Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26 */
27
28#include <linux/page_counter.h>
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
31#include <linux/pagewalk.h>
32#include <linux/sched/mm.h>
33#include <linux/shmem_fs.h>
34#include <linux/hugetlb.h>
35#include <linux/pagemap.h>
36#include <linux/vm_event_item.h>
37#include <linux/smp.h>
38#include <linux/page-flags.h>
39#include <linux/backing-dev.h>
40#include <linux/bit_spinlock.h>
41#include <linux/rcupdate.h>
42#include <linux/limits.h>
43#include <linux/export.h>
44#include <linux/mutex.h>
45#include <linux/rbtree.h>
46#include <linux/slab.h>
47#include <linux/swap.h>
48#include <linux/swapops.h>
49#include <linux/spinlock.h>
50#include <linux/eventfd.h>
51#include <linux/poll.h>
52#include <linux/sort.h>
53#include <linux/fs.h>
54#include <linux/seq_file.h>
55#include <linux/vmpressure.h>
56#include <linux/mm_inline.h>
57#include <linux/swap_cgroup.h>
58#include <linux/cpu.h>
59#include <linux/oom.h>
60#include <linux/lockdep.h>
61#include <linux/file.h>
62#include <linux/tracehook.h>
63#include <linux/psi.h>
64#include <linux/seq_buf.h>
65#include "internal.h"
66#include <net/sock.h>
67#include <net/ip.h>
68#include "slab.h"
69
70#include <linux/uaccess.h>
71
72#include <trace/events/vmscan.h>
73
74struct cgroup_subsys memory_cgrp_subsys __read_mostly;
75EXPORT_SYMBOL(memory_cgrp_subsys);
76
77struct mem_cgroup *root_mem_cgroup __read_mostly;
78
79/* Active memory cgroup to use from an interrupt context */
80DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
81
82/* Socket memory accounting disabled? */
83static bool cgroup_memory_nosocket;
84
85/* Kernel memory accounting disabled? */
86static bool cgroup_memory_nokmem;
87
88/* Whether the swap controller is active */
89#ifdef CONFIG_MEMCG_SWAP
90bool cgroup_memory_noswap __read_mostly;
91#else
92#define cgroup_memory_noswap 1
93#endif
94
95#ifdef CONFIG_CGROUP_WRITEBACK
96static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
97#endif
98
99/* Whether legacy memory+swap accounting is active */
100static bool do_memsw_account(void)
101{
102 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
103}
104
105#define THRESHOLDS_EVENTS_TARGET 128
106#define SOFTLIMIT_EVENTS_TARGET 1024
107
108/*
109 * Cgroups above their limits are maintained in a RB-Tree, independent of
110 * their hierarchy representation
111 */
112
113struct mem_cgroup_tree_per_node {
114 struct rb_root rb_root;
115 struct rb_node *rb_rightmost;
116 spinlock_t lock;
117};
118
119struct mem_cgroup_tree {
120 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
121};
122
123static struct mem_cgroup_tree soft_limit_tree __read_mostly;
124
125/* for OOM */
126struct mem_cgroup_eventfd_list {
127 struct list_head list;
128 struct eventfd_ctx *eventfd;
129};
130
131/*
132 * cgroup_event represents events which userspace want to receive.
133 */
134struct mem_cgroup_event {
135 /*
136 * memcg which the event belongs to.
137 */
138 struct mem_cgroup *memcg;
139 /*
140 * eventfd to signal userspace about the event.
141 */
142 struct eventfd_ctx *eventfd;
143 /*
144 * Each of these stored in a list by the cgroup.
145 */
146 struct list_head list;
147 /*
148 * register_event() callback will be used to add new userspace
149 * waiter for changes related to this event. Use eventfd_signal()
150 * on eventfd to send notification to userspace.
151 */
152 int (*register_event)(struct mem_cgroup *memcg,
153 struct eventfd_ctx *eventfd, const char *args);
154 /*
155 * unregister_event() callback will be called when userspace closes
156 * the eventfd or on cgroup removing. This callback must be set,
157 * if you want provide notification functionality.
158 */
159 void (*unregister_event)(struct mem_cgroup *memcg,
160 struct eventfd_ctx *eventfd);
161 /*
162 * All fields below needed to unregister event when
163 * userspace closes eventfd.
164 */
165 poll_table pt;
166 wait_queue_head_t *wqh;
167 wait_queue_entry_t wait;
168 struct work_struct remove;
169};
170
171static void mem_cgroup_threshold(struct mem_cgroup *memcg);
172static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
173
174/* Stuffs for move charges at task migration. */
175/*
176 * Types of charges to be moved.
177 */
178#define MOVE_ANON 0x1U
179#define MOVE_FILE 0x2U
180#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
181
182/* "mc" and its members are protected by cgroup_mutex */
183static struct move_charge_struct {
184 spinlock_t lock; /* for from, to */
185 struct mm_struct *mm;
186 struct mem_cgroup *from;
187 struct mem_cgroup *to;
188 unsigned long flags;
189 unsigned long precharge;
190 unsigned long moved_charge;
191 unsigned long moved_swap;
192 struct task_struct *moving_task; /* a task moving charges */
193 wait_queue_head_t waitq; /* a waitq for other context */
194} mc = {
195 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
196 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
197};
198
199/*
200 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
201 * limit reclaim to prevent infinite loops, if they ever occur.
202 */
203#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
204#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
205
206/* for encoding cft->private value on file */
207enum res_type {
208 _MEM,
209 _MEMSWAP,
210 _OOM_TYPE,
211 _KMEM,
212 _TCP,
213};
214
215#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
216#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
217#define MEMFILE_ATTR(val) ((val) & 0xffff)
218/* Used for OOM notifier */
219#define OOM_CONTROL (0)
220
221/*
222 * Iteration constructs for visiting all cgroups (under a tree). If
223 * loops are exited prematurely (break), mem_cgroup_iter_break() must
224 * be used for reference counting.
225 */
226#define for_each_mem_cgroup_tree(iter, root) \
227 for (iter = mem_cgroup_iter(root, NULL, NULL); \
228 iter != NULL; \
229 iter = mem_cgroup_iter(root, iter, NULL))
230
231#define for_each_mem_cgroup(iter) \
232 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
233 iter != NULL; \
234 iter = mem_cgroup_iter(NULL, iter, NULL))
235
236static inline bool should_force_charge(void)
237{
238 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
239 (current->flags & PF_EXITING);
240}
241
242/* Some nice accessors for the vmpressure. */
243struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
244{
245 if (!memcg)
246 memcg = root_mem_cgroup;
247 return &memcg->vmpressure;
248}
249
250struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
251{
252 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
253}
254
255#ifdef CONFIG_MEMCG_KMEM
256extern spinlock_t css_set_lock;
257
258static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
259 unsigned int nr_pages);
260
261static void obj_cgroup_release(struct percpu_ref *ref)
262{
263 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
264 struct mem_cgroup *memcg;
265 unsigned int nr_bytes;
266 unsigned int nr_pages;
267 unsigned long flags;
268
269 /*
270 * At this point all allocated objects are freed, and
271 * objcg->nr_charged_bytes can't have an arbitrary byte value.
272 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
273 *
274 * The following sequence can lead to it:
275 * 1) CPU0: objcg == stock->cached_objcg
276 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
277 * PAGE_SIZE bytes are charged
278 * 3) CPU1: a process from another memcg is allocating something,
279 * the stock if flushed,
280 * objcg->nr_charged_bytes = PAGE_SIZE - 92
281 * 5) CPU0: we do release this object,
282 * 92 bytes are added to stock->nr_bytes
283 * 6) CPU0: stock is flushed,
284 * 92 bytes are added to objcg->nr_charged_bytes
285 *
286 * In the result, nr_charged_bytes == PAGE_SIZE.
287 * This page will be uncharged in obj_cgroup_release().
288 */
289 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
290 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
291 nr_pages = nr_bytes >> PAGE_SHIFT;
292
293 spin_lock_irqsave(&css_set_lock, flags);
294 memcg = obj_cgroup_memcg(objcg);
295 if (nr_pages)
296 obj_cgroup_uncharge_pages(objcg, nr_pages);
297 list_del(&objcg->list);
298 mem_cgroup_put(memcg);
299 spin_unlock_irqrestore(&css_set_lock, flags);
300
301 percpu_ref_exit(ref);
302 kfree_rcu(objcg, rcu);
303}
304
305static struct obj_cgroup *obj_cgroup_alloc(void)
306{
307 struct obj_cgroup *objcg;
308 int ret;
309
310 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
311 if (!objcg)
312 return NULL;
313
314 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
315 GFP_KERNEL);
316 if (ret) {
317 kfree(objcg);
318 return NULL;
319 }
320 INIT_LIST_HEAD(&objcg->list);
321 return objcg;
322}
323
324static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
325 struct mem_cgroup *parent)
326{
327 struct obj_cgroup *objcg, *iter;
328
329 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
330
331 spin_lock_irq(&css_set_lock);
332
333 /* Move active objcg to the parent's list */
334 xchg(&objcg->memcg, parent);
335 css_get(&parent->css);
336 list_add(&objcg->list, &parent->objcg_list);
337
338 /* Move already reparented objcgs to the parent's list */
339 list_for_each_entry(iter, &memcg->objcg_list, list) {
340 css_get(&parent->css);
341 xchg(&iter->memcg, parent);
342 css_put(&memcg->css);
343 }
344 list_splice(&memcg->objcg_list, &parent->objcg_list);
345
346 spin_unlock_irq(&css_set_lock);
347
348 percpu_ref_kill(&objcg->refcnt);
349}
350
351/*
352 * This will be used as a shrinker list's index.
353 * The main reason for not using cgroup id for this:
354 * this works better in sparse environments, where we have a lot of memcgs,
355 * but only a few kmem-limited. Or also, if we have, for instance, 200
356 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
357 * 200 entry array for that.
358 *
359 * The current size of the caches array is stored in memcg_nr_cache_ids. It
360 * will double each time we have to increase it.
361 */
362static DEFINE_IDA(memcg_cache_ida);
363int memcg_nr_cache_ids;
364
365/* Protects memcg_nr_cache_ids */
366static DECLARE_RWSEM(memcg_cache_ids_sem);
367
368void memcg_get_cache_ids(void)
369{
370 down_read(&memcg_cache_ids_sem);
371}
372
373void memcg_put_cache_ids(void)
374{
375 up_read(&memcg_cache_ids_sem);
376}
377
378/*
379 * MIN_SIZE is different than 1, because we would like to avoid going through
380 * the alloc/free process all the time. In a small machine, 4 kmem-limited
381 * cgroups is a reasonable guess. In the future, it could be a parameter or
382 * tunable, but that is strictly not necessary.
383 *
384 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
385 * this constant directly from cgroup, but it is understandable that this is
386 * better kept as an internal representation in cgroup.c. In any case, the
387 * cgrp_id space is not getting any smaller, and we don't have to necessarily
388 * increase ours as well if it increases.
389 */
390#define MEMCG_CACHES_MIN_SIZE 4
391#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
392
393/*
394 * A lot of the calls to the cache allocation functions are expected to be
395 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
396 * conditional to this static branch, we'll have to allow modules that does
397 * kmem_cache_alloc and the such to see this symbol as well
398 */
399DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
400EXPORT_SYMBOL(memcg_kmem_enabled_key);
401#endif
402
403/**
404 * mem_cgroup_css_from_page - css of the memcg associated with a page
405 * @page: page of interest
406 *
407 * If memcg is bound to the default hierarchy, css of the memcg associated
408 * with @page is returned. The returned css remains associated with @page
409 * until it is released.
410 *
411 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
412 * is returned.
413 */
414struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
415{
416 struct mem_cgroup *memcg;
417
418 memcg = page_memcg(page);
419
420 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
421 memcg = root_mem_cgroup;
422
423 return &memcg->css;
424}
425
426/**
427 * page_cgroup_ino - return inode number of the memcg a page is charged to
428 * @page: the page
429 *
430 * Look up the closest online ancestor of the memory cgroup @page is charged to
431 * and return its inode number or 0 if @page is not charged to any cgroup. It
432 * is safe to call this function without holding a reference to @page.
433 *
434 * Note, this function is inherently racy, because there is nothing to prevent
435 * the cgroup inode from getting torn down and potentially reallocated a moment
436 * after page_cgroup_ino() returns, so it only should be used by callers that
437 * do not care (such as procfs interfaces).
438 */
439ino_t page_cgroup_ino(struct page *page)
440{
441 struct mem_cgroup *memcg;
442 unsigned long ino = 0;
443
444 rcu_read_lock();
445 memcg = page_memcg_check(page);
446
447 while (memcg && !(memcg->css.flags & CSS_ONLINE))
448 memcg = parent_mem_cgroup(memcg);
449 if (memcg)
450 ino = cgroup_ino(memcg->css.cgroup);
451 rcu_read_unlock();
452 return ino;
453}
454
455static struct mem_cgroup_per_node *
456mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
457{
458 int nid = page_to_nid(page);
459
460 return memcg->nodeinfo[nid];
461}
462
463static struct mem_cgroup_tree_per_node *
464soft_limit_tree_node(int nid)
465{
466 return soft_limit_tree.rb_tree_per_node[nid];
467}
468
469static struct mem_cgroup_tree_per_node *
470soft_limit_tree_from_page(struct page *page)
471{
472 int nid = page_to_nid(page);
473
474 return soft_limit_tree.rb_tree_per_node[nid];
475}
476
477static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
478 struct mem_cgroup_tree_per_node *mctz,
479 unsigned long new_usage_in_excess)
480{
481 struct rb_node **p = &mctz->rb_root.rb_node;
482 struct rb_node *parent = NULL;
483 struct mem_cgroup_per_node *mz_node;
484 bool rightmost = true;
485
486 if (mz->on_tree)
487 return;
488
489 mz->usage_in_excess = new_usage_in_excess;
490 if (!mz->usage_in_excess)
491 return;
492 while (*p) {
493 parent = *p;
494 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
495 tree_node);
496 if (mz->usage_in_excess < mz_node->usage_in_excess) {
497 p = &(*p)->rb_left;
498 rightmost = false;
499 } else {
500 p = &(*p)->rb_right;
501 }
502 }
503
504 if (rightmost)
505 mctz->rb_rightmost = &mz->tree_node;
506
507 rb_link_node(&mz->tree_node, parent, p);
508 rb_insert_color(&mz->tree_node, &mctz->rb_root);
509 mz->on_tree = true;
510}
511
512static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
513 struct mem_cgroup_tree_per_node *mctz)
514{
515 if (!mz->on_tree)
516 return;
517
518 if (&mz->tree_node == mctz->rb_rightmost)
519 mctz->rb_rightmost = rb_prev(&mz->tree_node);
520
521 rb_erase(&mz->tree_node, &mctz->rb_root);
522 mz->on_tree = false;
523}
524
525static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
526 struct mem_cgroup_tree_per_node *mctz)
527{
528 unsigned long flags;
529
530 spin_lock_irqsave(&mctz->lock, flags);
531 __mem_cgroup_remove_exceeded(mz, mctz);
532 spin_unlock_irqrestore(&mctz->lock, flags);
533}
534
535static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
536{
537 unsigned long nr_pages = page_counter_read(&memcg->memory);
538 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
539 unsigned long excess = 0;
540
541 if (nr_pages > soft_limit)
542 excess = nr_pages - soft_limit;
543
544 return excess;
545}
546
547static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
548{
549 unsigned long excess;
550 struct mem_cgroup_per_node *mz;
551 struct mem_cgroup_tree_per_node *mctz;
552
553 mctz = soft_limit_tree_from_page(page);
554 if (!mctz)
555 return;
556 /*
557 * Necessary to update all ancestors when hierarchy is used.
558 * because their event counter is not touched.
559 */
560 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
561 mz = mem_cgroup_page_nodeinfo(memcg, page);
562 excess = soft_limit_excess(memcg);
563 /*
564 * We have to update the tree if mz is on RB-tree or
565 * mem is over its softlimit.
566 */
567 if (excess || mz->on_tree) {
568 unsigned long flags;
569
570 spin_lock_irqsave(&mctz->lock, flags);
571 /* if on-tree, remove it */
572 if (mz->on_tree)
573 __mem_cgroup_remove_exceeded(mz, mctz);
574 /*
575 * Insert again. mz->usage_in_excess will be updated.
576 * If excess is 0, no tree ops.
577 */
578 __mem_cgroup_insert_exceeded(mz, mctz, excess);
579 spin_unlock_irqrestore(&mctz->lock, flags);
580 }
581 }
582}
583
584static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
585{
586 struct mem_cgroup_tree_per_node *mctz;
587 struct mem_cgroup_per_node *mz;
588 int nid;
589
590 for_each_node(nid) {
591 mz = memcg->nodeinfo[nid];
592 mctz = soft_limit_tree_node(nid);
593 if (mctz)
594 mem_cgroup_remove_exceeded(mz, mctz);
595 }
596}
597
598static struct mem_cgroup_per_node *
599__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
600{
601 struct mem_cgroup_per_node *mz;
602
603retry:
604 mz = NULL;
605 if (!mctz->rb_rightmost)
606 goto done; /* Nothing to reclaim from */
607
608 mz = rb_entry(mctz->rb_rightmost,
609 struct mem_cgroup_per_node, tree_node);
610 /*
611 * Remove the node now but someone else can add it back,
612 * we will to add it back at the end of reclaim to its correct
613 * position in the tree.
614 */
615 __mem_cgroup_remove_exceeded(mz, mctz);
616 if (!soft_limit_excess(mz->memcg) ||
617 !css_tryget(&mz->memcg->css))
618 goto retry;
619done:
620 return mz;
621}
622
623static struct mem_cgroup_per_node *
624mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
625{
626 struct mem_cgroup_per_node *mz;
627
628 spin_lock_irq(&mctz->lock);
629 mz = __mem_cgroup_largest_soft_limit_node(mctz);
630 spin_unlock_irq(&mctz->lock);
631 return mz;
632}
633
634/**
635 * __mod_memcg_state - update cgroup memory statistics
636 * @memcg: the memory cgroup
637 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
638 * @val: delta to add to the counter, can be negative
639 */
640void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
641{
642 if (mem_cgroup_disabled())
643 return;
644
645 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
646 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
647}
648
649/* idx can be of type enum memcg_stat_item or node_stat_item. */
650static unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
651{
652 long x = READ_ONCE(memcg->vmstats.state[idx]);
653#ifdef CONFIG_SMP
654 if (x < 0)
655 x = 0;
656#endif
657 return x;
658}
659
660/* idx can be of type enum memcg_stat_item or node_stat_item. */
661static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
662{
663 long x = 0;
664 int cpu;
665
666 for_each_possible_cpu(cpu)
667 x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
668#ifdef CONFIG_SMP
669 if (x < 0)
670 x = 0;
671#endif
672 return x;
673}
674
675static struct mem_cgroup_per_node *
676parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
677{
678 struct mem_cgroup *parent;
679
680 parent = parent_mem_cgroup(pn->memcg);
681 if (!parent)
682 return NULL;
683 return parent->nodeinfo[nid];
684}
685
686void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
687 int val)
688{
689 struct mem_cgroup_per_node *pn;
690 struct mem_cgroup *memcg;
691 long x, threshold = MEMCG_CHARGE_BATCH;
692
693 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
694 memcg = pn->memcg;
695
696 /* Update memcg */
697 __mod_memcg_state(memcg, idx, val);
698
699 /* Update lruvec */
700 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
701
702 if (vmstat_item_in_bytes(idx))
703 threshold <<= PAGE_SHIFT;
704
705 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
706 if (unlikely(abs(x) > threshold)) {
707 pg_data_t *pgdat = lruvec_pgdat(lruvec);
708 struct mem_cgroup_per_node *pi;
709
710 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
711 atomic_long_add(x, &pi->lruvec_stat[idx]);
712 x = 0;
713 }
714 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
715}
716
717/**
718 * __mod_lruvec_state - update lruvec memory statistics
719 * @lruvec: the lruvec
720 * @idx: the stat item
721 * @val: delta to add to the counter, can be negative
722 *
723 * The lruvec is the intersection of the NUMA node and a cgroup. This
724 * function updates the all three counters that are affected by a
725 * change of state at this level: per-node, per-cgroup, per-lruvec.
726 */
727void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
728 int val)
729{
730 /* Update node */
731 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
732
733 /* Update memcg and lruvec */
734 if (!mem_cgroup_disabled())
735 __mod_memcg_lruvec_state(lruvec, idx, val);
736}
737
738void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
739 int val)
740{
741 struct page *head = compound_head(page); /* rmap on tail pages */
742 struct mem_cgroup *memcg;
743 pg_data_t *pgdat = page_pgdat(page);
744 struct lruvec *lruvec;
745
746 rcu_read_lock();
747 memcg = page_memcg(head);
748 /* Untracked pages have no memcg, no lruvec. Update only the node */
749 if (!memcg) {
750 rcu_read_unlock();
751 __mod_node_page_state(pgdat, idx, val);
752 return;
753 }
754
755 lruvec = mem_cgroup_lruvec(memcg, pgdat);
756 __mod_lruvec_state(lruvec, idx, val);
757 rcu_read_unlock();
758}
759EXPORT_SYMBOL(__mod_lruvec_page_state);
760
761void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
762{
763 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
764 struct mem_cgroup *memcg;
765 struct lruvec *lruvec;
766
767 rcu_read_lock();
768 memcg = mem_cgroup_from_obj(p);
769
770 /*
771 * Untracked pages have no memcg, no lruvec. Update only the
772 * node. If we reparent the slab objects to the root memcg,
773 * when we free the slab object, we need to update the per-memcg
774 * vmstats to keep it correct for the root memcg.
775 */
776 if (!memcg) {
777 __mod_node_page_state(pgdat, idx, val);
778 } else {
779 lruvec = mem_cgroup_lruvec(memcg, pgdat);
780 __mod_lruvec_state(lruvec, idx, val);
781 }
782 rcu_read_unlock();
783}
784
785/**
786 * __count_memcg_events - account VM events in a cgroup
787 * @memcg: the memory cgroup
788 * @idx: the event item
789 * @count: the number of events that occurred
790 */
791void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
792 unsigned long count)
793{
794 if (mem_cgroup_disabled())
795 return;
796
797 __this_cpu_add(memcg->vmstats_percpu->events[idx], count);
798 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
799}
800
801static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
802{
803 return READ_ONCE(memcg->vmstats.events[event]);
804}
805
806static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
807{
808 long x = 0;
809 int cpu;
810
811 for_each_possible_cpu(cpu)
812 x += per_cpu(memcg->vmstats_percpu->events[event], cpu);
813 return x;
814}
815
816static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
817 struct page *page,
818 int nr_pages)
819{
820 /* pagein of a big page is an event. So, ignore page size */
821 if (nr_pages > 0)
822 __count_memcg_events(memcg, PGPGIN, 1);
823 else {
824 __count_memcg_events(memcg, PGPGOUT, 1);
825 nr_pages = -nr_pages; /* for event */
826 }
827
828 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
829}
830
831static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
832 enum mem_cgroup_events_target target)
833{
834 unsigned long val, next;
835
836 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
837 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
838 /* from time_after() in jiffies.h */
839 if ((long)(next - val) < 0) {
840 switch (target) {
841 case MEM_CGROUP_TARGET_THRESH:
842 next = val + THRESHOLDS_EVENTS_TARGET;
843 break;
844 case MEM_CGROUP_TARGET_SOFTLIMIT:
845 next = val + SOFTLIMIT_EVENTS_TARGET;
846 break;
847 default:
848 break;
849 }
850 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
851 return true;
852 }
853 return false;
854}
855
856/*
857 * Check events in order.
858 *
859 */
860static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
861{
862 /* threshold event is triggered in finer grain than soft limit */
863 if (unlikely(mem_cgroup_event_ratelimit(memcg,
864 MEM_CGROUP_TARGET_THRESH))) {
865 bool do_softlimit;
866
867 do_softlimit = mem_cgroup_event_ratelimit(memcg,
868 MEM_CGROUP_TARGET_SOFTLIMIT);
869 mem_cgroup_threshold(memcg);
870 if (unlikely(do_softlimit))
871 mem_cgroup_update_tree(memcg, page);
872 }
873}
874
875struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
876{
877 /*
878 * mm_update_next_owner() may clear mm->owner to NULL
879 * if it races with swapoff, page migration, etc.
880 * So this can be called with p == NULL.
881 */
882 if (unlikely(!p))
883 return NULL;
884
885 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
886}
887EXPORT_SYMBOL(mem_cgroup_from_task);
888
889/**
890 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
891 * @mm: mm from which memcg should be extracted. It can be NULL.
892 *
893 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
894 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
895 * returned.
896 */
897struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
898{
899 struct mem_cgroup *memcg;
900
901 if (mem_cgroup_disabled())
902 return NULL;
903
904 rcu_read_lock();
905 do {
906 /*
907 * Page cache insertions can happen without an
908 * actual mm context, e.g. during disk probing
909 * on boot, loopback IO, acct() writes etc.
910 */
911 if (unlikely(!mm))
912 memcg = root_mem_cgroup;
913 else {
914 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
915 if (unlikely(!memcg))
916 memcg = root_mem_cgroup;
917 }
918 } while (!css_tryget(&memcg->css));
919 rcu_read_unlock();
920 return memcg;
921}
922EXPORT_SYMBOL(get_mem_cgroup_from_mm);
923
924static __always_inline struct mem_cgroup *active_memcg(void)
925{
926 if (in_interrupt())
927 return this_cpu_read(int_active_memcg);
928 else
929 return current->active_memcg;
930}
931
932static __always_inline bool memcg_kmem_bypass(void)
933{
934 /* Allow remote memcg charging from any context. */
935 if (unlikely(active_memcg()))
936 return false;
937
938 /* Memcg to charge can't be determined. */
939 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
940 return true;
941
942 return false;
943}
944
945/**
946 * mem_cgroup_iter - iterate over memory cgroup hierarchy
947 * @root: hierarchy root
948 * @prev: previously returned memcg, NULL on first invocation
949 * @reclaim: cookie for shared reclaim walks, NULL for full walks
950 *
951 * Returns references to children of the hierarchy below @root, or
952 * @root itself, or %NULL after a full round-trip.
953 *
954 * Caller must pass the return value in @prev on subsequent
955 * invocations for reference counting, or use mem_cgroup_iter_break()
956 * to cancel a hierarchy walk before the round-trip is complete.
957 *
958 * Reclaimers can specify a node in @reclaim to divide up the memcgs
959 * in the hierarchy among all concurrent reclaimers operating on the
960 * same node.
961 */
962struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
963 struct mem_cgroup *prev,
964 struct mem_cgroup_reclaim_cookie *reclaim)
965{
966 struct mem_cgroup_reclaim_iter *iter;
967 struct cgroup_subsys_state *css = NULL;
968 struct mem_cgroup *memcg = NULL;
969 struct mem_cgroup *pos = NULL;
970
971 if (mem_cgroup_disabled())
972 return NULL;
973
974 if (!root)
975 root = root_mem_cgroup;
976
977 if (prev && !reclaim)
978 pos = prev;
979
980 rcu_read_lock();
981
982 if (reclaim) {
983 struct mem_cgroup_per_node *mz;
984
985 mz = root->nodeinfo[reclaim->pgdat->node_id];
986 iter = &mz->iter;
987
988 if (prev && reclaim->generation != iter->generation)
989 goto out_unlock;
990
991 while (1) {
992 pos = READ_ONCE(iter->position);
993 if (!pos || css_tryget(&pos->css))
994 break;
995 /*
996 * css reference reached zero, so iter->position will
997 * be cleared by ->css_released. However, we should not
998 * rely on this happening soon, because ->css_released
999 * is called from a work queue, and by busy-waiting we
1000 * might block it. So we clear iter->position right
1001 * away.
1002 */
1003 (void)cmpxchg(&iter->position, pos, NULL);
1004 }
1005 }
1006
1007 if (pos)
1008 css = &pos->css;
1009
1010 for (;;) {
1011 css = css_next_descendant_pre(css, &root->css);
1012 if (!css) {
1013 /*
1014 * Reclaimers share the hierarchy walk, and a
1015 * new one might jump in right at the end of
1016 * the hierarchy - make sure they see at least
1017 * one group and restart from the beginning.
1018 */
1019 if (!prev)
1020 continue;
1021 break;
1022 }
1023
1024 /*
1025 * Verify the css and acquire a reference. The root
1026 * is provided by the caller, so we know it's alive
1027 * and kicking, and don't take an extra reference.
1028 */
1029 memcg = mem_cgroup_from_css(css);
1030
1031 if (css == &root->css)
1032 break;
1033
1034 if (css_tryget(css))
1035 break;
1036
1037 memcg = NULL;
1038 }
1039
1040 if (reclaim) {
1041 /*
1042 * The position could have already been updated by a competing
1043 * thread, so check that the value hasn't changed since we read
1044 * it to avoid reclaiming from the same cgroup twice.
1045 */
1046 (void)cmpxchg(&iter->position, pos, memcg);
1047
1048 if (pos)
1049 css_put(&pos->css);
1050
1051 if (!memcg)
1052 iter->generation++;
1053 else if (!prev)
1054 reclaim->generation = iter->generation;
1055 }
1056
1057out_unlock:
1058 rcu_read_unlock();
1059 if (prev && prev != root)
1060 css_put(&prev->css);
1061
1062 return memcg;
1063}
1064
1065/**
1066 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1067 * @root: hierarchy root
1068 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1069 */
1070void mem_cgroup_iter_break(struct mem_cgroup *root,
1071 struct mem_cgroup *prev)
1072{
1073 if (!root)
1074 root = root_mem_cgroup;
1075 if (prev && prev != root)
1076 css_put(&prev->css);
1077}
1078
1079static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1080 struct mem_cgroup *dead_memcg)
1081{
1082 struct mem_cgroup_reclaim_iter *iter;
1083 struct mem_cgroup_per_node *mz;
1084 int nid;
1085
1086 for_each_node(nid) {
1087 mz = from->nodeinfo[nid];
1088 iter = &mz->iter;
1089 cmpxchg(&iter->position, dead_memcg, NULL);
1090 }
1091}
1092
1093static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1094{
1095 struct mem_cgroup *memcg = dead_memcg;
1096 struct mem_cgroup *last;
1097
1098 do {
1099 __invalidate_reclaim_iterators(memcg, dead_memcg);
1100 last = memcg;
1101 } while ((memcg = parent_mem_cgroup(memcg)));
1102
1103 /*
1104 * When cgruop1 non-hierarchy mode is used,
1105 * parent_mem_cgroup() does not walk all the way up to the
1106 * cgroup root (root_mem_cgroup). So we have to handle
1107 * dead_memcg from cgroup root separately.
1108 */
1109 if (last != root_mem_cgroup)
1110 __invalidate_reclaim_iterators(root_mem_cgroup,
1111 dead_memcg);
1112}
1113
1114/**
1115 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1116 * @memcg: hierarchy root
1117 * @fn: function to call for each task
1118 * @arg: argument passed to @fn
1119 *
1120 * This function iterates over tasks attached to @memcg or to any of its
1121 * descendants and calls @fn for each task. If @fn returns a non-zero
1122 * value, the function breaks the iteration loop and returns the value.
1123 * Otherwise, it will iterate over all tasks and return 0.
1124 *
1125 * This function must not be called for the root memory cgroup.
1126 */
1127int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1128 int (*fn)(struct task_struct *, void *), void *arg)
1129{
1130 struct mem_cgroup *iter;
1131 int ret = 0;
1132
1133 BUG_ON(memcg == root_mem_cgroup);
1134
1135 for_each_mem_cgroup_tree(iter, memcg) {
1136 struct css_task_iter it;
1137 struct task_struct *task;
1138
1139 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1140 while (!ret && (task = css_task_iter_next(&it)))
1141 ret = fn(task, arg);
1142 css_task_iter_end(&it);
1143 if (ret) {
1144 mem_cgroup_iter_break(memcg, iter);
1145 break;
1146 }
1147 }
1148 return ret;
1149}
1150
1151#ifdef CONFIG_DEBUG_VM
1152void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
1153{
1154 struct mem_cgroup *memcg;
1155
1156 if (mem_cgroup_disabled())
1157 return;
1158
1159 memcg = page_memcg(page);
1160
1161 if (!memcg)
1162 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != root_mem_cgroup, page);
1163 else
1164 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != memcg, page);
1165}
1166#endif
1167
1168/**
1169 * lock_page_lruvec - lock and return lruvec for a given page.
1170 * @page: the page
1171 *
1172 * These functions are safe to use under any of the following conditions:
1173 * - page locked
1174 * - PageLRU cleared
1175 * - lock_page_memcg()
1176 * - page->_refcount is zero
1177 */
1178struct lruvec *lock_page_lruvec(struct page *page)
1179{
1180 struct lruvec *lruvec;
1181 struct pglist_data *pgdat = page_pgdat(page);
1182
1183 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1184 spin_lock(&lruvec->lru_lock);
1185
1186 lruvec_memcg_debug(lruvec, page);
1187
1188 return lruvec;
1189}
1190
1191struct lruvec *lock_page_lruvec_irq(struct page *page)
1192{
1193 struct lruvec *lruvec;
1194 struct pglist_data *pgdat = page_pgdat(page);
1195
1196 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1197 spin_lock_irq(&lruvec->lru_lock);
1198
1199 lruvec_memcg_debug(lruvec, page);
1200
1201 return lruvec;
1202}
1203
1204struct lruvec *lock_page_lruvec_irqsave(struct page *page, unsigned long *flags)
1205{
1206 struct lruvec *lruvec;
1207 struct pglist_data *pgdat = page_pgdat(page);
1208
1209 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1210 spin_lock_irqsave(&lruvec->lru_lock, *flags);
1211
1212 lruvec_memcg_debug(lruvec, page);
1213
1214 return lruvec;
1215}
1216
1217/**
1218 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1219 * @lruvec: mem_cgroup per zone lru vector
1220 * @lru: index of lru list the page is sitting on
1221 * @zid: zone id of the accounted pages
1222 * @nr_pages: positive when adding or negative when removing
1223 *
1224 * This function must be called under lru_lock, just before a page is added
1225 * to or just after a page is removed from an lru list (that ordering being
1226 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1227 */
1228void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1229 int zid, int nr_pages)
1230{
1231 struct mem_cgroup_per_node *mz;
1232 unsigned long *lru_size;
1233 long size;
1234
1235 if (mem_cgroup_disabled())
1236 return;
1237
1238 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1239 lru_size = &mz->lru_zone_size[zid][lru];
1240
1241 if (nr_pages < 0)
1242 *lru_size += nr_pages;
1243
1244 size = *lru_size;
1245 if (WARN_ONCE(size < 0,
1246 "%s(%p, %d, %d): lru_size %ld\n",
1247 __func__, lruvec, lru, nr_pages, size)) {
1248 VM_BUG_ON(1);
1249 *lru_size = 0;
1250 }
1251
1252 if (nr_pages > 0)
1253 *lru_size += nr_pages;
1254}
1255
1256/**
1257 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1258 * @memcg: the memory cgroup
1259 *
1260 * Returns the maximum amount of memory @mem can be charged with, in
1261 * pages.
1262 */
1263static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1264{
1265 unsigned long margin = 0;
1266 unsigned long count;
1267 unsigned long limit;
1268
1269 count = page_counter_read(&memcg->memory);
1270 limit = READ_ONCE(memcg->memory.max);
1271 if (count < limit)
1272 margin = limit - count;
1273
1274 if (do_memsw_account()) {
1275 count = page_counter_read(&memcg->memsw);
1276 limit = READ_ONCE(memcg->memsw.max);
1277 if (count < limit)
1278 margin = min(margin, limit - count);
1279 else
1280 margin = 0;
1281 }
1282
1283 return margin;
1284}
1285
1286/*
1287 * A routine for checking "mem" is under move_account() or not.
1288 *
1289 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1290 * moving cgroups. This is for waiting at high-memory pressure
1291 * caused by "move".
1292 */
1293static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1294{
1295 struct mem_cgroup *from;
1296 struct mem_cgroup *to;
1297 bool ret = false;
1298 /*
1299 * Unlike task_move routines, we access mc.to, mc.from not under
1300 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1301 */
1302 spin_lock(&mc.lock);
1303 from = mc.from;
1304 to = mc.to;
1305 if (!from)
1306 goto unlock;
1307
1308 ret = mem_cgroup_is_descendant(from, memcg) ||
1309 mem_cgroup_is_descendant(to, memcg);
1310unlock:
1311 spin_unlock(&mc.lock);
1312 return ret;
1313}
1314
1315static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1316{
1317 if (mc.moving_task && current != mc.moving_task) {
1318 if (mem_cgroup_under_move(memcg)) {
1319 DEFINE_WAIT(wait);
1320 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1321 /* moving charge context might have finished. */
1322 if (mc.moving_task)
1323 schedule();
1324 finish_wait(&mc.waitq, &wait);
1325 return true;
1326 }
1327 }
1328 return false;
1329}
1330
1331struct memory_stat {
1332 const char *name;
1333 unsigned int idx;
1334};
1335
1336static const struct memory_stat memory_stats[] = {
1337 { "anon", NR_ANON_MAPPED },
1338 { "file", NR_FILE_PAGES },
1339 { "kernel_stack", NR_KERNEL_STACK_KB },
1340 { "pagetables", NR_PAGETABLE },
1341 { "percpu", MEMCG_PERCPU_B },
1342 { "sock", MEMCG_SOCK },
1343 { "shmem", NR_SHMEM },
1344 { "file_mapped", NR_FILE_MAPPED },
1345 { "file_dirty", NR_FILE_DIRTY },
1346 { "file_writeback", NR_WRITEBACK },
1347#ifdef CONFIG_SWAP
1348 { "swapcached", NR_SWAPCACHE },
1349#endif
1350#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1351 { "anon_thp", NR_ANON_THPS },
1352 { "file_thp", NR_FILE_THPS },
1353 { "shmem_thp", NR_SHMEM_THPS },
1354#endif
1355 { "inactive_anon", NR_INACTIVE_ANON },
1356 { "active_anon", NR_ACTIVE_ANON },
1357 { "inactive_file", NR_INACTIVE_FILE },
1358 { "active_file", NR_ACTIVE_FILE },
1359 { "unevictable", NR_UNEVICTABLE },
1360 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
1361 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
1362
1363 /* The memory events */
1364 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
1365 { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
1366 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
1367 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
1368 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
1369 { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
1370 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
1371};
1372
1373/* Translate stat items to the correct unit for memory.stat output */
1374static int memcg_page_state_unit(int item)
1375{
1376 switch (item) {
1377 case MEMCG_PERCPU_B:
1378 case NR_SLAB_RECLAIMABLE_B:
1379 case NR_SLAB_UNRECLAIMABLE_B:
1380 case WORKINGSET_REFAULT_ANON:
1381 case WORKINGSET_REFAULT_FILE:
1382 case WORKINGSET_ACTIVATE_ANON:
1383 case WORKINGSET_ACTIVATE_FILE:
1384 case WORKINGSET_RESTORE_ANON:
1385 case WORKINGSET_RESTORE_FILE:
1386 case WORKINGSET_NODERECLAIM:
1387 return 1;
1388 case NR_KERNEL_STACK_KB:
1389 return SZ_1K;
1390 default:
1391 return PAGE_SIZE;
1392 }
1393}
1394
1395static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1396 int item)
1397{
1398 return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1399}
1400
1401static char *memory_stat_format(struct mem_cgroup *memcg)
1402{
1403 struct seq_buf s;
1404 int i;
1405
1406 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1407 if (!s.buffer)
1408 return NULL;
1409
1410 /*
1411 * Provide statistics on the state of the memory subsystem as
1412 * well as cumulative event counters that show past behavior.
1413 *
1414 * This list is ordered following a combination of these gradients:
1415 * 1) generic big picture -> specifics and details
1416 * 2) reflecting userspace activity -> reflecting kernel heuristics
1417 *
1418 * Current memory state:
1419 */
1420 cgroup_rstat_flush(memcg->css.cgroup);
1421
1422 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1423 u64 size;
1424
1425 size = memcg_page_state_output(memcg, memory_stats[i].idx);
1426 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1427
1428 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1429 size += memcg_page_state_output(memcg,
1430 NR_SLAB_RECLAIMABLE_B);
1431 seq_buf_printf(&s, "slab %llu\n", size);
1432 }
1433 }
1434
1435 /* Accumulated memory events */
1436
1437 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1438 memcg_events(memcg, PGFAULT));
1439 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1440 memcg_events(memcg, PGMAJFAULT));
1441 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1442 memcg_events(memcg, PGREFILL));
1443 seq_buf_printf(&s, "pgscan %lu\n",
1444 memcg_events(memcg, PGSCAN_KSWAPD) +
1445 memcg_events(memcg, PGSCAN_DIRECT));
1446 seq_buf_printf(&s, "pgsteal %lu\n",
1447 memcg_events(memcg, PGSTEAL_KSWAPD) +
1448 memcg_events(memcg, PGSTEAL_DIRECT));
1449 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1450 memcg_events(memcg, PGACTIVATE));
1451 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1452 memcg_events(memcg, PGDEACTIVATE));
1453 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1454 memcg_events(memcg, PGLAZYFREE));
1455 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1456 memcg_events(memcg, PGLAZYFREED));
1457
1458#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1459 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1460 memcg_events(memcg, THP_FAULT_ALLOC));
1461 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1462 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1463#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1464
1465 /* The above should easily fit into one page */
1466 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1467
1468 return s.buffer;
1469}
1470
1471#define K(x) ((x) << (PAGE_SHIFT-10))
1472/**
1473 * mem_cgroup_print_oom_context: Print OOM information relevant to
1474 * memory controller.
1475 * @memcg: The memory cgroup that went over limit
1476 * @p: Task that is going to be killed
1477 *
1478 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1479 * enabled
1480 */
1481void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1482{
1483 rcu_read_lock();
1484
1485 if (memcg) {
1486 pr_cont(",oom_memcg=");
1487 pr_cont_cgroup_path(memcg->css.cgroup);
1488 } else
1489 pr_cont(",global_oom");
1490 if (p) {
1491 pr_cont(",task_memcg=");
1492 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1493 }
1494 rcu_read_unlock();
1495}
1496
1497/**
1498 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1499 * memory controller.
1500 * @memcg: The memory cgroup that went over limit
1501 */
1502void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1503{
1504 char *buf;
1505
1506 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1507 K((u64)page_counter_read(&memcg->memory)),
1508 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1509 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1510 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1511 K((u64)page_counter_read(&memcg->swap)),
1512 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1513 else {
1514 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1515 K((u64)page_counter_read(&memcg->memsw)),
1516 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1517 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1518 K((u64)page_counter_read(&memcg->kmem)),
1519 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1520 }
1521
1522 pr_info("Memory cgroup stats for ");
1523 pr_cont_cgroup_path(memcg->css.cgroup);
1524 pr_cont(":");
1525 buf = memory_stat_format(memcg);
1526 if (!buf)
1527 return;
1528 pr_info("%s", buf);
1529 kfree(buf);
1530}
1531
1532/*
1533 * Return the memory (and swap, if configured) limit for a memcg.
1534 */
1535unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1536{
1537 unsigned long max = READ_ONCE(memcg->memory.max);
1538
1539 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1540 if (mem_cgroup_swappiness(memcg))
1541 max += min(READ_ONCE(memcg->swap.max),
1542 (unsigned long)total_swap_pages);
1543 } else { /* v1 */
1544 if (mem_cgroup_swappiness(memcg)) {
1545 /* Calculate swap excess capacity from memsw limit */
1546 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1547
1548 max += min(swap, (unsigned long)total_swap_pages);
1549 }
1550 }
1551 return max;
1552}
1553
1554unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1555{
1556 return page_counter_read(&memcg->memory);
1557}
1558
1559static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1560 int order)
1561{
1562 struct oom_control oc = {
1563 .zonelist = NULL,
1564 .nodemask = NULL,
1565 .memcg = memcg,
1566 .gfp_mask = gfp_mask,
1567 .order = order,
1568 };
1569 bool ret = true;
1570
1571 if (mutex_lock_killable(&oom_lock))
1572 return true;
1573
1574 if (mem_cgroup_margin(memcg) >= (1 << order))
1575 goto unlock;
1576
1577 /*
1578 * A few threads which were not waiting at mutex_lock_killable() can
1579 * fail to bail out. Therefore, check again after holding oom_lock.
1580 */
1581 ret = should_force_charge() || out_of_memory(&oc);
1582
1583unlock:
1584 mutex_unlock(&oom_lock);
1585 return ret;
1586}
1587
1588static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1589 pg_data_t *pgdat,
1590 gfp_t gfp_mask,
1591 unsigned long *total_scanned)
1592{
1593 struct mem_cgroup *victim = NULL;
1594 int total = 0;
1595 int loop = 0;
1596 unsigned long excess;
1597 unsigned long nr_scanned;
1598 struct mem_cgroup_reclaim_cookie reclaim = {
1599 .pgdat = pgdat,
1600 };
1601
1602 excess = soft_limit_excess(root_memcg);
1603
1604 while (1) {
1605 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1606 if (!victim) {
1607 loop++;
1608 if (loop >= 2) {
1609 /*
1610 * If we have not been able to reclaim
1611 * anything, it might because there are
1612 * no reclaimable pages under this hierarchy
1613 */
1614 if (!total)
1615 break;
1616 /*
1617 * We want to do more targeted reclaim.
1618 * excess >> 2 is not to excessive so as to
1619 * reclaim too much, nor too less that we keep
1620 * coming back to reclaim from this cgroup
1621 */
1622 if (total >= (excess >> 2) ||
1623 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1624 break;
1625 }
1626 continue;
1627 }
1628 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1629 pgdat, &nr_scanned);
1630 *total_scanned += nr_scanned;
1631 if (!soft_limit_excess(root_memcg))
1632 break;
1633 }
1634 mem_cgroup_iter_break(root_memcg, victim);
1635 return total;
1636}
1637
1638#ifdef CONFIG_LOCKDEP
1639static struct lockdep_map memcg_oom_lock_dep_map = {
1640 .name = "memcg_oom_lock",
1641};
1642#endif
1643
1644static DEFINE_SPINLOCK(memcg_oom_lock);
1645
1646/*
1647 * Check OOM-Killer is already running under our hierarchy.
1648 * If someone is running, return false.
1649 */
1650static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1651{
1652 struct mem_cgroup *iter, *failed = NULL;
1653
1654 spin_lock(&memcg_oom_lock);
1655
1656 for_each_mem_cgroup_tree(iter, memcg) {
1657 if (iter->oom_lock) {
1658 /*
1659 * this subtree of our hierarchy is already locked
1660 * so we cannot give a lock.
1661 */
1662 failed = iter;
1663 mem_cgroup_iter_break(memcg, iter);
1664 break;
1665 } else
1666 iter->oom_lock = true;
1667 }
1668
1669 if (failed) {
1670 /*
1671 * OK, we failed to lock the whole subtree so we have
1672 * to clean up what we set up to the failing subtree
1673 */
1674 for_each_mem_cgroup_tree(iter, memcg) {
1675 if (iter == failed) {
1676 mem_cgroup_iter_break(memcg, iter);
1677 break;
1678 }
1679 iter->oom_lock = false;
1680 }
1681 } else
1682 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1683
1684 spin_unlock(&memcg_oom_lock);
1685
1686 return !failed;
1687}
1688
1689static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1690{
1691 struct mem_cgroup *iter;
1692
1693 spin_lock(&memcg_oom_lock);
1694 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1695 for_each_mem_cgroup_tree(iter, memcg)
1696 iter->oom_lock = false;
1697 spin_unlock(&memcg_oom_lock);
1698}
1699
1700static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1701{
1702 struct mem_cgroup *iter;
1703
1704 spin_lock(&memcg_oom_lock);
1705 for_each_mem_cgroup_tree(iter, memcg)
1706 iter->under_oom++;
1707 spin_unlock(&memcg_oom_lock);
1708}
1709
1710static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1711{
1712 struct mem_cgroup *iter;
1713
1714 /*
1715 * Be careful about under_oom underflows because a child memcg
1716 * could have been added after mem_cgroup_mark_under_oom.
1717 */
1718 spin_lock(&memcg_oom_lock);
1719 for_each_mem_cgroup_tree(iter, memcg)
1720 if (iter->under_oom > 0)
1721 iter->under_oom--;
1722 spin_unlock(&memcg_oom_lock);
1723}
1724
1725static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1726
1727struct oom_wait_info {
1728 struct mem_cgroup *memcg;
1729 wait_queue_entry_t wait;
1730};
1731
1732static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1733 unsigned mode, int sync, void *arg)
1734{
1735 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1736 struct mem_cgroup *oom_wait_memcg;
1737 struct oom_wait_info *oom_wait_info;
1738
1739 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1740 oom_wait_memcg = oom_wait_info->memcg;
1741
1742 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1743 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1744 return 0;
1745 return autoremove_wake_function(wait, mode, sync, arg);
1746}
1747
1748static void memcg_oom_recover(struct mem_cgroup *memcg)
1749{
1750 /*
1751 * For the following lockless ->under_oom test, the only required
1752 * guarantee is that it must see the state asserted by an OOM when
1753 * this function is called as a result of userland actions
1754 * triggered by the notification of the OOM. This is trivially
1755 * achieved by invoking mem_cgroup_mark_under_oom() before
1756 * triggering notification.
1757 */
1758 if (memcg && memcg->under_oom)
1759 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1760}
1761
1762enum oom_status {
1763 OOM_SUCCESS,
1764 OOM_FAILED,
1765 OOM_ASYNC,
1766 OOM_SKIPPED
1767};
1768
1769static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1770{
1771 enum oom_status ret;
1772 bool locked;
1773
1774 if (order > PAGE_ALLOC_COSTLY_ORDER)
1775 return OOM_SKIPPED;
1776
1777 memcg_memory_event(memcg, MEMCG_OOM);
1778
1779 /*
1780 * We are in the middle of the charge context here, so we
1781 * don't want to block when potentially sitting on a callstack
1782 * that holds all kinds of filesystem and mm locks.
1783 *
1784 * cgroup1 allows disabling the OOM killer and waiting for outside
1785 * handling until the charge can succeed; remember the context and put
1786 * the task to sleep at the end of the page fault when all locks are
1787 * released.
1788 *
1789 * On the other hand, in-kernel OOM killer allows for an async victim
1790 * memory reclaim (oom_reaper) and that means that we are not solely
1791 * relying on the oom victim to make a forward progress and we can
1792 * invoke the oom killer here.
1793 *
1794 * Please note that mem_cgroup_out_of_memory might fail to find a
1795 * victim and then we have to bail out from the charge path.
1796 */
1797 if (memcg->oom_kill_disable) {
1798 if (!current->in_user_fault)
1799 return OOM_SKIPPED;
1800 css_get(&memcg->css);
1801 current->memcg_in_oom = memcg;
1802 current->memcg_oom_gfp_mask = mask;
1803 current->memcg_oom_order = order;
1804
1805 return OOM_ASYNC;
1806 }
1807
1808 mem_cgroup_mark_under_oom(memcg);
1809
1810 locked = mem_cgroup_oom_trylock(memcg);
1811
1812 if (locked)
1813 mem_cgroup_oom_notify(memcg);
1814
1815 mem_cgroup_unmark_under_oom(memcg);
1816 if (mem_cgroup_out_of_memory(memcg, mask, order))
1817 ret = OOM_SUCCESS;
1818 else
1819 ret = OOM_FAILED;
1820
1821 if (locked)
1822 mem_cgroup_oom_unlock(memcg);
1823
1824 return ret;
1825}
1826
1827/**
1828 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1829 * @handle: actually kill/wait or just clean up the OOM state
1830 *
1831 * This has to be called at the end of a page fault if the memcg OOM
1832 * handler was enabled.
1833 *
1834 * Memcg supports userspace OOM handling where failed allocations must
1835 * sleep on a waitqueue until the userspace task resolves the
1836 * situation. Sleeping directly in the charge context with all kinds
1837 * of locks held is not a good idea, instead we remember an OOM state
1838 * in the task and mem_cgroup_oom_synchronize() has to be called at
1839 * the end of the page fault to complete the OOM handling.
1840 *
1841 * Returns %true if an ongoing memcg OOM situation was detected and
1842 * completed, %false otherwise.
1843 */
1844bool mem_cgroup_oom_synchronize(bool handle)
1845{
1846 struct mem_cgroup *memcg = current->memcg_in_oom;
1847 struct oom_wait_info owait;
1848 bool locked;
1849
1850 /* OOM is global, do not handle */
1851 if (!memcg)
1852 return false;
1853
1854 if (!handle)
1855 goto cleanup;
1856
1857 owait.memcg = memcg;
1858 owait.wait.flags = 0;
1859 owait.wait.func = memcg_oom_wake_function;
1860 owait.wait.private = current;
1861 INIT_LIST_HEAD(&owait.wait.entry);
1862
1863 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1864 mem_cgroup_mark_under_oom(memcg);
1865
1866 locked = mem_cgroup_oom_trylock(memcg);
1867
1868 if (locked)
1869 mem_cgroup_oom_notify(memcg);
1870
1871 if (locked && !memcg->oom_kill_disable) {
1872 mem_cgroup_unmark_under_oom(memcg);
1873 finish_wait(&memcg_oom_waitq, &owait.wait);
1874 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1875 current->memcg_oom_order);
1876 } else {
1877 schedule();
1878 mem_cgroup_unmark_under_oom(memcg);
1879 finish_wait(&memcg_oom_waitq, &owait.wait);
1880 }
1881
1882 if (locked) {
1883 mem_cgroup_oom_unlock(memcg);
1884 /*
1885 * There is no guarantee that an OOM-lock contender
1886 * sees the wakeups triggered by the OOM kill
1887 * uncharges. Wake any sleepers explicitly.
1888 */
1889 memcg_oom_recover(memcg);
1890 }
1891cleanup:
1892 current->memcg_in_oom = NULL;
1893 css_put(&memcg->css);
1894 return true;
1895}
1896
1897/**
1898 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1899 * @victim: task to be killed by the OOM killer
1900 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1901 *
1902 * Returns a pointer to a memory cgroup, which has to be cleaned up
1903 * by killing all belonging OOM-killable tasks.
1904 *
1905 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1906 */
1907struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1908 struct mem_cgroup *oom_domain)
1909{
1910 struct mem_cgroup *oom_group = NULL;
1911 struct mem_cgroup *memcg;
1912
1913 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1914 return NULL;
1915
1916 if (!oom_domain)
1917 oom_domain = root_mem_cgroup;
1918
1919 rcu_read_lock();
1920
1921 memcg = mem_cgroup_from_task(victim);
1922 if (memcg == root_mem_cgroup)
1923 goto out;
1924
1925 /*
1926 * If the victim task has been asynchronously moved to a different
1927 * memory cgroup, we might end up killing tasks outside oom_domain.
1928 * In this case it's better to ignore memory.group.oom.
1929 */
1930 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1931 goto out;
1932
1933 /*
1934 * Traverse the memory cgroup hierarchy from the victim task's
1935 * cgroup up to the OOMing cgroup (or root) to find the
1936 * highest-level memory cgroup with oom.group set.
1937 */
1938 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1939 if (memcg->oom_group)
1940 oom_group = memcg;
1941
1942 if (memcg == oom_domain)
1943 break;
1944 }
1945
1946 if (oom_group)
1947 css_get(&oom_group->css);
1948out:
1949 rcu_read_unlock();
1950
1951 return oom_group;
1952}
1953
1954void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1955{
1956 pr_info("Tasks in ");
1957 pr_cont_cgroup_path(memcg->css.cgroup);
1958 pr_cont(" are going to be killed due to memory.oom.group set\n");
1959}
1960
1961/**
1962 * lock_page_memcg - lock a page and memcg binding
1963 * @page: the page
1964 *
1965 * This function protects unlocked LRU pages from being moved to
1966 * another cgroup.
1967 *
1968 * It ensures lifetime of the locked memcg. Caller is responsible
1969 * for the lifetime of the page.
1970 */
1971void lock_page_memcg(struct page *page)
1972{
1973 struct page *head = compound_head(page); /* rmap on tail pages */
1974 struct mem_cgroup *memcg;
1975 unsigned long flags;
1976
1977 /*
1978 * The RCU lock is held throughout the transaction. The fast
1979 * path can get away without acquiring the memcg->move_lock
1980 * because page moving starts with an RCU grace period.
1981 */
1982 rcu_read_lock();
1983
1984 if (mem_cgroup_disabled())
1985 return;
1986again:
1987 memcg = page_memcg(head);
1988 if (unlikely(!memcg))
1989 return;
1990
1991#ifdef CONFIG_PROVE_LOCKING
1992 local_irq_save(flags);
1993 might_lock(&memcg->move_lock);
1994 local_irq_restore(flags);
1995#endif
1996
1997 if (atomic_read(&memcg->moving_account) <= 0)
1998 return;
1999
2000 spin_lock_irqsave(&memcg->move_lock, flags);
2001 if (memcg != page_memcg(head)) {
2002 spin_unlock_irqrestore(&memcg->move_lock, flags);
2003 goto again;
2004 }
2005
2006 /*
2007 * When charge migration first begins, we can have multiple
2008 * critical sections holding the fast-path RCU lock and one
2009 * holding the slowpath move_lock. Track the task who has the
2010 * move_lock for unlock_page_memcg().
2011 */
2012 memcg->move_lock_task = current;
2013 memcg->move_lock_flags = flags;
2014}
2015EXPORT_SYMBOL(lock_page_memcg);
2016
2017static void __unlock_page_memcg(struct mem_cgroup *memcg)
2018{
2019 if (memcg && memcg->move_lock_task == current) {
2020 unsigned long flags = memcg->move_lock_flags;
2021
2022 memcg->move_lock_task = NULL;
2023 memcg->move_lock_flags = 0;
2024
2025 spin_unlock_irqrestore(&memcg->move_lock, flags);
2026 }
2027
2028 rcu_read_unlock();
2029}
2030
2031/**
2032 * unlock_page_memcg - unlock a page and memcg binding
2033 * @page: the page
2034 */
2035void unlock_page_memcg(struct page *page)
2036{
2037 struct page *head = compound_head(page);
2038
2039 __unlock_page_memcg(page_memcg(head));
2040}
2041EXPORT_SYMBOL(unlock_page_memcg);
2042
2043struct memcg_stock_pcp {
2044 struct mem_cgroup *cached; /* this never be root cgroup */
2045 unsigned int nr_pages;
2046
2047#ifdef CONFIG_MEMCG_KMEM
2048 struct obj_cgroup *cached_objcg;
2049 unsigned int nr_bytes;
2050#endif
2051
2052 struct work_struct work;
2053 unsigned long flags;
2054#define FLUSHING_CACHED_CHARGE 0
2055};
2056static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2057static DEFINE_MUTEX(percpu_charge_mutex);
2058
2059#ifdef CONFIG_MEMCG_KMEM
2060static void drain_obj_stock(struct memcg_stock_pcp *stock);
2061static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2062 struct mem_cgroup *root_memcg);
2063
2064#else
2065static inline void drain_obj_stock(struct memcg_stock_pcp *stock)
2066{
2067}
2068static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2069 struct mem_cgroup *root_memcg)
2070{
2071 return false;
2072}
2073#endif
2074
2075/**
2076 * consume_stock: Try to consume stocked charge on this cpu.
2077 * @memcg: memcg to consume from.
2078 * @nr_pages: how many pages to charge.
2079 *
2080 * The charges will only happen if @memcg matches the current cpu's memcg
2081 * stock, and at least @nr_pages are available in that stock. Failure to
2082 * service an allocation will refill the stock.
2083 *
2084 * returns true if successful, false otherwise.
2085 */
2086static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2087{
2088 struct memcg_stock_pcp *stock;
2089 unsigned long flags;
2090 bool ret = false;
2091
2092 if (nr_pages > MEMCG_CHARGE_BATCH)
2093 return ret;
2094
2095 local_irq_save(flags);
2096
2097 stock = this_cpu_ptr(&memcg_stock);
2098 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2099 stock->nr_pages -= nr_pages;
2100 ret = true;
2101 }
2102
2103 local_irq_restore(flags);
2104
2105 return ret;
2106}
2107
2108/*
2109 * Returns stocks cached in percpu and reset cached information.
2110 */
2111static void drain_stock(struct memcg_stock_pcp *stock)
2112{
2113 struct mem_cgroup *old = stock->cached;
2114
2115 if (!old)
2116 return;
2117
2118 if (stock->nr_pages) {
2119 page_counter_uncharge(&old->memory, stock->nr_pages);
2120 if (do_memsw_account())
2121 page_counter_uncharge(&old->memsw, stock->nr_pages);
2122 stock->nr_pages = 0;
2123 }
2124
2125 css_put(&old->css);
2126 stock->cached = NULL;
2127}
2128
2129static void drain_local_stock(struct work_struct *dummy)
2130{
2131 struct memcg_stock_pcp *stock;
2132 unsigned long flags;
2133
2134 /*
2135 * The only protection from memory hotplug vs. drain_stock races is
2136 * that we always operate on local CPU stock here with IRQ disabled
2137 */
2138 local_irq_save(flags);
2139
2140 stock = this_cpu_ptr(&memcg_stock);
2141 drain_obj_stock(stock);
2142 drain_stock(stock);
2143 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2144
2145 local_irq_restore(flags);
2146}
2147
2148/*
2149 * Cache charges(val) to local per_cpu area.
2150 * This will be consumed by consume_stock() function, later.
2151 */
2152static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2153{
2154 struct memcg_stock_pcp *stock;
2155 unsigned long flags;
2156
2157 local_irq_save(flags);
2158
2159 stock = this_cpu_ptr(&memcg_stock);
2160 if (stock->cached != memcg) { /* reset if necessary */
2161 drain_stock(stock);
2162 css_get(&memcg->css);
2163 stock->cached = memcg;
2164 }
2165 stock->nr_pages += nr_pages;
2166
2167 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2168 drain_stock(stock);
2169
2170 local_irq_restore(flags);
2171}
2172
2173/*
2174 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2175 * of the hierarchy under it.
2176 */
2177static void drain_all_stock(struct mem_cgroup *root_memcg)
2178{
2179 int cpu, curcpu;
2180
2181 /* If someone's already draining, avoid adding running more workers. */
2182 if (!mutex_trylock(&percpu_charge_mutex))
2183 return;
2184 /*
2185 * Notify other cpus that system-wide "drain" is running
2186 * We do not care about races with the cpu hotplug because cpu down
2187 * as well as workers from this path always operate on the local
2188 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2189 */
2190 curcpu = get_cpu();
2191 for_each_online_cpu(cpu) {
2192 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2193 struct mem_cgroup *memcg;
2194 bool flush = false;
2195
2196 rcu_read_lock();
2197 memcg = stock->cached;
2198 if (memcg && stock->nr_pages &&
2199 mem_cgroup_is_descendant(memcg, root_memcg))
2200 flush = true;
2201 if (obj_stock_flush_required(stock, root_memcg))
2202 flush = true;
2203 rcu_read_unlock();
2204
2205 if (flush &&
2206 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2207 if (cpu == curcpu)
2208 drain_local_stock(&stock->work);
2209 else
2210 schedule_work_on(cpu, &stock->work);
2211 }
2212 }
2213 put_cpu();
2214 mutex_unlock(&percpu_charge_mutex);
2215}
2216
2217static void memcg_flush_lruvec_page_state(struct mem_cgroup *memcg, int cpu)
2218{
2219 int nid;
2220
2221 for_each_node(nid) {
2222 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
2223 unsigned long stat[NR_VM_NODE_STAT_ITEMS];
2224 struct batched_lruvec_stat *lstatc;
2225 int i;
2226
2227 lstatc = per_cpu_ptr(pn->lruvec_stat_cpu, cpu);
2228 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
2229 stat[i] = lstatc->count[i];
2230 lstatc->count[i] = 0;
2231 }
2232
2233 do {
2234 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
2235 atomic_long_add(stat[i], &pn->lruvec_stat[i]);
2236 } while ((pn = parent_nodeinfo(pn, nid)));
2237 }
2238}
2239
2240static int memcg_hotplug_cpu_dead(unsigned int cpu)
2241{
2242 struct memcg_stock_pcp *stock;
2243 struct mem_cgroup *memcg;
2244
2245 stock = &per_cpu(memcg_stock, cpu);
2246 drain_stock(stock);
2247
2248 for_each_mem_cgroup(memcg)
2249 memcg_flush_lruvec_page_state(memcg, cpu);
2250
2251 return 0;
2252}
2253
2254static unsigned long reclaim_high(struct mem_cgroup *memcg,
2255 unsigned int nr_pages,
2256 gfp_t gfp_mask)
2257{
2258 unsigned long nr_reclaimed = 0;
2259
2260 do {
2261 unsigned long pflags;
2262
2263 if (page_counter_read(&memcg->memory) <=
2264 READ_ONCE(memcg->memory.high))
2265 continue;
2266
2267 memcg_memory_event(memcg, MEMCG_HIGH);
2268
2269 psi_memstall_enter(&pflags);
2270 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2271 gfp_mask, true);
2272 psi_memstall_leave(&pflags);
2273 } while ((memcg = parent_mem_cgroup(memcg)) &&
2274 !mem_cgroup_is_root(memcg));
2275
2276 return nr_reclaimed;
2277}
2278
2279static void high_work_func(struct work_struct *work)
2280{
2281 struct mem_cgroup *memcg;
2282
2283 memcg = container_of(work, struct mem_cgroup, high_work);
2284 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2285}
2286
2287/*
2288 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2289 * enough to still cause a significant slowdown in most cases, while still
2290 * allowing diagnostics and tracing to proceed without becoming stuck.
2291 */
2292#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2293
2294/*
2295 * When calculating the delay, we use these either side of the exponentiation to
2296 * maintain precision and scale to a reasonable number of jiffies (see the table
2297 * below.
2298 *
2299 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2300 * overage ratio to a delay.
2301 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2302 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2303 * to produce a reasonable delay curve.
2304 *
2305 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2306 * reasonable delay curve compared to precision-adjusted overage, not
2307 * penalising heavily at first, but still making sure that growth beyond the
2308 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2309 * example, with a high of 100 megabytes:
2310 *
2311 * +-------+------------------------+
2312 * | usage | time to allocate in ms |
2313 * +-------+------------------------+
2314 * | 100M | 0 |
2315 * | 101M | 6 |
2316 * | 102M | 25 |
2317 * | 103M | 57 |
2318 * | 104M | 102 |
2319 * | 105M | 159 |
2320 * | 106M | 230 |
2321 * | 107M | 313 |
2322 * | 108M | 409 |
2323 * | 109M | 518 |
2324 * | 110M | 639 |
2325 * | 111M | 774 |
2326 * | 112M | 921 |
2327 * | 113M | 1081 |
2328 * | 114M | 1254 |
2329 * | 115M | 1439 |
2330 * | 116M | 1638 |
2331 * | 117M | 1849 |
2332 * | 118M | 2000 |
2333 * | 119M | 2000 |
2334 * | 120M | 2000 |
2335 * +-------+------------------------+
2336 */
2337 #define MEMCG_DELAY_PRECISION_SHIFT 20
2338 #define MEMCG_DELAY_SCALING_SHIFT 14
2339
2340static u64 calculate_overage(unsigned long usage, unsigned long high)
2341{
2342 u64 overage;
2343
2344 if (usage <= high)
2345 return 0;
2346
2347 /*
2348 * Prevent division by 0 in overage calculation by acting as if
2349 * it was a threshold of 1 page
2350 */
2351 high = max(high, 1UL);
2352
2353 overage = usage - high;
2354 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2355 return div64_u64(overage, high);
2356}
2357
2358static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2359{
2360 u64 overage, max_overage = 0;
2361
2362 do {
2363 overage = calculate_overage(page_counter_read(&memcg->memory),
2364 READ_ONCE(memcg->memory.high));
2365 max_overage = max(overage, max_overage);
2366 } while ((memcg = parent_mem_cgroup(memcg)) &&
2367 !mem_cgroup_is_root(memcg));
2368
2369 return max_overage;
2370}
2371
2372static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2373{
2374 u64 overage, max_overage = 0;
2375
2376 do {
2377 overage = calculate_overage(page_counter_read(&memcg->swap),
2378 READ_ONCE(memcg->swap.high));
2379 if (overage)
2380 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2381 max_overage = max(overage, max_overage);
2382 } while ((memcg = parent_mem_cgroup(memcg)) &&
2383 !mem_cgroup_is_root(memcg));
2384
2385 return max_overage;
2386}
2387
2388/*
2389 * Get the number of jiffies that we should penalise a mischievous cgroup which
2390 * is exceeding its memory.high by checking both it and its ancestors.
2391 */
2392static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2393 unsigned int nr_pages,
2394 u64 max_overage)
2395{
2396 unsigned long penalty_jiffies;
2397
2398 if (!max_overage)
2399 return 0;
2400
2401 /*
2402 * We use overage compared to memory.high to calculate the number of
2403 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2404 * fairly lenient on small overages, and increasingly harsh when the
2405 * memcg in question makes it clear that it has no intention of stopping
2406 * its crazy behaviour, so we exponentially increase the delay based on
2407 * overage amount.
2408 */
2409 penalty_jiffies = max_overage * max_overage * HZ;
2410 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2411 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2412
2413 /*
2414 * Factor in the task's own contribution to the overage, such that four
2415 * N-sized allocations are throttled approximately the same as one
2416 * 4N-sized allocation.
2417 *
2418 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2419 * larger the current charge patch is than that.
2420 */
2421 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2422}
2423
2424/*
2425 * Scheduled by try_charge() to be executed from the userland return path
2426 * and reclaims memory over the high limit.
2427 */
2428void mem_cgroup_handle_over_high(void)
2429{
2430 unsigned long penalty_jiffies;
2431 unsigned long pflags;
2432 unsigned long nr_reclaimed;
2433 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2434 int nr_retries = MAX_RECLAIM_RETRIES;
2435 struct mem_cgroup *memcg;
2436 bool in_retry = false;
2437
2438 if (likely(!nr_pages))
2439 return;
2440
2441 memcg = get_mem_cgroup_from_mm(current->mm);
2442 current->memcg_nr_pages_over_high = 0;
2443
2444retry_reclaim:
2445 /*
2446 * The allocating task should reclaim at least the batch size, but for
2447 * subsequent retries we only want to do what's necessary to prevent oom
2448 * or breaching resource isolation.
2449 *
2450 * This is distinct from memory.max or page allocator behaviour because
2451 * memory.high is currently batched, whereas memory.max and the page
2452 * allocator run every time an allocation is made.
2453 */
2454 nr_reclaimed = reclaim_high(memcg,
2455 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2456 GFP_KERNEL);
2457
2458 /*
2459 * memory.high is breached and reclaim is unable to keep up. Throttle
2460 * allocators proactively to slow down excessive growth.
2461 */
2462 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2463 mem_find_max_overage(memcg));
2464
2465 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2466 swap_find_max_overage(memcg));
2467
2468 /*
2469 * Clamp the max delay per usermode return so as to still keep the
2470 * application moving forwards and also permit diagnostics, albeit
2471 * extremely slowly.
2472 */
2473 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2474
2475 /*
2476 * Don't sleep if the amount of jiffies this memcg owes us is so low
2477 * that it's not even worth doing, in an attempt to be nice to those who
2478 * go only a small amount over their memory.high value and maybe haven't
2479 * been aggressively reclaimed enough yet.
2480 */
2481 if (penalty_jiffies <= HZ / 100)
2482 goto out;
2483
2484 /*
2485 * If reclaim is making forward progress but we're still over
2486 * memory.high, we want to encourage that rather than doing allocator
2487 * throttling.
2488 */
2489 if (nr_reclaimed || nr_retries--) {
2490 in_retry = true;
2491 goto retry_reclaim;
2492 }
2493
2494 /*
2495 * If we exit early, we're guaranteed to die (since
2496 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2497 * need to account for any ill-begotten jiffies to pay them off later.
2498 */
2499 psi_memstall_enter(&pflags);
2500 schedule_timeout_killable(penalty_jiffies);
2501 psi_memstall_leave(&pflags);
2502
2503out:
2504 css_put(&memcg->css);
2505}
2506
2507static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2508 unsigned int nr_pages)
2509{
2510 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2511 int nr_retries = MAX_RECLAIM_RETRIES;
2512 struct mem_cgroup *mem_over_limit;
2513 struct page_counter *counter;
2514 enum oom_status oom_status;
2515 unsigned long nr_reclaimed;
2516 bool may_swap = true;
2517 bool drained = false;
2518 unsigned long pflags;
2519
2520 if (mem_cgroup_is_root(memcg))
2521 return 0;
2522retry:
2523 if (consume_stock(memcg, nr_pages))
2524 return 0;
2525
2526 if (!do_memsw_account() ||
2527 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2528 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2529 goto done_restock;
2530 if (do_memsw_account())
2531 page_counter_uncharge(&memcg->memsw, batch);
2532 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2533 } else {
2534 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2535 may_swap = false;
2536 }
2537
2538 if (batch > nr_pages) {
2539 batch = nr_pages;
2540 goto retry;
2541 }
2542
2543 /*
2544 * Memcg doesn't have a dedicated reserve for atomic
2545 * allocations. But like the global atomic pool, we need to
2546 * put the burden of reclaim on regular allocation requests
2547 * and let these go through as privileged allocations.
2548 */
2549 if (gfp_mask & __GFP_ATOMIC)
2550 goto force;
2551
2552 /*
2553 * Unlike in global OOM situations, memcg is not in a physical
2554 * memory shortage. Allow dying and OOM-killed tasks to
2555 * bypass the last charges so that they can exit quickly and
2556 * free their memory.
2557 */
2558 if (unlikely(should_force_charge()))
2559 goto force;
2560
2561 /*
2562 * Prevent unbounded recursion when reclaim operations need to
2563 * allocate memory. This might exceed the limits temporarily,
2564 * but we prefer facilitating memory reclaim and getting back
2565 * under the limit over triggering OOM kills in these cases.
2566 */
2567 if (unlikely(current->flags & PF_MEMALLOC))
2568 goto force;
2569
2570 if (unlikely(task_in_memcg_oom(current)))
2571 goto nomem;
2572
2573 if (!gfpflags_allow_blocking(gfp_mask))
2574 goto nomem;
2575
2576 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2577
2578 psi_memstall_enter(&pflags);
2579 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2580 gfp_mask, may_swap);
2581 psi_memstall_leave(&pflags);
2582
2583 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2584 goto retry;
2585
2586 if (!drained) {
2587 drain_all_stock(mem_over_limit);
2588 drained = true;
2589 goto retry;
2590 }
2591
2592 if (gfp_mask & __GFP_NORETRY)
2593 goto nomem;
2594 /*
2595 * Even though the limit is exceeded at this point, reclaim
2596 * may have been able to free some pages. Retry the charge
2597 * before killing the task.
2598 *
2599 * Only for regular pages, though: huge pages are rather
2600 * unlikely to succeed so close to the limit, and we fall back
2601 * to regular pages anyway in case of failure.
2602 */
2603 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2604 goto retry;
2605 /*
2606 * At task move, charge accounts can be doubly counted. So, it's
2607 * better to wait until the end of task_move if something is going on.
2608 */
2609 if (mem_cgroup_wait_acct_move(mem_over_limit))
2610 goto retry;
2611
2612 if (nr_retries--)
2613 goto retry;
2614
2615 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2616 goto nomem;
2617
2618 if (fatal_signal_pending(current))
2619 goto force;
2620
2621 /*
2622 * keep retrying as long as the memcg oom killer is able to make
2623 * a forward progress or bypass the charge if the oom killer
2624 * couldn't make any progress.
2625 */
2626 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2627 get_order(nr_pages * PAGE_SIZE));
2628 switch (oom_status) {
2629 case OOM_SUCCESS:
2630 nr_retries = MAX_RECLAIM_RETRIES;
2631 goto retry;
2632 case OOM_FAILED:
2633 goto force;
2634 default:
2635 goto nomem;
2636 }
2637nomem:
2638 if (!(gfp_mask & __GFP_NOFAIL))
2639 return -ENOMEM;
2640force:
2641 /*
2642 * The allocation either can't fail or will lead to more memory
2643 * being freed very soon. Allow memory usage go over the limit
2644 * temporarily by force charging it.
2645 */
2646 page_counter_charge(&memcg->memory, nr_pages);
2647 if (do_memsw_account())
2648 page_counter_charge(&memcg->memsw, nr_pages);
2649
2650 return 0;
2651
2652done_restock:
2653 if (batch > nr_pages)
2654 refill_stock(memcg, batch - nr_pages);
2655
2656 /*
2657 * If the hierarchy is above the normal consumption range, schedule
2658 * reclaim on returning to userland. We can perform reclaim here
2659 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2660 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2661 * not recorded as it most likely matches current's and won't
2662 * change in the meantime. As high limit is checked again before
2663 * reclaim, the cost of mismatch is negligible.
2664 */
2665 do {
2666 bool mem_high, swap_high;
2667
2668 mem_high = page_counter_read(&memcg->memory) >
2669 READ_ONCE(memcg->memory.high);
2670 swap_high = page_counter_read(&memcg->swap) >
2671 READ_ONCE(memcg->swap.high);
2672
2673 /* Don't bother a random interrupted task */
2674 if (in_interrupt()) {
2675 if (mem_high) {
2676 schedule_work(&memcg->high_work);
2677 break;
2678 }
2679 continue;
2680 }
2681
2682 if (mem_high || swap_high) {
2683 /*
2684 * The allocating tasks in this cgroup will need to do
2685 * reclaim or be throttled to prevent further growth
2686 * of the memory or swap footprints.
2687 *
2688 * Target some best-effort fairness between the tasks,
2689 * and distribute reclaim work and delay penalties
2690 * based on how much each task is actually allocating.
2691 */
2692 current->memcg_nr_pages_over_high += batch;
2693 set_notify_resume(current);
2694 break;
2695 }
2696 } while ((memcg = parent_mem_cgroup(memcg)));
2697
2698 return 0;
2699}
2700
2701#if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2702static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2703{
2704 if (mem_cgroup_is_root(memcg))
2705 return;
2706
2707 page_counter_uncharge(&memcg->memory, nr_pages);
2708 if (do_memsw_account())
2709 page_counter_uncharge(&memcg->memsw, nr_pages);
2710}
2711#endif
2712
2713static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2714{
2715 VM_BUG_ON_PAGE(page_memcg(page), page);
2716 /*
2717 * Any of the following ensures page's memcg stability:
2718 *
2719 * - the page lock
2720 * - LRU isolation
2721 * - lock_page_memcg()
2722 * - exclusive reference
2723 */
2724 page->memcg_data = (unsigned long)memcg;
2725}
2726
2727static struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
2728{
2729 struct mem_cgroup *memcg;
2730
2731 rcu_read_lock();
2732retry:
2733 memcg = obj_cgroup_memcg(objcg);
2734 if (unlikely(!css_tryget(&memcg->css)))
2735 goto retry;
2736 rcu_read_unlock();
2737
2738 return memcg;
2739}
2740
2741#ifdef CONFIG_MEMCG_KMEM
2742int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2743 gfp_t gfp, bool new_page)
2744{
2745 unsigned int objects = objs_per_slab_page(s, page);
2746 unsigned long memcg_data;
2747 void *vec;
2748
2749 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2750 page_to_nid(page));
2751 if (!vec)
2752 return -ENOMEM;
2753
2754 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2755 if (new_page) {
2756 /*
2757 * If the slab page is brand new and nobody can yet access
2758 * it's memcg_data, no synchronization is required and
2759 * memcg_data can be simply assigned.
2760 */
2761 page->memcg_data = memcg_data;
2762 } else if (cmpxchg(&page->memcg_data, 0, memcg_data)) {
2763 /*
2764 * If the slab page is already in use, somebody can allocate
2765 * and assign obj_cgroups in parallel. In this case the existing
2766 * objcg vector should be reused.
2767 */
2768 kfree(vec);
2769 return 0;
2770 }
2771
2772 kmemleak_not_leak(vec);
2773 return 0;
2774}
2775
2776/*
2777 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2778 *
2779 * A passed kernel object can be a slab object or a generic kernel page, so
2780 * different mechanisms for getting the memory cgroup pointer should be used.
2781 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2782 * can not know for sure how the kernel object is implemented.
2783 * mem_cgroup_from_obj() can be safely used in such cases.
2784 *
2785 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2786 * cgroup_mutex, etc.
2787 */
2788struct mem_cgroup *mem_cgroup_from_obj(void *p)
2789{
2790 struct page *page;
2791
2792 if (mem_cgroup_disabled())
2793 return NULL;
2794
2795 page = virt_to_head_page(p);
2796
2797 /*
2798 * Slab objects are accounted individually, not per-page.
2799 * Memcg membership data for each individual object is saved in
2800 * the page->obj_cgroups.
2801 */
2802 if (page_objcgs_check(page)) {
2803 struct obj_cgroup *objcg;
2804 unsigned int off;
2805
2806 off = obj_to_index(page->slab_cache, page, p);
2807 objcg = page_objcgs(page)[off];
2808 if (objcg)
2809 return obj_cgroup_memcg(objcg);
2810
2811 return NULL;
2812 }
2813
2814 /*
2815 * page_memcg_check() is used here, because page_has_obj_cgroups()
2816 * check above could fail because the object cgroups vector wasn't set
2817 * at that moment, but it can be set concurrently.
2818 * page_memcg_check(page) will guarantee that a proper memory
2819 * cgroup pointer or NULL will be returned.
2820 */
2821 return page_memcg_check(page);
2822}
2823
2824__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2825{
2826 struct obj_cgroup *objcg = NULL;
2827 struct mem_cgroup *memcg;
2828
2829 if (memcg_kmem_bypass())
2830 return NULL;
2831
2832 rcu_read_lock();
2833 if (unlikely(active_memcg()))
2834 memcg = active_memcg();
2835 else
2836 memcg = mem_cgroup_from_task(current);
2837
2838 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2839 objcg = rcu_dereference(memcg->objcg);
2840 if (objcg && obj_cgroup_tryget(objcg))
2841 break;
2842 objcg = NULL;
2843 }
2844 rcu_read_unlock();
2845
2846 return objcg;
2847}
2848
2849static int memcg_alloc_cache_id(void)
2850{
2851 int id, size;
2852 int err;
2853
2854 id = ida_simple_get(&memcg_cache_ida,
2855 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2856 if (id < 0)
2857 return id;
2858
2859 if (id < memcg_nr_cache_ids)
2860 return id;
2861
2862 /*
2863 * There's no space for the new id in memcg_caches arrays,
2864 * so we have to grow them.
2865 */
2866 down_write(&memcg_cache_ids_sem);
2867
2868 size = 2 * (id + 1);
2869 if (size < MEMCG_CACHES_MIN_SIZE)
2870 size = MEMCG_CACHES_MIN_SIZE;
2871 else if (size > MEMCG_CACHES_MAX_SIZE)
2872 size = MEMCG_CACHES_MAX_SIZE;
2873
2874 err = memcg_update_all_list_lrus(size);
2875 if (!err)
2876 memcg_nr_cache_ids = size;
2877
2878 up_write(&memcg_cache_ids_sem);
2879
2880 if (err) {
2881 ida_simple_remove(&memcg_cache_ida, id);
2882 return err;
2883 }
2884 return id;
2885}
2886
2887static void memcg_free_cache_id(int id)
2888{
2889 ida_simple_remove(&memcg_cache_ida, id);
2890}
2891
2892/*
2893 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
2894 * @objcg: object cgroup to uncharge
2895 * @nr_pages: number of pages to uncharge
2896 */
2897static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
2898 unsigned int nr_pages)
2899{
2900 struct mem_cgroup *memcg;
2901
2902 memcg = get_mem_cgroup_from_objcg(objcg);
2903
2904 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2905 page_counter_uncharge(&memcg->kmem, nr_pages);
2906 refill_stock(memcg, nr_pages);
2907
2908 css_put(&memcg->css);
2909}
2910
2911/*
2912 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
2913 * @objcg: object cgroup to charge
2914 * @gfp: reclaim mode
2915 * @nr_pages: number of pages to charge
2916 *
2917 * Returns 0 on success, an error code on failure.
2918 */
2919static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
2920 unsigned int nr_pages)
2921{
2922 struct page_counter *counter;
2923 struct mem_cgroup *memcg;
2924 int ret;
2925
2926 memcg = get_mem_cgroup_from_objcg(objcg);
2927
2928 ret = try_charge(memcg, gfp, nr_pages);
2929 if (ret)
2930 goto out;
2931
2932 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2933 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2934
2935 /*
2936 * Enforce __GFP_NOFAIL allocation because callers are not
2937 * prepared to see failures and likely do not have any failure
2938 * handling code.
2939 */
2940 if (gfp & __GFP_NOFAIL) {
2941 page_counter_charge(&memcg->kmem, nr_pages);
2942 goto out;
2943 }
2944 cancel_charge(memcg, nr_pages);
2945 ret = -ENOMEM;
2946 }
2947out:
2948 css_put(&memcg->css);
2949
2950 return ret;
2951}
2952
2953/**
2954 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
2955 * @page: page to charge
2956 * @gfp: reclaim mode
2957 * @order: allocation order
2958 *
2959 * Returns 0 on success, an error code on failure.
2960 */
2961int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
2962{
2963 struct obj_cgroup *objcg;
2964 int ret = 0;
2965
2966 objcg = get_obj_cgroup_from_current();
2967 if (objcg) {
2968 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
2969 if (!ret) {
2970 page->memcg_data = (unsigned long)objcg |
2971 MEMCG_DATA_KMEM;
2972 return 0;
2973 }
2974 obj_cgroup_put(objcg);
2975 }
2976 return ret;
2977}
2978
2979/**
2980 * __memcg_kmem_uncharge_page: uncharge a kmem page
2981 * @page: page to uncharge
2982 * @order: allocation order
2983 */
2984void __memcg_kmem_uncharge_page(struct page *page, int order)
2985{
2986 struct obj_cgroup *objcg;
2987 unsigned int nr_pages = 1 << order;
2988
2989 if (!PageMemcgKmem(page))
2990 return;
2991
2992 objcg = __page_objcg(page);
2993 obj_cgroup_uncharge_pages(objcg, nr_pages);
2994 page->memcg_data = 0;
2995 obj_cgroup_put(objcg);
2996}
2997
2998static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
2999{
3000 struct memcg_stock_pcp *stock;
3001 unsigned long flags;
3002 bool ret = false;
3003
3004 local_irq_save(flags);
3005
3006 stock = this_cpu_ptr(&memcg_stock);
3007 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3008 stock->nr_bytes -= nr_bytes;
3009 ret = true;
3010 }
3011
3012 local_irq_restore(flags);
3013
3014 return ret;
3015}
3016
3017static void drain_obj_stock(struct memcg_stock_pcp *stock)
3018{
3019 struct obj_cgroup *old = stock->cached_objcg;
3020
3021 if (!old)
3022 return;
3023
3024 if (stock->nr_bytes) {
3025 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3026 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3027
3028 if (nr_pages)
3029 obj_cgroup_uncharge_pages(old, nr_pages);
3030
3031 /*
3032 * The leftover is flushed to the centralized per-memcg value.
3033 * On the next attempt to refill obj stock it will be moved
3034 * to a per-cpu stock (probably, on an other CPU), see
3035 * refill_obj_stock().
3036 *
3037 * How often it's flushed is a trade-off between the memory
3038 * limit enforcement accuracy and potential CPU contention,
3039 * so it might be changed in the future.
3040 */
3041 atomic_add(nr_bytes, &old->nr_charged_bytes);
3042 stock->nr_bytes = 0;
3043 }
3044
3045 obj_cgroup_put(old);
3046 stock->cached_objcg = NULL;
3047}
3048
3049static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3050 struct mem_cgroup *root_memcg)
3051{
3052 struct mem_cgroup *memcg;
3053
3054 if (stock->cached_objcg) {
3055 memcg = obj_cgroup_memcg(stock->cached_objcg);
3056 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3057 return true;
3058 }
3059
3060 return false;
3061}
3062
3063static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3064{
3065 struct memcg_stock_pcp *stock;
3066 unsigned long flags;
3067
3068 local_irq_save(flags);
3069
3070 stock = this_cpu_ptr(&memcg_stock);
3071 if (stock->cached_objcg != objcg) { /* reset if necessary */
3072 drain_obj_stock(stock);
3073 obj_cgroup_get(objcg);
3074 stock->cached_objcg = objcg;
3075 stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0);
3076 }
3077 stock->nr_bytes += nr_bytes;
3078
3079 if (stock->nr_bytes > PAGE_SIZE)
3080 drain_obj_stock(stock);
3081
3082 local_irq_restore(flags);
3083}
3084
3085int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3086{
3087 unsigned int nr_pages, nr_bytes;
3088 int ret;
3089
3090 if (consume_obj_stock(objcg, size))
3091 return 0;
3092
3093 /*
3094 * In theory, memcg->nr_charged_bytes can have enough
3095 * pre-charged bytes to satisfy the allocation. However,
3096 * flushing memcg->nr_charged_bytes requires two atomic
3097 * operations, and memcg->nr_charged_bytes can't be big,
3098 * so it's better to ignore it and try grab some new pages.
3099 * memcg->nr_charged_bytes will be flushed in
3100 * refill_obj_stock(), called from this function or
3101 * independently later.
3102 */
3103 nr_pages = size >> PAGE_SHIFT;
3104 nr_bytes = size & (PAGE_SIZE - 1);
3105
3106 if (nr_bytes)
3107 nr_pages += 1;
3108
3109 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3110 if (!ret && nr_bytes)
3111 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes);
3112
3113 return ret;
3114}
3115
3116void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3117{
3118 refill_obj_stock(objcg, size);
3119}
3120
3121#endif /* CONFIG_MEMCG_KMEM */
3122
3123/*
3124 * Because page_memcg(head) is not set on tails, set it now.
3125 */
3126void split_page_memcg(struct page *head, unsigned int nr)
3127{
3128 struct mem_cgroup *memcg = page_memcg(head);
3129 int i;
3130
3131 if (mem_cgroup_disabled() || !memcg)
3132 return;
3133
3134 for (i = 1; i < nr; i++)
3135 head[i].memcg_data = head->memcg_data;
3136
3137 if (PageMemcgKmem(head))
3138 obj_cgroup_get_many(__page_objcg(head), nr - 1);
3139 else
3140 css_get_many(&memcg->css, nr - 1);
3141}
3142
3143#ifdef CONFIG_MEMCG_SWAP
3144/**
3145 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3146 * @entry: swap entry to be moved
3147 * @from: mem_cgroup which the entry is moved from
3148 * @to: mem_cgroup which the entry is moved to
3149 *
3150 * It succeeds only when the swap_cgroup's record for this entry is the same
3151 * as the mem_cgroup's id of @from.
3152 *
3153 * Returns 0 on success, -EINVAL on failure.
3154 *
3155 * The caller must have charged to @to, IOW, called page_counter_charge() about
3156 * both res and memsw, and called css_get().
3157 */
3158static int mem_cgroup_move_swap_account(swp_entry_t entry,
3159 struct mem_cgroup *from, struct mem_cgroup *to)
3160{
3161 unsigned short old_id, new_id;
3162
3163 old_id = mem_cgroup_id(from);
3164 new_id = mem_cgroup_id(to);
3165
3166 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3167 mod_memcg_state(from, MEMCG_SWAP, -1);
3168 mod_memcg_state(to, MEMCG_SWAP, 1);
3169 return 0;
3170 }
3171 return -EINVAL;
3172}
3173#else
3174static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3175 struct mem_cgroup *from, struct mem_cgroup *to)
3176{
3177 return -EINVAL;
3178}
3179#endif
3180
3181static DEFINE_MUTEX(memcg_max_mutex);
3182
3183static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3184 unsigned long max, bool memsw)
3185{
3186 bool enlarge = false;
3187 bool drained = false;
3188 int ret;
3189 bool limits_invariant;
3190 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3191
3192 do {
3193 if (signal_pending(current)) {
3194 ret = -EINTR;
3195 break;
3196 }
3197
3198 mutex_lock(&memcg_max_mutex);
3199 /*
3200 * Make sure that the new limit (memsw or memory limit) doesn't
3201 * break our basic invariant rule memory.max <= memsw.max.
3202 */
3203 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3204 max <= memcg->memsw.max;
3205 if (!limits_invariant) {
3206 mutex_unlock(&memcg_max_mutex);
3207 ret = -EINVAL;
3208 break;
3209 }
3210 if (max > counter->max)
3211 enlarge = true;
3212 ret = page_counter_set_max(counter, max);
3213 mutex_unlock(&memcg_max_mutex);
3214
3215 if (!ret)
3216 break;
3217
3218 if (!drained) {
3219 drain_all_stock(memcg);
3220 drained = true;
3221 continue;
3222 }
3223
3224 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3225 GFP_KERNEL, !memsw)) {
3226 ret = -EBUSY;
3227 break;
3228 }
3229 } while (true);
3230
3231 if (!ret && enlarge)
3232 memcg_oom_recover(memcg);
3233
3234 return ret;
3235}
3236
3237unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3238 gfp_t gfp_mask,
3239 unsigned long *total_scanned)
3240{
3241 unsigned long nr_reclaimed = 0;
3242 struct mem_cgroup_per_node *mz, *next_mz = NULL;
3243 unsigned long reclaimed;
3244 int loop = 0;
3245 struct mem_cgroup_tree_per_node *mctz;
3246 unsigned long excess;
3247 unsigned long nr_scanned;
3248
3249 if (order > 0)
3250 return 0;
3251
3252 mctz = soft_limit_tree_node(pgdat->node_id);
3253
3254 /*
3255 * Do not even bother to check the largest node if the root
3256 * is empty. Do it lockless to prevent lock bouncing. Races
3257 * are acceptable as soft limit is best effort anyway.
3258 */
3259 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3260 return 0;
3261
3262 /*
3263 * This loop can run a while, specially if mem_cgroup's continuously
3264 * keep exceeding their soft limit and putting the system under
3265 * pressure
3266 */
3267 do {
3268 if (next_mz)
3269 mz = next_mz;
3270 else
3271 mz = mem_cgroup_largest_soft_limit_node(mctz);
3272 if (!mz)
3273 break;
3274
3275 nr_scanned = 0;
3276 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3277 gfp_mask, &nr_scanned);
3278 nr_reclaimed += reclaimed;
3279 *total_scanned += nr_scanned;
3280 spin_lock_irq(&mctz->lock);
3281 __mem_cgroup_remove_exceeded(mz, mctz);
3282
3283 /*
3284 * If we failed to reclaim anything from this memory cgroup
3285 * it is time to move on to the next cgroup
3286 */
3287 next_mz = NULL;
3288 if (!reclaimed)
3289 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3290
3291 excess = soft_limit_excess(mz->memcg);
3292 /*
3293 * One school of thought says that we should not add
3294 * back the node to the tree if reclaim returns 0.
3295 * But our reclaim could return 0, simply because due
3296 * to priority we are exposing a smaller subset of
3297 * memory to reclaim from. Consider this as a longer
3298 * term TODO.
3299 */
3300 /* If excess == 0, no tree ops */
3301 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3302 spin_unlock_irq(&mctz->lock);
3303 css_put(&mz->memcg->css);
3304 loop++;
3305 /*
3306 * Could not reclaim anything and there are no more
3307 * mem cgroups to try or we seem to be looping without
3308 * reclaiming anything.
3309 */
3310 if (!nr_reclaimed &&
3311 (next_mz == NULL ||
3312 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3313 break;
3314 } while (!nr_reclaimed);
3315 if (next_mz)
3316 css_put(&next_mz->memcg->css);
3317 return nr_reclaimed;
3318}
3319
3320/*
3321 * Reclaims as many pages from the given memcg as possible.
3322 *
3323 * Caller is responsible for holding css reference for memcg.
3324 */
3325static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3326{
3327 int nr_retries = MAX_RECLAIM_RETRIES;
3328
3329 /* we call try-to-free pages for make this cgroup empty */
3330 lru_add_drain_all();
3331
3332 drain_all_stock(memcg);
3333
3334 /* try to free all pages in this cgroup */
3335 while (nr_retries && page_counter_read(&memcg->memory)) {
3336 int progress;
3337
3338 if (signal_pending(current))
3339 return -EINTR;
3340
3341 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3342 GFP_KERNEL, true);
3343 if (!progress) {
3344 nr_retries--;
3345 /* maybe some writeback is necessary */
3346 congestion_wait(BLK_RW_ASYNC, HZ/10);
3347 }
3348
3349 }
3350
3351 return 0;
3352}
3353
3354static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3355 char *buf, size_t nbytes,
3356 loff_t off)
3357{
3358 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3359
3360 if (mem_cgroup_is_root(memcg))
3361 return -EINVAL;
3362 return mem_cgroup_force_empty(memcg) ?: nbytes;
3363}
3364
3365static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3366 struct cftype *cft)
3367{
3368 return 1;
3369}
3370
3371static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3372 struct cftype *cft, u64 val)
3373{
3374 if (val == 1)
3375 return 0;
3376
3377 pr_warn_once("Non-hierarchical mode is deprecated. "
3378 "Please report your usecase to linux-mm@kvack.org if you "
3379 "depend on this functionality.\n");
3380
3381 return -EINVAL;
3382}
3383
3384static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3385{
3386 unsigned long val;
3387
3388 if (mem_cgroup_is_root(memcg)) {
3389 cgroup_rstat_flush(memcg->css.cgroup);
3390 val = memcg_page_state(memcg, NR_FILE_PAGES) +
3391 memcg_page_state(memcg, NR_ANON_MAPPED);
3392 if (swap)
3393 val += memcg_page_state(memcg, MEMCG_SWAP);
3394 } else {
3395 if (!swap)
3396 val = page_counter_read(&memcg->memory);
3397 else
3398 val = page_counter_read(&memcg->memsw);
3399 }
3400 return val;
3401}
3402
3403enum {
3404 RES_USAGE,
3405 RES_LIMIT,
3406 RES_MAX_USAGE,
3407 RES_FAILCNT,
3408 RES_SOFT_LIMIT,
3409};
3410
3411static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3412 struct cftype *cft)
3413{
3414 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3415 struct page_counter *counter;
3416
3417 switch (MEMFILE_TYPE(cft->private)) {
3418 case _MEM:
3419 counter = &memcg->memory;
3420 break;
3421 case _MEMSWAP:
3422 counter = &memcg->memsw;
3423 break;
3424 case _KMEM:
3425 counter = &memcg->kmem;
3426 break;
3427 case _TCP:
3428 counter = &memcg->tcpmem;
3429 break;
3430 default:
3431 BUG();
3432 }
3433
3434 switch (MEMFILE_ATTR(cft->private)) {
3435 case RES_USAGE:
3436 if (counter == &memcg->memory)
3437 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3438 if (counter == &memcg->memsw)
3439 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3440 return (u64)page_counter_read(counter) * PAGE_SIZE;
3441 case RES_LIMIT:
3442 return (u64)counter->max * PAGE_SIZE;
3443 case RES_MAX_USAGE:
3444 return (u64)counter->watermark * PAGE_SIZE;
3445 case RES_FAILCNT:
3446 return counter->failcnt;
3447 case RES_SOFT_LIMIT:
3448 return (u64)memcg->soft_limit * PAGE_SIZE;
3449 default:
3450 BUG();
3451 }
3452}
3453
3454#ifdef CONFIG_MEMCG_KMEM
3455static int memcg_online_kmem(struct mem_cgroup *memcg)
3456{
3457 struct obj_cgroup *objcg;
3458 int memcg_id;
3459
3460 if (cgroup_memory_nokmem)
3461 return 0;
3462
3463 BUG_ON(memcg->kmemcg_id >= 0);
3464 BUG_ON(memcg->kmem_state);
3465
3466 memcg_id = memcg_alloc_cache_id();
3467 if (memcg_id < 0)
3468 return memcg_id;
3469
3470 objcg = obj_cgroup_alloc();
3471 if (!objcg) {
3472 memcg_free_cache_id(memcg_id);
3473 return -ENOMEM;
3474 }
3475 objcg->memcg = memcg;
3476 rcu_assign_pointer(memcg->objcg, objcg);
3477
3478 static_branch_enable(&memcg_kmem_enabled_key);
3479
3480 memcg->kmemcg_id = memcg_id;
3481 memcg->kmem_state = KMEM_ONLINE;
3482
3483 return 0;
3484}
3485
3486static void memcg_offline_kmem(struct mem_cgroup *memcg)
3487{
3488 struct cgroup_subsys_state *css;
3489 struct mem_cgroup *parent, *child;
3490 int kmemcg_id;
3491
3492 if (memcg->kmem_state != KMEM_ONLINE)
3493 return;
3494
3495 memcg->kmem_state = KMEM_ALLOCATED;
3496
3497 parent = parent_mem_cgroup(memcg);
3498 if (!parent)
3499 parent = root_mem_cgroup;
3500
3501 memcg_reparent_objcgs(memcg, parent);
3502
3503 kmemcg_id = memcg->kmemcg_id;
3504 BUG_ON(kmemcg_id < 0);
3505
3506 /*
3507 * Change kmemcg_id of this cgroup and all its descendants to the
3508 * parent's id, and then move all entries from this cgroup's list_lrus
3509 * to ones of the parent. After we have finished, all list_lrus
3510 * corresponding to this cgroup are guaranteed to remain empty. The
3511 * ordering is imposed by list_lru_node->lock taken by
3512 * memcg_drain_all_list_lrus().
3513 */
3514 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3515 css_for_each_descendant_pre(css, &memcg->css) {
3516 child = mem_cgroup_from_css(css);
3517 BUG_ON(child->kmemcg_id != kmemcg_id);
3518 child->kmemcg_id = parent->kmemcg_id;
3519 }
3520 rcu_read_unlock();
3521
3522 memcg_drain_all_list_lrus(kmemcg_id, parent);
3523
3524 memcg_free_cache_id(kmemcg_id);
3525}
3526
3527static void memcg_free_kmem(struct mem_cgroup *memcg)
3528{
3529 /* css_alloc() failed, offlining didn't happen */
3530 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3531 memcg_offline_kmem(memcg);
3532}
3533#else
3534static int memcg_online_kmem(struct mem_cgroup *memcg)
3535{
3536 return 0;
3537}
3538static void memcg_offline_kmem(struct mem_cgroup *memcg)
3539{
3540}
3541static void memcg_free_kmem(struct mem_cgroup *memcg)
3542{
3543}
3544#endif /* CONFIG_MEMCG_KMEM */
3545
3546static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3547 unsigned long max)
3548{
3549 int ret;
3550
3551 mutex_lock(&memcg_max_mutex);
3552 ret = page_counter_set_max(&memcg->kmem, max);
3553 mutex_unlock(&memcg_max_mutex);
3554 return ret;
3555}
3556
3557static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3558{
3559 int ret;
3560
3561 mutex_lock(&memcg_max_mutex);
3562
3563 ret = page_counter_set_max(&memcg->tcpmem, max);
3564 if (ret)
3565 goto out;
3566
3567 if (!memcg->tcpmem_active) {
3568 /*
3569 * The active flag needs to be written after the static_key
3570 * update. This is what guarantees that the socket activation
3571 * function is the last one to run. See mem_cgroup_sk_alloc()
3572 * for details, and note that we don't mark any socket as
3573 * belonging to this memcg until that flag is up.
3574 *
3575 * We need to do this, because static_keys will span multiple
3576 * sites, but we can't control their order. If we mark a socket
3577 * as accounted, but the accounting functions are not patched in
3578 * yet, we'll lose accounting.
3579 *
3580 * We never race with the readers in mem_cgroup_sk_alloc(),
3581 * because when this value change, the code to process it is not
3582 * patched in yet.
3583 */
3584 static_branch_inc(&memcg_sockets_enabled_key);
3585 memcg->tcpmem_active = true;
3586 }
3587out:
3588 mutex_unlock(&memcg_max_mutex);
3589 return ret;
3590}
3591
3592/*
3593 * The user of this function is...
3594 * RES_LIMIT.
3595 */
3596static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3597 char *buf, size_t nbytes, loff_t off)
3598{
3599 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3600 unsigned long nr_pages;
3601 int ret;
3602
3603 buf = strstrip(buf);
3604 ret = page_counter_memparse(buf, "-1", &nr_pages);
3605 if (ret)
3606 return ret;
3607
3608 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3609 case RES_LIMIT:
3610 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3611 ret = -EINVAL;
3612 break;
3613 }
3614 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3615 case _MEM:
3616 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3617 break;
3618 case _MEMSWAP:
3619 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3620 break;
3621 case _KMEM:
3622 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3623 "Please report your usecase to linux-mm@kvack.org if you "
3624 "depend on this functionality.\n");
3625 ret = memcg_update_kmem_max(memcg, nr_pages);
3626 break;
3627 case _TCP:
3628 ret = memcg_update_tcp_max(memcg, nr_pages);
3629 break;
3630 }
3631 break;
3632 case RES_SOFT_LIMIT:
3633 memcg->soft_limit = nr_pages;
3634 ret = 0;
3635 break;
3636 }
3637 return ret ?: nbytes;
3638}
3639
3640static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3641 size_t nbytes, loff_t off)
3642{
3643 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3644 struct page_counter *counter;
3645
3646 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3647 case _MEM:
3648 counter = &memcg->memory;
3649 break;
3650 case _MEMSWAP:
3651 counter = &memcg->memsw;
3652 break;
3653 case _KMEM:
3654 counter = &memcg->kmem;
3655 break;
3656 case _TCP:
3657 counter = &memcg->tcpmem;
3658 break;
3659 default:
3660 BUG();
3661 }
3662
3663 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3664 case RES_MAX_USAGE:
3665 page_counter_reset_watermark(counter);
3666 break;
3667 case RES_FAILCNT:
3668 counter->failcnt = 0;
3669 break;
3670 default:
3671 BUG();
3672 }
3673
3674 return nbytes;
3675}
3676
3677static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3678 struct cftype *cft)
3679{
3680 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3681}
3682
3683#ifdef CONFIG_MMU
3684static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3685 struct cftype *cft, u64 val)
3686{
3687 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3688
3689 if (val & ~MOVE_MASK)
3690 return -EINVAL;
3691
3692 /*
3693 * No kind of locking is needed in here, because ->can_attach() will
3694 * check this value once in the beginning of the process, and then carry
3695 * on with stale data. This means that changes to this value will only
3696 * affect task migrations starting after the change.
3697 */
3698 memcg->move_charge_at_immigrate = val;
3699 return 0;
3700}
3701#else
3702static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3703 struct cftype *cft, u64 val)
3704{
3705 return -ENOSYS;
3706}
3707#endif
3708
3709#ifdef CONFIG_NUMA
3710
3711#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3712#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3713#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3714
3715static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3716 int nid, unsigned int lru_mask, bool tree)
3717{
3718 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3719 unsigned long nr = 0;
3720 enum lru_list lru;
3721
3722 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3723
3724 for_each_lru(lru) {
3725 if (!(BIT(lru) & lru_mask))
3726 continue;
3727 if (tree)
3728 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3729 else
3730 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3731 }
3732 return nr;
3733}
3734
3735static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3736 unsigned int lru_mask,
3737 bool tree)
3738{
3739 unsigned long nr = 0;
3740 enum lru_list lru;
3741
3742 for_each_lru(lru) {
3743 if (!(BIT(lru) & lru_mask))
3744 continue;
3745 if (tree)
3746 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3747 else
3748 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3749 }
3750 return nr;
3751}
3752
3753static int memcg_numa_stat_show(struct seq_file *m, void *v)
3754{
3755 struct numa_stat {
3756 const char *name;
3757 unsigned int lru_mask;
3758 };
3759
3760 static const struct numa_stat stats[] = {
3761 { "total", LRU_ALL },
3762 { "file", LRU_ALL_FILE },
3763 { "anon", LRU_ALL_ANON },
3764 { "unevictable", BIT(LRU_UNEVICTABLE) },
3765 };
3766 const struct numa_stat *stat;
3767 int nid;
3768 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3769
3770 cgroup_rstat_flush(memcg->css.cgroup);
3771
3772 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3773 seq_printf(m, "%s=%lu", stat->name,
3774 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3775 false));
3776 for_each_node_state(nid, N_MEMORY)
3777 seq_printf(m, " N%d=%lu", nid,
3778 mem_cgroup_node_nr_lru_pages(memcg, nid,
3779 stat->lru_mask, false));
3780 seq_putc(m, '\n');
3781 }
3782
3783 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3784
3785 seq_printf(m, "hierarchical_%s=%lu", stat->name,
3786 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3787 true));
3788 for_each_node_state(nid, N_MEMORY)
3789 seq_printf(m, " N%d=%lu", nid,
3790 mem_cgroup_node_nr_lru_pages(memcg, nid,
3791 stat->lru_mask, true));
3792 seq_putc(m, '\n');
3793 }
3794
3795 return 0;
3796}
3797#endif /* CONFIG_NUMA */
3798
3799static const unsigned int memcg1_stats[] = {
3800 NR_FILE_PAGES,
3801 NR_ANON_MAPPED,
3802#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3803 NR_ANON_THPS,
3804#endif
3805 NR_SHMEM,
3806 NR_FILE_MAPPED,
3807 NR_FILE_DIRTY,
3808 NR_WRITEBACK,
3809 MEMCG_SWAP,
3810};
3811
3812static const char *const memcg1_stat_names[] = {
3813 "cache",
3814 "rss",
3815#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3816 "rss_huge",
3817#endif
3818 "shmem",
3819 "mapped_file",
3820 "dirty",
3821 "writeback",
3822 "swap",
3823};
3824
3825/* Universal VM events cgroup1 shows, original sort order */
3826static const unsigned int memcg1_events[] = {
3827 PGPGIN,
3828 PGPGOUT,
3829 PGFAULT,
3830 PGMAJFAULT,
3831};
3832
3833static int memcg_stat_show(struct seq_file *m, void *v)
3834{
3835 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3836 unsigned long memory, memsw;
3837 struct mem_cgroup *mi;
3838 unsigned int i;
3839
3840 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3841
3842 cgroup_rstat_flush(memcg->css.cgroup);
3843
3844 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3845 unsigned long nr;
3846
3847 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3848 continue;
3849 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
3850 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
3851 }
3852
3853 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3854 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
3855 memcg_events_local(memcg, memcg1_events[i]));
3856
3857 for (i = 0; i < NR_LRU_LISTS; i++)
3858 seq_printf(m, "%s %lu\n", lru_list_name(i),
3859 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3860 PAGE_SIZE);
3861
3862 /* Hierarchical information */
3863 memory = memsw = PAGE_COUNTER_MAX;
3864 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3865 memory = min(memory, READ_ONCE(mi->memory.max));
3866 memsw = min(memsw, READ_ONCE(mi->memsw.max));
3867 }
3868 seq_printf(m, "hierarchical_memory_limit %llu\n",
3869 (u64)memory * PAGE_SIZE);
3870 if (do_memsw_account())
3871 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3872 (u64)memsw * PAGE_SIZE);
3873
3874 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3875 unsigned long nr;
3876
3877 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3878 continue;
3879 nr = memcg_page_state(memcg, memcg1_stats[i]);
3880 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3881 (u64)nr * PAGE_SIZE);
3882 }
3883
3884 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3885 seq_printf(m, "total_%s %llu\n",
3886 vm_event_name(memcg1_events[i]),
3887 (u64)memcg_events(memcg, memcg1_events[i]));
3888
3889 for (i = 0; i < NR_LRU_LISTS; i++)
3890 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
3891 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
3892 PAGE_SIZE);
3893
3894#ifdef CONFIG_DEBUG_VM
3895 {
3896 pg_data_t *pgdat;
3897 struct mem_cgroup_per_node *mz;
3898 unsigned long anon_cost = 0;
3899 unsigned long file_cost = 0;
3900
3901 for_each_online_pgdat(pgdat) {
3902 mz = memcg->nodeinfo[pgdat->node_id];
3903
3904 anon_cost += mz->lruvec.anon_cost;
3905 file_cost += mz->lruvec.file_cost;
3906 }
3907 seq_printf(m, "anon_cost %lu\n", anon_cost);
3908 seq_printf(m, "file_cost %lu\n", file_cost);
3909 }
3910#endif
3911
3912 return 0;
3913}
3914
3915static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3916 struct cftype *cft)
3917{
3918 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3919
3920 return mem_cgroup_swappiness(memcg);
3921}
3922
3923static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3924 struct cftype *cft, u64 val)
3925{
3926 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3927
3928 if (val > 100)
3929 return -EINVAL;
3930
3931 if (!mem_cgroup_is_root(memcg))
3932 memcg->swappiness = val;
3933 else
3934 vm_swappiness = val;
3935
3936 return 0;
3937}
3938
3939static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3940{
3941 struct mem_cgroup_threshold_ary *t;
3942 unsigned long usage;
3943 int i;
3944
3945 rcu_read_lock();
3946 if (!swap)
3947 t = rcu_dereference(memcg->thresholds.primary);
3948 else
3949 t = rcu_dereference(memcg->memsw_thresholds.primary);
3950
3951 if (!t)
3952 goto unlock;
3953
3954 usage = mem_cgroup_usage(memcg, swap);
3955
3956 /*
3957 * current_threshold points to threshold just below or equal to usage.
3958 * If it's not true, a threshold was crossed after last
3959 * call of __mem_cgroup_threshold().
3960 */
3961 i = t->current_threshold;
3962
3963 /*
3964 * Iterate backward over array of thresholds starting from
3965 * current_threshold and check if a threshold is crossed.
3966 * If none of thresholds below usage is crossed, we read
3967 * only one element of the array here.
3968 */
3969 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3970 eventfd_signal(t->entries[i].eventfd, 1);
3971
3972 /* i = current_threshold + 1 */
3973 i++;
3974
3975 /*
3976 * Iterate forward over array of thresholds starting from
3977 * current_threshold+1 and check if a threshold is crossed.
3978 * If none of thresholds above usage is crossed, we read
3979 * only one element of the array here.
3980 */
3981 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3982 eventfd_signal(t->entries[i].eventfd, 1);
3983
3984 /* Update current_threshold */
3985 t->current_threshold = i - 1;
3986unlock:
3987 rcu_read_unlock();
3988}
3989
3990static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3991{
3992 while (memcg) {
3993 __mem_cgroup_threshold(memcg, false);
3994 if (do_memsw_account())
3995 __mem_cgroup_threshold(memcg, true);
3996
3997 memcg = parent_mem_cgroup(memcg);
3998 }
3999}
4000
4001static int compare_thresholds(const void *a, const void *b)
4002{
4003 const struct mem_cgroup_threshold *_a = a;
4004 const struct mem_cgroup_threshold *_b = b;
4005
4006 if (_a->threshold > _b->threshold)
4007 return 1;
4008
4009 if (_a->threshold < _b->threshold)
4010 return -1;
4011
4012 return 0;
4013}
4014
4015static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4016{
4017 struct mem_cgroup_eventfd_list *ev;
4018
4019 spin_lock(&memcg_oom_lock);
4020
4021 list_for_each_entry(ev, &memcg->oom_notify, list)
4022 eventfd_signal(ev->eventfd, 1);
4023
4024 spin_unlock(&memcg_oom_lock);
4025 return 0;
4026}
4027
4028static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4029{
4030 struct mem_cgroup *iter;
4031
4032 for_each_mem_cgroup_tree(iter, memcg)
4033 mem_cgroup_oom_notify_cb(iter);
4034}
4035
4036static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4037 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4038{
4039 struct mem_cgroup_thresholds *thresholds;
4040 struct mem_cgroup_threshold_ary *new;
4041 unsigned long threshold;
4042 unsigned long usage;
4043 int i, size, ret;
4044
4045 ret = page_counter_memparse(args, "-1", &threshold);
4046 if (ret)
4047 return ret;
4048
4049 mutex_lock(&memcg->thresholds_lock);
4050
4051 if (type == _MEM) {
4052 thresholds = &memcg->thresholds;
4053 usage = mem_cgroup_usage(memcg, false);
4054 } else if (type == _MEMSWAP) {
4055 thresholds = &memcg->memsw_thresholds;
4056 usage = mem_cgroup_usage(memcg, true);
4057 } else
4058 BUG();
4059
4060 /* Check if a threshold crossed before adding a new one */
4061 if (thresholds->primary)
4062 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4063
4064 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4065
4066 /* Allocate memory for new array of thresholds */
4067 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4068 if (!new) {
4069 ret = -ENOMEM;
4070 goto unlock;
4071 }
4072 new->size = size;
4073
4074 /* Copy thresholds (if any) to new array */
4075 if (thresholds->primary)
4076 memcpy(new->entries, thresholds->primary->entries,
4077 flex_array_size(new, entries, size - 1));
4078
4079 /* Add new threshold */
4080 new->entries[size - 1].eventfd = eventfd;
4081 new->entries[size - 1].threshold = threshold;
4082
4083 /* Sort thresholds. Registering of new threshold isn't time-critical */
4084 sort(new->entries, size, sizeof(*new->entries),
4085 compare_thresholds, NULL);
4086
4087 /* Find current threshold */
4088 new->current_threshold = -1;
4089 for (i = 0; i < size; i++) {
4090 if (new->entries[i].threshold <= usage) {
4091 /*
4092 * new->current_threshold will not be used until
4093 * rcu_assign_pointer(), so it's safe to increment
4094 * it here.
4095 */
4096 ++new->current_threshold;
4097 } else
4098 break;
4099 }
4100
4101 /* Free old spare buffer and save old primary buffer as spare */
4102 kfree(thresholds->spare);
4103 thresholds->spare = thresholds->primary;
4104
4105 rcu_assign_pointer(thresholds->primary, new);
4106
4107 /* To be sure that nobody uses thresholds */
4108 synchronize_rcu();
4109
4110unlock:
4111 mutex_unlock(&memcg->thresholds_lock);
4112
4113 return ret;
4114}
4115
4116static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4117 struct eventfd_ctx *eventfd, const char *args)
4118{
4119 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4120}
4121
4122static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4123 struct eventfd_ctx *eventfd, const char *args)
4124{
4125 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4126}
4127
4128static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4129 struct eventfd_ctx *eventfd, enum res_type type)
4130{
4131 struct mem_cgroup_thresholds *thresholds;
4132 struct mem_cgroup_threshold_ary *new;
4133 unsigned long usage;
4134 int i, j, size, entries;
4135
4136 mutex_lock(&memcg->thresholds_lock);
4137
4138 if (type == _MEM) {
4139 thresholds = &memcg->thresholds;
4140 usage = mem_cgroup_usage(memcg, false);
4141 } else if (type == _MEMSWAP) {
4142 thresholds = &memcg->memsw_thresholds;
4143 usage = mem_cgroup_usage(memcg, true);
4144 } else
4145 BUG();
4146
4147 if (!thresholds->primary)
4148 goto unlock;
4149
4150 /* Check if a threshold crossed before removing */
4151 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4152
4153 /* Calculate new number of threshold */
4154 size = entries = 0;
4155 for (i = 0; i < thresholds->primary->size; i++) {
4156 if (thresholds->primary->entries[i].eventfd != eventfd)
4157 size++;
4158 else
4159 entries++;
4160 }
4161
4162 new = thresholds->spare;
4163
4164 /* If no items related to eventfd have been cleared, nothing to do */
4165 if (!entries)
4166 goto unlock;
4167
4168 /* Set thresholds array to NULL if we don't have thresholds */
4169 if (!size) {
4170 kfree(new);
4171 new = NULL;
4172 goto swap_buffers;
4173 }
4174
4175 new->size = size;
4176
4177 /* Copy thresholds and find current threshold */
4178 new->current_threshold = -1;
4179 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4180 if (thresholds->primary->entries[i].eventfd == eventfd)
4181 continue;
4182
4183 new->entries[j] = thresholds->primary->entries[i];
4184 if (new->entries[j].threshold <= usage) {
4185 /*
4186 * new->current_threshold will not be used
4187 * until rcu_assign_pointer(), so it's safe to increment
4188 * it here.
4189 */
4190 ++new->current_threshold;
4191 }
4192 j++;
4193 }
4194
4195swap_buffers:
4196 /* Swap primary and spare array */
4197 thresholds->spare = thresholds->primary;
4198
4199 rcu_assign_pointer(thresholds->primary, new);
4200
4201 /* To be sure that nobody uses thresholds */
4202 synchronize_rcu();
4203
4204 /* If all events are unregistered, free the spare array */
4205 if (!new) {
4206 kfree(thresholds->spare);
4207 thresholds->spare = NULL;
4208 }
4209unlock:
4210 mutex_unlock(&memcg->thresholds_lock);
4211}
4212
4213static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4214 struct eventfd_ctx *eventfd)
4215{
4216 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4217}
4218
4219static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4220 struct eventfd_ctx *eventfd)
4221{
4222 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4223}
4224
4225static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4226 struct eventfd_ctx *eventfd, const char *args)
4227{
4228 struct mem_cgroup_eventfd_list *event;
4229
4230 event = kmalloc(sizeof(*event), GFP_KERNEL);
4231 if (!event)
4232 return -ENOMEM;
4233
4234 spin_lock(&memcg_oom_lock);
4235
4236 event->eventfd = eventfd;
4237 list_add(&event->list, &memcg->oom_notify);
4238
4239 /* already in OOM ? */
4240 if (memcg->under_oom)
4241 eventfd_signal(eventfd, 1);
4242 spin_unlock(&memcg_oom_lock);
4243
4244 return 0;
4245}
4246
4247static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4248 struct eventfd_ctx *eventfd)
4249{
4250 struct mem_cgroup_eventfd_list *ev, *tmp;
4251
4252 spin_lock(&memcg_oom_lock);
4253
4254 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4255 if (ev->eventfd == eventfd) {
4256 list_del(&ev->list);
4257 kfree(ev);
4258 }
4259 }
4260
4261 spin_unlock(&memcg_oom_lock);
4262}
4263
4264static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4265{
4266 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4267
4268 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4269 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4270 seq_printf(sf, "oom_kill %lu\n",
4271 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4272 return 0;
4273}
4274
4275static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4276 struct cftype *cft, u64 val)
4277{
4278 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4279
4280 /* cannot set to root cgroup and only 0 and 1 are allowed */
4281 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4282 return -EINVAL;
4283
4284 memcg->oom_kill_disable = val;
4285 if (!val)
4286 memcg_oom_recover(memcg);
4287
4288 return 0;
4289}
4290
4291#ifdef CONFIG_CGROUP_WRITEBACK
4292
4293#include <trace/events/writeback.h>
4294
4295static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4296{
4297 return wb_domain_init(&memcg->cgwb_domain, gfp);
4298}
4299
4300static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4301{
4302 wb_domain_exit(&memcg->cgwb_domain);
4303}
4304
4305static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4306{
4307 wb_domain_size_changed(&memcg->cgwb_domain);
4308}
4309
4310struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4311{
4312 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4313
4314 if (!memcg->css.parent)
4315 return NULL;
4316
4317 return &memcg->cgwb_domain;
4318}
4319
4320/**
4321 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4322 * @wb: bdi_writeback in question
4323 * @pfilepages: out parameter for number of file pages
4324 * @pheadroom: out parameter for number of allocatable pages according to memcg
4325 * @pdirty: out parameter for number of dirty pages
4326 * @pwriteback: out parameter for number of pages under writeback
4327 *
4328 * Determine the numbers of file, headroom, dirty, and writeback pages in
4329 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4330 * is a bit more involved.
4331 *
4332 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4333 * headroom is calculated as the lowest headroom of itself and the
4334 * ancestors. Note that this doesn't consider the actual amount of
4335 * available memory in the system. The caller should further cap
4336 * *@pheadroom accordingly.
4337 */
4338void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4339 unsigned long *pheadroom, unsigned long *pdirty,
4340 unsigned long *pwriteback)
4341{
4342 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4343 struct mem_cgroup *parent;
4344
4345 cgroup_rstat_flush_irqsafe(memcg->css.cgroup);
4346
4347 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4348 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4349 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4350 memcg_page_state(memcg, NR_ACTIVE_FILE);
4351
4352 *pheadroom = PAGE_COUNTER_MAX;
4353 while ((parent = parent_mem_cgroup(memcg))) {
4354 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4355 READ_ONCE(memcg->memory.high));
4356 unsigned long used = page_counter_read(&memcg->memory);
4357
4358 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4359 memcg = parent;
4360 }
4361}
4362
4363/*
4364 * Foreign dirty flushing
4365 *
4366 * There's an inherent mismatch between memcg and writeback. The former
4367 * tracks ownership per-page while the latter per-inode. This was a
4368 * deliberate design decision because honoring per-page ownership in the
4369 * writeback path is complicated, may lead to higher CPU and IO overheads
4370 * and deemed unnecessary given that write-sharing an inode across
4371 * different cgroups isn't a common use-case.
4372 *
4373 * Combined with inode majority-writer ownership switching, this works well
4374 * enough in most cases but there are some pathological cases. For
4375 * example, let's say there are two cgroups A and B which keep writing to
4376 * different but confined parts of the same inode. B owns the inode and
4377 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4378 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4379 * triggering background writeback. A will be slowed down without a way to
4380 * make writeback of the dirty pages happen.
4381 *
4382 * Conditions like the above can lead to a cgroup getting repeatedly and
4383 * severely throttled after making some progress after each
4384 * dirty_expire_interval while the underlying IO device is almost
4385 * completely idle.
4386 *
4387 * Solving this problem completely requires matching the ownership tracking
4388 * granularities between memcg and writeback in either direction. However,
4389 * the more egregious behaviors can be avoided by simply remembering the
4390 * most recent foreign dirtying events and initiating remote flushes on
4391 * them when local writeback isn't enough to keep the memory clean enough.
4392 *
4393 * The following two functions implement such mechanism. When a foreign
4394 * page - a page whose memcg and writeback ownerships don't match - is
4395 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4396 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4397 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4398 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4399 * foreign bdi_writebacks which haven't expired. Both the numbers of
4400 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4401 * limited to MEMCG_CGWB_FRN_CNT.
4402 *
4403 * The mechanism only remembers IDs and doesn't hold any object references.
4404 * As being wrong occasionally doesn't matter, updates and accesses to the
4405 * records are lockless and racy.
4406 */
4407void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4408 struct bdi_writeback *wb)
4409{
4410 struct mem_cgroup *memcg = page_memcg(page);
4411 struct memcg_cgwb_frn *frn;
4412 u64 now = get_jiffies_64();
4413 u64 oldest_at = now;
4414 int oldest = -1;
4415 int i;
4416
4417 trace_track_foreign_dirty(page, wb);
4418
4419 /*
4420 * Pick the slot to use. If there is already a slot for @wb, keep
4421 * using it. If not replace the oldest one which isn't being
4422 * written out.
4423 */
4424 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4425 frn = &memcg->cgwb_frn[i];
4426 if (frn->bdi_id == wb->bdi->id &&
4427 frn->memcg_id == wb->memcg_css->id)
4428 break;
4429 if (time_before64(frn->at, oldest_at) &&
4430 atomic_read(&frn->done.cnt) == 1) {
4431 oldest = i;
4432 oldest_at = frn->at;
4433 }
4434 }
4435
4436 if (i < MEMCG_CGWB_FRN_CNT) {
4437 /*
4438 * Re-using an existing one. Update timestamp lazily to
4439 * avoid making the cacheline hot. We want them to be
4440 * reasonably up-to-date and significantly shorter than
4441 * dirty_expire_interval as that's what expires the record.
4442 * Use the shorter of 1s and dirty_expire_interval / 8.
4443 */
4444 unsigned long update_intv =
4445 min_t(unsigned long, HZ,
4446 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4447
4448 if (time_before64(frn->at, now - update_intv))
4449 frn->at = now;
4450 } else if (oldest >= 0) {
4451 /* replace the oldest free one */
4452 frn = &memcg->cgwb_frn[oldest];
4453 frn->bdi_id = wb->bdi->id;
4454 frn->memcg_id = wb->memcg_css->id;
4455 frn->at = now;
4456 }
4457}
4458
4459/* issue foreign writeback flushes for recorded foreign dirtying events */
4460void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4461{
4462 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4463 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4464 u64 now = jiffies_64;
4465 int i;
4466
4467 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4468 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4469
4470 /*
4471 * If the record is older than dirty_expire_interval,
4472 * writeback on it has already started. No need to kick it
4473 * off again. Also, don't start a new one if there's
4474 * already one in flight.
4475 */
4476 if (time_after64(frn->at, now - intv) &&
4477 atomic_read(&frn->done.cnt) == 1) {
4478 frn->at = 0;
4479 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4480 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4481 WB_REASON_FOREIGN_FLUSH,
4482 &frn->done);
4483 }
4484 }
4485}
4486
4487#else /* CONFIG_CGROUP_WRITEBACK */
4488
4489static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4490{
4491 return 0;
4492}
4493
4494static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4495{
4496}
4497
4498static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4499{
4500}
4501
4502#endif /* CONFIG_CGROUP_WRITEBACK */
4503
4504/*
4505 * DO NOT USE IN NEW FILES.
4506 *
4507 * "cgroup.event_control" implementation.
4508 *
4509 * This is way over-engineered. It tries to support fully configurable
4510 * events for each user. Such level of flexibility is completely
4511 * unnecessary especially in the light of the planned unified hierarchy.
4512 *
4513 * Please deprecate this and replace with something simpler if at all
4514 * possible.
4515 */
4516
4517/*
4518 * Unregister event and free resources.
4519 *
4520 * Gets called from workqueue.
4521 */
4522static void memcg_event_remove(struct work_struct *work)
4523{
4524 struct mem_cgroup_event *event =
4525 container_of(work, struct mem_cgroup_event, remove);
4526 struct mem_cgroup *memcg = event->memcg;
4527
4528 remove_wait_queue(event->wqh, &event->wait);
4529
4530 event->unregister_event(memcg, event->eventfd);
4531
4532 /* Notify userspace the event is going away. */
4533 eventfd_signal(event->eventfd, 1);
4534
4535 eventfd_ctx_put(event->eventfd);
4536 kfree(event);
4537 css_put(&memcg->css);
4538}
4539
4540/*
4541 * Gets called on EPOLLHUP on eventfd when user closes it.
4542 *
4543 * Called with wqh->lock held and interrupts disabled.
4544 */
4545static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4546 int sync, void *key)
4547{
4548 struct mem_cgroup_event *event =
4549 container_of(wait, struct mem_cgroup_event, wait);
4550 struct mem_cgroup *memcg = event->memcg;
4551 __poll_t flags = key_to_poll(key);
4552
4553 if (flags & EPOLLHUP) {
4554 /*
4555 * If the event has been detached at cgroup removal, we
4556 * can simply return knowing the other side will cleanup
4557 * for us.
4558 *
4559 * We can't race against event freeing since the other
4560 * side will require wqh->lock via remove_wait_queue(),
4561 * which we hold.
4562 */
4563 spin_lock(&memcg->event_list_lock);
4564 if (!list_empty(&event->list)) {
4565 list_del_init(&event->list);
4566 /*
4567 * We are in atomic context, but cgroup_event_remove()
4568 * may sleep, so we have to call it in workqueue.
4569 */
4570 schedule_work(&event->remove);
4571 }
4572 spin_unlock(&memcg->event_list_lock);
4573 }
4574
4575 return 0;
4576}
4577
4578static void memcg_event_ptable_queue_proc(struct file *file,
4579 wait_queue_head_t *wqh, poll_table *pt)
4580{
4581 struct mem_cgroup_event *event =
4582 container_of(pt, struct mem_cgroup_event, pt);
4583
4584 event->wqh = wqh;
4585 add_wait_queue(wqh, &event->wait);
4586}
4587
4588/*
4589 * DO NOT USE IN NEW FILES.
4590 *
4591 * Parse input and register new cgroup event handler.
4592 *
4593 * Input must be in format '<event_fd> <control_fd> <args>'.
4594 * Interpretation of args is defined by control file implementation.
4595 */
4596static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4597 char *buf, size_t nbytes, loff_t off)
4598{
4599 struct cgroup_subsys_state *css = of_css(of);
4600 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4601 struct mem_cgroup_event *event;
4602 struct cgroup_subsys_state *cfile_css;
4603 unsigned int efd, cfd;
4604 struct fd efile;
4605 struct fd cfile;
4606 const char *name;
4607 char *endp;
4608 int ret;
4609
4610 buf = strstrip(buf);
4611
4612 efd = simple_strtoul(buf, &endp, 10);
4613 if (*endp != ' ')
4614 return -EINVAL;
4615 buf = endp + 1;
4616
4617 cfd = simple_strtoul(buf, &endp, 10);
4618 if ((*endp != ' ') && (*endp != '\0'))
4619 return -EINVAL;
4620 buf = endp + 1;
4621
4622 event = kzalloc(sizeof(*event), GFP_KERNEL);
4623 if (!event)
4624 return -ENOMEM;
4625
4626 event->memcg = memcg;
4627 INIT_LIST_HEAD(&event->list);
4628 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4629 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4630 INIT_WORK(&event->remove, memcg_event_remove);
4631
4632 efile = fdget(efd);
4633 if (!efile.file) {
4634 ret = -EBADF;
4635 goto out_kfree;
4636 }
4637
4638 event->eventfd = eventfd_ctx_fileget(efile.file);
4639 if (IS_ERR(event->eventfd)) {
4640 ret = PTR_ERR(event->eventfd);
4641 goto out_put_efile;
4642 }
4643
4644 cfile = fdget(cfd);
4645 if (!cfile.file) {
4646 ret = -EBADF;
4647 goto out_put_eventfd;
4648 }
4649
4650 /* the process need read permission on control file */
4651 /* AV: shouldn't we check that it's been opened for read instead? */
4652 ret = file_permission(cfile.file, MAY_READ);
4653 if (ret < 0)
4654 goto out_put_cfile;
4655
4656 /*
4657 * Determine the event callbacks and set them in @event. This used
4658 * to be done via struct cftype but cgroup core no longer knows
4659 * about these events. The following is crude but the whole thing
4660 * is for compatibility anyway.
4661 *
4662 * DO NOT ADD NEW FILES.
4663 */
4664 name = cfile.file->f_path.dentry->d_name.name;
4665
4666 if (!strcmp(name, "memory.usage_in_bytes")) {
4667 event->register_event = mem_cgroup_usage_register_event;
4668 event->unregister_event = mem_cgroup_usage_unregister_event;
4669 } else if (!strcmp(name, "memory.oom_control")) {
4670 event->register_event = mem_cgroup_oom_register_event;
4671 event->unregister_event = mem_cgroup_oom_unregister_event;
4672 } else if (!strcmp(name, "memory.pressure_level")) {
4673 event->register_event = vmpressure_register_event;
4674 event->unregister_event = vmpressure_unregister_event;
4675 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4676 event->register_event = memsw_cgroup_usage_register_event;
4677 event->unregister_event = memsw_cgroup_usage_unregister_event;
4678 } else {
4679 ret = -EINVAL;
4680 goto out_put_cfile;
4681 }
4682
4683 /*
4684 * Verify @cfile should belong to @css. Also, remaining events are
4685 * automatically removed on cgroup destruction but the removal is
4686 * asynchronous, so take an extra ref on @css.
4687 */
4688 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4689 &memory_cgrp_subsys);
4690 ret = -EINVAL;
4691 if (IS_ERR(cfile_css))
4692 goto out_put_cfile;
4693 if (cfile_css != css) {
4694 css_put(cfile_css);
4695 goto out_put_cfile;
4696 }
4697
4698 ret = event->register_event(memcg, event->eventfd, buf);
4699 if (ret)
4700 goto out_put_css;
4701
4702 vfs_poll(efile.file, &event->pt);
4703
4704 spin_lock(&memcg->event_list_lock);
4705 list_add(&event->list, &memcg->event_list);
4706 spin_unlock(&memcg->event_list_lock);
4707
4708 fdput(cfile);
4709 fdput(efile);
4710
4711 return nbytes;
4712
4713out_put_css:
4714 css_put(css);
4715out_put_cfile:
4716 fdput(cfile);
4717out_put_eventfd:
4718 eventfd_ctx_put(event->eventfd);
4719out_put_efile:
4720 fdput(efile);
4721out_kfree:
4722 kfree(event);
4723
4724 return ret;
4725}
4726
4727static struct cftype mem_cgroup_legacy_files[] = {
4728 {
4729 .name = "usage_in_bytes",
4730 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4731 .read_u64 = mem_cgroup_read_u64,
4732 },
4733 {
4734 .name = "max_usage_in_bytes",
4735 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4736 .write = mem_cgroup_reset,
4737 .read_u64 = mem_cgroup_read_u64,
4738 },
4739 {
4740 .name = "limit_in_bytes",
4741 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4742 .write = mem_cgroup_write,
4743 .read_u64 = mem_cgroup_read_u64,
4744 },
4745 {
4746 .name = "soft_limit_in_bytes",
4747 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4748 .write = mem_cgroup_write,
4749 .read_u64 = mem_cgroup_read_u64,
4750 },
4751 {
4752 .name = "failcnt",
4753 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4754 .write = mem_cgroup_reset,
4755 .read_u64 = mem_cgroup_read_u64,
4756 },
4757 {
4758 .name = "stat",
4759 .seq_show = memcg_stat_show,
4760 },
4761 {
4762 .name = "force_empty",
4763 .write = mem_cgroup_force_empty_write,
4764 },
4765 {
4766 .name = "use_hierarchy",
4767 .write_u64 = mem_cgroup_hierarchy_write,
4768 .read_u64 = mem_cgroup_hierarchy_read,
4769 },
4770 {
4771 .name = "cgroup.event_control", /* XXX: for compat */
4772 .write = memcg_write_event_control,
4773 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4774 },
4775 {
4776 .name = "swappiness",
4777 .read_u64 = mem_cgroup_swappiness_read,
4778 .write_u64 = mem_cgroup_swappiness_write,
4779 },
4780 {
4781 .name = "move_charge_at_immigrate",
4782 .read_u64 = mem_cgroup_move_charge_read,
4783 .write_u64 = mem_cgroup_move_charge_write,
4784 },
4785 {
4786 .name = "oom_control",
4787 .seq_show = mem_cgroup_oom_control_read,
4788 .write_u64 = mem_cgroup_oom_control_write,
4789 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4790 },
4791 {
4792 .name = "pressure_level",
4793 },
4794#ifdef CONFIG_NUMA
4795 {
4796 .name = "numa_stat",
4797 .seq_show = memcg_numa_stat_show,
4798 },
4799#endif
4800 {
4801 .name = "kmem.limit_in_bytes",
4802 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4803 .write = mem_cgroup_write,
4804 .read_u64 = mem_cgroup_read_u64,
4805 },
4806 {
4807 .name = "kmem.usage_in_bytes",
4808 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4809 .read_u64 = mem_cgroup_read_u64,
4810 },
4811 {
4812 .name = "kmem.failcnt",
4813 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4814 .write = mem_cgroup_reset,
4815 .read_u64 = mem_cgroup_read_u64,
4816 },
4817 {
4818 .name = "kmem.max_usage_in_bytes",
4819 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4820 .write = mem_cgroup_reset,
4821 .read_u64 = mem_cgroup_read_u64,
4822 },
4823#if defined(CONFIG_MEMCG_KMEM) && \
4824 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4825 {
4826 .name = "kmem.slabinfo",
4827 .seq_show = memcg_slab_show,
4828 },
4829#endif
4830 {
4831 .name = "kmem.tcp.limit_in_bytes",
4832 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4833 .write = mem_cgroup_write,
4834 .read_u64 = mem_cgroup_read_u64,
4835 },
4836 {
4837 .name = "kmem.tcp.usage_in_bytes",
4838 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4839 .read_u64 = mem_cgroup_read_u64,
4840 },
4841 {
4842 .name = "kmem.tcp.failcnt",
4843 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4844 .write = mem_cgroup_reset,
4845 .read_u64 = mem_cgroup_read_u64,
4846 },
4847 {
4848 .name = "kmem.tcp.max_usage_in_bytes",
4849 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4850 .write = mem_cgroup_reset,
4851 .read_u64 = mem_cgroup_read_u64,
4852 },
4853 { }, /* terminate */
4854};
4855
4856/*
4857 * Private memory cgroup IDR
4858 *
4859 * Swap-out records and page cache shadow entries need to store memcg
4860 * references in constrained space, so we maintain an ID space that is
4861 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4862 * memory-controlled cgroups to 64k.
4863 *
4864 * However, there usually are many references to the offline CSS after
4865 * the cgroup has been destroyed, such as page cache or reclaimable
4866 * slab objects, that don't need to hang on to the ID. We want to keep
4867 * those dead CSS from occupying IDs, or we might quickly exhaust the
4868 * relatively small ID space and prevent the creation of new cgroups
4869 * even when there are much fewer than 64k cgroups - possibly none.
4870 *
4871 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4872 * be freed and recycled when it's no longer needed, which is usually
4873 * when the CSS is offlined.
4874 *
4875 * The only exception to that are records of swapped out tmpfs/shmem
4876 * pages that need to be attributed to live ancestors on swapin. But
4877 * those references are manageable from userspace.
4878 */
4879
4880static DEFINE_IDR(mem_cgroup_idr);
4881
4882static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4883{
4884 if (memcg->id.id > 0) {
4885 idr_remove(&mem_cgroup_idr, memcg->id.id);
4886 memcg->id.id = 0;
4887 }
4888}
4889
4890static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
4891 unsigned int n)
4892{
4893 refcount_add(n, &memcg->id.ref);
4894}
4895
4896static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4897{
4898 if (refcount_sub_and_test(n, &memcg->id.ref)) {
4899 mem_cgroup_id_remove(memcg);
4900
4901 /* Memcg ID pins CSS */
4902 css_put(&memcg->css);
4903 }
4904}
4905
4906static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4907{
4908 mem_cgroup_id_put_many(memcg, 1);
4909}
4910
4911/**
4912 * mem_cgroup_from_id - look up a memcg from a memcg id
4913 * @id: the memcg id to look up
4914 *
4915 * Caller must hold rcu_read_lock().
4916 */
4917struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4918{
4919 WARN_ON_ONCE(!rcu_read_lock_held());
4920 return idr_find(&mem_cgroup_idr, id);
4921}
4922
4923static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4924{
4925 struct mem_cgroup_per_node *pn;
4926 int tmp = node;
4927 /*
4928 * This routine is called against possible nodes.
4929 * But it's BUG to call kmalloc() against offline node.
4930 *
4931 * TODO: this routine can waste much memory for nodes which will
4932 * never be onlined. It's better to use memory hotplug callback
4933 * function.
4934 */
4935 if (!node_state(node, N_NORMAL_MEMORY))
4936 tmp = -1;
4937 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4938 if (!pn)
4939 return 1;
4940
4941 pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
4942 GFP_KERNEL_ACCOUNT);
4943 if (!pn->lruvec_stat_local) {
4944 kfree(pn);
4945 return 1;
4946 }
4947
4948 pn->lruvec_stat_cpu = alloc_percpu_gfp(struct batched_lruvec_stat,
4949 GFP_KERNEL_ACCOUNT);
4950 if (!pn->lruvec_stat_cpu) {
4951 free_percpu(pn->lruvec_stat_local);
4952 kfree(pn);
4953 return 1;
4954 }
4955
4956 lruvec_init(&pn->lruvec);
4957 pn->usage_in_excess = 0;
4958 pn->on_tree = false;
4959 pn->memcg = memcg;
4960
4961 memcg->nodeinfo[node] = pn;
4962 return 0;
4963}
4964
4965static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4966{
4967 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4968
4969 if (!pn)
4970 return;
4971
4972 free_percpu(pn->lruvec_stat_cpu);
4973 free_percpu(pn->lruvec_stat_local);
4974 kfree(pn);
4975}
4976
4977static void __mem_cgroup_free(struct mem_cgroup *memcg)
4978{
4979 int node;
4980
4981 for_each_node(node)
4982 free_mem_cgroup_per_node_info(memcg, node);
4983 free_percpu(memcg->vmstats_percpu);
4984 kfree(memcg);
4985}
4986
4987static void mem_cgroup_free(struct mem_cgroup *memcg)
4988{
4989 int cpu;
4990
4991 memcg_wb_domain_exit(memcg);
4992 /*
4993 * Flush percpu lruvec stats to guarantee the value
4994 * correctness on parent's and all ancestor levels.
4995 */
4996 for_each_online_cpu(cpu)
4997 memcg_flush_lruvec_page_state(memcg, cpu);
4998 __mem_cgroup_free(memcg);
4999}
5000
5001static struct mem_cgroup *mem_cgroup_alloc(void)
5002{
5003 struct mem_cgroup *memcg;
5004 unsigned int size;
5005 int node;
5006 int __maybe_unused i;
5007 long error = -ENOMEM;
5008
5009 size = sizeof(struct mem_cgroup);
5010 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5011
5012 memcg = kzalloc(size, GFP_KERNEL);
5013 if (!memcg)
5014 return ERR_PTR(error);
5015
5016 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5017 1, MEM_CGROUP_ID_MAX,
5018 GFP_KERNEL);
5019 if (memcg->id.id < 0) {
5020 error = memcg->id.id;
5021 goto fail;
5022 }
5023
5024 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5025 GFP_KERNEL_ACCOUNT);
5026 if (!memcg->vmstats_percpu)
5027 goto fail;
5028
5029 for_each_node(node)
5030 if (alloc_mem_cgroup_per_node_info(memcg, node))
5031 goto fail;
5032
5033 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5034 goto fail;
5035
5036 INIT_WORK(&memcg->high_work, high_work_func);
5037 INIT_LIST_HEAD(&memcg->oom_notify);
5038 mutex_init(&memcg->thresholds_lock);
5039 spin_lock_init(&memcg->move_lock);
5040 vmpressure_init(&memcg->vmpressure);
5041 INIT_LIST_HEAD(&memcg->event_list);
5042 spin_lock_init(&memcg->event_list_lock);
5043 memcg->socket_pressure = jiffies;
5044#ifdef CONFIG_MEMCG_KMEM
5045 memcg->kmemcg_id = -1;
5046 INIT_LIST_HEAD(&memcg->objcg_list);
5047#endif
5048#ifdef CONFIG_CGROUP_WRITEBACK
5049 INIT_LIST_HEAD(&memcg->cgwb_list);
5050 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5051 memcg->cgwb_frn[i].done =
5052 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5053#endif
5054#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5055 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5056 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5057 memcg->deferred_split_queue.split_queue_len = 0;
5058#endif
5059 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5060 return memcg;
5061fail:
5062 mem_cgroup_id_remove(memcg);
5063 __mem_cgroup_free(memcg);
5064 return ERR_PTR(error);
5065}
5066
5067static struct cgroup_subsys_state * __ref
5068mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5069{
5070 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5071 struct mem_cgroup *memcg, *old_memcg;
5072 long error = -ENOMEM;
5073
5074 old_memcg = set_active_memcg(parent);
5075 memcg = mem_cgroup_alloc();
5076 set_active_memcg(old_memcg);
5077 if (IS_ERR(memcg))
5078 return ERR_CAST(memcg);
5079
5080 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5081 memcg->soft_limit = PAGE_COUNTER_MAX;
5082 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5083 if (parent) {
5084 memcg->swappiness = mem_cgroup_swappiness(parent);
5085 memcg->oom_kill_disable = parent->oom_kill_disable;
5086
5087 page_counter_init(&memcg->memory, &parent->memory);
5088 page_counter_init(&memcg->swap, &parent->swap);
5089 page_counter_init(&memcg->kmem, &parent->kmem);
5090 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5091 } else {
5092 page_counter_init(&memcg->memory, NULL);
5093 page_counter_init(&memcg->swap, NULL);
5094 page_counter_init(&memcg->kmem, NULL);
5095 page_counter_init(&memcg->tcpmem, NULL);
5096
5097 root_mem_cgroup = memcg;
5098 return &memcg->css;
5099 }
5100
5101 /* The following stuff does not apply to the root */
5102 error = memcg_online_kmem(memcg);
5103 if (error)
5104 goto fail;
5105
5106 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5107 static_branch_inc(&memcg_sockets_enabled_key);
5108
5109 return &memcg->css;
5110fail:
5111 mem_cgroup_id_remove(memcg);
5112 mem_cgroup_free(memcg);
5113 return ERR_PTR(error);
5114}
5115
5116static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5117{
5118 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5119
5120 /*
5121 * A memcg must be visible for expand_shrinker_info()
5122 * by the time the maps are allocated. So, we allocate maps
5123 * here, when for_each_mem_cgroup() can't skip it.
5124 */
5125 if (alloc_shrinker_info(memcg)) {
5126 mem_cgroup_id_remove(memcg);
5127 return -ENOMEM;
5128 }
5129
5130 /* Online state pins memcg ID, memcg ID pins CSS */
5131 refcount_set(&memcg->id.ref, 1);
5132 css_get(css);
5133 return 0;
5134}
5135
5136static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5137{
5138 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5139 struct mem_cgroup_event *event, *tmp;
5140
5141 /*
5142 * Unregister events and notify userspace.
5143 * Notify userspace about cgroup removing only after rmdir of cgroup
5144 * directory to avoid race between userspace and kernelspace.
5145 */
5146 spin_lock(&memcg->event_list_lock);
5147 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5148 list_del_init(&event->list);
5149 schedule_work(&event->remove);
5150 }
5151 spin_unlock(&memcg->event_list_lock);
5152
5153 page_counter_set_min(&memcg->memory, 0);
5154 page_counter_set_low(&memcg->memory, 0);
5155
5156 memcg_offline_kmem(memcg);
5157 reparent_shrinker_deferred(memcg);
5158 wb_memcg_offline(memcg);
5159
5160 drain_all_stock(memcg);
5161
5162 mem_cgroup_id_put(memcg);
5163}
5164
5165static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5166{
5167 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5168
5169 invalidate_reclaim_iterators(memcg);
5170}
5171
5172static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5173{
5174 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5175 int __maybe_unused i;
5176
5177#ifdef CONFIG_CGROUP_WRITEBACK
5178 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5179 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5180#endif
5181 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5182 static_branch_dec(&memcg_sockets_enabled_key);
5183
5184 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5185 static_branch_dec(&memcg_sockets_enabled_key);
5186
5187 vmpressure_cleanup(&memcg->vmpressure);
5188 cancel_work_sync(&memcg->high_work);
5189 mem_cgroup_remove_from_trees(memcg);
5190 free_shrinker_info(memcg);
5191 memcg_free_kmem(memcg);
5192 mem_cgroup_free(memcg);
5193}
5194
5195/**
5196 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5197 * @css: the target css
5198 *
5199 * Reset the states of the mem_cgroup associated with @css. This is
5200 * invoked when the userland requests disabling on the default hierarchy
5201 * but the memcg is pinned through dependency. The memcg should stop
5202 * applying policies and should revert to the vanilla state as it may be
5203 * made visible again.
5204 *
5205 * The current implementation only resets the essential configurations.
5206 * This needs to be expanded to cover all the visible parts.
5207 */
5208static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5209{
5210 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5211
5212 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5213 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5214 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5215 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5216 page_counter_set_min(&memcg->memory, 0);
5217 page_counter_set_low(&memcg->memory, 0);
5218 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5219 memcg->soft_limit = PAGE_COUNTER_MAX;
5220 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5221 memcg_wb_domain_size_changed(memcg);
5222}
5223
5224static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5225{
5226 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5227 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5228 struct memcg_vmstats_percpu *statc;
5229 long delta, v;
5230 int i;
5231
5232 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5233
5234 for (i = 0; i < MEMCG_NR_STAT; i++) {
5235 /*
5236 * Collect the aggregated propagation counts of groups
5237 * below us. We're in a per-cpu loop here and this is
5238 * a global counter, so the first cycle will get them.
5239 */
5240 delta = memcg->vmstats.state_pending[i];
5241 if (delta)
5242 memcg->vmstats.state_pending[i] = 0;
5243
5244 /* Add CPU changes on this level since the last flush */
5245 v = READ_ONCE(statc->state[i]);
5246 if (v != statc->state_prev[i]) {
5247 delta += v - statc->state_prev[i];
5248 statc->state_prev[i] = v;
5249 }
5250
5251 if (!delta)
5252 continue;
5253
5254 /* Aggregate counts on this level and propagate upwards */
5255 memcg->vmstats.state[i] += delta;
5256 if (parent)
5257 parent->vmstats.state_pending[i] += delta;
5258 }
5259
5260 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
5261 delta = memcg->vmstats.events_pending[i];
5262 if (delta)
5263 memcg->vmstats.events_pending[i] = 0;
5264
5265 v = READ_ONCE(statc->events[i]);
5266 if (v != statc->events_prev[i]) {
5267 delta += v - statc->events_prev[i];
5268 statc->events_prev[i] = v;
5269 }
5270
5271 if (!delta)
5272 continue;
5273
5274 memcg->vmstats.events[i] += delta;
5275 if (parent)
5276 parent->vmstats.events_pending[i] += delta;
5277 }
5278}
5279
5280#ifdef CONFIG_MMU
5281/* Handlers for move charge at task migration. */
5282static int mem_cgroup_do_precharge(unsigned long count)
5283{
5284 int ret;
5285
5286 /* Try a single bulk charge without reclaim first, kswapd may wake */
5287 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5288 if (!ret) {
5289 mc.precharge += count;
5290 return ret;
5291 }
5292
5293 /* Try charges one by one with reclaim, but do not retry */
5294 while (count--) {
5295 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5296 if (ret)
5297 return ret;
5298 mc.precharge++;
5299 cond_resched();
5300 }
5301 return 0;
5302}
5303
5304union mc_target {
5305 struct page *page;
5306 swp_entry_t ent;
5307};
5308
5309enum mc_target_type {
5310 MC_TARGET_NONE = 0,
5311 MC_TARGET_PAGE,
5312 MC_TARGET_SWAP,
5313 MC_TARGET_DEVICE,
5314};
5315
5316static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5317 unsigned long addr, pte_t ptent)
5318{
5319 struct page *page = vm_normal_page(vma, addr, ptent);
5320
5321 if (!page || !page_mapped(page))
5322 return NULL;
5323 if (PageAnon(page)) {
5324 if (!(mc.flags & MOVE_ANON))
5325 return NULL;
5326 } else {
5327 if (!(mc.flags & MOVE_FILE))
5328 return NULL;
5329 }
5330 if (!get_page_unless_zero(page))
5331 return NULL;
5332
5333 return page;
5334}
5335
5336#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5337static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5338 pte_t ptent, swp_entry_t *entry)
5339{
5340 struct page *page = NULL;
5341 swp_entry_t ent = pte_to_swp_entry(ptent);
5342
5343 if (!(mc.flags & MOVE_ANON))
5344 return NULL;
5345
5346 /*
5347 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5348 * a device and because they are not accessible by CPU they are store
5349 * as special swap entry in the CPU page table.
5350 */
5351 if (is_device_private_entry(ent)) {
5352 page = device_private_entry_to_page(ent);
5353 /*
5354 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5355 * a refcount of 1 when free (unlike normal page)
5356 */
5357 if (!page_ref_add_unless(page, 1, 1))
5358 return NULL;
5359 return page;
5360 }
5361
5362 if (non_swap_entry(ent))
5363 return NULL;
5364
5365 /*
5366 * Because lookup_swap_cache() updates some statistics counter,
5367 * we call find_get_page() with swapper_space directly.
5368 */
5369 page = find_get_page(swap_address_space(ent), swp_offset(ent));
5370 entry->val = ent.val;
5371
5372 return page;
5373}
5374#else
5375static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5376 pte_t ptent, swp_entry_t *entry)
5377{
5378 return NULL;
5379}
5380#endif
5381
5382static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5383 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5384{
5385 if (!vma->vm_file) /* anonymous vma */
5386 return NULL;
5387 if (!(mc.flags & MOVE_FILE))
5388 return NULL;
5389
5390 /* page is moved even if it's not RSS of this task(page-faulted). */
5391 /* shmem/tmpfs may report page out on swap: account for that too. */
5392 return find_get_incore_page(vma->vm_file->f_mapping,
5393 linear_page_index(vma, addr));
5394}
5395
5396/**
5397 * mem_cgroup_move_account - move account of the page
5398 * @page: the page
5399 * @compound: charge the page as compound or small page
5400 * @from: mem_cgroup which the page is moved from.
5401 * @to: mem_cgroup which the page is moved to. @from != @to.
5402 *
5403 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5404 *
5405 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5406 * from old cgroup.
5407 */
5408static int mem_cgroup_move_account(struct page *page,
5409 bool compound,
5410 struct mem_cgroup *from,
5411 struct mem_cgroup *to)
5412{
5413 struct lruvec *from_vec, *to_vec;
5414 struct pglist_data *pgdat;
5415 unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
5416 int ret;
5417
5418 VM_BUG_ON(from == to);
5419 VM_BUG_ON_PAGE(PageLRU(page), page);
5420 VM_BUG_ON(compound && !PageTransHuge(page));
5421
5422 /*
5423 * Prevent mem_cgroup_migrate() from looking at
5424 * page's memory cgroup of its source page while we change it.
5425 */
5426 ret = -EBUSY;
5427 if (!trylock_page(page))
5428 goto out;
5429
5430 ret = -EINVAL;
5431 if (page_memcg(page) != from)
5432 goto out_unlock;
5433
5434 pgdat = page_pgdat(page);
5435 from_vec = mem_cgroup_lruvec(from, pgdat);
5436 to_vec = mem_cgroup_lruvec(to, pgdat);
5437
5438 lock_page_memcg(page);
5439
5440 if (PageAnon(page)) {
5441 if (page_mapped(page)) {
5442 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5443 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5444 if (PageTransHuge(page)) {
5445 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5446 -nr_pages);
5447 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5448 nr_pages);
5449 }
5450 }
5451 } else {
5452 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5453 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5454
5455 if (PageSwapBacked(page)) {
5456 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5457 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5458 }
5459
5460 if (page_mapped(page)) {
5461 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5462 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5463 }
5464
5465 if (PageDirty(page)) {
5466 struct address_space *mapping = page_mapping(page);
5467
5468 if (mapping_can_writeback(mapping)) {
5469 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5470 -nr_pages);
5471 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5472 nr_pages);
5473 }
5474 }
5475 }
5476
5477 if (PageWriteback(page)) {
5478 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5479 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5480 }
5481
5482 /*
5483 * All state has been migrated, let's switch to the new memcg.
5484 *
5485 * It is safe to change page's memcg here because the page
5486 * is referenced, charged, isolated, and locked: we can't race
5487 * with (un)charging, migration, LRU putback, or anything else
5488 * that would rely on a stable page's memory cgroup.
5489 *
5490 * Note that lock_page_memcg is a memcg lock, not a page lock,
5491 * to save space. As soon as we switch page's memory cgroup to a
5492 * new memcg that isn't locked, the above state can change
5493 * concurrently again. Make sure we're truly done with it.
5494 */
5495 smp_mb();
5496
5497 css_get(&to->css);
5498 css_put(&from->css);
5499
5500 page->memcg_data = (unsigned long)to;
5501
5502 __unlock_page_memcg(from);
5503
5504 ret = 0;
5505
5506 local_irq_disable();
5507 mem_cgroup_charge_statistics(to, page, nr_pages);
5508 memcg_check_events(to, page);
5509 mem_cgroup_charge_statistics(from, page, -nr_pages);
5510 memcg_check_events(from, page);
5511 local_irq_enable();
5512out_unlock:
5513 unlock_page(page);
5514out:
5515 return ret;
5516}
5517
5518/**
5519 * get_mctgt_type - get target type of moving charge
5520 * @vma: the vma the pte to be checked belongs
5521 * @addr: the address corresponding to the pte to be checked
5522 * @ptent: the pte to be checked
5523 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5524 *
5525 * Returns
5526 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5527 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5528 * move charge. if @target is not NULL, the page is stored in target->page
5529 * with extra refcnt got(Callers should handle it).
5530 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5531 * target for charge migration. if @target is not NULL, the entry is stored
5532 * in target->ent.
5533 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5534 * (so ZONE_DEVICE page and thus not on the lru).
5535 * For now we such page is charge like a regular page would be as for all
5536 * intent and purposes it is just special memory taking the place of a
5537 * regular page.
5538 *
5539 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5540 *
5541 * Called with pte lock held.
5542 */
5543
5544static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5545 unsigned long addr, pte_t ptent, union mc_target *target)
5546{
5547 struct page *page = NULL;
5548 enum mc_target_type ret = MC_TARGET_NONE;
5549 swp_entry_t ent = { .val = 0 };
5550
5551 if (pte_present(ptent))
5552 page = mc_handle_present_pte(vma, addr, ptent);
5553 else if (is_swap_pte(ptent))
5554 page = mc_handle_swap_pte(vma, ptent, &ent);
5555 else if (pte_none(ptent))
5556 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5557
5558 if (!page && !ent.val)
5559 return ret;
5560 if (page) {
5561 /*
5562 * Do only loose check w/o serialization.
5563 * mem_cgroup_move_account() checks the page is valid or
5564 * not under LRU exclusion.
5565 */
5566 if (page_memcg(page) == mc.from) {
5567 ret = MC_TARGET_PAGE;
5568 if (is_device_private_page(page))
5569 ret = MC_TARGET_DEVICE;
5570 if (target)
5571 target->page = page;
5572 }
5573 if (!ret || !target)
5574 put_page(page);
5575 }
5576 /*
5577 * There is a swap entry and a page doesn't exist or isn't charged.
5578 * But we cannot move a tail-page in a THP.
5579 */
5580 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5581 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5582 ret = MC_TARGET_SWAP;
5583 if (target)
5584 target->ent = ent;
5585 }
5586 return ret;
5587}
5588
5589#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5590/*
5591 * We don't consider PMD mapped swapping or file mapped pages because THP does
5592 * not support them for now.
5593 * Caller should make sure that pmd_trans_huge(pmd) is true.
5594 */
5595static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5596 unsigned long addr, pmd_t pmd, union mc_target *target)
5597{
5598 struct page *page = NULL;
5599 enum mc_target_type ret = MC_TARGET_NONE;
5600
5601 if (unlikely(is_swap_pmd(pmd))) {
5602 VM_BUG_ON(thp_migration_supported() &&
5603 !is_pmd_migration_entry(pmd));
5604 return ret;
5605 }
5606 page = pmd_page(pmd);
5607 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5608 if (!(mc.flags & MOVE_ANON))
5609 return ret;
5610 if (page_memcg(page) == mc.from) {
5611 ret = MC_TARGET_PAGE;
5612 if (target) {
5613 get_page(page);
5614 target->page = page;
5615 }
5616 }
5617 return ret;
5618}
5619#else
5620static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5621 unsigned long addr, pmd_t pmd, union mc_target *target)
5622{
5623 return MC_TARGET_NONE;
5624}
5625#endif
5626
5627static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5628 unsigned long addr, unsigned long end,
5629 struct mm_walk *walk)
5630{
5631 struct vm_area_struct *vma = walk->vma;
5632 pte_t *pte;
5633 spinlock_t *ptl;
5634
5635 ptl = pmd_trans_huge_lock(pmd, vma);
5636 if (ptl) {
5637 /*
5638 * Note their can not be MC_TARGET_DEVICE for now as we do not
5639 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5640 * this might change.
5641 */
5642 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5643 mc.precharge += HPAGE_PMD_NR;
5644 spin_unlock(ptl);
5645 return 0;
5646 }
5647
5648 if (pmd_trans_unstable(pmd))
5649 return 0;
5650 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5651 for (; addr != end; pte++, addr += PAGE_SIZE)
5652 if (get_mctgt_type(vma, addr, *pte, NULL))
5653 mc.precharge++; /* increment precharge temporarily */
5654 pte_unmap_unlock(pte - 1, ptl);
5655 cond_resched();
5656
5657 return 0;
5658}
5659
5660static const struct mm_walk_ops precharge_walk_ops = {
5661 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5662};
5663
5664static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5665{
5666 unsigned long precharge;
5667
5668 mmap_read_lock(mm);
5669 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5670 mmap_read_unlock(mm);
5671
5672 precharge = mc.precharge;
5673 mc.precharge = 0;
5674
5675 return precharge;
5676}
5677
5678static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5679{
5680 unsigned long precharge = mem_cgroup_count_precharge(mm);
5681
5682 VM_BUG_ON(mc.moving_task);
5683 mc.moving_task = current;
5684 return mem_cgroup_do_precharge(precharge);
5685}
5686
5687/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5688static void __mem_cgroup_clear_mc(void)
5689{
5690 struct mem_cgroup *from = mc.from;
5691 struct mem_cgroup *to = mc.to;
5692
5693 /* we must uncharge all the leftover precharges from mc.to */
5694 if (mc.precharge) {
5695 cancel_charge(mc.to, mc.precharge);
5696 mc.precharge = 0;
5697 }
5698 /*
5699 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5700 * we must uncharge here.
5701 */
5702 if (mc.moved_charge) {
5703 cancel_charge(mc.from, mc.moved_charge);
5704 mc.moved_charge = 0;
5705 }
5706 /* we must fixup refcnts and charges */
5707 if (mc.moved_swap) {
5708 /* uncharge swap account from the old cgroup */
5709 if (!mem_cgroup_is_root(mc.from))
5710 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5711
5712 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5713
5714 /*
5715 * we charged both to->memory and to->memsw, so we
5716 * should uncharge to->memory.
5717 */
5718 if (!mem_cgroup_is_root(mc.to))
5719 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5720
5721 mc.moved_swap = 0;
5722 }
5723 memcg_oom_recover(from);
5724 memcg_oom_recover(to);
5725 wake_up_all(&mc.waitq);
5726}
5727
5728static void mem_cgroup_clear_mc(void)
5729{
5730 struct mm_struct *mm = mc.mm;
5731
5732 /*
5733 * we must clear moving_task before waking up waiters at the end of
5734 * task migration.
5735 */
5736 mc.moving_task = NULL;
5737 __mem_cgroup_clear_mc();
5738 spin_lock(&mc.lock);
5739 mc.from = NULL;
5740 mc.to = NULL;
5741 mc.mm = NULL;
5742 spin_unlock(&mc.lock);
5743
5744 mmput(mm);
5745}
5746
5747static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5748{
5749 struct cgroup_subsys_state *css;
5750 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5751 struct mem_cgroup *from;
5752 struct task_struct *leader, *p;
5753 struct mm_struct *mm;
5754 unsigned long move_flags;
5755 int ret = 0;
5756
5757 /* charge immigration isn't supported on the default hierarchy */
5758 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5759 return 0;
5760
5761 /*
5762 * Multi-process migrations only happen on the default hierarchy
5763 * where charge immigration is not used. Perform charge
5764 * immigration if @tset contains a leader and whine if there are
5765 * multiple.
5766 */
5767 p = NULL;
5768 cgroup_taskset_for_each_leader(leader, css, tset) {
5769 WARN_ON_ONCE(p);
5770 p = leader;
5771 memcg = mem_cgroup_from_css(css);
5772 }
5773 if (!p)
5774 return 0;
5775
5776 /*
5777 * We are now committed to this value whatever it is. Changes in this
5778 * tunable will only affect upcoming migrations, not the current one.
5779 * So we need to save it, and keep it going.
5780 */
5781 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5782 if (!move_flags)
5783 return 0;
5784
5785 from = mem_cgroup_from_task(p);
5786
5787 VM_BUG_ON(from == memcg);
5788
5789 mm = get_task_mm(p);
5790 if (!mm)
5791 return 0;
5792 /* We move charges only when we move a owner of the mm */
5793 if (mm->owner == p) {
5794 VM_BUG_ON(mc.from);
5795 VM_BUG_ON(mc.to);
5796 VM_BUG_ON(mc.precharge);
5797 VM_BUG_ON(mc.moved_charge);
5798 VM_BUG_ON(mc.moved_swap);
5799
5800 spin_lock(&mc.lock);
5801 mc.mm = mm;
5802 mc.from = from;
5803 mc.to = memcg;
5804 mc.flags = move_flags;
5805 spin_unlock(&mc.lock);
5806 /* We set mc.moving_task later */
5807
5808 ret = mem_cgroup_precharge_mc(mm);
5809 if (ret)
5810 mem_cgroup_clear_mc();
5811 } else {
5812 mmput(mm);
5813 }
5814 return ret;
5815}
5816
5817static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5818{
5819 if (mc.to)
5820 mem_cgroup_clear_mc();
5821}
5822
5823static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5824 unsigned long addr, unsigned long end,
5825 struct mm_walk *walk)
5826{
5827 int ret = 0;
5828 struct vm_area_struct *vma = walk->vma;
5829 pte_t *pte;
5830 spinlock_t *ptl;
5831 enum mc_target_type target_type;
5832 union mc_target target;
5833 struct page *page;
5834
5835 ptl = pmd_trans_huge_lock(pmd, vma);
5836 if (ptl) {
5837 if (mc.precharge < HPAGE_PMD_NR) {
5838 spin_unlock(ptl);
5839 return 0;
5840 }
5841 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5842 if (target_type == MC_TARGET_PAGE) {
5843 page = target.page;
5844 if (!isolate_lru_page(page)) {
5845 if (!mem_cgroup_move_account(page, true,
5846 mc.from, mc.to)) {
5847 mc.precharge -= HPAGE_PMD_NR;
5848 mc.moved_charge += HPAGE_PMD_NR;
5849 }
5850 putback_lru_page(page);
5851 }
5852 put_page(page);
5853 } else if (target_type == MC_TARGET_DEVICE) {
5854 page = target.page;
5855 if (!mem_cgroup_move_account(page, true,
5856 mc.from, mc.to)) {
5857 mc.precharge -= HPAGE_PMD_NR;
5858 mc.moved_charge += HPAGE_PMD_NR;
5859 }
5860 put_page(page);
5861 }
5862 spin_unlock(ptl);
5863 return 0;
5864 }
5865
5866 if (pmd_trans_unstable(pmd))
5867 return 0;
5868retry:
5869 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5870 for (; addr != end; addr += PAGE_SIZE) {
5871 pte_t ptent = *(pte++);
5872 bool device = false;
5873 swp_entry_t ent;
5874
5875 if (!mc.precharge)
5876 break;
5877
5878 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5879 case MC_TARGET_DEVICE:
5880 device = true;
5881 fallthrough;
5882 case MC_TARGET_PAGE:
5883 page = target.page;
5884 /*
5885 * We can have a part of the split pmd here. Moving it
5886 * can be done but it would be too convoluted so simply
5887 * ignore such a partial THP and keep it in original
5888 * memcg. There should be somebody mapping the head.
5889 */
5890 if (PageTransCompound(page))
5891 goto put;
5892 if (!device && isolate_lru_page(page))
5893 goto put;
5894 if (!mem_cgroup_move_account(page, false,
5895 mc.from, mc.to)) {
5896 mc.precharge--;
5897 /* we uncharge from mc.from later. */
5898 mc.moved_charge++;
5899 }
5900 if (!device)
5901 putback_lru_page(page);
5902put: /* get_mctgt_type() gets the page */
5903 put_page(page);
5904 break;
5905 case MC_TARGET_SWAP:
5906 ent = target.ent;
5907 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5908 mc.precharge--;
5909 mem_cgroup_id_get_many(mc.to, 1);
5910 /* we fixup other refcnts and charges later. */
5911 mc.moved_swap++;
5912 }
5913 break;
5914 default:
5915 break;
5916 }
5917 }
5918 pte_unmap_unlock(pte - 1, ptl);
5919 cond_resched();
5920
5921 if (addr != end) {
5922 /*
5923 * We have consumed all precharges we got in can_attach().
5924 * We try charge one by one, but don't do any additional
5925 * charges to mc.to if we have failed in charge once in attach()
5926 * phase.
5927 */
5928 ret = mem_cgroup_do_precharge(1);
5929 if (!ret)
5930 goto retry;
5931 }
5932
5933 return ret;
5934}
5935
5936static const struct mm_walk_ops charge_walk_ops = {
5937 .pmd_entry = mem_cgroup_move_charge_pte_range,
5938};
5939
5940static void mem_cgroup_move_charge(void)
5941{
5942 lru_add_drain_all();
5943 /*
5944 * Signal lock_page_memcg() to take the memcg's move_lock
5945 * while we're moving its pages to another memcg. Then wait
5946 * for already started RCU-only updates to finish.
5947 */
5948 atomic_inc(&mc.from->moving_account);
5949 synchronize_rcu();
5950retry:
5951 if (unlikely(!mmap_read_trylock(mc.mm))) {
5952 /*
5953 * Someone who are holding the mmap_lock might be waiting in
5954 * waitq. So we cancel all extra charges, wake up all waiters,
5955 * and retry. Because we cancel precharges, we might not be able
5956 * to move enough charges, but moving charge is a best-effort
5957 * feature anyway, so it wouldn't be a big problem.
5958 */
5959 __mem_cgroup_clear_mc();
5960 cond_resched();
5961 goto retry;
5962 }
5963 /*
5964 * When we have consumed all precharges and failed in doing
5965 * additional charge, the page walk just aborts.
5966 */
5967 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
5968 NULL);
5969
5970 mmap_read_unlock(mc.mm);
5971 atomic_dec(&mc.from->moving_account);
5972}
5973
5974static void mem_cgroup_move_task(void)
5975{
5976 if (mc.to) {
5977 mem_cgroup_move_charge();
5978 mem_cgroup_clear_mc();
5979 }
5980}
5981#else /* !CONFIG_MMU */
5982static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5983{
5984 return 0;
5985}
5986static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5987{
5988}
5989static void mem_cgroup_move_task(void)
5990{
5991}
5992#endif
5993
5994static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
5995{
5996 if (value == PAGE_COUNTER_MAX)
5997 seq_puts(m, "max\n");
5998 else
5999 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6000
6001 return 0;
6002}
6003
6004static u64 memory_current_read(struct cgroup_subsys_state *css,
6005 struct cftype *cft)
6006{
6007 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6008
6009 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6010}
6011
6012static int memory_min_show(struct seq_file *m, void *v)
6013{
6014 return seq_puts_memcg_tunable(m,
6015 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6016}
6017
6018static ssize_t memory_min_write(struct kernfs_open_file *of,
6019 char *buf, size_t nbytes, loff_t off)
6020{
6021 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6022 unsigned long min;
6023 int err;
6024
6025 buf = strstrip(buf);
6026 err = page_counter_memparse(buf, "max", &min);
6027 if (err)
6028 return err;
6029
6030 page_counter_set_min(&memcg->memory, min);
6031
6032 return nbytes;
6033}
6034
6035static int memory_low_show(struct seq_file *m, void *v)
6036{
6037 return seq_puts_memcg_tunable(m,
6038 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6039}
6040
6041static ssize_t memory_low_write(struct kernfs_open_file *of,
6042 char *buf, size_t nbytes, loff_t off)
6043{
6044 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6045 unsigned long low;
6046 int err;
6047
6048 buf = strstrip(buf);
6049 err = page_counter_memparse(buf, "max", &low);
6050 if (err)
6051 return err;
6052
6053 page_counter_set_low(&memcg->memory, low);
6054
6055 return nbytes;
6056}
6057
6058static int memory_high_show(struct seq_file *m, void *v)
6059{
6060 return seq_puts_memcg_tunable(m,
6061 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6062}
6063
6064static ssize_t memory_high_write(struct kernfs_open_file *of,
6065 char *buf, size_t nbytes, loff_t off)
6066{
6067 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6068 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6069 bool drained = false;
6070 unsigned long high;
6071 int err;
6072
6073 buf = strstrip(buf);
6074 err = page_counter_memparse(buf, "max", &high);
6075 if (err)
6076 return err;
6077
6078 page_counter_set_high(&memcg->memory, high);
6079
6080 for (;;) {
6081 unsigned long nr_pages = page_counter_read(&memcg->memory);
6082 unsigned long reclaimed;
6083
6084 if (nr_pages <= high)
6085 break;
6086
6087 if (signal_pending(current))
6088 break;
6089
6090 if (!drained) {
6091 drain_all_stock(memcg);
6092 drained = true;
6093 continue;
6094 }
6095
6096 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6097 GFP_KERNEL, true);
6098
6099 if (!reclaimed && !nr_retries--)
6100 break;
6101 }
6102
6103 memcg_wb_domain_size_changed(memcg);
6104 return nbytes;
6105}
6106
6107static int memory_max_show(struct seq_file *m, void *v)
6108{
6109 return seq_puts_memcg_tunable(m,
6110 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6111}
6112
6113static ssize_t memory_max_write(struct kernfs_open_file *of,
6114 char *buf, size_t nbytes, loff_t off)
6115{
6116 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6117 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6118 bool drained = false;
6119 unsigned long max;
6120 int err;
6121
6122 buf = strstrip(buf);
6123 err = page_counter_memparse(buf, "max", &max);
6124 if (err)
6125 return err;
6126
6127 xchg(&memcg->memory.max, max);
6128
6129 for (;;) {
6130 unsigned long nr_pages = page_counter_read(&memcg->memory);
6131
6132 if (nr_pages <= max)
6133 break;
6134
6135 if (signal_pending(current))
6136 break;
6137
6138 if (!drained) {
6139 drain_all_stock(memcg);
6140 drained = true;
6141 continue;
6142 }
6143
6144 if (nr_reclaims) {
6145 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6146 GFP_KERNEL, true))
6147 nr_reclaims--;
6148 continue;
6149 }
6150
6151 memcg_memory_event(memcg, MEMCG_OOM);
6152 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6153 break;
6154 }
6155
6156 memcg_wb_domain_size_changed(memcg);
6157 return nbytes;
6158}
6159
6160static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6161{
6162 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6163 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6164 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6165 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6166 seq_printf(m, "oom_kill %lu\n",
6167 atomic_long_read(&events[MEMCG_OOM_KILL]));
6168}
6169
6170static int memory_events_show(struct seq_file *m, void *v)
6171{
6172 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6173
6174 __memory_events_show(m, memcg->memory_events);
6175 return 0;
6176}
6177
6178static int memory_events_local_show(struct seq_file *m, void *v)
6179{
6180 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6181
6182 __memory_events_show(m, memcg->memory_events_local);
6183 return 0;
6184}
6185
6186static int memory_stat_show(struct seq_file *m, void *v)
6187{
6188 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6189 char *buf;
6190
6191 buf = memory_stat_format(memcg);
6192 if (!buf)
6193 return -ENOMEM;
6194 seq_puts(m, buf);
6195 kfree(buf);
6196 return 0;
6197}
6198
6199#ifdef CONFIG_NUMA
6200static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6201 int item)
6202{
6203 return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6204}
6205
6206static int memory_numa_stat_show(struct seq_file *m, void *v)
6207{
6208 int i;
6209 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6210
6211 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6212 int nid;
6213
6214 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6215 continue;
6216
6217 seq_printf(m, "%s", memory_stats[i].name);
6218 for_each_node_state(nid, N_MEMORY) {
6219 u64 size;
6220 struct lruvec *lruvec;
6221
6222 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6223 size = lruvec_page_state_output(lruvec,
6224 memory_stats[i].idx);
6225 seq_printf(m, " N%d=%llu", nid, size);
6226 }
6227 seq_putc(m, '\n');
6228 }
6229
6230 return 0;
6231}
6232#endif
6233
6234static int memory_oom_group_show(struct seq_file *m, void *v)
6235{
6236 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6237
6238 seq_printf(m, "%d\n", memcg->oom_group);
6239
6240 return 0;
6241}
6242
6243static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6244 char *buf, size_t nbytes, loff_t off)
6245{
6246 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6247 int ret, oom_group;
6248
6249 buf = strstrip(buf);
6250 if (!buf)
6251 return -EINVAL;
6252
6253 ret = kstrtoint(buf, 0, &oom_group);
6254 if (ret)
6255 return ret;
6256
6257 if (oom_group != 0 && oom_group != 1)
6258 return -EINVAL;
6259
6260 memcg->oom_group = oom_group;
6261
6262 return nbytes;
6263}
6264
6265static struct cftype memory_files[] = {
6266 {
6267 .name = "current",
6268 .flags = CFTYPE_NOT_ON_ROOT,
6269 .read_u64 = memory_current_read,
6270 },
6271 {
6272 .name = "min",
6273 .flags = CFTYPE_NOT_ON_ROOT,
6274 .seq_show = memory_min_show,
6275 .write = memory_min_write,
6276 },
6277 {
6278 .name = "low",
6279 .flags = CFTYPE_NOT_ON_ROOT,
6280 .seq_show = memory_low_show,
6281 .write = memory_low_write,
6282 },
6283 {
6284 .name = "high",
6285 .flags = CFTYPE_NOT_ON_ROOT,
6286 .seq_show = memory_high_show,
6287 .write = memory_high_write,
6288 },
6289 {
6290 .name = "max",
6291 .flags = CFTYPE_NOT_ON_ROOT,
6292 .seq_show = memory_max_show,
6293 .write = memory_max_write,
6294 },
6295 {
6296 .name = "events",
6297 .flags = CFTYPE_NOT_ON_ROOT,
6298 .file_offset = offsetof(struct mem_cgroup, events_file),
6299 .seq_show = memory_events_show,
6300 },
6301 {
6302 .name = "events.local",
6303 .flags = CFTYPE_NOT_ON_ROOT,
6304 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6305 .seq_show = memory_events_local_show,
6306 },
6307 {
6308 .name = "stat",
6309 .seq_show = memory_stat_show,
6310 },
6311#ifdef CONFIG_NUMA
6312 {
6313 .name = "numa_stat",
6314 .seq_show = memory_numa_stat_show,
6315 },
6316#endif
6317 {
6318 .name = "oom.group",
6319 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6320 .seq_show = memory_oom_group_show,
6321 .write = memory_oom_group_write,
6322 },
6323 { } /* terminate */
6324};
6325
6326struct cgroup_subsys memory_cgrp_subsys = {
6327 .css_alloc = mem_cgroup_css_alloc,
6328 .css_online = mem_cgroup_css_online,
6329 .css_offline = mem_cgroup_css_offline,
6330 .css_released = mem_cgroup_css_released,
6331 .css_free = mem_cgroup_css_free,
6332 .css_reset = mem_cgroup_css_reset,
6333 .css_rstat_flush = mem_cgroup_css_rstat_flush,
6334 .can_attach = mem_cgroup_can_attach,
6335 .cancel_attach = mem_cgroup_cancel_attach,
6336 .post_attach = mem_cgroup_move_task,
6337 .dfl_cftypes = memory_files,
6338 .legacy_cftypes = mem_cgroup_legacy_files,
6339 .early_init = 0,
6340};
6341
6342/*
6343 * This function calculates an individual cgroup's effective
6344 * protection which is derived from its own memory.min/low, its
6345 * parent's and siblings' settings, as well as the actual memory
6346 * distribution in the tree.
6347 *
6348 * The following rules apply to the effective protection values:
6349 *
6350 * 1. At the first level of reclaim, effective protection is equal to
6351 * the declared protection in memory.min and memory.low.
6352 *
6353 * 2. To enable safe delegation of the protection configuration, at
6354 * subsequent levels the effective protection is capped to the
6355 * parent's effective protection.
6356 *
6357 * 3. To make complex and dynamic subtrees easier to configure, the
6358 * user is allowed to overcommit the declared protection at a given
6359 * level. If that is the case, the parent's effective protection is
6360 * distributed to the children in proportion to how much protection
6361 * they have declared and how much of it they are utilizing.
6362 *
6363 * This makes distribution proportional, but also work-conserving:
6364 * if one cgroup claims much more protection than it uses memory,
6365 * the unused remainder is available to its siblings.
6366 *
6367 * 4. Conversely, when the declared protection is undercommitted at a
6368 * given level, the distribution of the larger parental protection
6369 * budget is NOT proportional. A cgroup's protection from a sibling
6370 * is capped to its own memory.min/low setting.
6371 *
6372 * 5. However, to allow protecting recursive subtrees from each other
6373 * without having to declare each individual cgroup's fixed share
6374 * of the ancestor's claim to protection, any unutilized -
6375 * "floating" - protection from up the tree is distributed in
6376 * proportion to each cgroup's *usage*. This makes the protection
6377 * neutral wrt sibling cgroups and lets them compete freely over
6378 * the shared parental protection budget, but it protects the
6379 * subtree as a whole from neighboring subtrees.
6380 *
6381 * Note that 4. and 5. are not in conflict: 4. is about protecting
6382 * against immediate siblings whereas 5. is about protecting against
6383 * neighboring subtrees.
6384 */
6385static unsigned long effective_protection(unsigned long usage,
6386 unsigned long parent_usage,
6387 unsigned long setting,
6388 unsigned long parent_effective,
6389 unsigned long siblings_protected)
6390{
6391 unsigned long protected;
6392 unsigned long ep;
6393
6394 protected = min(usage, setting);
6395 /*
6396 * If all cgroups at this level combined claim and use more
6397 * protection then what the parent affords them, distribute
6398 * shares in proportion to utilization.
6399 *
6400 * We are using actual utilization rather than the statically
6401 * claimed protection in order to be work-conserving: claimed
6402 * but unused protection is available to siblings that would
6403 * otherwise get a smaller chunk than what they claimed.
6404 */
6405 if (siblings_protected > parent_effective)
6406 return protected * parent_effective / siblings_protected;
6407
6408 /*
6409 * Ok, utilized protection of all children is within what the
6410 * parent affords them, so we know whatever this child claims
6411 * and utilizes is effectively protected.
6412 *
6413 * If there is unprotected usage beyond this value, reclaim
6414 * will apply pressure in proportion to that amount.
6415 *
6416 * If there is unutilized protection, the cgroup will be fully
6417 * shielded from reclaim, but we do return a smaller value for
6418 * protection than what the group could enjoy in theory. This
6419 * is okay. With the overcommit distribution above, effective
6420 * protection is always dependent on how memory is actually
6421 * consumed among the siblings anyway.
6422 */
6423 ep = protected;
6424
6425 /*
6426 * If the children aren't claiming (all of) the protection
6427 * afforded to them by the parent, distribute the remainder in
6428 * proportion to the (unprotected) memory of each cgroup. That
6429 * way, cgroups that aren't explicitly prioritized wrt each
6430 * other compete freely over the allowance, but they are
6431 * collectively protected from neighboring trees.
6432 *
6433 * We're using unprotected memory for the weight so that if
6434 * some cgroups DO claim explicit protection, we don't protect
6435 * the same bytes twice.
6436 *
6437 * Check both usage and parent_usage against the respective
6438 * protected values. One should imply the other, but they
6439 * aren't read atomically - make sure the division is sane.
6440 */
6441 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6442 return ep;
6443 if (parent_effective > siblings_protected &&
6444 parent_usage > siblings_protected &&
6445 usage > protected) {
6446 unsigned long unclaimed;
6447
6448 unclaimed = parent_effective - siblings_protected;
6449 unclaimed *= usage - protected;
6450 unclaimed /= parent_usage - siblings_protected;
6451
6452 ep += unclaimed;
6453 }
6454
6455 return ep;
6456}
6457
6458/**
6459 * mem_cgroup_protected - check if memory consumption is in the normal range
6460 * @root: the top ancestor of the sub-tree being checked
6461 * @memcg: the memory cgroup to check
6462 *
6463 * WARNING: This function is not stateless! It can only be used as part
6464 * of a top-down tree iteration, not for isolated queries.
6465 */
6466void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6467 struct mem_cgroup *memcg)
6468{
6469 unsigned long usage, parent_usage;
6470 struct mem_cgroup *parent;
6471
6472 if (mem_cgroup_disabled())
6473 return;
6474
6475 if (!root)
6476 root = root_mem_cgroup;
6477
6478 /*
6479 * Effective values of the reclaim targets are ignored so they
6480 * can be stale. Have a look at mem_cgroup_protection for more
6481 * details.
6482 * TODO: calculation should be more robust so that we do not need
6483 * that special casing.
6484 */
6485 if (memcg == root)
6486 return;
6487
6488 usage = page_counter_read(&memcg->memory);
6489 if (!usage)
6490 return;
6491
6492 parent = parent_mem_cgroup(memcg);
6493 /* No parent means a non-hierarchical mode on v1 memcg */
6494 if (!parent)
6495 return;
6496
6497 if (parent == root) {
6498 memcg->memory.emin = READ_ONCE(memcg->memory.min);
6499 memcg->memory.elow = READ_ONCE(memcg->memory.low);
6500 return;
6501 }
6502
6503 parent_usage = page_counter_read(&parent->memory);
6504
6505 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6506 READ_ONCE(memcg->memory.min),
6507 READ_ONCE(parent->memory.emin),
6508 atomic_long_read(&parent->memory.children_min_usage)));
6509
6510 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6511 READ_ONCE(memcg->memory.low),
6512 READ_ONCE(parent->memory.elow),
6513 atomic_long_read(&parent->memory.children_low_usage)));
6514}
6515
6516static int __mem_cgroup_charge(struct page *page, struct mem_cgroup *memcg,
6517 gfp_t gfp)
6518{
6519 unsigned int nr_pages = thp_nr_pages(page);
6520 int ret;
6521
6522 ret = try_charge(memcg, gfp, nr_pages);
6523 if (ret)
6524 goto out;
6525
6526 css_get(&memcg->css);
6527 commit_charge(page, memcg);
6528
6529 local_irq_disable();
6530 mem_cgroup_charge_statistics(memcg, page, nr_pages);
6531 memcg_check_events(memcg, page);
6532 local_irq_enable();
6533out:
6534 return ret;
6535}
6536
6537/**
6538 * mem_cgroup_charge - charge a newly allocated page to a cgroup
6539 * @page: page to charge
6540 * @mm: mm context of the victim
6541 * @gfp_mask: reclaim mode
6542 *
6543 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6544 * pages according to @gfp_mask if necessary.
6545 *
6546 * Do not use this for pages allocated for swapin.
6547 *
6548 * Returns 0 on success. Otherwise, an error code is returned.
6549 */
6550int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
6551{
6552 struct mem_cgroup *memcg;
6553 int ret;
6554
6555 if (mem_cgroup_disabled())
6556 return 0;
6557
6558 memcg = get_mem_cgroup_from_mm(mm);
6559 ret = __mem_cgroup_charge(page, memcg, gfp_mask);
6560 css_put(&memcg->css);
6561
6562 return ret;
6563}
6564
6565/**
6566 * mem_cgroup_swapin_charge_page - charge a newly allocated page for swapin
6567 * @page: page to charge
6568 * @mm: mm context of the victim
6569 * @gfp: reclaim mode
6570 * @entry: swap entry for which the page is allocated
6571 *
6572 * This function charges a page allocated for swapin. Please call this before
6573 * adding the page to the swapcache.
6574 *
6575 * Returns 0 on success. Otherwise, an error code is returned.
6576 */
6577int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
6578 gfp_t gfp, swp_entry_t entry)
6579{
6580 struct mem_cgroup *memcg;
6581 unsigned short id;
6582 int ret;
6583
6584 if (mem_cgroup_disabled())
6585 return 0;
6586
6587 id = lookup_swap_cgroup_id(entry);
6588 rcu_read_lock();
6589 memcg = mem_cgroup_from_id(id);
6590 if (!memcg || !css_tryget_online(&memcg->css))
6591 memcg = get_mem_cgroup_from_mm(mm);
6592 rcu_read_unlock();
6593
6594 ret = __mem_cgroup_charge(page, memcg, gfp);
6595
6596 css_put(&memcg->css);
6597 return ret;
6598}
6599
6600/*
6601 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
6602 * @entry: swap entry for which the page is charged
6603 *
6604 * Call this function after successfully adding the charged page to swapcache.
6605 *
6606 * Note: This function assumes the page for which swap slot is being uncharged
6607 * is order 0 page.
6608 */
6609void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
6610{
6611 /*
6612 * Cgroup1's unified memory+swap counter has been charged with the
6613 * new swapcache page, finish the transfer by uncharging the swap
6614 * slot. The swap slot would also get uncharged when it dies, but
6615 * it can stick around indefinitely and we'd count the page twice
6616 * the entire time.
6617 *
6618 * Cgroup2 has separate resource counters for memory and swap,
6619 * so this is a non-issue here. Memory and swap charge lifetimes
6620 * correspond 1:1 to page and swap slot lifetimes: we charge the
6621 * page to memory here, and uncharge swap when the slot is freed.
6622 */
6623 if (!mem_cgroup_disabled() && do_memsw_account()) {
6624 /*
6625 * The swap entry might not get freed for a long time,
6626 * let's not wait for it. The page already received a
6627 * memory+swap charge, drop the swap entry duplicate.
6628 */
6629 mem_cgroup_uncharge_swap(entry, 1);
6630 }
6631}
6632
6633struct uncharge_gather {
6634 struct mem_cgroup *memcg;
6635 unsigned long nr_memory;
6636 unsigned long pgpgout;
6637 unsigned long nr_kmem;
6638 struct page *dummy_page;
6639};
6640
6641static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6642{
6643 memset(ug, 0, sizeof(*ug));
6644}
6645
6646static void uncharge_batch(const struct uncharge_gather *ug)
6647{
6648 unsigned long flags;
6649
6650 if (ug->nr_memory) {
6651 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
6652 if (do_memsw_account())
6653 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
6654 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6655 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6656 memcg_oom_recover(ug->memcg);
6657 }
6658
6659 local_irq_save(flags);
6660 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6661 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
6662 memcg_check_events(ug->memcg, ug->dummy_page);
6663 local_irq_restore(flags);
6664
6665 /* drop reference from uncharge_page */
6666 css_put(&ug->memcg->css);
6667}
6668
6669static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6670{
6671 unsigned long nr_pages;
6672 struct mem_cgroup *memcg;
6673 struct obj_cgroup *objcg;
6674
6675 VM_BUG_ON_PAGE(PageLRU(page), page);
6676
6677 /*
6678 * Nobody should be changing or seriously looking at
6679 * page memcg or objcg at this point, we have fully
6680 * exclusive access to the page.
6681 */
6682 if (PageMemcgKmem(page)) {
6683 objcg = __page_objcg(page);
6684 /*
6685 * This get matches the put at the end of the function and
6686 * kmem pages do not hold memcg references anymore.
6687 */
6688 memcg = get_mem_cgroup_from_objcg(objcg);
6689 } else {
6690 memcg = __page_memcg(page);
6691 }
6692
6693 if (!memcg)
6694 return;
6695
6696 if (ug->memcg != memcg) {
6697 if (ug->memcg) {
6698 uncharge_batch(ug);
6699 uncharge_gather_clear(ug);
6700 }
6701 ug->memcg = memcg;
6702 ug->dummy_page = page;
6703
6704 /* pairs with css_put in uncharge_batch */
6705 css_get(&memcg->css);
6706 }
6707
6708 nr_pages = compound_nr(page);
6709
6710 if (PageMemcgKmem(page)) {
6711 ug->nr_memory += nr_pages;
6712 ug->nr_kmem += nr_pages;
6713
6714 page->memcg_data = 0;
6715 obj_cgroup_put(objcg);
6716 } else {
6717 /* LRU pages aren't accounted at the root level */
6718 if (!mem_cgroup_is_root(memcg))
6719 ug->nr_memory += nr_pages;
6720 ug->pgpgout++;
6721
6722 page->memcg_data = 0;
6723 }
6724
6725 css_put(&memcg->css);
6726}
6727
6728/**
6729 * mem_cgroup_uncharge - uncharge a page
6730 * @page: page to uncharge
6731 *
6732 * Uncharge a page previously charged with mem_cgroup_charge().
6733 */
6734void mem_cgroup_uncharge(struct page *page)
6735{
6736 struct uncharge_gather ug;
6737
6738 if (mem_cgroup_disabled())
6739 return;
6740
6741 /* Don't touch page->lru of any random page, pre-check: */
6742 if (!page_memcg(page))
6743 return;
6744
6745 uncharge_gather_clear(&ug);
6746 uncharge_page(page, &ug);
6747 uncharge_batch(&ug);
6748}
6749
6750/**
6751 * mem_cgroup_uncharge_list - uncharge a list of page
6752 * @page_list: list of pages to uncharge
6753 *
6754 * Uncharge a list of pages previously charged with
6755 * mem_cgroup_charge().
6756 */
6757void mem_cgroup_uncharge_list(struct list_head *page_list)
6758{
6759 struct uncharge_gather ug;
6760 struct page *page;
6761
6762 if (mem_cgroup_disabled())
6763 return;
6764
6765 uncharge_gather_clear(&ug);
6766 list_for_each_entry(page, page_list, lru)
6767 uncharge_page(page, &ug);
6768 if (ug.memcg)
6769 uncharge_batch(&ug);
6770}
6771
6772/**
6773 * mem_cgroup_migrate - charge a page's replacement
6774 * @oldpage: currently circulating page
6775 * @newpage: replacement page
6776 *
6777 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6778 * be uncharged upon free.
6779 *
6780 * Both pages must be locked, @newpage->mapping must be set up.
6781 */
6782void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6783{
6784 struct mem_cgroup *memcg;
6785 unsigned int nr_pages;
6786 unsigned long flags;
6787
6788 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6789 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6790 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6791 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6792 newpage);
6793
6794 if (mem_cgroup_disabled())
6795 return;
6796
6797 /* Page cache replacement: new page already charged? */
6798 if (page_memcg(newpage))
6799 return;
6800
6801 memcg = page_memcg(oldpage);
6802 VM_WARN_ON_ONCE_PAGE(!memcg, oldpage);
6803 if (!memcg)
6804 return;
6805
6806 /* Force-charge the new page. The old one will be freed soon */
6807 nr_pages = thp_nr_pages(newpage);
6808
6809 page_counter_charge(&memcg->memory, nr_pages);
6810 if (do_memsw_account())
6811 page_counter_charge(&memcg->memsw, nr_pages);
6812
6813 css_get(&memcg->css);
6814 commit_charge(newpage, memcg);
6815
6816 local_irq_save(flags);
6817 mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
6818 memcg_check_events(memcg, newpage);
6819 local_irq_restore(flags);
6820}
6821
6822DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6823EXPORT_SYMBOL(memcg_sockets_enabled_key);
6824
6825void mem_cgroup_sk_alloc(struct sock *sk)
6826{
6827 struct mem_cgroup *memcg;
6828
6829 if (!mem_cgroup_sockets_enabled)
6830 return;
6831
6832 /* Do not associate the sock with unrelated interrupted task's memcg. */
6833 if (in_interrupt())
6834 return;
6835
6836 rcu_read_lock();
6837 memcg = mem_cgroup_from_task(current);
6838 if (memcg == root_mem_cgroup)
6839 goto out;
6840 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6841 goto out;
6842 if (css_tryget(&memcg->css))
6843 sk->sk_memcg = memcg;
6844out:
6845 rcu_read_unlock();
6846}
6847
6848void mem_cgroup_sk_free(struct sock *sk)
6849{
6850 if (sk->sk_memcg)
6851 css_put(&sk->sk_memcg->css);
6852}
6853
6854/**
6855 * mem_cgroup_charge_skmem - charge socket memory
6856 * @memcg: memcg to charge
6857 * @nr_pages: number of pages to charge
6858 *
6859 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6860 * @memcg's configured limit, %false if the charge had to be forced.
6861 */
6862bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6863{
6864 gfp_t gfp_mask = GFP_KERNEL;
6865
6866 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6867 struct page_counter *fail;
6868
6869 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6870 memcg->tcpmem_pressure = 0;
6871 return true;
6872 }
6873 page_counter_charge(&memcg->tcpmem, nr_pages);
6874 memcg->tcpmem_pressure = 1;
6875 return false;
6876 }
6877
6878 /* Don't block in the packet receive path */
6879 if (in_softirq())
6880 gfp_mask = GFP_NOWAIT;
6881
6882 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6883
6884 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6885 return true;
6886
6887 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6888 return false;
6889}
6890
6891/**
6892 * mem_cgroup_uncharge_skmem - uncharge socket memory
6893 * @memcg: memcg to uncharge
6894 * @nr_pages: number of pages to uncharge
6895 */
6896void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6897{
6898 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6899 page_counter_uncharge(&memcg->tcpmem, nr_pages);
6900 return;
6901 }
6902
6903 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6904
6905 refill_stock(memcg, nr_pages);
6906}
6907
6908static int __init cgroup_memory(char *s)
6909{
6910 char *token;
6911
6912 while ((token = strsep(&s, ",")) != NULL) {
6913 if (!*token)
6914 continue;
6915 if (!strcmp(token, "nosocket"))
6916 cgroup_memory_nosocket = true;
6917 if (!strcmp(token, "nokmem"))
6918 cgroup_memory_nokmem = true;
6919 }
6920 return 0;
6921}
6922__setup("cgroup.memory=", cgroup_memory);
6923
6924/*
6925 * subsys_initcall() for memory controller.
6926 *
6927 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6928 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6929 * basically everything that doesn't depend on a specific mem_cgroup structure
6930 * should be initialized from here.
6931 */
6932static int __init mem_cgroup_init(void)
6933{
6934 int cpu, node;
6935
6936 /*
6937 * Currently s32 type (can refer to struct batched_lruvec_stat) is
6938 * used for per-memcg-per-cpu caching of per-node statistics. In order
6939 * to work fine, we should make sure that the overfill threshold can't
6940 * exceed S32_MAX / PAGE_SIZE.
6941 */
6942 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
6943
6944 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6945 memcg_hotplug_cpu_dead);
6946
6947 for_each_possible_cpu(cpu)
6948 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6949 drain_local_stock);
6950
6951 for_each_node(node) {
6952 struct mem_cgroup_tree_per_node *rtpn;
6953
6954 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6955 node_online(node) ? node : NUMA_NO_NODE);
6956
6957 rtpn->rb_root = RB_ROOT;
6958 rtpn->rb_rightmost = NULL;
6959 spin_lock_init(&rtpn->lock);
6960 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6961 }
6962
6963 return 0;
6964}
6965subsys_initcall(mem_cgroup_init);
6966
6967#ifdef CONFIG_MEMCG_SWAP
6968static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6969{
6970 while (!refcount_inc_not_zero(&memcg->id.ref)) {
6971 /*
6972 * The root cgroup cannot be destroyed, so it's refcount must
6973 * always be >= 1.
6974 */
6975 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6976 VM_BUG_ON(1);
6977 break;
6978 }
6979 memcg = parent_mem_cgroup(memcg);
6980 if (!memcg)
6981 memcg = root_mem_cgroup;
6982 }
6983 return memcg;
6984}
6985
6986/**
6987 * mem_cgroup_swapout - transfer a memsw charge to swap
6988 * @page: page whose memsw charge to transfer
6989 * @entry: swap entry to move the charge to
6990 *
6991 * Transfer the memsw charge of @page to @entry.
6992 */
6993void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6994{
6995 struct mem_cgroup *memcg, *swap_memcg;
6996 unsigned int nr_entries;
6997 unsigned short oldid;
6998
6999 VM_BUG_ON_PAGE(PageLRU(page), page);
7000 VM_BUG_ON_PAGE(page_count(page), page);
7001
7002 if (mem_cgroup_disabled())
7003 return;
7004
7005 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7006 return;
7007
7008 memcg = page_memcg(page);
7009
7010 VM_WARN_ON_ONCE_PAGE(!memcg, page);
7011 if (!memcg)
7012 return;
7013
7014 /*
7015 * In case the memcg owning these pages has been offlined and doesn't
7016 * have an ID allocated to it anymore, charge the closest online
7017 * ancestor for the swap instead and transfer the memory+swap charge.
7018 */
7019 swap_memcg = mem_cgroup_id_get_online(memcg);
7020 nr_entries = thp_nr_pages(page);
7021 /* Get references for the tail pages, too */
7022 if (nr_entries > 1)
7023 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7024 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7025 nr_entries);
7026 VM_BUG_ON_PAGE(oldid, page);
7027 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7028
7029 page->memcg_data = 0;
7030
7031 if (!mem_cgroup_is_root(memcg))
7032 page_counter_uncharge(&memcg->memory, nr_entries);
7033
7034 if (!cgroup_memory_noswap && memcg != swap_memcg) {
7035 if (!mem_cgroup_is_root(swap_memcg))
7036 page_counter_charge(&swap_memcg->memsw, nr_entries);
7037 page_counter_uncharge(&memcg->memsw, nr_entries);
7038 }
7039
7040 /*
7041 * Interrupts should be disabled here because the caller holds the
7042 * i_pages lock which is taken with interrupts-off. It is
7043 * important here to have the interrupts disabled because it is the
7044 * only synchronisation we have for updating the per-CPU variables.
7045 */
7046 VM_BUG_ON(!irqs_disabled());
7047 mem_cgroup_charge_statistics(memcg, page, -nr_entries);
7048 memcg_check_events(memcg, page);
7049
7050 css_put(&memcg->css);
7051}
7052
7053/**
7054 * mem_cgroup_try_charge_swap - try charging swap space for a page
7055 * @page: page being added to swap
7056 * @entry: swap entry to charge
7057 *
7058 * Try to charge @page's memcg for the swap space at @entry.
7059 *
7060 * Returns 0 on success, -ENOMEM on failure.
7061 */
7062int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7063{
7064 unsigned int nr_pages = thp_nr_pages(page);
7065 struct page_counter *counter;
7066 struct mem_cgroup *memcg;
7067 unsigned short oldid;
7068
7069 if (mem_cgroup_disabled())
7070 return 0;
7071
7072 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7073 return 0;
7074
7075 memcg = page_memcg(page);
7076
7077 VM_WARN_ON_ONCE_PAGE(!memcg, page);
7078 if (!memcg)
7079 return 0;
7080
7081 if (!entry.val) {
7082 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7083 return 0;
7084 }
7085
7086 memcg = mem_cgroup_id_get_online(memcg);
7087
7088 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7089 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7090 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7091 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7092 mem_cgroup_id_put(memcg);
7093 return -ENOMEM;
7094 }
7095
7096 /* Get references for the tail pages, too */
7097 if (nr_pages > 1)
7098 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7099 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7100 VM_BUG_ON_PAGE(oldid, page);
7101 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7102
7103 return 0;
7104}
7105
7106/**
7107 * mem_cgroup_uncharge_swap - uncharge swap space
7108 * @entry: swap entry to uncharge
7109 * @nr_pages: the amount of swap space to uncharge
7110 */
7111void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7112{
7113 struct mem_cgroup *memcg;
7114 unsigned short id;
7115
7116 id = swap_cgroup_record(entry, 0, nr_pages);
7117 rcu_read_lock();
7118 memcg = mem_cgroup_from_id(id);
7119 if (memcg) {
7120 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7121 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7122 page_counter_uncharge(&memcg->swap, nr_pages);
7123 else
7124 page_counter_uncharge(&memcg->memsw, nr_pages);
7125 }
7126 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7127 mem_cgroup_id_put_many(memcg, nr_pages);
7128 }
7129 rcu_read_unlock();
7130}
7131
7132long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7133{
7134 long nr_swap_pages = get_nr_swap_pages();
7135
7136 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7137 return nr_swap_pages;
7138 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7139 nr_swap_pages = min_t(long, nr_swap_pages,
7140 READ_ONCE(memcg->swap.max) -
7141 page_counter_read(&memcg->swap));
7142 return nr_swap_pages;
7143}
7144
7145bool mem_cgroup_swap_full(struct page *page)
7146{
7147 struct mem_cgroup *memcg;
7148
7149 VM_BUG_ON_PAGE(!PageLocked(page), page);
7150
7151 if (vm_swap_full())
7152 return true;
7153 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7154 return false;
7155
7156 memcg = page_memcg(page);
7157 if (!memcg)
7158 return false;
7159
7160 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7161 unsigned long usage = page_counter_read(&memcg->swap);
7162
7163 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7164 usage * 2 >= READ_ONCE(memcg->swap.max))
7165 return true;
7166 }
7167
7168 return false;
7169}
7170
7171static int __init setup_swap_account(char *s)
7172{
7173 if (!strcmp(s, "1"))
7174 cgroup_memory_noswap = false;
7175 else if (!strcmp(s, "0"))
7176 cgroup_memory_noswap = true;
7177 return 1;
7178}
7179__setup("swapaccount=", setup_swap_account);
7180
7181static u64 swap_current_read(struct cgroup_subsys_state *css,
7182 struct cftype *cft)
7183{
7184 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7185
7186 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7187}
7188
7189static int swap_high_show(struct seq_file *m, void *v)
7190{
7191 return seq_puts_memcg_tunable(m,
7192 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7193}
7194
7195static ssize_t swap_high_write(struct kernfs_open_file *of,
7196 char *buf, size_t nbytes, loff_t off)
7197{
7198 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7199 unsigned long high;
7200 int err;
7201
7202 buf = strstrip(buf);
7203 err = page_counter_memparse(buf, "max", &high);
7204 if (err)
7205 return err;
7206
7207 page_counter_set_high(&memcg->swap, high);
7208
7209 return nbytes;
7210}
7211
7212static int swap_max_show(struct seq_file *m, void *v)
7213{
7214 return seq_puts_memcg_tunable(m,
7215 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7216}
7217
7218static ssize_t swap_max_write(struct kernfs_open_file *of,
7219 char *buf, size_t nbytes, loff_t off)
7220{
7221 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7222 unsigned long max;
7223 int err;
7224
7225 buf = strstrip(buf);
7226 err = page_counter_memparse(buf, "max", &max);
7227 if (err)
7228 return err;
7229
7230 xchg(&memcg->swap.max, max);
7231
7232 return nbytes;
7233}
7234
7235static int swap_events_show(struct seq_file *m, void *v)
7236{
7237 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7238
7239 seq_printf(m, "high %lu\n",
7240 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7241 seq_printf(m, "max %lu\n",
7242 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7243 seq_printf(m, "fail %lu\n",
7244 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7245
7246 return 0;
7247}
7248
7249static struct cftype swap_files[] = {
7250 {
7251 .name = "swap.current",
7252 .flags = CFTYPE_NOT_ON_ROOT,
7253 .read_u64 = swap_current_read,
7254 },
7255 {
7256 .name = "swap.high",
7257 .flags = CFTYPE_NOT_ON_ROOT,
7258 .seq_show = swap_high_show,
7259 .write = swap_high_write,
7260 },
7261 {
7262 .name = "swap.max",
7263 .flags = CFTYPE_NOT_ON_ROOT,
7264 .seq_show = swap_max_show,
7265 .write = swap_max_write,
7266 },
7267 {
7268 .name = "swap.events",
7269 .flags = CFTYPE_NOT_ON_ROOT,
7270 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7271 .seq_show = swap_events_show,
7272 },
7273 { } /* terminate */
7274};
7275
7276static struct cftype memsw_files[] = {
7277 {
7278 .name = "memsw.usage_in_bytes",
7279 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7280 .read_u64 = mem_cgroup_read_u64,
7281 },
7282 {
7283 .name = "memsw.max_usage_in_bytes",
7284 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7285 .write = mem_cgroup_reset,
7286 .read_u64 = mem_cgroup_read_u64,
7287 },
7288 {
7289 .name = "memsw.limit_in_bytes",
7290 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7291 .write = mem_cgroup_write,
7292 .read_u64 = mem_cgroup_read_u64,
7293 },
7294 {
7295 .name = "memsw.failcnt",
7296 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7297 .write = mem_cgroup_reset,
7298 .read_u64 = mem_cgroup_read_u64,
7299 },
7300 { }, /* terminate */
7301};
7302
7303/*
7304 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7305 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7306 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7307 * boot parameter. This may result in premature OOPS inside
7308 * mem_cgroup_get_nr_swap_pages() function in corner cases.
7309 */
7310static int __init mem_cgroup_swap_init(void)
7311{
7312 /* No memory control -> no swap control */
7313 if (mem_cgroup_disabled())
7314 cgroup_memory_noswap = true;
7315
7316 if (cgroup_memory_noswap)
7317 return 0;
7318
7319 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7320 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7321
7322 return 0;
7323}
7324core_initcall(mem_cgroup_swap_init);
7325
7326#endif /* CONFIG_MEMCG_SWAP */