Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_SCHED_H
3#define _LINUX_SCHED_H
4
5/*
6 * Define 'struct task_struct' and provide the main scheduler
7 * APIs (schedule(), wakeup variants, etc.)
8 */
9
10#include <uapi/linux/sched.h>
11
12#include <asm/current.h>
13
14#include <linux/pid.h>
15#include <linux/sem.h>
16#include <linux/shm.h>
17#include <linux/mutex.h>
18#include <linux/plist.h>
19#include <linux/hrtimer.h>
20#include <linux/irqflags.h>
21#include <linux/seccomp.h>
22#include <linux/nodemask.h>
23#include <linux/rcupdate.h>
24#include <linux/refcount.h>
25#include <linux/resource.h>
26#include <linux/latencytop.h>
27#include <linux/sched/prio.h>
28#include <linux/sched/types.h>
29#include <linux/signal_types.h>
30#include <linux/syscall_user_dispatch.h>
31#include <linux/mm_types_task.h>
32#include <linux/task_io_accounting.h>
33#include <linux/posix-timers.h>
34#include <linux/rseq.h>
35#include <linux/seqlock.h>
36#include <linux/kcsan.h>
37#include <asm/kmap_size.h>
38
39/* task_struct member predeclarations (sorted alphabetically): */
40struct audit_context;
41struct backing_dev_info;
42struct bio_list;
43struct blk_plug;
44struct bpf_local_storage;
45struct capture_control;
46struct cfs_rq;
47struct fs_struct;
48struct futex_pi_state;
49struct io_context;
50struct io_uring_task;
51struct mempolicy;
52struct nameidata;
53struct nsproxy;
54struct perf_event_context;
55struct pid_namespace;
56struct pipe_inode_info;
57struct rcu_node;
58struct reclaim_state;
59struct robust_list_head;
60struct root_domain;
61struct rq;
62struct sched_attr;
63struct sched_param;
64struct seq_file;
65struct sighand_struct;
66struct signal_struct;
67struct task_delay_info;
68struct task_group;
69
70/*
71 * Task state bitmask. NOTE! These bits are also
72 * encoded in fs/proc/array.c: get_task_state().
73 *
74 * We have two separate sets of flags: task->state
75 * is about runnability, while task->exit_state are
76 * about the task exiting. Confusing, but this way
77 * modifying one set can't modify the other one by
78 * mistake.
79 */
80
81/* Used in tsk->state: */
82#define TASK_RUNNING 0x0000
83#define TASK_INTERRUPTIBLE 0x0001
84#define TASK_UNINTERRUPTIBLE 0x0002
85#define __TASK_STOPPED 0x0004
86#define __TASK_TRACED 0x0008
87/* Used in tsk->exit_state: */
88#define EXIT_DEAD 0x0010
89#define EXIT_ZOMBIE 0x0020
90#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
91/* Used in tsk->state again: */
92#define TASK_PARKED 0x0040
93#define TASK_DEAD 0x0080
94#define TASK_WAKEKILL 0x0100
95#define TASK_WAKING 0x0200
96#define TASK_NOLOAD 0x0400
97#define TASK_NEW 0x0800
98#define TASK_STATE_MAX 0x1000
99
100/* Convenience macros for the sake of set_current_state: */
101#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
102#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
103#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
104
105#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
106
107/* Convenience macros for the sake of wake_up(): */
108#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
109
110/* get_task_state(): */
111#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
112 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
113 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
114 TASK_PARKED)
115
116#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
117
118#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
119
120#define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
121
122#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
123
124/*
125 * Special states are those that do not use the normal wait-loop pattern. See
126 * the comment with set_special_state().
127 */
128#define is_special_task_state(state) \
129 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
130
131#define __set_current_state(state_value) \
132 do { \
133 WARN_ON_ONCE(is_special_task_state(state_value));\
134 current->task_state_change = _THIS_IP_; \
135 current->state = (state_value); \
136 } while (0)
137
138#define set_current_state(state_value) \
139 do { \
140 WARN_ON_ONCE(is_special_task_state(state_value));\
141 current->task_state_change = _THIS_IP_; \
142 smp_store_mb(current->state, (state_value)); \
143 } while (0)
144
145#define set_special_state(state_value) \
146 do { \
147 unsigned long flags; /* may shadow */ \
148 WARN_ON_ONCE(!is_special_task_state(state_value)); \
149 raw_spin_lock_irqsave(¤t->pi_lock, flags); \
150 current->task_state_change = _THIS_IP_; \
151 current->state = (state_value); \
152 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \
153 } while (0)
154#else
155/*
156 * set_current_state() includes a barrier so that the write of current->state
157 * is correctly serialised wrt the caller's subsequent test of whether to
158 * actually sleep:
159 *
160 * for (;;) {
161 * set_current_state(TASK_UNINTERRUPTIBLE);
162 * if (CONDITION)
163 * break;
164 *
165 * schedule();
166 * }
167 * __set_current_state(TASK_RUNNING);
168 *
169 * If the caller does not need such serialisation (because, for instance, the
170 * CONDITION test and condition change and wakeup are under the same lock) then
171 * use __set_current_state().
172 *
173 * The above is typically ordered against the wakeup, which does:
174 *
175 * CONDITION = 1;
176 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
177 *
178 * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
179 * accessing p->state.
180 *
181 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
182 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
183 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
184 *
185 * However, with slightly different timing the wakeup TASK_RUNNING store can
186 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
187 * a problem either because that will result in one extra go around the loop
188 * and our @cond test will save the day.
189 *
190 * Also see the comments of try_to_wake_up().
191 */
192#define __set_current_state(state_value) \
193 current->state = (state_value)
194
195#define set_current_state(state_value) \
196 smp_store_mb(current->state, (state_value))
197
198/*
199 * set_special_state() should be used for those states when the blocking task
200 * can not use the regular condition based wait-loop. In that case we must
201 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
202 * will not collide with our state change.
203 */
204#define set_special_state(state_value) \
205 do { \
206 unsigned long flags; /* may shadow */ \
207 raw_spin_lock_irqsave(¤t->pi_lock, flags); \
208 current->state = (state_value); \
209 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \
210 } while (0)
211
212#endif
213
214/* Task command name length: */
215#define TASK_COMM_LEN 16
216
217extern void scheduler_tick(void);
218
219#define MAX_SCHEDULE_TIMEOUT LONG_MAX
220
221extern long schedule_timeout(long timeout);
222extern long schedule_timeout_interruptible(long timeout);
223extern long schedule_timeout_killable(long timeout);
224extern long schedule_timeout_uninterruptible(long timeout);
225extern long schedule_timeout_idle(long timeout);
226asmlinkage void schedule(void);
227extern void schedule_preempt_disabled(void);
228asmlinkage void preempt_schedule_irq(void);
229
230extern int __must_check io_schedule_prepare(void);
231extern void io_schedule_finish(int token);
232extern long io_schedule_timeout(long timeout);
233extern void io_schedule(void);
234
235/**
236 * struct prev_cputime - snapshot of system and user cputime
237 * @utime: time spent in user mode
238 * @stime: time spent in system mode
239 * @lock: protects the above two fields
240 *
241 * Stores previous user/system time values such that we can guarantee
242 * monotonicity.
243 */
244struct prev_cputime {
245#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
246 u64 utime;
247 u64 stime;
248 raw_spinlock_t lock;
249#endif
250};
251
252enum vtime_state {
253 /* Task is sleeping or running in a CPU with VTIME inactive: */
254 VTIME_INACTIVE = 0,
255 /* Task is idle */
256 VTIME_IDLE,
257 /* Task runs in kernelspace in a CPU with VTIME active: */
258 VTIME_SYS,
259 /* Task runs in userspace in a CPU with VTIME active: */
260 VTIME_USER,
261 /* Task runs as guests in a CPU with VTIME active: */
262 VTIME_GUEST,
263};
264
265struct vtime {
266 seqcount_t seqcount;
267 unsigned long long starttime;
268 enum vtime_state state;
269 unsigned int cpu;
270 u64 utime;
271 u64 stime;
272 u64 gtime;
273};
274
275/*
276 * Utilization clamp constraints.
277 * @UCLAMP_MIN: Minimum utilization
278 * @UCLAMP_MAX: Maximum utilization
279 * @UCLAMP_CNT: Utilization clamp constraints count
280 */
281enum uclamp_id {
282 UCLAMP_MIN = 0,
283 UCLAMP_MAX,
284 UCLAMP_CNT
285};
286
287#ifdef CONFIG_SMP
288extern struct root_domain def_root_domain;
289extern struct mutex sched_domains_mutex;
290#endif
291
292struct sched_info {
293#ifdef CONFIG_SCHED_INFO
294 /* Cumulative counters: */
295
296 /* # of times we have run on this CPU: */
297 unsigned long pcount;
298
299 /* Time spent waiting on a runqueue: */
300 unsigned long long run_delay;
301
302 /* Timestamps: */
303
304 /* When did we last run on a CPU? */
305 unsigned long long last_arrival;
306
307 /* When were we last queued to run? */
308 unsigned long long last_queued;
309
310#endif /* CONFIG_SCHED_INFO */
311};
312
313/*
314 * Integer metrics need fixed point arithmetic, e.g., sched/fair
315 * has a few: load, load_avg, util_avg, freq, and capacity.
316 *
317 * We define a basic fixed point arithmetic range, and then formalize
318 * all these metrics based on that basic range.
319 */
320# define SCHED_FIXEDPOINT_SHIFT 10
321# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
322
323/* Increase resolution of cpu_capacity calculations */
324# define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
325# define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
326
327struct load_weight {
328 unsigned long weight;
329 u32 inv_weight;
330};
331
332/**
333 * struct util_est - Estimation utilization of FAIR tasks
334 * @enqueued: instantaneous estimated utilization of a task/cpu
335 * @ewma: the Exponential Weighted Moving Average (EWMA)
336 * utilization of a task
337 *
338 * Support data structure to track an Exponential Weighted Moving Average
339 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
340 * average each time a task completes an activation. Sample's weight is chosen
341 * so that the EWMA will be relatively insensitive to transient changes to the
342 * task's workload.
343 *
344 * The enqueued attribute has a slightly different meaning for tasks and cpus:
345 * - task: the task's util_avg at last task dequeue time
346 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
347 * Thus, the util_est.enqueued of a task represents the contribution on the
348 * estimated utilization of the CPU where that task is currently enqueued.
349 *
350 * Only for tasks we track a moving average of the past instantaneous
351 * estimated utilization. This allows to absorb sporadic drops in utilization
352 * of an otherwise almost periodic task.
353 */
354struct util_est {
355 unsigned int enqueued;
356 unsigned int ewma;
357#define UTIL_EST_WEIGHT_SHIFT 2
358} __attribute__((__aligned__(sizeof(u64))));
359
360/*
361 * The load/runnable/util_avg accumulates an infinite geometric series
362 * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
363 *
364 * [load_avg definition]
365 *
366 * load_avg = runnable% * scale_load_down(load)
367 *
368 * [runnable_avg definition]
369 *
370 * runnable_avg = runnable% * SCHED_CAPACITY_SCALE
371 *
372 * [util_avg definition]
373 *
374 * util_avg = running% * SCHED_CAPACITY_SCALE
375 *
376 * where runnable% is the time ratio that a sched_entity is runnable and
377 * running% the time ratio that a sched_entity is running.
378 *
379 * For cfs_rq, they are the aggregated values of all runnable and blocked
380 * sched_entities.
381 *
382 * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
383 * capacity scaling. The scaling is done through the rq_clock_pelt that is used
384 * for computing those signals (see update_rq_clock_pelt())
385 *
386 * N.B., the above ratios (runnable% and running%) themselves are in the
387 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
388 * to as large a range as necessary. This is for example reflected by
389 * util_avg's SCHED_CAPACITY_SCALE.
390 *
391 * [Overflow issue]
392 *
393 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
394 * with the highest load (=88761), always runnable on a single cfs_rq,
395 * and should not overflow as the number already hits PID_MAX_LIMIT.
396 *
397 * For all other cases (including 32-bit kernels), struct load_weight's
398 * weight will overflow first before we do, because:
399 *
400 * Max(load_avg) <= Max(load.weight)
401 *
402 * Then it is the load_weight's responsibility to consider overflow
403 * issues.
404 */
405struct sched_avg {
406 u64 last_update_time;
407 u64 load_sum;
408 u64 runnable_sum;
409 u32 util_sum;
410 u32 period_contrib;
411 unsigned long load_avg;
412 unsigned long runnable_avg;
413 unsigned long util_avg;
414 struct util_est util_est;
415} ____cacheline_aligned;
416
417struct sched_statistics {
418#ifdef CONFIG_SCHEDSTATS
419 u64 wait_start;
420 u64 wait_max;
421 u64 wait_count;
422 u64 wait_sum;
423 u64 iowait_count;
424 u64 iowait_sum;
425
426 u64 sleep_start;
427 u64 sleep_max;
428 s64 sum_sleep_runtime;
429
430 u64 block_start;
431 u64 block_max;
432 u64 exec_max;
433 u64 slice_max;
434
435 u64 nr_migrations_cold;
436 u64 nr_failed_migrations_affine;
437 u64 nr_failed_migrations_running;
438 u64 nr_failed_migrations_hot;
439 u64 nr_forced_migrations;
440
441 u64 nr_wakeups;
442 u64 nr_wakeups_sync;
443 u64 nr_wakeups_migrate;
444 u64 nr_wakeups_local;
445 u64 nr_wakeups_remote;
446 u64 nr_wakeups_affine;
447 u64 nr_wakeups_affine_attempts;
448 u64 nr_wakeups_passive;
449 u64 nr_wakeups_idle;
450#endif
451};
452
453struct sched_entity {
454 /* For load-balancing: */
455 struct load_weight load;
456 struct rb_node run_node;
457 struct list_head group_node;
458 unsigned int on_rq;
459
460 u64 exec_start;
461 u64 sum_exec_runtime;
462 u64 vruntime;
463 u64 prev_sum_exec_runtime;
464
465 u64 nr_migrations;
466
467 struct sched_statistics statistics;
468
469#ifdef CONFIG_FAIR_GROUP_SCHED
470 int depth;
471 struct sched_entity *parent;
472 /* rq on which this entity is (to be) queued: */
473 struct cfs_rq *cfs_rq;
474 /* rq "owned" by this entity/group: */
475 struct cfs_rq *my_q;
476 /* cached value of my_q->h_nr_running */
477 unsigned long runnable_weight;
478#endif
479
480#ifdef CONFIG_SMP
481 /*
482 * Per entity load average tracking.
483 *
484 * Put into separate cache line so it does not
485 * collide with read-mostly values above.
486 */
487 struct sched_avg avg;
488#endif
489};
490
491struct sched_rt_entity {
492 struct list_head run_list;
493 unsigned long timeout;
494 unsigned long watchdog_stamp;
495 unsigned int time_slice;
496 unsigned short on_rq;
497 unsigned short on_list;
498
499 struct sched_rt_entity *back;
500#ifdef CONFIG_RT_GROUP_SCHED
501 struct sched_rt_entity *parent;
502 /* rq on which this entity is (to be) queued: */
503 struct rt_rq *rt_rq;
504 /* rq "owned" by this entity/group: */
505 struct rt_rq *my_q;
506#endif
507} __randomize_layout;
508
509struct sched_dl_entity {
510 struct rb_node rb_node;
511
512 /*
513 * Original scheduling parameters. Copied here from sched_attr
514 * during sched_setattr(), they will remain the same until
515 * the next sched_setattr().
516 */
517 u64 dl_runtime; /* Maximum runtime for each instance */
518 u64 dl_deadline; /* Relative deadline of each instance */
519 u64 dl_period; /* Separation of two instances (period) */
520 u64 dl_bw; /* dl_runtime / dl_period */
521 u64 dl_density; /* dl_runtime / dl_deadline */
522
523 /*
524 * Actual scheduling parameters. Initialized with the values above,
525 * they are continuously updated during task execution. Note that
526 * the remaining runtime could be < 0 in case we are in overrun.
527 */
528 s64 runtime; /* Remaining runtime for this instance */
529 u64 deadline; /* Absolute deadline for this instance */
530 unsigned int flags; /* Specifying the scheduler behaviour */
531
532 /*
533 * Some bool flags:
534 *
535 * @dl_throttled tells if we exhausted the runtime. If so, the
536 * task has to wait for a replenishment to be performed at the
537 * next firing of dl_timer.
538 *
539 * @dl_boosted tells if we are boosted due to DI. If so we are
540 * outside bandwidth enforcement mechanism (but only until we
541 * exit the critical section);
542 *
543 * @dl_yielded tells if task gave up the CPU before consuming
544 * all its available runtime during the last job.
545 *
546 * @dl_non_contending tells if the task is inactive while still
547 * contributing to the active utilization. In other words, it
548 * indicates if the inactive timer has been armed and its handler
549 * has not been executed yet. This flag is useful to avoid race
550 * conditions between the inactive timer handler and the wakeup
551 * code.
552 *
553 * @dl_overrun tells if the task asked to be informed about runtime
554 * overruns.
555 */
556 unsigned int dl_throttled : 1;
557 unsigned int dl_yielded : 1;
558 unsigned int dl_non_contending : 1;
559 unsigned int dl_overrun : 1;
560
561 /*
562 * Bandwidth enforcement timer. Each -deadline task has its
563 * own bandwidth to be enforced, thus we need one timer per task.
564 */
565 struct hrtimer dl_timer;
566
567 /*
568 * Inactive timer, responsible for decreasing the active utilization
569 * at the "0-lag time". When a -deadline task blocks, it contributes
570 * to GRUB's active utilization until the "0-lag time", hence a
571 * timer is needed to decrease the active utilization at the correct
572 * time.
573 */
574 struct hrtimer inactive_timer;
575
576#ifdef CONFIG_RT_MUTEXES
577 /*
578 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
579 * pi_se points to the donor, otherwise points to the dl_se it belongs
580 * to (the original one/itself).
581 */
582 struct sched_dl_entity *pi_se;
583#endif
584};
585
586#ifdef CONFIG_UCLAMP_TASK
587/* Number of utilization clamp buckets (shorter alias) */
588#define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
589
590/*
591 * Utilization clamp for a scheduling entity
592 * @value: clamp value "assigned" to a se
593 * @bucket_id: bucket index corresponding to the "assigned" value
594 * @active: the se is currently refcounted in a rq's bucket
595 * @user_defined: the requested clamp value comes from user-space
596 *
597 * The bucket_id is the index of the clamp bucket matching the clamp value
598 * which is pre-computed and stored to avoid expensive integer divisions from
599 * the fast path.
600 *
601 * The active bit is set whenever a task has got an "effective" value assigned,
602 * which can be different from the clamp value "requested" from user-space.
603 * This allows to know a task is refcounted in the rq's bucket corresponding
604 * to the "effective" bucket_id.
605 *
606 * The user_defined bit is set whenever a task has got a task-specific clamp
607 * value requested from userspace, i.e. the system defaults apply to this task
608 * just as a restriction. This allows to relax default clamps when a less
609 * restrictive task-specific value has been requested, thus allowing to
610 * implement a "nice" semantic. For example, a task running with a 20%
611 * default boost can still drop its own boosting to 0%.
612 */
613struct uclamp_se {
614 unsigned int value : bits_per(SCHED_CAPACITY_SCALE);
615 unsigned int bucket_id : bits_per(UCLAMP_BUCKETS);
616 unsigned int active : 1;
617 unsigned int user_defined : 1;
618};
619#endif /* CONFIG_UCLAMP_TASK */
620
621union rcu_special {
622 struct {
623 u8 blocked;
624 u8 need_qs;
625 u8 exp_hint; /* Hint for performance. */
626 u8 need_mb; /* Readers need smp_mb(). */
627 } b; /* Bits. */
628 u32 s; /* Set of bits. */
629};
630
631enum perf_event_task_context {
632 perf_invalid_context = -1,
633 perf_hw_context = 0,
634 perf_sw_context,
635 perf_nr_task_contexts,
636};
637
638struct wake_q_node {
639 struct wake_q_node *next;
640};
641
642struct kmap_ctrl {
643#ifdef CONFIG_KMAP_LOCAL
644 int idx;
645 pte_t pteval[KM_MAX_IDX];
646#endif
647};
648
649struct task_struct {
650#ifdef CONFIG_THREAD_INFO_IN_TASK
651 /*
652 * For reasons of header soup (see current_thread_info()), this
653 * must be the first element of task_struct.
654 */
655 struct thread_info thread_info;
656#endif
657 /* -1 unrunnable, 0 runnable, >0 stopped: */
658 volatile long state;
659
660 /*
661 * This begins the randomizable portion of task_struct. Only
662 * scheduling-critical items should be added above here.
663 */
664 randomized_struct_fields_start
665
666 void *stack;
667 refcount_t usage;
668 /* Per task flags (PF_*), defined further below: */
669 unsigned int flags;
670 unsigned int ptrace;
671
672#ifdef CONFIG_SMP
673 int on_cpu;
674 struct __call_single_node wake_entry;
675#ifdef CONFIG_THREAD_INFO_IN_TASK
676 /* Current CPU: */
677 unsigned int cpu;
678#endif
679 unsigned int wakee_flips;
680 unsigned long wakee_flip_decay_ts;
681 struct task_struct *last_wakee;
682
683 /*
684 * recent_used_cpu is initially set as the last CPU used by a task
685 * that wakes affine another task. Waker/wakee relationships can
686 * push tasks around a CPU where each wakeup moves to the next one.
687 * Tracking a recently used CPU allows a quick search for a recently
688 * used CPU that may be idle.
689 */
690 int recent_used_cpu;
691 int wake_cpu;
692#endif
693 int on_rq;
694
695 int prio;
696 int static_prio;
697 int normal_prio;
698 unsigned int rt_priority;
699
700 const struct sched_class *sched_class;
701 struct sched_entity se;
702 struct sched_rt_entity rt;
703#ifdef CONFIG_CGROUP_SCHED
704 struct task_group *sched_task_group;
705#endif
706 struct sched_dl_entity dl;
707
708#ifdef CONFIG_UCLAMP_TASK
709 /*
710 * Clamp values requested for a scheduling entity.
711 * Must be updated with task_rq_lock() held.
712 */
713 struct uclamp_se uclamp_req[UCLAMP_CNT];
714 /*
715 * Effective clamp values used for a scheduling entity.
716 * Must be updated with task_rq_lock() held.
717 */
718 struct uclamp_se uclamp[UCLAMP_CNT];
719#endif
720
721#ifdef CONFIG_PREEMPT_NOTIFIERS
722 /* List of struct preempt_notifier: */
723 struct hlist_head preempt_notifiers;
724#endif
725
726#ifdef CONFIG_BLK_DEV_IO_TRACE
727 unsigned int btrace_seq;
728#endif
729
730 unsigned int policy;
731 int nr_cpus_allowed;
732 const cpumask_t *cpus_ptr;
733 cpumask_t cpus_mask;
734 void *migration_pending;
735#ifdef CONFIG_SMP
736 unsigned short migration_disabled;
737#endif
738 unsigned short migration_flags;
739
740#ifdef CONFIG_PREEMPT_RCU
741 int rcu_read_lock_nesting;
742 union rcu_special rcu_read_unlock_special;
743 struct list_head rcu_node_entry;
744 struct rcu_node *rcu_blocked_node;
745#endif /* #ifdef CONFIG_PREEMPT_RCU */
746
747#ifdef CONFIG_TASKS_RCU
748 unsigned long rcu_tasks_nvcsw;
749 u8 rcu_tasks_holdout;
750 u8 rcu_tasks_idx;
751 int rcu_tasks_idle_cpu;
752 struct list_head rcu_tasks_holdout_list;
753#endif /* #ifdef CONFIG_TASKS_RCU */
754
755#ifdef CONFIG_TASKS_TRACE_RCU
756 int trc_reader_nesting;
757 int trc_ipi_to_cpu;
758 union rcu_special trc_reader_special;
759 bool trc_reader_checked;
760 struct list_head trc_holdout_list;
761#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
762
763 struct sched_info sched_info;
764
765 struct list_head tasks;
766#ifdef CONFIG_SMP
767 struct plist_node pushable_tasks;
768 struct rb_node pushable_dl_tasks;
769#endif
770
771 struct mm_struct *mm;
772 struct mm_struct *active_mm;
773
774 /* Per-thread vma caching: */
775 struct vmacache vmacache;
776
777#ifdef SPLIT_RSS_COUNTING
778 struct task_rss_stat rss_stat;
779#endif
780 int exit_state;
781 int exit_code;
782 int exit_signal;
783 /* The signal sent when the parent dies: */
784 int pdeath_signal;
785 /* JOBCTL_*, siglock protected: */
786 unsigned long jobctl;
787
788 /* Used for emulating ABI behavior of previous Linux versions: */
789 unsigned int personality;
790
791 /* Scheduler bits, serialized by scheduler locks: */
792 unsigned sched_reset_on_fork:1;
793 unsigned sched_contributes_to_load:1;
794 unsigned sched_migrated:1;
795#ifdef CONFIG_PSI
796 unsigned sched_psi_wake_requeue:1;
797#endif
798
799 /* Force alignment to the next boundary: */
800 unsigned :0;
801
802 /* Unserialized, strictly 'current' */
803
804 /*
805 * This field must not be in the scheduler word above due to wakelist
806 * queueing no longer being serialized by p->on_cpu. However:
807 *
808 * p->XXX = X; ttwu()
809 * schedule() if (p->on_rq && ..) // false
810 * smp_mb__after_spinlock(); if (smp_load_acquire(&p->on_cpu) && //true
811 * deactivate_task() ttwu_queue_wakelist())
812 * p->on_rq = 0; p->sched_remote_wakeup = Y;
813 *
814 * guarantees all stores of 'current' are visible before
815 * ->sched_remote_wakeup gets used, so it can be in this word.
816 */
817 unsigned sched_remote_wakeup:1;
818
819 /* Bit to tell LSMs we're in execve(): */
820 unsigned in_execve:1;
821 unsigned in_iowait:1;
822#ifndef TIF_RESTORE_SIGMASK
823 unsigned restore_sigmask:1;
824#endif
825#ifdef CONFIG_MEMCG
826 unsigned in_user_fault:1;
827#endif
828#ifdef CONFIG_COMPAT_BRK
829 unsigned brk_randomized:1;
830#endif
831#ifdef CONFIG_CGROUPS
832 /* disallow userland-initiated cgroup migration */
833 unsigned no_cgroup_migration:1;
834 /* task is frozen/stopped (used by the cgroup freezer) */
835 unsigned frozen:1;
836#endif
837#ifdef CONFIG_BLK_CGROUP
838 unsigned use_memdelay:1;
839#endif
840#ifdef CONFIG_PSI
841 /* Stalled due to lack of memory */
842 unsigned in_memstall:1;
843#endif
844#ifdef CONFIG_PAGE_OWNER
845 /* Used by page_owner=on to detect recursion in page tracking. */
846 unsigned in_page_owner:1;
847#endif
848
849 unsigned long atomic_flags; /* Flags requiring atomic access. */
850
851 struct restart_block restart_block;
852
853 pid_t pid;
854 pid_t tgid;
855
856#ifdef CONFIG_STACKPROTECTOR
857 /* Canary value for the -fstack-protector GCC feature: */
858 unsigned long stack_canary;
859#endif
860 /*
861 * Pointers to the (original) parent process, youngest child, younger sibling,
862 * older sibling, respectively. (p->father can be replaced with
863 * p->real_parent->pid)
864 */
865
866 /* Real parent process: */
867 struct task_struct __rcu *real_parent;
868
869 /* Recipient of SIGCHLD, wait4() reports: */
870 struct task_struct __rcu *parent;
871
872 /*
873 * Children/sibling form the list of natural children:
874 */
875 struct list_head children;
876 struct list_head sibling;
877 struct task_struct *group_leader;
878
879 /*
880 * 'ptraced' is the list of tasks this task is using ptrace() on.
881 *
882 * This includes both natural children and PTRACE_ATTACH targets.
883 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
884 */
885 struct list_head ptraced;
886 struct list_head ptrace_entry;
887
888 /* PID/PID hash table linkage. */
889 struct pid *thread_pid;
890 struct hlist_node pid_links[PIDTYPE_MAX];
891 struct list_head thread_group;
892 struct list_head thread_node;
893
894 struct completion *vfork_done;
895
896 /* CLONE_CHILD_SETTID: */
897 int __user *set_child_tid;
898
899 /* CLONE_CHILD_CLEARTID: */
900 int __user *clear_child_tid;
901
902 /* PF_IO_WORKER */
903 void *pf_io_worker;
904
905 u64 utime;
906 u64 stime;
907#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
908 u64 utimescaled;
909 u64 stimescaled;
910#endif
911 u64 gtime;
912 struct prev_cputime prev_cputime;
913#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
914 struct vtime vtime;
915#endif
916
917#ifdef CONFIG_NO_HZ_FULL
918 atomic_t tick_dep_mask;
919#endif
920 /* Context switch counts: */
921 unsigned long nvcsw;
922 unsigned long nivcsw;
923
924 /* Monotonic time in nsecs: */
925 u64 start_time;
926
927 /* Boot based time in nsecs: */
928 u64 start_boottime;
929
930 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
931 unsigned long min_flt;
932 unsigned long maj_flt;
933
934 /* Empty if CONFIG_POSIX_CPUTIMERS=n */
935 struct posix_cputimers posix_cputimers;
936
937#ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
938 struct posix_cputimers_work posix_cputimers_work;
939#endif
940
941 /* Process credentials: */
942
943 /* Tracer's credentials at attach: */
944 const struct cred __rcu *ptracer_cred;
945
946 /* Objective and real subjective task credentials (COW): */
947 const struct cred __rcu *real_cred;
948
949 /* Effective (overridable) subjective task credentials (COW): */
950 const struct cred __rcu *cred;
951
952#ifdef CONFIG_KEYS
953 /* Cached requested key. */
954 struct key *cached_requested_key;
955#endif
956
957 /*
958 * executable name, excluding path.
959 *
960 * - normally initialized setup_new_exec()
961 * - access it with [gs]et_task_comm()
962 * - lock it with task_lock()
963 */
964 char comm[TASK_COMM_LEN];
965
966 struct nameidata *nameidata;
967
968#ifdef CONFIG_SYSVIPC
969 struct sysv_sem sysvsem;
970 struct sysv_shm sysvshm;
971#endif
972#ifdef CONFIG_DETECT_HUNG_TASK
973 unsigned long last_switch_count;
974 unsigned long last_switch_time;
975#endif
976 /* Filesystem information: */
977 struct fs_struct *fs;
978
979 /* Open file information: */
980 struct files_struct *files;
981
982#ifdef CONFIG_IO_URING
983 struct io_uring_task *io_uring;
984#endif
985
986 /* Namespaces: */
987 struct nsproxy *nsproxy;
988
989 /* Signal handlers: */
990 struct signal_struct *signal;
991 struct sighand_struct __rcu *sighand;
992 struct sigqueue *sigqueue_cache;
993 sigset_t blocked;
994 sigset_t real_blocked;
995 /* Restored if set_restore_sigmask() was used: */
996 sigset_t saved_sigmask;
997 struct sigpending pending;
998 unsigned long sas_ss_sp;
999 size_t sas_ss_size;
1000 unsigned int sas_ss_flags;
1001
1002 struct callback_head *task_works;
1003
1004#ifdef CONFIG_AUDIT
1005#ifdef CONFIG_AUDITSYSCALL
1006 struct audit_context *audit_context;
1007#endif
1008 kuid_t loginuid;
1009 unsigned int sessionid;
1010#endif
1011 struct seccomp seccomp;
1012 struct syscall_user_dispatch syscall_dispatch;
1013
1014 /* Thread group tracking: */
1015 u64 parent_exec_id;
1016 u64 self_exec_id;
1017
1018 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1019 spinlock_t alloc_lock;
1020
1021 /* Protection of the PI data structures: */
1022 raw_spinlock_t pi_lock;
1023
1024 struct wake_q_node wake_q;
1025
1026#ifdef CONFIG_RT_MUTEXES
1027 /* PI waiters blocked on a rt_mutex held by this task: */
1028 struct rb_root_cached pi_waiters;
1029 /* Updated under owner's pi_lock and rq lock */
1030 struct task_struct *pi_top_task;
1031 /* Deadlock detection and priority inheritance handling: */
1032 struct rt_mutex_waiter *pi_blocked_on;
1033#endif
1034
1035#ifdef CONFIG_DEBUG_MUTEXES
1036 /* Mutex deadlock detection: */
1037 struct mutex_waiter *blocked_on;
1038#endif
1039
1040#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1041 int non_block_count;
1042#endif
1043
1044#ifdef CONFIG_TRACE_IRQFLAGS
1045 struct irqtrace_events irqtrace;
1046 unsigned int hardirq_threaded;
1047 u64 hardirq_chain_key;
1048 int softirqs_enabled;
1049 int softirq_context;
1050 int irq_config;
1051#endif
1052#ifdef CONFIG_PREEMPT_RT
1053 int softirq_disable_cnt;
1054#endif
1055
1056#ifdef CONFIG_LOCKDEP
1057# define MAX_LOCK_DEPTH 48UL
1058 u64 curr_chain_key;
1059 int lockdep_depth;
1060 unsigned int lockdep_recursion;
1061 struct held_lock held_locks[MAX_LOCK_DEPTH];
1062#endif
1063
1064#if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1065 unsigned int in_ubsan;
1066#endif
1067
1068 /* Journalling filesystem info: */
1069 void *journal_info;
1070
1071 /* Stacked block device info: */
1072 struct bio_list *bio_list;
1073
1074#ifdef CONFIG_BLOCK
1075 /* Stack plugging: */
1076 struct blk_plug *plug;
1077#endif
1078
1079 /* VM state: */
1080 struct reclaim_state *reclaim_state;
1081
1082 struct backing_dev_info *backing_dev_info;
1083
1084 struct io_context *io_context;
1085
1086#ifdef CONFIG_COMPACTION
1087 struct capture_control *capture_control;
1088#endif
1089 /* Ptrace state: */
1090 unsigned long ptrace_message;
1091 kernel_siginfo_t *last_siginfo;
1092
1093 struct task_io_accounting ioac;
1094#ifdef CONFIG_PSI
1095 /* Pressure stall state */
1096 unsigned int psi_flags;
1097#endif
1098#ifdef CONFIG_TASK_XACCT
1099 /* Accumulated RSS usage: */
1100 u64 acct_rss_mem1;
1101 /* Accumulated virtual memory usage: */
1102 u64 acct_vm_mem1;
1103 /* stime + utime since last update: */
1104 u64 acct_timexpd;
1105#endif
1106#ifdef CONFIG_CPUSETS
1107 /* Protected by ->alloc_lock: */
1108 nodemask_t mems_allowed;
1109 /* Sequence number to catch updates: */
1110 seqcount_spinlock_t mems_allowed_seq;
1111 int cpuset_mem_spread_rotor;
1112 int cpuset_slab_spread_rotor;
1113#endif
1114#ifdef CONFIG_CGROUPS
1115 /* Control Group info protected by css_set_lock: */
1116 struct css_set __rcu *cgroups;
1117 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
1118 struct list_head cg_list;
1119#endif
1120#ifdef CONFIG_X86_CPU_RESCTRL
1121 u32 closid;
1122 u32 rmid;
1123#endif
1124#ifdef CONFIG_FUTEX
1125 struct robust_list_head __user *robust_list;
1126#ifdef CONFIG_COMPAT
1127 struct compat_robust_list_head __user *compat_robust_list;
1128#endif
1129 struct list_head pi_state_list;
1130 struct futex_pi_state *pi_state_cache;
1131 struct mutex futex_exit_mutex;
1132 unsigned int futex_state;
1133#endif
1134#ifdef CONFIG_PERF_EVENTS
1135 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1136 struct mutex perf_event_mutex;
1137 struct list_head perf_event_list;
1138#endif
1139#ifdef CONFIG_DEBUG_PREEMPT
1140 unsigned long preempt_disable_ip;
1141#endif
1142#ifdef CONFIG_NUMA
1143 /* Protected by alloc_lock: */
1144 struct mempolicy *mempolicy;
1145 short il_prev;
1146 short pref_node_fork;
1147#endif
1148#ifdef CONFIG_NUMA_BALANCING
1149 int numa_scan_seq;
1150 unsigned int numa_scan_period;
1151 unsigned int numa_scan_period_max;
1152 int numa_preferred_nid;
1153 unsigned long numa_migrate_retry;
1154 /* Migration stamp: */
1155 u64 node_stamp;
1156 u64 last_task_numa_placement;
1157 u64 last_sum_exec_runtime;
1158 struct callback_head numa_work;
1159
1160 /*
1161 * This pointer is only modified for current in syscall and
1162 * pagefault context (and for tasks being destroyed), so it can be read
1163 * from any of the following contexts:
1164 * - RCU read-side critical section
1165 * - current->numa_group from everywhere
1166 * - task's runqueue locked, task not running
1167 */
1168 struct numa_group __rcu *numa_group;
1169
1170 /*
1171 * numa_faults is an array split into four regions:
1172 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1173 * in this precise order.
1174 *
1175 * faults_memory: Exponential decaying average of faults on a per-node
1176 * basis. Scheduling placement decisions are made based on these
1177 * counts. The values remain static for the duration of a PTE scan.
1178 * faults_cpu: Track the nodes the process was running on when a NUMA
1179 * hinting fault was incurred.
1180 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1181 * during the current scan window. When the scan completes, the counts
1182 * in faults_memory and faults_cpu decay and these values are copied.
1183 */
1184 unsigned long *numa_faults;
1185 unsigned long total_numa_faults;
1186
1187 /*
1188 * numa_faults_locality tracks if faults recorded during the last
1189 * scan window were remote/local or failed to migrate. The task scan
1190 * period is adapted based on the locality of the faults with different
1191 * weights depending on whether they were shared or private faults
1192 */
1193 unsigned long numa_faults_locality[3];
1194
1195 unsigned long numa_pages_migrated;
1196#endif /* CONFIG_NUMA_BALANCING */
1197
1198#ifdef CONFIG_RSEQ
1199 struct rseq __user *rseq;
1200 u32 rseq_sig;
1201 /*
1202 * RmW on rseq_event_mask must be performed atomically
1203 * with respect to preemption.
1204 */
1205 unsigned long rseq_event_mask;
1206#endif
1207
1208 struct tlbflush_unmap_batch tlb_ubc;
1209
1210 union {
1211 refcount_t rcu_users;
1212 struct rcu_head rcu;
1213 };
1214
1215 /* Cache last used pipe for splice(): */
1216 struct pipe_inode_info *splice_pipe;
1217
1218 struct page_frag task_frag;
1219
1220#ifdef CONFIG_TASK_DELAY_ACCT
1221 struct task_delay_info *delays;
1222#endif
1223
1224#ifdef CONFIG_FAULT_INJECTION
1225 int make_it_fail;
1226 unsigned int fail_nth;
1227#endif
1228 /*
1229 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1230 * balance_dirty_pages() for a dirty throttling pause:
1231 */
1232 int nr_dirtied;
1233 int nr_dirtied_pause;
1234 /* Start of a write-and-pause period: */
1235 unsigned long dirty_paused_when;
1236
1237#ifdef CONFIG_LATENCYTOP
1238 int latency_record_count;
1239 struct latency_record latency_record[LT_SAVECOUNT];
1240#endif
1241 /*
1242 * Time slack values; these are used to round up poll() and
1243 * select() etc timeout values. These are in nanoseconds.
1244 */
1245 u64 timer_slack_ns;
1246 u64 default_timer_slack_ns;
1247
1248#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
1249 unsigned int kasan_depth;
1250#endif
1251
1252#ifdef CONFIG_KCSAN
1253 struct kcsan_ctx kcsan_ctx;
1254#ifdef CONFIG_TRACE_IRQFLAGS
1255 struct irqtrace_events kcsan_save_irqtrace;
1256#endif
1257#endif
1258
1259#if IS_ENABLED(CONFIG_KUNIT)
1260 struct kunit *kunit_test;
1261#endif
1262
1263#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1264 /* Index of current stored address in ret_stack: */
1265 int curr_ret_stack;
1266 int curr_ret_depth;
1267
1268 /* Stack of return addresses for return function tracing: */
1269 struct ftrace_ret_stack *ret_stack;
1270
1271 /* Timestamp for last schedule: */
1272 unsigned long long ftrace_timestamp;
1273
1274 /*
1275 * Number of functions that haven't been traced
1276 * because of depth overrun:
1277 */
1278 atomic_t trace_overrun;
1279
1280 /* Pause tracing: */
1281 atomic_t tracing_graph_pause;
1282#endif
1283
1284#ifdef CONFIG_TRACING
1285 /* State flags for use by tracers: */
1286 unsigned long trace;
1287
1288 /* Bitmask and counter of trace recursion: */
1289 unsigned long trace_recursion;
1290#endif /* CONFIG_TRACING */
1291
1292#ifdef CONFIG_KCOV
1293 /* See kernel/kcov.c for more details. */
1294
1295 /* Coverage collection mode enabled for this task (0 if disabled): */
1296 unsigned int kcov_mode;
1297
1298 /* Size of the kcov_area: */
1299 unsigned int kcov_size;
1300
1301 /* Buffer for coverage collection: */
1302 void *kcov_area;
1303
1304 /* KCOV descriptor wired with this task or NULL: */
1305 struct kcov *kcov;
1306
1307 /* KCOV common handle for remote coverage collection: */
1308 u64 kcov_handle;
1309
1310 /* KCOV sequence number: */
1311 int kcov_sequence;
1312
1313 /* Collect coverage from softirq context: */
1314 unsigned int kcov_softirq;
1315#endif
1316
1317#ifdef CONFIG_MEMCG
1318 struct mem_cgroup *memcg_in_oom;
1319 gfp_t memcg_oom_gfp_mask;
1320 int memcg_oom_order;
1321
1322 /* Number of pages to reclaim on returning to userland: */
1323 unsigned int memcg_nr_pages_over_high;
1324
1325 /* Used by memcontrol for targeted memcg charge: */
1326 struct mem_cgroup *active_memcg;
1327#endif
1328
1329#ifdef CONFIG_BLK_CGROUP
1330 struct request_queue *throttle_queue;
1331#endif
1332
1333#ifdef CONFIG_UPROBES
1334 struct uprobe_task *utask;
1335#endif
1336#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1337 unsigned int sequential_io;
1338 unsigned int sequential_io_avg;
1339#endif
1340 struct kmap_ctrl kmap_ctrl;
1341#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1342 unsigned long task_state_change;
1343#endif
1344 int pagefault_disabled;
1345#ifdef CONFIG_MMU
1346 struct task_struct *oom_reaper_list;
1347#endif
1348#ifdef CONFIG_VMAP_STACK
1349 struct vm_struct *stack_vm_area;
1350#endif
1351#ifdef CONFIG_THREAD_INFO_IN_TASK
1352 /* A live task holds one reference: */
1353 refcount_t stack_refcount;
1354#endif
1355#ifdef CONFIG_LIVEPATCH
1356 int patch_state;
1357#endif
1358#ifdef CONFIG_SECURITY
1359 /* Used by LSM modules for access restriction: */
1360 void *security;
1361#endif
1362#ifdef CONFIG_BPF_SYSCALL
1363 /* Used by BPF task local storage */
1364 struct bpf_local_storage __rcu *bpf_storage;
1365#endif
1366
1367#ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1368 unsigned long lowest_stack;
1369 unsigned long prev_lowest_stack;
1370#endif
1371
1372#ifdef CONFIG_X86_MCE
1373 void __user *mce_vaddr;
1374 __u64 mce_kflags;
1375 u64 mce_addr;
1376 __u64 mce_ripv : 1,
1377 mce_whole_page : 1,
1378 __mce_reserved : 62;
1379 struct callback_head mce_kill_me;
1380#endif
1381
1382#ifdef CONFIG_KRETPROBES
1383 struct llist_head kretprobe_instances;
1384#endif
1385
1386 /*
1387 * New fields for task_struct should be added above here, so that
1388 * they are included in the randomized portion of task_struct.
1389 */
1390 randomized_struct_fields_end
1391
1392 /* CPU-specific state of this task: */
1393 struct thread_struct thread;
1394
1395 /*
1396 * WARNING: on x86, 'thread_struct' contains a variable-sized
1397 * structure. It *MUST* be at the end of 'task_struct'.
1398 *
1399 * Do not put anything below here!
1400 */
1401};
1402
1403static inline struct pid *task_pid(struct task_struct *task)
1404{
1405 return task->thread_pid;
1406}
1407
1408/*
1409 * the helpers to get the task's different pids as they are seen
1410 * from various namespaces
1411 *
1412 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1413 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1414 * current.
1415 * task_xid_nr_ns() : id seen from the ns specified;
1416 *
1417 * see also pid_nr() etc in include/linux/pid.h
1418 */
1419pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1420
1421static inline pid_t task_pid_nr(struct task_struct *tsk)
1422{
1423 return tsk->pid;
1424}
1425
1426static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1427{
1428 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1429}
1430
1431static inline pid_t task_pid_vnr(struct task_struct *tsk)
1432{
1433 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1434}
1435
1436
1437static inline pid_t task_tgid_nr(struct task_struct *tsk)
1438{
1439 return tsk->tgid;
1440}
1441
1442/**
1443 * pid_alive - check that a task structure is not stale
1444 * @p: Task structure to be checked.
1445 *
1446 * Test if a process is not yet dead (at most zombie state)
1447 * If pid_alive fails, then pointers within the task structure
1448 * can be stale and must not be dereferenced.
1449 *
1450 * Return: 1 if the process is alive. 0 otherwise.
1451 */
1452static inline int pid_alive(const struct task_struct *p)
1453{
1454 return p->thread_pid != NULL;
1455}
1456
1457static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1458{
1459 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1460}
1461
1462static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1463{
1464 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1465}
1466
1467
1468static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1469{
1470 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1471}
1472
1473static inline pid_t task_session_vnr(struct task_struct *tsk)
1474{
1475 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1476}
1477
1478static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1479{
1480 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1481}
1482
1483static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1484{
1485 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1486}
1487
1488static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1489{
1490 pid_t pid = 0;
1491
1492 rcu_read_lock();
1493 if (pid_alive(tsk))
1494 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1495 rcu_read_unlock();
1496
1497 return pid;
1498}
1499
1500static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1501{
1502 return task_ppid_nr_ns(tsk, &init_pid_ns);
1503}
1504
1505/* Obsolete, do not use: */
1506static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1507{
1508 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1509}
1510
1511#define TASK_REPORT_IDLE (TASK_REPORT + 1)
1512#define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1513
1514static inline unsigned int task_state_index(struct task_struct *tsk)
1515{
1516 unsigned int tsk_state = READ_ONCE(tsk->state);
1517 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1518
1519 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1520
1521 if (tsk_state == TASK_IDLE)
1522 state = TASK_REPORT_IDLE;
1523
1524 return fls(state);
1525}
1526
1527static inline char task_index_to_char(unsigned int state)
1528{
1529 static const char state_char[] = "RSDTtXZPI";
1530
1531 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1532
1533 return state_char[state];
1534}
1535
1536static inline char task_state_to_char(struct task_struct *tsk)
1537{
1538 return task_index_to_char(task_state_index(tsk));
1539}
1540
1541/**
1542 * is_global_init - check if a task structure is init. Since init
1543 * is free to have sub-threads we need to check tgid.
1544 * @tsk: Task structure to be checked.
1545 *
1546 * Check if a task structure is the first user space task the kernel created.
1547 *
1548 * Return: 1 if the task structure is init. 0 otherwise.
1549 */
1550static inline int is_global_init(struct task_struct *tsk)
1551{
1552 return task_tgid_nr(tsk) == 1;
1553}
1554
1555extern struct pid *cad_pid;
1556
1557/*
1558 * Per process flags
1559 */
1560#define PF_VCPU 0x00000001 /* I'm a virtual CPU */
1561#define PF_IDLE 0x00000002 /* I am an IDLE thread */
1562#define PF_EXITING 0x00000004 /* Getting shut down */
1563#define PF_IO_WORKER 0x00000010 /* Task is an IO worker */
1564#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1565#define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1566#define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1567#define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1568#define PF_DUMPCORE 0x00000200 /* Dumped core */
1569#define PF_SIGNALED 0x00000400 /* Killed by a signal */
1570#define PF_MEMALLOC 0x00000800 /* Allocating memory */
1571#define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1572#define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1573#define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */
1574#define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1575#define PF_FROZEN 0x00010000 /* Frozen for system suspend */
1576#define PF_KSWAPD 0x00020000 /* I am kswapd */
1577#define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1578#define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
1579#define PF_LOCAL_THROTTLE 0x00100000 /* Throttle writes only against the bdi I write to,
1580 * I am cleaning dirty pages from some other bdi. */
1581#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1582#define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1583#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1584#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */
1585#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1586#define PF_MEMALLOC_PIN 0x10000000 /* Allocation context constrained to zones which allow long term pinning. */
1587#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1588#define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1589
1590/*
1591 * Only the _current_ task can read/write to tsk->flags, but other
1592 * tasks can access tsk->flags in readonly mode for example
1593 * with tsk_used_math (like during threaded core dumping).
1594 * There is however an exception to this rule during ptrace
1595 * or during fork: the ptracer task is allowed to write to the
1596 * child->flags of its traced child (same goes for fork, the parent
1597 * can write to the child->flags), because we're guaranteed the
1598 * child is not running and in turn not changing child->flags
1599 * at the same time the parent does it.
1600 */
1601#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1602#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1603#define clear_used_math() clear_stopped_child_used_math(current)
1604#define set_used_math() set_stopped_child_used_math(current)
1605
1606#define conditional_stopped_child_used_math(condition, child) \
1607 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1608
1609#define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1610
1611#define copy_to_stopped_child_used_math(child) \
1612 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1613
1614/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1615#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1616#define used_math() tsk_used_math(current)
1617
1618static inline bool is_percpu_thread(void)
1619{
1620#ifdef CONFIG_SMP
1621 return (current->flags & PF_NO_SETAFFINITY) &&
1622 (current->nr_cpus_allowed == 1);
1623#else
1624 return true;
1625#endif
1626}
1627
1628/* Per-process atomic flags. */
1629#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1630#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1631#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
1632#define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
1633#define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
1634#define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */
1635#define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */
1636#define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */
1637
1638#define TASK_PFA_TEST(name, func) \
1639 static inline bool task_##func(struct task_struct *p) \
1640 { return test_bit(PFA_##name, &p->atomic_flags); }
1641
1642#define TASK_PFA_SET(name, func) \
1643 static inline void task_set_##func(struct task_struct *p) \
1644 { set_bit(PFA_##name, &p->atomic_flags); }
1645
1646#define TASK_PFA_CLEAR(name, func) \
1647 static inline void task_clear_##func(struct task_struct *p) \
1648 { clear_bit(PFA_##name, &p->atomic_flags); }
1649
1650TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1651TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1652
1653TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1654TASK_PFA_SET(SPREAD_PAGE, spread_page)
1655TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1656
1657TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1658TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1659TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1660
1661TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1662TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1663TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1664
1665TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1666TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1667TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1668
1669TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1670TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1671
1672TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1673TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1674TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1675
1676TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1677TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1678
1679static inline void
1680current_restore_flags(unsigned long orig_flags, unsigned long flags)
1681{
1682 current->flags &= ~flags;
1683 current->flags |= orig_flags & flags;
1684}
1685
1686extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1687extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1688#ifdef CONFIG_SMP
1689extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1690extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1691#else
1692static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1693{
1694}
1695static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1696{
1697 if (!cpumask_test_cpu(0, new_mask))
1698 return -EINVAL;
1699 return 0;
1700}
1701#endif
1702
1703extern int yield_to(struct task_struct *p, bool preempt);
1704extern void set_user_nice(struct task_struct *p, long nice);
1705extern int task_prio(const struct task_struct *p);
1706
1707/**
1708 * task_nice - return the nice value of a given task.
1709 * @p: the task in question.
1710 *
1711 * Return: The nice value [ -20 ... 0 ... 19 ].
1712 */
1713static inline int task_nice(const struct task_struct *p)
1714{
1715 return PRIO_TO_NICE((p)->static_prio);
1716}
1717
1718extern int can_nice(const struct task_struct *p, const int nice);
1719extern int task_curr(const struct task_struct *p);
1720extern int idle_cpu(int cpu);
1721extern int available_idle_cpu(int cpu);
1722extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1723extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1724extern void sched_set_fifo(struct task_struct *p);
1725extern void sched_set_fifo_low(struct task_struct *p);
1726extern void sched_set_normal(struct task_struct *p, int nice);
1727extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1728extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1729extern struct task_struct *idle_task(int cpu);
1730
1731/**
1732 * is_idle_task - is the specified task an idle task?
1733 * @p: the task in question.
1734 *
1735 * Return: 1 if @p is an idle task. 0 otherwise.
1736 */
1737static __always_inline bool is_idle_task(const struct task_struct *p)
1738{
1739 return !!(p->flags & PF_IDLE);
1740}
1741
1742extern struct task_struct *curr_task(int cpu);
1743extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1744
1745void yield(void);
1746
1747union thread_union {
1748#ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1749 struct task_struct task;
1750#endif
1751#ifndef CONFIG_THREAD_INFO_IN_TASK
1752 struct thread_info thread_info;
1753#endif
1754 unsigned long stack[THREAD_SIZE/sizeof(long)];
1755};
1756
1757#ifndef CONFIG_THREAD_INFO_IN_TASK
1758extern struct thread_info init_thread_info;
1759#endif
1760
1761extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1762
1763#ifdef CONFIG_THREAD_INFO_IN_TASK
1764static inline struct thread_info *task_thread_info(struct task_struct *task)
1765{
1766 return &task->thread_info;
1767}
1768#elif !defined(__HAVE_THREAD_FUNCTIONS)
1769# define task_thread_info(task) ((struct thread_info *)(task)->stack)
1770#endif
1771
1772/*
1773 * find a task by one of its numerical ids
1774 *
1775 * find_task_by_pid_ns():
1776 * finds a task by its pid in the specified namespace
1777 * find_task_by_vpid():
1778 * finds a task by its virtual pid
1779 *
1780 * see also find_vpid() etc in include/linux/pid.h
1781 */
1782
1783extern struct task_struct *find_task_by_vpid(pid_t nr);
1784extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1785
1786/*
1787 * find a task by its virtual pid and get the task struct
1788 */
1789extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1790
1791extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1792extern int wake_up_process(struct task_struct *tsk);
1793extern void wake_up_new_task(struct task_struct *tsk);
1794
1795#ifdef CONFIG_SMP
1796extern void kick_process(struct task_struct *tsk);
1797#else
1798static inline void kick_process(struct task_struct *tsk) { }
1799#endif
1800
1801extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1802
1803static inline void set_task_comm(struct task_struct *tsk, const char *from)
1804{
1805 __set_task_comm(tsk, from, false);
1806}
1807
1808extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1809#define get_task_comm(buf, tsk) ({ \
1810 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
1811 __get_task_comm(buf, sizeof(buf), tsk); \
1812})
1813
1814#ifdef CONFIG_SMP
1815static __always_inline void scheduler_ipi(void)
1816{
1817 /*
1818 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1819 * TIF_NEED_RESCHED remotely (for the first time) will also send
1820 * this IPI.
1821 */
1822 preempt_fold_need_resched();
1823}
1824extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1825#else
1826static inline void scheduler_ipi(void) { }
1827static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1828{
1829 return 1;
1830}
1831#endif
1832
1833/*
1834 * Set thread flags in other task's structures.
1835 * See asm/thread_info.h for TIF_xxxx flags available:
1836 */
1837static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1838{
1839 set_ti_thread_flag(task_thread_info(tsk), flag);
1840}
1841
1842static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1843{
1844 clear_ti_thread_flag(task_thread_info(tsk), flag);
1845}
1846
1847static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1848 bool value)
1849{
1850 update_ti_thread_flag(task_thread_info(tsk), flag, value);
1851}
1852
1853static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1854{
1855 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1856}
1857
1858static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1859{
1860 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1861}
1862
1863static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1864{
1865 return test_ti_thread_flag(task_thread_info(tsk), flag);
1866}
1867
1868static inline void set_tsk_need_resched(struct task_struct *tsk)
1869{
1870 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1871}
1872
1873static inline void clear_tsk_need_resched(struct task_struct *tsk)
1874{
1875 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1876}
1877
1878static inline int test_tsk_need_resched(struct task_struct *tsk)
1879{
1880 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1881}
1882
1883/*
1884 * cond_resched() and cond_resched_lock(): latency reduction via
1885 * explicit rescheduling in places that are safe. The return
1886 * value indicates whether a reschedule was done in fact.
1887 * cond_resched_lock() will drop the spinlock before scheduling,
1888 */
1889#if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
1890extern int __cond_resched(void);
1891
1892#ifdef CONFIG_PREEMPT_DYNAMIC
1893
1894DECLARE_STATIC_CALL(cond_resched, __cond_resched);
1895
1896static __always_inline int _cond_resched(void)
1897{
1898 return static_call_mod(cond_resched)();
1899}
1900
1901#else
1902
1903static inline int _cond_resched(void)
1904{
1905 return __cond_resched();
1906}
1907
1908#endif /* CONFIG_PREEMPT_DYNAMIC */
1909
1910#else
1911
1912static inline int _cond_resched(void) { return 0; }
1913
1914#endif /* !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) */
1915
1916#define cond_resched() ({ \
1917 ___might_sleep(__FILE__, __LINE__, 0); \
1918 _cond_resched(); \
1919})
1920
1921extern int __cond_resched_lock(spinlock_t *lock);
1922extern int __cond_resched_rwlock_read(rwlock_t *lock);
1923extern int __cond_resched_rwlock_write(rwlock_t *lock);
1924
1925#define cond_resched_lock(lock) ({ \
1926 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
1927 __cond_resched_lock(lock); \
1928})
1929
1930#define cond_resched_rwlock_read(lock) ({ \
1931 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
1932 __cond_resched_rwlock_read(lock); \
1933})
1934
1935#define cond_resched_rwlock_write(lock) ({ \
1936 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
1937 __cond_resched_rwlock_write(lock); \
1938})
1939
1940static inline void cond_resched_rcu(void)
1941{
1942#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1943 rcu_read_unlock();
1944 cond_resched();
1945 rcu_read_lock();
1946#endif
1947}
1948
1949/*
1950 * Does a critical section need to be broken due to another
1951 * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
1952 * but a general need for low latency)
1953 */
1954static inline int spin_needbreak(spinlock_t *lock)
1955{
1956#ifdef CONFIG_PREEMPTION
1957 return spin_is_contended(lock);
1958#else
1959 return 0;
1960#endif
1961}
1962
1963/*
1964 * Check if a rwlock is contended.
1965 * Returns non-zero if there is another task waiting on the rwlock.
1966 * Returns zero if the lock is not contended or the system / underlying
1967 * rwlock implementation does not support contention detection.
1968 * Technically does not depend on CONFIG_PREEMPTION, but a general need
1969 * for low latency.
1970 */
1971static inline int rwlock_needbreak(rwlock_t *lock)
1972{
1973#ifdef CONFIG_PREEMPTION
1974 return rwlock_is_contended(lock);
1975#else
1976 return 0;
1977#endif
1978}
1979
1980static __always_inline bool need_resched(void)
1981{
1982 return unlikely(tif_need_resched());
1983}
1984
1985/*
1986 * Wrappers for p->thread_info->cpu access. No-op on UP.
1987 */
1988#ifdef CONFIG_SMP
1989
1990static inline unsigned int task_cpu(const struct task_struct *p)
1991{
1992#ifdef CONFIG_THREAD_INFO_IN_TASK
1993 return READ_ONCE(p->cpu);
1994#else
1995 return READ_ONCE(task_thread_info(p)->cpu);
1996#endif
1997}
1998
1999extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2000
2001#else
2002
2003static inline unsigned int task_cpu(const struct task_struct *p)
2004{
2005 return 0;
2006}
2007
2008static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2009{
2010}
2011
2012#endif /* CONFIG_SMP */
2013
2014/*
2015 * In order to reduce various lock holder preemption latencies provide an
2016 * interface to see if a vCPU is currently running or not.
2017 *
2018 * This allows us to terminate optimistic spin loops and block, analogous to
2019 * the native optimistic spin heuristic of testing if the lock owner task is
2020 * running or not.
2021 */
2022#ifndef vcpu_is_preempted
2023static inline bool vcpu_is_preempted(int cpu)
2024{
2025 return false;
2026}
2027#endif
2028
2029extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2030extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2031
2032#ifndef TASK_SIZE_OF
2033#define TASK_SIZE_OF(tsk) TASK_SIZE
2034#endif
2035
2036#ifdef CONFIG_SMP
2037/* Returns effective CPU energy utilization, as seen by the scheduler */
2038unsigned long sched_cpu_util(int cpu, unsigned long max);
2039#endif /* CONFIG_SMP */
2040
2041#ifdef CONFIG_RSEQ
2042
2043/*
2044 * Map the event mask on the user-space ABI enum rseq_cs_flags
2045 * for direct mask checks.
2046 */
2047enum rseq_event_mask_bits {
2048 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
2049 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
2050 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
2051};
2052
2053enum rseq_event_mask {
2054 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT),
2055 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT),
2056 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT),
2057};
2058
2059static inline void rseq_set_notify_resume(struct task_struct *t)
2060{
2061 if (t->rseq)
2062 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
2063}
2064
2065void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
2066
2067static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2068 struct pt_regs *regs)
2069{
2070 if (current->rseq)
2071 __rseq_handle_notify_resume(ksig, regs);
2072}
2073
2074static inline void rseq_signal_deliver(struct ksignal *ksig,
2075 struct pt_regs *regs)
2076{
2077 preempt_disable();
2078 __set_bit(RSEQ_EVENT_SIGNAL_BIT, ¤t->rseq_event_mask);
2079 preempt_enable();
2080 rseq_handle_notify_resume(ksig, regs);
2081}
2082
2083/* rseq_preempt() requires preemption to be disabled. */
2084static inline void rseq_preempt(struct task_struct *t)
2085{
2086 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
2087 rseq_set_notify_resume(t);
2088}
2089
2090/* rseq_migrate() requires preemption to be disabled. */
2091static inline void rseq_migrate(struct task_struct *t)
2092{
2093 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
2094 rseq_set_notify_resume(t);
2095}
2096
2097/*
2098 * If parent process has a registered restartable sequences area, the
2099 * child inherits. Unregister rseq for a clone with CLONE_VM set.
2100 */
2101static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2102{
2103 if (clone_flags & CLONE_VM) {
2104 t->rseq = NULL;
2105 t->rseq_sig = 0;
2106 t->rseq_event_mask = 0;
2107 } else {
2108 t->rseq = current->rseq;
2109 t->rseq_sig = current->rseq_sig;
2110 t->rseq_event_mask = current->rseq_event_mask;
2111 }
2112}
2113
2114static inline void rseq_execve(struct task_struct *t)
2115{
2116 t->rseq = NULL;
2117 t->rseq_sig = 0;
2118 t->rseq_event_mask = 0;
2119}
2120
2121#else
2122
2123static inline void rseq_set_notify_resume(struct task_struct *t)
2124{
2125}
2126static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2127 struct pt_regs *regs)
2128{
2129}
2130static inline void rseq_signal_deliver(struct ksignal *ksig,
2131 struct pt_regs *regs)
2132{
2133}
2134static inline void rseq_preempt(struct task_struct *t)
2135{
2136}
2137static inline void rseq_migrate(struct task_struct *t)
2138{
2139}
2140static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2141{
2142}
2143static inline void rseq_execve(struct task_struct *t)
2144{
2145}
2146
2147#endif
2148
2149#ifdef CONFIG_DEBUG_RSEQ
2150
2151void rseq_syscall(struct pt_regs *regs);
2152
2153#else
2154
2155static inline void rseq_syscall(struct pt_regs *regs)
2156{
2157}
2158
2159#endif
2160
2161const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq);
2162char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len);
2163int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq);
2164
2165const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq);
2166const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq);
2167const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq);
2168
2169int sched_trace_rq_cpu(struct rq *rq);
2170int sched_trace_rq_cpu_capacity(struct rq *rq);
2171int sched_trace_rq_nr_running(struct rq *rq);
2172
2173const struct cpumask *sched_trace_rd_span(struct root_domain *rd);
2174
2175#endif