Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2008, 2009 Intel Corporation
4 * Authors: Andi Kleen, Fengguang Wu
5 *
6 * High level machine check handler. Handles pages reported by the
7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8 * failure.
9 *
10 * In addition there is a "soft offline" entry point that allows stop using
11 * not-yet-corrupted-by-suspicious pages without killing anything.
12 *
13 * Handles page cache pages in various states. The tricky part
14 * here is that we can access any page asynchronously in respect to
15 * other VM users, because memory failures could happen anytime and
16 * anywhere. This could violate some of their assumptions. This is why
17 * this code has to be extremely careful. Generally it tries to use
18 * normal locking rules, as in get the standard locks, even if that means
19 * the error handling takes potentially a long time.
20 *
21 * It can be very tempting to add handling for obscure cases here.
22 * In general any code for handling new cases should only be added iff:
23 * - You know how to test it.
24 * - You have a test that can be added to mce-test
25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26 * - The case actually shows up as a frequent (top 10) page state in
27 * tools/vm/page-types when running a real workload.
28 *
29 * There are several operations here with exponential complexity because
30 * of unsuitable VM data structures. For example the operation to map back
31 * from RMAP chains to processes has to walk the complete process list and
32 * has non linear complexity with the number. But since memory corruptions
33 * are rare we hope to get away with this. This avoids impacting the core
34 * VM.
35 */
36#include <linux/kernel.h>
37#include <linux/mm.h>
38#include <linux/page-flags.h>
39#include <linux/kernel-page-flags.h>
40#include <linux/sched/signal.h>
41#include <linux/sched/task.h>
42#include <linux/ksm.h>
43#include <linux/rmap.h>
44#include <linux/export.h>
45#include <linux/pagemap.h>
46#include <linux/swap.h>
47#include <linux/backing-dev.h>
48#include <linux/migrate.h>
49#include <linux/suspend.h>
50#include <linux/slab.h>
51#include <linux/swapops.h>
52#include <linux/hugetlb.h>
53#include <linux/memory_hotplug.h>
54#include <linux/mm_inline.h>
55#include <linux/memremap.h>
56#include <linux/kfifo.h>
57#include <linux/ratelimit.h>
58#include <linux/page-isolation.h>
59#include "internal.h"
60#include "ras/ras_event.h"
61
62int sysctl_memory_failure_early_kill __read_mostly = 0;
63
64int sysctl_memory_failure_recovery __read_mostly = 1;
65
66atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
67
68static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
69{
70 if (hugepage_or_freepage) {
71 /*
72 * Doing this check for free pages is also fine since dissolve_free_huge_page
73 * returns 0 for non-hugetlb pages as well.
74 */
75 if (dissolve_free_huge_page(page) || !take_page_off_buddy(page))
76 /*
77 * We could fail to take off the target page from buddy
78 * for example due to racy page allocation, but that's
79 * acceptable because soft-offlined page is not broken
80 * and if someone really want to use it, they should
81 * take it.
82 */
83 return false;
84 }
85
86 SetPageHWPoison(page);
87 if (release)
88 put_page(page);
89 page_ref_inc(page);
90 num_poisoned_pages_inc();
91
92 return true;
93}
94
95#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
96
97u32 hwpoison_filter_enable = 0;
98u32 hwpoison_filter_dev_major = ~0U;
99u32 hwpoison_filter_dev_minor = ~0U;
100u64 hwpoison_filter_flags_mask;
101u64 hwpoison_filter_flags_value;
102EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
103EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
104EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
105EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
106EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
107
108static int hwpoison_filter_dev(struct page *p)
109{
110 struct address_space *mapping;
111 dev_t dev;
112
113 if (hwpoison_filter_dev_major == ~0U &&
114 hwpoison_filter_dev_minor == ~0U)
115 return 0;
116
117 /*
118 * page_mapping() does not accept slab pages.
119 */
120 if (PageSlab(p))
121 return -EINVAL;
122
123 mapping = page_mapping(p);
124 if (mapping == NULL || mapping->host == NULL)
125 return -EINVAL;
126
127 dev = mapping->host->i_sb->s_dev;
128 if (hwpoison_filter_dev_major != ~0U &&
129 hwpoison_filter_dev_major != MAJOR(dev))
130 return -EINVAL;
131 if (hwpoison_filter_dev_minor != ~0U &&
132 hwpoison_filter_dev_minor != MINOR(dev))
133 return -EINVAL;
134
135 return 0;
136}
137
138static int hwpoison_filter_flags(struct page *p)
139{
140 if (!hwpoison_filter_flags_mask)
141 return 0;
142
143 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
144 hwpoison_filter_flags_value)
145 return 0;
146 else
147 return -EINVAL;
148}
149
150/*
151 * This allows stress tests to limit test scope to a collection of tasks
152 * by putting them under some memcg. This prevents killing unrelated/important
153 * processes such as /sbin/init. Note that the target task may share clean
154 * pages with init (eg. libc text), which is harmless. If the target task
155 * share _dirty_ pages with another task B, the test scheme must make sure B
156 * is also included in the memcg. At last, due to race conditions this filter
157 * can only guarantee that the page either belongs to the memcg tasks, or is
158 * a freed page.
159 */
160#ifdef CONFIG_MEMCG
161u64 hwpoison_filter_memcg;
162EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
163static int hwpoison_filter_task(struct page *p)
164{
165 if (!hwpoison_filter_memcg)
166 return 0;
167
168 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
169 return -EINVAL;
170
171 return 0;
172}
173#else
174static int hwpoison_filter_task(struct page *p) { return 0; }
175#endif
176
177int hwpoison_filter(struct page *p)
178{
179 if (!hwpoison_filter_enable)
180 return 0;
181
182 if (hwpoison_filter_dev(p))
183 return -EINVAL;
184
185 if (hwpoison_filter_flags(p))
186 return -EINVAL;
187
188 if (hwpoison_filter_task(p))
189 return -EINVAL;
190
191 return 0;
192}
193#else
194int hwpoison_filter(struct page *p)
195{
196 return 0;
197}
198#endif
199
200EXPORT_SYMBOL_GPL(hwpoison_filter);
201
202/*
203 * Kill all processes that have a poisoned page mapped and then isolate
204 * the page.
205 *
206 * General strategy:
207 * Find all processes having the page mapped and kill them.
208 * But we keep a page reference around so that the page is not
209 * actually freed yet.
210 * Then stash the page away
211 *
212 * There's no convenient way to get back to mapped processes
213 * from the VMAs. So do a brute-force search over all
214 * running processes.
215 *
216 * Remember that machine checks are not common (or rather
217 * if they are common you have other problems), so this shouldn't
218 * be a performance issue.
219 *
220 * Also there are some races possible while we get from the
221 * error detection to actually handle it.
222 */
223
224struct to_kill {
225 struct list_head nd;
226 struct task_struct *tsk;
227 unsigned long addr;
228 short size_shift;
229};
230
231/*
232 * Send all the processes who have the page mapped a signal.
233 * ``action optional'' if they are not immediately affected by the error
234 * ``action required'' if error happened in current execution context
235 */
236static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
237{
238 struct task_struct *t = tk->tsk;
239 short addr_lsb = tk->size_shift;
240 int ret = 0;
241
242 pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
243 pfn, t->comm, t->pid);
244
245 if (flags & MF_ACTION_REQUIRED) {
246 if (t == current)
247 ret = force_sig_mceerr(BUS_MCEERR_AR,
248 (void __user *)tk->addr, addr_lsb);
249 else
250 /* Signal other processes sharing the page if they have PF_MCE_EARLY set. */
251 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
252 addr_lsb, t);
253 } else {
254 /*
255 * Don't use force here, it's convenient if the signal
256 * can be temporarily blocked.
257 * This could cause a loop when the user sets SIGBUS
258 * to SIG_IGN, but hopefully no one will do that?
259 */
260 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
261 addr_lsb, t); /* synchronous? */
262 }
263 if (ret < 0)
264 pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
265 t->comm, t->pid, ret);
266 return ret;
267}
268
269/*
270 * Unknown page type encountered. Try to check whether it can turn PageLRU by
271 * lru_add_drain_all, or a free page by reclaiming slabs when possible.
272 */
273void shake_page(struct page *p, int access)
274{
275 if (PageHuge(p))
276 return;
277
278 if (!PageSlab(p)) {
279 lru_add_drain_all();
280 if (PageLRU(p) || is_free_buddy_page(p))
281 return;
282 }
283
284 /*
285 * Only call shrink_node_slabs here (which would also shrink
286 * other caches) if access is not potentially fatal.
287 */
288 if (access)
289 drop_slab_node(page_to_nid(p));
290}
291EXPORT_SYMBOL_GPL(shake_page);
292
293static unsigned long dev_pagemap_mapping_shift(struct page *page,
294 struct vm_area_struct *vma)
295{
296 unsigned long address = vma_address(page, vma);
297 pgd_t *pgd;
298 p4d_t *p4d;
299 pud_t *pud;
300 pmd_t *pmd;
301 pte_t *pte;
302
303 pgd = pgd_offset(vma->vm_mm, address);
304 if (!pgd_present(*pgd))
305 return 0;
306 p4d = p4d_offset(pgd, address);
307 if (!p4d_present(*p4d))
308 return 0;
309 pud = pud_offset(p4d, address);
310 if (!pud_present(*pud))
311 return 0;
312 if (pud_devmap(*pud))
313 return PUD_SHIFT;
314 pmd = pmd_offset(pud, address);
315 if (!pmd_present(*pmd))
316 return 0;
317 if (pmd_devmap(*pmd))
318 return PMD_SHIFT;
319 pte = pte_offset_map(pmd, address);
320 if (!pte_present(*pte))
321 return 0;
322 if (pte_devmap(*pte))
323 return PAGE_SHIFT;
324 return 0;
325}
326
327/*
328 * Failure handling: if we can't find or can't kill a process there's
329 * not much we can do. We just print a message and ignore otherwise.
330 */
331
332/*
333 * Schedule a process for later kill.
334 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
335 */
336static void add_to_kill(struct task_struct *tsk, struct page *p,
337 struct vm_area_struct *vma,
338 struct list_head *to_kill)
339{
340 struct to_kill *tk;
341
342 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
343 if (!tk) {
344 pr_err("Memory failure: Out of memory while machine check handling\n");
345 return;
346 }
347
348 tk->addr = page_address_in_vma(p, vma);
349 if (is_zone_device_page(p))
350 tk->size_shift = dev_pagemap_mapping_shift(p, vma);
351 else
352 tk->size_shift = page_shift(compound_head(p));
353
354 /*
355 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
356 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
357 * so "tk->size_shift == 0" effectively checks no mapping on
358 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
359 * to a process' address space, it's possible not all N VMAs
360 * contain mappings for the page, but at least one VMA does.
361 * Only deliver SIGBUS with payload derived from the VMA that
362 * has a mapping for the page.
363 */
364 if (tk->addr == -EFAULT) {
365 pr_info("Memory failure: Unable to find user space address %lx in %s\n",
366 page_to_pfn(p), tsk->comm);
367 } else if (tk->size_shift == 0) {
368 kfree(tk);
369 return;
370 }
371
372 get_task_struct(tsk);
373 tk->tsk = tsk;
374 list_add_tail(&tk->nd, to_kill);
375}
376
377/*
378 * Kill the processes that have been collected earlier.
379 *
380 * Only do anything when DOIT is set, otherwise just free the list
381 * (this is used for clean pages which do not need killing)
382 * Also when FAIL is set do a force kill because something went
383 * wrong earlier.
384 */
385static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
386 unsigned long pfn, int flags)
387{
388 struct to_kill *tk, *next;
389
390 list_for_each_entry_safe (tk, next, to_kill, nd) {
391 if (forcekill) {
392 /*
393 * In case something went wrong with munmapping
394 * make sure the process doesn't catch the
395 * signal and then access the memory. Just kill it.
396 */
397 if (fail || tk->addr == -EFAULT) {
398 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
399 pfn, tk->tsk->comm, tk->tsk->pid);
400 do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
401 tk->tsk, PIDTYPE_PID);
402 }
403
404 /*
405 * In theory the process could have mapped
406 * something else on the address in-between. We could
407 * check for that, but we need to tell the
408 * process anyways.
409 */
410 else if (kill_proc(tk, pfn, flags) < 0)
411 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
412 pfn, tk->tsk->comm, tk->tsk->pid);
413 }
414 put_task_struct(tk->tsk);
415 kfree(tk);
416 }
417}
418
419/*
420 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
421 * on behalf of the thread group. Return task_struct of the (first found)
422 * dedicated thread if found, and return NULL otherwise.
423 *
424 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
425 * have to call rcu_read_lock/unlock() in this function.
426 */
427static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
428{
429 struct task_struct *t;
430
431 for_each_thread(tsk, t) {
432 if (t->flags & PF_MCE_PROCESS) {
433 if (t->flags & PF_MCE_EARLY)
434 return t;
435 } else {
436 if (sysctl_memory_failure_early_kill)
437 return t;
438 }
439 }
440 return NULL;
441}
442
443/*
444 * Determine whether a given process is "early kill" process which expects
445 * to be signaled when some page under the process is hwpoisoned.
446 * Return task_struct of the dedicated thread (main thread unless explicitly
447 * specified) if the process is "early kill" and otherwise returns NULL.
448 *
449 * Note that the above is true for Action Optional case. For Action Required
450 * case, it's only meaningful to the current thread which need to be signaled
451 * with SIGBUS, this error is Action Optional for other non current
452 * processes sharing the same error page,if the process is "early kill", the
453 * task_struct of the dedicated thread will also be returned.
454 */
455static struct task_struct *task_early_kill(struct task_struct *tsk,
456 int force_early)
457{
458 if (!tsk->mm)
459 return NULL;
460 /*
461 * Comparing ->mm here because current task might represent
462 * a subthread, while tsk always points to the main thread.
463 */
464 if (force_early && tsk->mm == current->mm)
465 return current;
466
467 return find_early_kill_thread(tsk);
468}
469
470/*
471 * Collect processes when the error hit an anonymous page.
472 */
473static void collect_procs_anon(struct page *page, struct list_head *to_kill,
474 int force_early)
475{
476 struct vm_area_struct *vma;
477 struct task_struct *tsk;
478 struct anon_vma *av;
479 pgoff_t pgoff;
480
481 av = page_lock_anon_vma_read(page);
482 if (av == NULL) /* Not actually mapped anymore */
483 return;
484
485 pgoff = page_to_pgoff(page);
486 read_lock(&tasklist_lock);
487 for_each_process (tsk) {
488 struct anon_vma_chain *vmac;
489 struct task_struct *t = task_early_kill(tsk, force_early);
490
491 if (!t)
492 continue;
493 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
494 pgoff, pgoff) {
495 vma = vmac->vma;
496 if (!page_mapped_in_vma(page, vma))
497 continue;
498 if (vma->vm_mm == t->mm)
499 add_to_kill(t, page, vma, to_kill);
500 }
501 }
502 read_unlock(&tasklist_lock);
503 page_unlock_anon_vma_read(av);
504}
505
506/*
507 * Collect processes when the error hit a file mapped page.
508 */
509static void collect_procs_file(struct page *page, struct list_head *to_kill,
510 int force_early)
511{
512 struct vm_area_struct *vma;
513 struct task_struct *tsk;
514 struct address_space *mapping = page->mapping;
515 pgoff_t pgoff;
516
517 i_mmap_lock_read(mapping);
518 read_lock(&tasklist_lock);
519 pgoff = page_to_pgoff(page);
520 for_each_process(tsk) {
521 struct task_struct *t = task_early_kill(tsk, force_early);
522
523 if (!t)
524 continue;
525 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
526 pgoff) {
527 /*
528 * Send early kill signal to tasks where a vma covers
529 * the page but the corrupted page is not necessarily
530 * mapped it in its pte.
531 * Assume applications who requested early kill want
532 * to be informed of all such data corruptions.
533 */
534 if (vma->vm_mm == t->mm)
535 add_to_kill(t, page, vma, to_kill);
536 }
537 }
538 read_unlock(&tasklist_lock);
539 i_mmap_unlock_read(mapping);
540}
541
542/*
543 * Collect the processes who have the corrupted page mapped to kill.
544 */
545static void collect_procs(struct page *page, struct list_head *tokill,
546 int force_early)
547{
548 if (!page->mapping)
549 return;
550
551 if (PageAnon(page))
552 collect_procs_anon(page, tokill, force_early);
553 else
554 collect_procs_file(page, tokill, force_early);
555}
556
557static const char *action_name[] = {
558 [MF_IGNORED] = "Ignored",
559 [MF_FAILED] = "Failed",
560 [MF_DELAYED] = "Delayed",
561 [MF_RECOVERED] = "Recovered",
562};
563
564static const char * const action_page_types[] = {
565 [MF_MSG_KERNEL] = "reserved kernel page",
566 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
567 [MF_MSG_SLAB] = "kernel slab page",
568 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
569 [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned",
570 [MF_MSG_HUGE] = "huge page",
571 [MF_MSG_FREE_HUGE] = "free huge page",
572 [MF_MSG_NON_PMD_HUGE] = "non-pmd-sized huge page",
573 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
574 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
575 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
576 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
577 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
578 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
579 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
580 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
581 [MF_MSG_CLEAN_LRU] = "clean LRU page",
582 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
583 [MF_MSG_BUDDY] = "free buddy page",
584 [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)",
585 [MF_MSG_DAX] = "dax page",
586 [MF_MSG_UNSPLIT_THP] = "unsplit thp",
587 [MF_MSG_UNKNOWN] = "unknown page",
588};
589
590/*
591 * XXX: It is possible that a page is isolated from LRU cache,
592 * and then kept in swap cache or failed to remove from page cache.
593 * The page count will stop it from being freed by unpoison.
594 * Stress tests should be aware of this memory leak problem.
595 */
596static int delete_from_lru_cache(struct page *p)
597{
598 if (!isolate_lru_page(p)) {
599 /*
600 * Clear sensible page flags, so that the buddy system won't
601 * complain when the page is unpoison-and-freed.
602 */
603 ClearPageActive(p);
604 ClearPageUnevictable(p);
605
606 /*
607 * Poisoned page might never drop its ref count to 0 so we have
608 * to uncharge it manually from its memcg.
609 */
610 mem_cgroup_uncharge(p);
611
612 /*
613 * drop the page count elevated by isolate_lru_page()
614 */
615 put_page(p);
616 return 0;
617 }
618 return -EIO;
619}
620
621static int truncate_error_page(struct page *p, unsigned long pfn,
622 struct address_space *mapping)
623{
624 int ret = MF_FAILED;
625
626 if (mapping->a_ops->error_remove_page) {
627 int err = mapping->a_ops->error_remove_page(mapping, p);
628
629 if (err != 0) {
630 pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
631 pfn, err);
632 } else if (page_has_private(p) &&
633 !try_to_release_page(p, GFP_NOIO)) {
634 pr_info("Memory failure: %#lx: failed to release buffers\n",
635 pfn);
636 } else {
637 ret = MF_RECOVERED;
638 }
639 } else {
640 /*
641 * If the file system doesn't support it just invalidate
642 * This fails on dirty or anything with private pages
643 */
644 if (invalidate_inode_page(p))
645 ret = MF_RECOVERED;
646 else
647 pr_info("Memory failure: %#lx: Failed to invalidate\n",
648 pfn);
649 }
650
651 return ret;
652}
653
654/*
655 * Error hit kernel page.
656 * Do nothing, try to be lucky and not touch this instead. For a few cases we
657 * could be more sophisticated.
658 */
659static int me_kernel(struct page *p, unsigned long pfn)
660{
661 return MF_IGNORED;
662}
663
664/*
665 * Page in unknown state. Do nothing.
666 */
667static int me_unknown(struct page *p, unsigned long pfn)
668{
669 pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
670 return MF_FAILED;
671}
672
673/*
674 * Clean (or cleaned) page cache page.
675 */
676static int me_pagecache_clean(struct page *p, unsigned long pfn)
677{
678 struct address_space *mapping;
679
680 delete_from_lru_cache(p);
681
682 /*
683 * For anonymous pages we're done the only reference left
684 * should be the one m_f() holds.
685 */
686 if (PageAnon(p))
687 return MF_RECOVERED;
688
689 /*
690 * Now truncate the page in the page cache. This is really
691 * more like a "temporary hole punch"
692 * Don't do this for block devices when someone else
693 * has a reference, because it could be file system metadata
694 * and that's not safe to truncate.
695 */
696 mapping = page_mapping(p);
697 if (!mapping) {
698 /*
699 * Page has been teared down in the meanwhile
700 */
701 return MF_FAILED;
702 }
703
704 /*
705 * Truncation is a bit tricky. Enable it per file system for now.
706 *
707 * Open: to take i_mutex or not for this? Right now we don't.
708 */
709 return truncate_error_page(p, pfn, mapping);
710}
711
712/*
713 * Dirty pagecache page
714 * Issues: when the error hit a hole page the error is not properly
715 * propagated.
716 */
717static int me_pagecache_dirty(struct page *p, unsigned long pfn)
718{
719 struct address_space *mapping = page_mapping(p);
720
721 SetPageError(p);
722 /* TBD: print more information about the file. */
723 if (mapping) {
724 /*
725 * IO error will be reported by write(), fsync(), etc.
726 * who check the mapping.
727 * This way the application knows that something went
728 * wrong with its dirty file data.
729 *
730 * There's one open issue:
731 *
732 * The EIO will be only reported on the next IO
733 * operation and then cleared through the IO map.
734 * Normally Linux has two mechanisms to pass IO error
735 * first through the AS_EIO flag in the address space
736 * and then through the PageError flag in the page.
737 * Since we drop pages on memory failure handling the
738 * only mechanism open to use is through AS_AIO.
739 *
740 * This has the disadvantage that it gets cleared on
741 * the first operation that returns an error, while
742 * the PageError bit is more sticky and only cleared
743 * when the page is reread or dropped. If an
744 * application assumes it will always get error on
745 * fsync, but does other operations on the fd before
746 * and the page is dropped between then the error
747 * will not be properly reported.
748 *
749 * This can already happen even without hwpoisoned
750 * pages: first on metadata IO errors (which only
751 * report through AS_EIO) or when the page is dropped
752 * at the wrong time.
753 *
754 * So right now we assume that the application DTRT on
755 * the first EIO, but we're not worse than other parts
756 * of the kernel.
757 */
758 mapping_set_error(mapping, -EIO);
759 }
760
761 return me_pagecache_clean(p, pfn);
762}
763
764/*
765 * Clean and dirty swap cache.
766 *
767 * Dirty swap cache page is tricky to handle. The page could live both in page
768 * cache and swap cache(ie. page is freshly swapped in). So it could be
769 * referenced concurrently by 2 types of PTEs:
770 * normal PTEs and swap PTEs. We try to handle them consistently by calling
771 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
772 * and then
773 * - clear dirty bit to prevent IO
774 * - remove from LRU
775 * - but keep in the swap cache, so that when we return to it on
776 * a later page fault, we know the application is accessing
777 * corrupted data and shall be killed (we installed simple
778 * interception code in do_swap_page to catch it).
779 *
780 * Clean swap cache pages can be directly isolated. A later page fault will
781 * bring in the known good data from disk.
782 */
783static int me_swapcache_dirty(struct page *p, unsigned long pfn)
784{
785 ClearPageDirty(p);
786 /* Trigger EIO in shmem: */
787 ClearPageUptodate(p);
788
789 if (!delete_from_lru_cache(p))
790 return MF_DELAYED;
791 else
792 return MF_FAILED;
793}
794
795static int me_swapcache_clean(struct page *p, unsigned long pfn)
796{
797 delete_from_swap_cache(p);
798
799 if (!delete_from_lru_cache(p))
800 return MF_RECOVERED;
801 else
802 return MF_FAILED;
803}
804
805/*
806 * Huge pages. Needs work.
807 * Issues:
808 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
809 * To narrow down kill region to one page, we need to break up pmd.
810 */
811static int me_huge_page(struct page *p, unsigned long pfn)
812{
813 int res;
814 struct page *hpage = compound_head(p);
815 struct address_space *mapping;
816
817 if (!PageHuge(hpage))
818 return MF_DELAYED;
819
820 mapping = page_mapping(hpage);
821 if (mapping) {
822 res = truncate_error_page(hpage, pfn, mapping);
823 } else {
824 res = MF_FAILED;
825 unlock_page(hpage);
826 /*
827 * migration entry prevents later access on error anonymous
828 * hugepage, so we can free and dissolve it into buddy to
829 * save healthy subpages.
830 */
831 if (PageAnon(hpage))
832 put_page(hpage);
833 if (!dissolve_free_huge_page(p) && take_page_off_buddy(p)) {
834 page_ref_inc(p);
835 res = MF_RECOVERED;
836 }
837 lock_page(hpage);
838 }
839
840 return res;
841}
842
843/*
844 * Various page states we can handle.
845 *
846 * A page state is defined by its current page->flags bits.
847 * The table matches them in order and calls the right handler.
848 *
849 * This is quite tricky because we can access page at any time
850 * in its live cycle, so all accesses have to be extremely careful.
851 *
852 * This is not complete. More states could be added.
853 * For any missing state don't attempt recovery.
854 */
855
856#define dirty (1UL << PG_dirty)
857#define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
858#define unevict (1UL << PG_unevictable)
859#define mlock (1UL << PG_mlocked)
860#define lru (1UL << PG_lru)
861#define head (1UL << PG_head)
862#define slab (1UL << PG_slab)
863#define reserved (1UL << PG_reserved)
864
865static struct page_state {
866 unsigned long mask;
867 unsigned long res;
868 enum mf_action_page_type type;
869 int (*action)(struct page *p, unsigned long pfn);
870} error_states[] = {
871 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
872 /*
873 * free pages are specially detected outside this table:
874 * PG_buddy pages only make a small fraction of all free pages.
875 */
876
877 /*
878 * Could in theory check if slab page is free or if we can drop
879 * currently unused objects without touching them. But just
880 * treat it as standard kernel for now.
881 */
882 { slab, slab, MF_MSG_SLAB, me_kernel },
883
884 { head, head, MF_MSG_HUGE, me_huge_page },
885
886 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
887 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
888
889 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
890 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
891
892 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
893 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
894
895 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
896 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
897
898 /*
899 * Catchall entry: must be at end.
900 */
901 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
902};
903
904#undef dirty
905#undef sc
906#undef unevict
907#undef mlock
908#undef lru
909#undef head
910#undef slab
911#undef reserved
912
913/*
914 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
915 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
916 */
917static void action_result(unsigned long pfn, enum mf_action_page_type type,
918 enum mf_result result)
919{
920 trace_memory_failure_event(pfn, type, result);
921
922 pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
923 pfn, action_page_types[type], action_name[result]);
924}
925
926static int page_action(struct page_state *ps, struct page *p,
927 unsigned long pfn)
928{
929 int result;
930 int count;
931
932 result = ps->action(p, pfn);
933
934 count = page_count(p) - 1;
935 if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
936 count--;
937 if (count > 0) {
938 pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
939 pfn, action_page_types[ps->type], count);
940 result = MF_FAILED;
941 }
942 action_result(pfn, ps->type, result);
943
944 /* Could do more checks here if page looks ok */
945 /*
946 * Could adjust zone counters here to correct for the missing page.
947 */
948
949 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
950}
951
952/*
953 * Return true if a page type of a given page is supported by hwpoison
954 * mechanism (while handling could fail), otherwise false. This function
955 * does not return true for hugetlb or device memory pages, so it's assumed
956 * to be called only in the context where we never have such pages.
957 */
958static inline bool HWPoisonHandlable(struct page *page)
959{
960 return PageLRU(page) || __PageMovable(page);
961}
962
963/**
964 * __get_hwpoison_page() - Get refcount for memory error handling:
965 * @page: raw error page (hit by memory error)
966 *
967 * Return: return 0 if failed to grab the refcount, otherwise true (some
968 * non-zero value.)
969 */
970static int __get_hwpoison_page(struct page *page)
971{
972 struct page *head = compound_head(page);
973 int ret = 0;
974 bool hugetlb = false;
975
976 ret = get_hwpoison_huge_page(head, &hugetlb);
977 if (hugetlb)
978 return ret;
979
980 /*
981 * This check prevents from calling get_hwpoison_unless_zero()
982 * for any unsupported type of page in order to reduce the risk of
983 * unexpected races caused by taking a page refcount.
984 */
985 if (!HWPoisonHandlable(head))
986 return 0;
987
988 if (PageTransHuge(head)) {
989 /*
990 * Non anonymous thp exists only in allocation/free time. We
991 * can't handle such a case correctly, so let's give it up.
992 * This should be better than triggering BUG_ON when kernel
993 * tries to touch the "partially handled" page.
994 */
995 if (!PageAnon(head)) {
996 pr_err("Memory failure: %#lx: non anonymous thp\n",
997 page_to_pfn(page));
998 return 0;
999 }
1000 }
1001
1002 if (get_page_unless_zero(head)) {
1003 if (head == compound_head(page))
1004 return 1;
1005
1006 pr_info("Memory failure: %#lx cannot catch tail\n",
1007 page_to_pfn(page));
1008 put_page(head);
1009 }
1010
1011 return 0;
1012}
1013
1014/*
1015 * Safely get reference count of an arbitrary page.
1016 *
1017 * Returns 0 for a free page, 1 for an in-use page,
1018 * -EIO for a page-type we cannot handle and -EBUSY if we raced with an
1019 * allocation.
1020 * We only incremented refcount in case the page was already in-use and it
1021 * is a known type we can handle.
1022 */
1023static int get_any_page(struct page *p, unsigned long flags)
1024{
1025 int ret = 0, pass = 0;
1026 bool count_increased = false;
1027
1028 if (flags & MF_COUNT_INCREASED)
1029 count_increased = true;
1030
1031try_again:
1032 if (!count_increased && !__get_hwpoison_page(p)) {
1033 if (page_count(p)) {
1034 /* We raced with an allocation, retry. */
1035 if (pass++ < 3)
1036 goto try_again;
1037 ret = -EBUSY;
1038 } else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1039 /* We raced with put_page, retry. */
1040 if (pass++ < 3)
1041 goto try_again;
1042 ret = -EIO;
1043 }
1044 } else {
1045 if (PageHuge(p) || HWPoisonHandlable(p)) {
1046 ret = 1;
1047 } else {
1048 /*
1049 * A page we cannot handle. Check whether we can turn
1050 * it into something we can handle.
1051 */
1052 if (pass++ < 3) {
1053 put_page(p);
1054 shake_page(p, 1);
1055 count_increased = false;
1056 goto try_again;
1057 }
1058 put_page(p);
1059 ret = -EIO;
1060 }
1061 }
1062
1063 return ret;
1064}
1065
1066static int get_hwpoison_page(struct page *p, unsigned long flags,
1067 enum mf_flags ctxt)
1068{
1069 int ret;
1070
1071 zone_pcp_disable(page_zone(p));
1072 if (ctxt == MF_SOFT_OFFLINE)
1073 ret = get_any_page(p, flags);
1074 else
1075 ret = __get_hwpoison_page(p);
1076 zone_pcp_enable(page_zone(p));
1077
1078 return ret;
1079}
1080
1081/*
1082 * Do all that is necessary to remove user space mappings. Unmap
1083 * the pages and send SIGBUS to the processes if the data was dirty.
1084 */
1085static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
1086 int flags, struct page **hpagep)
1087{
1088 enum ttu_flags ttu = TTU_IGNORE_MLOCK;
1089 struct address_space *mapping;
1090 LIST_HEAD(tokill);
1091 bool unmap_success = true;
1092 int kill = 1, forcekill;
1093 struct page *hpage = *hpagep;
1094 bool mlocked = PageMlocked(hpage);
1095
1096 /*
1097 * Here we are interested only in user-mapped pages, so skip any
1098 * other types of pages.
1099 */
1100 if (PageReserved(p) || PageSlab(p))
1101 return true;
1102 if (!(PageLRU(hpage) || PageHuge(p)))
1103 return true;
1104
1105 /*
1106 * This check implies we don't kill processes if their pages
1107 * are in the swap cache early. Those are always late kills.
1108 */
1109 if (!page_mapped(hpage))
1110 return true;
1111
1112 if (PageKsm(p)) {
1113 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
1114 return false;
1115 }
1116
1117 if (PageSwapCache(p)) {
1118 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
1119 pfn);
1120 ttu |= TTU_IGNORE_HWPOISON;
1121 }
1122
1123 /*
1124 * Propagate the dirty bit from PTEs to struct page first, because we
1125 * need this to decide if we should kill or just drop the page.
1126 * XXX: the dirty test could be racy: set_page_dirty() may not always
1127 * be called inside page lock (it's recommended but not enforced).
1128 */
1129 mapping = page_mapping(hpage);
1130 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1131 mapping_can_writeback(mapping)) {
1132 if (page_mkclean(hpage)) {
1133 SetPageDirty(hpage);
1134 } else {
1135 kill = 0;
1136 ttu |= TTU_IGNORE_HWPOISON;
1137 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
1138 pfn);
1139 }
1140 }
1141
1142 /*
1143 * First collect all the processes that have the page
1144 * mapped in dirty form. This has to be done before try_to_unmap,
1145 * because ttu takes the rmap data structures down.
1146 *
1147 * Error handling: We ignore errors here because
1148 * there's nothing that can be done.
1149 */
1150 if (kill)
1151 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1152
1153 if (!PageHuge(hpage)) {
1154 unmap_success = try_to_unmap(hpage, ttu);
1155 } else {
1156 if (!PageAnon(hpage)) {
1157 /*
1158 * For hugetlb pages in shared mappings, try_to_unmap
1159 * could potentially call huge_pmd_unshare. Because of
1160 * this, take semaphore in write mode here and set
1161 * TTU_RMAP_LOCKED to indicate we have taken the lock
1162 * at this higer level.
1163 */
1164 mapping = hugetlb_page_mapping_lock_write(hpage);
1165 if (mapping) {
1166 unmap_success = try_to_unmap(hpage,
1167 ttu|TTU_RMAP_LOCKED);
1168 i_mmap_unlock_write(mapping);
1169 } else {
1170 pr_info("Memory failure: %#lx: could not lock mapping for mapped huge page\n", pfn);
1171 unmap_success = false;
1172 }
1173 } else {
1174 unmap_success = try_to_unmap(hpage, ttu);
1175 }
1176 }
1177 if (!unmap_success)
1178 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1179 pfn, page_mapcount(hpage));
1180
1181 /*
1182 * try_to_unmap() might put mlocked page in lru cache, so call
1183 * shake_page() again to ensure that it's flushed.
1184 */
1185 if (mlocked)
1186 shake_page(hpage, 0);
1187
1188 /*
1189 * Now that the dirty bit has been propagated to the
1190 * struct page and all unmaps done we can decide if
1191 * killing is needed or not. Only kill when the page
1192 * was dirty or the process is not restartable,
1193 * otherwise the tokill list is merely
1194 * freed. When there was a problem unmapping earlier
1195 * use a more force-full uncatchable kill to prevent
1196 * any accesses to the poisoned memory.
1197 */
1198 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1199 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1200
1201 return unmap_success;
1202}
1203
1204static int identify_page_state(unsigned long pfn, struct page *p,
1205 unsigned long page_flags)
1206{
1207 struct page_state *ps;
1208
1209 /*
1210 * The first check uses the current page flags which may not have any
1211 * relevant information. The second check with the saved page flags is
1212 * carried out only if the first check can't determine the page status.
1213 */
1214 for (ps = error_states;; ps++)
1215 if ((p->flags & ps->mask) == ps->res)
1216 break;
1217
1218 page_flags |= (p->flags & (1UL << PG_dirty));
1219
1220 if (!ps->mask)
1221 for (ps = error_states;; ps++)
1222 if ((page_flags & ps->mask) == ps->res)
1223 break;
1224 return page_action(ps, p, pfn);
1225}
1226
1227static int try_to_split_thp_page(struct page *page, const char *msg)
1228{
1229 lock_page(page);
1230 if (!PageAnon(page) || unlikely(split_huge_page(page))) {
1231 unsigned long pfn = page_to_pfn(page);
1232
1233 unlock_page(page);
1234 if (!PageAnon(page))
1235 pr_info("%s: %#lx: non anonymous thp\n", msg, pfn);
1236 else
1237 pr_info("%s: %#lx: thp split failed\n", msg, pfn);
1238 put_page(page);
1239 return -EBUSY;
1240 }
1241 unlock_page(page);
1242
1243 return 0;
1244}
1245
1246static int memory_failure_hugetlb(unsigned long pfn, int flags)
1247{
1248 struct page *p = pfn_to_page(pfn);
1249 struct page *head = compound_head(p);
1250 int res;
1251 unsigned long page_flags;
1252
1253 if (TestSetPageHWPoison(head)) {
1254 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1255 pfn);
1256 return 0;
1257 }
1258
1259 num_poisoned_pages_inc();
1260
1261 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p, flags, 0)) {
1262 /*
1263 * Check "filter hit" and "race with other subpage."
1264 */
1265 lock_page(head);
1266 if (PageHWPoison(head)) {
1267 if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1268 || (p != head && TestSetPageHWPoison(head))) {
1269 num_poisoned_pages_dec();
1270 unlock_page(head);
1271 return 0;
1272 }
1273 }
1274 unlock_page(head);
1275 res = MF_FAILED;
1276 if (!dissolve_free_huge_page(p) && take_page_off_buddy(p)) {
1277 page_ref_inc(p);
1278 res = MF_RECOVERED;
1279 }
1280 action_result(pfn, MF_MSG_FREE_HUGE, res);
1281 return res == MF_RECOVERED ? 0 : -EBUSY;
1282 }
1283
1284 lock_page(head);
1285 page_flags = head->flags;
1286
1287 if (!PageHWPoison(head)) {
1288 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1289 num_poisoned_pages_dec();
1290 unlock_page(head);
1291 put_page(head);
1292 return 0;
1293 }
1294
1295 /*
1296 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1297 * simply disable it. In order to make it work properly, we need
1298 * make sure that:
1299 * - conversion of a pud that maps an error hugetlb into hwpoison
1300 * entry properly works, and
1301 * - other mm code walking over page table is aware of pud-aligned
1302 * hwpoison entries.
1303 */
1304 if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1305 action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1306 res = -EBUSY;
1307 goto out;
1308 }
1309
1310 if (!hwpoison_user_mappings(p, pfn, flags, &head)) {
1311 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1312 res = -EBUSY;
1313 goto out;
1314 }
1315
1316 res = identify_page_state(pfn, p, page_flags);
1317out:
1318 unlock_page(head);
1319 return res;
1320}
1321
1322static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
1323 struct dev_pagemap *pgmap)
1324{
1325 struct page *page = pfn_to_page(pfn);
1326 const bool unmap_success = true;
1327 unsigned long size = 0;
1328 struct to_kill *tk;
1329 LIST_HEAD(tokill);
1330 int rc = -EBUSY;
1331 loff_t start;
1332 dax_entry_t cookie;
1333
1334 if (flags & MF_COUNT_INCREASED)
1335 /*
1336 * Drop the extra refcount in case we come from madvise().
1337 */
1338 put_page(page);
1339
1340 /* device metadata space is not recoverable */
1341 if (!pgmap_pfn_valid(pgmap, pfn)) {
1342 rc = -ENXIO;
1343 goto out;
1344 }
1345
1346 /*
1347 * Prevent the inode from being freed while we are interrogating
1348 * the address_space, typically this would be handled by
1349 * lock_page(), but dax pages do not use the page lock. This
1350 * also prevents changes to the mapping of this pfn until
1351 * poison signaling is complete.
1352 */
1353 cookie = dax_lock_page(page);
1354 if (!cookie)
1355 goto out;
1356
1357 if (hwpoison_filter(page)) {
1358 rc = 0;
1359 goto unlock;
1360 }
1361
1362 if (pgmap->type == MEMORY_DEVICE_PRIVATE) {
1363 /*
1364 * TODO: Handle HMM pages which may need coordination
1365 * with device-side memory.
1366 */
1367 goto unlock;
1368 }
1369
1370 /*
1371 * Use this flag as an indication that the dax page has been
1372 * remapped UC to prevent speculative consumption of poison.
1373 */
1374 SetPageHWPoison(page);
1375
1376 /*
1377 * Unlike System-RAM there is no possibility to swap in a
1378 * different physical page at a given virtual address, so all
1379 * userspace consumption of ZONE_DEVICE memory necessitates
1380 * SIGBUS (i.e. MF_MUST_KILL)
1381 */
1382 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1383 collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED);
1384
1385 list_for_each_entry(tk, &tokill, nd)
1386 if (tk->size_shift)
1387 size = max(size, 1UL << tk->size_shift);
1388 if (size) {
1389 /*
1390 * Unmap the largest mapping to avoid breaking up
1391 * device-dax mappings which are constant size. The
1392 * actual size of the mapping being torn down is
1393 * communicated in siginfo, see kill_proc()
1394 */
1395 start = (page->index << PAGE_SHIFT) & ~(size - 1);
1396 unmap_mapping_range(page->mapping, start, size, 0);
1397 }
1398 kill_procs(&tokill, flags & MF_MUST_KILL, !unmap_success, pfn, flags);
1399 rc = 0;
1400unlock:
1401 dax_unlock_page(page, cookie);
1402out:
1403 /* drop pgmap ref acquired in caller */
1404 put_dev_pagemap(pgmap);
1405 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
1406 return rc;
1407}
1408
1409/**
1410 * memory_failure - Handle memory failure of a page.
1411 * @pfn: Page Number of the corrupted page
1412 * @flags: fine tune action taken
1413 *
1414 * This function is called by the low level machine check code
1415 * of an architecture when it detects hardware memory corruption
1416 * of a page. It tries its best to recover, which includes
1417 * dropping pages, killing processes etc.
1418 *
1419 * The function is primarily of use for corruptions that
1420 * happen outside the current execution context (e.g. when
1421 * detected by a background scrubber)
1422 *
1423 * Must run in process context (e.g. a work queue) with interrupts
1424 * enabled and no spinlocks hold.
1425 */
1426int memory_failure(unsigned long pfn, int flags)
1427{
1428 struct page *p;
1429 struct page *hpage;
1430 struct page *orig_head;
1431 struct dev_pagemap *pgmap;
1432 int res;
1433 unsigned long page_flags;
1434 bool retry = true;
1435
1436 if (!sysctl_memory_failure_recovery)
1437 panic("Memory failure on page %lx", pfn);
1438
1439 p = pfn_to_online_page(pfn);
1440 if (!p) {
1441 if (pfn_valid(pfn)) {
1442 pgmap = get_dev_pagemap(pfn, NULL);
1443 if (pgmap)
1444 return memory_failure_dev_pagemap(pfn, flags,
1445 pgmap);
1446 }
1447 pr_err("Memory failure: %#lx: memory outside kernel control\n",
1448 pfn);
1449 return -ENXIO;
1450 }
1451
1452try_again:
1453 if (PageHuge(p))
1454 return memory_failure_hugetlb(pfn, flags);
1455 if (TestSetPageHWPoison(p)) {
1456 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1457 pfn);
1458 return 0;
1459 }
1460
1461 orig_head = hpage = compound_head(p);
1462 num_poisoned_pages_inc();
1463
1464 /*
1465 * We need/can do nothing about count=0 pages.
1466 * 1) it's a free page, and therefore in safe hand:
1467 * prep_new_page() will be the gate keeper.
1468 * 2) it's part of a non-compound high order page.
1469 * Implies some kernel user: cannot stop them from
1470 * R/W the page; let's pray that the page has been
1471 * used and will be freed some time later.
1472 * In fact it's dangerous to directly bump up page count from 0,
1473 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1474 */
1475 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p, flags, 0)) {
1476 if (is_free_buddy_page(p)) {
1477 if (take_page_off_buddy(p)) {
1478 page_ref_inc(p);
1479 res = MF_RECOVERED;
1480 } else {
1481 /* We lost the race, try again */
1482 if (retry) {
1483 ClearPageHWPoison(p);
1484 num_poisoned_pages_dec();
1485 retry = false;
1486 goto try_again;
1487 }
1488 res = MF_FAILED;
1489 }
1490 action_result(pfn, MF_MSG_BUDDY, res);
1491 return res == MF_RECOVERED ? 0 : -EBUSY;
1492 } else {
1493 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1494 return -EBUSY;
1495 }
1496 }
1497
1498 if (PageTransHuge(hpage)) {
1499 if (try_to_split_thp_page(p, "Memory Failure") < 0) {
1500 action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
1501 return -EBUSY;
1502 }
1503 VM_BUG_ON_PAGE(!page_count(p), p);
1504 }
1505
1506 /*
1507 * We ignore non-LRU pages for good reasons.
1508 * - PG_locked is only well defined for LRU pages and a few others
1509 * - to avoid races with __SetPageLocked()
1510 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1511 * The check (unnecessarily) ignores LRU pages being isolated and
1512 * walked by the page reclaim code, however that's not a big loss.
1513 */
1514 shake_page(p, 0);
1515
1516 lock_page(p);
1517
1518 /*
1519 * The page could have changed compound pages during the locking.
1520 * If this happens just bail out.
1521 */
1522 if (PageCompound(p) && compound_head(p) != orig_head) {
1523 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1524 res = -EBUSY;
1525 goto out;
1526 }
1527
1528 /*
1529 * We use page flags to determine what action should be taken, but
1530 * the flags can be modified by the error containment action. One
1531 * example is an mlocked page, where PG_mlocked is cleared by
1532 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1533 * correctly, we save a copy of the page flags at this time.
1534 */
1535 page_flags = p->flags;
1536
1537 /*
1538 * unpoison always clear PG_hwpoison inside page lock
1539 */
1540 if (!PageHWPoison(p)) {
1541 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1542 num_poisoned_pages_dec();
1543 unlock_page(p);
1544 put_page(p);
1545 return 0;
1546 }
1547 if (hwpoison_filter(p)) {
1548 if (TestClearPageHWPoison(p))
1549 num_poisoned_pages_dec();
1550 unlock_page(p);
1551 put_page(p);
1552 return 0;
1553 }
1554
1555 /*
1556 * __munlock_pagevec may clear a writeback page's LRU flag without
1557 * page_lock. We need wait writeback completion for this page or it
1558 * may trigger vfs BUG while evict inode.
1559 */
1560 if (!PageTransTail(p) && !PageLRU(p) && !PageWriteback(p))
1561 goto identify_page_state;
1562
1563 /*
1564 * It's very difficult to mess with pages currently under IO
1565 * and in many cases impossible, so we just avoid it here.
1566 */
1567 wait_on_page_writeback(p);
1568
1569 /*
1570 * Now take care of user space mappings.
1571 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1572 */
1573 if (!hwpoison_user_mappings(p, pfn, flags, &p)) {
1574 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1575 res = -EBUSY;
1576 goto out;
1577 }
1578
1579 /*
1580 * Torn down by someone else?
1581 */
1582 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1583 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1584 res = -EBUSY;
1585 goto out;
1586 }
1587
1588identify_page_state:
1589 res = identify_page_state(pfn, p, page_flags);
1590out:
1591 unlock_page(p);
1592 return res;
1593}
1594EXPORT_SYMBOL_GPL(memory_failure);
1595
1596#define MEMORY_FAILURE_FIFO_ORDER 4
1597#define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1598
1599struct memory_failure_entry {
1600 unsigned long pfn;
1601 int flags;
1602};
1603
1604struct memory_failure_cpu {
1605 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1606 MEMORY_FAILURE_FIFO_SIZE);
1607 spinlock_t lock;
1608 struct work_struct work;
1609};
1610
1611static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1612
1613/**
1614 * memory_failure_queue - Schedule handling memory failure of a page.
1615 * @pfn: Page Number of the corrupted page
1616 * @flags: Flags for memory failure handling
1617 *
1618 * This function is called by the low level hardware error handler
1619 * when it detects hardware memory corruption of a page. It schedules
1620 * the recovering of error page, including dropping pages, killing
1621 * processes etc.
1622 *
1623 * The function is primarily of use for corruptions that
1624 * happen outside the current execution context (e.g. when
1625 * detected by a background scrubber)
1626 *
1627 * Can run in IRQ context.
1628 */
1629void memory_failure_queue(unsigned long pfn, int flags)
1630{
1631 struct memory_failure_cpu *mf_cpu;
1632 unsigned long proc_flags;
1633 struct memory_failure_entry entry = {
1634 .pfn = pfn,
1635 .flags = flags,
1636 };
1637
1638 mf_cpu = &get_cpu_var(memory_failure_cpu);
1639 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1640 if (kfifo_put(&mf_cpu->fifo, entry))
1641 schedule_work_on(smp_processor_id(), &mf_cpu->work);
1642 else
1643 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1644 pfn);
1645 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1646 put_cpu_var(memory_failure_cpu);
1647}
1648EXPORT_SYMBOL_GPL(memory_failure_queue);
1649
1650static void memory_failure_work_func(struct work_struct *work)
1651{
1652 struct memory_failure_cpu *mf_cpu;
1653 struct memory_failure_entry entry = { 0, };
1654 unsigned long proc_flags;
1655 int gotten;
1656
1657 mf_cpu = container_of(work, struct memory_failure_cpu, work);
1658 for (;;) {
1659 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1660 gotten = kfifo_get(&mf_cpu->fifo, &entry);
1661 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1662 if (!gotten)
1663 break;
1664 if (entry.flags & MF_SOFT_OFFLINE)
1665 soft_offline_page(entry.pfn, entry.flags);
1666 else
1667 memory_failure(entry.pfn, entry.flags);
1668 }
1669}
1670
1671/*
1672 * Process memory_failure work queued on the specified CPU.
1673 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
1674 */
1675void memory_failure_queue_kick(int cpu)
1676{
1677 struct memory_failure_cpu *mf_cpu;
1678
1679 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1680 cancel_work_sync(&mf_cpu->work);
1681 memory_failure_work_func(&mf_cpu->work);
1682}
1683
1684static int __init memory_failure_init(void)
1685{
1686 struct memory_failure_cpu *mf_cpu;
1687 int cpu;
1688
1689 for_each_possible_cpu(cpu) {
1690 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1691 spin_lock_init(&mf_cpu->lock);
1692 INIT_KFIFO(mf_cpu->fifo);
1693 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1694 }
1695
1696 return 0;
1697}
1698core_initcall(memory_failure_init);
1699
1700#define unpoison_pr_info(fmt, pfn, rs) \
1701({ \
1702 if (__ratelimit(rs)) \
1703 pr_info(fmt, pfn); \
1704})
1705
1706/**
1707 * unpoison_memory - Unpoison a previously poisoned page
1708 * @pfn: Page number of the to be unpoisoned page
1709 *
1710 * Software-unpoison a page that has been poisoned by
1711 * memory_failure() earlier.
1712 *
1713 * This is only done on the software-level, so it only works
1714 * for linux injected failures, not real hardware failures
1715 *
1716 * Returns 0 for success, otherwise -errno.
1717 */
1718int unpoison_memory(unsigned long pfn)
1719{
1720 struct page *page;
1721 struct page *p;
1722 int freeit = 0;
1723 unsigned long flags = 0;
1724 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1725 DEFAULT_RATELIMIT_BURST);
1726
1727 if (!pfn_valid(pfn))
1728 return -ENXIO;
1729
1730 p = pfn_to_page(pfn);
1731 page = compound_head(p);
1732
1733 if (!PageHWPoison(p)) {
1734 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1735 pfn, &unpoison_rs);
1736 return 0;
1737 }
1738
1739 if (page_count(page) > 1) {
1740 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1741 pfn, &unpoison_rs);
1742 return 0;
1743 }
1744
1745 if (page_mapped(page)) {
1746 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1747 pfn, &unpoison_rs);
1748 return 0;
1749 }
1750
1751 if (page_mapping(page)) {
1752 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1753 pfn, &unpoison_rs);
1754 return 0;
1755 }
1756
1757 /*
1758 * unpoison_memory() can encounter thp only when the thp is being
1759 * worked by memory_failure() and the page lock is not held yet.
1760 * In such case, we yield to memory_failure() and make unpoison fail.
1761 */
1762 if (!PageHuge(page) && PageTransHuge(page)) {
1763 unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1764 pfn, &unpoison_rs);
1765 return 0;
1766 }
1767
1768 if (!get_hwpoison_page(p, flags, 0)) {
1769 if (TestClearPageHWPoison(p))
1770 num_poisoned_pages_dec();
1771 unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1772 pfn, &unpoison_rs);
1773 return 0;
1774 }
1775
1776 lock_page(page);
1777 /*
1778 * This test is racy because PG_hwpoison is set outside of page lock.
1779 * That's acceptable because that won't trigger kernel panic. Instead,
1780 * the PG_hwpoison page will be caught and isolated on the entrance to
1781 * the free buddy page pool.
1782 */
1783 if (TestClearPageHWPoison(page)) {
1784 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1785 pfn, &unpoison_rs);
1786 num_poisoned_pages_dec();
1787 freeit = 1;
1788 }
1789 unlock_page(page);
1790
1791 put_page(page);
1792 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1793 put_page(page);
1794
1795 return 0;
1796}
1797EXPORT_SYMBOL(unpoison_memory);
1798
1799static bool isolate_page(struct page *page, struct list_head *pagelist)
1800{
1801 bool isolated = false;
1802 bool lru = PageLRU(page);
1803
1804 if (PageHuge(page)) {
1805 isolated = isolate_huge_page(page, pagelist);
1806 } else {
1807 if (lru)
1808 isolated = !isolate_lru_page(page);
1809 else
1810 isolated = !isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1811
1812 if (isolated)
1813 list_add(&page->lru, pagelist);
1814 }
1815
1816 if (isolated && lru)
1817 inc_node_page_state(page, NR_ISOLATED_ANON +
1818 page_is_file_lru(page));
1819
1820 /*
1821 * If we succeed to isolate the page, we grabbed another refcount on
1822 * the page, so we can safely drop the one we got from get_any_pages().
1823 * If we failed to isolate the page, it means that we cannot go further
1824 * and we will return an error, so drop the reference we got from
1825 * get_any_pages() as well.
1826 */
1827 put_page(page);
1828 return isolated;
1829}
1830
1831/*
1832 * __soft_offline_page handles hugetlb-pages and non-hugetlb pages.
1833 * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
1834 * If the page is mapped, it migrates the contents over.
1835 */
1836static int __soft_offline_page(struct page *page)
1837{
1838 int ret = 0;
1839 unsigned long pfn = page_to_pfn(page);
1840 struct page *hpage = compound_head(page);
1841 char const *msg_page[] = {"page", "hugepage"};
1842 bool huge = PageHuge(page);
1843 LIST_HEAD(pagelist);
1844 struct migration_target_control mtc = {
1845 .nid = NUMA_NO_NODE,
1846 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
1847 };
1848
1849 /*
1850 * Check PageHWPoison again inside page lock because PageHWPoison
1851 * is set by memory_failure() outside page lock. Note that
1852 * memory_failure() also double-checks PageHWPoison inside page lock,
1853 * so there's no race between soft_offline_page() and memory_failure().
1854 */
1855 lock_page(page);
1856 if (!PageHuge(page))
1857 wait_on_page_writeback(page);
1858 if (PageHWPoison(page)) {
1859 unlock_page(page);
1860 put_page(page);
1861 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1862 return 0;
1863 }
1864
1865 if (!PageHuge(page))
1866 /*
1867 * Try to invalidate first. This should work for
1868 * non dirty unmapped page cache pages.
1869 */
1870 ret = invalidate_inode_page(page);
1871 unlock_page(page);
1872
1873 /*
1874 * RED-PEN would be better to keep it isolated here, but we
1875 * would need to fix isolation locking first.
1876 */
1877 if (ret) {
1878 pr_info("soft_offline: %#lx: invalidated\n", pfn);
1879 page_handle_poison(page, false, true);
1880 return 0;
1881 }
1882
1883 if (isolate_page(hpage, &pagelist)) {
1884 ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
1885 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE);
1886 if (!ret) {
1887 bool release = !huge;
1888
1889 if (!page_handle_poison(page, huge, release))
1890 ret = -EBUSY;
1891 } else {
1892 if (!list_empty(&pagelist))
1893 putback_movable_pages(&pagelist);
1894
1895 pr_info("soft offline: %#lx: %s migration failed %d, type %lx (%pGp)\n",
1896 pfn, msg_page[huge], ret, page->flags, &page->flags);
1897 if (ret > 0)
1898 ret = -EBUSY;
1899 }
1900 } else {
1901 pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %lx (%pGp)\n",
1902 pfn, msg_page[huge], page_count(page), page->flags, &page->flags);
1903 ret = -EBUSY;
1904 }
1905 return ret;
1906}
1907
1908static int soft_offline_in_use_page(struct page *page)
1909{
1910 struct page *hpage = compound_head(page);
1911
1912 if (!PageHuge(page) && PageTransHuge(hpage))
1913 if (try_to_split_thp_page(page, "soft offline") < 0)
1914 return -EBUSY;
1915 return __soft_offline_page(page);
1916}
1917
1918static int soft_offline_free_page(struct page *page)
1919{
1920 int rc = 0;
1921
1922 if (!page_handle_poison(page, true, false))
1923 rc = -EBUSY;
1924
1925 return rc;
1926}
1927
1928static void put_ref_page(struct page *page)
1929{
1930 if (page)
1931 put_page(page);
1932}
1933
1934/**
1935 * soft_offline_page - Soft offline a page.
1936 * @pfn: pfn to soft-offline
1937 * @flags: flags. Same as memory_failure().
1938 *
1939 * Returns 0 on success, otherwise negated errno.
1940 *
1941 * Soft offline a page, by migration or invalidation,
1942 * without killing anything. This is for the case when
1943 * a page is not corrupted yet (so it's still valid to access),
1944 * but has had a number of corrected errors and is better taken
1945 * out.
1946 *
1947 * The actual policy on when to do that is maintained by
1948 * user space.
1949 *
1950 * This should never impact any application or cause data loss,
1951 * however it might take some time.
1952 *
1953 * This is not a 100% solution for all memory, but tries to be
1954 * ``good enough'' for the majority of memory.
1955 */
1956int soft_offline_page(unsigned long pfn, int flags)
1957{
1958 int ret;
1959 bool try_again = true;
1960 struct page *page, *ref_page = NULL;
1961
1962 WARN_ON_ONCE(!pfn_valid(pfn) && (flags & MF_COUNT_INCREASED));
1963
1964 if (!pfn_valid(pfn))
1965 return -ENXIO;
1966 if (flags & MF_COUNT_INCREASED)
1967 ref_page = pfn_to_page(pfn);
1968
1969 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
1970 page = pfn_to_online_page(pfn);
1971 if (!page) {
1972 put_ref_page(ref_page);
1973 return -EIO;
1974 }
1975
1976 if (PageHWPoison(page)) {
1977 pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
1978 put_ref_page(ref_page);
1979 return 0;
1980 }
1981
1982retry:
1983 get_online_mems();
1984 ret = get_hwpoison_page(page, flags, MF_SOFT_OFFLINE);
1985 put_online_mems();
1986
1987 if (ret > 0) {
1988 ret = soft_offline_in_use_page(page);
1989 } else if (ret == 0) {
1990 if (soft_offline_free_page(page) && try_again) {
1991 try_again = false;
1992 goto retry;
1993 }
1994 } else if (ret == -EIO) {
1995 pr_info("%s: %#lx: unknown page type: %lx (%pGp)\n",
1996 __func__, pfn, page->flags, &page->flags);
1997 }
1998
1999 return ret;
2000}