{ 38 return static_branch_unlikely(&cpusets_enabled_key); 39} 40 41static inline void cpuset_inc(void) 42{ 43 static_branch_inc_cpuslocked(&cpusets_pre_enable_key); 44 static_branch_inc_cpuslocked(&cpusets_enabled_key); 45} 46 47static inline void cpuset_dec(void) 48{ 49 static_branch_dec_cpuslocked(&cpusets_enabled_key); 50 static_branch_dec_cpuslocked(&cpusets_pre_enable_key); 51} 52 53extern int cpuset_init(void); 54extern void cpuset_init_smp(void); 55extern void cpuset_force_rebuild(void); 56extern void cpuset_update_active_cpus(void); 57extern void cpuset_wait_for_hotplug(void); 58extern void cpuset_read_lock(void); 59extern void cpuset_read_unlock(void); 60extern void cpuset_cpus_allowed(struct task_struct *p, struct cpumask *mask); 61extern void cpuset_cpus_allowed_fallback(struct task_struct *p); 62extern nodemask_t cpuset_mems_allowed(struct task_struct *p); 63#define cpuset_current_mems_allowed (current->mems_allowed) 64void cpuset_init_current_mems_allowed(void); 65int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask); 66 67extern bool __cpuset_node_allowed(int node, gfp_t gfp_mask); 68 69static inline bool cpuset_node_allowed(int node, gfp_t gfp_mask) 70{ 71 if (cpusets_enabled()) 72 return __cpuset_node_allowed(node, gfp_mask); 73 return true; 74} 75 76static inline bool __cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask) 77{ 78 return __cpuset_node_allowed(zone_to_nid(z), gfp_mask); 79} 80 81static inline bool cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask) 82{ 83 if (cpusets_enabled()) 84 return __cpuset_zone_allowed(z, gfp_mask); 85 return true; 86} 87 88extern int cpuset_mems_allowed_intersects(const struct task_struct *tsk1, 89 const struct task_struct *tsk2); 90 91#define cpuset_memory_pressure_bump() \ 92 do { \ 93 if (cpuset_memory_pressure_enabled) \ 94 __cpuset_memory_pressure_bump(); \ 95 } while (0) 96extern int cpuset_memory_pressure_enabled; 97extern void __cpuset_memory_pressure_bump(void); 98 99extern void cpuset_task_status_allowed(struct seq_file *m, 100 struct task_struct *task); 101extern int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns, 102 struct pid *pid, struct task_struct *tsk); 103 104extern int cpuset_mem_spread_node(void); 105extern int cpuset_slab_spread_node(void); 106 107static inline int cpuset_do_page_mem_spread(void) 108{ 109 return task_spread_page(current); 110} 111 112static inline int cpuset_do_slab_mem_spread(void) 113{ 114 return task_spread_slab(current); 115} 116 117extern bool current_cpuset_is_being_rebound(void); 118 119extern void rebuild_sched_domains(void); 120 121extern void cpuset_print_current_mems_allowed(void); 122 123/* 124 * read_mems_allowed_begin is required when making decisions involving 125 * mems_allowed such as during page allocation. mems_allowed can be updated in 126 * parallel and depending on the new value an operation can fail potentially 127 * causing process failure. A retry loop with read_mems_allowed_begin and 128 * read_mems_allowed_retry prevents these artificial failures. 129 */ 130static inline unsigned int read_mems_allowed_begin(void) 131{ 132 if (!static_branch_unlikely(&cpusets_pre_enable_key)) 133 return 0; 134 135 return read_seqcount_begin(&current->mems_allowed_seq); 136} 137 138/* 139 * If this returns true, the operation that took place after 140 * read_mems_allowed_begin may have failed artificially due to a concurrent 141 * update of mems_allowed. It is up to the caller to retry the operation if 142 * appropriate. 143 */ 144static inline bool read_mems_allowed_retry(unsigned int seq) 145{ 146 if (!static_branch_unlikely(&cpusets_enabled_key)) 147 return false; 148 149 return read_seqcount_retry(&current->mems_allowed_seq, seq); 150} 151 152static inline void set_mems_allowed(nodemask_t nodemask) 153{ 154 unsigned long flags; 155 156 task_lock(current); 157 local_irq_save(flags); 158 write_seqcount_begin(&current->mems_allowed_seq); 159 current->mems_allowed = nodemask; 160 write_seqcount_end(&current->mems_allowed_seq); 161 local_irq_restore(flags); 162 task_unlock(current); 163} 164 165#else /* !CONFIG_CPUSETS */ 166 167static inline bool cpusets_enabled(void) { return false; } 168 169static inline int cpuset_init(void) { return 0; } 170static inline void cpuset_init_smp(void) {} 171 172static inline void cpuset_force_rebuild(void) { } 173 174static inline void cpuset_update_active_cpus(void) 175{ 176 partition_sched_domains(1, NULL, NULL); 177} 178 179static inline void cpuset_wait_for_hotplug(void) { } 180 181static inline void cpuset_read_lock(void) { } 182static inline void cpuset_read_unlock(void) { } 183 184static inline void cpuset_cpus_allowed(struct task_struct *p, 185 struct cpumask *mask) 186{ 187 cpumask_copy(mask, cpu_possible_mask); 188} 189 190static inline void cpuset_cpus_allowed_fallback(struct task_struct *p) 191{ 192} 193 194static inline nodemask_t cpuset_mems_allowed(struct task_struct *p) 195{ 196 return node_possible_map; 197} 198 199#define cpuset_current_mems_allowed (node_states[N_MEMORY]) 200static inline void cpuset_init_current_mems_allowed(void) {} 201 202static inline int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask) 203{ 204 return 1; 205} 206 207static inline bool cpuset_node_allowed(int node, gfp_t gfp_mask) 208{ 209 return true; 210} 211 212static inline bool __cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask) 213{ 214 return true; 215} 216 217static inline bool cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask) 218{ 219 return true; 220} 221 222static inline int cpuset_mems_allowed_intersects(const struct task_struct *tsk1, 223 const struct task_struct *tsk2) 224{ 225 return 1; 226} 227 228static inline void cpuset_memory_pressure_bump(void) {} 229 230static inline void cpuset_task_status_allowed(struct seq_file *m, 231 struct task_struct *task) 232{ 233} 234 235static inline int cpuset_mem_spread_node(void) 236{ 237 return 0; 238} 239 240static inline int cpuset_slab_spread_node(void) 241{ 242 return 0; 243} 244 245static inline int cpuset_do_page_mem_spread(void) 246{ 247 return 0; 248} 249 250static inline int cpuset_do_slab_mem_spread(void) 251{ 252 return 0; 253} 254 255static inline bool current_cpuset_is_being_rebound(void) 256{ 257 return false; 258} 259 260static inline void rebuild_sched_domains(void) 261{ 262 partition_sched_domains(1, NULL, NULL); 263} 264 265static inline void cpuset_print_current_mems_allowed(void) 266{ 267} 268 269static inline void set_mems_allowed(nodemask_t nodemask) 270{ 271} 272 273static inline unsigned int read_mems_allowed_begin(void) 274{ 275 return 0; 276} 277 278static inline bool read_mems_allowed_retry(unsigned int seq) 279{ 280 return false; 281} 282 283#endif /* !CONFIG_CPUSETS */ 284 285#endif /* _LINUX_CPUSET_H */