Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * CPPC (Collaborative Processor Performance Control) driver for
4 * interfacing with the CPUfreq layer and governors. See
5 * cppc_acpi.c for CPPC specific methods.
6 *
7 * (C) Copyright 2014, 2015 Linaro Ltd.
8 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
9 */
10
11#define pr_fmt(fmt) "CPPC Cpufreq:" fmt
12
13#include <linux/kernel.h>
14#include <linux/module.h>
15#include <linux/delay.h>
16#include <linux/cpu.h>
17#include <linux/cpufreq.h>
18#include <linux/dmi.h>
19#include <linux/time.h>
20#include <linux/vmalloc.h>
21
22#include <asm/unaligned.h>
23
24#include <acpi/cppc_acpi.h>
25
26/* Minimum struct length needed for the DMI processor entry we want */
27#define DMI_ENTRY_PROCESSOR_MIN_LENGTH 48
28
29/* Offset in the DMI processor structure for the max frequency */
30#define DMI_PROCESSOR_MAX_SPEED 0x14
31
32/*
33 * This list contains information parsed from per CPU ACPI _CPC and _PSD
34 * structures: e.g. the highest and lowest supported performance, capabilities,
35 * desired performance, level requested etc. Depending on the share_type, not
36 * all CPUs will have an entry in the list.
37 */
38static LIST_HEAD(cpu_data_list);
39
40static bool boost_supported;
41
42struct cppc_workaround_oem_info {
43 char oem_id[ACPI_OEM_ID_SIZE + 1];
44 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
45 u32 oem_revision;
46};
47
48static struct cppc_workaround_oem_info wa_info[] = {
49 {
50 .oem_id = "HISI ",
51 .oem_table_id = "HIP07 ",
52 .oem_revision = 0,
53 }, {
54 .oem_id = "HISI ",
55 .oem_table_id = "HIP08 ",
56 .oem_revision = 0,
57 }
58};
59
60/* Callback function used to retrieve the max frequency from DMI */
61static void cppc_find_dmi_mhz(const struct dmi_header *dm, void *private)
62{
63 const u8 *dmi_data = (const u8 *)dm;
64 u16 *mhz = (u16 *)private;
65
66 if (dm->type == DMI_ENTRY_PROCESSOR &&
67 dm->length >= DMI_ENTRY_PROCESSOR_MIN_LENGTH) {
68 u16 val = (u16)get_unaligned((const u16 *)
69 (dmi_data + DMI_PROCESSOR_MAX_SPEED));
70 *mhz = val > *mhz ? val : *mhz;
71 }
72}
73
74/* Look up the max frequency in DMI */
75static u64 cppc_get_dmi_max_khz(void)
76{
77 u16 mhz = 0;
78
79 dmi_walk(cppc_find_dmi_mhz, &mhz);
80
81 /*
82 * Real stupid fallback value, just in case there is no
83 * actual value set.
84 */
85 mhz = mhz ? mhz : 1;
86
87 return (1000 * mhz);
88}
89
90/*
91 * If CPPC lowest_freq and nominal_freq registers are exposed then we can
92 * use them to convert perf to freq and vice versa
93 *
94 * If the perf/freq point lies between Nominal and Lowest, we can treat
95 * (Low perf, Low freq) and (Nom Perf, Nom freq) as 2D co-ordinates of a line
96 * and extrapolate the rest
97 * For perf/freq > Nominal, we use the ratio perf:freq at Nominal for conversion
98 */
99static unsigned int cppc_cpufreq_perf_to_khz(struct cppc_cpudata *cpu_data,
100 unsigned int perf)
101{
102 struct cppc_perf_caps *caps = &cpu_data->perf_caps;
103 static u64 max_khz;
104 u64 mul, div;
105
106 if (caps->lowest_freq && caps->nominal_freq) {
107 if (perf >= caps->nominal_perf) {
108 mul = caps->nominal_freq;
109 div = caps->nominal_perf;
110 } else {
111 mul = caps->nominal_freq - caps->lowest_freq;
112 div = caps->nominal_perf - caps->lowest_perf;
113 }
114 } else {
115 if (!max_khz)
116 max_khz = cppc_get_dmi_max_khz();
117 mul = max_khz;
118 div = caps->highest_perf;
119 }
120 return (u64)perf * mul / div;
121}
122
123static unsigned int cppc_cpufreq_khz_to_perf(struct cppc_cpudata *cpu_data,
124 unsigned int freq)
125{
126 struct cppc_perf_caps *caps = &cpu_data->perf_caps;
127 static u64 max_khz;
128 u64 mul, div;
129
130 if (caps->lowest_freq && caps->nominal_freq) {
131 if (freq >= caps->nominal_freq) {
132 mul = caps->nominal_perf;
133 div = caps->nominal_freq;
134 } else {
135 mul = caps->lowest_perf;
136 div = caps->lowest_freq;
137 }
138 } else {
139 if (!max_khz)
140 max_khz = cppc_get_dmi_max_khz();
141 mul = caps->highest_perf;
142 div = max_khz;
143 }
144
145 return (u64)freq * mul / div;
146}
147
148static int cppc_cpufreq_set_target(struct cpufreq_policy *policy,
149 unsigned int target_freq,
150 unsigned int relation)
151
152{
153 struct cppc_cpudata *cpu_data = policy->driver_data;
154 unsigned int cpu = policy->cpu;
155 struct cpufreq_freqs freqs;
156 u32 desired_perf;
157 int ret = 0;
158
159 desired_perf = cppc_cpufreq_khz_to_perf(cpu_data, target_freq);
160 /* Return if it is exactly the same perf */
161 if (desired_perf == cpu_data->perf_ctrls.desired_perf)
162 return ret;
163
164 cpu_data->perf_ctrls.desired_perf = desired_perf;
165 freqs.old = policy->cur;
166 freqs.new = target_freq;
167
168 cpufreq_freq_transition_begin(policy, &freqs);
169 ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
170 cpufreq_freq_transition_end(policy, &freqs, ret != 0);
171
172 if (ret)
173 pr_debug("Failed to set target on CPU:%d. ret:%d\n",
174 cpu, ret);
175
176 return ret;
177}
178
179static int cppc_verify_policy(struct cpufreq_policy_data *policy)
180{
181 cpufreq_verify_within_cpu_limits(policy);
182 return 0;
183}
184
185static void cppc_cpufreq_stop_cpu(struct cpufreq_policy *policy)
186{
187 struct cppc_cpudata *cpu_data = policy->driver_data;
188 struct cppc_perf_caps *caps = &cpu_data->perf_caps;
189 unsigned int cpu = policy->cpu;
190 int ret;
191
192 cpu_data->perf_ctrls.desired_perf = caps->lowest_perf;
193
194 ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
195 if (ret)
196 pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
197 caps->lowest_perf, cpu, ret);
198
199 /* Remove CPU node from list and free driver data for policy */
200 free_cpumask_var(cpu_data->shared_cpu_map);
201 list_del(&cpu_data->node);
202 kfree(policy->driver_data);
203 policy->driver_data = NULL;
204}
205
206/*
207 * The PCC subspace describes the rate at which platform can accept commands
208 * on the shared PCC channel (including READs which do not count towards freq
209 * transition requests), so ideally we need to use the PCC values as a fallback
210 * if we don't have a platform specific transition_delay_us
211 */
212#ifdef CONFIG_ARM64
213#include <asm/cputype.h>
214
215static unsigned int cppc_cpufreq_get_transition_delay_us(unsigned int cpu)
216{
217 unsigned long implementor = read_cpuid_implementor();
218 unsigned long part_num = read_cpuid_part_number();
219
220 switch (implementor) {
221 case ARM_CPU_IMP_QCOM:
222 switch (part_num) {
223 case QCOM_CPU_PART_FALKOR_V1:
224 case QCOM_CPU_PART_FALKOR:
225 return 10000;
226 }
227 }
228 return cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
229}
230
231#else
232
233static unsigned int cppc_cpufreq_get_transition_delay_us(unsigned int cpu)
234{
235 return cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
236}
237#endif
238
239
240static struct cppc_cpudata *cppc_cpufreq_get_cpu_data(unsigned int cpu)
241{
242 struct cppc_cpudata *cpu_data;
243 int ret;
244
245 cpu_data = kzalloc(sizeof(struct cppc_cpudata), GFP_KERNEL);
246 if (!cpu_data)
247 goto out;
248
249 if (!zalloc_cpumask_var(&cpu_data->shared_cpu_map, GFP_KERNEL))
250 goto free_cpu;
251
252 ret = acpi_get_psd_map(cpu, cpu_data);
253 if (ret) {
254 pr_debug("Err parsing CPU%d PSD data: ret:%d\n", cpu, ret);
255 goto free_mask;
256 }
257
258 ret = cppc_get_perf_caps(cpu, &cpu_data->perf_caps);
259 if (ret) {
260 pr_debug("Err reading CPU%d perf caps: ret:%d\n", cpu, ret);
261 goto free_mask;
262 }
263
264 /* Convert the lowest and nominal freq from MHz to KHz */
265 cpu_data->perf_caps.lowest_freq *= 1000;
266 cpu_data->perf_caps.nominal_freq *= 1000;
267
268 list_add(&cpu_data->node, &cpu_data_list);
269
270 return cpu_data;
271
272free_mask:
273 free_cpumask_var(cpu_data->shared_cpu_map);
274free_cpu:
275 kfree(cpu_data);
276out:
277 return NULL;
278}
279
280static int cppc_cpufreq_cpu_init(struct cpufreq_policy *policy)
281{
282 unsigned int cpu = policy->cpu;
283 struct cppc_cpudata *cpu_data;
284 struct cppc_perf_caps *caps;
285 int ret;
286
287 cpu_data = cppc_cpufreq_get_cpu_data(cpu);
288 if (!cpu_data) {
289 pr_err("Error in acquiring _CPC/_PSD data for CPU%d.\n", cpu);
290 return -ENODEV;
291 }
292 caps = &cpu_data->perf_caps;
293 policy->driver_data = cpu_data;
294
295 /*
296 * Set min to lowest nonlinear perf to avoid any efficiency penalty (see
297 * Section 8.4.7.1.1.5 of ACPI 6.1 spec)
298 */
299 policy->min = cppc_cpufreq_perf_to_khz(cpu_data,
300 caps->lowest_nonlinear_perf);
301 policy->max = cppc_cpufreq_perf_to_khz(cpu_data,
302 caps->nominal_perf);
303
304 /*
305 * Set cpuinfo.min_freq to Lowest to make the full range of performance
306 * available if userspace wants to use any perf between lowest & lowest
307 * nonlinear perf
308 */
309 policy->cpuinfo.min_freq = cppc_cpufreq_perf_to_khz(cpu_data,
310 caps->lowest_perf);
311 policy->cpuinfo.max_freq = cppc_cpufreq_perf_to_khz(cpu_data,
312 caps->nominal_perf);
313
314 policy->transition_delay_us = cppc_cpufreq_get_transition_delay_us(cpu);
315 policy->shared_type = cpu_data->shared_type;
316
317 switch (policy->shared_type) {
318 case CPUFREQ_SHARED_TYPE_HW:
319 case CPUFREQ_SHARED_TYPE_NONE:
320 /* Nothing to be done - we'll have a policy for each CPU */
321 break;
322 case CPUFREQ_SHARED_TYPE_ANY:
323 /*
324 * All CPUs in the domain will share a policy and all cpufreq
325 * operations will use a single cppc_cpudata structure stored
326 * in policy->driver_data.
327 */
328 cpumask_copy(policy->cpus, cpu_data->shared_cpu_map);
329 break;
330 default:
331 pr_debug("Unsupported CPU co-ord type: %d\n",
332 policy->shared_type);
333 return -EFAULT;
334 }
335
336 /*
337 * If 'highest_perf' is greater than 'nominal_perf', we assume CPU Boost
338 * is supported.
339 */
340 if (caps->highest_perf > caps->nominal_perf)
341 boost_supported = true;
342
343 /* Set policy->cur to max now. The governors will adjust later. */
344 policy->cur = cppc_cpufreq_perf_to_khz(cpu_data, caps->highest_perf);
345 cpu_data->perf_ctrls.desired_perf = caps->highest_perf;
346
347 ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
348 if (ret)
349 pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
350 caps->highest_perf, cpu, ret);
351
352 return ret;
353}
354
355static inline u64 get_delta(u64 t1, u64 t0)
356{
357 if (t1 > t0 || t0 > ~(u32)0)
358 return t1 - t0;
359
360 return (u32)t1 - (u32)t0;
361}
362
363static int cppc_get_rate_from_fbctrs(struct cppc_cpudata *cpu_data,
364 struct cppc_perf_fb_ctrs fb_ctrs_t0,
365 struct cppc_perf_fb_ctrs fb_ctrs_t1)
366{
367 u64 delta_reference, delta_delivered;
368 u64 reference_perf, delivered_perf;
369
370 reference_perf = fb_ctrs_t0.reference_perf;
371
372 delta_reference = get_delta(fb_ctrs_t1.reference,
373 fb_ctrs_t0.reference);
374 delta_delivered = get_delta(fb_ctrs_t1.delivered,
375 fb_ctrs_t0.delivered);
376
377 /* Check to avoid divide-by zero */
378 if (delta_reference || delta_delivered)
379 delivered_perf = (reference_perf * delta_delivered) /
380 delta_reference;
381 else
382 delivered_perf = cpu_data->perf_ctrls.desired_perf;
383
384 return cppc_cpufreq_perf_to_khz(cpu_data, delivered_perf);
385}
386
387static unsigned int cppc_cpufreq_get_rate(unsigned int cpu)
388{
389 struct cppc_perf_fb_ctrs fb_ctrs_t0 = {0}, fb_ctrs_t1 = {0};
390 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
391 struct cppc_cpudata *cpu_data = policy->driver_data;
392 int ret;
393
394 cpufreq_cpu_put(policy);
395
396 ret = cppc_get_perf_ctrs(cpu, &fb_ctrs_t0);
397 if (ret)
398 return ret;
399
400 udelay(2); /* 2usec delay between sampling */
401
402 ret = cppc_get_perf_ctrs(cpu, &fb_ctrs_t1);
403 if (ret)
404 return ret;
405
406 return cppc_get_rate_from_fbctrs(cpu_data, fb_ctrs_t0, fb_ctrs_t1);
407}
408
409static int cppc_cpufreq_set_boost(struct cpufreq_policy *policy, int state)
410{
411 struct cppc_cpudata *cpu_data = policy->driver_data;
412 struct cppc_perf_caps *caps = &cpu_data->perf_caps;
413 int ret;
414
415 if (!boost_supported) {
416 pr_err("BOOST not supported by CPU or firmware\n");
417 return -EINVAL;
418 }
419
420 if (state)
421 policy->max = cppc_cpufreq_perf_to_khz(cpu_data,
422 caps->highest_perf);
423 else
424 policy->max = cppc_cpufreq_perf_to_khz(cpu_data,
425 caps->nominal_perf);
426 policy->cpuinfo.max_freq = policy->max;
427
428 ret = freq_qos_update_request(policy->max_freq_req, policy->max);
429 if (ret < 0)
430 return ret;
431
432 return 0;
433}
434
435static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf)
436{
437 struct cppc_cpudata *cpu_data = policy->driver_data;
438
439 return cpufreq_show_cpus(cpu_data->shared_cpu_map, buf);
440}
441cpufreq_freq_attr_ro(freqdomain_cpus);
442
443static struct freq_attr *cppc_cpufreq_attr[] = {
444 &freqdomain_cpus,
445 NULL,
446};
447
448static struct cpufreq_driver cppc_cpufreq_driver = {
449 .flags = CPUFREQ_CONST_LOOPS,
450 .verify = cppc_verify_policy,
451 .target = cppc_cpufreq_set_target,
452 .get = cppc_cpufreq_get_rate,
453 .init = cppc_cpufreq_cpu_init,
454 .stop_cpu = cppc_cpufreq_stop_cpu,
455 .set_boost = cppc_cpufreq_set_boost,
456 .attr = cppc_cpufreq_attr,
457 .name = "cppc_cpufreq",
458};
459
460/*
461 * HISI platform does not support delivered performance counter and
462 * reference performance counter. It can calculate the performance using the
463 * platform specific mechanism. We reuse the desired performance register to
464 * store the real performance calculated by the platform.
465 */
466static unsigned int hisi_cppc_cpufreq_get_rate(unsigned int cpu)
467{
468 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
469 struct cppc_cpudata *cpu_data = policy->driver_data;
470 u64 desired_perf;
471 int ret;
472
473 cpufreq_cpu_put(policy);
474
475 ret = cppc_get_desired_perf(cpu, &desired_perf);
476 if (ret < 0)
477 return -EIO;
478
479 return cppc_cpufreq_perf_to_khz(cpu_data, desired_perf);
480}
481
482static void cppc_check_hisi_workaround(void)
483{
484 struct acpi_table_header *tbl;
485 acpi_status status = AE_OK;
486 int i;
487
488 status = acpi_get_table(ACPI_SIG_PCCT, 0, &tbl);
489 if (ACPI_FAILURE(status) || !tbl)
490 return;
491
492 for (i = 0; i < ARRAY_SIZE(wa_info); i++) {
493 if (!memcmp(wa_info[i].oem_id, tbl->oem_id, ACPI_OEM_ID_SIZE) &&
494 !memcmp(wa_info[i].oem_table_id, tbl->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
495 wa_info[i].oem_revision == tbl->oem_revision) {
496 /* Overwrite the get() callback */
497 cppc_cpufreq_driver.get = hisi_cppc_cpufreq_get_rate;
498 break;
499 }
500 }
501
502 acpi_put_table(tbl);
503}
504
505static int __init cppc_cpufreq_init(void)
506{
507 if ((acpi_disabled) || !acpi_cpc_valid())
508 return -ENODEV;
509
510 INIT_LIST_HEAD(&cpu_data_list);
511
512 cppc_check_hisi_workaround();
513
514 return cpufreq_register_driver(&cppc_cpufreq_driver);
515}
516
517static inline void free_cpu_data(void)
518{
519 struct cppc_cpudata *iter, *tmp;
520
521 list_for_each_entry_safe(iter, tmp, &cpu_data_list, node) {
522 free_cpumask_var(iter->shared_cpu_map);
523 list_del(&iter->node);
524 kfree(iter);
525 }
526
527}
528
529static void __exit cppc_cpufreq_exit(void)
530{
531 cpufreq_unregister_driver(&cppc_cpufreq_driver);
532
533 free_cpu_data();
534}
535
536module_exit(cppc_cpufreq_exit);
537MODULE_AUTHOR("Ashwin Chaugule");
538MODULE_DESCRIPTION("CPUFreq driver based on the ACPI CPPC v5.0+ spec");
539MODULE_LICENSE("GPL");
540
541late_initcall(cppc_cpufreq_init);
542
543static const struct acpi_device_id cppc_acpi_ids[] __used = {
544 {ACPI_PROCESSOR_DEVICE_HID, },
545 {}
546};
547
548MODULE_DEVICE_TABLE(acpi, cppc_acpi_ids);