Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * fs/f2fs/node.h
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8/* start node id of a node block dedicated to the given node id */
9#define START_NID(nid) (((nid) / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
10
11/* node block offset on the NAT area dedicated to the given start node id */
12#define NAT_BLOCK_OFFSET(start_nid) ((start_nid) / NAT_ENTRY_PER_BLOCK)
13
14/* # of pages to perform synchronous readahead before building free nids */
15#define FREE_NID_PAGES 8
16#define MAX_FREE_NIDS (NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES)
17
18/* size of free nid batch when shrinking */
19#define SHRINK_NID_BATCH_SIZE 8
20
21#define DEF_RA_NID_PAGES 0 /* # of nid pages to be readaheaded */
22
23/* maximum readahead size for node during getting data blocks */
24#define MAX_RA_NODE 128
25
26/* control the memory footprint threshold (10MB per 1GB ram) */
27#define DEF_RAM_THRESHOLD 1
28
29/* control dirty nats ratio threshold (default: 10% over max nid count) */
30#define DEF_DIRTY_NAT_RATIO_THRESHOLD 10
31/* control total # of nats */
32#define DEF_NAT_CACHE_THRESHOLD 100000
33
34/* vector size for gang look-up from nat cache that consists of radix tree */
35#define NATVEC_SIZE 64
36#define SETVEC_SIZE 32
37
38/* return value for read_node_page */
39#define LOCKED_PAGE 1
40
41/* For flag in struct node_info */
42enum {
43 IS_CHECKPOINTED, /* is it checkpointed before? */
44 HAS_FSYNCED_INODE, /* is the inode fsynced before? */
45 HAS_LAST_FSYNC, /* has the latest node fsync mark? */
46 IS_DIRTY, /* this nat entry is dirty? */
47 IS_PREALLOC, /* nat entry is preallocated */
48};
49
50/*
51 * For node information
52 */
53struct node_info {
54 nid_t nid; /* node id */
55 nid_t ino; /* inode number of the node's owner */
56 block_t blk_addr; /* block address of the node */
57 unsigned char version; /* version of the node */
58 unsigned char flag; /* for node information bits */
59};
60
61struct nat_entry {
62 struct list_head list; /* for clean or dirty nat list */
63 struct node_info ni; /* in-memory node information */
64};
65
66#define nat_get_nid(nat) ((nat)->ni.nid)
67#define nat_set_nid(nat, n) ((nat)->ni.nid = (n))
68#define nat_get_blkaddr(nat) ((nat)->ni.blk_addr)
69#define nat_set_blkaddr(nat, b) ((nat)->ni.blk_addr = (b))
70#define nat_get_ino(nat) ((nat)->ni.ino)
71#define nat_set_ino(nat, i) ((nat)->ni.ino = (i))
72#define nat_get_version(nat) ((nat)->ni.version)
73#define nat_set_version(nat, v) ((nat)->ni.version = (v))
74
75#define inc_node_version(version) (++(version))
76
77static inline void copy_node_info(struct node_info *dst,
78 struct node_info *src)
79{
80 dst->nid = src->nid;
81 dst->ino = src->ino;
82 dst->blk_addr = src->blk_addr;
83 dst->version = src->version;
84 /* should not copy flag here */
85}
86
87static inline void set_nat_flag(struct nat_entry *ne,
88 unsigned int type, bool set)
89{
90 unsigned char mask = 0x01 << type;
91 if (set)
92 ne->ni.flag |= mask;
93 else
94 ne->ni.flag &= ~mask;
95}
96
97static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type)
98{
99 unsigned char mask = 0x01 << type;
100 return ne->ni.flag & mask;
101}
102
103static inline void nat_reset_flag(struct nat_entry *ne)
104{
105 /* these states can be set only after checkpoint was done */
106 set_nat_flag(ne, IS_CHECKPOINTED, true);
107 set_nat_flag(ne, HAS_FSYNCED_INODE, false);
108 set_nat_flag(ne, HAS_LAST_FSYNC, true);
109}
110
111static inline void node_info_from_raw_nat(struct node_info *ni,
112 struct f2fs_nat_entry *raw_ne)
113{
114 ni->ino = le32_to_cpu(raw_ne->ino);
115 ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
116 ni->version = raw_ne->version;
117}
118
119static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
120 struct node_info *ni)
121{
122 raw_ne->ino = cpu_to_le32(ni->ino);
123 raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
124 raw_ne->version = ni->version;
125}
126
127static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi)
128{
129 return NM_I(sbi)->nat_cnt[DIRTY_NAT] >= NM_I(sbi)->max_nid *
130 NM_I(sbi)->dirty_nats_ratio / 100;
131}
132
133static inline bool excess_cached_nats(struct f2fs_sb_info *sbi)
134{
135 return NM_I(sbi)->nat_cnt[TOTAL_NAT] >= DEF_NAT_CACHE_THRESHOLD;
136}
137
138static inline bool excess_dirty_nodes(struct f2fs_sb_info *sbi)
139{
140 return get_pages(sbi, F2FS_DIRTY_NODES) >= sbi->blocks_per_seg * 8;
141}
142
143enum mem_type {
144 FREE_NIDS, /* indicates the free nid list */
145 NAT_ENTRIES, /* indicates the cached nat entry */
146 DIRTY_DENTS, /* indicates dirty dentry pages */
147 INO_ENTRIES, /* indicates inode entries */
148 EXTENT_CACHE, /* indicates extent cache */
149 INMEM_PAGES, /* indicates inmemory pages */
150 DISCARD_CACHE, /* indicates memory of cached discard cmds */
151 BASE_CHECK, /* check kernel status */
152};
153
154struct nat_entry_set {
155 struct list_head set_list; /* link with other nat sets */
156 struct list_head entry_list; /* link with dirty nat entries */
157 nid_t set; /* set number*/
158 unsigned int entry_cnt; /* the # of nat entries in set */
159};
160
161struct free_nid {
162 struct list_head list; /* for free node id list */
163 nid_t nid; /* node id */
164 int state; /* in use or not: FREE_NID or PREALLOC_NID */
165};
166
167static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
168{
169 struct f2fs_nm_info *nm_i = NM_I(sbi);
170 struct free_nid *fnid;
171
172 spin_lock(&nm_i->nid_list_lock);
173 if (nm_i->nid_cnt[FREE_NID] <= 0) {
174 spin_unlock(&nm_i->nid_list_lock);
175 return;
176 }
177 fnid = list_first_entry(&nm_i->free_nid_list, struct free_nid, list);
178 *nid = fnid->nid;
179 spin_unlock(&nm_i->nid_list_lock);
180}
181
182/*
183 * inline functions
184 */
185static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
186{
187 struct f2fs_nm_info *nm_i = NM_I(sbi);
188
189#ifdef CONFIG_F2FS_CHECK_FS
190 if (memcmp(nm_i->nat_bitmap, nm_i->nat_bitmap_mir,
191 nm_i->bitmap_size))
192 f2fs_bug_on(sbi, 1);
193#endif
194 memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
195}
196
197static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
198{
199 struct f2fs_nm_info *nm_i = NM_I(sbi);
200 pgoff_t block_off;
201 pgoff_t block_addr;
202
203 /*
204 * block_off = segment_off * 512 + off_in_segment
205 * OLD = (segment_off * 512) * 2 + off_in_segment
206 * NEW = 2 * (segment_off * 512 + off_in_segment) - off_in_segment
207 */
208 block_off = NAT_BLOCK_OFFSET(start);
209
210 block_addr = (pgoff_t)(nm_i->nat_blkaddr +
211 (block_off << 1) -
212 (block_off & (sbi->blocks_per_seg - 1)));
213
214 if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
215 block_addr += sbi->blocks_per_seg;
216
217 return block_addr;
218}
219
220static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
221 pgoff_t block_addr)
222{
223 struct f2fs_nm_info *nm_i = NM_I(sbi);
224
225 block_addr -= nm_i->nat_blkaddr;
226 block_addr ^= 1 << sbi->log_blocks_per_seg;
227 return block_addr + nm_i->nat_blkaddr;
228}
229
230static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
231{
232 unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
233
234 f2fs_change_bit(block_off, nm_i->nat_bitmap);
235#ifdef CONFIG_F2FS_CHECK_FS
236 f2fs_change_bit(block_off, nm_i->nat_bitmap_mir);
237#endif
238}
239
240static inline nid_t ino_of_node(struct page *node_page)
241{
242 struct f2fs_node *rn = F2FS_NODE(node_page);
243 return le32_to_cpu(rn->footer.ino);
244}
245
246static inline nid_t nid_of_node(struct page *node_page)
247{
248 struct f2fs_node *rn = F2FS_NODE(node_page);
249 return le32_to_cpu(rn->footer.nid);
250}
251
252static inline unsigned int ofs_of_node(struct page *node_page)
253{
254 struct f2fs_node *rn = F2FS_NODE(node_page);
255 unsigned flag = le32_to_cpu(rn->footer.flag);
256 return flag >> OFFSET_BIT_SHIFT;
257}
258
259static inline __u64 cpver_of_node(struct page *node_page)
260{
261 struct f2fs_node *rn = F2FS_NODE(node_page);
262 return le64_to_cpu(rn->footer.cp_ver);
263}
264
265static inline block_t next_blkaddr_of_node(struct page *node_page)
266{
267 struct f2fs_node *rn = F2FS_NODE(node_page);
268 return le32_to_cpu(rn->footer.next_blkaddr);
269}
270
271static inline void fill_node_footer(struct page *page, nid_t nid,
272 nid_t ino, unsigned int ofs, bool reset)
273{
274 struct f2fs_node *rn = F2FS_NODE(page);
275 unsigned int old_flag = 0;
276
277 if (reset)
278 memset(rn, 0, sizeof(*rn));
279 else
280 old_flag = le32_to_cpu(rn->footer.flag);
281
282 rn->footer.nid = cpu_to_le32(nid);
283 rn->footer.ino = cpu_to_le32(ino);
284
285 /* should remain old flag bits such as COLD_BIT_SHIFT */
286 rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) |
287 (old_flag & OFFSET_BIT_MASK));
288}
289
290static inline void copy_node_footer(struct page *dst, struct page *src)
291{
292 struct f2fs_node *src_rn = F2FS_NODE(src);
293 struct f2fs_node *dst_rn = F2FS_NODE(dst);
294 memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
295}
296
297static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
298{
299 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
300 struct f2fs_node *rn = F2FS_NODE(page);
301 __u64 cp_ver = cur_cp_version(ckpt);
302
303 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
304 cp_ver |= (cur_cp_crc(ckpt) << 32);
305
306 rn->footer.cp_ver = cpu_to_le64(cp_ver);
307 rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
308}
309
310static inline bool is_recoverable_dnode(struct page *page)
311{
312 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
313 __u64 cp_ver = cur_cp_version(ckpt);
314
315 /* Don't care crc part, if fsck.f2fs sets it. */
316 if (__is_set_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG))
317 return (cp_ver << 32) == (cpver_of_node(page) << 32);
318
319 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
320 cp_ver |= (cur_cp_crc(ckpt) << 32);
321
322 return cp_ver == cpver_of_node(page);
323}
324
325/*
326 * f2fs assigns the following node offsets described as (num).
327 * N = NIDS_PER_BLOCK
328 *
329 * Inode block (0)
330 * |- direct node (1)
331 * |- direct node (2)
332 * |- indirect node (3)
333 * | `- direct node (4 => 4 + N - 1)
334 * |- indirect node (4 + N)
335 * | `- direct node (5 + N => 5 + 2N - 1)
336 * `- double indirect node (5 + 2N)
337 * `- indirect node (6 + 2N)
338 * `- direct node
339 * ......
340 * `- indirect node ((6 + 2N) + x(N + 1))
341 * `- direct node
342 * ......
343 * `- indirect node ((6 + 2N) + (N - 1)(N + 1))
344 * `- direct node
345 */
346static inline bool IS_DNODE(struct page *node_page)
347{
348 unsigned int ofs = ofs_of_node(node_page);
349
350 if (f2fs_has_xattr_block(ofs))
351 return true;
352
353 if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
354 ofs == 5 + 2 * NIDS_PER_BLOCK)
355 return false;
356 if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
357 ofs -= 6 + 2 * NIDS_PER_BLOCK;
358 if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
359 return false;
360 }
361 return true;
362}
363
364static inline int set_nid(struct page *p, int off, nid_t nid, bool i)
365{
366 struct f2fs_node *rn = F2FS_NODE(p);
367
368 f2fs_wait_on_page_writeback(p, NODE, true, true);
369
370 if (i)
371 rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
372 else
373 rn->in.nid[off] = cpu_to_le32(nid);
374 return set_page_dirty(p);
375}
376
377static inline nid_t get_nid(struct page *p, int off, bool i)
378{
379 struct f2fs_node *rn = F2FS_NODE(p);
380
381 if (i)
382 return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
383 return le32_to_cpu(rn->in.nid[off]);
384}
385
386/*
387 * Coldness identification:
388 * - Mark cold files in f2fs_inode_info
389 * - Mark cold node blocks in their node footer
390 * - Mark cold data pages in page cache
391 */
392static inline int is_cold_data(struct page *page)
393{
394 return PageChecked(page);
395}
396
397static inline void set_cold_data(struct page *page)
398{
399 SetPageChecked(page);
400}
401
402static inline void clear_cold_data(struct page *page)
403{
404 ClearPageChecked(page);
405}
406
407static inline int is_node(struct page *page, int type)
408{
409 struct f2fs_node *rn = F2FS_NODE(page);
410 return le32_to_cpu(rn->footer.flag) & (1 << type);
411}
412
413#define is_cold_node(page) is_node(page, COLD_BIT_SHIFT)
414#define is_fsync_dnode(page) is_node(page, FSYNC_BIT_SHIFT)
415#define is_dent_dnode(page) is_node(page, DENT_BIT_SHIFT)
416
417static inline int is_inline_node(struct page *page)
418{
419 return PageChecked(page);
420}
421
422static inline void set_inline_node(struct page *page)
423{
424 SetPageChecked(page);
425}
426
427static inline void clear_inline_node(struct page *page)
428{
429 ClearPageChecked(page);
430}
431
432static inline void set_cold_node(struct page *page, bool is_dir)
433{
434 struct f2fs_node *rn = F2FS_NODE(page);
435 unsigned int flag = le32_to_cpu(rn->footer.flag);
436
437 if (is_dir)
438 flag &= ~(0x1 << COLD_BIT_SHIFT);
439 else
440 flag |= (0x1 << COLD_BIT_SHIFT);
441 rn->footer.flag = cpu_to_le32(flag);
442}
443
444static inline void set_mark(struct page *page, int mark, int type)
445{
446 struct f2fs_node *rn = F2FS_NODE(page);
447 unsigned int flag = le32_to_cpu(rn->footer.flag);
448 if (mark)
449 flag |= (0x1 << type);
450 else
451 flag &= ~(0x1 << type);
452 rn->footer.flag = cpu_to_le32(flag);
453
454#ifdef CONFIG_F2FS_CHECK_FS
455 f2fs_inode_chksum_set(F2FS_P_SB(page), page);
456#endif
457}
458#define set_dentry_mark(page, mark) set_mark(page, mark, DENT_BIT_SHIFT)
459#define set_fsync_mark(page, mark) set_mark(page, mark, FSYNC_BIT_SHIFT)