Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * fs/f2fs/node.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8#include <linux/fs.h>
9#include <linux/f2fs_fs.h>
10#include <linux/mpage.h>
11#include <linux/backing-dev.h>
12#include <linux/blkdev.h>
13#include <linux/pagevec.h>
14#include <linux/swap.h>
15
16#include "f2fs.h"
17#include "node.h"
18#include "segment.h"
19#include "xattr.h"
20#include <trace/events/f2fs.h>
21
22#define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
23
24static struct kmem_cache *nat_entry_slab;
25static struct kmem_cache *free_nid_slab;
26static struct kmem_cache *nat_entry_set_slab;
27static struct kmem_cache *fsync_node_entry_slab;
28
29/*
30 * Check whether the given nid is within node id range.
31 */
32int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
33{
34 if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
35 set_sbi_flag(sbi, SBI_NEED_FSCK);
36 f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
37 __func__, nid);
38 return -EFSCORRUPTED;
39 }
40 return 0;
41}
42
43bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
44{
45 struct f2fs_nm_info *nm_i = NM_I(sbi);
46 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
47 struct sysinfo val;
48 unsigned long avail_ram;
49 unsigned long mem_size = 0;
50 bool res = false;
51
52 if (!nm_i)
53 return true;
54
55 si_meminfo(&val);
56
57 /* only uses low memory */
58 avail_ram = val.totalram - val.totalhigh;
59
60 /*
61 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
62 */
63 if (type == FREE_NIDS) {
64 mem_size = (nm_i->nid_cnt[FREE_NID] *
65 sizeof(struct free_nid)) >> PAGE_SHIFT;
66 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
67 } else if (type == NAT_ENTRIES) {
68 mem_size = (nm_i->nat_cnt[TOTAL_NAT] *
69 sizeof(struct nat_entry)) >> PAGE_SHIFT;
70 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
71 if (excess_cached_nats(sbi))
72 res = false;
73 } else if (type == DIRTY_DENTS) {
74 if (sbi->sb->s_bdi->wb.dirty_exceeded)
75 return false;
76 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
77 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
78 } else if (type == INO_ENTRIES) {
79 int i;
80
81 for (i = 0; i < MAX_INO_ENTRY; i++)
82 mem_size += sbi->im[i].ino_num *
83 sizeof(struct ino_entry);
84 mem_size >>= PAGE_SHIFT;
85 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
86 } else if (type == EXTENT_CACHE) {
87 mem_size = (atomic_read(&sbi->total_ext_tree) *
88 sizeof(struct extent_tree) +
89 atomic_read(&sbi->total_ext_node) *
90 sizeof(struct extent_node)) >> PAGE_SHIFT;
91 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
92 } else if (type == INMEM_PAGES) {
93 /* it allows 20% / total_ram for inmemory pages */
94 mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
95 res = mem_size < (val.totalram / 5);
96 } else if (type == DISCARD_CACHE) {
97 mem_size = (atomic_read(&dcc->discard_cmd_cnt) *
98 sizeof(struct discard_cmd)) >> PAGE_SHIFT;
99 res = mem_size < (avail_ram * nm_i->ram_thresh / 100);
100 } else {
101 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
102 return true;
103 }
104 return res;
105}
106
107static void clear_node_page_dirty(struct page *page)
108{
109 if (PageDirty(page)) {
110 f2fs_clear_page_cache_dirty_tag(page);
111 clear_page_dirty_for_io(page);
112 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
113 }
114 ClearPageUptodate(page);
115}
116
117static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
118{
119 return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid));
120}
121
122static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
123{
124 struct page *src_page;
125 struct page *dst_page;
126 pgoff_t dst_off;
127 void *src_addr;
128 void *dst_addr;
129 struct f2fs_nm_info *nm_i = NM_I(sbi);
130
131 dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
132
133 /* get current nat block page with lock */
134 src_page = get_current_nat_page(sbi, nid);
135 if (IS_ERR(src_page))
136 return src_page;
137 dst_page = f2fs_grab_meta_page(sbi, dst_off);
138 f2fs_bug_on(sbi, PageDirty(src_page));
139
140 src_addr = page_address(src_page);
141 dst_addr = page_address(dst_page);
142 memcpy(dst_addr, src_addr, PAGE_SIZE);
143 set_page_dirty(dst_page);
144 f2fs_put_page(src_page, 1);
145
146 set_to_next_nat(nm_i, nid);
147
148 return dst_page;
149}
150
151static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
152{
153 struct nat_entry *new;
154
155 if (no_fail)
156 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
157 else
158 new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
159 if (new) {
160 nat_set_nid(new, nid);
161 nat_reset_flag(new);
162 }
163 return new;
164}
165
166static void __free_nat_entry(struct nat_entry *e)
167{
168 kmem_cache_free(nat_entry_slab, e);
169}
170
171/* must be locked by nat_tree_lock */
172static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
173 struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
174{
175 if (no_fail)
176 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
177 else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
178 return NULL;
179
180 if (raw_ne)
181 node_info_from_raw_nat(&ne->ni, raw_ne);
182
183 spin_lock(&nm_i->nat_list_lock);
184 list_add_tail(&ne->list, &nm_i->nat_entries);
185 spin_unlock(&nm_i->nat_list_lock);
186
187 nm_i->nat_cnt[TOTAL_NAT]++;
188 nm_i->nat_cnt[RECLAIMABLE_NAT]++;
189 return ne;
190}
191
192static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
193{
194 struct nat_entry *ne;
195
196 ne = radix_tree_lookup(&nm_i->nat_root, n);
197
198 /* for recent accessed nat entry, move it to tail of lru list */
199 if (ne && !get_nat_flag(ne, IS_DIRTY)) {
200 spin_lock(&nm_i->nat_list_lock);
201 if (!list_empty(&ne->list))
202 list_move_tail(&ne->list, &nm_i->nat_entries);
203 spin_unlock(&nm_i->nat_list_lock);
204 }
205
206 return ne;
207}
208
209static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
210 nid_t start, unsigned int nr, struct nat_entry **ep)
211{
212 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
213}
214
215static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
216{
217 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
218 nm_i->nat_cnt[TOTAL_NAT]--;
219 nm_i->nat_cnt[RECLAIMABLE_NAT]--;
220 __free_nat_entry(e);
221}
222
223static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
224 struct nat_entry *ne)
225{
226 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
227 struct nat_entry_set *head;
228
229 head = radix_tree_lookup(&nm_i->nat_set_root, set);
230 if (!head) {
231 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
232
233 INIT_LIST_HEAD(&head->entry_list);
234 INIT_LIST_HEAD(&head->set_list);
235 head->set = set;
236 head->entry_cnt = 0;
237 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
238 }
239 return head;
240}
241
242static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
243 struct nat_entry *ne)
244{
245 struct nat_entry_set *head;
246 bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
247
248 if (!new_ne)
249 head = __grab_nat_entry_set(nm_i, ne);
250
251 /*
252 * update entry_cnt in below condition:
253 * 1. update NEW_ADDR to valid block address;
254 * 2. update old block address to new one;
255 */
256 if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
257 !get_nat_flag(ne, IS_DIRTY)))
258 head->entry_cnt++;
259
260 set_nat_flag(ne, IS_PREALLOC, new_ne);
261
262 if (get_nat_flag(ne, IS_DIRTY))
263 goto refresh_list;
264
265 nm_i->nat_cnt[DIRTY_NAT]++;
266 nm_i->nat_cnt[RECLAIMABLE_NAT]--;
267 set_nat_flag(ne, IS_DIRTY, true);
268refresh_list:
269 spin_lock(&nm_i->nat_list_lock);
270 if (new_ne)
271 list_del_init(&ne->list);
272 else
273 list_move_tail(&ne->list, &head->entry_list);
274 spin_unlock(&nm_i->nat_list_lock);
275}
276
277static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
278 struct nat_entry_set *set, struct nat_entry *ne)
279{
280 spin_lock(&nm_i->nat_list_lock);
281 list_move_tail(&ne->list, &nm_i->nat_entries);
282 spin_unlock(&nm_i->nat_list_lock);
283
284 set_nat_flag(ne, IS_DIRTY, false);
285 set->entry_cnt--;
286 nm_i->nat_cnt[DIRTY_NAT]--;
287 nm_i->nat_cnt[RECLAIMABLE_NAT]++;
288}
289
290static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
291 nid_t start, unsigned int nr, struct nat_entry_set **ep)
292{
293 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
294 start, nr);
295}
296
297bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
298{
299 return NODE_MAPPING(sbi) == page->mapping &&
300 IS_DNODE(page) && is_cold_node(page);
301}
302
303void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
304{
305 spin_lock_init(&sbi->fsync_node_lock);
306 INIT_LIST_HEAD(&sbi->fsync_node_list);
307 sbi->fsync_seg_id = 0;
308 sbi->fsync_node_num = 0;
309}
310
311static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
312 struct page *page)
313{
314 struct fsync_node_entry *fn;
315 unsigned long flags;
316 unsigned int seq_id;
317
318 fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, GFP_NOFS);
319
320 get_page(page);
321 fn->page = page;
322 INIT_LIST_HEAD(&fn->list);
323
324 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
325 list_add_tail(&fn->list, &sbi->fsync_node_list);
326 fn->seq_id = sbi->fsync_seg_id++;
327 seq_id = fn->seq_id;
328 sbi->fsync_node_num++;
329 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
330
331 return seq_id;
332}
333
334void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
335{
336 struct fsync_node_entry *fn;
337 unsigned long flags;
338
339 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
340 list_for_each_entry(fn, &sbi->fsync_node_list, list) {
341 if (fn->page == page) {
342 list_del(&fn->list);
343 sbi->fsync_node_num--;
344 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
345 kmem_cache_free(fsync_node_entry_slab, fn);
346 put_page(page);
347 return;
348 }
349 }
350 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
351 f2fs_bug_on(sbi, 1);
352}
353
354void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
355{
356 unsigned long flags;
357
358 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
359 sbi->fsync_seg_id = 0;
360 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
361}
362
363int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
364{
365 struct f2fs_nm_info *nm_i = NM_I(sbi);
366 struct nat_entry *e;
367 bool need = false;
368
369 down_read(&nm_i->nat_tree_lock);
370 e = __lookup_nat_cache(nm_i, nid);
371 if (e) {
372 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
373 !get_nat_flag(e, HAS_FSYNCED_INODE))
374 need = true;
375 }
376 up_read(&nm_i->nat_tree_lock);
377 return need;
378}
379
380bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
381{
382 struct f2fs_nm_info *nm_i = NM_I(sbi);
383 struct nat_entry *e;
384 bool is_cp = true;
385
386 down_read(&nm_i->nat_tree_lock);
387 e = __lookup_nat_cache(nm_i, nid);
388 if (e && !get_nat_flag(e, IS_CHECKPOINTED))
389 is_cp = false;
390 up_read(&nm_i->nat_tree_lock);
391 return is_cp;
392}
393
394bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
395{
396 struct f2fs_nm_info *nm_i = NM_I(sbi);
397 struct nat_entry *e;
398 bool need_update = true;
399
400 down_read(&nm_i->nat_tree_lock);
401 e = __lookup_nat_cache(nm_i, ino);
402 if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
403 (get_nat_flag(e, IS_CHECKPOINTED) ||
404 get_nat_flag(e, HAS_FSYNCED_INODE)))
405 need_update = false;
406 up_read(&nm_i->nat_tree_lock);
407 return need_update;
408}
409
410/* must be locked by nat_tree_lock */
411static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
412 struct f2fs_nat_entry *ne)
413{
414 struct f2fs_nm_info *nm_i = NM_I(sbi);
415 struct nat_entry *new, *e;
416
417 new = __alloc_nat_entry(nid, false);
418 if (!new)
419 return;
420
421 down_write(&nm_i->nat_tree_lock);
422 e = __lookup_nat_cache(nm_i, nid);
423 if (!e)
424 e = __init_nat_entry(nm_i, new, ne, false);
425 else
426 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
427 nat_get_blkaddr(e) !=
428 le32_to_cpu(ne->block_addr) ||
429 nat_get_version(e) != ne->version);
430 up_write(&nm_i->nat_tree_lock);
431 if (e != new)
432 __free_nat_entry(new);
433}
434
435static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
436 block_t new_blkaddr, bool fsync_done)
437{
438 struct f2fs_nm_info *nm_i = NM_I(sbi);
439 struct nat_entry *e;
440 struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
441
442 down_write(&nm_i->nat_tree_lock);
443 e = __lookup_nat_cache(nm_i, ni->nid);
444 if (!e) {
445 e = __init_nat_entry(nm_i, new, NULL, true);
446 copy_node_info(&e->ni, ni);
447 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
448 } else if (new_blkaddr == NEW_ADDR) {
449 /*
450 * when nid is reallocated,
451 * previous nat entry can be remained in nat cache.
452 * So, reinitialize it with new information.
453 */
454 copy_node_info(&e->ni, ni);
455 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
456 }
457 /* let's free early to reduce memory consumption */
458 if (e != new)
459 __free_nat_entry(new);
460
461 /* sanity check */
462 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
463 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
464 new_blkaddr == NULL_ADDR);
465 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
466 new_blkaddr == NEW_ADDR);
467 f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
468 new_blkaddr == NEW_ADDR);
469
470 /* increment version no as node is removed */
471 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
472 unsigned char version = nat_get_version(e);
473
474 nat_set_version(e, inc_node_version(version));
475 }
476
477 /* change address */
478 nat_set_blkaddr(e, new_blkaddr);
479 if (!__is_valid_data_blkaddr(new_blkaddr))
480 set_nat_flag(e, IS_CHECKPOINTED, false);
481 __set_nat_cache_dirty(nm_i, e);
482
483 /* update fsync_mark if its inode nat entry is still alive */
484 if (ni->nid != ni->ino)
485 e = __lookup_nat_cache(nm_i, ni->ino);
486 if (e) {
487 if (fsync_done && ni->nid == ni->ino)
488 set_nat_flag(e, HAS_FSYNCED_INODE, true);
489 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
490 }
491 up_write(&nm_i->nat_tree_lock);
492}
493
494int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
495{
496 struct f2fs_nm_info *nm_i = NM_I(sbi);
497 int nr = nr_shrink;
498
499 if (!down_write_trylock(&nm_i->nat_tree_lock))
500 return 0;
501
502 spin_lock(&nm_i->nat_list_lock);
503 while (nr_shrink) {
504 struct nat_entry *ne;
505
506 if (list_empty(&nm_i->nat_entries))
507 break;
508
509 ne = list_first_entry(&nm_i->nat_entries,
510 struct nat_entry, list);
511 list_del(&ne->list);
512 spin_unlock(&nm_i->nat_list_lock);
513
514 __del_from_nat_cache(nm_i, ne);
515 nr_shrink--;
516
517 spin_lock(&nm_i->nat_list_lock);
518 }
519 spin_unlock(&nm_i->nat_list_lock);
520
521 up_write(&nm_i->nat_tree_lock);
522 return nr - nr_shrink;
523}
524
525int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
526 struct node_info *ni)
527{
528 struct f2fs_nm_info *nm_i = NM_I(sbi);
529 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
530 struct f2fs_journal *journal = curseg->journal;
531 nid_t start_nid = START_NID(nid);
532 struct f2fs_nat_block *nat_blk;
533 struct page *page = NULL;
534 struct f2fs_nat_entry ne;
535 struct nat_entry *e;
536 pgoff_t index;
537 block_t blkaddr;
538 int i;
539
540 ni->nid = nid;
541
542 /* Check nat cache */
543 down_read(&nm_i->nat_tree_lock);
544 e = __lookup_nat_cache(nm_i, nid);
545 if (e) {
546 ni->ino = nat_get_ino(e);
547 ni->blk_addr = nat_get_blkaddr(e);
548 ni->version = nat_get_version(e);
549 up_read(&nm_i->nat_tree_lock);
550 return 0;
551 }
552
553 memset(&ne, 0, sizeof(struct f2fs_nat_entry));
554
555 /* Check current segment summary */
556 down_read(&curseg->journal_rwsem);
557 i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
558 if (i >= 0) {
559 ne = nat_in_journal(journal, i);
560 node_info_from_raw_nat(ni, &ne);
561 }
562 up_read(&curseg->journal_rwsem);
563 if (i >= 0) {
564 up_read(&nm_i->nat_tree_lock);
565 goto cache;
566 }
567
568 /* Fill node_info from nat page */
569 index = current_nat_addr(sbi, nid);
570 up_read(&nm_i->nat_tree_lock);
571
572 page = f2fs_get_meta_page(sbi, index);
573 if (IS_ERR(page))
574 return PTR_ERR(page);
575
576 nat_blk = (struct f2fs_nat_block *)page_address(page);
577 ne = nat_blk->entries[nid - start_nid];
578 node_info_from_raw_nat(ni, &ne);
579 f2fs_put_page(page, 1);
580cache:
581 blkaddr = le32_to_cpu(ne.block_addr);
582 if (__is_valid_data_blkaddr(blkaddr) &&
583 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
584 return -EFAULT;
585
586 /* cache nat entry */
587 cache_nat_entry(sbi, nid, &ne);
588 return 0;
589}
590
591/*
592 * readahead MAX_RA_NODE number of node pages.
593 */
594static void f2fs_ra_node_pages(struct page *parent, int start, int n)
595{
596 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
597 struct blk_plug plug;
598 int i, end;
599 nid_t nid;
600
601 blk_start_plug(&plug);
602
603 /* Then, try readahead for siblings of the desired node */
604 end = start + n;
605 end = min(end, NIDS_PER_BLOCK);
606 for (i = start; i < end; i++) {
607 nid = get_nid(parent, i, false);
608 f2fs_ra_node_page(sbi, nid);
609 }
610
611 blk_finish_plug(&plug);
612}
613
614pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
615{
616 const long direct_index = ADDRS_PER_INODE(dn->inode);
617 const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
618 const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
619 unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
620 int cur_level = dn->cur_level;
621 int max_level = dn->max_level;
622 pgoff_t base = 0;
623
624 if (!dn->max_level)
625 return pgofs + 1;
626
627 while (max_level-- > cur_level)
628 skipped_unit *= NIDS_PER_BLOCK;
629
630 switch (dn->max_level) {
631 case 3:
632 base += 2 * indirect_blks;
633 fallthrough;
634 case 2:
635 base += 2 * direct_blks;
636 fallthrough;
637 case 1:
638 base += direct_index;
639 break;
640 default:
641 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
642 }
643
644 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
645}
646
647/*
648 * The maximum depth is four.
649 * Offset[0] will have raw inode offset.
650 */
651static int get_node_path(struct inode *inode, long block,
652 int offset[4], unsigned int noffset[4])
653{
654 const long direct_index = ADDRS_PER_INODE(inode);
655 const long direct_blks = ADDRS_PER_BLOCK(inode);
656 const long dptrs_per_blk = NIDS_PER_BLOCK;
657 const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
658 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
659 int n = 0;
660 int level = 0;
661
662 noffset[0] = 0;
663
664 if (block < direct_index) {
665 offset[n] = block;
666 goto got;
667 }
668 block -= direct_index;
669 if (block < direct_blks) {
670 offset[n++] = NODE_DIR1_BLOCK;
671 noffset[n] = 1;
672 offset[n] = block;
673 level = 1;
674 goto got;
675 }
676 block -= direct_blks;
677 if (block < direct_blks) {
678 offset[n++] = NODE_DIR2_BLOCK;
679 noffset[n] = 2;
680 offset[n] = block;
681 level = 1;
682 goto got;
683 }
684 block -= direct_blks;
685 if (block < indirect_blks) {
686 offset[n++] = NODE_IND1_BLOCK;
687 noffset[n] = 3;
688 offset[n++] = block / direct_blks;
689 noffset[n] = 4 + offset[n - 1];
690 offset[n] = block % direct_blks;
691 level = 2;
692 goto got;
693 }
694 block -= indirect_blks;
695 if (block < indirect_blks) {
696 offset[n++] = NODE_IND2_BLOCK;
697 noffset[n] = 4 + dptrs_per_blk;
698 offset[n++] = block / direct_blks;
699 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
700 offset[n] = block % direct_blks;
701 level = 2;
702 goto got;
703 }
704 block -= indirect_blks;
705 if (block < dindirect_blks) {
706 offset[n++] = NODE_DIND_BLOCK;
707 noffset[n] = 5 + (dptrs_per_blk * 2);
708 offset[n++] = block / indirect_blks;
709 noffset[n] = 6 + (dptrs_per_blk * 2) +
710 offset[n - 1] * (dptrs_per_blk + 1);
711 offset[n++] = (block / direct_blks) % dptrs_per_blk;
712 noffset[n] = 7 + (dptrs_per_blk * 2) +
713 offset[n - 2] * (dptrs_per_blk + 1) +
714 offset[n - 1];
715 offset[n] = block % direct_blks;
716 level = 3;
717 goto got;
718 } else {
719 return -E2BIG;
720 }
721got:
722 return level;
723}
724
725/*
726 * Caller should call f2fs_put_dnode(dn).
727 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
728 * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
729 */
730int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
731{
732 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
733 struct page *npage[4];
734 struct page *parent = NULL;
735 int offset[4];
736 unsigned int noffset[4];
737 nid_t nids[4];
738 int level, i = 0;
739 int err = 0;
740
741 level = get_node_path(dn->inode, index, offset, noffset);
742 if (level < 0)
743 return level;
744
745 nids[0] = dn->inode->i_ino;
746 npage[0] = dn->inode_page;
747
748 if (!npage[0]) {
749 npage[0] = f2fs_get_node_page(sbi, nids[0]);
750 if (IS_ERR(npage[0]))
751 return PTR_ERR(npage[0]);
752 }
753
754 /* if inline_data is set, should not report any block indices */
755 if (f2fs_has_inline_data(dn->inode) && index) {
756 err = -ENOENT;
757 f2fs_put_page(npage[0], 1);
758 goto release_out;
759 }
760
761 parent = npage[0];
762 if (level != 0)
763 nids[1] = get_nid(parent, offset[0], true);
764 dn->inode_page = npage[0];
765 dn->inode_page_locked = true;
766
767 /* get indirect or direct nodes */
768 for (i = 1; i <= level; i++) {
769 bool done = false;
770
771 if (!nids[i] && mode == ALLOC_NODE) {
772 /* alloc new node */
773 if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
774 err = -ENOSPC;
775 goto release_pages;
776 }
777
778 dn->nid = nids[i];
779 npage[i] = f2fs_new_node_page(dn, noffset[i]);
780 if (IS_ERR(npage[i])) {
781 f2fs_alloc_nid_failed(sbi, nids[i]);
782 err = PTR_ERR(npage[i]);
783 goto release_pages;
784 }
785
786 set_nid(parent, offset[i - 1], nids[i], i == 1);
787 f2fs_alloc_nid_done(sbi, nids[i]);
788 done = true;
789 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
790 npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
791 if (IS_ERR(npage[i])) {
792 err = PTR_ERR(npage[i]);
793 goto release_pages;
794 }
795 done = true;
796 }
797 if (i == 1) {
798 dn->inode_page_locked = false;
799 unlock_page(parent);
800 } else {
801 f2fs_put_page(parent, 1);
802 }
803
804 if (!done) {
805 npage[i] = f2fs_get_node_page(sbi, nids[i]);
806 if (IS_ERR(npage[i])) {
807 err = PTR_ERR(npage[i]);
808 f2fs_put_page(npage[0], 0);
809 goto release_out;
810 }
811 }
812 if (i < level) {
813 parent = npage[i];
814 nids[i + 1] = get_nid(parent, offset[i], false);
815 }
816 }
817 dn->nid = nids[level];
818 dn->ofs_in_node = offset[level];
819 dn->node_page = npage[level];
820 dn->data_blkaddr = f2fs_data_blkaddr(dn);
821 return 0;
822
823release_pages:
824 f2fs_put_page(parent, 1);
825 if (i > 1)
826 f2fs_put_page(npage[0], 0);
827release_out:
828 dn->inode_page = NULL;
829 dn->node_page = NULL;
830 if (err == -ENOENT) {
831 dn->cur_level = i;
832 dn->max_level = level;
833 dn->ofs_in_node = offset[level];
834 }
835 return err;
836}
837
838static int truncate_node(struct dnode_of_data *dn)
839{
840 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
841 struct node_info ni;
842 int err;
843 pgoff_t index;
844
845 err = f2fs_get_node_info(sbi, dn->nid, &ni);
846 if (err)
847 return err;
848
849 /* Deallocate node address */
850 f2fs_invalidate_blocks(sbi, ni.blk_addr);
851 dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
852 set_node_addr(sbi, &ni, NULL_ADDR, false);
853
854 if (dn->nid == dn->inode->i_ino) {
855 f2fs_remove_orphan_inode(sbi, dn->nid);
856 dec_valid_inode_count(sbi);
857 f2fs_inode_synced(dn->inode);
858 }
859
860 clear_node_page_dirty(dn->node_page);
861 set_sbi_flag(sbi, SBI_IS_DIRTY);
862
863 index = dn->node_page->index;
864 f2fs_put_page(dn->node_page, 1);
865
866 invalidate_mapping_pages(NODE_MAPPING(sbi),
867 index, index);
868
869 dn->node_page = NULL;
870 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
871
872 return 0;
873}
874
875static int truncate_dnode(struct dnode_of_data *dn)
876{
877 struct page *page;
878 int err;
879
880 if (dn->nid == 0)
881 return 1;
882
883 /* get direct node */
884 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
885 if (PTR_ERR(page) == -ENOENT)
886 return 1;
887 else if (IS_ERR(page))
888 return PTR_ERR(page);
889
890 /* Make dnode_of_data for parameter */
891 dn->node_page = page;
892 dn->ofs_in_node = 0;
893 f2fs_truncate_data_blocks(dn);
894 err = truncate_node(dn);
895 if (err)
896 return err;
897
898 return 1;
899}
900
901static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
902 int ofs, int depth)
903{
904 struct dnode_of_data rdn = *dn;
905 struct page *page;
906 struct f2fs_node *rn;
907 nid_t child_nid;
908 unsigned int child_nofs;
909 int freed = 0;
910 int i, ret;
911
912 if (dn->nid == 0)
913 return NIDS_PER_BLOCK + 1;
914
915 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
916
917 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
918 if (IS_ERR(page)) {
919 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
920 return PTR_ERR(page);
921 }
922
923 f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
924
925 rn = F2FS_NODE(page);
926 if (depth < 3) {
927 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
928 child_nid = le32_to_cpu(rn->in.nid[i]);
929 if (child_nid == 0)
930 continue;
931 rdn.nid = child_nid;
932 ret = truncate_dnode(&rdn);
933 if (ret < 0)
934 goto out_err;
935 if (set_nid(page, i, 0, false))
936 dn->node_changed = true;
937 }
938 } else {
939 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
940 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
941 child_nid = le32_to_cpu(rn->in.nid[i]);
942 if (child_nid == 0) {
943 child_nofs += NIDS_PER_BLOCK + 1;
944 continue;
945 }
946 rdn.nid = child_nid;
947 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
948 if (ret == (NIDS_PER_BLOCK + 1)) {
949 if (set_nid(page, i, 0, false))
950 dn->node_changed = true;
951 child_nofs += ret;
952 } else if (ret < 0 && ret != -ENOENT) {
953 goto out_err;
954 }
955 }
956 freed = child_nofs;
957 }
958
959 if (!ofs) {
960 /* remove current indirect node */
961 dn->node_page = page;
962 ret = truncate_node(dn);
963 if (ret)
964 goto out_err;
965 freed++;
966 } else {
967 f2fs_put_page(page, 1);
968 }
969 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
970 return freed;
971
972out_err:
973 f2fs_put_page(page, 1);
974 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
975 return ret;
976}
977
978static int truncate_partial_nodes(struct dnode_of_data *dn,
979 struct f2fs_inode *ri, int *offset, int depth)
980{
981 struct page *pages[2];
982 nid_t nid[3];
983 nid_t child_nid;
984 int err = 0;
985 int i;
986 int idx = depth - 2;
987
988 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
989 if (!nid[0])
990 return 0;
991
992 /* get indirect nodes in the path */
993 for (i = 0; i < idx + 1; i++) {
994 /* reference count'll be increased */
995 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
996 if (IS_ERR(pages[i])) {
997 err = PTR_ERR(pages[i]);
998 idx = i - 1;
999 goto fail;
1000 }
1001 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
1002 }
1003
1004 f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
1005
1006 /* free direct nodes linked to a partial indirect node */
1007 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1008 child_nid = get_nid(pages[idx], i, false);
1009 if (!child_nid)
1010 continue;
1011 dn->nid = child_nid;
1012 err = truncate_dnode(dn);
1013 if (err < 0)
1014 goto fail;
1015 if (set_nid(pages[idx], i, 0, false))
1016 dn->node_changed = true;
1017 }
1018
1019 if (offset[idx + 1] == 0) {
1020 dn->node_page = pages[idx];
1021 dn->nid = nid[idx];
1022 err = truncate_node(dn);
1023 if (err)
1024 goto fail;
1025 } else {
1026 f2fs_put_page(pages[idx], 1);
1027 }
1028 offset[idx]++;
1029 offset[idx + 1] = 0;
1030 idx--;
1031fail:
1032 for (i = idx; i >= 0; i--)
1033 f2fs_put_page(pages[i], 1);
1034
1035 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1036
1037 return err;
1038}
1039
1040/*
1041 * All the block addresses of data and nodes should be nullified.
1042 */
1043int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1044{
1045 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1046 int err = 0, cont = 1;
1047 int level, offset[4], noffset[4];
1048 unsigned int nofs = 0;
1049 struct f2fs_inode *ri;
1050 struct dnode_of_data dn;
1051 struct page *page;
1052
1053 trace_f2fs_truncate_inode_blocks_enter(inode, from);
1054
1055 level = get_node_path(inode, from, offset, noffset);
1056 if (level < 0) {
1057 trace_f2fs_truncate_inode_blocks_exit(inode, level);
1058 return level;
1059 }
1060
1061 page = f2fs_get_node_page(sbi, inode->i_ino);
1062 if (IS_ERR(page)) {
1063 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1064 return PTR_ERR(page);
1065 }
1066
1067 set_new_dnode(&dn, inode, page, NULL, 0);
1068 unlock_page(page);
1069
1070 ri = F2FS_INODE(page);
1071 switch (level) {
1072 case 0:
1073 case 1:
1074 nofs = noffset[1];
1075 break;
1076 case 2:
1077 nofs = noffset[1];
1078 if (!offset[level - 1])
1079 goto skip_partial;
1080 err = truncate_partial_nodes(&dn, ri, offset, level);
1081 if (err < 0 && err != -ENOENT)
1082 goto fail;
1083 nofs += 1 + NIDS_PER_BLOCK;
1084 break;
1085 case 3:
1086 nofs = 5 + 2 * NIDS_PER_BLOCK;
1087 if (!offset[level - 1])
1088 goto skip_partial;
1089 err = truncate_partial_nodes(&dn, ri, offset, level);
1090 if (err < 0 && err != -ENOENT)
1091 goto fail;
1092 break;
1093 default:
1094 BUG();
1095 }
1096
1097skip_partial:
1098 while (cont) {
1099 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1100 switch (offset[0]) {
1101 case NODE_DIR1_BLOCK:
1102 case NODE_DIR2_BLOCK:
1103 err = truncate_dnode(&dn);
1104 break;
1105
1106 case NODE_IND1_BLOCK:
1107 case NODE_IND2_BLOCK:
1108 err = truncate_nodes(&dn, nofs, offset[1], 2);
1109 break;
1110
1111 case NODE_DIND_BLOCK:
1112 err = truncate_nodes(&dn, nofs, offset[1], 3);
1113 cont = 0;
1114 break;
1115
1116 default:
1117 BUG();
1118 }
1119 if (err < 0 && err != -ENOENT)
1120 goto fail;
1121 if (offset[1] == 0 &&
1122 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1123 lock_page(page);
1124 BUG_ON(page->mapping != NODE_MAPPING(sbi));
1125 f2fs_wait_on_page_writeback(page, NODE, true, true);
1126 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1127 set_page_dirty(page);
1128 unlock_page(page);
1129 }
1130 offset[1] = 0;
1131 offset[0]++;
1132 nofs += err;
1133 }
1134fail:
1135 f2fs_put_page(page, 0);
1136 trace_f2fs_truncate_inode_blocks_exit(inode, err);
1137 return err > 0 ? 0 : err;
1138}
1139
1140/* caller must lock inode page */
1141int f2fs_truncate_xattr_node(struct inode *inode)
1142{
1143 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1144 nid_t nid = F2FS_I(inode)->i_xattr_nid;
1145 struct dnode_of_data dn;
1146 struct page *npage;
1147 int err;
1148
1149 if (!nid)
1150 return 0;
1151
1152 npage = f2fs_get_node_page(sbi, nid);
1153 if (IS_ERR(npage))
1154 return PTR_ERR(npage);
1155
1156 set_new_dnode(&dn, inode, NULL, npage, nid);
1157 err = truncate_node(&dn);
1158 if (err) {
1159 f2fs_put_page(npage, 1);
1160 return err;
1161 }
1162
1163 f2fs_i_xnid_write(inode, 0);
1164
1165 return 0;
1166}
1167
1168/*
1169 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1170 * f2fs_unlock_op().
1171 */
1172int f2fs_remove_inode_page(struct inode *inode)
1173{
1174 struct dnode_of_data dn;
1175 int err;
1176
1177 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1178 err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1179 if (err)
1180 return err;
1181
1182 err = f2fs_truncate_xattr_node(inode);
1183 if (err) {
1184 f2fs_put_dnode(&dn);
1185 return err;
1186 }
1187
1188 /* remove potential inline_data blocks */
1189 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1190 S_ISLNK(inode->i_mode))
1191 f2fs_truncate_data_blocks_range(&dn, 1);
1192
1193 /* 0 is possible, after f2fs_new_inode() has failed */
1194 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1195 f2fs_put_dnode(&dn);
1196 return -EIO;
1197 }
1198
1199 if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1200 f2fs_warn(F2FS_I_SB(inode),
1201 "f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1202 inode->i_ino, (unsigned long long)inode->i_blocks);
1203 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1204 }
1205
1206 /* will put inode & node pages */
1207 err = truncate_node(&dn);
1208 if (err) {
1209 f2fs_put_dnode(&dn);
1210 return err;
1211 }
1212 return 0;
1213}
1214
1215struct page *f2fs_new_inode_page(struct inode *inode)
1216{
1217 struct dnode_of_data dn;
1218
1219 /* allocate inode page for new inode */
1220 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1221
1222 /* caller should f2fs_put_page(page, 1); */
1223 return f2fs_new_node_page(&dn, 0);
1224}
1225
1226struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1227{
1228 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1229 struct node_info new_ni;
1230 struct page *page;
1231 int err;
1232
1233 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1234 return ERR_PTR(-EPERM);
1235
1236 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1237 if (!page)
1238 return ERR_PTR(-ENOMEM);
1239
1240 if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1241 goto fail;
1242
1243#ifdef CONFIG_F2FS_CHECK_FS
1244 err = f2fs_get_node_info(sbi, dn->nid, &new_ni);
1245 if (err) {
1246 dec_valid_node_count(sbi, dn->inode, !ofs);
1247 goto fail;
1248 }
1249 f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
1250#endif
1251 new_ni.nid = dn->nid;
1252 new_ni.ino = dn->inode->i_ino;
1253 new_ni.blk_addr = NULL_ADDR;
1254 new_ni.flag = 0;
1255 new_ni.version = 0;
1256 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1257
1258 f2fs_wait_on_page_writeback(page, NODE, true, true);
1259 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1260 set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1261 if (!PageUptodate(page))
1262 SetPageUptodate(page);
1263 if (set_page_dirty(page))
1264 dn->node_changed = true;
1265
1266 if (f2fs_has_xattr_block(ofs))
1267 f2fs_i_xnid_write(dn->inode, dn->nid);
1268
1269 if (ofs == 0)
1270 inc_valid_inode_count(sbi);
1271 return page;
1272
1273fail:
1274 clear_node_page_dirty(page);
1275 f2fs_put_page(page, 1);
1276 return ERR_PTR(err);
1277}
1278
1279/*
1280 * Caller should do after getting the following values.
1281 * 0: f2fs_put_page(page, 0)
1282 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1283 */
1284static int read_node_page(struct page *page, int op_flags)
1285{
1286 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1287 struct node_info ni;
1288 struct f2fs_io_info fio = {
1289 .sbi = sbi,
1290 .type = NODE,
1291 .op = REQ_OP_READ,
1292 .op_flags = op_flags,
1293 .page = page,
1294 .encrypted_page = NULL,
1295 };
1296 int err;
1297
1298 if (PageUptodate(page)) {
1299 if (!f2fs_inode_chksum_verify(sbi, page)) {
1300 ClearPageUptodate(page);
1301 return -EFSBADCRC;
1302 }
1303 return LOCKED_PAGE;
1304 }
1305
1306 err = f2fs_get_node_info(sbi, page->index, &ni);
1307 if (err)
1308 return err;
1309
1310 if (unlikely(ni.blk_addr == NULL_ADDR) ||
1311 is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) {
1312 ClearPageUptodate(page);
1313 return -ENOENT;
1314 }
1315
1316 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1317
1318 err = f2fs_submit_page_bio(&fio);
1319
1320 if (!err)
1321 f2fs_update_iostat(sbi, FS_NODE_READ_IO, F2FS_BLKSIZE);
1322
1323 return err;
1324}
1325
1326/*
1327 * Readahead a node page
1328 */
1329void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1330{
1331 struct page *apage;
1332 int err;
1333
1334 if (!nid)
1335 return;
1336 if (f2fs_check_nid_range(sbi, nid))
1337 return;
1338
1339 apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1340 if (apage)
1341 return;
1342
1343 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1344 if (!apage)
1345 return;
1346
1347 err = read_node_page(apage, REQ_RAHEAD);
1348 f2fs_put_page(apage, err ? 1 : 0);
1349}
1350
1351static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1352 struct page *parent, int start)
1353{
1354 struct page *page;
1355 int err;
1356
1357 if (!nid)
1358 return ERR_PTR(-ENOENT);
1359 if (f2fs_check_nid_range(sbi, nid))
1360 return ERR_PTR(-EINVAL);
1361repeat:
1362 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1363 if (!page)
1364 return ERR_PTR(-ENOMEM);
1365
1366 err = read_node_page(page, 0);
1367 if (err < 0) {
1368 f2fs_put_page(page, 1);
1369 return ERR_PTR(err);
1370 } else if (err == LOCKED_PAGE) {
1371 err = 0;
1372 goto page_hit;
1373 }
1374
1375 if (parent)
1376 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1377
1378 lock_page(page);
1379
1380 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1381 f2fs_put_page(page, 1);
1382 goto repeat;
1383 }
1384
1385 if (unlikely(!PageUptodate(page))) {
1386 err = -EIO;
1387 goto out_err;
1388 }
1389
1390 if (!f2fs_inode_chksum_verify(sbi, page)) {
1391 err = -EFSBADCRC;
1392 goto out_err;
1393 }
1394page_hit:
1395 if (unlikely(nid != nid_of_node(page))) {
1396 f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1397 nid, nid_of_node(page), ino_of_node(page),
1398 ofs_of_node(page), cpver_of_node(page),
1399 next_blkaddr_of_node(page));
1400 err = -EINVAL;
1401out_err:
1402 ClearPageUptodate(page);
1403 f2fs_put_page(page, 1);
1404 return ERR_PTR(err);
1405 }
1406 return page;
1407}
1408
1409struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1410{
1411 return __get_node_page(sbi, nid, NULL, 0);
1412}
1413
1414struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1415{
1416 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1417 nid_t nid = get_nid(parent, start, false);
1418
1419 return __get_node_page(sbi, nid, parent, start);
1420}
1421
1422static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1423{
1424 struct inode *inode;
1425 struct page *page;
1426 int ret;
1427
1428 /* should flush inline_data before evict_inode */
1429 inode = ilookup(sbi->sb, ino);
1430 if (!inode)
1431 return;
1432
1433 page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1434 FGP_LOCK|FGP_NOWAIT, 0);
1435 if (!page)
1436 goto iput_out;
1437
1438 if (!PageUptodate(page))
1439 goto page_out;
1440
1441 if (!PageDirty(page))
1442 goto page_out;
1443
1444 if (!clear_page_dirty_for_io(page))
1445 goto page_out;
1446
1447 ret = f2fs_write_inline_data(inode, page);
1448 inode_dec_dirty_pages(inode);
1449 f2fs_remove_dirty_inode(inode);
1450 if (ret)
1451 set_page_dirty(page);
1452page_out:
1453 f2fs_put_page(page, 1);
1454iput_out:
1455 iput(inode);
1456}
1457
1458static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1459{
1460 pgoff_t index;
1461 struct pagevec pvec;
1462 struct page *last_page = NULL;
1463 int nr_pages;
1464
1465 pagevec_init(&pvec);
1466 index = 0;
1467
1468 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1469 PAGECACHE_TAG_DIRTY))) {
1470 int i;
1471
1472 for (i = 0; i < nr_pages; i++) {
1473 struct page *page = pvec.pages[i];
1474
1475 if (unlikely(f2fs_cp_error(sbi))) {
1476 f2fs_put_page(last_page, 0);
1477 pagevec_release(&pvec);
1478 return ERR_PTR(-EIO);
1479 }
1480
1481 if (!IS_DNODE(page) || !is_cold_node(page))
1482 continue;
1483 if (ino_of_node(page) != ino)
1484 continue;
1485
1486 lock_page(page);
1487
1488 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1489continue_unlock:
1490 unlock_page(page);
1491 continue;
1492 }
1493 if (ino_of_node(page) != ino)
1494 goto continue_unlock;
1495
1496 if (!PageDirty(page)) {
1497 /* someone wrote it for us */
1498 goto continue_unlock;
1499 }
1500
1501 if (last_page)
1502 f2fs_put_page(last_page, 0);
1503
1504 get_page(page);
1505 last_page = page;
1506 unlock_page(page);
1507 }
1508 pagevec_release(&pvec);
1509 cond_resched();
1510 }
1511 return last_page;
1512}
1513
1514static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1515 struct writeback_control *wbc, bool do_balance,
1516 enum iostat_type io_type, unsigned int *seq_id)
1517{
1518 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1519 nid_t nid;
1520 struct node_info ni;
1521 struct f2fs_io_info fio = {
1522 .sbi = sbi,
1523 .ino = ino_of_node(page),
1524 .type = NODE,
1525 .op = REQ_OP_WRITE,
1526 .op_flags = wbc_to_write_flags(wbc),
1527 .page = page,
1528 .encrypted_page = NULL,
1529 .submitted = false,
1530 .io_type = io_type,
1531 .io_wbc = wbc,
1532 };
1533 unsigned int seq;
1534
1535 trace_f2fs_writepage(page, NODE);
1536
1537 if (unlikely(f2fs_cp_error(sbi))) {
1538 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) {
1539 ClearPageUptodate(page);
1540 dec_page_count(sbi, F2FS_DIRTY_NODES);
1541 unlock_page(page);
1542 return 0;
1543 }
1544 goto redirty_out;
1545 }
1546
1547 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1548 goto redirty_out;
1549
1550 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1551 wbc->sync_mode == WB_SYNC_NONE &&
1552 IS_DNODE(page) && is_cold_node(page))
1553 goto redirty_out;
1554
1555 /* get old block addr of this node page */
1556 nid = nid_of_node(page);
1557 f2fs_bug_on(sbi, page->index != nid);
1558
1559 if (f2fs_get_node_info(sbi, nid, &ni))
1560 goto redirty_out;
1561
1562 if (wbc->for_reclaim) {
1563 if (!down_read_trylock(&sbi->node_write))
1564 goto redirty_out;
1565 } else {
1566 down_read(&sbi->node_write);
1567 }
1568
1569 /* This page is already truncated */
1570 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1571 ClearPageUptodate(page);
1572 dec_page_count(sbi, F2FS_DIRTY_NODES);
1573 up_read(&sbi->node_write);
1574 unlock_page(page);
1575 return 0;
1576 }
1577
1578 if (__is_valid_data_blkaddr(ni.blk_addr) &&
1579 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1580 DATA_GENERIC_ENHANCE)) {
1581 up_read(&sbi->node_write);
1582 goto redirty_out;
1583 }
1584
1585 if (atomic && !test_opt(sbi, NOBARRIER))
1586 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1587
1588 /* should add to global list before clearing PAGECACHE status */
1589 if (f2fs_in_warm_node_list(sbi, page)) {
1590 seq = f2fs_add_fsync_node_entry(sbi, page);
1591 if (seq_id)
1592 *seq_id = seq;
1593 }
1594
1595 set_page_writeback(page);
1596 ClearPageError(page);
1597
1598 fio.old_blkaddr = ni.blk_addr;
1599 f2fs_do_write_node_page(nid, &fio);
1600 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1601 dec_page_count(sbi, F2FS_DIRTY_NODES);
1602 up_read(&sbi->node_write);
1603
1604 if (wbc->for_reclaim) {
1605 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1606 submitted = NULL;
1607 }
1608
1609 unlock_page(page);
1610
1611 if (unlikely(f2fs_cp_error(sbi))) {
1612 f2fs_submit_merged_write(sbi, NODE);
1613 submitted = NULL;
1614 }
1615 if (submitted)
1616 *submitted = fio.submitted;
1617
1618 if (do_balance)
1619 f2fs_balance_fs(sbi, false);
1620 return 0;
1621
1622redirty_out:
1623 redirty_page_for_writepage(wbc, page);
1624 return AOP_WRITEPAGE_ACTIVATE;
1625}
1626
1627int f2fs_move_node_page(struct page *node_page, int gc_type)
1628{
1629 int err = 0;
1630
1631 if (gc_type == FG_GC) {
1632 struct writeback_control wbc = {
1633 .sync_mode = WB_SYNC_ALL,
1634 .nr_to_write = 1,
1635 .for_reclaim = 0,
1636 };
1637
1638 f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1639
1640 set_page_dirty(node_page);
1641
1642 if (!clear_page_dirty_for_io(node_page)) {
1643 err = -EAGAIN;
1644 goto out_page;
1645 }
1646
1647 if (__write_node_page(node_page, false, NULL,
1648 &wbc, false, FS_GC_NODE_IO, NULL)) {
1649 err = -EAGAIN;
1650 unlock_page(node_page);
1651 }
1652 goto release_page;
1653 } else {
1654 /* set page dirty and write it */
1655 if (!PageWriteback(node_page))
1656 set_page_dirty(node_page);
1657 }
1658out_page:
1659 unlock_page(node_page);
1660release_page:
1661 f2fs_put_page(node_page, 0);
1662 return err;
1663}
1664
1665static int f2fs_write_node_page(struct page *page,
1666 struct writeback_control *wbc)
1667{
1668 return __write_node_page(page, false, NULL, wbc, false,
1669 FS_NODE_IO, NULL);
1670}
1671
1672int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1673 struct writeback_control *wbc, bool atomic,
1674 unsigned int *seq_id)
1675{
1676 pgoff_t index;
1677 struct pagevec pvec;
1678 int ret = 0;
1679 struct page *last_page = NULL;
1680 bool marked = false;
1681 nid_t ino = inode->i_ino;
1682 int nr_pages;
1683 int nwritten = 0;
1684
1685 if (atomic) {
1686 last_page = last_fsync_dnode(sbi, ino);
1687 if (IS_ERR_OR_NULL(last_page))
1688 return PTR_ERR_OR_ZERO(last_page);
1689 }
1690retry:
1691 pagevec_init(&pvec);
1692 index = 0;
1693
1694 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1695 PAGECACHE_TAG_DIRTY))) {
1696 int i;
1697
1698 for (i = 0; i < nr_pages; i++) {
1699 struct page *page = pvec.pages[i];
1700 bool submitted = false;
1701
1702 if (unlikely(f2fs_cp_error(sbi))) {
1703 f2fs_put_page(last_page, 0);
1704 pagevec_release(&pvec);
1705 ret = -EIO;
1706 goto out;
1707 }
1708
1709 if (!IS_DNODE(page) || !is_cold_node(page))
1710 continue;
1711 if (ino_of_node(page) != ino)
1712 continue;
1713
1714 lock_page(page);
1715
1716 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1717continue_unlock:
1718 unlock_page(page);
1719 continue;
1720 }
1721 if (ino_of_node(page) != ino)
1722 goto continue_unlock;
1723
1724 if (!PageDirty(page) && page != last_page) {
1725 /* someone wrote it for us */
1726 goto continue_unlock;
1727 }
1728
1729 f2fs_wait_on_page_writeback(page, NODE, true, true);
1730
1731 set_fsync_mark(page, 0);
1732 set_dentry_mark(page, 0);
1733
1734 if (!atomic || page == last_page) {
1735 set_fsync_mark(page, 1);
1736 if (IS_INODE(page)) {
1737 if (is_inode_flag_set(inode,
1738 FI_DIRTY_INODE))
1739 f2fs_update_inode(inode, page);
1740 set_dentry_mark(page,
1741 f2fs_need_dentry_mark(sbi, ino));
1742 }
1743 /* may be written by other thread */
1744 if (!PageDirty(page))
1745 set_page_dirty(page);
1746 }
1747
1748 if (!clear_page_dirty_for_io(page))
1749 goto continue_unlock;
1750
1751 ret = __write_node_page(page, atomic &&
1752 page == last_page,
1753 &submitted, wbc, true,
1754 FS_NODE_IO, seq_id);
1755 if (ret) {
1756 unlock_page(page);
1757 f2fs_put_page(last_page, 0);
1758 break;
1759 } else if (submitted) {
1760 nwritten++;
1761 }
1762
1763 if (page == last_page) {
1764 f2fs_put_page(page, 0);
1765 marked = true;
1766 break;
1767 }
1768 }
1769 pagevec_release(&pvec);
1770 cond_resched();
1771
1772 if (ret || marked)
1773 break;
1774 }
1775 if (!ret && atomic && !marked) {
1776 f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1777 ino, last_page->index);
1778 lock_page(last_page);
1779 f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1780 set_page_dirty(last_page);
1781 unlock_page(last_page);
1782 goto retry;
1783 }
1784out:
1785 if (nwritten)
1786 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1787 return ret ? -EIO : 0;
1788}
1789
1790static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1791{
1792 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1793 bool clean;
1794
1795 if (inode->i_ino != ino)
1796 return 0;
1797
1798 if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1799 return 0;
1800
1801 spin_lock(&sbi->inode_lock[DIRTY_META]);
1802 clean = list_empty(&F2FS_I(inode)->gdirty_list);
1803 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1804
1805 if (clean)
1806 return 0;
1807
1808 inode = igrab(inode);
1809 if (!inode)
1810 return 0;
1811 return 1;
1812}
1813
1814static bool flush_dirty_inode(struct page *page)
1815{
1816 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1817 struct inode *inode;
1818 nid_t ino = ino_of_node(page);
1819
1820 inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1821 if (!inode)
1822 return false;
1823
1824 f2fs_update_inode(inode, page);
1825 unlock_page(page);
1826
1827 iput(inode);
1828 return true;
1829}
1830
1831void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1832{
1833 pgoff_t index = 0;
1834 struct pagevec pvec;
1835 int nr_pages;
1836
1837 pagevec_init(&pvec);
1838
1839 while ((nr_pages = pagevec_lookup_tag(&pvec,
1840 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1841 int i;
1842
1843 for (i = 0; i < nr_pages; i++) {
1844 struct page *page = pvec.pages[i];
1845
1846 if (!IS_DNODE(page))
1847 continue;
1848
1849 lock_page(page);
1850
1851 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1852continue_unlock:
1853 unlock_page(page);
1854 continue;
1855 }
1856
1857 if (!PageDirty(page)) {
1858 /* someone wrote it for us */
1859 goto continue_unlock;
1860 }
1861
1862 /* flush inline_data, if it's async context. */
1863 if (is_inline_node(page)) {
1864 clear_inline_node(page);
1865 unlock_page(page);
1866 flush_inline_data(sbi, ino_of_node(page));
1867 continue;
1868 }
1869 unlock_page(page);
1870 }
1871 pagevec_release(&pvec);
1872 cond_resched();
1873 }
1874}
1875
1876int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1877 struct writeback_control *wbc,
1878 bool do_balance, enum iostat_type io_type)
1879{
1880 pgoff_t index;
1881 struct pagevec pvec;
1882 int step = 0;
1883 int nwritten = 0;
1884 int ret = 0;
1885 int nr_pages, done = 0;
1886
1887 pagevec_init(&pvec);
1888
1889next_step:
1890 index = 0;
1891
1892 while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1893 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1894 int i;
1895
1896 for (i = 0; i < nr_pages; i++) {
1897 struct page *page = pvec.pages[i];
1898 bool submitted = false;
1899 bool may_dirty = true;
1900
1901 /* give a priority to WB_SYNC threads */
1902 if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1903 wbc->sync_mode == WB_SYNC_NONE) {
1904 done = 1;
1905 break;
1906 }
1907
1908 /*
1909 * flushing sequence with step:
1910 * 0. indirect nodes
1911 * 1. dentry dnodes
1912 * 2. file dnodes
1913 */
1914 if (step == 0 && IS_DNODE(page))
1915 continue;
1916 if (step == 1 && (!IS_DNODE(page) ||
1917 is_cold_node(page)))
1918 continue;
1919 if (step == 2 && (!IS_DNODE(page) ||
1920 !is_cold_node(page)))
1921 continue;
1922lock_node:
1923 if (wbc->sync_mode == WB_SYNC_ALL)
1924 lock_page(page);
1925 else if (!trylock_page(page))
1926 continue;
1927
1928 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1929continue_unlock:
1930 unlock_page(page);
1931 continue;
1932 }
1933
1934 if (!PageDirty(page)) {
1935 /* someone wrote it for us */
1936 goto continue_unlock;
1937 }
1938
1939 /* flush inline_data/inode, if it's async context. */
1940 if (!do_balance)
1941 goto write_node;
1942
1943 /* flush inline_data */
1944 if (is_inline_node(page)) {
1945 clear_inline_node(page);
1946 unlock_page(page);
1947 flush_inline_data(sbi, ino_of_node(page));
1948 goto lock_node;
1949 }
1950
1951 /* flush dirty inode */
1952 if (IS_INODE(page) && may_dirty) {
1953 may_dirty = false;
1954 if (flush_dirty_inode(page))
1955 goto lock_node;
1956 }
1957write_node:
1958 f2fs_wait_on_page_writeback(page, NODE, true, true);
1959
1960 if (!clear_page_dirty_for_io(page))
1961 goto continue_unlock;
1962
1963 set_fsync_mark(page, 0);
1964 set_dentry_mark(page, 0);
1965
1966 ret = __write_node_page(page, false, &submitted,
1967 wbc, do_balance, io_type, NULL);
1968 if (ret)
1969 unlock_page(page);
1970 else if (submitted)
1971 nwritten++;
1972
1973 if (--wbc->nr_to_write == 0)
1974 break;
1975 }
1976 pagevec_release(&pvec);
1977 cond_resched();
1978
1979 if (wbc->nr_to_write == 0) {
1980 step = 2;
1981 break;
1982 }
1983 }
1984
1985 if (step < 2) {
1986 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1987 wbc->sync_mode == WB_SYNC_NONE && step == 1)
1988 goto out;
1989 step++;
1990 goto next_step;
1991 }
1992out:
1993 if (nwritten)
1994 f2fs_submit_merged_write(sbi, NODE);
1995
1996 if (unlikely(f2fs_cp_error(sbi)))
1997 return -EIO;
1998 return ret;
1999}
2000
2001int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2002 unsigned int seq_id)
2003{
2004 struct fsync_node_entry *fn;
2005 struct page *page;
2006 struct list_head *head = &sbi->fsync_node_list;
2007 unsigned long flags;
2008 unsigned int cur_seq_id = 0;
2009 int ret2, ret = 0;
2010
2011 while (seq_id && cur_seq_id < seq_id) {
2012 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2013 if (list_empty(head)) {
2014 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2015 break;
2016 }
2017 fn = list_first_entry(head, struct fsync_node_entry, list);
2018 if (fn->seq_id > seq_id) {
2019 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2020 break;
2021 }
2022 cur_seq_id = fn->seq_id;
2023 page = fn->page;
2024 get_page(page);
2025 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2026
2027 f2fs_wait_on_page_writeback(page, NODE, true, false);
2028 if (TestClearPageError(page))
2029 ret = -EIO;
2030
2031 put_page(page);
2032
2033 if (ret)
2034 break;
2035 }
2036
2037 ret2 = filemap_check_errors(NODE_MAPPING(sbi));
2038 if (!ret)
2039 ret = ret2;
2040
2041 return ret;
2042}
2043
2044static int f2fs_write_node_pages(struct address_space *mapping,
2045 struct writeback_control *wbc)
2046{
2047 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2048 struct blk_plug plug;
2049 long diff;
2050
2051 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2052 goto skip_write;
2053
2054 /* balancing f2fs's metadata in background */
2055 f2fs_balance_fs_bg(sbi, true);
2056
2057 /* collect a number of dirty node pages and write together */
2058 if (wbc->sync_mode != WB_SYNC_ALL &&
2059 get_pages(sbi, F2FS_DIRTY_NODES) <
2060 nr_pages_to_skip(sbi, NODE))
2061 goto skip_write;
2062
2063 if (wbc->sync_mode == WB_SYNC_ALL)
2064 atomic_inc(&sbi->wb_sync_req[NODE]);
2065 else if (atomic_read(&sbi->wb_sync_req[NODE]))
2066 goto skip_write;
2067
2068 trace_f2fs_writepages(mapping->host, wbc, NODE);
2069
2070 diff = nr_pages_to_write(sbi, NODE, wbc);
2071 blk_start_plug(&plug);
2072 f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2073 blk_finish_plug(&plug);
2074 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2075
2076 if (wbc->sync_mode == WB_SYNC_ALL)
2077 atomic_dec(&sbi->wb_sync_req[NODE]);
2078 return 0;
2079
2080skip_write:
2081 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2082 trace_f2fs_writepages(mapping->host, wbc, NODE);
2083 return 0;
2084}
2085
2086static int f2fs_set_node_page_dirty(struct page *page)
2087{
2088 trace_f2fs_set_page_dirty(page, NODE);
2089
2090 if (!PageUptodate(page))
2091 SetPageUptodate(page);
2092#ifdef CONFIG_F2FS_CHECK_FS
2093 if (IS_INODE(page))
2094 f2fs_inode_chksum_set(F2FS_P_SB(page), page);
2095#endif
2096 if (!PageDirty(page)) {
2097 __set_page_dirty_nobuffers(page);
2098 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
2099 f2fs_set_page_private(page, 0);
2100 return 1;
2101 }
2102 return 0;
2103}
2104
2105/*
2106 * Structure of the f2fs node operations
2107 */
2108const struct address_space_operations f2fs_node_aops = {
2109 .writepage = f2fs_write_node_page,
2110 .writepages = f2fs_write_node_pages,
2111 .set_page_dirty = f2fs_set_node_page_dirty,
2112 .invalidatepage = f2fs_invalidate_page,
2113 .releasepage = f2fs_release_page,
2114#ifdef CONFIG_MIGRATION
2115 .migratepage = f2fs_migrate_page,
2116#endif
2117};
2118
2119static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2120 nid_t n)
2121{
2122 return radix_tree_lookup(&nm_i->free_nid_root, n);
2123}
2124
2125static int __insert_free_nid(struct f2fs_sb_info *sbi,
2126 struct free_nid *i)
2127{
2128 struct f2fs_nm_info *nm_i = NM_I(sbi);
2129 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2130
2131 if (err)
2132 return err;
2133
2134 nm_i->nid_cnt[FREE_NID]++;
2135 list_add_tail(&i->list, &nm_i->free_nid_list);
2136 return 0;
2137}
2138
2139static void __remove_free_nid(struct f2fs_sb_info *sbi,
2140 struct free_nid *i, enum nid_state state)
2141{
2142 struct f2fs_nm_info *nm_i = NM_I(sbi);
2143
2144 f2fs_bug_on(sbi, state != i->state);
2145 nm_i->nid_cnt[state]--;
2146 if (state == FREE_NID)
2147 list_del(&i->list);
2148 radix_tree_delete(&nm_i->free_nid_root, i->nid);
2149}
2150
2151static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2152 enum nid_state org_state, enum nid_state dst_state)
2153{
2154 struct f2fs_nm_info *nm_i = NM_I(sbi);
2155
2156 f2fs_bug_on(sbi, org_state != i->state);
2157 i->state = dst_state;
2158 nm_i->nid_cnt[org_state]--;
2159 nm_i->nid_cnt[dst_state]++;
2160
2161 switch (dst_state) {
2162 case PREALLOC_NID:
2163 list_del(&i->list);
2164 break;
2165 case FREE_NID:
2166 list_add_tail(&i->list, &nm_i->free_nid_list);
2167 break;
2168 default:
2169 BUG_ON(1);
2170 }
2171}
2172
2173static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2174 bool set, bool build)
2175{
2176 struct f2fs_nm_info *nm_i = NM_I(sbi);
2177 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2178 unsigned int nid_ofs = nid - START_NID(nid);
2179
2180 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2181 return;
2182
2183 if (set) {
2184 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2185 return;
2186 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2187 nm_i->free_nid_count[nat_ofs]++;
2188 } else {
2189 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2190 return;
2191 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2192 if (!build)
2193 nm_i->free_nid_count[nat_ofs]--;
2194 }
2195}
2196
2197/* return if the nid is recognized as free */
2198static bool add_free_nid(struct f2fs_sb_info *sbi,
2199 nid_t nid, bool build, bool update)
2200{
2201 struct f2fs_nm_info *nm_i = NM_I(sbi);
2202 struct free_nid *i, *e;
2203 struct nat_entry *ne;
2204 int err = -EINVAL;
2205 bool ret = false;
2206
2207 /* 0 nid should not be used */
2208 if (unlikely(nid == 0))
2209 return false;
2210
2211 if (unlikely(f2fs_check_nid_range(sbi, nid)))
2212 return false;
2213
2214 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
2215 i->nid = nid;
2216 i->state = FREE_NID;
2217
2218 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2219
2220 spin_lock(&nm_i->nid_list_lock);
2221
2222 if (build) {
2223 /*
2224 * Thread A Thread B
2225 * - f2fs_create
2226 * - f2fs_new_inode
2227 * - f2fs_alloc_nid
2228 * - __insert_nid_to_list(PREALLOC_NID)
2229 * - f2fs_balance_fs_bg
2230 * - f2fs_build_free_nids
2231 * - __f2fs_build_free_nids
2232 * - scan_nat_page
2233 * - add_free_nid
2234 * - __lookup_nat_cache
2235 * - f2fs_add_link
2236 * - f2fs_init_inode_metadata
2237 * - f2fs_new_inode_page
2238 * - f2fs_new_node_page
2239 * - set_node_addr
2240 * - f2fs_alloc_nid_done
2241 * - __remove_nid_from_list(PREALLOC_NID)
2242 * - __insert_nid_to_list(FREE_NID)
2243 */
2244 ne = __lookup_nat_cache(nm_i, nid);
2245 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2246 nat_get_blkaddr(ne) != NULL_ADDR))
2247 goto err_out;
2248
2249 e = __lookup_free_nid_list(nm_i, nid);
2250 if (e) {
2251 if (e->state == FREE_NID)
2252 ret = true;
2253 goto err_out;
2254 }
2255 }
2256 ret = true;
2257 err = __insert_free_nid(sbi, i);
2258err_out:
2259 if (update) {
2260 update_free_nid_bitmap(sbi, nid, ret, build);
2261 if (!build)
2262 nm_i->available_nids++;
2263 }
2264 spin_unlock(&nm_i->nid_list_lock);
2265 radix_tree_preload_end();
2266
2267 if (err)
2268 kmem_cache_free(free_nid_slab, i);
2269 return ret;
2270}
2271
2272static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2273{
2274 struct f2fs_nm_info *nm_i = NM_I(sbi);
2275 struct free_nid *i;
2276 bool need_free = false;
2277
2278 spin_lock(&nm_i->nid_list_lock);
2279 i = __lookup_free_nid_list(nm_i, nid);
2280 if (i && i->state == FREE_NID) {
2281 __remove_free_nid(sbi, i, FREE_NID);
2282 need_free = true;
2283 }
2284 spin_unlock(&nm_i->nid_list_lock);
2285
2286 if (need_free)
2287 kmem_cache_free(free_nid_slab, i);
2288}
2289
2290static int scan_nat_page(struct f2fs_sb_info *sbi,
2291 struct page *nat_page, nid_t start_nid)
2292{
2293 struct f2fs_nm_info *nm_i = NM_I(sbi);
2294 struct f2fs_nat_block *nat_blk = page_address(nat_page);
2295 block_t blk_addr;
2296 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2297 int i;
2298
2299 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2300
2301 i = start_nid % NAT_ENTRY_PER_BLOCK;
2302
2303 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2304 if (unlikely(start_nid >= nm_i->max_nid))
2305 break;
2306
2307 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2308
2309 if (blk_addr == NEW_ADDR)
2310 return -EINVAL;
2311
2312 if (blk_addr == NULL_ADDR) {
2313 add_free_nid(sbi, start_nid, true, true);
2314 } else {
2315 spin_lock(&NM_I(sbi)->nid_list_lock);
2316 update_free_nid_bitmap(sbi, start_nid, false, true);
2317 spin_unlock(&NM_I(sbi)->nid_list_lock);
2318 }
2319 }
2320
2321 return 0;
2322}
2323
2324static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2325{
2326 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2327 struct f2fs_journal *journal = curseg->journal;
2328 int i;
2329
2330 down_read(&curseg->journal_rwsem);
2331 for (i = 0; i < nats_in_cursum(journal); i++) {
2332 block_t addr;
2333 nid_t nid;
2334
2335 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2336 nid = le32_to_cpu(nid_in_journal(journal, i));
2337 if (addr == NULL_ADDR)
2338 add_free_nid(sbi, nid, true, false);
2339 else
2340 remove_free_nid(sbi, nid);
2341 }
2342 up_read(&curseg->journal_rwsem);
2343}
2344
2345static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2346{
2347 struct f2fs_nm_info *nm_i = NM_I(sbi);
2348 unsigned int i, idx;
2349 nid_t nid;
2350
2351 down_read(&nm_i->nat_tree_lock);
2352
2353 for (i = 0; i < nm_i->nat_blocks; i++) {
2354 if (!test_bit_le(i, nm_i->nat_block_bitmap))
2355 continue;
2356 if (!nm_i->free_nid_count[i])
2357 continue;
2358 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2359 idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2360 NAT_ENTRY_PER_BLOCK, idx);
2361 if (idx >= NAT_ENTRY_PER_BLOCK)
2362 break;
2363
2364 nid = i * NAT_ENTRY_PER_BLOCK + idx;
2365 add_free_nid(sbi, nid, true, false);
2366
2367 if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2368 goto out;
2369 }
2370 }
2371out:
2372 scan_curseg_cache(sbi);
2373
2374 up_read(&nm_i->nat_tree_lock);
2375}
2376
2377static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2378 bool sync, bool mount)
2379{
2380 struct f2fs_nm_info *nm_i = NM_I(sbi);
2381 int i = 0, ret;
2382 nid_t nid = nm_i->next_scan_nid;
2383
2384 if (unlikely(nid >= nm_i->max_nid))
2385 nid = 0;
2386
2387 if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2388 nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2389
2390 /* Enough entries */
2391 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2392 return 0;
2393
2394 if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2395 return 0;
2396
2397 if (!mount) {
2398 /* try to find free nids in free_nid_bitmap */
2399 scan_free_nid_bits(sbi);
2400
2401 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2402 return 0;
2403 }
2404
2405 /* readahead nat pages to be scanned */
2406 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2407 META_NAT, true);
2408
2409 down_read(&nm_i->nat_tree_lock);
2410
2411 while (1) {
2412 if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2413 nm_i->nat_block_bitmap)) {
2414 struct page *page = get_current_nat_page(sbi, nid);
2415
2416 if (IS_ERR(page)) {
2417 ret = PTR_ERR(page);
2418 } else {
2419 ret = scan_nat_page(sbi, page, nid);
2420 f2fs_put_page(page, 1);
2421 }
2422
2423 if (ret) {
2424 up_read(&nm_i->nat_tree_lock);
2425 f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2426 return ret;
2427 }
2428 }
2429
2430 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2431 if (unlikely(nid >= nm_i->max_nid))
2432 nid = 0;
2433
2434 if (++i >= FREE_NID_PAGES)
2435 break;
2436 }
2437
2438 /* go to the next free nat pages to find free nids abundantly */
2439 nm_i->next_scan_nid = nid;
2440
2441 /* find free nids from current sum_pages */
2442 scan_curseg_cache(sbi);
2443
2444 up_read(&nm_i->nat_tree_lock);
2445
2446 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2447 nm_i->ra_nid_pages, META_NAT, false);
2448
2449 return 0;
2450}
2451
2452int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2453{
2454 int ret;
2455
2456 mutex_lock(&NM_I(sbi)->build_lock);
2457 ret = __f2fs_build_free_nids(sbi, sync, mount);
2458 mutex_unlock(&NM_I(sbi)->build_lock);
2459
2460 return ret;
2461}
2462
2463/*
2464 * If this function returns success, caller can obtain a new nid
2465 * from second parameter of this function.
2466 * The returned nid could be used ino as well as nid when inode is created.
2467 */
2468bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2469{
2470 struct f2fs_nm_info *nm_i = NM_I(sbi);
2471 struct free_nid *i = NULL;
2472retry:
2473 if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2474 f2fs_show_injection_info(sbi, FAULT_ALLOC_NID);
2475 return false;
2476 }
2477
2478 spin_lock(&nm_i->nid_list_lock);
2479
2480 if (unlikely(nm_i->available_nids == 0)) {
2481 spin_unlock(&nm_i->nid_list_lock);
2482 return false;
2483 }
2484
2485 /* We should not use stale free nids created by f2fs_build_free_nids */
2486 if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2487 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2488 i = list_first_entry(&nm_i->free_nid_list,
2489 struct free_nid, list);
2490 *nid = i->nid;
2491
2492 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2493 nm_i->available_nids--;
2494
2495 update_free_nid_bitmap(sbi, *nid, false, false);
2496
2497 spin_unlock(&nm_i->nid_list_lock);
2498 return true;
2499 }
2500 spin_unlock(&nm_i->nid_list_lock);
2501
2502 /* Let's scan nat pages and its caches to get free nids */
2503 if (!f2fs_build_free_nids(sbi, true, false))
2504 goto retry;
2505 return false;
2506}
2507
2508/*
2509 * f2fs_alloc_nid() should be called prior to this function.
2510 */
2511void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2512{
2513 struct f2fs_nm_info *nm_i = NM_I(sbi);
2514 struct free_nid *i;
2515
2516 spin_lock(&nm_i->nid_list_lock);
2517 i = __lookup_free_nid_list(nm_i, nid);
2518 f2fs_bug_on(sbi, !i);
2519 __remove_free_nid(sbi, i, PREALLOC_NID);
2520 spin_unlock(&nm_i->nid_list_lock);
2521
2522 kmem_cache_free(free_nid_slab, i);
2523}
2524
2525/*
2526 * f2fs_alloc_nid() should be called prior to this function.
2527 */
2528void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2529{
2530 struct f2fs_nm_info *nm_i = NM_I(sbi);
2531 struct free_nid *i;
2532 bool need_free = false;
2533
2534 if (!nid)
2535 return;
2536
2537 spin_lock(&nm_i->nid_list_lock);
2538 i = __lookup_free_nid_list(nm_i, nid);
2539 f2fs_bug_on(sbi, !i);
2540
2541 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2542 __remove_free_nid(sbi, i, PREALLOC_NID);
2543 need_free = true;
2544 } else {
2545 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2546 }
2547
2548 nm_i->available_nids++;
2549
2550 update_free_nid_bitmap(sbi, nid, true, false);
2551
2552 spin_unlock(&nm_i->nid_list_lock);
2553
2554 if (need_free)
2555 kmem_cache_free(free_nid_slab, i);
2556}
2557
2558int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2559{
2560 struct f2fs_nm_info *nm_i = NM_I(sbi);
2561 int nr = nr_shrink;
2562
2563 if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2564 return 0;
2565
2566 if (!mutex_trylock(&nm_i->build_lock))
2567 return 0;
2568
2569 while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2570 struct free_nid *i, *next;
2571 unsigned int batch = SHRINK_NID_BATCH_SIZE;
2572
2573 spin_lock(&nm_i->nid_list_lock);
2574 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2575 if (!nr_shrink || !batch ||
2576 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2577 break;
2578 __remove_free_nid(sbi, i, FREE_NID);
2579 kmem_cache_free(free_nid_slab, i);
2580 nr_shrink--;
2581 batch--;
2582 }
2583 spin_unlock(&nm_i->nid_list_lock);
2584 }
2585
2586 mutex_unlock(&nm_i->build_lock);
2587
2588 return nr - nr_shrink;
2589}
2590
2591int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2592{
2593 void *src_addr, *dst_addr;
2594 size_t inline_size;
2595 struct page *ipage;
2596 struct f2fs_inode *ri;
2597
2598 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2599 if (IS_ERR(ipage))
2600 return PTR_ERR(ipage);
2601
2602 ri = F2FS_INODE(page);
2603 if (ri->i_inline & F2FS_INLINE_XATTR) {
2604 if (!f2fs_has_inline_xattr(inode)) {
2605 set_inode_flag(inode, FI_INLINE_XATTR);
2606 stat_inc_inline_xattr(inode);
2607 }
2608 } else {
2609 if (f2fs_has_inline_xattr(inode)) {
2610 stat_dec_inline_xattr(inode);
2611 clear_inode_flag(inode, FI_INLINE_XATTR);
2612 }
2613 goto update_inode;
2614 }
2615
2616 dst_addr = inline_xattr_addr(inode, ipage);
2617 src_addr = inline_xattr_addr(inode, page);
2618 inline_size = inline_xattr_size(inode);
2619
2620 f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2621 memcpy(dst_addr, src_addr, inline_size);
2622update_inode:
2623 f2fs_update_inode(inode, ipage);
2624 f2fs_put_page(ipage, 1);
2625 return 0;
2626}
2627
2628int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2629{
2630 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2631 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2632 nid_t new_xnid;
2633 struct dnode_of_data dn;
2634 struct node_info ni;
2635 struct page *xpage;
2636 int err;
2637
2638 if (!prev_xnid)
2639 goto recover_xnid;
2640
2641 /* 1: invalidate the previous xattr nid */
2642 err = f2fs_get_node_info(sbi, prev_xnid, &ni);
2643 if (err)
2644 return err;
2645
2646 f2fs_invalidate_blocks(sbi, ni.blk_addr);
2647 dec_valid_node_count(sbi, inode, false);
2648 set_node_addr(sbi, &ni, NULL_ADDR, false);
2649
2650recover_xnid:
2651 /* 2: update xattr nid in inode */
2652 if (!f2fs_alloc_nid(sbi, &new_xnid))
2653 return -ENOSPC;
2654
2655 set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2656 xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2657 if (IS_ERR(xpage)) {
2658 f2fs_alloc_nid_failed(sbi, new_xnid);
2659 return PTR_ERR(xpage);
2660 }
2661
2662 f2fs_alloc_nid_done(sbi, new_xnid);
2663 f2fs_update_inode_page(inode);
2664
2665 /* 3: update and set xattr node page dirty */
2666 memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2667
2668 set_page_dirty(xpage);
2669 f2fs_put_page(xpage, 1);
2670
2671 return 0;
2672}
2673
2674int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2675{
2676 struct f2fs_inode *src, *dst;
2677 nid_t ino = ino_of_node(page);
2678 struct node_info old_ni, new_ni;
2679 struct page *ipage;
2680 int err;
2681
2682 err = f2fs_get_node_info(sbi, ino, &old_ni);
2683 if (err)
2684 return err;
2685
2686 if (unlikely(old_ni.blk_addr != NULL_ADDR))
2687 return -EINVAL;
2688retry:
2689 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2690 if (!ipage) {
2691 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2692 goto retry;
2693 }
2694
2695 /* Should not use this inode from free nid list */
2696 remove_free_nid(sbi, ino);
2697
2698 if (!PageUptodate(ipage))
2699 SetPageUptodate(ipage);
2700 fill_node_footer(ipage, ino, ino, 0, true);
2701 set_cold_node(ipage, false);
2702
2703 src = F2FS_INODE(page);
2704 dst = F2FS_INODE(ipage);
2705
2706 memcpy(dst, src, offsetof(struct f2fs_inode, i_ext));
2707 dst->i_size = 0;
2708 dst->i_blocks = cpu_to_le64(1);
2709 dst->i_links = cpu_to_le32(1);
2710 dst->i_xattr_nid = 0;
2711 dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2712 if (dst->i_inline & F2FS_EXTRA_ATTR) {
2713 dst->i_extra_isize = src->i_extra_isize;
2714
2715 if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2716 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2717 i_inline_xattr_size))
2718 dst->i_inline_xattr_size = src->i_inline_xattr_size;
2719
2720 if (f2fs_sb_has_project_quota(sbi) &&
2721 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2722 i_projid))
2723 dst->i_projid = src->i_projid;
2724
2725 if (f2fs_sb_has_inode_crtime(sbi) &&
2726 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2727 i_crtime_nsec)) {
2728 dst->i_crtime = src->i_crtime;
2729 dst->i_crtime_nsec = src->i_crtime_nsec;
2730 }
2731 }
2732
2733 new_ni = old_ni;
2734 new_ni.ino = ino;
2735
2736 if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2737 WARN_ON(1);
2738 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2739 inc_valid_inode_count(sbi);
2740 set_page_dirty(ipage);
2741 f2fs_put_page(ipage, 1);
2742 return 0;
2743}
2744
2745int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2746 unsigned int segno, struct f2fs_summary_block *sum)
2747{
2748 struct f2fs_node *rn;
2749 struct f2fs_summary *sum_entry;
2750 block_t addr;
2751 int i, idx, last_offset, nrpages;
2752
2753 /* scan the node segment */
2754 last_offset = sbi->blocks_per_seg;
2755 addr = START_BLOCK(sbi, segno);
2756 sum_entry = &sum->entries[0];
2757
2758 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2759 nrpages = bio_max_segs(last_offset - i);
2760
2761 /* readahead node pages */
2762 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2763
2764 for (idx = addr; idx < addr + nrpages; idx++) {
2765 struct page *page = f2fs_get_tmp_page(sbi, idx);
2766
2767 if (IS_ERR(page))
2768 return PTR_ERR(page);
2769
2770 rn = F2FS_NODE(page);
2771 sum_entry->nid = rn->footer.nid;
2772 sum_entry->version = 0;
2773 sum_entry->ofs_in_node = 0;
2774 sum_entry++;
2775 f2fs_put_page(page, 1);
2776 }
2777
2778 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2779 addr + nrpages);
2780 }
2781 return 0;
2782}
2783
2784static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2785{
2786 struct f2fs_nm_info *nm_i = NM_I(sbi);
2787 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2788 struct f2fs_journal *journal = curseg->journal;
2789 int i;
2790
2791 down_write(&curseg->journal_rwsem);
2792 for (i = 0; i < nats_in_cursum(journal); i++) {
2793 struct nat_entry *ne;
2794 struct f2fs_nat_entry raw_ne;
2795 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2796
2797 if (f2fs_check_nid_range(sbi, nid))
2798 continue;
2799
2800 raw_ne = nat_in_journal(journal, i);
2801
2802 ne = __lookup_nat_cache(nm_i, nid);
2803 if (!ne) {
2804 ne = __alloc_nat_entry(nid, true);
2805 __init_nat_entry(nm_i, ne, &raw_ne, true);
2806 }
2807
2808 /*
2809 * if a free nat in journal has not been used after last
2810 * checkpoint, we should remove it from available nids,
2811 * since later we will add it again.
2812 */
2813 if (!get_nat_flag(ne, IS_DIRTY) &&
2814 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2815 spin_lock(&nm_i->nid_list_lock);
2816 nm_i->available_nids--;
2817 spin_unlock(&nm_i->nid_list_lock);
2818 }
2819
2820 __set_nat_cache_dirty(nm_i, ne);
2821 }
2822 update_nats_in_cursum(journal, -i);
2823 up_write(&curseg->journal_rwsem);
2824}
2825
2826static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2827 struct list_head *head, int max)
2828{
2829 struct nat_entry_set *cur;
2830
2831 if (nes->entry_cnt >= max)
2832 goto add_out;
2833
2834 list_for_each_entry(cur, head, set_list) {
2835 if (cur->entry_cnt >= nes->entry_cnt) {
2836 list_add(&nes->set_list, cur->set_list.prev);
2837 return;
2838 }
2839 }
2840add_out:
2841 list_add_tail(&nes->set_list, head);
2842}
2843
2844static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2845 struct page *page)
2846{
2847 struct f2fs_nm_info *nm_i = NM_I(sbi);
2848 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2849 struct f2fs_nat_block *nat_blk = page_address(page);
2850 int valid = 0;
2851 int i = 0;
2852
2853 if (!enabled_nat_bits(sbi, NULL))
2854 return;
2855
2856 if (nat_index == 0) {
2857 valid = 1;
2858 i = 1;
2859 }
2860 for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2861 if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2862 valid++;
2863 }
2864 if (valid == 0) {
2865 __set_bit_le(nat_index, nm_i->empty_nat_bits);
2866 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2867 return;
2868 }
2869
2870 __clear_bit_le(nat_index, nm_i->empty_nat_bits);
2871 if (valid == NAT_ENTRY_PER_BLOCK)
2872 __set_bit_le(nat_index, nm_i->full_nat_bits);
2873 else
2874 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2875}
2876
2877static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2878 struct nat_entry_set *set, struct cp_control *cpc)
2879{
2880 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2881 struct f2fs_journal *journal = curseg->journal;
2882 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2883 bool to_journal = true;
2884 struct f2fs_nat_block *nat_blk;
2885 struct nat_entry *ne, *cur;
2886 struct page *page = NULL;
2887
2888 /*
2889 * there are two steps to flush nat entries:
2890 * #1, flush nat entries to journal in current hot data summary block.
2891 * #2, flush nat entries to nat page.
2892 */
2893 if (enabled_nat_bits(sbi, cpc) ||
2894 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2895 to_journal = false;
2896
2897 if (to_journal) {
2898 down_write(&curseg->journal_rwsem);
2899 } else {
2900 page = get_next_nat_page(sbi, start_nid);
2901 if (IS_ERR(page))
2902 return PTR_ERR(page);
2903
2904 nat_blk = page_address(page);
2905 f2fs_bug_on(sbi, !nat_blk);
2906 }
2907
2908 /* flush dirty nats in nat entry set */
2909 list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2910 struct f2fs_nat_entry *raw_ne;
2911 nid_t nid = nat_get_nid(ne);
2912 int offset;
2913
2914 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
2915
2916 if (to_journal) {
2917 offset = f2fs_lookup_journal_in_cursum(journal,
2918 NAT_JOURNAL, nid, 1);
2919 f2fs_bug_on(sbi, offset < 0);
2920 raw_ne = &nat_in_journal(journal, offset);
2921 nid_in_journal(journal, offset) = cpu_to_le32(nid);
2922 } else {
2923 raw_ne = &nat_blk->entries[nid - start_nid];
2924 }
2925 raw_nat_from_node_info(raw_ne, &ne->ni);
2926 nat_reset_flag(ne);
2927 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
2928 if (nat_get_blkaddr(ne) == NULL_ADDR) {
2929 add_free_nid(sbi, nid, false, true);
2930 } else {
2931 spin_lock(&NM_I(sbi)->nid_list_lock);
2932 update_free_nid_bitmap(sbi, nid, false, false);
2933 spin_unlock(&NM_I(sbi)->nid_list_lock);
2934 }
2935 }
2936
2937 if (to_journal) {
2938 up_write(&curseg->journal_rwsem);
2939 } else {
2940 __update_nat_bits(sbi, start_nid, page);
2941 f2fs_put_page(page, 1);
2942 }
2943
2944 /* Allow dirty nats by node block allocation in write_begin */
2945 if (!set->entry_cnt) {
2946 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2947 kmem_cache_free(nat_entry_set_slab, set);
2948 }
2949 return 0;
2950}
2951
2952/*
2953 * This function is called during the checkpointing process.
2954 */
2955int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2956{
2957 struct f2fs_nm_info *nm_i = NM_I(sbi);
2958 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2959 struct f2fs_journal *journal = curseg->journal;
2960 struct nat_entry_set *setvec[SETVEC_SIZE];
2961 struct nat_entry_set *set, *tmp;
2962 unsigned int found;
2963 nid_t set_idx = 0;
2964 LIST_HEAD(sets);
2965 int err = 0;
2966
2967 /*
2968 * during unmount, let's flush nat_bits before checking
2969 * nat_cnt[DIRTY_NAT].
2970 */
2971 if (enabled_nat_bits(sbi, cpc)) {
2972 down_write(&nm_i->nat_tree_lock);
2973 remove_nats_in_journal(sbi);
2974 up_write(&nm_i->nat_tree_lock);
2975 }
2976
2977 if (!nm_i->nat_cnt[DIRTY_NAT])
2978 return 0;
2979
2980 down_write(&nm_i->nat_tree_lock);
2981
2982 /*
2983 * if there are no enough space in journal to store dirty nat
2984 * entries, remove all entries from journal and merge them
2985 * into nat entry set.
2986 */
2987 if (enabled_nat_bits(sbi, cpc) ||
2988 !__has_cursum_space(journal,
2989 nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL))
2990 remove_nats_in_journal(sbi);
2991
2992 while ((found = __gang_lookup_nat_set(nm_i,
2993 set_idx, SETVEC_SIZE, setvec))) {
2994 unsigned idx;
2995
2996 set_idx = setvec[found - 1]->set + 1;
2997 for (idx = 0; idx < found; idx++)
2998 __adjust_nat_entry_set(setvec[idx], &sets,
2999 MAX_NAT_JENTRIES(journal));
3000 }
3001
3002 /* flush dirty nats in nat entry set */
3003 list_for_each_entry_safe(set, tmp, &sets, set_list) {
3004 err = __flush_nat_entry_set(sbi, set, cpc);
3005 if (err)
3006 break;
3007 }
3008
3009 up_write(&nm_i->nat_tree_lock);
3010 /* Allow dirty nats by node block allocation in write_begin */
3011
3012 return err;
3013}
3014
3015static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
3016{
3017 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3018 struct f2fs_nm_info *nm_i = NM_I(sbi);
3019 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
3020 unsigned int i;
3021 __u64 cp_ver = cur_cp_version(ckpt);
3022 block_t nat_bits_addr;
3023
3024 if (!enabled_nat_bits(sbi, NULL))
3025 return 0;
3026
3027 nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3028 nm_i->nat_bits = f2fs_kvzalloc(sbi,
3029 nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
3030 if (!nm_i->nat_bits)
3031 return -ENOMEM;
3032
3033 nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
3034 nm_i->nat_bits_blocks;
3035 for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3036 struct page *page;
3037
3038 page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3039 if (IS_ERR(page))
3040 return PTR_ERR(page);
3041
3042 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
3043 page_address(page), F2FS_BLKSIZE);
3044 f2fs_put_page(page, 1);
3045 }
3046
3047 cp_ver |= (cur_cp_crc(ckpt) << 32);
3048 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3049 disable_nat_bits(sbi, true);
3050 return 0;
3051 }
3052
3053 nm_i->full_nat_bits = nm_i->nat_bits + 8;
3054 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3055
3056 f2fs_notice(sbi, "Found nat_bits in checkpoint");
3057 return 0;
3058}
3059
3060static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3061{
3062 struct f2fs_nm_info *nm_i = NM_I(sbi);
3063 unsigned int i = 0;
3064 nid_t nid, last_nid;
3065
3066 if (!enabled_nat_bits(sbi, NULL))
3067 return;
3068
3069 for (i = 0; i < nm_i->nat_blocks; i++) {
3070 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3071 if (i >= nm_i->nat_blocks)
3072 break;
3073
3074 __set_bit_le(i, nm_i->nat_block_bitmap);
3075
3076 nid = i * NAT_ENTRY_PER_BLOCK;
3077 last_nid = nid + NAT_ENTRY_PER_BLOCK;
3078
3079 spin_lock(&NM_I(sbi)->nid_list_lock);
3080 for (; nid < last_nid; nid++)
3081 update_free_nid_bitmap(sbi, nid, true, true);
3082 spin_unlock(&NM_I(sbi)->nid_list_lock);
3083 }
3084
3085 for (i = 0; i < nm_i->nat_blocks; i++) {
3086 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3087 if (i >= nm_i->nat_blocks)
3088 break;
3089
3090 __set_bit_le(i, nm_i->nat_block_bitmap);
3091 }
3092}
3093
3094static int init_node_manager(struct f2fs_sb_info *sbi)
3095{
3096 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3097 struct f2fs_nm_info *nm_i = NM_I(sbi);
3098 unsigned char *version_bitmap;
3099 unsigned int nat_segs;
3100 int err;
3101
3102 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3103
3104 /* segment_count_nat includes pair segment so divide to 2. */
3105 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3106 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3107 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3108
3109 /* not used nids: 0, node, meta, (and root counted as valid node) */
3110 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3111 F2FS_RESERVED_NODE_NUM;
3112 nm_i->nid_cnt[FREE_NID] = 0;
3113 nm_i->nid_cnt[PREALLOC_NID] = 0;
3114 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3115 nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3116 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3117
3118 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3119 INIT_LIST_HEAD(&nm_i->free_nid_list);
3120 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3121 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3122 INIT_LIST_HEAD(&nm_i->nat_entries);
3123 spin_lock_init(&nm_i->nat_list_lock);
3124
3125 mutex_init(&nm_i->build_lock);
3126 spin_lock_init(&nm_i->nid_list_lock);
3127 init_rwsem(&nm_i->nat_tree_lock);
3128
3129 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3130 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3131 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3132 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3133 GFP_KERNEL);
3134 if (!nm_i->nat_bitmap)
3135 return -ENOMEM;
3136
3137 err = __get_nat_bitmaps(sbi);
3138 if (err)
3139 return err;
3140
3141#ifdef CONFIG_F2FS_CHECK_FS
3142 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3143 GFP_KERNEL);
3144 if (!nm_i->nat_bitmap_mir)
3145 return -ENOMEM;
3146#endif
3147
3148 return 0;
3149}
3150
3151static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3152{
3153 struct f2fs_nm_info *nm_i = NM_I(sbi);
3154 int i;
3155
3156 nm_i->free_nid_bitmap =
3157 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3158 nm_i->nat_blocks),
3159 GFP_KERNEL);
3160 if (!nm_i->free_nid_bitmap)
3161 return -ENOMEM;
3162
3163 for (i = 0; i < nm_i->nat_blocks; i++) {
3164 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3165 f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3166 if (!nm_i->free_nid_bitmap[i])
3167 return -ENOMEM;
3168 }
3169
3170 nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3171 GFP_KERNEL);
3172 if (!nm_i->nat_block_bitmap)
3173 return -ENOMEM;
3174
3175 nm_i->free_nid_count =
3176 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3177 nm_i->nat_blocks),
3178 GFP_KERNEL);
3179 if (!nm_i->free_nid_count)
3180 return -ENOMEM;
3181 return 0;
3182}
3183
3184int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3185{
3186 int err;
3187
3188 sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3189 GFP_KERNEL);
3190 if (!sbi->nm_info)
3191 return -ENOMEM;
3192
3193 err = init_node_manager(sbi);
3194 if (err)
3195 return err;
3196
3197 err = init_free_nid_cache(sbi);
3198 if (err)
3199 return err;
3200
3201 /* load free nid status from nat_bits table */
3202 load_free_nid_bitmap(sbi);
3203
3204 return f2fs_build_free_nids(sbi, true, true);
3205}
3206
3207void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3208{
3209 struct f2fs_nm_info *nm_i = NM_I(sbi);
3210 struct free_nid *i, *next_i;
3211 struct nat_entry *natvec[NATVEC_SIZE];
3212 struct nat_entry_set *setvec[SETVEC_SIZE];
3213 nid_t nid = 0;
3214 unsigned int found;
3215
3216 if (!nm_i)
3217 return;
3218
3219 /* destroy free nid list */
3220 spin_lock(&nm_i->nid_list_lock);
3221 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3222 __remove_free_nid(sbi, i, FREE_NID);
3223 spin_unlock(&nm_i->nid_list_lock);
3224 kmem_cache_free(free_nid_slab, i);
3225 spin_lock(&nm_i->nid_list_lock);
3226 }
3227 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3228 f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3229 f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3230 spin_unlock(&nm_i->nid_list_lock);
3231
3232 /* destroy nat cache */
3233 down_write(&nm_i->nat_tree_lock);
3234 while ((found = __gang_lookup_nat_cache(nm_i,
3235 nid, NATVEC_SIZE, natvec))) {
3236 unsigned idx;
3237
3238 nid = nat_get_nid(natvec[found - 1]) + 1;
3239 for (idx = 0; idx < found; idx++) {
3240 spin_lock(&nm_i->nat_list_lock);
3241 list_del(&natvec[idx]->list);
3242 spin_unlock(&nm_i->nat_list_lock);
3243
3244 __del_from_nat_cache(nm_i, natvec[idx]);
3245 }
3246 }
3247 f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]);
3248
3249 /* destroy nat set cache */
3250 nid = 0;
3251 while ((found = __gang_lookup_nat_set(nm_i,
3252 nid, SETVEC_SIZE, setvec))) {
3253 unsigned idx;
3254
3255 nid = setvec[found - 1]->set + 1;
3256 for (idx = 0; idx < found; idx++) {
3257 /* entry_cnt is not zero, when cp_error was occurred */
3258 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3259 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3260 kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3261 }
3262 }
3263 up_write(&nm_i->nat_tree_lock);
3264
3265 kvfree(nm_i->nat_block_bitmap);
3266 if (nm_i->free_nid_bitmap) {
3267 int i;
3268
3269 for (i = 0; i < nm_i->nat_blocks; i++)
3270 kvfree(nm_i->free_nid_bitmap[i]);
3271 kvfree(nm_i->free_nid_bitmap);
3272 }
3273 kvfree(nm_i->free_nid_count);
3274
3275 kvfree(nm_i->nat_bitmap);
3276 kvfree(nm_i->nat_bits);
3277#ifdef CONFIG_F2FS_CHECK_FS
3278 kvfree(nm_i->nat_bitmap_mir);
3279#endif
3280 sbi->nm_info = NULL;
3281 kfree(nm_i);
3282}
3283
3284int __init f2fs_create_node_manager_caches(void)
3285{
3286 nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3287 sizeof(struct nat_entry));
3288 if (!nat_entry_slab)
3289 goto fail;
3290
3291 free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3292 sizeof(struct free_nid));
3293 if (!free_nid_slab)
3294 goto destroy_nat_entry;
3295
3296 nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3297 sizeof(struct nat_entry_set));
3298 if (!nat_entry_set_slab)
3299 goto destroy_free_nid;
3300
3301 fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3302 sizeof(struct fsync_node_entry));
3303 if (!fsync_node_entry_slab)
3304 goto destroy_nat_entry_set;
3305 return 0;
3306
3307destroy_nat_entry_set:
3308 kmem_cache_destroy(nat_entry_set_slab);
3309destroy_free_nid:
3310 kmem_cache_destroy(free_nid_slab);
3311destroy_nat_entry:
3312 kmem_cache_destroy(nat_entry_slab);
3313fail:
3314 return -ENOMEM;
3315}
3316
3317void f2fs_destroy_node_manager_caches(void)
3318{
3319 kmem_cache_destroy(fsync_node_entry_slab);
3320 kmem_cache_destroy(nat_entry_set_slab);
3321 kmem_cache_destroy(free_nid_slab);
3322 kmem_cache_destroy(nat_entry_slab);
3323}