Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Generic OPP Interface
4 *
5 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6 * Nishanth Menon
7 * Romit Dasgupta
8 * Kevin Hilman
9 */
10
11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13#include <linux/clk.h>
14#include <linux/errno.h>
15#include <linux/err.h>
16#include <linux/slab.h>
17#include <linux/device.h>
18#include <linux/export.h>
19#include <linux/pm_domain.h>
20#include <linux/regulator/consumer.h>
21
22#include "opp.h"
23
24/*
25 * The root of the list of all opp-tables. All opp_table structures branch off
26 * from here, with each opp_table containing the list of opps it supports in
27 * various states of availability.
28 */
29LIST_HEAD(opp_tables);
30
31/* OPP tables with uninitialized required OPPs */
32LIST_HEAD(lazy_opp_tables);
33
34/* Lock to allow exclusive modification to the device and opp lists */
35DEFINE_MUTEX(opp_table_lock);
36/* Flag indicating that opp_tables list is being updated at the moment */
37static bool opp_tables_busy;
38
39static bool _find_opp_dev(const struct device *dev, struct opp_table *opp_table)
40{
41 struct opp_device *opp_dev;
42 bool found = false;
43
44 mutex_lock(&opp_table->lock);
45 list_for_each_entry(opp_dev, &opp_table->dev_list, node)
46 if (opp_dev->dev == dev) {
47 found = true;
48 break;
49 }
50
51 mutex_unlock(&opp_table->lock);
52 return found;
53}
54
55static struct opp_table *_find_opp_table_unlocked(struct device *dev)
56{
57 struct opp_table *opp_table;
58
59 list_for_each_entry(opp_table, &opp_tables, node) {
60 if (_find_opp_dev(dev, opp_table)) {
61 _get_opp_table_kref(opp_table);
62 return opp_table;
63 }
64 }
65
66 return ERR_PTR(-ENODEV);
67}
68
69/**
70 * _find_opp_table() - find opp_table struct using device pointer
71 * @dev: device pointer used to lookup OPP table
72 *
73 * Search OPP table for one containing matching device.
74 *
75 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
76 * -EINVAL based on type of error.
77 *
78 * The callers must call dev_pm_opp_put_opp_table() after the table is used.
79 */
80struct opp_table *_find_opp_table(struct device *dev)
81{
82 struct opp_table *opp_table;
83
84 if (IS_ERR_OR_NULL(dev)) {
85 pr_err("%s: Invalid parameters\n", __func__);
86 return ERR_PTR(-EINVAL);
87 }
88
89 mutex_lock(&opp_table_lock);
90 opp_table = _find_opp_table_unlocked(dev);
91 mutex_unlock(&opp_table_lock);
92
93 return opp_table;
94}
95
96/**
97 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
98 * @opp: opp for which voltage has to be returned for
99 *
100 * Return: voltage in micro volt corresponding to the opp, else
101 * return 0
102 *
103 * This is useful only for devices with single power supply.
104 */
105unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
106{
107 if (IS_ERR_OR_NULL(opp)) {
108 pr_err("%s: Invalid parameters\n", __func__);
109 return 0;
110 }
111
112 return opp->supplies[0].u_volt;
113}
114EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
115
116/**
117 * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp
118 * @opp: opp for which frequency has to be returned for
119 *
120 * Return: frequency in hertz corresponding to the opp, else
121 * return 0
122 */
123unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp)
124{
125 if (IS_ERR_OR_NULL(opp)) {
126 pr_err("%s: Invalid parameters\n", __func__);
127 return 0;
128 }
129
130 return opp->rate;
131}
132EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq);
133
134/**
135 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
136 * @opp: opp for which level value has to be returned for
137 *
138 * Return: level read from device tree corresponding to the opp, else
139 * return 0.
140 */
141unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
142{
143 if (IS_ERR_OR_NULL(opp) || !opp->available) {
144 pr_err("%s: Invalid parameters\n", __func__);
145 return 0;
146 }
147
148 return opp->level;
149}
150EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
151
152/**
153 * dev_pm_opp_get_required_pstate() - Gets the required performance state
154 * corresponding to an available opp
155 * @opp: opp for which performance state has to be returned for
156 * @index: index of the required opp
157 *
158 * Return: performance state read from device tree corresponding to the
159 * required opp, else return 0.
160 */
161unsigned int dev_pm_opp_get_required_pstate(struct dev_pm_opp *opp,
162 unsigned int index)
163{
164 if (IS_ERR_OR_NULL(opp) || !opp->available ||
165 index >= opp->opp_table->required_opp_count) {
166 pr_err("%s: Invalid parameters\n", __func__);
167 return 0;
168 }
169
170 /* required-opps not fully initialized yet */
171 if (lazy_linking_pending(opp->opp_table))
172 return 0;
173
174 return opp->required_opps[index]->pstate;
175}
176EXPORT_SYMBOL_GPL(dev_pm_opp_get_required_pstate);
177
178/**
179 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
180 * @opp: opp for which turbo mode is being verified
181 *
182 * Turbo OPPs are not for normal use, and can be enabled (under certain
183 * conditions) for short duration of times to finish high throughput work
184 * quickly. Running on them for longer times may overheat the chip.
185 *
186 * Return: true if opp is turbo opp, else false.
187 */
188bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
189{
190 if (IS_ERR_OR_NULL(opp) || !opp->available) {
191 pr_err("%s: Invalid parameters\n", __func__);
192 return false;
193 }
194
195 return opp->turbo;
196}
197EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
198
199/**
200 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
201 * @dev: device for which we do this operation
202 *
203 * Return: This function returns the max clock latency in nanoseconds.
204 */
205unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
206{
207 struct opp_table *opp_table;
208 unsigned long clock_latency_ns;
209
210 opp_table = _find_opp_table(dev);
211 if (IS_ERR(opp_table))
212 return 0;
213
214 clock_latency_ns = opp_table->clock_latency_ns_max;
215
216 dev_pm_opp_put_opp_table(opp_table);
217
218 return clock_latency_ns;
219}
220EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
221
222/**
223 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
224 * @dev: device for which we do this operation
225 *
226 * Return: This function returns the max voltage latency in nanoseconds.
227 */
228unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
229{
230 struct opp_table *opp_table;
231 struct dev_pm_opp *opp;
232 struct regulator *reg;
233 unsigned long latency_ns = 0;
234 int ret, i, count;
235 struct {
236 unsigned long min;
237 unsigned long max;
238 } *uV;
239
240 opp_table = _find_opp_table(dev);
241 if (IS_ERR(opp_table))
242 return 0;
243
244 /* Regulator may not be required for the device */
245 if (!opp_table->regulators)
246 goto put_opp_table;
247
248 count = opp_table->regulator_count;
249
250 uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
251 if (!uV)
252 goto put_opp_table;
253
254 mutex_lock(&opp_table->lock);
255
256 for (i = 0; i < count; i++) {
257 uV[i].min = ~0;
258 uV[i].max = 0;
259
260 list_for_each_entry(opp, &opp_table->opp_list, node) {
261 if (!opp->available)
262 continue;
263
264 if (opp->supplies[i].u_volt_min < uV[i].min)
265 uV[i].min = opp->supplies[i].u_volt_min;
266 if (opp->supplies[i].u_volt_max > uV[i].max)
267 uV[i].max = opp->supplies[i].u_volt_max;
268 }
269 }
270
271 mutex_unlock(&opp_table->lock);
272
273 /*
274 * The caller needs to ensure that opp_table (and hence the regulator)
275 * isn't freed, while we are executing this routine.
276 */
277 for (i = 0; i < count; i++) {
278 reg = opp_table->regulators[i];
279 ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
280 if (ret > 0)
281 latency_ns += ret * 1000;
282 }
283
284 kfree(uV);
285put_opp_table:
286 dev_pm_opp_put_opp_table(opp_table);
287
288 return latency_ns;
289}
290EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
291
292/**
293 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
294 * nanoseconds
295 * @dev: device for which we do this operation
296 *
297 * Return: This function returns the max transition latency, in nanoseconds, to
298 * switch from one OPP to other.
299 */
300unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
301{
302 return dev_pm_opp_get_max_volt_latency(dev) +
303 dev_pm_opp_get_max_clock_latency(dev);
304}
305EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
306
307/**
308 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
309 * @dev: device for which we do this operation
310 *
311 * Return: This function returns the frequency of the OPP marked as suspend_opp
312 * if one is available, else returns 0;
313 */
314unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
315{
316 struct opp_table *opp_table;
317 unsigned long freq = 0;
318
319 opp_table = _find_opp_table(dev);
320 if (IS_ERR(opp_table))
321 return 0;
322
323 if (opp_table->suspend_opp && opp_table->suspend_opp->available)
324 freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
325
326 dev_pm_opp_put_opp_table(opp_table);
327
328 return freq;
329}
330EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
331
332int _get_opp_count(struct opp_table *opp_table)
333{
334 struct dev_pm_opp *opp;
335 int count = 0;
336
337 mutex_lock(&opp_table->lock);
338
339 list_for_each_entry(opp, &opp_table->opp_list, node) {
340 if (opp->available)
341 count++;
342 }
343
344 mutex_unlock(&opp_table->lock);
345
346 return count;
347}
348
349/**
350 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
351 * @dev: device for which we do this operation
352 *
353 * Return: This function returns the number of available opps if there are any,
354 * else returns 0 if none or the corresponding error value.
355 */
356int dev_pm_opp_get_opp_count(struct device *dev)
357{
358 struct opp_table *opp_table;
359 int count;
360
361 opp_table = _find_opp_table(dev);
362 if (IS_ERR(opp_table)) {
363 count = PTR_ERR(opp_table);
364 dev_dbg(dev, "%s: OPP table not found (%d)\n",
365 __func__, count);
366 return count;
367 }
368
369 count = _get_opp_count(opp_table);
370 dev_pm_opp_put_opp_table(opp_table);
371
372 return count;
373}
374EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
375
376/**
377 * dev_pm_opp_find_freq_exact() - search for an exact frequency
378 * @dev: device for which we do this operation
379 * @freq: frequency to search for
380 * @available: true/false - match for available opp
381 *
382 * Return: Searches for exact match in the opp table and returns pointer to the
383 * matching opp if found, else returns ERR_PTR in case of error and should
384 * be handled using IS_ERR. Error return values can be:
385 * EINVAL: for bad pointer
386 * ERANGE: no match found for search
387 * ENODEV: if device not found in list of registered devices
388 *
389 * Note: available is a modifier for the search. if available=true, then the
390 * match is for exact matching frequency and is available in the stored OPP
391 * table. if false, the match is for exact frequency which is not available.
392 *
393 * This provides a mechanism to enable an opp which is not available currently
394 * or the opposite as well.
395 *
396 * The callers are required to call dev_pm_opp_put() for the returned OPP after
397 * use.
398 */
399struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
400 unsigned long freq,
401 bool available)
402{
403 struct opp_table *opp_table;
404 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
405
406 opp_table = _find_opp_table(dev);
407 if (IS_ERR(opp_table)) {
408 int r = PTR_ERR(opp_table);
409
410 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
411 return ERR_PTR(r);
412 }
413
414 mutex_lock(&opp_table->lock);
415
416 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
417 if (temp_opp->available == available &&
418 temp_opp->rate == freq) {
419 opp = temp_opp;
420
421 /* Increment the reference count of OPP */
422 dev_pm_opp_get(opp);
423 break;
424 }
425 }
426
427 mutex_unlock(&opp_table->lock);
428 dev_pm_opp_put_opp_table(opp_table);
429
430 return opp;
431}
432EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
433
434/**
435 * dev_pm_opp_find_level_exact() - search for an exact level
436 * @dev: device for which we do this operation
437 * @level: level to search for
438 *
439 * Return: Searches for exact match in the opp table and returns pointer to the
440 * matching opp if found, else returns ERR_PTR in case of error and should
441 * be handled using IS_ERR. Error return values can be:
442 * EINVAL: for bad pointer
443 * ERANGE: no match found for search
444 * ENODEV: if device not found in list of registered devices
445 *
446 * The callers are required to call dev_pm_opp_put() for the returned OPP after
447 * use.
448 */
449struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
450 unsigned int level)
451{
452 struct opp_table *opp_table;
453 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
454
455 opp_table = _find_opp_table(dev);
456 if (IS_ERR(opp_table)) {
457 int r = PTR_ERR(opp_table);
458
459 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
460 return ERR_PTR(r);
461 }
462
463 mutex_lock(&opp_table->lock);
464
465 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
466 if (temp_opp->level == level) {
467 opp = temp_opp;
468
469 /* Increment the reference count of OPP */
470 dev_pm_opp_get(opp);
471 break;
472 }
473 }
474
475 mutex_unlock(&opp_table->lock);
476 dev_pm_opp_put_opp_table(opp_table);
477
478 return opp;
479}
480EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
481
482/**
483 * dev_pm_opp_find_level_ceil() - search for an rounded up level
484 * @dev: device for which we do this operation
485 * @level: level to search for
486 *
487 * Return: Searches for rounded up match in the opp table and returns pointer
488 * to the matching opp if found, else returns ERR_PTR in case of error and
489 * should be handled using IS_ERR. Error return values can be:
490 * EINVAL: for bad pointer
491 * ERANGE: no match found for search
492 * ENODEV: if device not found in list of registered devices
493 *
494 * The callers are required to call dev_pm_opp_put() for the returned OPP after
495 * use.
496 */
497struct dev_pm_opp *dev_pm_opp_find_level_ceil(struct device *dev,
498 unsigned int *level)
499{
500 struct opp_table *opp_table;
501 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
502
503 opp_table = _find_opp_table(dev);
504 if (IS_ERR(opp_table)) {
505 int r = PTR_ERR(opp_table);
506
507 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
508 return ERR_PTR(r);
509 }
510
511 mutex_lock(&opp_table->lock);
512
513 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
514 if (temp_opp->available && temp_opp->level >= *level) {
515 opp = temp_opp;
516 *level = opp->level;
517
518 /* Increment the reference count of OPP */
519 dev_pm_opp_get(opp);
520 break;
521 }
522 }
523
524 mutex_unlock(&opp_table->lock);
525 dev_pm_opp_put_opp_table(opp_table);
526
527 return opp;
528}
529EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_ceil);
530
531static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
532 unsigned long *freq)
533{
534 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
535
536 mutex_lock(&opp_table->lock);
537
538 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
539 if (temp_opp->available && temp_opp->rate >= *freq) {
540 opp = temp_opp;
541 *freq = opp->rate;
542
543 /* Increment the reference count of OPP */
544 dev_pm_opp_get(opp);
545 break;
546 }
547 }
548
549 mutex_unlock(&opp_table->lock);
550
551 return opp;
552}
553
554/**
555 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
556 * @dev: device for which we do this operation
557 * @freq: Start frequency
558 *
559 * Search for the matching ceil *available* OPP from a starting freq
560 * for a device.
561 *
562 * Return: matching *opp and refreshes *freq accordingly, else returns
563 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
564 * values can be:
565 * EINVAL: for bad pointer
566 * ERANGE: no match found for search
567 * ENODEV: if device not found in list of registered devices
568 *
569 * The callers are required to call dev_pm_opp_put() for the returned OPP after
570 * use.
571 */
572struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
573 unsigned long *freq)
574{
575 struct opp_table *opp_table;
576 struct dev_pm_opp *opp;
577
578 if (!dev || !freq) {
579 dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
580 return ERR_PTR(-EINVAL);
581 }
582
583 opp_table = _find_opp_table(dev);
584 if (IS_ERR(opp_table))
585 return ERR_CAST(opp_table);
586
587 opp = _find_freq_ceil(opp_table, freq);
588
589 dev_pm_opp_put_opp_table(opp_table);
590
591 return opp;
592}
593EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
594
595/**
596 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
597 * @dev: device for which we do this operation
598 * @freq: Start frequency
599 *
600 * Search for the matching floor *available* OPP from a starting freq
601 * for a device.
602 *
603 * Return: matching *opp and refreshes *freq accordingly, else returns
604 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
605 * values can be:
606 * EINVAL: for bad pointer
607 * ERANGE: no match found for search
608 * ENODEV: if device not found in list of registered devices
609 *
610 * The callers are required to call dev_pm_opp_put() for the returned OPP after
611 * use.
612 */
613struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
614 unsigned long *freq)
615{
616 struct opp_table *opp_table;
617 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
618
619 if (!dev || !freq) {
620 dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
621 return ERR_PTR(-EINVAL);
622 }
623
624 opp_table = _find_opp_table(dev);
625 if (IS_ERR(opp_table))
626 return ERR_CAST(opp_table);
627
628 mutex_lock(&opp_table->lock);
629
630 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
631 if (temp_opp->available) {
632 /* go to the next node, before choosing prev */
633 if (temp_opp->rate > *freq)
634 break;
635 else
636 opp = temp_opp;
637 }
638 }
639
640 /* Increment the reference count of OPP */
641 if (!IS_ERR(opp))
642 dev_pm_opp_get(opp);
643 mutex_unlock(&opp_table->lock);
644 dev_pm_opp_put_opp_table(opp_table);
645
646 if (!IS_ERR(opp))
647 *freq = opp->rate;
648
649 return opp;
650}
651EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
652
653/**
654 * dev_pm_opp_find_freq_ceil_by_volt() - Find OPP with highest frequency for
655 * target voltage.
656 * @dev: Device for which we do this operation.
657 * @u_volt: Target voltage.
658 *
659 * Search for OPP with highest (ceil) frequency and has voltage <= u_volt.
660 *
661 * Return: matching *opp, else returns ERR_PTR in case of error which should be
662 * handled using IS_ERR.
663 *
664 * Error return values can be:
665 * EINVAL: bad parameters
666 *
667 * The callers are required to call dev_pm_opp_put() for the returned OPP after
668 * use.
669 */
670struct dev_pm_opp *dev_pm_opp_find_freq_ceil_by_volt(struct device *dev,
671 unsigned long u_volt)
672{
673 struct opp_table *opp_table;
674 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
675
676 if (!dev || !u_volt) {
677 dev_err(dev, "%s: Invalid argument volt=%lu\n", __func__,
678 u_volt);
679 return ERR_PTR(-EINVAL);
680 }
681
682 opp_table = _find_opp_table(dev);
683 if (IS_ERR(opp_table))
684 return ERR_CAST(opp_table);
685
686 mutex_lock(&opp_table->lock);
687
688 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
689 if (temp_opp->available) {
690 if (temp_opp->supplies[0].u_volt > u_volt)
691 break;
692 opp = temp_opp;
693 }
694 }
695
696 /* Increment the reference count of OPP */
697 if (!IS_ERR(opp))
698 dev_pm_opp_get(opp);
699
700 mutex_unlock(&opp_table->lock);
701 dev_pm_opp_put_opp_table(opp_table);
702
703 return opp;
704}
705EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_by_volt);
706
707static int _set_opp_voltage(struct device *dev, struct regulator *reg,
708 struct dev_pm_opp_supply *supply)
709{
710 int ret;
711
712 /* Regulator not available for device */
713 if (IS_ERR(reg)) {
714 dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
715 PTR_ERR(reg));
716 return 0;
717 }
718
719 dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
720 supply->u_volt_min, supply->u_volt, supply->u_volt_max);
721
722 ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
723 supply->u_volt, supply->u_volt_max);
724 if (ret)
725 dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
726 __func__, supply->u_volt_min, supply->u_volt,
727 supply->u_volt_max, ret);
728
729 return ret;
730}
731
732static inline int _generic_set_opp_clk_only(struct device *dev, struct clk *clk,
733 unsigned long freq)
734{
735 int ret;
736
737 /* We may reach here for devices which don't change frequency */
738 if (IS_ERR(clk))
739 return 0;
740
741 ret = clk_set_rate(clk, freq);
742 if (ret) {
743 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
744 ret);
745 }
746
747 return ret;
748}
749
750static int _generic_set_opp_regulator(struct opp_table *opp_table,
751 struct device *dev,
752 struct dev_pm_opp *opp,
753 unsigned long freq,
754 int scaling_down)
755{
756 struct regulator *reg = opp_table->regulators[0];
757 struct dev_pm_opp *old_opp = opp_table->current_opp;
758 int ret;
759
760 /* This function only supports single regulator per device */
761 if (WARN_ON(opp_table->regulator_count > 1)) {
762 dev_err(dev, "multiple regulators are not supported\n");
763 return -EINVAL;
764 }
765
766 /* Scaling up? Scale voltage before frequency */
767 if (!scaling_down) {
768 ret = _set_opp_voltage(dev, reg, opp->supplies);
769 if (ret)
770 goto restore_voltage;
771 }
772
773 /* Change frequency */
774 ret = _generic_set_opp_clk_only(dev, opp_table->clk, freq);
775 if (ret)
776 goto restore_voltage;
777
778 /* Scaling down? Scale voltage after frequency */
779 if (scaling_down) {
780 ret = _set_opp_voltage(dev, reg, opp->supplies);
781 if (ret)
782 goto restore_freq;
783 }
784
785 /*
786 * Enable the regulator after setting its voltages, otherwise it breaks
787 * some boot-enabled regulators.
788 */
789 if (unlikely(!opp_table->enabled)) {
790 ret = regulator_enable(reg);
791 if (ret < 0)
792 dev_warn(dev, "Failed to enable regulator: %d", ret);
793 }
794
795 return 0;
796
797restore_freq:
798 if (_generic_set_opp_clk_only(dev, opp_table->clk, old_opp->rate))
799 dev_err(dev, "%s: failed to restore old-freq (%lu Hz)\n",
800 __func__, old_opp->rate);
801restore_voltage:
802 /* This shouldn't harm even if the voltages weren't updated earlier */
803 _set_opp_voltage(dev, reg, old_opp->supplies);
804
805 return ret;
806}
807
808static int _set_opp_bw(const struct opp_table *opp_table,
809 struct dev_pm_opp *opp, struct device *dev)
810{
811 u32 avg, peak;
812 int i, ret;
813
814 if (!opp_table->paths)
815 return 0;
816
817 for (i = 0; i < opp_table->path_count; i++) {
818 if (!opp) {
819 avg = 0;
820 peak = 0;
821 } else {
822 avg = opp->bandwidth[i].avg;
823 peak = opp->bandwidth[i].peak;
824 }
825 ret = icc_set_bw(opp_table->paths[i], avg, peak);
826 if (ret) {
827 dev_err(dev, "Failed to %s bandwidth[%d]: %d\n",
828 opp ? "set" : "remove", i, ret);
829 return ret;
830 }
831 }
832
833 return 0;
834}
835
836static int _set_opp_custom(const struct opp_table *opp_table,
837 struct device *dev, struct dev_pm_opp *opp,
838 unsigned long freq)
839{
840 struct dev_pm_set_opp_data *data = opp_table->set_opp_data;
841 struct dev_pm_opp *old_opp = opp_table->current_opp;
842 int size;
843
844 /*
845 * We support this only if dev_pm_opp_set_regulators() was called
846 * earlier.
847 */
848 if (opp_table->sod_supplies) {
849 size = sizeof(*old_opp->supplies) * opp_table->regulator_count;
850 memcpy(data->old_opp.supplies, old_opp->supplies, size);
851 memcpy(data->new_opp.supplies, opp->supplies, size);
852 data->regulator_count = opp_table->regulator_count;
853 } else {
854 data->regulator_count = 0;
855 }
856
857 data->regulators = opp_table->regulators;
858 data->clk = opp_table->clk;
859 data->dev = dev;
860 data->old_opp.rate = old_opp->rate;
861 data->new_opp.rate = freq;
862
863 return opp_table->set_opp(data);
864}
865
866static int _set_required_opp(struct device *dev, struct device *pd_dev,
867 struct dev_pm_opp *opp, int i)
868{
869 unsigned int pstate = likely(opp) ? opp->required_opps[i]->pstate : 0;
870 int ret;
871
872 if (!pd_dev)
873 return 0;
874
875 ret = dev_pm_genpd_set_performance_state(pd_dev, pstate);
876 if (ret) {
877 dev_err(dev, "Failed to set performance rate of %s: %d (%d)\n",
878 dev_name(pd_dev), pstate, ret);
879 }
880
881 return ret;
882}
883
884/* This is only called for PM domain for now */
885static int _set_required_opps(struct device *dev,
886 struct opp_table *opp_table,
887 struct dev_pm_opp *opp, bool up)
888{
889 struct opp_table **required_opp_tables = opp_table->required_opp_tables;
890 struct device **genpd_virt_devs = opp_table->genpd_virt_devs;
891 int i, ret = 0;
892
893 if (!required_opp_tables)
894 return 0;
895
896 /* required-opps not fully initialized yet */
897 if (lazy_linking_pending(opp_table))
898 return -EBUSY;
899
900 /* Single genpd case */
901 if (!genpd_virt_devs)
902 return _set_required_opp(dev, dev, opp, 0);
903
904 /* Multiple genpd case */
905
906 /*
907 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev
908 * after it is freed from another thread.
909 */
910 mutex_lock(&opp_table->genpd_virt_dev_lock);
911
912 /* Scaling up? Set required OPPs in normal order, else reverse */
913 if (up) {
914 for (i = 0; i < opp_table->required_opp_count; i++) {
915 ret = _set_required_opp(dev, genpd_virt_devs[i], opp, i);
916 if (ret)
917 break;
918 }
919 } else {
920 for (i = opp_table->required_opp_count - 1; i >= 0; i--) {
921 ret = _set_required_opp(dev, genpd_virt_devs[i], opp, i);
922 if (ret)
923 break;
924 }
925 }
926
927 mutex_unlock(&opp_table->genpd_virt_dev_lock);
928
929 return ret;
930}
931
932static void _find_current_opp(struct device *dev, struct opp_table *opp_table)
933{
934 struct dev_pm_opp *opp = ERR_PTR(-ENODEV);
935 unsigned long freq;
936
937 if (!IS_ERR(opp_table->clk)) {
938 freq = clk_get_rate(opp_table->clk);
939 opp = _find_freq_ceil(opp_table, &freq);
940 }
941
942 /*
943 * Unable to find the current OPP ? Pick the first from the list since
944 * it is in ascending order, otherwise rest of the code will need to
945 * make special checks to validate current_opp.
946 */
947 if (IS_ERR(opp)) {
948 mutex_lock(&opp_table->lock);
949 opp = list_first_entry(&opp_table->opp_list, struct dev_pm_opp, node);
950 dev_pm_opp_get(opp);
951 mutex_unlock(&opp_table->lock);
952 }
953
954 opp_table->current_opp = opp;
955}
956
957static int _disable_opp_table(struct device *dev, struct opp_table *opp_table)
958{
959 int ret;
960
961 if (!opp_table->enabled)
962 return 0;
963
964 /*
965 * Some drivers need to support cases where some platforms may
966 * have OPP table for the device, while others don't and
967 * opp_set_rate() just needs to behave like clk_set_rate().
968 */
969 if (!_get_opp_count(opp_table))
970 return 0;
971
972 ret = _set_opp_bw(opp_table, NULL, dev);
973 if (ret)
974 return ret;
975
976 if (opp_table->regulators)
977 regulator_disable(opp_table->regulators[0]);
978
979 ret = _set_required_opps(dev, opp_table, NULL, false);
980
981 opp_table->enabled = false;
982 return ret;
983}
984
985static int _set_opp(struct device *dev, struct opp_table *opp_table,
986 struct dev_pm_opp *opp, unsigned long freq)
987{
988 struct dev_pm_opp *old_opp;
989 int scaling_down, ret;
990
991 if (unlikely(!opp))
992 return _disable_opp_table(dev, opp_table);
993
994 /* Find the currently set OPP if we don't know already */
995 if (unlikely(!opp_table->current_opp))
996 _find_current_opp(dev, opp_table);
997
998 old_opp = opp_table->current_opp;
999
1000 /* Return early if nothing to do */
1001 if (old_opp == opp && opp_table->current_rate == freq &&
1002 opp_table->enabled) {
1003 dev_dbg(dev, "%s: OPPs are same, nothing to do\n", __func__);
1004 return 0;
1005 }
1006
1007 dev_dbg(dev, "%s: switching OPP: Freq %lu -> %lu Hz, Level %u -> %u, Bw %u -> %u\n",
1008 __func__, opp_table->current_rate, freq, old_opp->level,
1009 opp->level, old_opp->bandwidth ? old_opp->bandwidth[0].peak : 0,
1010 opp->bandwidth ? opp->bandwidth[0].peak : 0);
1011
1012 scaling_down = _opp_compare_key(old_opp, opp);
1013 if (scaling_down == -1)
1014 scaling_down = 0;
1015
1016 /* Scaling up? Configure required OPPs before frequency */
1017 if (!scaling_down) {
1018 ret = _set_required_opps(dev, opp_table, opp, true);
1019 if (ret) {
1020 dev_err(dev, "Failed to set required opps: %d\n", ret);
1021 return ret;
1022 }
1023
1024 ret = _set_opp_bw(opp_table, opp, dev);
1025 if (ret) {
1026 dev_err(dev, "Failed to set bw: %d\n", ret);
1027 return ret;
1028 }
1029 }
1030
1031 if (opp_table->set_opp) {
1032 ret = _set_opp_custom(opp_table, dev, opp, freq);
1033 } else if (opp_table->regulators) {
1034 ret = _generic_set_opp_regulator(opp_table, dev, opp, freq,
1035 scaling_down);
1036 } else {
1037 /* Only frequency scaling */
1038 ret = _generic_set_opp_clk_only(dev, opp_table->clk, freq);
1039 }
1040
1041 if (ret)
1042 return ret;
1043
1044 /* Scaling down? Configure required OPPs after frequency */
1045 if (scaling_down) {
1046 ret = _set_opp_bw(opp_table, opp, dev);
1047 if (ret) {
1048 dev_err(dev, "Failed to set bw: %d\n", ret);
1049 return ret;
1050 }
1051
1052 ret = _set_required_opps(dev, opp_table, opp, false);
1053 if (ret) {
1054 dev_err(dev, "Failed to set required opps: %d\n", ret);
1055 return ret;
1056 }
1057 }
1058
1059 opp_table->enabled = true;
1060 dev_pm_opp_put(old_opp);
1061
1062 /* Make sure current_opp doesn't get freed */
1063 dev_pm_opp_get(opp);
1064 opp_table->current_opp = opp;
1065 opp_table->current_rate = freq;
1066
1067 return ret;
1068}
1069
1070/**
1071 * dev_pm_opp_set_rate() - Configure new OPP based on frequency
1072 * @dev: device for which we do this operation
1073 * @target_freq: frequency to achieve
1074 *
1075 * This configures the power-supplies to the levels specified by the OPP
1076 * corresponding to the target_freq, and programs the clock to a value <=
1077 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
1078 * provided by the opp, should have already rounded to the target OPP's
1079 * frequency.
1080 */
1081int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
1082{
1083 struct opp_table *opp_table;
1084 unsigned long freq = 0, temp_freq;
1085 struct dev_pm_opp *opp = NULL;
1086 int ret;
1087
1088 opp_table = _find_opp_table(dev);
1089 if (IS_ERR(opp_table)) {
1090 dev_err(dev, "%s: device's opp table doesn't exist\n", __func__);
1091 return PTR_ERR(opp_table);
1092 }
1093
1094 if (target_freq) {
1095 /*
1096 * For IO devices which require an OPP on some platforms/SoCs
1097 * while just needing to scale the clock on some others
1098 * we look for empty OPP tables with just a clock handle and
1099 * scale only the clk. This makes dev_pm_opp_set_rate()
1100 * equivalent to a clk_set_rate()
1101 */
1102 if (!_get_opp_count(opp_table)) {
1103 ret = _generic_set_opp_clk_only(dev, opp_table->clk, target_freq);
1104 goto put_opp_table;
1105 }
1106
1107 freq = clk_round_rate(opp_table->clk, target_freq);
1108 if ((long)freq <= 0)
1109 freq = target_freq;
1110
1111 /*
1112 * The clock driver may support finer resolution of the
1113 * frequencies than the OPP table, don't update the frequency we
1114 * pass to clk_set_rate() here.
1115 */
1116 temp_freq = freq;
1117 opp = _find_freq_ceil(opp_table, &temp_freq);
1118 if (IS_ERR(opp)) {
1119 ret = PTR_ERR(opp);
1120 dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
1121 __func__, freq, ret);
1122 goto put_opp_table;
1123 }
1124 }
1125
1126 ret = _set_opp(dev, opp_table, opp, freq);
1127
1128 if (target_freq)
1129 dev_pm_opp_put(opp);
1130put_opp_table:
1131 dev_pm_opp_put_opp_table(opp_table);
1132 return ret;
1133}
1134EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
1135
1136/**
1137 * dev_pm_opp_set_opp() - Configure device for OPP
1138 * @dev: device for which we do this operation
1139 * @opp: OPP to set to
1140 *
1141 * This configures the device based on the properties of the OPP passed to this
1142 * routine.
1143 *
1144 * Return: 0 on success, a negative error number otherwise.
1145 */
1146int dev_pm_opp_set_opp(struct device *dev, struct dev_pm_opp *opp)
1147{
1148 struct opp_table *opp_table;
1149 int ret;
1150
1151 opp_table = _find_opp_table(dev);
1152 if (IS_ERR(opp_table)) {
1153 dev_err(dev, "%s: device opp doesn't exist\n", __func__);
1154 return PTR_ERR(opp_table);
1155 }
1156
1157 ret = _set_opp(dev, opp_table, opp, opp ? opp->rate : 0);
1158 dev_pm_opp_put_opp_table(opp_table);
1159
1160 return ret;
1161}
1162EXPORT_SYMBOL_GPL(dev_pm_opp_set_opp);
1163
1164/* OPP-dev Helpers */
1165static void _remove_opp_dev(struct opp_device *opp_dev,
1166 struct opp_table *opp_table)
1167{
1168 opp_debug_unregister(opp_dev, opp_table);
1169 list_del(&opp_dev->node);
1170 kfree(opp_dev);
1171}
1172
1173struct opp_device *_add_opp_dev(const struct device *dev,
1174 struct opp_table *opp_table)
1175{
1176 struct opp_device *opp_dev;
1177
1178 opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
1179 if (!opp_dev)
1180 return NULL;
1181
1182 /* Initialize opp-dev */
1183 opp_dev->dev = dev;
1184
1185 mutex_lock(&opp_table->lock);
1186 list_add(&opp_dev->node, &opp_table->dev_list);
1187 mutex_unlock(&opp_table->lock);
1188
1189 /* Create debugfs entries for the opp_table */
1190 opp_debug_register(opp_dev, opp_table);
1191
1192 return opp_dev;
1193}
1194
1195static struct opp_table *_allocate_opp_table(struct device *dev, int index)
1196{
1197 struct opp_table *opp_table;
1198 struct opp_device *opp_dev;
1199 int ret;
1200
1201 /*
1202 * Allocate a new OPP table. In the infrequent case where a new
1203 * device is needed to be added, we pay this penalty.
1204 */
1205 opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
1206 if (!opp_table)
1207 return ERR_PTR(-ENOMEM);
1208
1209 mutex_init(&opp_table->lock);
1210 mutex_init(&opp_table->genpd_virt_dev_lock);
1211 INIT_LIST_HEAD(&opp_table->dev_list);
1212 INIT_LIST_HEAD(&opp_table->lazy);
1213
1214 /* Mark regulator count uninitialized */
1215 opp_table->regulator_count = -1;
1216
1217 opp_dev = _add_opp_dev(dev, opp_table);
1218 if (!opp_dev) {
1219 ret = -ENOMEM;
1220 goto err;
1221 }
1222
1223 _of_init_opp_table(opp_table, dev, index);
1224
1225 /* Find interconnect path(s) for the device */
1226 ret = dev_pm_opp_of_find_icc_paths(dev, opp_table);
1227 if (ret) {
1228 if (ret == -EPROBE_DEFER)
1229 goto remove_opp_dev;
1230
1231 dev_warn(dev, "%s: Error finding interconnect paths: %d\n",
1232 __func__, ret);
1233 }
1234
1235 BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
1236 INIT_LIST_HEAD(&opp_table->opp_list);
1237 kref_init(&opp_table->kref);
1238
1239 return opp_table;
1240
1241remove_opp_dev:
1242 _remove_opp_dev(opp_dev, opp_table);
1243err:
1244 kfree(opp_table);
1245 return ERR_PTR(ret);
1246}
1247
1248void _get_opp_table_kref(struct opp_table *opp_table)
1249{
1250 kref_get(&opp_table->kref);
1251}
1252
1253static struct opp_table *_update_opp_table_clk(struct device *dev,
1254 struct opp_table *opp_table,
1255 bool getclk)
1256{
1257 int ret;
1258
1259 /*
1260 * Return early if we don't need to get clk or we have already tried it
1261 * earlier.
1262 */
1263 if (!getclk || IS_ERR(opp_table) || opp_table->clk)
1264 return opp_table;
1265
1266 /* Find clk for the device */
1267 opp_table->clk = clk_get(dev, NULL);
1268
1269 ret = PTR_ERR_OR_ZERO(opp_table->clk);
1270 if (!ret)
1271 return opp_table;
1272
1273 if (ret == -ENOENT) {
1274 dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret);
1275 return opp_table;
1276 }
1277
1278 dev_pm_opp_put_opp_table(opp_table);
1279 dev_err_probe(dev, ret, "Couldn't find clock\n");
1280
1281 return ERR_PTR(ret);
1282}
1283
1284/*
1285 * We need to make sure that the OPP table for a device doesn't get added twice,
1286 * if this routine gets called in parallel with the same device pointer.
1287 *
1288 * The simplest way to enforce that is to perform everything (find existing
1289 * table and if not found, create a new one) under the opp_table_lock, so only
1290 * one creator gets access to the same. But that expands the critical section
1291 * under the lock and may end up causing circular dependencies with frameworks
1292 * like debugfs, interconnect or clock framework as they may be direct or
1293 * indirect users of OPP core.
1294 *
1295 * And for that reason we have to go for a bit tricky implementation here, which
1296 * uses the opp_tables_busy flag to indicate if another creator is in the middle
1297 * of adding an OPP table and others should wait for it to finish.
1298 */
1299struct opp_table *_add_opp_table_indexed(struct device *dev, int index,
1300 bool getclk)
1301{
1302 struct opp_table *opp_table;
1303
1304again:
1305 mutex_lock(&opp_table_lock);
1306
1307 opp_table = _find_opp_table_unlocked(dev);
1308 if (!IS_ERR(opp_table))
1309 goto unlock;
1310
1311 /*
1312 * The opp_tables list or an OPP table's dev_list is getting updated by
1313 * another user, wait for it to finish.
1314 */
1315 if (unlikely(opp_tables_busy)) {
1316 mutex_unlock(&opp_table_lock);
1317 cpu_relax();
1318 goto again;
1319 }
1320
1321 opp_tables_busy = true;
1322 opp_table = _managed_opp(dev, index);
1323
1324 /* Drop the lock to reduce the size of critical section */
1325 mutex_unlock(&opp_table_lock);
1326
1327 if (opp_table) {
1328 if (!_add_opp_dev(dev, opp_table)) {
1329 dev_pm_opp_put_opp_table(opp_table);
1330 opp_table = ERR_PTR(-ENOMEM);
1331 }
1332
1333 mutex_lock(&opp_table_lock);
1334 } else {
1335 opp_table = _allocate_opp_table(dev, index);
1336
1337 mutex_lock(&opp_table_lock);
1338 if (!IS_ERR(opp_table))
1339 list_add(&opp_table->node, &opp_tables);
1340 }
1341
1342 opp_tables_busy = false;
1343
1344unlock:
1345 mutex_unlock(&opp_table_lock);
1346
1347 return _update_opp_table_clk(dev, opp_table, getclk);
1348}
1349
1350static struct opp_table *_add_opp_table(struct device *dev, bool getclk)
1351{
1352 return _add_opp_table_indexed(dev, 0, getclk);
1353}
1354
1355struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1356{
1357 return _find_opp_table(dev);
1358}
1359EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1360
1361static void _opp_table_kref_release(struct kref *kref)
1362{
1363 struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1364 struct opp_device *opp_dev, *temp;
1365 int i;
1366
1367 /* Drop the lock as soon as we can */
1368 list_del(&opp_table->node);
1369 mutex_unlock(&opp_table_lock);
1370
1371 if (opp_table->current_opp)
1372 dev_pm_opp_put(opp_table->current_opp);
1373
1374 _of_clear_opp_table(opp_table);
1375
1376 /* Release clk */
1377 if (!IS_ERR(opp_table->clk))
1378 clk_put(opp_table->clk);
1379
1380 if (opp_table->paths) {
1381 for (i = 0; i < opp_table->path_count; i++)
1382 icc_put(opp_table->paths[i]);
1383 kfree(opp_table->paths);
1384 }
1385
1386 WARN_ON(!list_empty(&opp_table->opp_list));
1387
1388 list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) {
1389 /*
1390 * The OPP table is getting removed, drop the performance state
1391 * constraints.
1392 */
1393 if (opp_table->genpd_performance_state)
1394 dev_pm_genpd_set_performance_state((struct device *)(opp_dev->dev), 0);
1395
1396 _remove_opp_dev(opp_dev, opp_table);
1397 }
1398
1399 mutex_destroy(&opp_table->genpd_virt_dev_lock);
1400 mutex_destroy(&opp_table->lock);
1401 kfree(opp_table);
1402}
1403
1404void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1405{
1406 kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1407 &opp_table_lock);
1408}
1409EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1410
1411void _opp_free(struct dev_pm_opp *opp)
1412{
1413 kfree(opp);
1414}
1415
1416static void _opp_kref_release(struct kref *kref)
1417{
1418 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1419 struct opp_table *opp_table = opp->opp_table;
1420
1421 list_del(&opp->node);
1422 mutex_unlock(&opp_table->lock);
1423
1424 /*
1425 * Notify the changes in the availability of the operable
1426 * frequency/voltage list.
1427 */
1428 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1429 _of_opp_free_required_opps(opp_table, opp);
1430 opp_debug_remove_one(opp);
1431 kfree(opp);
1432}
1433
1434void dev_pm_opp_get(struct dev_pm_opp *opp)
1435{
1436 kref_get(&opp->kref);
1437}
1438
1439void dev_pm_opp_put(struct dev_pm_opp *opp)
1440{
1441 kref_put_mutex(&opp->kref, _opp_kref_release, &opp->opp_table->lock);
1442}
1443EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1444
1445/**
1446 * dev_pm_opp_remove() - Remove an OPP from OPP table
1447 * @dev: device for which we do this operation
1448 * @freq: OPP to remove with matching 'freq'
1449 *
1450 * This function removes an opp from the opp table.
1451 */
1452void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1453{
1454 struct dev_pm_opp *opp;
1455 struct opp_table *opp_table;
1456 bool found = false;
1457
1458 opp_table = _find_opp_table(dev);
1459 if (IS_ERR(opp_table))
1460 return;
1461
1462 mutex_lock(&opp_table->lock);
1463
1464 list_for_each_entry(opp, &opp_table->opp_list, node) {
1465 if (opp->rate == freq) {
1466 found = true;
1467 break;
1468 }
1469 }
1470
1471 mutex_unlock(&opp_table->lock);
1472
1473 if (found) {
1474 dev_pm_opp_put(opp);
1475
1476 /* Drop the reference taken by dev_pm_opp_add() */
1477 dev_pm_opp_put_opp_table(opp_table);
1478 } else {
1479 dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1480 __func__, freq);
1481 }
1482
1483 /* Drop the reference taken by _find_opp_table() */
1484 dev_pm_opp_put_opp_table(opp_table);
1485}
1486EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1487
1488static struct dev_pm_opp *_opp_get_next(struct opp_table *opp_table,
1489 bool dynamic)
1490{
1491 struct dev_pm_opp *opp = NULL, *temp;
1492
1493 mutex_lock(&opp_table->lock);
1494 list_for_each_entry(temp, &opp_table->opp_list, node) {
1495 /*
1496 * Refcount must be dropped only once for each OPP by OPP core,
1497 * do that with help of "removed" flag.
1498 */
1499 if (!temp->removed && dynamic == temp->dynamic) {
1500 opp = temp;
1501 break;
1502 }
1503 }
1504
1505 mutex_unlock(&opp_table->lock);
1506 return opp;
1507}
1508
1509/*
1510 * Can't call dev_pm_opp_put() from under the lock as debugfs removal needs to
1511 * happen lock less to avoid circular dependency issues. This routine must be
1512 * called without the opp_table->lock held.
1513 */
1514static void _opp_remove_all(struct opp_table *opp_table, bool dynamic)
1515{
1516 struct dev_pm_opp *opp;
1517
1518 while ((opp = _opp_get_next(opp_table, dynamic))) {
1519 opp->removed = true;
1520 dev_pm_opp_put(opp);
1521
1522 /* Drop the references taken by dev_pm_opp_add() */
1523 if (dynamic)
1524 dev_pm_opp_put_opp_table(opp_table);
1525 }
1526}
1527
1528bool _opp_remove_all_static(struct opp_table *opp_table)
1529{
1530 mutex_lock(&opp_table->lock);
1531
1532 if (!opp_table->parsed_static_opps) {
1533 mutex_unlock(&opp_table->lock);
1534 return false;
1535 }
1536
1537 if (--opp_table->parsed_static_opps) {
1538 mutex_unlock(&opp_table->lock);
1539 return true;
1540 }
1541
1542 mutex_unlock(&opp_table->lock);
1543
1544 _opp_remove_all(opp_table, false);
1545 return true;
1546}
1547
1548/**
1549 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1550 * @dev: device for which we do this operation
1551 *
1552 * This function removes all dynamically created OPPs from the opp table.
1553 */
1554void dev_pm_opp_remove_all_dynamic(struct device *dev)
1555{
1556 struct opp_table *opp_table;
1557
1558 opp_table = _find_opp_table(dev);
1559 if (IS_ERR(opp_table))
1560 return;
1561
1562 _opp_remove_all(opp_table, true);
1563
1564 /* Drop the reference taken by _find_opp_table() */
1565 dev_pm_opp_put_opp_table(opp_table);
1566}
1567EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1568
1569struct dev_pm_opp *_opp_allocate(struct opp_table *table)
1570{
1571 struct dev_pm_opp *opp;
1572 int supply_count, supply_size, icc_size;
1573
1574 /* Allocate space for at least one supply */
1575 supply_count = table->regulator_count > 0 ? table->regulator_count : 1;
1576 supply_size = sizeof(*opp->supplies) * supply_count;
1577 icc_size = sizeof(*opp->bandwidth) * table->path_count;
1578
1579 /* allocate new OPP node and supplies structures */
1580 opp = kzalloc(sizeof(*opp) + supply_size + icc_size, GFP_KERNEL);
1581
1582 if (!opp)
1583 return NULL;
1584
1585 /* Put the supplies at the end of the OPP structure as an empty array */
1586 opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1587 if (icc_size)
1588 opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->supplies + supply_count);
1589 INIT_LIST_HEAD(&opp->node);
1590
1591 return opp;
1592}
1593
1594static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1595 struct opp_table *opp_table)
1596{
1597 struct regulator *reg;
1598 int i;
1599
1600 if (!opp_table->regulators)
1601 return true;
1602
1603 for (i = 0; i < opp_table->regulator_count; i++) {
1604 reg = opp_table->regulators[i];
1605
1606 if (!regulator_is_supported_voltage(reg,
1607 opp->supplies[i].u_volt_min,
1608 opp->supplies[i].u_volt_max)) {
1609 pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1610 __func__, opp->supplies[i].u_volt_min,
1611 opp->supplies[i].u_volt_max);
1612 return false;
1613 }
1614 }
1615
1616 return true;
1617}
1618
1619int _opp_compare_key(struct dev_pm_opp *opp1, struct dev_pm_opp *opp2)
1620{
1621 if (opp1->rate != opp2->rate)
1622 return opp1->rate < opp2->rate ? -1 : 1;
1623 if (opp1->bandwidth && opp2->bandwidth &&
1624 opp1->bandwidth[0].peak != opp2->bandwidth[0].peak)
1625 return opp1->bandwidth[0].peak < opp2->bandwidth[0].peak ? -1 : 1;
1626 if (opp1->level != opp2->level)
1627 return opp1->level < opp2->level ? -1 : 1;
1628 return 0;
1629}
1630
1631static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1632 struct opp_table *opp_table,
1633 struct list_head **head)
1634{
1635 struct dev_pm_opp *opp;
1636 int opp_cmp;
1637
1638 /*
1639 * Insert new OPP in order of increasing frequency and discard if
1640 * already present.
1641 *
1642 * Need to use &opp_table->opp_list in the condition part of the 'for'
1643 * loop, don't replace it with head otherwise it will become an infinite
1644 * loop.
1645 */
1646 list_for_each_entry(opp, &opp_table->opp_list, node) {
1647 opp_cmp = _opp_compare_key(new_opp, opp);
1648 if (opp_cmp > 0) {
1649 *head = &opp->node;
1650 continue;
1651 }
1652
1653 if (opp_cmp < 0)
1654 return 0;
1655
1656 /* Duplicate OPPs */
1657 dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1658 __func__, opp->rate, opp->supplies[0].u_volt,
1659 opp->available, new_opp->rate,
1660 new_opp->supplies[0].u_volt, new_opp->available);
1661
1662 /* Should we compare voltages for all regulators here ? */
1663 return opp->available &&
1664 new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1665 }
1666
1667 return 0;
1668}
1669
1670void _required_opps_available(struct dev_pm_opp *opp, int count)
1671{
1672 int i;
1673
1674 for (i = 0; i < count; i++) {
1675 if (opp->required_opps[i]->available)
1676 continue;
1677
1678 opp->available = false;
1679 pr_warn("%s: OPP not supported by required OPP %pOF (%lu)\n",
1680 __func__, opp->required_opps[i]->np, opp->rate);
1681 return;
1682 }
1683}
1684
1685/*
1686 * Returns:
1687 * 0: On success. And appropriate error message for duplicate OPPs.
1688 * -EBUSY: For OPP with same freq/volt and is available. The callers of
1689 * _opp_add() must return 0 if they receive -EBUSY from it. This is to make
1690 * sure we don't print error messages unnecessarily if different parts of
1691 * kernel try to initialize the OPP table.
1692 * -EEXIST: For OPP with same freq but different volt or is unavailable. This
1693 * should be considered an error by the callers of _opp_add().
1694 */
1695int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
1696 struct opp_table *opp_table, bool rate_not_available)
1697{
1698 struct list_head *head;
1699 int ret;
1700
1701 mutex_lock(&opp_table->lock);
1702 head = &opp_table->opp_list;
1703
1704 ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
1705 if (ret) {
1706 mutex_unlock(&opp_table->lock);
1707 return ret;
1708 }
1709
1710 list_add(&new_opp->node, head);
1711 mutex_unlock(&opp_table->lock);
1712
1713 new_opp->opp_table = opp_table;
1714 kref_init(&new_opp->kref);
1715
1716 opp_debug_create_one(new_opp, opp_table);
1717
1718 if (!_opp_supported_by_regulators(new_opp, opp_table)) {
1719 new_opp->available = false;
1720 dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
1721 __func__, new_opp->rate);
1722 }
1723
1724 /* required-opps not fully initialized yet */
1725 if (lazy_linking_pending(opp_table))
1726 return 0;
1727
1728 _required_opps_available(new_opp, opp_table->required_opp_count);
1729
1730 return 0;
1731}
1732
1733/**
1734 * _opp_add_v1() - Allocate a OPP based on v1 bindings.
1735 * @opp_table: OPP table
1736 * @dev: device for which we do this operation
1737 * @freq: Frequency in Hz for this OPP
1738 * @u_volt: Voltage in uVolts for this OPP
1739 * @dynamic: Dynamically added OPPs.
1740 *
1741 * This function adds an opp definition to the opp table and returns status.
1742 * The opp is made available by default and it can be controlled using
1743 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
1744 *
1745 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
1746 * and freed by dev_pm_opp_of_remove_table.
1747 *
1748 * Return:
1749 * 0 On success OR
1750 * Duplicate OPPs (both freq and volt are same) and opp->available
1751 * -EEXIST Freq are same and volt are different OR
1752 * Duplicate OPPs (both freq and volt are same) and !opp->available
1753 * -ENOMEM Memory allocation failure
1754 */
1755int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
1756 unsigned long freq, long u_volt, bool dynamic)
1757{
1758 struct dev_pm_opp *new_opp;
1759 unsigned long tol;
1760 int ret;
1761
1762 new_opp = _opp_allocate(opp_table);
1763 if (!new_opp)
1764 return -ENOMEM;
1765
1766 /* populate the opp table */
1767 new_opp->rate = freq;
1768 tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
1769 new_opp->supplies[0].u_volt = u_volt;
1770 new_opp->supplies[0].u_volt_min = u_volt - tol;
1771 new_opp->supplies[0].u_volt_max = u_volt + tol;
1772 new_opp->available = true;
1773 new_opp->dynamic = dynamic;
1774
1775 ret = _opp_add(dev, new_opp, opp_table, false);
1776 if (ret) {
1777 /* Don't return error for duplicate OPPs */
1778 if (ret == -EBUSY)
1779 ret = 0;
1780 goto free_opp;
1781 }
1782
1783 /*
1784 * Notify the changes in the availability of the operable
1785 * frequency/voltage list.
1786 */
1787 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
1788 return 0;
1789
1790free_opp:
1791 _opp_free(new_opp);
1792
1793 return ret;
1794}
1795
1796/**
1797 * dev_pm_opp_set_supported_hw() - Set supported platforms
1798 * @dev: Device for which supported-hw has to be set.
1799 * @versions: Array of hierarchy of versions to match.
1800 * @count: Number of elements in the array.
1801 *
1802 * This is required only for the V2 bindings, and it enables a platform to
1803 * specify the hierarchy of versions it supports. OPP layer will then enable
1804 * OPPs, which are available for those versions, based on its 'opp-supported-hw'
1805 * property.
1806 */
1807struct opp_table *dev_pm_opp_set_supported_hw(struct device *dev,
1808 const u32 *versions, unsigned int count)
1809{
1810 struct opp_table *opp_table;
1811
1812 opp_table = _add_opp_table(dev, false);
1813 if (IS_ERR(opp_table))
1814 return opp_table;
1815
1816 /* Make sure there are no concurrent readers while updating opp_table */
1817 WARN_ON(!list_empty(&opp_table->opp_list));
1818
1819 /* Another CPU that shares the OPP table has set the property ? */
1820 if (opp_table->supported_hw)
1821 return opp_table;
1822
1823 opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
1824 GFP_KERNEL);
1825 if (!opp_table->supported_hw) {
1826 dev_pm_opp_put_opp_table(opp_table);
1827 return ERR_PTR(-ENOMEM);
1828 }
1829
1830 opp_table->supported_hw_count = count;
1831
1832 return opp_table;
1833}
1834EXPORT_SYMBOL_GPL(dev_pm_opp_set_supported_hw);
1835
1836/**
1837 * dev_pm_opp_put_supported_hw() - Releases resources blocked for supported hw
1838 * @opp_table: OPP table returned by dev_pm_opp_set_supported_hw().
1839 *
1840 * This is required only for the V2 bindings, and is called for a matching
1841 * dev_pm_opp_set_supported_hw(). Until this is called, the opp_table structure
1842 * will not be freed.
1843 */
1844void dev_pm_opp_put_supported_hw(struct opp_table *opp_table)
1845{
1846 if (unlikely(!opp_table))
1847 return;
1848
1849 /* Make sure there are no concurrent readers while updating opp_table */
1850 WARN_ON(!list_empty(&opp_table->opp_list));
1851
1852 kfree(opp_table->supported_hw);
1853 opp_table->supported_hw = NULL;
1854 opp_table->supported_hw_count = 0;
1855
1856 dev_pm_opp_put_opp_table(opp_table);
1857}
1858EXPORT_SYMBOL_GPL(dev_pm_opp_put_supported_hw);
1859
1860static void devm_pm_opp_supported_hw_release(void *data)
1861{
1862 dev_pm_opp_put_supported_hw(data);
1863}
1864
1865/**
1866 * devm_pm_opp_set_supported_hw() - Set supported platforms
1867 * @dev: Device for which supported-hw has to be set.
1868 * @versions: Array of hierarchy of versions to match.
1869 * @count: Number of elements in the array.
1870 *
1871 * This is a resource-managed variant of dev_pm_opp_set_supported_hw().
1872 *
1873 * Return: 0 on success and errorno otherwise.
1874 */
1875int devm_pm_opp_set_supported_hw(struct device *dev, const u32 *versions,
1876 unsigned int count)
1877{
1878 struct opp_table *opp_table;
1879
1880 opp_table = dev_pm_opp_set_supported_hw(dev, versions, count);
1881 if (IS_ERR(opp_table))
1882 return PTR_ERR(opp_table);
1883
1884 return devm_add_action_or_reset(dev, devm_pm_opp_supported_hw_release,
1885 opp_table);
1886}
1887EXPORT_SYMBOL_GPL(devm_pm_opp_set_supported_hw);
1888
1889/**
1890 * dev_pm_opp_set_prop_name() - Set prop-extn name
1891 * @dev: Device for which the prop-name has to be set.
1892 * @name: name to postfix to properties.
1893 *
1894 * This is required only for the V2 bindings, and it enables a platform to
1895 * specify the extn to be used for certain property names. The properties to
1896 * which the extension will apply are opp-microvolt and opp-microamp. OPP core
1897 * should postfix the property name with -<name> while looking for them.
1898 */
1899struct opp_table *dev_pm_opp_set_prop_name(struct device *dev, const char *name)
1900{
1901 struct opp_table *opp_table;
1902
1903 opp_table = _add_opp_table(dev, false);
1904 if (IS_ERR(opp_table))
1905 return opp_table;
1906
1907 /* Make sure there are no concurrent readers while updating opp_table */
1908 WARN_ON(!list_empty(&opp_table->opp_list));
1909
1910 /* Another CPU that shares the OPP table has set the property ? */
1911 if (opp_table->prop_name)
1912 return opp_table;
1913
1914 opp_table->prop_name = kstrdup(name, GFP_KERNEL);
1915 if (!opp_table->prop_name) {
1916 dev_pm_opp_put_opp_table(opp_table);
1917 return ERR_PTR(-ENOMEM);
1918 }
1919
1920 return opp_table;
1921}
1922EXPORT_SYMBOL_GPL(dev_pm_opp_set_prop_name);
1923
1924/**
1925 * dev_pm_opp_put_prop_name() - Releases resources blocked for prop-name
1926 * @opp_table: OPP table returned by dev_pm_opp_set_prop_name().
1927 *
1928 * This is required only for the V2 bindings, and is called for a matching
1929 * dev_pm_opp_set_prop_name(). Until this is called, the opp_table structure
1930 * will not be freed.
1931 */
1932void dev_pm_opp_put_prop_name(struct opp_table *opp_table)
1933{
1934 if (unlikely(!opp_table))
1935 return;
1936
1937 /* Make sure there are no concurrent readers while updating opp_table */
1938 WARN_ON(!list_empty(&opp_table->opp_list));
1939
1940 kfree(opp_table->prop_name);
1941 opp_table->prop_name = NULL;
1942
1943 dev_pm_opp_put_opp_table(opp_table);
1944}
1945EXPORT_SYMBOL_GPL(dev_pm_opp_put_prop_name);
1946
1947/**
1948 * dev_pm_opp_set_regulators() - Set regulator names for the device
1949 * @dev: Device for which regulator name is being set.
1950 * @names: Array of pointers to the names of the regulator.
1951 * @count: Number of regulators.
1952 *
1953 * In order to support OPP switching, OPP layer needs to know the name of the
1954 * device's regulators, as the core would be required to switch voltages as
1955 * well.
1956 *
1957 * This must be called before any OPPs are initialized for the device.
1958 */
1959struct opp_table *dev_pm_opp_set_regulators(struct device *dev,
1960 const char * const names[],
1961 unsigned int count)
1962{
1963 struct dev_pm_opp_supply *supplies;
1964 struct opp_table *opp_table;
1965 struct regulator *reg;
1966 int ret, i;
1967
1968 opp_table = _add_opp_table(dev, false);
1969 if (IS_ERR(opp_table))
1970 return opp_table;
1971
1972 /* This should be called before OPPs are initialized */
1973 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1974 ret = -EBUSY;
1975 goto err;
1976 }
1977
1978 /* Another CPU that shares the OPP table has set the regulators ? */
1979 if (opp_table->regulators)
1980 return opp_table;
1981
1982 opp_table->regulators = kmalloc_array(count,
1983 sizeof(*opp_table->regulators),
1984 GFP_KERNEL);
1985 if (!opp_table->regulators) {
1986 ret = -ENOMEM;
1987 goto err;
1988 }
1989
1990 for (i = 0; i < count; i++) {
1991 reg = regulator_get_optional(dev, names[i]);
1992 if (IS_ERR(reg)) {
1993 ret = PTR_ERR(reg);
1994 if (ret != -EPROBE_DEFER)
1995 dev_err(dev, "%s: no regulator (%s) found: %d\n",
1996 __func__, names[i], ret);
1997 goto free_regulators;
1998 }
1999
2000 opp_table->regulators[i] = reg;
2001 }
2002
2003 opp_table->regulator_count = count;
2004
2005 supplies = kmalloc_array(count * 2, sizeof(*supplies), GFP_KERNEL);
2006 if (!supplies) {
2007 ret = -ENOMEM;
2008 goto free_regulators;
2009 }
2010
2011 mutex_lock(&opp_table->lock);
2012 opp_table->sod_supplies = supplies;
2013 if (opp_table->set_opp_data) {
2014 opp_table->set_opp_data->old_opp.supplies = supplies;
2015 opp_table->set_opp_data->new_opp.supplies = supplies + count;
2016 }
2017 mutex_unlock(&opp_table->lock);
2018
2019 return opp_table;
2020
2021free_regulators:
2022 while (i != 0)
2023 regulator_put(opp_table->regulators[--i]);
2024
2025 kfree(opp_table->regulators);
2026 opp_table->regulators = NULL;
2027 opp_table->regulator_count = -1;
2028err:
2029 dev_pm_opp_put_opp_table(opp_table);
2030
2031 return ERR_PTR(ret);
2032}
2033EXPORT_SYMBOL_GPL(dev_pm_opp_set_regulators);
2034
2035/**
2036 * dev_pm_opp_put_regulators() - Releases resources blocked for regulator
2037 * @opp_table: OPP table returned from dev_pm_opp_set_regulators().
2038 */
2039void dev_pm_opp_put_regulators(struct opp_table *opp_table)
2040{
2041 int i;
2042
2043 if (unlikely(!opp_table))
2044 return;
2045
2046 if (!opp_table->regulators)
2047 goto put_opp_table;
2048
2049 /* Make sure there are no concurrent readers while updating opp_table */
2050 WARN_ON(!list_empty(&opp_table->opp_list));
2051
2052 if (opp_table->enabled) {
2053 for (i = opp_table->regulator_count - 1; i >= 0; i--)
2054 regulator_disable(opp_table->regulators[i]);
2055 }
2056
2057 for (i = opp_table->regulator_count - 1; i >= 0; i--)
2058 regulator_put(opp_table->regulators[i]);
2059
2060 mutex_lock(&opp_table->lock);
2061 if (opp_table->set_opp_data) {
2062 opp_table->set_opp_data->old_opp.supplies = NULL;
2063 opp_table->set_opp_data->new_opp.supplies = NULL;
2064 }
2065
2066 kfree(opp_table->sod_supplies);
2067 opp_table->sod_supplies = NULL;
2068 mutex_unlock(&opp_table->lock);
2069
2070 kfree(opp_table->regulators);
2071 opp_table->regulators = NULL;
2072 opp_table->regulator_count = -1;
2073
2074put_opp_table:
2075 dev_pm_opp_put_opp_table(opp_table);
2076}
2077EXPORT_SYMBOL_GPL(dev_pm_opp_put_regulators);
2078
2079static void devm_pm_opp_regulators_release(void *data)
2080{
2081 dev_pm_opp_put_regulators(data);
2082}
2083
2084/**
2085 * devm_pm_opp_set_regulators() - Set regulator names for the device
2086 * @dev: Device for which regulator name is being set.
2087 * @names: Array of pointers to the names of the regulator.
2088 * @count: Number of regulators.
2089 *
2090 * This is a resource-managed variant of dev_pm_opp_set_regulators().
2091 *
2092 * Return: 0 on success and errorno otherwise.
2093 */
2094int devm_pm_opp_set_regulators(struct device *dev,
2095 const char * const names[],
2096 unsigned int count)
2097{
2098 struct opp_table *opp_table;
2099
2100 opp_table = dev_pm_opp_set_regulators(dev, names, count);
2101 if (IS_ERR(opp_table))
2102 return PTR_ERR(opp_table);
2103
2104 return devm_add_action_or_reset(dev, devm_pm_opp_regulators_release,
2105 opp_table);
2106}
2107EXPORT_SYMBOL_GPL(devm_pm_opp_set_regulators);
2108
2109/**
2110 * dev_pm_opp_set_clkname() - Set clk name for the device
2111 * @dev: Device for which clk name is being set.
2112 * @name: Clk name.
2113 *
2114 * In order to support OPP switching, OPP layer needs to get pointer to the
2115 * clock for the device. Simple cases work fine without using this routine (i.e.
2116 * by passing connection-id as NULL), but for a device with multiple clocks
2117 * available, the OPP core needs to know the exact name of the clk to use.
2118 *
2119 * This must be called before any OPPs are initialized for the device.
2120 */
2121struct opp_table *dev_pm_opp_set_clkname(struct device *dev, const char *name)
2122{
2123 struct opp_table *opp_table;
2124 int ret;
2125
2126 opp_table = _add_opp_table(dev, false);
2127 if (IS_ERR(opp_table))
2128 return opp_table;
2129
2130 /* This should be called before OPPs are initialized */
2131 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
2132 ret = -EBUSY;
2133 goto err;
2134 }
2135
2136 /* clk shouldn't be initialized at this point */
2137 if (WARN_ON(opp_table->clk)) {
2138 ret = -EBUSY;
2139 goto err;
2140 }
2141
2142 /* Find clk for the device */
2143 opp_table->clk = clk_get(dev, name);
2144 if (IS_ERR(opp_table->clk)) {
2145 ret = PTR_ERR(opp_table->clk);
2146 if (ret != -EPROBE_DEFER) {
2147 dev_err(dev, "%s: Couldn't find clock: %d\n", __func__,
2148 ret);
2149 }
2150 goto err;
2151 }
2152
2153 return opp_table;
2154
2155err:
2156 dev_pm_opp_put_opp_table(opp_table);
2157
2158 return ERR_PTR(ret);
2159}
2160EXPORT_SYMBOL_GPL(dev_pm_opp_set_clkname);
2161
2162/**
2163 * dev_pm_opp_put_clkname() - Releases resources blocked for clk.
2164 * @opp_table: OPP table returned from dev_pm_opp_set_clkname().
2165 */
2166void dev_pm_opp_put_clkname(struct opp_table *opp_table)
2167{
2168 if (unlikely(!opp_table))
2169 return;
2170
2171 /* Make sure there are no concurrent readers while updating opp_table */
2172 WARN_ON(!list_empty(&opp_table->opp_list));
2173
2174 clk_put(opp_table->clk);
2175 opp_table->clk = ERR_PTR(-EINVAL);
2176
2177 dev_pm_opp_put_opp_table(opp_table);
2178}
2179EXPORT_SYMBOL_GPL(dev_pm_opp_put_clkname);
2180
2181static void devm_pm_opp_clkname_release(void *data)
2182{
2183 dev_pm_opp_put_clkname(data);
2184}
2185
2186/**
2187 * devm_pm_opp_set_clkname() - Set clk name for the device
2188 * @dev: Device for which clk name is being set.
2189 * @name: Clk name.
2190 *
2191 * This is a resource-managed variant of dev_pm_opp_set_clkname().
2192 *
2193 * Return: 0 on success and errorno otherwise.
2194 */
2195int devm_pm_opp_set_clkname(struct device *dev, const char *name)
2196{
2197 struct opp_table *opp_table;
2198
2199 opp_table = dev_pm_opp_set_clkname(dev, name);
2200 if (IS_ERR(opp_table))
2201 return PTR_ERR(opp_table);
2202
2203 return devm_add_action_or_reset(dev, devm_pm_opp_clkname_release,
2204 opp_table);
2205}
2206EXPORT_SYMBOL_GPL(devm_pm_opp_set_clkname);
2207
2208/**
2209 * dev_pm_opp_register_set_opp_helper() - Register custom set OPP helper
2210 * @dev: Device for which the helper is getting registered.
2211 * @set_opp: Custom set OPP helper.
2212 *
2213 * This is useful to support complex platforms (like platforms with multiple
2214 * regulators per device), instead of the generic OPP set rate helper.
2215 *
2216 * This must be called before any OPPs are initialized for the device.
2217 */
2218struct opp_table *dev_pm_opp_register_set_opp_helper(struct device *dev,
2219 int (*set_opp)(struct dev_pm_set_opp_data *data))
2220{
2221 struct dev_pm_set_opp_data *data;
2222 struct opp_table *opp_table;
2223
2224 if (!set_opp)
2225 return ERR_PTR(-EINVAL);
2226
2227 opp_table = _add_opp_table(dev, false);
2228 if (IS_ERR(opp_table))
2229 return opp_table;
2230
2231 /* This should be called before OPPs are initialized */
2232 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
2233 dev_pm_opp_put_opp_table(opp_table);
2234 return ERR_PTR(-EBUSY);
2235 }
2236
2237 /* Another CPU that shares the OPP table has set the helper ? */
2238 if (opp_table->set_opp)
2239 return opp_table;
2240
2241 data = kzalloc(sizeof(*data), GFP_KERNEL);
2242 if (!data)
2243 return ERR_PTR(-ENOMEM);
2244
2245 mutex_lock(&opp_table->lock);
2246 opp_table->set_opp_data = data;
2247 if (opp_table->sod_supplies) {
2248 data->old_opp.supplies = opp_table->sod_supplies;
2249 data->new_opp.supplies = opp_table->sod_supplies +
2250 opp_table->regulator_count;
2251 }
2252 mutex_unlock(&opp_table->lock);
2253
2254 opp_table->set_opp = set_opp;
2255
2256 return opp_table;
2257}
2258EXPORT_SYMBOL_GPL(dev_pm_opp_register_set_opp_helper);
2259
2260/**
2261 * dev_pm_opp_unregister_set_opp_helper() - Releases resources blocked for
2262 * set_opp helper
2263 * @opp_table: OPP table returned from dev_pm_opp_register_set_opp_helper().
2264 *
2265 * Release resources blocked for platform specific set_opp helper.
2266 */
2267void dev_pm_opp_unregister_set_opp_helper(struct opp_table *opp_table)
2268{
2269 if (unlikely(!opp_table))
2270 return;
2271
2272 /* Make sure there are no concurrent readers while updating opp_table */
2273 WARN_ON(!list_empty(&opp_table->opp_list));
2274
2275 opp_table->set_opp = NULL;
2276
2277 mutex_lock(&opp_table->lock);
2278 kfree(opp_table->set_opp_data);
2279 opp_table->set_opp_data = NULL;
2280 mutex_unlock(&opp_table->lock);
2281
2282 dev_pm_opp_put_opp_table(opp_table);
2283}
2284EXPORT_SYMBOL_GPL(dev_pm_opp_unregister_set_opp_helper);
2285
2286static void devm_pm_opp_unregister_set_opp_helper(void *data)
2287{
2288 dev_pm_opp_unregister_set_opp_helper(data);
2289}
2290
2291/**
2292 * devm_pm_opp_register_set_opp_helper() - Register custom set OPP helper
2293 * @dev: Device for which the helper is getting registered.
2294 * @set_opp: Custom set OPP helper.
2295 *
2296 * This is a resource-managed version of dev_pm_opp_register_set_opp_helper().
2297 *
2298 * Return: 0 on success and errorno otherwise.
2299 */
2300int devm_pm_opp_register_set_opp_helper(struct device *dev,
2301 int (*set_opp)(struct dev_pm_set_opp_data *data))
2302{
2303 struct opp_table *opp_table;
2304
2305 opp_table = dev_pm_opp_register_set_opp_helper(dev, set_opp);
2306 if (IS_ERR(opp_table))
2307 return PTR_ERR(opp_table);
2308
2309 return devm_add_action_or_reset(dev, devm_pm_opp_unregister_set_opp_helper,
2310 opp_table);
2311}
2312EXPORT_SYMBOL_GPL(devm_pm_opp_register_set_opp_helper);
2313
2314static void _opp_detach_genpd(struct opp_table *opp_table)
2315{
2316 int index;
2317
2318 if (!opp_table->genpd_virt_devs)
2319 return;
2320
2321 for (index = 0; index < opp_table->required_opp_count; index++) {
2322 if (!opp_table->genpd_virt_devs[index])
2323 continue;
2324
2325 dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false);
2326 opp_table->genpd_virt_devs[index] = NULL;
2327 }
2328
2329 kfree(opp_table->genpd_virt_devs);
2330 opp_table->genpd_virt_devs = NULL;
2331}
2332
2333/**
2334 * dev_pm_opp_attach_genpd - Attach genpd(s) for the device and save virtual device pointer
2335 * @dev: Consumer device for which the genpd is getting attached.
2336 * @names: Null terminated array of pointers containing names of genpd to attach.
2337 * @virt_devs: Pointer to return the array of virtual devices.
2338 *
2339 * Multiple generic power domains for a device are supported with the help of
2340 * virtual genpd devices, which are created for each consumer device - genpd
2341 * pair. These are the device structures which are attached to the power domain
2342 * and are required by the OPP core to set the performance state of the genpd.
2343 * The same API also works for the case where single genpd is available and so
2344 * we don't need to support that separately.
2345 *
2346 * This helper will normally be called by the consumer driver of the device
2347 * "dev", as only that has details of the genpd names.
2348 *
2349 * This helper needs to be called once with a list of all genpd to attach.
2350 * Otherwise the original device structure will be used instead by the OPP core.
2351 *
2352 * The order of entries in the names array must match the order in which
2353 * "required-opps" are added in DT.
2354 */
2355struct opp_table *dev_pm_opp_attach_genpd(struct device *dev,
2356 const char **names, struct device ***virt_devs)
2357{
2358 struct opp_table *opp_table;
2359 struct device *virt_dev;
2360 int index = 0, ret = -EINVAL;
2361 const char **name = names;
2362
2363 opp_table = _add_opp_table(dev, false);
2364 if (IS_ERR(opp_table))
2365 return opp_table;
2366
2367 if (opp_table->genpd_virt_devs)
2368 return opp_table;
2369
2370 /*
2371 * If the genpd's OPP table isn't already initialized, parsing of the
2372 * required-opps fail for dev. We should retry this after genpd's OPP
2373 * table is added.
2374 */
2375 if (!opp_table->required_opp_count) {
2376 ret = -EPROBE_DEFER;
2377 goto put_table;
2378 }
2379
2380 mutex_lock(&opp_table->genpd_virt_dev_lock);
2381
2382 opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count,
2383 sizeof(*opp_table->genpd_virt_devs),
2384 GFP_KERNEL);
2385 if (!opp_table->genpd_virt_devs)
2386 goto unlock;
2387
2388 while (*name) {
2389 if (index >= opp_table->required_opp_count) {
2390 dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n",
2391 *name, opp_table->required_opp_count, index);
2392 goto err;
2393 }
2394
2395 virt_dev = dev_pm_domain_attach_by_name(dev, *name);
2396 if (IS_ERR(virt_dev)) {
2397 ret = PTR_ERR(virt_dev);
2398 dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret);
2399 goto err;
2400 }
2401
2402 opp_table->genpd_virt_devs[index] = virt_dev;
2403 index++;
2404 name++;
2405 }
2406
2407 if (virt_devs)
2408 *virt_devs = opp_table->genpd_virt_devs;
2409 mutex_unlock(&opp_table->genpd_virt_dev_lock);
2410
2411 return opp_table;
2412
2413err:
2414 _opp_detach_genpd(opp_table);
2415unlock:
2416 mutex_unlock(&opp_table->genpd_virt_dev_lock);
2417
2418put_table:
2419 dev_pm_opp_put_opp_table(opp_table);
2420
2421 return ERR_PTR(ret);
2422}
2423EXPORT_SYMBOL_GPL(dev_pm_opp_attach_genpd);
2424
2425/**
2426 * dev_pm_opp_detach_genpd() - Detach genpd(s) from the device.
2427 * @opp_table: OPP table returned by dev_pm_opp_attach_genpd().
2428 *
2429 * This detaches the genpd(s), resets the virtual device pointers, and puts the
2430 * OPP table.
2431 */
2432void dev_pm_opp_detach_genpd(struct opp_table *opp_table)
2433{
2434 if (unlikely(!opp_table))
2435 return;
2436
2437 /*
2438 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting
2439 * used in parallel.
2440 */
2441 mutex_lock(&opp_table->genpd_virt_dev_lock);
2442 _opp_detach_genpd(opp_table);
2443 mutex_unlock(&opp_table->genpd_virt_dev_lock);
2444
2445 dev_pm_opp_put_opp_table(opp_table);
2446}
2447EXPORT_SYMBOL_GPL(dev_pm_opp_detach_genpd);
2448
2449static void devm_pm_opp_detach_genpd(void *data)
2450{
2451 dev_pm_opp_detach_genpd(data);
2452}
2453
2454/**
2455 * devm_pm_opp_attach_genpd - Attach genpd(s) for the device and save virtual
2456 * device pointer
2457 * @dev: Consumer device for which the genpd is getting attached.
2458 * @names: Null terminated array of pointers containing names of genpd to attach.
2459 * @virt_devs: Pointer to return the array of virtual devices.
2460 *
2461 * This is a resource-managed version of dev_pm_opp_attach_genpd().
2462 *
2463 * Return: 0 on success and errorno otherwise.
2464 */
2465int devm_pm_opp_attach_genpd(struct device *dev, const char **names,
2466 struct device ***virt_devs)
2467{
2468 struct opp_table *opp_table;
2469
2470 opp_table = dev_pm_opp_attach_genpd(dev, names, virt_devs);
2471 if (IS_ERR(opp_table))
2472 return PTR_ERR(opp_table);
2473
2474 return devm_add_action_or_reset(dev, devm_pm_opp_detach_genpd,
2475 opp_table);
2476}
2477EXPORT_SYMBOL_GPL(devm_pm_opp_attach_genpd);
2478
2479/**
2480 * dev_pm_opp_xlate_required_opp() - Find required OPP for @src_table OPP.
2481 * @src_table: OPP table which has @dst_table as one of its required OPP table.
2482 * @dst_table: Required OPP table of the @src_table.
2483 * @src_opp: OPP from the @src_table.
2484 *
2485 * This function returns the OPP (present in @dst_table) pointed out by the
2486 * "required-opps" property of the @src_opp (present in @src_table).
2487 *
2488 * The callers are required to call dev_pm_opp_put() for the returned OPP after
2489 * use.
2490 *
2491 * Return: pointer to 'struct dev_pm_opp' on success and errorno otherwise.
2492 */
2493struct dev_pm_opp *dev_pm_opp_xlate_required_opp(struct opp_table *src_table,
2494 struct opp_table *dst_table,
2495 struct dev_pm_opp *src_opp)
2496{
2497 struct dev_pm_opp *opp, *dest_opp = ERR_PTR(-ENODEV);
2498 int i;
2499
2500 if (!src_table || !dst_table || !src_opp ||
2501 !src_table->required_opp_tables)
2502 return ERR_PTR(-EINVAL);
2503
2504 /* required-opps not fully initialized yet */
2505 if (lazy_linking_pending(src_table))
2506 return ERR_PTR(-EBUSY);
2507
2508 for (i = 0; i < src_table->required_opp_count; i++) {
2509 if (src_table->required_opp_tables[i] == dst_table) {
2510 mutex_lock(&src_table->lock);
2511
2512 list_for_each_entry(opp, &src_table->opp_list, node) {
2513 if (opp == src_opp) {
2514 dest_opp = opp->required_opps[i];
2515 dev_pm_opp_get(dest_opp);
2516 break;
2517 }
2518 }
2519
2520 mutex_unlock(&src_table->lock);
2521 break;
2522 }
2523 }
2524
2525 if (IS_ERR(dest_opp)) {
2526 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__,
2527 src_table, dst_table);
2528 }
2529
2530 return dest_opp;
2531}
2532EXPORT_SYMBOL_GPL(dev_pm_opp_xlate_required_opp);
2533
2534/**
2535 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
2536 * @src_table: OPP table which has dst_table as one of its required OPP table.
2537 * @dst_table: Required OPP table of the src_table.
2538 * @pstate: Current performance state of the src_table.
2539 *
2540 * This Returns pstate of the OPP (present in @dst_table) pointed out by the
2541 * "required-opps" property of the OPP (present in @src_table) which has
2542 * performance state set to @pstate.
2543 *
2544 * Return: Zero or positive performance state on success, otherwise negative
2545 * value on errors.
2546 */
2547int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
2548 struct opp_table *dst_table,
2549 unsigned int pstate)
2550{
2551 struct dev_pm_opp *opp;
2552 int dest_pstate = -EINVAL;
2553 int i;
2554
2555 /*
2556 * Normally the src_table will have the "required_opps" property set to
2557 * point to one of the OPPs in the dst_table, but in some cases the
2558 * genpd and its master have one to one mapping of performance states
2559 * and so none of them have the "required-opps" property set. Return the
2560 * pstate of the src_table as it is in such cases.
2561 */
2562 if (!src_table || !src_table->required_opp_count)
2563 return pstate;
2564
2565 /* required-opps not fully initialized yet */
2566 if (lazy_linking_pending(src_table))
2567 return -EBUSY;
2568
2569 for (i = 0; i < src_table->required_opp_count; i++) {
2570 if (src_table->required_opp_tables[i]->np == dst_table->np)
2571 break;
2572 }
2573
2574 if (unlikely(i == src_table->required_opp_count)) {
2575 pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
2576 __func__, src_table, dst_table);
2577 return -EINVAL;
2578 }
2579
2580 mutex_lock(&src_table->lock);
2581
2582 list_for_each_entry(opp, &src_table->opp_list, node) {
2583 if (opp->pstate == pstate) {
2584 dest_pstate = opp->required_opps[i]->pstate;
2585 goto unlock;
2586 }
2587 }
2588
2589 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
2590 dst_table);
2591
2592unlock:
2593 mutex_unlock(&src_table->lock);
2594
2595 return dest_pstate;
2596}
2597
2598/**
2599 * dev_pm_opp_add() - Add an OPP table from a table definitions
2600 * @dev: device for which we do this operation
2601 * @freq: Frequency in Hz for this OPP
2602 * @u_volt: Voltage in uVolts for this OPP
2603 *
2604 * This function adds an opp definition to the opp table and returns status.
2605 * The opp is made available by default and it can be controlled using
2606 * dev_pm_opp_enable/disable functions.
2607 *
2608 * Return:
2609 * 0 On success OR
2610 * Duplicate OPPs (both freq and volt are same) and opp->available
2611 * -EEXIST Freq are same and volt are different OR
2612 * Duplicate OPPs (both freq and volt are same) and !opp->available
2613 * -ENOMEM Memory allocation failure
2614 */
2615int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt)
2616{
2617 struct opp_table *opp_table;
2618 int ret;
2619
2620 opp_table = _add_opp_table(dev, true);
2621 if (IS_ERR(opp_table))
2622 return PTR_ERR(opp_table);
2623
2624 /* Fix regulator count for dynamic OPPs */
2625 opp_table->regulator_count = 1;
2626
2627 ret = _opp_add_v1(opp_table, dev, freq, u_volt, true);
2628 if (ret)
2629 dev_pm_opp_put_opp_table(opp_table);
2630
2631 return ret;
2632}
2633EXPORT_SYMBOL_GPL(dev_pm_opp_add);
2634
2635/**
2636 * _opp_set_availability() - helper to set the availability of an opp
2637 * @dev: device for which we do this operation
2638 * @freq: OPP frequency to modify availability
2639 * @availability_req: availability status requested for this opp
2640 *
2641 * Set the availability of an OPP, opp_{enable,disable} share a common logic
2642 * which is isolated here.
2643 *
2644 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2645 * copy operation, returns 0 if no modification was done OR modification was
2646 * successful.
2647 */
2648static int _opp_set_availability(struct device *dev, unsigned long freq,
2649 bool availability_req)
2650{
2651 struct opp_table *opp_table;
2652 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2653 int r = 0;
2654
2655 /* Find the opp_table */
2656 opp_table = _find_opp_table(dev);
2657 if (IS_ERR(opp_table)) {
2658 r = PTR_ERR(opp_table);
2659 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2660 return r;
2661 }
2662
2663 mutex_lock(&opp_table->lock);
2664
2665 /* Do we have the frequency? */
2666 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2667 if (tmp_opp->rate == freq) {
2668 opp = tmp_opp;
2669 break;
2670 }
2671 }
2672
2673 if (IS_ERR(opp)) {
2674 r = PTR_ERR(opp);
2675 goto unlock;
2676 }
2677
2678 /* Is update really needed? */
2679 if (opp->available == availability_req)
2680 goto unlock;
2681
2682 opp->available = availability_req;
2683
2684 dev_pm_opp_get(opp);
2685 mutex_unlock(&opp_table->lock);
2686
2687 /* Notify the change of the OPP availability */
2688 if (availability_req)
2689 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2690 opp);
2691 else
2692 blocking_notifier_call_chain(&opp_table->head,
2693 OPP_EVENT_DISABLE, opp);
2694
2695 dev_pm_opp_put(opp);
2696 goto put_table;
2697
2698unlock:
2699 mutex_unlock(&opp_table->lock);
2700put_table:
2701 dev_pm_opp_put_opp_table(opp_table);
2702 return r;
2703}
2704
2705/**
2706 * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
2707 * @dev: device for which we do this operation
2708 * @freq: OPP frequency to adjust voltage of
2709 * @u_volt: new OPP target voltage
2710 * @u_volt_min: new OPP min voltage
2711 * @u_volt_max: new OPP max voltage
2712 *
2713 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2714 * copy operation, returns 0 if no modifcation was done OR modification was
2715 * successful.
2716 */
2717int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
2718 unsigned long u_volt, unsigned long u_volt_min,
2719 unsigned long u_volt_max)
2720
2721{
2722 struct opp_table *opp_table;
2723 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2724 int r = 0;
2725
2726 /* Find the opp_table */
2727 opp_table = _find_opp_table(dev);
2728 if (IS_ERR(opp_table)) {
2729 r = PTR_ERR(opp_table);
2730 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2731 return r;
2732 }
2733
2734 mutex_lock(&opp_table->lock);
2735
2736 /* Do we have the frequency? */
2737 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2738 if (tmp_opp->rate == freq) {
2739 opp = tmp_opp;
2740 break;
2741 }
2742 }
2743
2744 if (IS_ERR(opp)) {
2745 r = PTR_ERR(opp);
2746 goto adjust_unlock;
2747 }
2748
2749 /* Is update really needed? */
2750 if (opp->supplies->u_volt == u_volt)
2751 goto adjust_unlock;
2752
2753 opp->supplies->u_volt = u_volt;
2754 opp->supplies->u_volt_min = u_volt_min;
2755 opp->supplies->u_volt_max = u_volt_max;
2756
2757 dev_pm_opp_get(opp);
2758 mutex_unlock(&opp_table->lock);
2759
2760 /* Notify the voltage change of the OPP */
2761 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE,
2762 opp);
2763
2764 dev_pm_opp_put(opp);
2765 goto adjust_put_table;
2766
2767adjust_unlock:
2768 mutex_unlock(&opp_table->lock);
2769adjust_put_table:
2770 dev_pm_opp_put_opp_table(opp_table);
2771 return r;
2772}
2773EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage);
2774
2775/**
2776 * dev_pm_opp_enable() - Enable a specific OPP
2777 * @dev: device for which we do this operation
2778 * @freq: OPP frequency to enable
2779 *
2780 * Enables a provided opp. If the operation is valid, this returns 0, else the
2781 * corresponding error value. It is meant to be used for users an OPP available
2782 * after being temporarily made unavailable with dev_pm_opp_disable.
2783 *
2784 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2785 * copy operation, returns 0 if no modification was done OR modification was
2786 * successful.
2787 */
2788int dev_pm_opp_enable(struct device *dev, unsigned long freq)
2789{
2790 return _opp_set_availability(dev, freq, true);
2791}
2792EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
2793
2794/**
2795 * dev_pm_opp_disable() - Disable a specific OPP
2796 * @dev: device for which we do this operation
2797 * @freq: OPP frequency to disable
2798 *
2799 * Disables a provided opp. If the operation is valid, this returns
2800 * 0, else the corresponding error value. It is meant to be a temporary
2801 * control by users to make this OPP not available until the circumstances are
2802 * right to make it available again (with a call to dev_pm_opp_enable).
2803 *
2804 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2805 * copy operation, returns 0 if no modification was done OR modification was
2806 * successful.
2807 */
2808int dev_pm_opp_disable(struct device *dev, unsigned long freq)
2809{
2810 return _opp_set_availability(dev, freq, false);
2811}
2812EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
2813
2814/**
2815 * dev_pm_opp_register_notifier() - Register OPP notifier for the device
2816 * @dev: Device for which notifier needs to be registered
2817 * @nb: Notifier block to be registered
2818 *
2819 * Return: 0 on success or a negative error value.
2820 */
2821int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
2822{
2823 struct opp_table *opp_table;
2824 int ret;
2825
2826 opp_table = _find_opp_table(dev);
2827 if (IS_ERR(opp_table))
2828 return PTR_ERR(opp_table);
2829
2830 ret = blocking_notifier_chain_register(&opp_table->head, nb);
2831
2832 dev_pm_opp_put_opp_table(opp_table);
2833
2834 return ret;
2835}
2836EXPORT_SYMBOL(dev_pm_opp_register_notifier);
2837
2838/**
2839 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
2840 * @dev: Device for which notifier needs to be unregistered
2841 * @nb: Notifier block to be unregistered
2842 *
2843 * Return: 0 on success or a negative error value.
2844 */
2845int dev_pm_opp_unregister_notifier(struct device *dev,
2846 struct notifier_block *nb)
2847{
2848 struct opp_table *opp_table;
2849 int ret;
2850
2851 opp_table = _find_opp_table(dev);
2852 if (IS_ERR(opp_table))
2853 return PTR_ERR(opp_table);
2854
2855 ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
2856
2857 dev_pm_opp_put_opp_table(opp_table);
2858
2859 return ret;
2860}
2861EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
2862
2863/**
2864 * dev_pm_opp_remove_table() - Free all OPPs associated with the device
2865 * @dev: device pointer used to lookup OPP table.
2866 *
2867 * Free both OPPs created using static entries present in DT and the
2868 * dynamically added entries.
2869 */
2870void dev_pm_opp_remove_table(struct device *dev)
2871{
2872 struct opp_table *opp_table;
2873
2874 /* Check for existing table for 'dev' */
2875 opp_table = _find_opp_table(dev);
2876 if (IS_ERR(opp_table)) {
2877 int error = PTR_ERR(opp_table);
2878
2879 if (error != -ENODEV)
2880 WARN(1, "%s: opp_table: %d\n",
2881 IS_ERR_OR_NULL(dev) ?
2882 "Invalid device" : dev_name(dev),
2883 error);
2884 return;
2885 }
2886
2887 /*
2888 * Drop the extra reference only if the OPP table was successfully added
2889 * with dev_pm_opp_of_add_table() earlier.
2890 **/
2891 if (_opp_remove_all_static(opp_table))
2892 dev_pm_opp_put_opp_table(opp_table);
2893
2894 /* Drop reference taken by _find_opp_table() */
2895 dev_pm_opp_put_opp_table(opp_table);
2896}
2897EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);
2898
2899/**
2900 * dev_pm_opp_sync_regulators() - Sync state of voltage regulators
2901 * @dev: device for which we do this operation
2902 *
2903 * Sync voltage state of the OPP table regulators.
2904 *
2905 * Return: 0 on success or a negative error value.
2906 */
2907int dev_pm_opp_sync_regulators(struct device *dev)
2908{
2909 struct opp_table *opp_table;
2910 struct regulator *reg;
2911 int i, ret = 0;
2912
2913 /* Device may not have OPP table */
2914 opp_table = _find_opp_table(dev);
2915 if (IS_ERR(opp_table))
2916 return 0;
2917
2918 /* Regulator may not be required for the device */
2919 if (unlikely(!opp_table->regulators))
2920 goto put_table;
2921
2922 /* Nothing to sync if voltage wasn't changed */
2923 if (!opp_table->enabled)
2924 goto put_table;
2925
2926 for (i = 0; i < opp_table->regulator_count; i++) {
2927 reg = opp_table->regulators[i];
2928 ret = regulator_sync_voltage(reg);
2929 if (ret)
2930 break;
2931 }
2932put_table:
2933 /* Drop reference taken by _find_opp_table() */
2934 dev_pm_opp_put_opp_table(opp_table);
2935
2936 return ret;
2937}
2938EXPORT_SYMBOL_GPL(dev_pm_opp_sync_regulators);