at v5.13 459 lines 13 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * fs/f2fs/node.h 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8/* start node id of a node block dedicated to the given node id */ 9#define START_NID(nid) (((nid) / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK) 10 11/* node block offset on the NAT area dedicated to the given start node id */ 12#define NAT_BLOCK_OFFSET(start_nid) ((start_nid) / NAT_ENTRY_PER_BLOCK) 13 14/* # of pages to perform synchronous readahead before building free nids */ 15#define FREE_NID_PAGES 8 16#define MAX_FREE_NIDS (NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES) 17 18/* size of free nid batch when shrinking */ 19#define SHRINK_NID_BATCH_SIZE 8 20 21#define DEF_RA_NID_PAGES 0 /* # of nid pages to be readaheaded */ 22 23/* maximum readahead size for node during getting data blocks */ 24#define MAX_RA_NODE 128 25 26/* control the memory footprint threshold (10MB per 1GB ram) */ 27#define DEF_RAM_THRESHOLD 1 28 29/* control dirty nats ratio threshold (default: 10% over max nid count) */ 30#define DEF_DIRTY_NAT_RATIO_THRESHOLD 10 31/* control total # of nats */ 32#define DEF_NAT_CACHE_THRESHOLD 100000 33 34/* vector size for gang look-up from nat cache that consists of radix tree */ 35#define NATVEC_SIZE 64 36#define SETVEC_SIZE 32 37 38/* return value for read_node_page */ 39#define LOCKED_PAGE 1 40 41/* For flag in struct node_info */ 42enum { 43 IS_CHECKPOINTED, /* is it checkpointed before? */ 44 HAS_FSYNCED_INODE, /* is the inode fsynced before? */ 45 HAS_LAST_FSYNC, /* has the latest node fsync mark? */ 46 IS_DIRTY, /* this nat entry is dirty? */ 47 IS_PREALLOC, /* nat entry is preallocated */ 48}; 49 50/* 51 * For node information 52 */ 53struct node_info { 54 nid_t nid; /* node id */ 55 nid_t ino; /* inode number of the node's owner */ 56 block_t blk_addr; /* block address of the node */ 57 unsigned char version; /* version of the node */ 58 unsigned char flag; /* for node information bits */ 59}; 60 61struct nat_entry { 62 struct list_head list; /* for clean or dirty nat list */ 63 struct node_info ni; /* in-memory node information */ 64}; 65 66#define nat_get_nid(nat) ((nat)->ni.nid) 67#define nat_set_nid(nat, n) ((nat)->ni.nid = (n)) 68#define nat_get_blkaddr(nat) ((nat)->ni.blk_addr) 69#define nat_set_blkaddr(nat, b) ((nat)->ni.blk_addr = (b)) 70#define nat_get_ino(nat) ((nat)->ni.ino) 71#define nat_set_ino(nat, i) ((nat)->ni.ino = (i)) 72#define nat_get_version(nat) ((nat)->ni.version) 73#define nat_set_version(nat, v) ((nat)->ni.version = (v)) 74 75#define inc_node_version(version) (++(version)) 76 77static inline void copy_node_info(struct node_info *dst, 78 struct node_info *src) 79{ 80 dst->nid = src->nid; 81 dst->ino = src->ino; 82 dst->blk_addr = src->blk_addr; 83 dst->version = src->version; 84 /* should not copy flag here */ 85} 86 87static inline void set_nat_flag(struct nat_entry *ne, 88 unsigned int type, bool set) 89{ 90 unsigned char mask = 0x01 << type; 91 if (set) 92 ne->ni.flag |= mask; 93 else 94 ne->ni.flag &= ~mask; 95} 96 97static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type) 98{ 99 unsigned char mask = 0x01 << type; 100 return ne->ni.flag & mask; 101} 102 103static inline void nat_reset_flag(struct nat_entry *ne) 104{ 105 /* these states can be set only after checkpoint was done */ 106 set_nat_flag(ne, IS_CHECKPOINTED, true); 107 set_nat_flag(ne, HAS_FSYNCED_INODE, false); 108 set_nat_flag(ne, HAS_LAST_FSYNC, true); 109} 110 111static inline void node_info_from_raw_nat(struct node_info *ni, 112 struct f2fs_nat_entry *raw_ne) 113{ 114 ni->ino = le32_to_cpu(raw_ne->ino); 115 ni->blk_addr = le32_to_cpu(raw_ne->block_addr); 116 ni->version = raw_ne->version; 117} 118 119static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne, 120 struct node_info *ni) 121{ 122 raw_ne->ino = cpu_to_le32(ni->ino); 123 raw_ne->block_addr = cpu_to_le32(ni->blk_addr); 124 raw_ne->version = ni->version; 125} 126 127static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi) 128{ 129 return NM_I(sbi)->nat_cnt[DIRTY_NAT] >= NM_I(sbi)->max_nid * 130 NM_I(sbi)->dirty_nats_ratio / 100; 131} 132 133static inline bool excess_cached_nats(struct f2fs_sb_info *sbi) 134{ 135 return NM_I(sbi)->nat_cnt[TOTAL_NAT] >= DEF_NAT_CACHE_THRESHOLD; 136} 137 138static inline bool excess_dirty_nodes(struct f2fs_sb_info *sbi) 139{ 140 return get_pages(sbi, F2FS_DIRTY_NODES) >= sbi->blocks_per_seg * 8; 141} 142 143enum mem_type { 144 FREE_NIDS, /* indicates the free nid list */ 145 NAT_ENTRIES, /* indicates the cached nat entry */ 146 DIRTY_DENTS, /* indicates dirty dentry pages */ 147 INO_ENTRIES, /* indicates inode entries */ 148 EXTENT_CACHE, /* indicates extent cache */ 149 INMEM_PAGES, /* indicates inmemory pages */ 150 DISCARD_CACHE, /* indicates memory of cached discard cmds */ 151 BASE_CHECK, /* check kernel status */ 152}; 153 154struct nat_entry_set { 155 struct list_head set_list; /* link with other nat sets */ 156 struct list_head entry_list; /* link with dirty nat entries */ 157 nid_t set; /* set number*/ 158 unsigned int entry_cnt; /* the # of nat entries in set */ 159}; 160 161struct free_nid { 162 struct list_head list; /* for free node id list */ 163 nid_t nid; /* node id */ 164 int state; /* in use or not: FREE_NID or PREALLOC_NID */ 165}; 166 167static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid) 168{ 169 struct f2fs_nm_info *nm_i = NM_I(sbi); 170 struct free_nid *fnid; 171 172 spin_lock(&nm_i->nid_list_lock); 173 if (nm_i->nid_cnt[FREE_NID] <= 0) { 174 spin_unlock(&nm_i->nid_list_lock); 175 return; 176 } 177 fnid = list_first_entry(&nm_i->free_nid_list, struct free_nid, list); 178 *nid = fnid->nid; 179 spin_unlock(&nm_i->nid_list_lock); 180} 181 182/* 183 * inline functions 184 */ 185static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr) 186{ 187 struct f2fs_nm_info *nm_i = NM_I(sbi); 188 189#ifdef CONFIG_F2FS_CHECK_FS 190 if (memcmp(nm_i->nat_bitmap, nm_i->nat_bitmap_mir, 191 nm_i->bitmap_size)) 192 f2fs_bug_on(sbi, 1); 193#endif 194 memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size); 195} 196 197static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start) 198{ 199 struct f2fs_nm_info *nm_i = NM_I(sbi); 200 pgoff_t block_off; 201 pgoff_t block_addr; 202 203 /* 204 * block_off = segment_off * 512 + off_in_segment 205 * OLD = (segment_off * 512) * 2 + off_in_segment 206 * NEW = 2 * (segment_off * 512 + off_in_segment) - off_in_segment 207 */ 208 block_off = NAT_BLOCK_OFFSET(start); 209 210 block_addr = (pgoff_t)(nm_i->nat_blkaddr + 211 (block_off << 1) - 212 (block_off & (sbi->blocks_per_seg - 1))); 213 214 if (f2fs_test_bit(block_off, nm_i->nat_bitmap)) 215 block_addr += sbi->blocks_per_seg; 216 217 return block_addr; 218} 219 220static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi, 221 pgoff_t block_addr) 222{ 223 struct f2fs_nm_info *nm_i = NM_I(sbi); 224 225 block_addr -= nm_i->nat_blkaddr; 226 block_addr ^= 1 << sbi->log_blocks_per_seg; 227 return block_addr + nm_i->nat_blkaddr; 228} 229 230static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid) 231{ 232 unsigned int block_off = NAT_BLOCK_OFFSET(start_nid); 233 234 f2fs_change_bit(block_off, nm_i->nat_bitmap); 235#ifdef CONFIG_F2FS_CHECK_FS 236 f2fs_change_bit(block_off, nm_i->nat_bitmap_mir); 237#endif 238} 239 240static inline nid_t ino_of_node(struct page *node_page) 241{ 242 struct f2fs_node *rn = F2FS_NODE(node_page); 243 return le32_to_cpu(rn->footer.ino); 244} 245 246static inline nid_t nid_of_node(struct page *node_page) 247{ 248 struct f2fs_node *rn = F2FS_NODE(node_page); 249 return le32_to_cpu(rn->footer.nid); 250} 251 252static inline unsigned int ofs_of_node(struct page *node_page) 253{ 254 struct f2fs_node *rn = F2FS_NODE(node_page); 255 unsigned flag = le32_to_cpu(rn->footer.flag); 256 return flag >> OFFSET_BIT_SHIFT; 257} 258 259static inline __u64 cpver_of_node(struct page *node_page) 260{ 261 struct f2fs_node *rn = F2FS_NODE(node_page); 262 return le64_to_cpu(rn->footer.cp_ver); 263} 264 265static inline block_t next_blkaddr_of_node(struct page *node_page) 266{ 267 struct f2fs_node *rn = F2FS_NODE(node_page); 268 return le32_to_cpu(rn->footer.next_blkaddr); 269} 270 271static inline void fill_node_footer(struct page *page, nid_t nid, 272 nid_t ino, unsigned int ofs, bool reset) 273{ 274 struct f2fs_node *rn = F2FS_NODE(page); 275 unsigned int old_flag = 0; 276 277 if (reset) 278 memset(rn, 0, sizeof(*rn)); 279 else 280 old_flag = le32_to_cpu(rn->footer.flag); 281 282 rn->footer.nid = cpu_to_le32(nid); 283 rn->footer.ino = cpu_to_le32(ino); 284 285 /* should remain old flag bits such as COLD_BIT_SHIFT */ 286 rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) | 287 (old_flag & OFFSET_BIT_MASK)); 288} 289 290static inline void copy_node_footer(struct page *dst, struct page *src) 291{ 292 struct f2fs_node *src_rn = F2FS_NODE(src); 293 struct f2fs_node *dst_rn = F2FS_NODE(dst); 294 memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer)); 295} 296 297static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr) 298{ 299 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page)); 300 struct f2fs_node *rn = F2FS_NODE(page); 301 __u64 cp_ver = cur_cp_version(ckpt); 302 303 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG)) 304 cp_ver |= (cur_cp_crc(ckpt) << 32); 305 306 rn->footer.cp_ver = cpu_to_le64(cp_ver); 307 rn->footer.next_blkaddr = cpu_to_le32(blkaddr); 308} 309 310static inline bool is_recoverable_dnode(struct page *page) 311{ 312 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page)); 313 __u64 cp_ver = cur_cp_version(ckpt); 314 315 /* Don't care crc part, if fsck.f2fs sets it. */ 316 if (__is_set_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG)) 317 return (cp_ver << 32) == (cpver_of_node(page) << 32); 318 319 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG)) 320 cp_ver |= (cur_cp_crc(ckpt) << 32); 321 322 return cp_ver == cpver_of_node(page); 323} 324 325/* 326 * f2fs assigns the following node offsets described as (num). 327 * N = NIDS_PER_BLOCK 328 * 329 * Inode block (0) 330 * |- direct node (1) 331 * |- direct node (2) 332 * |- indirect node (3) 333 * | `- direct node (4 => 4 + N - 1) 334 * |- indirect node (4 + N) 335 * | `- direct node (5 + N => 5 + 2N - 1) 336 * `- double indirect node (5 + 2N) 337 * `- indirect node (6 + 2N) 338 * `- direct node 339 * ...... 340 * `- indirect node ((6 + 2N) + x(N + 1)) 341 * `- direct node 342 * ...... 343 * `- indirect node ((6 + 2N) + (N - 1)(N + 1)) 344 * `- direct node 345 */ 346static inline bool IS_DNODE(struct page *node_page) 347{ 348 unsigned int ofs = ofs_of_node(node_page); 349 350 if (f2fs_has_xattr_block(ofs)) 351 return true; 352 353 if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK || 354 ofs == 5 + 2 * NIDS_PER_BLOCK) 355 return false; 356 if (ofs >= 6 + 2 * NIDS_PER_BLOCK) { 357 ofs -= 6 + 2 * NIDS_PER_BLOCK; 358 if (!((long int)ofs % (NIDS_PER_BLOCK + 1))) 359 return false; 360 } 361 return true; 362} 363 364static inline int set_nid(struct page *p, int off, nid_t nid, bool i) 365{ 366 struct f2fs_node *rn = F2FS_NODE(p); 367 368 f2fs_wait_on_page_writeback(p, NODE, true, true); 369 370 if (i) 371 rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid); 372 else 373 rn->in.nid[off] = cpu_to_le32(nid); 374 return set_page_dirty(p); 375} 376 377static inline nid_t get_nid(struct page *p, int off, bool i) 378{ 379 struct f2fs_node *rn = F2FS_NODE(p); 380 381 if (i) 382 return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]); 383 return le32_to_cpu(rn->in.nid[off]); 384} 385 386/* 387 * Coldness identification: 388 * - Mark cold files in f2fs_inode_info 389 * - Mark cold node blocks in their node footer 390 * - Mark cold data pages in page cache 391 */ 392static inline int is_cold_data(struct page *page) 393{ 394 return PageChecked(page); 395} 396 397static inline void set_cold_data(struct page *page) 398{ 399 SetPageChecked(page); 400} 401 402static inline void clear_cold_data(struct page *page) 403{ 404 ClearPageChecked(page); 405} 406 407static inline int is_node(struct page *page, int type) 408{ 409 struct f2fs_node *rn = F2FS_NODE(page); 410 return le32_to_cpu(rn->footer.flag) & (1 << type); 411} 412 413#define is_cold_node(page) is_node(page, COLD_BIT_SHIFT) 414#define is_fsync_dnode(page) is_node(page, FSYNC_BIT_SHIFT) 415#define is_dent_dnode(page) is_node(page, DENT_BIT_SHIFT) 416 417static inline int is_inline_node(struct page *page) 418{ 419 return PageChecked(page); 420} 421 422static inline void set_inline_node(struct page *page) 423{ 424 SetPageChecked(page); 425} 426 427static inline void clear_inline_node(struct page *page) 428{ 429 ClearPageChecked(page); 430} 431 432static inline void set_cold_node(struct page *page, bool is_dir) 433{ 434 struct f2fs_node *rn = F2FS_NODE(page); 435 unsigned int flag = le32_to_cpu(rn->footer.flag); 436 437 if (is_dir) 438 flag &= ~(0x1 << COLD_BIT_SHIFT); 439 else 440 flag |= (0x1 << COLD_BIT_SHIFT); 441 rn->footer.flag = cpu_to_le32(flag); 442} 443 444static inline void set_mark(struct page *page, int mark, int type) 445{ 446 struct f2fs_node *rn = F2FS_NODE(page); 447 unsigned int flag = le32_to_cpu(rn->footer.flag); 448 if (mark) 449 flag |= (0x1 << type); 450 else 451 flag &= ~(0x1 << type); 452 rn->footer.flag = cpu_to_le32(flag); 453 454#ifdef CONFIG_F2FS_CHECK_FS 455 f2fs_inode_chksum_set(F2FS_P_SB(page), page); 456#endif 457} 458#define set_dentry_mark(page, mark) set_mark(page, mark, DENT_BIT_SHIFT) 459#define set_fsync_mark(page, mark) set_mark(page, mark, FSYNC_BIT_SHIFT)