Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * - July2000
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10 */
11
12/*
13 * This handles all read/write requests to block devices
14 */
15#include <linux/kernel.h>
16#include <linux/module.h>
17#include <linux/backing-dev.h>
18#include <linux/bio.h>
19#include <linux/blkdev.h>
20#include <linux/blk-mq.h>
21#include <linux/blk-pm.h>
22#include <linux/highmem.h>
23#include <linux/mm.h>
24#include <linux/pagemap.h>
25#include <linux/kernel_stat.h>
26#include <linux/string.h>
27#include <linux/init.h>
28#include <linux/completion.h>
29#include <linux/slab.h>
30#include <linux/swap.h>
31#include <linux/writeback.h>
32#include <linux/task_io_accounting_ops.h>
33#include <linux/fault-inject.h>
34#include <linux/list_sort.h>
35#include <linux/delay.h>
36#include <linux/ratelimit.h>
37#include <linux/pm_runtime.h>
38#include <linux/blk-cgroup.h>
39#include <linux/t10-pi.h>
40#include <linux/debugfs.h>
41#include <linux/bpf.h>
42#include <linux/psi.h>
43#include <linux/sched/sysctl.h>
44#include <linux/blk-crypto.h>
45
46#define CREATE_TRACE_POINTS
47#include <trace/events/block.h>
48
49#include "blk.h"
50#include "blk-mq.h"
51#include "blk-mq-sched.h"
52#include "blk-pm.h"
53#include "blk-rq-qos.h"
54
55struct dentry *blk_debugfs_root;
56
57EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
58EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
59EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
60EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
61EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
62EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert);
63
64DEFINE_IDA(blk_queue_ida);
65
66/*
67 * For queue allocation
68 */
69struct kmem_cache *blk_requestq_cachep;
70
71/*
72 * Controlling structure to kblockd
73 */
74static struct workqueue_struct *kblockd_workqueue;
75
76/**
77 * blk_queue_flag_set - atomically set a queue flag
78 * @flag: flag to be set
79 * @q: request queue
80 */
81void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
82{
83 set_bit(flag, &q->queue_flags);
84}
85EXPORT_SYMBOL(blk_queue_flag_set);
86
87/**
88 * blk_queue_flag_clear - atomically clear a queue flag
89 * @flag: flag to be cleared
90 * @q: request queue
91 */
92void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
93{
94 clear_bit(flag, &q->queue_flags);
95}
96EXPORT_SYMBOL(blk_queue_flag_clear);
97
98/**
99 * blk_queue_flag_test_and_set - atomically test and set a queue flag
100 * @flag: flag to be set
101 * @q: request queue
102 *
103 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
104 * the flag was already set.
105 */
106bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
107{
108 return test_and_set_bit(flag, &q->queue_flags);
109}
110EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
111
112void blk_rq_init(struct request_queue *q, struct request *rq)
113{
114 memset(rq, 0, sizeof(*rq));
115
116 INIT_LIST_HEAD(&rq->queuelist);
117 rq->q = q;
118 rq->__sector = (sector_t) -1;
119 INIT_HLIST_NODE(&rq->hash);
120 RB_CLEAR_NODE(&rq->rb_node);
121 rq->tag = BLK_MQ_NO_TAG;
122 rq->internal_tag = BLK_MQ_NO_TAG;
123 rq->start_time_ns = ktime_get_ns();
124 rq->part = NULL;
125 refcount_set(&rq->ref, 1);
126 blk_crypto_rq_set_defaults(rq);
127}
128EXPORT_SYMBOL(blk_rq_init);
129
130#define REQ_OP_NAME(name) [REQ_OP_##name] = #name
131static const char *const blk_op_name[] = {
132 REQ_OP_NAME(READ),
133 REQ_OP_NAME(WRITE),
134 REQ_OP_NAME(FLUSH),
135 REQ_OP_NAME(DISCARD),
136 REQ_OP_NAME(SECURE_ERASE),
137 REQ_OP_NAME(ZONE_RESET),
138 REQ_OP_NAME(ZONE_RESET_ALL),
139 REQ_OP_NAME(ZONE_OPEN),
140 REQ_OP_NAME(ZONE_CLOSE),
141 REQ_OP_NAME(ZONE_FINISH),
142 REQ_OP_NAME(ZONE_APPEND),
143 REQ_OP_NAME(WRITE_SAME),
144 REQ_OP_NAME(WRITE_ZEROES),
145 REQ_OP_NAME(SCSI_IN),
146 REQ_OP_NAME(SCSI_OUT),
147 REQ_OP_NAME(DRV_IN),
148 REQ_OP_NAME(DRV_OUT),
149};
150#undef REQ_OP_NAME
151
152/**
153 * blk_op_str - Return string XXX in the REQ_OP_XXX.
154 * @op: REQ_OP_XXX.
155 *
156 * Description: Centralize block layer function to convert REQ_OP_XXX into
157 * string format. Useful in the debugging and tracing bio or request. For
158 * invalid REQ_OP_XXX it returns string "UNKNOWN".
159 */
160inline const char *blk_op_str(unsigned int op)
161{
162 const char *op_str = "UNKNOWN";
163
164 if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
165 op_str = blk_op_name[op];
166
167 return op_str;
168}
169EXPORT_SYMBOL_GPL(blk_op_str);
170
171static const struct {
172 int errno;
173 const char *name;
174} blk_errors[] = {
175 [BLK_STS_OK] = { 0, "" },
176 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
177 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
178 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
179 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
180 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
181 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
182 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
183 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
184 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
185 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
186 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
187
188 /* device mapper special case, should not leak out: */
189 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
190
191 /* zone device specific errors */
192 [BLK_STS_ZONE_OPEN_RESOURCE] = { -ETOOMANYREFS, "open zones exceeded" },
193 [BLK_STS_ZONE_ACTIVE_RESOURCE] = { -EOVERFLOW, "active zones exceeded" },
194
195 /* everything else not covered above: */
196 [BLK_STS_IOERR] = { -EIO, "I/O" },
197};
198
199blk_status_t errno_to_blk_status(int errno)
200{
201 int i;
202
203 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
204 if (blk_errors[i].errno == errno)
205 return (__force blk_status_t)i;
206 }
207
208 return BLK_STS_IOERR;
209}
210EXPORT_SYMBOL_GPL(errno_to_blk_status);
211
212int blk_status_to_errno(blk_status_t status)
213{
214 int idx = (__force int)status;
215
216 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
217 return -EIO;
218 return blk_errors[idx].errno;
219}
220EXPORT_SYMBOL_GPL(blk_status_to_errno);
221
222static void print_req_error(struct request *req, blk_status_t status,
223 const char *caller)
224{
225 int idx = (__force int)status;
226
227 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
228 return;
229
230 printk_ratelimited(KERN_ERR
231 "%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
232 "phys_seg %u prio class %u\n",
233 caller, blk_errors[idx].name,
234 req->rq_disk ? req->rq_disk->disk_name : "?",
235 blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
236 req->cmd_flags & ~REQ_OP_MASK,
237 req->nr_phys_segments,
238 IOPRIO_PRIO_CLASS(req->ioprio));
239}
240
241static void req_bio_endio(struct request *rq, struct bio *bio,
242 unsigned int nbytes, blk_status_t error)
243{
244 if (error)
245 bio->bi_status = error;
246
247 if (unlikely(rq->rq_flags & RQF_QUIET))
248 bio_set_flag(bio, BIO_QUIET);
249
250 bio_advance(bio, nbytes);
251
252 if (req_op(rq) == REQ_OP_ZONE_APPEND && error == BLK_STS_OK) {
253 /*
254 * Partial zone append completions cannot be supported as the
255 * BIO fragments may end up not being written sequentially.
256 */
257 if (bio->bi_iter.bi_size)
258 bio->bi_status = BLK_STS_IOERR;
259 else
260 bio->bi_iter.bi_sector = rq->__sector;
261 }
262
263 /* don't actually finish bio if it's part of flush sequence */
264 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
265 bio_endio(bio);
266}
267
268void blk_dump_rq_flags(struct request *rq, char *msg)
269{
270 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
271 rq->rq_disk ? rq->rq_disk->disk_name : "?",
272 (unsigned long long) rq->cmd_flags);
273
274 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
275 (unsigned long long)blk_rq_pos(rq),
276 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
277 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
278 rq->bio, rq->biotail, blk_rq_bytes(rq));
279}
280EXPORT_SYMBOL(blk_dump_rq_flags);
281
282/**
283 * blk_sync_queue - cancel any pending callbacks on a queue
284 * @q: the queue
285 *
286 * Description:
287 * The block layer may perform asynchronous callback activity
288 * on a queue, such as calling the unplug function after a timeout.
289 * A block device may call blk_sync_queue to ensure that any
290 * such activity is cancelled, thus allowing it to release resources
291 * that the callbacks might use. The caller must already have made sure
292 * that its ->submit_bio will not re-add plugging prior to calling
293 * this function.
294 *
295 * This function does not cancel any asynchronous activity arising
296 * out of elevator or throttling code. That would require elevator_exit()
297 * and blkcg_exit_queue() to be called with queue lock initialized.
298 *
299 */
300void blk_sync_queue(struct request_queue *q)
301{
302 del_timer_sync(&q->timeout);
303 cancel_work_sync(&q->timeout_work);
304}
305EXPORT_SYMBOL(blk_sync_queue);
306
307/**
308 * blk_set_pm_only - increment pm_only counter
309 * @q: request queue pointer
310 */
311void blk_set_pm_only(struct request_queue *q)
312{
313 atomic_inc(&q->pm_only);
314}
315EXPORT_SYMBOL_GPL(blk_set_pm_only);
316
317void blk_clear_pm_only(struct request_queue *q)
318{
319 int pm_only;
320
321 pm_only = atomic_dec_return(&q->pm_only);
322 WARN_ON_ONCE(pm_only < 0);
323 if (pm_only == 0)
324 wake_up_all(&q->mq_freeze_wq);
325}
326EXPORT_SYMBOL_GPL(blk_clear_pm_only);
327
328/**
329 * blk_put_queue - decrement the request_queue refcount
330 * @q: the request_queue structure to decrement the refcount for
331 *
332 * Decrements the refcount of the request_queue kobject. When this reaches 0
333 * we'll have blk_release_queue() called.
334 *
335 * Context: Any context, but the last reference must not be dropped from
336 * atomic context.
337 */
338void blk_put_queue(struct request_queue *q)
339{
340 kobject_put(&q->kobj);
341}
342EXPORT_SYMBOL(blk_put_queue);
343
344void blk_set_queue_dying(struct request_queue *q)
345{
346 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
347
348 /*
349 * When queue DYING flag is set, we need to block new req
350 * entering queue, so we call blk_freeze_queue_start() to
351 * prevent I/O from crossing blk_queue_enter().
352 */
353 blk_freeze_queue_start(q);
354
355 if (queue_is_mq(q))
356 blk_mq_wake_waiters(q);
357
358 /* Make blk_queue_enter() reexamine the DYING flag. */
359 wake_up_all(&q->mq_freeze_wq);
360}
361EXPORT_SYMBOL_GPL(blk_set_queue_dying);
362
363/**
364 * blk_cleanup_queue - shutdown a request queue
365 * @q: request queue to shutdown
366 *
367 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
368 * put it. All future requests will be failed immediately with -ENODEV.
369 *
370 * Context: can sleep
371 */
372void blk_cleanup_queue(struct request_queue *q)
373{
374 /* cannot be called from atomic context */
375 might_sleep();
376
377 WARN_ON_ONCE(blk_queue_registered(q));
378
379 /* mark @q DYING, no new request or merges will be allowed afterwards */
380 blk_set_queue_dying(q);
381
382 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
383 blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
384
385 /*
386 * Drain all requests queued before DYING marking. Set DEAD flag to
387 * prevent that blk_mq_run_hw_queues() accesses the hardware queues
388 * after draining finished.
389 */
390 blk_freeze_queue(q);
391
392 rq_qos_exit(q);
393
394 blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
395
396 /* for synchronous bio-based driver finish in-flight integrity i/o */
397 blk_flush_integrity();
398
399 /* @q won't process any more request, flush async actions */
400 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
401 blk_sync_queue(q);
402
403 if (queue_is_mq(q))
404 blk_mq_exit_queue(q);
405
406 /*
407 * In theory, request pool of sched_tags belongs to request queue.
408 * However, the current implementation requires tag_set for freeing
409 * requests, so free the pool now.
410 *
411 * Queue has become frozen, there can't be any in-queue requests, so
412 * it is safe to free requests now.
413 */
414 mutex_lock(&q->sysfs_lock);
415 if (q->elevator)
416 blk_mq_sched_free_requests(q);
417 mutex_unlock(&q->sysfs_lock);
418
419 percpu_ref_exit(&q->q_usage_counter);
420
421 /* @q is and will stay empty, shutdown and put */
422 blk_put_queue(q);
423}
424EXPORT_SYMBOL(blk_cleanup_queue);
425
426/**
427 * blk_queue_enter() - try to increase q->q_usage_counter
428 * @q: request queue pointer
429 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
430 */
431int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
432{
433 const bool pm = flags & BLK_MQ_REQ_PM;
434
435 while (true) {
436 bool success = false;
437
438 rcu_read_lock();
439 if (percpu_ref_tryget_live(&q->q_usage_counter)) {
440 /*
441 * The code that increments the pm_only counter is
442 * responsible for ensuring that that counter is
443 * globally visible before the queue is unfrozen.
444 */
445 if ((pm && queue_rpm_status(q) != RPM_SUSPENDED) ||
446 !blk_queue_pm_only(q)) {
447 success = true;
448 } else {
449 percpu_ref_put(&q->q_usage_counter);
450 }
451 }
452 rcu_read_unlock();
453
454 if (success)
455 return 0;
456
457 if (flags & BLK_MQ_REQ_NOWAIT)
458 return -EBUSY;
459
460 /*
461 * read pair of barrier in blk_freeze_queue_start(),
462 * we need to order reading __PERCPU_REF_DEAD flag of
463 * .q_usage_counter and reading .mq_freeze_depth or
464 * queue dying flag, otherwise the following wait may
465 * never return if the two reads are reordered.
466 */
467 smp_rmb();
468
469 wait_event(q->mq_freeze_wq,
470 (!q->mq_freeze_depth &&
471 blk_pm_resume_queue(pm, q)) ||
472 blk_queue_dying(q));
473 if (blk_queue_dying(q))
474 return -ENODEV;
475 }
476}
477
478static inline int bio_queue_enter(struct bio *bio)
479{
480 struct request_queue *q = bio->bi_bdev->bd_disk->queue;
481 bool nowait = bio->bi_opf & REQ_NOWAIT;
482 int ret;
483
484 ret = blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0);
485 if (unlikely(ret)) {
486 if (nowait && !blk_queue_dying(q))
487 bio_wouldblock_error(bio);
488 else
489 bio_io_error(bio);
490 }
491
492 return ret;
493}
494
495void blk_queue_exit(struct request_queue *q)
496{
497 percpu_ref_put(&q->q_usage_counter);
498}
499
500static void blk_queue_usage_counter_release(struct percpu_ref *ref)
501{
502 struct request_queue *q =
503 container_of(ref, struct request_queue, q_usage_counter);
504
505 wake_up_all(&q->mq_freeze_wq);
506}
507
508static void blk_rq_timed_out_timer(struct timer_list *t)
509{
510 struct request_queue *q = from_timer(q, t, timeout);
511
512 kblockd_schedule_work(&q->timeout_work);
513}
514
515static void blk_timeout_work(struct work_struct *work)
516{
517}
518
519struct request_queue *blk_alloc_queue(int node_id)
520{
521 struct request_queue *q;
522 int ret;
523
524 q = kmem_cache_alloc_node(blk_requestq_cachep,
525 GFP_KERNEL | __GFP_ZERO, node_id);
526 if (!q)
527 return NULL;
528
529 q->last_merge = NULL;
530
531 q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL);
532 if (q->id < 0)
533 goto fail_q;
534
535 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, 0);
536 if (ret)
537 goto fail_id;
538
539 q->backing_dev_info = bdi_alloc(node_id);
540 if (!q->backing_dev_info)
541 goto fail_split;
542
543 q->stats = blk_alloc_queue_stats();
544 if (!q->stats)
545 goto fail_stats;
546
547 q->node = node_id;
548
549 atomic_set(&q->nr_active_requests_shared_sbitmap, 0);
550
551 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
552 laptop_mode_timer_fn, 0);
553 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
554 INIT_WORK(&q->timeout_work, blk_timeout_work);
555 INIT_LIST_HEAD(&q->icq_list);
556#ifdef CONFIG_BLK_CGROUP
557 INIT_LIST_HEAD(&q->blkg_list);
558#endif
559
560 kobject_init(&q->kobj, &blk_queue_ktype);
561
562 mutex_init(&q->debugfs_mutex);
563 mutex_init(&q->sysfs_lock);
564 mutex_init(&q->sysfs_dir_lock);
565 spin_lock_init(&q->queue_lock);
566
567 init_waitqueue_head(&q->mq_freeze_wq);
568 mutex_init(&q->mq_freeze_lock);
569
570 /*
571 * Init percpu_ref in atomic mode so that it's faster to shutdown.
572 * See blk_register_queue() for details.
573 */
574 if (percpu_ref_init(&q->q_usage_counter,
575 blk_queue_usage_counter_release,
576 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
577 goto fail_bdi;
578
579 if (blkcg_init_queue(q))
580 goto fail_ref;
581
582 blk_queue_dma_alignment(q, 511);
583 blk_set_default_limits(&q->limits);
584 q->nr_requests = BLKDEV_MAX_RQ;
585
586 return q;
587
588fail_ref:
589 percpu_ref_exit(&q->q_usage_counter);
590fail_bdi:
591 blk_free_queue_stats(q->stats);
592fail_stats:
593 bdi_put(q->backing_dev_info);
594fail_split:
595 bioset_exit(&q->bio_split);
596fail_id:
597 ida_simple_remove(&blk_queue_ida, q->id);
598fail_q:
599 kmem_cache_free(blk_requestq_cachep, q);
600 return NULL;
601}
602EXPORT_SYMBOL(blk_alloc_queue);
603
604/**
605 * blk_get_queue - increment the request_queue refcount
606 * @q: the request_queue structure to increment the refcount for
607 *
608 * Increment the refcount of the request_queue kobject.
609 *
610 * Context: Any context.
611 */
612bool blk_get_queue(struct request_queue *q)
613{
614 if (likely(!blk_queue_dying(q))) {
615 __blk_get_queue(q);
616 return true;
617 }
618
619 return false;
620}
621EXPORT_SYMBOL(blk_get_queue);
622
623/**
624 * blk_get_request - allocate a request
625 * @q: request queue to allocate a request for
626 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
627 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
628 */
629struct request *blk_get_request(struct request_queue *q, unsigned int op,
630 blk_mq_req_flags_t flags)
631{
632 struct request *req;
633
634 WARN_ON_ONCE(op & REQ_NOWAIT);
635 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PM));
636
637 req = blk_mq_alloc_request(q, op, flags);
638 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
639 q->mq_ops->initialize_rq_fn(req);
640
641 return req;
642}
643EXPORT_SYMBOL(blk_get_request);
644
645void blk_put_request(struct request *req)
646{
647 blk_mq_free_request(req);
648}
649EXPORT_SYMBOL(blk_put_request);
650
651static void handle_bad_sector(struct bio *bio, sector_t maxsector)
652{
653 char b[BDEVNAME_SIZE];
654
655 pr_info_ratelimited("attempt to access beyond end of device\n"
656 "%s: rw=%d, want=%llu, limit=%llu\n",
657 bio_devname(bio, b), bio->bi_opf,
658 bio_end_sector(bio), maxsector);
659}
660
661#ifdef CONFIG_FAIL_MAKE_REQUEST
662
663static DECLARE_FAULT_ATTR(fail_make_request);
664
665static int __init setup_fail_make_request(char *str)
666{
667 return setup_fault_attr(&fail_make_request, str);
668}
669__setup("fail_make_request=", setup_fail_make_request);
670
671static bool should_fail_request(struct block_device *part, unsigned int bytes)
672{
673 return part->bd_make_it_fail && should_fail(&fail_make_request, bytes);
674}
675
676static int __init fail_make_request_debugfs(void)
677{
678 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
679 NULL, &fail_make_request);
680
681 return PTR_ERR_OR_ZERO(dir);
682}
683
684late_initcall(fail_make_request_debugfs);
685
686#else /* CONFIG_FAIL_MAKE_REQUEST */
687
688static inline bool should_fail_request(struct block_device *part,
689 unsigned int bytes)
690{
691 return false;
692}
693
694#endif /* CONFIG_FAIL_MAKE_REQUEST */
695
696static inline bool bio_check_ro(struct bio *bio)
697{
698 if (op_is_write(bio_op(bio)) && bdev_read_only(bio->bi_bdev)) {
699 char b[BDEVNAME_SIZE];
700
701 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
702 return false;
703
704 WARN_ONCE(1,
705 "Trying to write to read-only block-device %s (partno %d)\n",
706 bio_devname(bio, b), bio->bi_bdev->bd_partno);
707 /* Older lvm-tools actually trigger this */
708 return false;
709 }
710
711 return false;
712}
713
714static noinline int should_fail_bio(struct bio *bio)
715{
716 if (should_fail_request(bdev_whole(bio->bi_bdev), bio->bi_iter.bi_size))
717 return -EIO;
718 return 0;
719}
720ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
721
722/*
723 * Check whether this bio extends beyond the end of the device or partition.
724 * This may well happen - the kernel calls bread() without checking the size of
725 * the device, e.g., when mounting a file system.
726 */
727static inline int bio_check_eod(struct bio *bio)
728{
729 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
730 unsigned int nr_sectors = bio_sectors(bio);
731
732 if (nr_sectors && maxsector &&
733 (nr_sectors > maxsector ||
734 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
735 handle_bad_sector(bio, maxsector);
736 return -EIO;
737 }
738 return 0;
739}
740
741/*
742 * Remap block n of partition p to block n+start(p) of the disk.
743 */
744static int blk_partition_remap(struct bio *bio)
745{
746 struct block_device *p = bio->bi_bdev;
747
748 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
749 return -EIO;
750 if (bio_sectors(bio)) {
751 bio->bi_iter.bi_sector += p->bd_start_sect;
752 trace_block_bio_remap(bio, p->bd_dev,
753 bio->bi_iter.bi_sector -
754 p->bd_start_sect);
755 }
756 bio_set_flag(bio, BIO_REMAPPED);
757 return 0;
758}
759
760/*
761 * Check write append to a zoned block device.
762 */
763static inline blk_status_t blk_check_zone_append(struct request_queue *q,
764 struct bio *bio)
765{
766 sector_t pos = bio->bi_iter.bi_sector;
767 int nr_sectors = bio_sectors(bio);
768
769 /* Only applicable to zoned block devices */
770 if (!blk_queue_is_zoned(q))
771 return BLK_STS_NOTSUPP;
772
773 /* The bio sector must point to the start of a sequential zone */
774 if (pos & (blk_queue_zone_sectors(q) - 1) ||
775 !blk_queue_zone_is_seq(q, pos))
776 return BLK_STS_IOERR;
777
778 /*
779 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
780 * split and could result in non-contiguous sectors being written in
781 * different zones.
782 */
783 if (nr_sectors > q->limits.chunk_sectors)
784 return BLK_STS_IOERR;
785
786 /* Make sure the BIO is small enough and will not get split */
787 if (nr_sectors > q->limits.max_zone_append_sectors)
788 return BLK_STS_IOERR;
789
790 bio->bi_opf |= REQ_NOMERGE;
791
792 return BLK_STS_OK;
793}
794
795static noinline_for_stack bool submit_bio_checks(struct bio *bio)
796{
797 struct block_device *bdev = bio->bi_bdev;
798 struct request_queue *q = bdev->bd_disk->queue;
799 blk_status_t status = BLK_STS_IOERR;
800 struct blk_plug *plug;
801
802 might_sleep();
803
804 plug = blk_mq_plug(q, bio);
805 if (plug && plug->nowait)
806 bio->bi_opf |= REQ_NOWAIT;
807
808 /*
809 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
810 * if queue does not support NOWAIT.
811 */
812 if ((bio->bi_opf & REQ_NOWAIT) && !blk_queue_nowait(q))
813 goto not_supported;
814
815 if (should_fail_bio(bio))
816 goto end_io;
817 if (unlikely(bio_check_ro(bio)))
818 goto end_io;
819 if (!bio_flagged(bio, BIO_REMAPPED)) {
820 if (unlikely(bio_check_eod(bio)))
821 goto end_io;
822 if (bdev->bd_partno && unlikely(blk_partition_remap(bio)))
823 goto end_io;
824 }
825
826 /*
827 * Filter flush bio's early so that bio based drivers without flush
828 * support don't have to worry about them.
829 */
830 if (op_is_flush(bio->bi_opf) &&
831 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
832 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
833 if (!bio_sectors(bio)) {
834 status = BLK_STS_OK;
835 goto end_io;
836 }
837 }
838
839 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
840 bio->bi_opf &= ~REQ_HIPRI;
841
842 switch (bio_op(bio)) {
843 case REQ_OP_DISCARD:
844 if (!blk_queue_discard(q))
845 goto not_supported;
846 break;
847 case REQ_OP_SECURE_ERASE:
848 if (!blk_queue_secure_erase(q))
849 goto not_supported;
850 break;
851 case REQ_OP_WRITE_SAME:
852 if (!q->limits.max_write_same_sectors)
853 goto not_supported;
854 break;
855 case REQ_OP_ZONE_APPEND:
856 status = blk_check_zone_append(q, bio);
857 if (status != BLK_STS_OK)
858 goto end_io;
859 break;
860 case REQ_OP_ZONE_RESET:
861 case REQ_OP_ZONE_OPEN:
862 case REQ_OP_ZONE_CLOSE:
863 case REQ_OP_ZONE_FINISH:
864 if (!blk_queue_is_zoned(q))
865 goto not_supported;
866 break;
867 case REQ_OP_ZONE_RESET_ALL:
868 if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q))
869 goto not_supported;
870 break;
871 case REQ_OP_WRITE_ZEROES:
872 if (!q->limits.max_write_zeroes_sectors)
873 goto not_supported;
874 break;
875 default:
876 break;
877 }
878
879 /*
880 * Various block parts want %current->io_context, so allocate it up
881 * front rather than dealing with lots of pain to allocate it only
882 * where needed. This may fail and the block layer knows how to live
883 * with it.
884 */
885 if (unlikely(!current->io_context))
886 create_task_io_context(current, GFP_ATOMIC, q->node);
887
888 if (blk_throtl_bio(bio)) {
889 blkcg_bio_issue_init(bio);
890 return false;
891 }
892
893 blk_cgroup_bio_start(bio);
894 blkcg_bio_issue_init(bio);
895
896 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
897 trace_block_bio_queue(bio);
898 /* Now that enqueuing has been traced, we need to trace
899 * completion as well.
900 */
901 bio_set_flag(bio, BIO_TRACE_COMPLETION);
902 }
903 return true;
904
905not_supported:
906 status = BLK_STS_NOTSUPP;
907end_io:
908 bio->bi_status = status;
909 bio_endio(bio);
910 return false;
911}
912
913static blk_qc_t __submit_bio(struct bio *bio)
914{
915 struct gendisk *disk = bio->bi_bdev->bd_disk;
916 blk_qc_t ret = BLK_QC_T_NONE;
917
918 if (blk_crypto_bio_prep(&bio)) {
919 if (!disk->fops->submit_bio)
920 return blk_mq_submit_bio(bio);
921 ret = disk->fops->submit_bio(bio);
922 }
923 blk_queue_exit(disk->queue);
924 return ret;
925}
926
927/*
928 * The loop in this function may be a bit non-obvious, and so deserves some
929 * explanation:
930 *
931 * - Before entering the loop, bio->bi_next is NULL (as all callers ensure
932 * that), so we have a list with a single bio.
933 * - We pretend that we have just taken it off a longer list, so we assign
934 * bio_list to a pointer to the bio_list_on_stack, thus initialising the
935 * bio_list of new bios to be added. ->submit_bio() may indeed add some more
936 * bios through a recursive call to submit_bio_noacct. If it did, we find a
937 * non-NULL value in bio_list and re-enter the loop from the top.
938 * - In this case we really did just take the bio of the top of the list (no
939 * pretending) and so remove it from bio_list, and call into ->submit_bio()
940 * again.
941 *
942 * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
943 * bio_list_on_stack[1] contains bios that were submitted before the current
944 * ->submit_bio_bio, but that haven't been processed yet.
945 */
946static blk_qc_t __submit_bio_noacct(struct bio *bio)
947{
948 struct bio_list bio_list_on_stack[2];
949 blk_qc_t ret = BLK_QC_T_NONE;
950
951 BUG_ON(bio->bi_next);
952
953 bio_list_init(&bio_list_on_stack[0]);
954 current->bio_list = bio_list_on_stack;
955
956 do {
957 struct request_queue *q = bio->bi_bdev->bd_disk->queue;
958 struct bio_list lower, same;
959
960 if (unlikely(bio_queue_enter(bio) != 0))
961 continue;
962
963 /*
964 * Create a fresh bio_list for all subordinate requests.
965 */
966 bio_list_on_stack[1] = bio_list_on_stack[0];
967 bio_list_init(&bio_list_on_stack[0]);
968
969 ret = __submit_bio(bio);
970
971 /*
972 * Sort new bios into those for a lower level and those for the
973 * same level.
974 */
975 bio_list_init(&lower);
976 bio_list_init(&same);
977 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
978 if (q == bio->bi_bdev->bd_disk->queue)
979 bio_list_add(&same, bio);
980 else
981 bio_list_add(&lower, bio);
982
983 /*
984 * Now assemble so we handle the lowest level first.
985 */
986 bio_list_merge(&bio_list_on_stack[0], &lower);
987 bio_list_merge(&bio_list_on_stack[0], &same);
988 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
989 } while ((bio = bio_list_pop(&bio_list_on_stack[0])));
990
991 current->bio_list = NULL;
992 return ret;
993}
994
995static blk_qc_t __submit_bio_noacct_mq(struct bio *bio)
996{
997 struct bio_list bio_list[2] = { };
998 blk_qc_t ret = BLK_QC_T_NONE;
999
1000 current->bio_list = bio_list;
1001
1002 do {
1003 struct gendisk *disk = bio->bi_bdev->bd_disk;
1004
1005 if (unlikely(bio_queue_enter(bio) != 0))
1006 continue;
1007
1008 if (!blk_crypto_bio_prep(&bio)) {
1009 blk_queue_exit(disk->queue);
1010 ret = BLK_QC_T_NONE;
1011 continue;
1012 }
1013
1014 ret = blk_mq_submit_bio(bio);
1015 } while ((bio = bio_list_pop(&bio_list[0])));
1016
1017 current->bio_list = NULL;
1018 return ret;
1019}
1020
1021/**
1022 * submit_bio_noacct - re-submit a bio to the block device layer for I/O
1023 * @bio: The bio describing the location in memory and on the device.
1024 *
1025 * This is a version of submit_bio() that shall only be used for I/O that is
1026 * resubmitted to lower level drivers by stacking block drivers. All file
1027 * systems and other upper level users of the block layer should use
1028 * submit_bio() instead.
1029 */
1030blk_qc_t submit_bio_noacct(struct bio *bio)
1031{
1032 if (!submit_bio_checks(bio))
1033 return BLK_QC_T_NONE;
1034
1035 /*
1036 * We only want one ->submit_bio to be active at a time, else stack
1037 * usage with stacked devices could be a problem. Use current->bio_list
1038 * to collect a list of requests submited by a ->submit_bio method while
1039 * it is active, and then process them after it returned.
1040 */
1041 if (current->bio_list) {
1042 bio_list_add(¤t->bio_list[0], bio);
1043 return BLK_QC_T_NONE;
1044 }
1045
1046 if (!bio->bi_bdev->bd_disk->fops->submit_bio)
1047 return __submit_bio_noacct_mq(bio);
1048 return __submit_bio_noacct(bio);
1049}
1050EXPORT_SYMBOL(submit_bio_noacct);
1051
1052/**
1053 * submit_bio - submit a bio to the block device layer for I/O
1054 * @bio: The &struct bio which describes the I/O
1055 *
1056 * submit_bio() is used to submit I/O requests to block devices. It is passed a
1057 * fully set up &struct bio that describes the I/O that needs to be done. The
1058 * bio will be send to the device described by the bi_bdev field.
1059 *
1060 * The success/failure status of the request, along with notification of
1061 * completion, is delivered asynchronously through the ->bi_end_io() callback
1062 * in @bio. The bio must NOT be touched by thecaller until ->bi_end_io() has
1063 * been called.
1064 */
1065blk_qc_t submit_bio(struct bio *bio)
1066{
1067 if (blkcg_punt_bio_submit(bio))
1068 return BLK_QC_T_NONE;
1069
1070 /*
1071 * If it's a regular read/write or a barrier with data attached,
1072 * go through the normal accounting stuff before submission.
1073 */
1074 if (bio_has_data(bio)) {
1075 unsigned int count;
1076
1077 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1078 count = queue_logical_block_size(
1079 bio->bi_bdev->bd_disk->queue) >> 9;
1080 else
1081 count = bio_sectors(bio);
1082
1083 if (op_is_write(bio_op(bio))) {
1084 count_vm_events(PGPGOUT, count);
1085 } else {
1086 task_io_account_read(bio->bi_iter.bi_size);
1087 count_vm_events(PGPGIN, count);
1088 }
1089
1090 if (unlikely(block_dump)) {
1091 char b[BDEVNAME_SIZE];
1092 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1093 current->comm, task_pid_nr(current),
1094 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
1095 (unsigned long long)bio->bi_iter.bi_sector,
1096 bio_devname(bio, b), count);
1097 }
1098 }
1099
1100 /*
1101 * If we're reading data that is part of the userspace workingset, count
1102 * submission time as memory stall. When the device is congested, or
1103 * the submitting cgroup IO-throttled, submission can be a significant
1104 * part of overall IO time.
1105 */
1106 if (unlikely(bio_op(bio) == REQ_OP_READ &&
1107 bio_flagged(bio, BIO_WORKINGSET))) {
1108 unsigned long pflags;
1109 blk_qc_t ret;
1110
1111 psi_memstall_enter(&pflags);
1112 ret = submit_bio_noacct(bio);
1113 psi_memstall_leave(&pflags);
1114
1115 return ret;
1116 }
1117
1118 return submit_bio_noacct(bio);
1119}
1120EXPORT_SYMBOL(submit_bio);
1121
1122/**
1123 * blk_cloned_rq_check_limits - Helper function to check a cloned request
1124 * for the new queue limits
1125 * @q: the queue
1126 * @rq: the request being checked
1127 *
1128 * Description:
1129 * @rq may have been made based on weaker limitations of upper-level queues
1130 * in request stacking drivers, and it may violate the limitation of @q.
1131 * Since the block layer and the underlying device driver trust @rq
1132 * after it is inserted to @q, it should be checked against @q before
1133 * the insertion using this generic function.
1134 *
1135 * Request stacking drivers like request-based dm may change the queue
1136 * limits when retrying requests on other queues. Those requests need
1137 * to be checked against the new queue limits again during dispatch.
1138 */
1139static blk_status_t blk_cloned_rq_check_limits(struct request_queue *q,
1140 struct request *rq)
1141{
1142 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
1143
1144 if (blk_rq_sectors(rq) > max_sectors) {
1145 /*
1146 * SCSI device does not have a good way to return if
1147 * Write Same/Zero is actually supported. If a device rejects
1148 * a non-read/write command (discard, write same,etc.) the
1149 * low-level device driver will set the relevant queue limit to
1150 * 0 to prevent blk-lib from issuing more of the offending
1151 * operations. Commands queued prior to the queue limit being
1152 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
1153 * errors being propagated to upper layers.
1154 */
1155 if (max_sectors == 0)
1156 return BLK_STS_NOTSUPP;
1157
1158 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
1159 __func__, blk_rq_sectors(rq), max_sectors);
1160 return BLK_STS_IOERR;
1161 }
1162
1163 /*
1164 * The queue settings related to segment counting may differ from the
1165 * original queue.
1166 */
1167 rq->nr_phys_segments = blk_recalc_rq_segments(rq);
1168 if (rq->nr_phys_segments > queue_max_segments(q)) {
1169 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
1170 __func__, rq->nr_phys_segments, queue_max_segments(q));
1171 return BLK_STS_IOERR;
1172 }
1173
1174 return BLK_STS_OK;
1175}
1176
1177/**
1178 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1179 * @q: the queue to submit the request
1180 * @rq: the request being queued
1181 */
1182blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1183{
1184 blk_status_t ret;
1185
1186 ret = blk_cloned_rq_check_limits(q, rq);
1187 if (ret != BLK_STS_OK)
1188 return ret;
1189
1190 if (rq->rq_disk &&
1191 should_fail_request(rq->rq_disk->part0, blk_rq_bytes(rq)))
1192 return BLK_STS_IOERR;
1193
1194 if (blk_crypto_insert_cloned_request(rq))
1195 return BLK_STS_IOERR;
1196
1197 if (blk_queue_io_stat(q))
1198 blk_account_io_start(rq);
1199
1200 /*
1201 * Since we have a scheduler attached on the top device,
1202 * bypass a potential scheduler on the bottom device for
1203 * insert.
1204 */
1205 return blk_mq_request_issue_directly(rq, true);
1206}
1207EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1208
1209/**
1210 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1211 * @rq: request to examine
1212 *
1213 * Description:
1214 * A request could be merge of IOs which require different failure
1215 * handling. This function determines the number of bytes which
1216 * can be failed from the beginning of the request without
1217 * crossing into area which need to be retried further.
1218 *
1219 * Return:
1220 * The number of bytes to fail.
1221 */
1222unsigned int blk_rq_err_bytes(const struct request *rq)
1223{
1224 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1225 unsigned int bytes = 0;
1226 struct bio *bio;
1227
1228 if (!(rq->rq_flags & RQF_MIXED_MERGE))
1229 return blk_rq_bytes(rq);
1230
1231 /*
1232 * Currently the only 'mixing' which can happen is between
1233 * different fastfail types. We can safely fail portions
1234 * which have all the failfast bits that the first one has -
1235 * the ones which are at least as eager to fail as the first
1236 * one.
1237 */
1238 for (bio = rq->bio; bio; bio = bio->bi_next) {
1239 if ((bio->bi_opf & ff) != ff)
1240 break;
1241 bytes += bio->bi_iter.bi_size;
1242 }
1243
1244 /* this could lead to infinite loop */
1245 BUG_ON(blk_rq_bytes(rq) && !bytes);
1246 return bytes;
1247}
1248EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1249
1250static void update_io_ticks(struct block_device *part, unsigned long now,
1251 bool end)
1252{
1253 unsigned long stamp;
1254again:
1255 stamp = READ_ONCE(part->bd_stamp);
1256 if (unlikely(stamp != now)) {
1257 if (likely(cmpxchg(&part->bd_stamp, stamp, now) == stamp))
1258 __part_stat_add(part, io_ticks, end ? now - stamp : 1);
1259 }
1260 if (part->bd_partno) {
1261 part = bdev_whole(part);
1262 goto again;
1263 }
1264}
1265
1266static void blk_account_io_completion(struct request *req, unsigned int bytes)
1267{
1268 if (req->part && blk_do_io_stat(req)) {
1269 const int sgrp = op_stat_group(req_op(req));
1270
1271 part_stat_lock();
1272 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
1273 part_stat_unlock();
1274 }
1275}
1276
1277void blk_account_io_done(struct request *req, u64 now)
1278{
1279 /*
1280 * Account IO completion. flush_rq isn't accounted as a
1281 * normal IO on queueing nor completion. Accounting the
1282 * containing request is enough.
1283 */
1284 if (req->part && blk_do_io_stat(req) &&
1285 !(req->rq_flags & RQF_FLUSH_SEQ)) {
1286 const int sgrp = op_stat_group(req_op(req));
1287
1288 part_stat_lock();
1289 update_io_ticks(req->part, jiffies, true);
1290 part_stat_inc(req->part, ios[sgrp]);
1291 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
1292 part_stat_unlock();
1293 }
1294}
1295
1296void blk_account_io_start(struct request *rq)
1297{
1298 if (!blk_do_io_stat(rq))
1299 return;
1300
1301 /* passthrough requests can hold bios that do not have ->bi_bdev set */
1302 if (rq->bio && rq->bio->bi_bdev)
1303 rq->part = rq->bio->bi_bdev;
1304 else
1305 rq->part = rq->rq_disk->part0;
1306
1307 part_stat_lock();
1308 update_io_ticks(rq->part, jiffies, false);
1309 part_stat_unlock();
1310}
1311
1312static unsigned long __part_start_io_acct(struct block_device *part,
1313 unsigned int sectors, unsigned int op)
1314{
1315 const int sgrp = op_stat_group(op);
1316 unsigned long now = READ_ONCE(jiffies);
1317
1318 part_stat_lock();
1319 update_io_ticks(part, now, false);
1320 part_stat_inc(part, ios[sgrp]);
1321 part_stat_add(part, sectors[sgrp], sectors);
1322 part_stat_local_inc(part, in_flight[op_is_write(op)]);
1323 part_stat_unlock();
1324
1325 return now;
1326}
1327
1328/**
1329 * bio_start_io_acct - start I/O accounting for bio based drivers
1330 * @bio: bio to start account for
1331 *
1332 * Returns the start time that should be passed back to bio_end_io_acct().
1333 */
1334unsigned long bio_start_io_acct(struct bio *bio)
1335{
1336 return __part_start_io_acct(bio->bi_bdev, bio_sectors(bio), bio_op(bio));
1337}
1338EXPORT_SYMBOL_GPL(bio_start_io_acct);
1339
1340unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors,
1341 unsigned int op)
1342{
1343 return __part_start_io_acct(disk->part0, sectors, op);
1344}
1345EXPORT_SYMBOL(disk_start_io_acct);
1346
1347static void __part_end_io_acct(struct block_device *part, unsigned int op,
1348 unsigned long start_time)
1349{
1350 const int sgrp = op_stat_group(op);
1351 unsigned long now = READ_ONCE(jiffies);
1352 unsigned long duration = now - start_time;
1353
1354 part_stat_lock();
1355 update_io_ticks(part, now, true);
1356 part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1357 part_stat_local_dec(part, in_flight[op_is_write(op)]);
1358 part_stat_unlock();
1359}
1360
1361void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1362 struct block_device *orig_bdev)
1363{
1364 __part_end_io_acct(orig_bdev, bio_op(bio), start_time);
1365}
1366EXPORT_SYMBOL_GPL(bio_end_io_acct_remapped);
1367
1368void disk_end_io_acct(struct gendisk *disk, unsigned int op,
1369 unsigned long start_time)
1370{
1371 __part_end_io_acct(disk->part0, op, start_time);
1372}
1373EXPORT_SYMBOL(disk_end_io_acct);
1374
1375/*
1376 * Steal bios from a request and add them to a bio list.
1377 * The request must not have been partially completed before.
1378 */
1379void blk_steal_bios(struct bio_list *list, struct request *rq)
1380{
1381 if (rq->bio) {
1382 if (list->tail)
1383 list->tail->bi_next = rq->bio;
1384 else
1385 list->head = rq->bio;
1386 list->tail = rq->biotail;
1387
1388 rq->bio = NULL;
1389 rq->biotail = NULL;
1390 }
1391
1392 rq->__data_len = 0;
1393}
1394EXPORT_SYMBOL_GPL(blk_steal_bios);
1395
1396/**
1397 * blk_update_request - Special helper function for request stacking drivers
1398 * @req: the request being processed
1399 * @error: block status code
1400 * @nr_bytes: number of bytes to complete @req
1401 *
1402 * Description:
1403 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1404 * the request structure even if @req doesn't have leftover.
1405 * If @req has leftover, sets it up for the next range of segments.
1406 *
1407 * This special helper function is only for request stacking drivers
1408 * (e.g. request-based dm) so that they can handle partial completion.
1409 * Actual device drivers should use blk_mq_end_request instead.
1410 *
1411 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1412 * %false return from this function.
1413 *
1414 * Note:
1415 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
1416 * blk_rq_bytes() and in blk_update_request().
1417 *
1418 * Return:
1419 * %false - this request doesn't have any more data
1420 * %true - this request has more data
1421 **/
1422bool blk_update_request(struct request *req, blk_status_t error,
1423 unsigned int nr_bytes)
1424{
1425 int total_bytes;
1426
1427 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
1428
1429 if (!req->bio)
1430 return false;
1431
1432#ifdef CONFIG_BLK_DEV_INTEGRITY
1433 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
1434 error == BLK_STS_OK)
1435 req->q->integrity.profile->complete_fn(req, nr_bytes);
1436#endif
1437
1438 if (unlikely(error && !blk_rq_is_passthrough(req) &&
1439 !(req->rq_flags & RQF_QUIET)))
1440 print_req_error(req, error, __func__);
1441
1442 blk_account_io_completion(req, nr_bytes);
1443
1444 total_bytes = 0;
1445 while (req->bio) {
1446 struct bio *bio = req->bio;
1447 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1448
1449 if (bio_bytes == bio->bi_iter.bi_size)
1450 req->bio = bio->bi_next;
1451
1452 /* Completion has already been traced */
1453 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1454 req_bio_endio(req, bio, bio_bytes, error);
1455
1456 total_bytes += bio_bytes;
1457 nr_bytes -= bio_bytes;
1458
1459 if (!nr_bytes)
1460 break;
1461 }
1462
1463 /*
1464 * completely done
1465 */
1466 if (!req->bio) {
1467 /*
1468 * Reset counters so that the request stacking driver
1469 * can find how many bytes remain in the request
1470 * later.
1471 */
1472 req->__data_len = 0;
1473 return false;
1474 }
1475
1476 req->__data_len -= total_bytes;
1477
1478 /* update sector only for requests with clear definition of sector */
1479 if (!blk_rq_is_passthrough(req))
1480 req->__sector += total_bytes >> 9;
1481
1482 /* mixed attributes always follow the first bio */
1483 if (req->rq_flags & RQF_MIXED_MERGE) {
1484 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1485 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1486 }
1487
1488 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1489 /*
1490 * If total number of sectors is less than the first segment
1491 * size, something has gone terribly wrong.
1492 */
1493 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1494 blk_dump_rq_flags(req, "request botched");
1495 req->__data_len = blk_rq_cur_bytes(req);
1496 }
1497
1498 /* recalculate the number of segments */
1499 req->nr_phys_segments = blk_recalc_rq_segments(req);
1500 }
1501
1502 return true;
1503}
1504EXPORT_SYMBOL_GPL(blk_update_request);
1505
1506#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1507/**
1508 * rq_flush_dcache_pages - Helper function to flush all pages in a request
1509 * @rq: the request to be flushed
1510 *
1511 * Description:
1512 * Flush all pages in @rq.
1513 */
1514void rq_flush_dcache_pages(struct request *rq)
1515{
1516 struct req_iterator iter;
1517 struct bio_vec bvec;
1518
1519 rq_for_each_segment(bvec, rq, iter)
1520 flush_dcache_page(bvec.bv_page);
1521}
1522EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1523#endif
1524
1525/**
1526 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1527 * @q : the queue of the device being checked
1528 *
1529 * Description:
1530 * Check if underlying low-level drivers of a device are busy.
1531 * If the drivers want to export their busy state, they must set own
1532 * exporting function using blk_queue_lld_busy() first.
1533 *
1534 * Basically, this function is used only by request stacking drivers
1535 * to stop dispatching requests to underlying devices when underlying
1536 * devices are busy. This behavior helps more I/O merging on the queue
1537 * of the request stacking driver and prevents I/O throughput regression
1538 * on burst I/O load.
1539 *
1540 * Return:
1541 * 0 - Not busy (The request stacking driver should dispatch request)
1542 * 1 - Busy (The request stacking driver should stop dispatching request)
1543 */
1544int blk_lld_busy(struct request_queue *q)
1545{
1546 if (queue_is_mq(q) && q->mq_ops->busy)
1547 return q->mq_ops->busy(q);
1548
1549 return 0;
1550}
1551EXPORT_SYMBOL_GPL(blk_lld_busy);
1552
1553/**
1554 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1555 * @rq: the clone request to be cleaned up
1556 *
1557 * Description:
1558 * Free all bios in @rq for a cloned request.
1559 */
1560void blk_rq_unprep_clone(struct request *rq)
1561{
1562 struct bio *bio;
1563
1564 while ((bio = rq->bio) != NULL) {
1565 rq->bio = bio->bi_next;
1566
1567 bio_put(bio);
1568 }
1569}
1570EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1571
1572/**
1573 * blk_rq_prep_clone - Helper function to setup clone request
1574 * @rq: the request to be setup
1575 * @rq_src: original request to be cloned
1576 * @bs: bio_set that bios for clone are allocated from
1577 * @gfp_mask: memory allocation mask for bio
1578 * @bio_ctr: setup function to be called for each clone bio.
1579 * Returns %0 for success, non %0 for failure.
1580 * @data: private data to be passed to @bio_ctr
1581 *
1582 * Description:
1583 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
1584 * Also, pages which the original bios are pointing to are not copied
1585 * and the cloned bios just point same pages.
1586 * So cloned bios must be completed before original bios, which means
1587 * the caller must complete @rq before @rq_src.
1588 */
1589int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1590 struct bio_set *bs, gfp_t gfp_mask,
1591 int (*bio_ctr)(struct bio *, struct bio *, void *),
1592 void *data)
1593{
1594 struct bio *bio, *bio_src;
1595
1596 if (!bs)
1597 bs = &fs_bio_set;
1598
1599 __rq_for_each_bio(bio_src, rq_src) {
1600 bio = bio_clone_fast(bio_src, gfp_mask, bs);
1601 if (!bio)
1602 goto free_and_out;
1603
1604 if (bio_ctr && bio_ctr(bio, bio_src, data))
1605 goto free_and_out;
1606
1607 if (rq->bio) {
1608 rq->biotail->bi_next = bio;
1609 rq->biotail = bio;
1610 } else {
1611 rq->bio = rq->biotail = bio;
1612 }
1613 bio = NULL;
1614 }
1615
1616 /* Copy attributes of the original request to the clone request. */
1617 rq->__sector = blk_rq_pos(rq_src);
1618 rq->__data_len = blk_rq_bytes(rq_src);
1619 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1620 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
1621 rq->special_vec = rq_src->special_vec;
1622 }
1623 rq->nr_phys_segments = rq_src->nr_phys_segments;
1624 rq->ioprio = rq_src->ioprio;
1625
1626 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
1627 goto free_and_out;
1628
1629 return 0;
1630
1631free_and_out:
1632 if (bio)
1633 bio_put(bio);
1634 blk_rq_unprep_clone(rq);
1635
1636 return -ENOMEM;
1637}
1638EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1639
1640int kblockd_schedule_work(struct work_struct *work)
1641{
1642 return queue_work(kblockd_workqueue, work);
1643}
1644EXPORT_SYMBOL(kblockd_schedule_work);
1645
1646int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1647 unsigned long delay)
1648{
1649 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1650}
1651EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1652
1653/**
1654 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1655 * @plug: The &struct blk_plug that needs to be initialized
1656 *
1657 * Description:
1658 * blk_start_plug() indicates to the block layer an intent by the caller
1659 * to submit multiple I/O requests in a batch. The block layer may use
1660 * this hint to defer submitting I/Os from the caller until blk_finish_plug()
1661 * is called. However, the block layer may choose to submit requests
1662 * before a call to blk_finish_plug() if the number of queued I/Os
1663 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1664 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if
1665 * the task schedules (see below).
1666 *
1667 * Tracking blk_plug inside the task_struct will help with auto-flushing the
1668 * pending I/O should the task end up blocking between blk_start_plug() and
1669 * blk_finish_plug(). This is important from a performance perspective, but
1670 * also ensures that we don't deadlock. For instance, if the task is blocking
1671 * for a memory allocation, memory reclaim could end up wanting to free a
1672 * page belonging to that request that is currently residing in our private
1673 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
1674 * this kind of deadlock.
1675 */
1676void blk_start_plug(struct blk_plug *plug)
1677{
1678 struct task_struct *tsk = current;
1679
1680 /*
1681 * If this is a nested plug, don't actually assign it.
1682 */
1683 if (tsk->plug)
1684 return;
1685
1686 INIT_LIST_HEAD(&plug->mq_list);
1687 INIT_LIST_HEAD(&plug->cb_list);
1688 plug->rq_count = 0;
1689 plug->multiple_queues = false;
1690 plug->nowait = false;
1691
1692 /*
1693 * Store ordering should not be needed here, since a potential
1694 * preempt will imply a full memory barrier
1695 */
1696 tsk->plug = plug;
1697}
1698EXPORT_SYMBOL(blk_start_plug);
1699
1700static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1701{
1702 LIST_HEAD(callbacks);
1703
1704 while (!list_empty(&plug->cb_list)) {
1705 list_splice_init(&plug->cb_list, &callbacks);
1706
1707 while (!list_empty(&callbacks)) {
1708 struct blk_plug_cb *cb = list_first_entry(&callbacks,
1709 struct blk_plug_cb,
1710 list);
1711 list_del(&cb->list);
1712 cb->callback(cb, from_schedule);
1713 }
1714 }
1715}
1716
1717struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1718 int size)
1719{
1720 struct blk_plug *plug = current->plug;
1721 struct blk_plug_cb *cb;
1722
1723 if (!plug)
1724 return NULL;
1725
1726 list_for_each_entry(cb, &plug->cb_list, list)
1727 if (cb->callback == unplug && cb->data == data)
1728 return cb;
1729
1730 /* Not currently on the callback list */
1731 BUG_ON(size < sizeof(*cb));
1732 cb = kzalloc(size, GFP_ATOMIC);
1733 if (cb) {
1734 cb->data = data;
1735 cb->callback = unplug;
1736 list_add(&cb->list, &plug->cb_list);
1737 }
1738 return cb;
1739}
1740EXPORT_SYMBOL(blk_check_plugged);
1741
1742void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1743{
1744 flush_plug_callbacks(plug, from_schedule);
1745
1746 if (!list_empty(&plug->mq_list))
1747 blk_mq_flush_plug_list(plug, from_schedule);
1748}
1749
1750/**
1751 * blk_finish_plug - mark the end of a batch of submitted I/O
1752 * @plug: The &struct blk_plug passed to blk_start_plug()
1753 *
1754 * Description:
1755 * Indicate that a batch of I/O submissions is complete. This function
1756 * must be paired with an initial call to blk_start_plug(). The intent
1757 * is to allow the block layer to optimize I/O submission. See the
1758 * documentation for blk_start_plug() for more information.
1759 */
1760void blk_finish_plug(struct blk_plug *plug)
1761{
1762 if (plug != current->plug)
1763 return;
1764 blk_flush_plug_list(plug, false);
1765
1766 current->plug = NULL;
1767}
1768EXPORT_SYMBOL(blk_finish_plug);
1769
1770void blk_io_schedule(void)
1771{
1772 /* Prevent hang_check timer from firing at us during very long I/O */
1773 unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1774
1775 if (timeout)
1776 io_schedule_timeout(timeout);
1777 else
1778 io_schedule();
1779}
1780EXPORT_SYMBOL_GPL(blk_io_schedule);
1781
1782int __init blk_dev_init(void)
1783{
1784 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1785 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1786 sizeof_field(struct request, cmd_flags));
1787 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1788 sizeof_field(struct bio, bi_opf));
1789
1790 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1791 kblockd_workqueue = alloc_workqueue("kblockd",
1792 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1793 if (!kblockd_workqueue)
1794 panic("Failed to create kblockd\n");
1795
1796 blk_requestq_cachep = kmem_cache_create("request_queue",
1797 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1798
1799 blk_debugfs_root = debugfs_create_dir("block", NULL);
1800
1801 return 0;
1802}