at v5.13 41 kB view raw
1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * fs/libfs.c 4 * Library for filesystems writers. 5 */ 6 7#include <linux/blkdev.h> 8#include <linux/export.h> 9#include <linux/pagemap.h> 10#include <linux/slab.h> 11#include <linux/cred.h> 12#include <linux/mount.h> 13#include <linux/vfs.h> 14#include <linux/quotaops.h> 15#include <linux/mutex.h> 16#include <linux/namei.h> 17#include <linux/exportfs.h> 18#include <linux/writeback.h> 19#include <linux/buffer_head.h> /* sync_mapping_buffers */ 20#include <linux/fs_context.h> 21#include <linux/pseudo_fs.h> 22#include <linux/fsnotify.h> 23#include <linux/unicode.h> 24#include <linux/fscrypt.h> 25 26#include <linux/uaccess.h> 27 28#include "internal.h" 29 30int simple_getattr(struct user_namespace *mnt_userns, const struct path *path, 31 struct kstat *stat, u32 request_mask, 32 unsigned int query_flags) 33{ 34 struct inode *inode = d_inode(path->dentry); 35 generic_fillattr(&init_user_ns, inode, stat); 36 stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9); 37 return 0; 38} 39EXPORT_SYMBOL(simple_getattr); 40 41int simple_statfs(struct dentry *dentry, struct kstatfs *buf) 42{ 43 buf->f_type = dentry->d_sb->s_magic; 44 buf->f_bsize = PAGE_SIZE; 45 buf->f_namelen = NAME_MAX; 46 return 0; 47} 48EXPORT_SYMBOL(simple_statfs); 49 50/* 51 * Retaining negative dentries for an in-memory filesystem just wastes 52 * memory and lookup time: arrange for them to be deleted immediately. 53 */ 54int always_delete_dentry(const struct dentry *dentry) 55{ 56 return 1; 57} 58EXPORT_SYMBOL(always_delete_dentry); 59 60const struct dentry_operations simple_dentry_operations = { 61 .d_delete = always_delete_dentry, 62}; 63EXPORT_SYMBOL(simple_dentry_operations); 64 65/* 66 * Lookup the data. This is trivial - if the dentry didn't already 67 * exist, we know it is negative. Set d_op to delete negative dentries. 68 */ 69struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 70{ 71 if (dentry->d_name.len > NAME_MAX) 72 return ERR_PTR(-ENAMETOOLONG); 73 if (!dentry->d_sb->s_d_op) 74 d_set_d_op(dentry, &simple_dentry_operations); 75 d_add(dentry, NULL); 76 return NULL; 77} 78EXPORT_SYMBOL(simple_lookup); 79 80int dcache_dir_open(struct inode *inode, struct file *file) 81{ 82 file->private_data = d_alloc_cursor(file->f_path.dentry); 83 84 return file->private_data ? 0 : -ENOMEM; 85} 86EXPORT_SYMBOL(dcache_dir_open); 87 88int dcache_dir_close(struct inode *inode, struct file *file) 89{ 90 dput(file->private_data); 91 return 0; 92} 93EXPORT_SYMBOL(dcache_dir_close); 94 95/* parent is locked at least shared */ 96/* 97 * Returns an element of siblings' list. 98 * We are looking for <count>th positive after <p>; if 99 * found, dentry is grabbed and returned to caller. 100 * If no such element exists, NULL is returned. 101 */ 102static struct dentry *scan_positives(struct dentry *cursor, 103 struct list_head *p, 104 loff_t count, 105 struct dentry *last) 106{ 107 struct dentry *dentry = cursor->d_parent, *found = NULL; 108 109 spin_lock(&dentry->d_lock); 110 while ((p = p->next) != &dentry->d_subdirs) { 111 struct dentry *d = list_entry(p, struct dentry, d_child); 112 // we must at least skip cursors, to avoid livelocks 113 if (d->d_flags & DCACHE_DENTRY_CURSOR) 114 continue; 115 if (simple_positive(d) && !--count) { 116 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED); 117 if (simple_positive(d)) 118 found = dget_dlock(d); 119 spin_unlock(&d->d_lock); 120 if (likely(found)) 121 break; 122 count = 1; 123 } 124 if (need_resched()) { 125 list_move(&cursor->d_child, p); 126 p = &cursor->d_child; 127 spin_unlock(&dentry->d_lock); 128 cond_resched(); 129 spin_lock(&dentry->d_lock); 130 } 131 } 132 spin_unlock(&dentry->d_lock); 133 dput(last); 134 return found; 135} 136 137loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence) 138{ 139 struct dentry *dentry = file->f_path.dentry; 140 switch (whence) { 141 case 1: 142 offset += file->f_pos; 143 fallthrough; 144 case 0: 145 if (offset >= 0) 146 break; 147 fallthrough; 148 default: 149 return -EINVAL; 150 } 151 if (offset != file->f_pos) { 152 struct dentry *cursor = file->private_data; 153 struct dentry *to = NULL; 154 155 inode_lock_shared(dentry->d_inode); 156 157 if (offset > 2) 158 to = scan_positives(cursor, &dentry->d_subdirs, 159 offset - 2, NULL); 160 spin_lock(&dentry->d_lock); 161 if (to) 162 list_move(&cursor->d_child, &to->d_child); 163 else 164 list_del_init(&cursor->d_child); 165 spin_unlock(&dentry->d_lock); 166 dput(to); 167 168 file->f_pos = offset; 169 170 inode_unlock_shared(dentry->d_inode); 171 } 172 return offset; 173} 174EXPORT_SYMBOL(dcache_dir_lseek); 175 176/* Relationship between i_mode and the DT_xxx types */ 177static inline unsigned char dt_type(struct inode *inode) 178{ 179 return (inode->i_mode >> 12) & 15; 180} 181 182/* 183 * Directory is locked and all positive dentries in it are safe, since 184 * for ramfs-type trees they can't go away without unlink() or rmdir(), 185 * both impossible due to the lock on directory. 186 */ 187 188int dcache_readdir(struct file *file, struct dir_context *ctx) 189{ 190 struct dentry *dentry = file->f_path.dentry; 191 struct dentry *cursor = file->private_data; 192 struct list_head *anchor = &dentry->d_subdirs; 193 struct dentry *next = NULL; 194 struct list_head *p; 195 196 if (!dir_emit_dots(file, ctx)) 197 return 0; 198 199 if (ctx->pos == 2) 200 p = anchor; 201 else if (!list_empty(&cursor->d_child)) 202 p = &cursor->d_child; 203 else 204 return 0; 205 206 while ((next = scan_positives(cursor, p, 1, next)) != NULL) { 207 if (!dir_emit(ctx, next->d_name.name, next->d_name.len, 208 d_inode(next)->i_ino, dt_type(d_inode(next)))) 209 break; 210 ctx->pos++; 211 p = &next->d_child; 212 } 213 spin_lock(&dentry->d_lock); 214 if (next) 215 list_move_tail(&cursor->d_child, &next->d_child); 216 else 217 list_del_init(&cursor->d_child); 218 spin_unlock(&dentry->d_lock); 219 dput(next); 220 221 return 0; 222} 223EXPORT_SYMBOL(dcache_readdir); 224 225ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos) 226{ 227 return -EISDIR; 228} 229EXPORT_SYMBOL(generic_read_dir); 230 231const struct file_operations simple_dir_operations = { 232 .open = dcache_dir_open, 233 .release = dcache_dir_close, 234 .llseek = dcache_dir_lseek, 235 .read = generic_read_dir, 236 .iterate_shared = dcache_readdir, 237 .fsync = noop_fsync, 238}; 239EXPORT_SYMBOL(simple_dir_operations); 240 241const struct inode_operations simple_dir_inode_operations = { 242 .lookup = simple_lookup, 243}; 244EXPORT_SYMBOL(simple_dir_inode_operations); 245 246static struct dentry *find_next_child(struct dentry *parent, struct dentry *prev) 247{ 248 struct dentry *child = NULL; 249 struct list_head *p = prev ? &prev->d_child : &parent->d_subdirs; 250 251 spin_lock(&parent->d_lock); 252 while ((p = p->next) != &parent->d_subdirs) { 253 struct dentry *d = container_of(p, struct dentry, d_child); 254 if (simple_positive(d)) { 255 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED); 256 if (simple_positive(d)) 257 child = dget_dlock(d); 258 spin_unlock(&d->d_lock); 259 if (likely(child)) 260 break; 261 } 262 } 263 spin_unlock(&parent->d_lock); 264 dput(prev); 265 return child; 266} 267 268void simple_recursive_removal(struct dentry *dentry, 269 void (*callback)(struct dentry *)) 270{ 271 struct dentry *this = dget(dentry); 272 while (true) { 273 struct dentry *victim = NULL, *child; 274 struct inode *inode = this->d_inode; 275 276 inode_lock(inode); 277 if (d_is_dir(this)) 278 inode->i_flags |= S_DEAD; 279 while ((child = find_next_child(this, victim)) == NULL) { 280 // kill and ascend 281 // update metadata while it's still locked 282 inode->i_ctime = current_time(inode); 283 clear_nlink(inode); 284 inode_unlock(inode); 285 victim = this; 286 this = this->d_parent; 287 inode = this->d_inode; 288 inode_lock(inode); 289 if (simple_positive(victim)) { 290 d_invalidate(victim); // avoid lost mounts 291 if (d_is_dir(victim)) 292 fsnotify_rmdir(inode, victim); 293 else 294 fsnotify_unlink(inode, victim); 295 if (callback) 296 callback(victim); 297 dput(victim); // unpin it 298 } 299 if (victim == dentry) { 300 inode->i_ctime = inode->i_mtime = 301 current_time(inode); 302 if (d_is_dir(dentry)) 303 drop_nlink(inode); 304 inode_unlock(inode); 305 dput(dentry); 306 return; 307 } 308 } 309 inode_unlock(inode); 310 this = child; 311 } 312} 313EXPORT_SYMBOL(simple_recursive_removal); 314 315static const struct super_operations simple_super_operations = { 316 .statfs = simple_statfs, 317}; 318 319static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc) 320{ 321 struct pseudo_fs_context *ctx = fc->fs_private; 322 struct inode *root; 323 324 s->s_maxbytes = MAX_LFS_FILESIZE; 325 s->s_blocksize = PAGE_SIZE; 326 s->s_blocksize_bits = PAGE_SHIFT; 327 s->s_magic = ctx->magic; 328 s->s_op = ctx->ops ?: &simple_super_operations; 329 s->s_xattr = ctx->xattr; 330 s->s_time_gran = 1; 331 root = new_inode(s); 332 if (!root) 333 return -ENOMEM; 334 335 /* 336 * since this is the first inode, make it number 1. New inodes created 337 * after this must take care not to collide with it (by passing 338 * max_reserved of 1 to iunique). 339 */ 340 root->i_ino = 1; 341 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR; 342 root->i_atime = root->i_mtime = root->i_ctime = current_time(root); 343 s->s_root = d_make_root(root); 344 if (!s->s_root) 345 return -ENOMEM; 346 s->s_d_op = ctx->dops; 347 return 0; 348} 349 350static int pseudo_fs_get_tree(struct fs_context *fc) 351{ 352 return get_tree_nodev(fc, pseudo_fs_fill_super); 353} 354 355static void pseudo_fs_free(struct fs_context *fc) 356{ 357 kfree(fc->fs_private); 358} 359 360static const struct fs_context_operations pseudo_fs_context_ops = { 361 .free = pseudo_fs_free, 362 .get_tree = pseudo_fs_get_tree, 363}; 364 365/* 366 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that 367 * will never be mountable) 368 */ 369struct pseudo_fs_context *init_pseudo(struct fs_context *fc, 370 unsigned long magic) 371{ 372 struct pseudo_fs_context *ctx; 373 374 ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL); 375 if (likely(ctx)) { 376 ctx->magic = magic; 377 fc->fs_private = ctx; 378 fc->ops = &pseudo_fs_context_ops; 379 fc->sb_flags |= SB_NOUSER; 380 fc->global = true; 381 } 382 return ctx; 383} 384EXPORT_SYMBOL(init_pseudo); 385 386int simple_open(struct inode *inode, struct file *file) 387{ 388 if (inode->i_private) 389 file->private_data = inode->i_private; 390 return 0; 391} 392EXPORT_SYMBOL(simple_open); 393 394int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 395{ 396 struct inode *inode = d_inode(old_dentry); 397 398 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 399 inc_nlink(inode); 400 ihold(inode); 401 dget(dentry); 402 d_instantiate(dentry, inode); 403 return 0; 404} 405EXPORT_SYMBOL(simple_link); 406 407int simple_empty(struct dentry *dentry) 408{ 409 struct dentry *child; 410 int ret = 0; 411 412 spin_lock(&dentry->d_lock); 413 list_for_each_entry(child, &dentry->d_subdirs, d_child) { 414 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED); 415 if (simple_positive(child)) { 416 spin_unlock(&child->d_lock); 417 goto out; 418 } 419 spin_unlock(&child->d_lock); 420 } 421 ret = 1; 422out: 423 spin_unlock(&dentry->d_lock); 424 return ret; 425} 426EXPORT_SYMBOL(simple_empty); 427 428int simple_unlink(struct inode *dir, struct dentry *dentry) 429{ 430 struct inode *inode = d_inode(dentry); 431 432 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 433 drop_nlink(inode); 434 dput(dentry); 435 return 0; 436} 437EXPORT_SYMBOL(simple_unlink); 438 439int simple_rmdir(struct inode *dir, struct dentry *dentry) 440{ 441 if (!simple_empty(dentry)) 442 return -ENOTEMPTY; 443 444 drop_nlink(d_inode(dentry)); 445 simple_unlink(dir, dentry); 446 drop_nlink(dir); 447 return 0; 448} 449EXPORT_SYMBOL(simple_rmdir); 450 451int simple_rename(struct user_namespace *mnt_userns, struct inode *old_dir, 452 struct dentry *old_dentry, struct inode *new_dir, 453 struct dentry *new_dentry, unsigned int flags) 454{ 455 struct inode *inode = d_inode(old_dentry); 456 int they_are_dirs = d_is_dir(old_dentry); 457 458 if (flags & ~RENAME_NOREPLACE) 459 return -EINVAL; 460 461 if (!simple_empty(new_dentry)) 462 return -ENOTEMPTY; 463 464 if (d_really_is_positive(new_dentry)) { 465 simple_unlink(new_dir, new_dentry); 466 if (they_are_dirs) { 467 drop_nlink(d_inode(new_dentry)); 468 drop_nlink(old_dir); 469 } 470 } else if (they_are_dirs) { 471 drop_nlink(old_dir); 472 inc_nlink(new_dir); 473 } 474 475 old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime = 476 new_dir->i_mtime = inode->i_ctime = current_time(old_dir); 477 478 return 0; 479} 480EXPORT_SYMBOL(simple_rename); 481 482/** 483 * simple_setattr - setattr for simple filesystem 484 * @mnt_userns: user namespace of the target mount 485 * @dentry: dentry 486 * @iattr: iattr structure 487 * 488 * Returns 0 on success, -error on failure. 489 * 490 * simple_setattr is a simple ->setattr implementation without a proper 491 * implementation of size changes. 492 * 493 * It can either be used for in-memory filesystems or special files 494 * on simple regular filesystems. Anything that needs to change on-disk 495 * or wire state on size changes needs its own setattr method. 496 */ 497int simple_setattr(struct user_namespace *mnt_userns, struct dentry *dentry, 498 struct iattr *iattr) 499{ 500 struct inode *inode = d_inode(dentry); 501 int error; 502 503 error = setattr_prepare(mnt_userns, dentry, iattr); 504 if (error) 505 return error; 506 507 if (iattr->ia_valid & ATTR_SIZE) 508 truncate_setsize(inode, iattr->ia_size); 509 setattr_copy(mnt_userns, inode, iattr); 510 mark_inode_dirty(inode); 511 return 0; 512} 513EXPORT_SYMBOL(simple_setattr); 514 515int simple_readpage(struct file *file, struct page *page) 516{ 517 clear_highpage(page); 518 flush_dcache_page(page); 519 SetPageUptodate(page); 520 unlock_page(page); 521 return 0; 522} 523EXPORT_SYMBOL(simple_readpage); 524 525int simple_write_begin(struct file *file, struct address_space *mapping, 526 loff_t pos, unsigned len, unsigned flags, 527 struct page **pagep, void **fsdata) 528{ 529 struct page *page; 530 pgoff_t index; 531 532 index = pos >> PAGE_SHIFT; 533 534 page = grab_cache_page_write_begin(mapping, index, flags); 535 if (!page) 536 return -ENOMEM; 537 538 *pagep = page; 539 540 if (!PageUptodate(page) && (len != PAGE_SIZE)) { 541 unsigned from = pos & (PAGE_SIZE - 1); 542 543 zero_user_segments(page, 0, from, from + len, PAGE_SIZE); 544 } 545 return 0; 546} 547EXPORT_SYMBOL(simple_write_begin); 548 549/** 550 * simple_write_end - .write_end helper for non-block-device FSes 551 * @file: See .write_end of address_space_operations 552 * @mapping: " 553 * @pos: " 554 * @len: " 555 * @copied: " 556 * @page: " 557 * @fsdata: " 558 * 559 * simple_write_end does the minimum needed for updating a page after writing is 560 * done. It has the same API signature as the .write_end of 561 * address_space_operations vector. So it can just be set onto .write_end for 562 * FSes that don't need any other processing. i_mutex is assumed to be held. 563 * Block based filesystems should use generic_write_end(). 564 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty 565 * is not called, so a filesystem that actually does store data in .write_inode 566 * should extend on what's done here with a call to mark_inode_dirty() in the 567 * case that i_size has changed. 568 * 569 * Use *ONLY* with simple_readpage() 570 */ 571int simple_write_end(struct file *file, struct address_space *mapping, 572 loff_t pos, unsigned len, unsigned copied, 573 struct page *page, void *fsdata) 574{ 575 struct inode *inode = page->mapping->host; 576 loff_t last_pos = pos + copied; 577 578 /* zero the stale part of the page if we did a short copy */ 579 if (!PageUptodate(page)) { 580 if (copied < len) { 581 unsigned from = pos & (PAGE_SIZE - 1); 582 583 zero_user(page, from + copied, len - copied); 584 } 585 SetPageUptodate(page); 586 } 587 /* 588 * No need to use i_size_read() here, the i_size 589 * cannot change under us because we hold the i_mutex. 590 */ 591 if (last_pos > inode->i_size) 592 i_size_write(inode, last_pos); 593 594 set_page_dirty(page); 595 unlock_page(page); 596 put_page(page); 597 598 return copied; 599} 600EXPORT_SYMBOL(simple_write_end); 601 602/* 603 * the inodes created here are not hashed. If you use iunique to generate 604 * unique inode values later for this filesystem, then you must take care 605 * to pass it an appropriate max_reserved value to avoid collisions. 606 */ 607int simple_fill_super(struct super_block *s, unsigned long magic, 608 const struct tree_descr *files) 609{ 610 struct inode *inode; 611 struct dentry *root; 612 struct dentry *dentry; 613 int i; 614 615 s->s_blocksize = PAGE_SIZE; 616 s->s_blocksize_bits = PAGE_SHIFT; 617 s->s_magic = magic; 618 s->s_op = &simple_super_operations; 619 s->s_time_gran = 1; 620 621 inode = new_inode(s); 622 if (!inode) 623 return -ENOMEM; 624 /* 625 * because the root inode is 1, the files array must not contain an 626 * entry at index 1 627 */ 628 inode->i_ino = 1; 629 inode->i_mode = S_IFDIR | 0755; 630 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 631 inode->i_op = &simple_dir_inode_operations; 632 inode->i_fop = &simple_dir_operations; 633 set_nlink(inode, 2); 634 root = d_make_root(inode); 635 if (!root) 636 return -ENOMEM; 637 for (i = 0; !files->name || files->name[0]; i++, files++) { 638 if (!files->name) 639 continue; 640 641 /* warn if it tries to conflict with the root inode */ 642 if (unlikely(i == 1)) 643 printk(KERN_WARNING "%s: %s passed in a files array" 644 "with an index of 1!\n", __func__, 645 s->s_type->name); 646 647 dentry = d_alloc_name(root, files->name); 648 if (!dentry) 649 goto out; 650 inode = new_inode(s); 651 if (!inode) { 652 dput(dentry); 653 goto out; 654 } 655 inode->i_mode = S_IFREG | files->mode; 656 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 657 inode->i_fop = files->ops; 658 inode->i_ino = i; 659 d_add(dentry, inode); 660 } 661 s->s_root = root; 662 return 0; 663out: 664 d_genocide(root); 665 shrink_dcache_parent(root); 666 dput(root); 667 return -ENOMEM; 668} 669EXPORT_SYMBOL(simple_fill_super); 670 671static DEFINE_SPINLOCK(pin_fs_lock); 672 673int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count) 674{ 675 struct vfsmount *mnt = NULL; 676 spin_lock(&pin_fs_lock); 677 if (unlikely(!*mount)) { 678 spin_unlock(&pin_fs_lock); 679 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL); 680 if (IS_ERR(mnt)) 681 return PTR_ERR(mnt); 682 spin_lock(&pin_fs_lock); 683 if (!*mount) 684 *mount = mnt; 685 } 686 mntget(*mount); 687 ++*count; 688 spin_unlock(&pin_fs_lock); 689 mntput(mnt); 690 return 0; 691} 692EXPORT_SYMBOL(simple_pin_fs); 693 694void simple_release_fs(struct vfsmount **mount, int *count) 695{ 696 struct vfsmount *mnt; 697 spin_lock(&pin_fs_lock); 698 mnt = *mount; 699 if (!--*count) 700 *mount = NULL; 701 spin_unlock(&pin_fs_lock); 702 mntput(mnt); 703} 704EXPORT_SYMBOL(simple_release_fs); 705 706/** 707 * simple_read_from_buffer - copy data from the buffer to user space 708 * @to: the user space buffer to read to 709 * @count: the maximum number of bytes to read 710 * @ppos: the current position in the buffer 711 * @from: the buffer to read from 712 * @available: the size of the buffer 713 * 714 * The simple_read_from_buffer() function reads up to @count bytes from the 715 * buffer @from at offset @ppos into the user space address starting at @to. 716 * 717 * On success, the number of bytes read is returned and the offset @ppos is 718 * advanced by this number, or negative value is returned on error. 719 **/ 720ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos, 721 const void *from, size_t available) 722{ 723 loff_t pos = *ppos; 724 size_t ret; 725 726 if (pos < 0) 727 return -EINVAL; 728 if (pos >= available || !count) 729 return 0; 730 if (count > available - pos) 731 count = available - pos; 732 ret = copy_to_user(to, from + pos, count); 733 if (ret == count) 734 return -EFAULT; 735 count -= ret; 736 *ppos = pos + count; 737 return count; 738} 739EXPORT_SYMBOL(simple_read_from_buffer); 740 741/** 742 * simple_write_to_buffer - copy data from user space to the buffer 743 * @to: the buffer to write to 744 * @available: the size of the buffer 745 * @ppos: the current position in the buffer 746 * @from: the user space buffer to read from 747 * @count: the maximum number of bytes to read 748 * 749 * The simple_write_to_buffer() function reads up to @count bytes from the user 750 * space address starting at @from into the buffer @to at offset @ppos. 751 * 752 * On success, the number of bytes written is returned and the offset @ppos is 753 * advanced by this number, or negative value is returned on error. 754 **/ 755ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos, 756 const void __user *from, size_t count) 757{ 758 loff_t pos = *ppos; 759 size_t res; 760 761 if (pos < 0) 762 return -EINVAL; 763 if (pos >= available || !count) 764 return 0; 765 if (count > available - pos) 766 count = available - pos; 767 res = copy_from_user(to + pos, from, count); 768 if (res == count) 769 return -EFAULT; 770 count -= res; 771 *ppos = pos + count; 772 return count; 773} 774EXPORT_SYMBOL(simple_write_to_buffer); 775 776/** 777 * memory_read_from_buffer - copy data from the buffer 778 * @to: the kernel space buffer to read to 779 * @count: the maximum number of bytes to read 780 * @ppos: the current position in the buffer 781 * @from: the buffer to read from 782 * @available: the size of the buffer 783 * 784 * The memory_read_from_buffer() function reads up to @count bytes from the 785 * buffer @from at offset @ppos into the kernel space address starting at @to. 786 * 787 * On success, the number of bytes read is returned and the offset @ppos is 788 * advanced by this number, or negative value is returned on error. 789 **/ 790ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos, 791 const void *from, size_t available) 792{ 793 loff_t pos = *ppos; 794 795 if (pos < 0) 796 return -EINVAL; 797 if (pos >= available) 798 return 0; 799 if (count > available - pos) 800 count = available - pos; 801 memcpy(to, from + pos, count); 802 *ppos = pos + count; 803 804 return count; 805} 806EXPORT_SYMBOL(memory_read_from_buffer); 807 808/* 809 * Transaction based IO. 810 * The file expects a single write which triggers the transaction, and then 811 * possibly a read which collects the result - which is stored in a 812 * file-local buffer. 813 */ 814 815void simple_transaction_set(struct file *file, size_t n) 816{ 817 struct simple_transaction_argresp *ar = file->private_data; 818 819 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT); 820 821 /* 822 * The barrier ensures that ar->size will really remain zero until 823 * ar->data is ready for reading. 824 */ 825 smp_mb(); 826 ar->size = n; 827} 828EXPORT_SYMBOL(simple_transaction_set); 829 830char *simple_transaction_get(struct file *file, const char __user *buf, size_t size) 831{ 832 struct simple_transaction_argresp *ar; 833 static DEFINE_SPINLOCK(simple_transaction_lock); 834 835 if (size > SIMPLE_TRANSACTION_LIMIT - 1) 836 return ERR_PTR(-EFBIG); 837 838 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL); 839 if (!ar) 840 return ERR_PTR(-ENOMEM); 841 842 spin_lock(&simple_transaction_lock); 843 844 /* only one write allowed per open */ 845 if (file->private_data) { 846 spin_unlock(&simple_transaction_lock); 847 free_page((unsigned long)ar); 848 return ERR_PTR(-EBUSY); 849 } 850 851 file->private_data = ar; 852 853 spin_unlock(&simple_transaction_lock); 854 855 if (copy_from_user(ar->data, buf, size)) 856 return ERR_PTR(-EFAULT); 857 858 return ar->data; 859} 860EXPORT_SYMBOL(simple_transaction_get); 861 862ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos) 863{ 864 struct simple_transaction_argresp *ar = file->private_data; 865 866 if (!ar) 867 return 0; 868 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size); 869} 870EXPORT_SYMBOL(simple_transaction_read); 871 872int simple_transaction_release(struct inode *inode, struct file *file) 873{ 874 free_page((unsigned long)file->private_data); 875 return 0; 876} 877EXPORT_SYMBOL(simple_transaction_release); 878 879/* Simple attribute files */ 880 881struct simple_attr { 882 int (*get)(void *, u64 *); 883 int (*set)(void *, u64); 884 char get_buf[24]; /* enough to store a u64 and "\n\0" */ 885 char set_buf[24]; 886 void *data; 887 const char *fmt; /* format for read operation */ 888 struct mutex mutex; /* protects access to these buffers */ 889}; 890 891/* simple_attr_open is called by an actual attribute open file operation 892 * to set the attribute specific access operations. */ 893int simple_attr_open(struct inode *inode, struct file *file, 894 int (*get)(void *, u64 *), int (*set)(void *, u64), 895 const char *fmt) 896{ 897 struct simple_attr *attr; 898 899 attr = kzalloc(sizeof(*attr), GFP_KERNEL); 900 if (!attr) 901 return -ENOMEM; 902 903 attr->get = get; 904 attr->set = set; 905 attr->data = inode->i_private; 906 attr->fmt = fmt; 907 mutex_init(&attr->mutex); 908 909 file->private_data = attr; 910 911 return nonseekable_open(inode, file); 912} 913EXPORT_SYMBOL_GPL(simple_attr_open); 914 915int simple_attr_release(struct inode *inode, struct file *file) 916{ 917 kfree(file->private_data); 918 return 0; 919} 920EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only? This? Really? */ 921 922/* read from the buffer that is filled with the get function */ 923ssize_t simple_attr_read(struct file *file, char __user *buf, 924 size_t len, loff_t *ppos) 925{ 926 struct simple_attr *attr; 927 size_t size; 928 ssize_t ret; 929 930 attr = file->private_data; 931 932 if (!attr->get) 933 return -EACCES; 934 935 ret = mutex_lock_interruptible(&attr->mutex); 936 if (ret) 937 return ret; 938 939 if (*ppos && attr->get_buf[0]) { 940 /* continued read */ 941 size = strlen(attr->get_buf); 942 } else { 943 /* first read */ 944 u64 val; 945 ret = attr->get(attr->data, &val); 946 if (ret) 947 goto out; 948 949 size = scnprintf(attr->get_buf, sizeof(attr->get_buf), 950 attr->fmt, (unsigned long long)val); 951 } 952 953 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size); 954out: 955 mutex_unlock(&attr->mutex); 956 return ret; 957} 958EXPORT_SYMBOL_GPL(simple_attr_read); 959 960/* interpret the buffer as a number to call the set function with */ 961ssize_t simple_attr_write(struct file *file, const char __user *buf, 962 size_t len, loff_t *ppos) 963{ 964 struct simple_attr *attr; 965 unsigned long long val; 966 size_t size; 967 ssize_t ret; 968 969 attr = file->private_data; 970 if (!attr->set) 971 return -EACCES; 972 973 ret = mutex_lock_interruptible(&attr->mutex); 974 if (ret) 975 return ret; 976 977 ret = -EFAULT; 978 size = min(sizeof(attr->set_buf) - 1, len); 979 if (copy_from_user(attr->set_buf, buf, size)) 980 goto out; 981 982 attr->set_buf[size] = '\0'; 983 ret = kstrtoull(attr->set_buf, 0, &val); 984 if (ret) 985 goto out; 986 ret = attr->set(attr->data, val); 987 if (ret == 0) 988 ret = len; /* on success, claim we got the whole input */ 989out: 990 mutex_unlock(&attr->mutex); 991 return ret; 992} 993EXPORT_SYMBOL_GPL(simple_attr_write); 994 995/** 996 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation 997 * @sb: filesystem to do the file handle conversion on 998 * @fid: file handle to convert 999 * @fh_len: length of the file handle in bytes 1000 * @fh_type: type of file handle 1001 * @get_inode: filesystem callback to retrieve inode 1002 * 1003 * This function decodes @fid as long as it has one of the well-known 1004 * Linux filehandle types and calls @get_inode on it to retrieve the 1005 * inode for the object specified in the file handle. 1006 */ 1007struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid, 1008 int fh_len, int fh_type, struct inode *(*get_inode) 1009 (struct super_block *sb, u64 ino, u32 gen)) 1010{ 1011 struct inode *inode = NULL; 1012 1013 if (fh_len < 2) 1014 return NULL; 1015 1016 switch (fh_type) { 1017 case FILEID_INO32_GEN: 1018 case FILEID_INO32_GEN_PARENT: 1019 inode = get_inode(sb, fid->i32.ino, fid->i32.gen); 1020 break; 1021 } 1022 1023 return d_obtain_alias(inode); 1024} 1025EXPORT_SYMBOL_GPL(generic_fh_to_dentry); 1026 1027/** 1028 * generic_fh_to_parent - generic helper for the fh_to_parent export operation 1029 * @sb: filesystem to do the file handle conversion on 1030 * @fid: file handle to convert 1031 * @fh_len: length of the file handle in bytes 1032 * @fh_type: type of file handle 1033 * @get_inode: filesystem callback to retrieve inode 1034 * 1035 * This function decodes @fid as long as it has one of the well-known 1036 * Linux filehandle types and calls @get_inode on it to retrieve the 1037 * inode for the _parent_ object specified in the file handle if it 1038 * is specified in the file handle, or NULL otherwise. 1039 */ 1040struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid, 1041 int fh_len, int fh_type, struct inode *(*get_inode) 1042 (struct super_block *sb, u64 ino, u32 gen)) 1043{ 1044 struct inode *inode = NULL; 1045 1046 if (fh_len <= 2) 1047 return NULL; 1048 1049 switch (fh_type) { 1050 case FILEID_INO32_GEN_PARENT: 1051 inode = get_inode(sb, fid->i32.parent_ino, 1052 (fh_len > 3 ? fid->i32.parent_gen : 0)); 1053 break; 1054 } 1055 1056 return d_obtain_alias(inode); 1057} 1058EXPORT_SYMBOL_GPL(generic_fh_to_parent); 1059 1060/** 1061 * __generic_file_fsync - generic fsync implementation for simple filesystems 1062 * 1063 * @file: file to synchronize 1064 * @start: start offset in bytes 1065 * @end: end offset in bytes (inclusive) 1066 * @datasync: only synchronize essential metadata if true 1067 * 1068 * This is a generic implementation of the fsync method for simple 1069 * filesystems which track all non-inode metadata in the buffers list 1070 * hanging off the address_space structure. 1071 */ 1072int __generic_file_fsync(struct file *file, loff_t start, loff_t end, 1073 int datasync) 1074{ 1075 struct inode *inode = file->f_mapping->host; 1076 int err; 1077 int ret; 1078 1079 err = file_write_and_wait_range(file, start, end); 1080 if (err) 1081 return err; 1082 1083 inode_lock(inode); 1084 ret = sync_mapping_buffers(inode->i_mapping); 1085 if (!(inode->i_state & I_DIRTY_ALL)) 1086 goto out; 1087 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC)) 1088 goto out; 1089 1090 err = sync_inode_metadata(inode, 1); 1091 if (ret == 0) 1092 ret = err; 1093 1094out: 1095 inode_unlock(inode); 1096 /* check and advance again to catch errors after syncing out buffers */ 1097 err = file_check_and_advance_wb_err(file); 1098 if (ret == 0) 1099 ret = err; 1100 return ret; 1101} 1102EXPORT_SYMBOL(__generic_file_fsync); 1103 1104/** 1105 * generic_file_fsync - generic fsync implementation for simple filesystems 1106 * with flush 1107 * @file: file to synchronize 1108 * @start: start offset in bytes 1109 * @end: end offset in bytes (inclusive) 1110 * @datasync: only synchronize essential metadata if true 1111 * 1112 */ 1113 1114int generic_file_fsync(struct file *file, loff_t start, loff_t end, 1115 int datasync) 1116{ 1117 struct inode *inode = file->f_mapping->host; 1118 int err; 1119 1120 err = __generic_file_fsync(file, start, end, datasync); 1121 if (err) 1122 return err; 1123 return blkdev_issue_flush(inode->i_sb->s_bdev); 1124} 1125EXPORT_SYMBOL(generic_file_fsync); 1126 1127/** 1128 * generic_check_addressable - Check addressability of file system 1129 * @blocksize_bits: log of file system block size 1130 * @num_blocks: number of blocks in file system 1131 * 1132 * Determine whether a file system with @num_blocks blocks (and a 1133 * block size of 2**@blocksize_bits) is addressable by the sector_t 1134 * and page cache of the system. Return 0 if so and -EFBIG otherwise. 1135 */ 1136int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks) 1137{ 1138 u64 last_fs_block = num_blocks - 1; 1139 u64 last_fs_page = 1140 last_fs_block >> (PAGE_SHIFT - blocksize_bits); 1141 1142 if (unlikely(num_blocks == 0)) 1143 return 0; 1144 1145 if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT)) 1146 return -EINVAL; 1147 1148 if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) || 1149 (last_fs_page > (pgoff_t)(~0ULL))) { 1150 return -EFBIG; 1151 } 1152 return 0; 1153} 1154EXPORT_SYMBOL(generic_check_addressable); 1155 1156/* 1157 * No-op implementation of ->fsync for in-memory filesystems. 1158 */ 1159int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync) 1160{ 1161 return 0; 1162} 1163EXPORT_SYMBOL(noop_fsync); 1164 1165int noop_set_page_dirty(struct page *page) 1166{ 1167 /* 1168 * Unlike __set_page_dirty_no_writeback that handles dirty page 1169 * tracking in the page object, dax does all dirty tracking in 1170 * the inode address_space in response to mkwrite faults. In the 1171 * dax case we only need to worry about potentially dirty CPU 1172 * caches, not dirty page cache pages to write back. 1173 * 1174 * This callback is defined to prevent fallback to 1175 * __set_page_dirty_buffers() in set_page_dirty(). 1176 */ 1177 return 0; 1178} 1179EXPORT_SYMBOL_GPL(noop_set_page_dirty); 1180 1181void noop_invalidatepage(struct page *page, unsigned int offset, 1182 unsigned int length) 1183{ 1184 /* 1185 * There is no page cache to invalidate in the dax case, however 1186 * we need this callback defined to prevent falling back to 1187 * block_invalidatepage() in do_invalidatepage(). 1188 */ 1189} 1190EXPORT_SYMBOL_GPL(noop_invalidatepage); 1191 1192ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 1193{ 1194 /* 1195 * iomap based filesystems support direct I/O without need for 1196 * this callback. However, it still needs to be set in 1197 * inode->a_ops so that open/fcntl know that direct I/O is 1198 * generally supported. 1199 */ 1200 return -EINVAL; 1201} 1202EXPORT_SYMBOL_GPL(noop_direct_IO); 1203 1204/* Because kfree isn't assignment-compatible with void(void*) ;-/ */ 1205void kfree_link(void *p) 1206{ 1207 kfree(p); 1208} 1209EXPORT_SYMBOL(kfree_link); 1210 1211/* 1212 * nop .set_page_dirty method so that people can use .page_mkwrite on 1213 * anon inodes. 1214 */ 1215static int anon_set_page_dirty(struct page *page) 1216{ 1217 return 0; 1218}; 1219 1220struct inode *alloc_anon_inode(struct super_block *s) 1221{ 1222 static const struct address_space_operations anon_aops = { 1223 .set_page_dirty = anon_set_page_dirty, 1224 }; 1225 struct inode *inode = new_inode_pseudo(s); 1226 1227 if (!inode) 1228 return ERR_PTR(-ENOMEM); 1229 1230 inode->i_ino = get_next_ino(); 1231 inode->i_mapping->a_ops = &anon_aops; 1232 1233 /* 1234 * Mark the inode dirty from the very beginning, 1235 * that way it will never be moved to the dirty 1236 * list because mark_inode_dirty() will think 1237 * that it already _is_ on the dirty list. 1238 */ 1239 inode->i_state = I_DIRTY; 1240 inode->i_mode = S_IRUSR | S_IWUSR; 1241 inode->i_uid = current_fsuid(); 1242 inode->i_gid = current_fsgid(); 1243 inode->i_flags |= S_PRIVATE; 1244 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 1245 return inode; 1246} 1247EXPORT_SYMBOL(alloc_anon_inode); 1248 1249/** 1250 * simple_nosetlease - generic helper for prohibiting leases 1251 * @filp: file pointer 1252 * @arg: type of lease to obtain 1253 * @flp: new lease supplied for insertion 1254 * @priv: private data for lm_setup operation 1255 * 1256 * Generic helper for filesystems that do not wish to allow leases to be set. 1257 * All arguments are ignored and it just returns -EINVAL. 1258 */ 1259int 1260simple_nosetlease(struct file *filp, long arg, struct file_lock **flp, 1261 void **priv) 1262{ 1263 return -EINVAL; 1264} 1265EXPORT_SYMBOL(simple_nosetlease); 1266 1267/** 1268 * simple_get_link - generic helper to get the target of "fast" symlinks 1269 * @dentry: not used here 1270 * @inode: the symlink inode 1271 * @done: not used here 1272 * 1273 * Generic helper for filesystems to use for symlink inodes where a pointer to 1274 * the symlink target is stored in ->i_link. NOTE: this isn't normally called, 1275 * since as an optimization the path lookup code uses any non-NULL ->i_link 1276 * directly, without calling ->get_link(). But ->get_link() still must be set, 1277 * to mark the inode_operations as being for a symlink. 1278 * 1279 * Return: the symlink target 1280 */ 1281const char *simple_get_link(struct dentry *dentry, struct inode *inode, 1282 struct delayed_call *done) 1283{ 1284 return inode->i_link; 1285} 1286EXPORT_SYMBOL(simple_get_link); 1287 1288const struct inode_operations simple_symlink_inode_operations = { 1289 .get_link = simple_get_link, 1290}; 1291EXPORT_SYMBOL(simple_symlink_inode_operations); 1292 1293/* 1294 * Operations for a permanently empty directory. 1295 */ 1296static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 1297{ 1298 return ERR_PTR(-ENOENT); 1299} 1300 1301static int empty_dir_getattr(struct user_namespace *mnt_userns, 1302 const struct path *path, struct kstat *stat, 1303 u32 request_mask, unsigned int query_flags) 1304{ 1305 struct inode *inode = d_inode(path->dentry); 1306 generic_fillattr(&init_user_ns, inode, stat); 1307 return 0; 1308} 1309 1310static int empty_dir_setattr(struct user_namespace *mnt_userns, 1311 struct dentry *dentry, struct iattr *attr) 1312{ 1313 return -EPERM; 1314} 1315 1316static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size) 1317{ 1318 return -EOPNOTSUPP; 1319} 1320 1321static const struct inode_operations empty_dir_inode_operations = { 1322 .lookup = empty_dir_lookup, 1323 .permission = generic_permission, 1324 .setattr = empty_dir_setattr, 1325 .getattr = empty_dir_getattr, 1326 .listxattr = empty_dir_listxattr, 1327}; 1328 1329static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence) 1330{ 1331 /* An empty directory has two entries . and .. at offsets 0 and 1 */ 1332 return generic_file_llseek_size(file, offset, whence, 2, 2); 1333} 1334 1335static int empty_dir_readdir(struct file *file, struct dir_context *ctx) 1336{ 1337 dir_emit_dots(file, ctx); 1338 return 0; 1339} 1340 1341static const struct file_operations empty_dir_operations = { 1342 .llseek = empty_dir_llseek, 1343 .read = generic_read_dir, 1344 .iterate_shared = empty_dir_readdir, 1345 .fsync = noop_fsync, 1346}; 1347 1348 1349void make_empty_dir_inode(struct inode *inode) 1350{ 1351 set_nlink(inode, 2); 1352 inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO; 1353 inode->i_uid = GLOBAL_ROOT_UID; 1354 inode->i_gid = GLOBAL_ROOT_GID; 1355 inode->i_rdev = 0; 1356 inode->i_size = 0; 1357 inode->i_blkbits = PAGE_SHIFT; 1358 inode->i_blocks = 0; 1359 1360 inode->i_op = &empty_dir_inode_operations; 1361 inode->i_opflags &= ~IOP_XATTR; 1362 inode->i_fop = &empty_dir_operations; 1363} 1364 1365bool is_empty_dir_inode(struct inode *inode) 1366{ 1367 return (inode->i_fop == &empty_dir_operations) && 1368 (inode->i_op == &empty_dir_inode_operations); 1369} 1370 1371#ifdef CONFIG_UNICODE 1372/* 1373 * Determine if the name of a dentry should be casefolded. 1374 * 1375 * Return: if names will need casefolding 1376 */ 1377static bool needs_casefold(const struct inode *dir) 1378{ 1379 return IS_CASEFOLDED(dir) && dir->i_sb->s_encoding; 1380} 1381 1382/** 1383 * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems 1384 * @dentry: dentry whose name we are checking against 1385 * @len: len of name of dentry 1386 * @str: str pointer to name of dentry 1387 * @name: Name to compare against 1388 * 1389 * Return: 0 if names match, 1 if mismatch, or -ERRNO 1390 */ 1391static int generic_ci_d_compare(const struct dentry *dentry, unsigned int len, 1392 const char *str, const struct qstr *name) 1393{ 1394 const struct dentry *parent = READ_ONCE(dentry->d_parent); 1395 const struct inode *dir = READ_ONCE(parent->d_inode); 1396 const struct super_block *sb = dentry->d_sb; 1397 const struct unicode_map *um = sb->s_encoding; 1398 struct qstr qstr = QSTR_INIT(str, len); 1399 char strbuf[DNAME_INLINE_LEN]; 1400 int ret; 1401 1402 if (!dir || !needs_casefold(dir)) 1403 goto fallback; 1404 /* 1405 * If the dentry name is stored in-line, then it may be concurrently 1406 * modified by a rename. If this happens, the VFS will eventually retry 1407 * the lookup, so it doesn't matter what ->d_compare() returns. 1408 * However, it's unsafe to call utf8_strncasecmp() with an unstable 1409 * string. Therefore, we have to copy the name into a temporary buffer. 1410 */ 1411 if (len <= DNAME_INLINE_LEN - 1) { 1412 memcpy(strbuf, str, len); 1413 strbuf[len] = 0; 1414 qstr.name = strbuf; 1415 /* prevent compiler from optimizing out the temporary buffer */ 1416 barrier(); 1417 } 1418 ret = utf8_strncasecmp(um, name, &qstr); 1419 if (ret >= 0) 1420 return ret; 1421 1422 if (sb_has_strict_encoding(sb)) 1423 return -EINVAL; 1424fallback: 1425 if (len != name->len) 1426 return 1; 1427 return !!memcmp(str, name->name, len); 1428} 1429 1430/** 1431 * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems 1432 * @dentry: dentry of the parent directory 1433 * @str: qstr of name whose hash we should fill in 1434 * 1435 * Return: 0 if hash was successful or unchanged, and -EINVAL on error 1436 */ 1437static int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str) 1438{ 1439 const struct inode *dir = READ_ONCE(dentry->d_inode); 1440 struct super_block *sb = dentry->d_sb; 1441 const struct unicode_map *um = sb->s_encoding; 1442 int ret = 0; 1443 1444 if (!dir || !needs_casefold(dir)) 1445 return 0; 1446 1447 ret = utf8_casefold_hash(um, dentry, str); 1448 if (ret < 0 && sb_has_strict_encoding(sb)) 1449 return -EINVAL; 1450 return 0; 1451} 1452 1453static const struct dentry_operations generic_ci_dentry_ops = { 1454 .d_hash = generic_ci_d_hash, 1455 .d_compare = generic_ci_d_compare, 1456}; 1457#endif 1458 1459#ifdef CONFIG_FS_ENCRYPTION 1460static const struct dentry_operations generic_encrypted_dentry_ops = { 1461 .d_revalidate = fscrypt_d_revalidate, 1462}; 1463#endif 1464 1465#if defined(CONFIG_FS_ENCRYPTION) && defined(CONFIG_UNICODE) 1466static const struct dentry_operations generic_encrypted_ci_dentry_ops = { 1467 .d_hash = generic_ci_d_hash, 1468 .d_compare = generic_ci_d_compare, 1469 .d_revalidate = fscrypt_d_revalidate, 1470}; 1471#endif 1472 1473/** 1474 * generic_set_encrypted_ci_d_ops - helper for setting d_ops for given dentry 1475 * @dentry: dentry to set ops on 1476 * 1477 * Casefolded directories need d_hash and d_compare set, so that the dentries 1478 * contained in them are handled case-insensitively. Note that these operations 1479 * are needed on the parent directory rather than on the dentries in it, and 1480 * while the casefolding flag can be toggled on and off on an empty directory, 1481 * dentry_operations can't be changed later. As a result, if the filesystem has 1482 * casefolding support enabled at all, we have to give all dentries the 1483 * casefolding operations even if their inode doesn't have the casefolding flag 1484 * currently (and thus the casefolding ops would be no-ops for now). 1485 * 1486 * Encryption works differently in that the only dentry operation it needs is 1487 * d_revalidate, which it only needs on dentries that have the no-key name flag. 1488 * The no-key flag can't be set "later", so we don't have to worry about that. 1489 * 1490 * Finally, to maximize compatibility with overlayfs (which isn't compatible 1491 * with certain dentry operations) and to avoid taking an unnecessary 1492 * performance hit, we use custom dentry_operations for each possible 1493 * combination rather than always installing all operations. 1494 */ 1495void generic_set_encrypted_ci_d_ops(struct dentry *dentry) 1496{ 1497#ifdef CONFIG_FS_ENCRYPTION 1498 bool needs_encrypt_ops = dentry->d_flags & DCACHE_NOKEY_NAME; 1499#endif 1500#ifdef CONFIG_UNICODE 1501 bool needs_ci_ops = dentry->d_sb->s_encoding; 1502#endif 1503#if defined(CONFIG_FS_ENCRYPTION) && defined(CONFIG_UNICODE) 1504 if (needs_encrypt_ops && needs_ci_ops) { 1505 d_set_d_op(dentry, &generic_encrypted_ci_dentry_ops); 1506 return; 1507 } 1508#endif 1509#ifdef CONFIG_FS_ENCRYPTION 1510 if (needs_encrypt_ops) { 1511 d_set_d_op(dentry, &generic_encrypted_dentry_ops); 1512 return; 1513 } 1514#endif 1515#ifdef CONFIG_UNICODE 1516 if (needs_ci_ops) { 1517 d_set_d_op(dentry, &generic_ci_dentry_ops); 1518 return; 1519 } 1520#endif 1521} 1522EXPORT_SYMBOL(generic_set_encrypted_ci_d_ops);