Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2#include "cpumap.h"
3#include "debug.h"
4#include "env.h"
5#include "util/header.h"
6#include <linux/ctype.h>
7#include <linux/zalloc.h>
8#include "cgroup.h"
9#include <errno.h>
10#include <sys/utsname.h>
11#include <stdlib.h>
12#include <string.h>
13
14struct perf_env perf_env;
15
16#ifdef HAVE_LIBBPF_SUPPORT
17#include "bpf-event.h"
18#include <bpf/libbpf.h>
19
20void perf_env__insert_bpf_prog_info(struct perf_env *env,
21 struct bpf_prog_info_node *info_node)
22{
23 __u32 prog_id = info_node->info_linear->info.id;
24 struct bpf_prog_info_node *node;
25 struct rb_node *parent = NULL;
26 struct rb_node **p;
27
28 down_write(&env->bpf_progs.lock);
29 p = &env->bpf_progs.infos.rb_node;
30
31 while (*p != NULL) {
32 parent = *p;
33 node = rb_entry(parent, struct bpf_prog_info_node, rb_node);
34 if (prog_id < node->info_linear->info.id) {
35 p = &(*p)->rb_left;
36 } else if (prog_id > node->info_linear->info.id) {
37 p = &(*p)->rb_right;
38 } else {
39 pr_debug("duplicated bpf prog info %u\n", prog_id);
40 goto out;
41 }
42 }
43
44 rb_link_node(&info_node->rb_node, parent, p);
45 rb_insert_color(&info_node->rb_node, &env->bpf_progs.infos);
46 env->bpf_progs.infos_cnt++;
47out:
48 up_write(&env->bpf_progs.lock);
49}
50
51struct bpf_prog_info_node *perf_env__find_bpf_prog_info(struct perf_env *env,
52 __u32 prog_id)
53{
54 struct bpf_prog_info_node *node = NULL;
55 struct rb_node *n;
56
57 down_read(&env->bpf_progs.lock);
58 n = env->bpf_progs.infos.rb_node;
59
60 while (n) {
61 node = rb_entry(n, struct bpf_prog_info_node, rb_node);
62 if (prog_id < node->info_linear->info.id)
63 n = n->rb_left;
64 else if (prog_id > node->info_linear->info.id)
65 n = n->rb_right;
66 else
67 goto out;
68 }
69 node = NULL;
70
71out:
72 up_read(&env->bpf_progs.lock);
73 return node;
74}
75
76void perf_env__insert_btf(struct perf_env *env, struct btf_node *btf_node)
77{
78 struct rb_node *parent = NULL;
79 __u32 btf_id = btf_node->id;
80 struct btf_node *node;
81 struct rb_node **p;
82
83 down_write(&env->bpf_progs.lock);
84 p = &env->bpf_progs.btfs.rb_node;
85
86 while (*p != NULL) {
87 parent = *p;
88 node = rb_entry(parent, struct btf_node, rb_node);
89 if (btf_id < node->id) {
90 p = &(*p)->rb_left;
91 } else if (btf_id > node->id) {
92 p = &(*p)->rb_right;
93 } else {
94 pr_debug("duplicated btf %u\n", btf_id);
95 goto out;
96 }
97 }
98
99 rb_link_node(&btf_node->rb_node, parent, p);
100 rb_insert_color(&btf_node->rb_node, &env->bpf_progs.btfs);
101 env->bpf_progs.btfs_cnt++;
102out:
103 up_write(&env->bpf_progs.lock);
104}
105
106struct btf_node *perf_env__find_btf(struct perf_env *env, __u32 btf_id)
107{
108 struct btf_node *node = NULL;
109 struct rb_node *n;
110
111 down_read(&env->bpf_progs.lock);
112 n = env->bpf_progs.btfs.rb_node;
113
114 while (n) {
115 node = rb_entry(n, struct btf_node, rb_node);
116 if (btf_id < node->id)
117 n = n->rb_left;
118 else if (btf_id > node->id)
119 n = n->rb_right;
120 else
121 goto out;
122 }
123 node = NULL;
124
125out:
126 up_read(&env->bpf_progs.lock);
127 return node;
128}
129
130/* purge data in bpf_progs.infos tree */
131static void perf_env__purge_bpf(struct perf_env *env)
132{
133 struct rb_root *root;
134 struct rb_node *next;
135
136 down_write(&env->bpf_progs.lock);
137
138 root = &env->bpf_progs.infos;
139 next = rb_first(root);
140
141 while (next) {
142 struct bpf_prog_info_node *node;
143
144 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
145 next = rb_next(&node->rb_node);
146 rb_erase(&node->rb_node, root);
147 free(node->info_linear);
148 free(node);
149 }
150
151 env->bpf_progs.infos_cnt = 0;
152
153 root = &env->bpf_progs.btfs;
154 next = rb_first(root);
155
156 while (next) {
157 struct btf_node *node;
158
159 node = rb_entry(next, struct btf_node, rb_node);
160 next = rb_next(&node->rb_node);
161 rb_erase(&node->rb_node, root);
162 free(node);
163 }
164
165 env->bpf_progs.btfs_cnt = 0;
166
167 up_write(&env->bpf_progs.lock);
168}
169#else // HAVE_LIBBPF_SUPPORT
170static void perf_env__purge_bpf(struct perf_env *env __maybe_unused)
171{
172}
173#endif // HAVE_LIBBPF_SUPPORT
174
175void perf_env__exit(struct perf_env *env)
176{
177 int i;
178
179 perf_env__purge_bpf(env);
180 perf_env__purge_cgroups(env);
181 zfree(&env->hostname);
182 zfree(&env->os_release);
183 zfree(&env->version);
184 zfree(&env->arch);
185 zfree(&env->cpu_desc);
186 zfree(&env->cpuid);
187 zfree(&env->cmdline);
188 zfree(&env->cmdline_argv);
189 zfree(&env->sibling_cores);
190 zfree(&env->sibling_threads);
191 zfree(&env->pmu_mappings);
192 zfree(&env->cpu);
193 zfree(&env->numa_map);
194
195 for (i = 0; i < env->nr_numa_nodes; i++)
196 perf_cpu_map__put(env->numa_nodes[i].map);
197 zfree(&env->numa_nodes);
198
199 for (i = 0; i < env->caches_cnt; i++)
200 cpu_cache_level__free(&env->caches[i]);
201 zfree(&env->caches);
202
203 for (i = 0; i < env->nr_memory_nodes; i++)
204 zfree(&env->memory_nodes[i].set);
205 zfree(&env->memory_nodes);
206}
207
208void perf_env__init(struct perf_env *env __maybe_unused)
209{
210#ifdef HAVE_LIBBPF_SUPPORT
211 env->bpf_progs.infos = RB_ROOT;
212 env->bpf_progs.btfs = RB_ROOT;
213 init_rwsem(&env->bpf_progs.lock);
214#endif
215}
216
217int perf_env__set_cmdline(struct perf_env *env, int argc, const char *argv[])
218{
219 int i;
220
221 /* do not include NULL termination */
222 env->cmdline_argv = calloc(argc, sizeof(char *));
223 if (env->cmdline_argv == NULL)
224 goto out_enomem;
225
226 /*
227 * Must copy argv contents because it gets moved around during option
228 * parsing:
229 */
230 for (i = 0; i < argc ; i++) {
231 env->cmdline_argv[i] = argv[i];
232 if (env->cmdline_argv[i] == NULL)
233 goto out_free;
234 }
235
236 env->nr_cmdline = argc;
237
238 return 0;
239out_free:
240 zfree(&env->cmdline_argv);
241out_enomem:
242 return -ENOMEM;
243}
244
245int perf_env__read_cpu_topology_map(struct perf_env *env)
246{
247 int cpu, nr_cpus;
248
249 if (env->cpu != NULL)
250 return 0;
251
252 if (env->nr_cpus_avail == 0)
253 env->nr_cpus_avail = cpu__max_present_cpu();
254
255 nr_cpus = env->nr_cpus_avail;
256 if (nr_cpus == -1)
257 return -EINVAL;
258
259 env->cpu = calloc(nr_cpus, sizeof(env->cpu[0]));
260 if (env->cpu == NULL)
261 return -ENOMEM;
262
263 for (cpu = 0; cpu < nr_cpus; ++cpu) {
264 env->cpu[cpu].core_id = cpu_map__get_core_id(cpu);
265 env->cpu[cpu].socket_id = cpu_map__get_socket_id(cpu);
266 env->cpu[cpu].die_id = cpu_map__get_die_id(cpu);
267 }
268
269 env->nr_cpus_avail = nr_cpus;
270 return 0;
271}
272
273int perf_env__read_cpuid(struct perf_env *env)
274{
275 char cpuid[128];
276 int err = get_cpuid(cpuid, sizeof(cpuid));
277
278 if (err)
279 return err;
280
281 free(env->cpuid);
282 env->cpuid = strdup(cpuid);
283 if (env->cpuid == NULL)
284 return ENOMEM;
285 return 0;
286}
287
288static int perf_env__read_arch(struct perf_env *env)
289{
290 struct utsname uts;
291
292 if (env->arch)
293 return 0;
294
295 if (!uname(&uts))
296 env->arch = strdup(uts.machine);
297
298 return env->arch ? 0 : -ENOMEM;
299}
300
301static int perf_env__read_nr_cpus_avail(struct perf_env *env)
302{
303 if (env->nr_cpus_avail == 0)
304 env->nr_cpus_avail = cpu__max_present_cpu();
305
306 return env->nr_cpus_avail ? 0 : -ENOENT;
307}
308
309const char *perf_env__raw_arch(struct perf_env *env)
310{
311 return env && !perf_env__read_arch(env) ? env->arch : "unknown";
312}
313
314int perf_env__nr_cpus_avail(struct perf_env *env)
315{
316 return env && !perf_env__read_nr_cpus_avail(env) ? env->nr_cpus_avail : 0;
317}
318
319void cpu_cache_level__free(struct cpu_cache_level *cache)
320{
321 zfree(&cache->type);
322 zfree(&cache->map);
323 zfree(&cache->size);
324}
325
326/*
327 * Return architecture name in a normalized form.
328 * The conversion logic comes from the Makefile.
329 */
330static const char *normalize_arch(char *arch)
331{
332 if (!strcmp(arch, "x86_64"))
333 return "x86";
334 if (arch[0] == 'i' && arch[2] == '8' && arch[3] == '6')
335 return "x86";
336 if (!strcmp(arch, "sun4u") || !strncmp(arch, "sparc", 5))
337 return "sparc";
338 if (!strcmp(arch, "aarch64") || !strcmp(arch, "arm64"))
339 return "arm64";
340 if (!strncmp(arch, "arm", 3) || !strcmp(arch, "sa110"))
341 return "arm";
342 if (!strncmp(arch, "s390", 4))
343 return "s390";
344 if (!strncmp(arch, "parisc", 6))
345 return "parisc";
346 if (!strncmp(arch, "powerpc", 7) || !strncmp(arch, "ppc", 3))
347 return "powerpc";
348 if (!strncmp(arch, "mips", 4))
349 return "mips";
350 if (!strncmp(arch, "sh", 2) && isdigit(arch[2]))
351 return "sh";
352
353 return arch;
354}
355
356const char *perf_env__arch(struct perf_env *env)
357{
358 char *arch_name;
359
360 if (!env || !env->arch) { /* Assume local operation */
361 static struct utsname uts = { .machine[0] = '\0', };
362 if (uts.machine[0] == '\0' && uname(&uts) < 0)
363 return NULL;
364 arch_name = uts.machine;
365 } else
366 arch_name = env->arch;
367
368 return normalize_arch(arch_name);
369}
370
371
372int perf_env__numa_node(struct perf_env *env, int cpu)
373{
374 if (!env->nr_numa_map) {
375 struct numa_node *nn;
376 int i, nr = 0;
377
378 for (i = 0; i < env->nr_numa_nodes; i++) {
379 nn = &env->numa_nodes[i];
380 nr = max(nr, perf_cpu_map__max(nn->map));
381 }
382
383 nr++;
384
385 /*
386 * We initialize the numa_map array to prepare
387 * it for missing cpus, which return node -1
388 */
389 env->numa_map = malloc(nr * sizeof(int));
390 if (!env->numa_map)
391 return -1;
392
393 for (i = 0; i < nr; i++)
394 env->numa_map[i] = -1;
395
396 env->nr_numa_map = nr;
397
398 for (i = 0; i < env->nr_numa_nodes; i++) {
399 int tmp, j;
400
401 nn = &env->numa_nodes[i];
402 perf_cpu_map__for_each_cpu(j, tmp, nn->map)
403 env->numa_map[j] = i;
404 }
405 }
406
407 return cpu >= 0 && cpu < env->nr_numa_map ? env->numa_map[cpu] : -1;
408}