at v5.13-rc2 105 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_MM_H 3#define _LINUX_MM_H 4 5#include <linux/errno.h> 6 7#ifdef __KERNEL__ 8 9#include <linux/mmdebug.h> 10#include <linux/gfp.h> 11#include <linux/bug.h> 12#include <linux/list.h> 13#include <linux/mmzone.h> 14#include <linux/rbtree.h> 15#include <linux/atomic.h> 16#include <linux/debug_locks.h> 17#include <linux/mm_types.h> 18#include <linux/mmap_lock.h> 19#include <linux/range.h> 20#include <linux/pfn.h> 21#include <linux/percpu-refcount.h> 22#include <linux/bit_spinlock.h> 23#include <linux/shrinker.h> 24#include <linux/resource.h> 25#include <linux/page_ext.h> 26#include <linux/err.h> 27#include <linux/page-flags.h> 28#include <linux/page_ref.h> 29#include <linux/memremap.h> 30#include <linux/overflow.h> 31#include <linux/sizes.h> 32#include <linux/sched.h> 33#include <linux/pgtable.h> 34#include <linux/kasan.h> 35 36struct mempolicy; 37struct anon_vma; 38struct anon_vma_chain; 39struct file_ra_state; 40struct user_struct; 41struct writeback_control; 42struct bdi_writeback; 43struct pt_regs; 44 45extern int sysctl_page_lock_unfairness; 46 47void init_mm_internals(void); 48 49#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 50extern unsigned long max_mapnr; 51 52static inline void set_max_mapnr(unsigned long limit) 53{ 54 max_mapnr = limit; 55} 56#else 57static inline void set_max_mapnr(unsigned long limit) { } 58#endif 59 60extern atomic_long_t _totalram_pages; 61static inline unsigned long totalram_pages(void) 62{ 63 return (unsigned long)atomic_long_read(&_totalram_pages); 64} 65 66static inline void totalram_pages_inc(void) 67{ 68 atomic_long_inc(&_totalram_pages); 69} 70 71static inline void totalram_pages_dec(void) 72{ 73 atomic_long_dec(&_totalram_pages); 74} 75 76static inline void totalram_pages_add(long count) 77{ 78 atomic_long_add(count, &_totalram_pages); 79} 80 81extern void * high_memory; 82extern int page_cluster; 83 84#ifdef CONFIG_SYSCTL 85extern int sysctl_legacy_va_layout; 86#else 87#define sysctl_legacy_va_layout 0 88#endif 89 90#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 91extern const int mmap_rnd_bits_min; 92extern const int mmap_rnd_bits_max; 93extern int mmap_rnd_bits __read_mostly; 94#endif 95#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 96extern const int mmap_rnd_compat_bits_min; 97extern const int mmap_rnd_compat_bits_max; 98extern int mmap_rnd_compat_bits __read_mostly; 99#endif 100 101#include <asm/page.h> 102#include <asm/processor.h> 103 104/* 105 * Architectures that support memory tagging (assigning tags to memory regions, 106 * embedding these tags into addresses that point to these memory regions, and 107 * checking that the memory and the pointer tags match on memory accesses) 108 * redefine this macro to strip tags from pointers. 109 * It's defined as noop for architectures that don't support memory tagging. 110 */ 111#ifndef untagged_addr 112#define untagged_addr(addr) (addr) 113#endif 114 115#ifndef __pa_symbol 116#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 117#endif 118 119#ifndef page_to_virt 120#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 121#endif 122 123#ifndef lm_alias 124#define lm_alias(x) __va(__pa_symbol(x)) 125#endif 126 127/* 128 * With CONFIG_CFI_CLANG, the compiler replaces function addresses in 129 * instrumented C code with jump table addresses. Architectures that 130 * support CFI can define this macro to return the actual function address 131 * when needed. 132 */ 133#ifndef function_nocfi 134#define function_nocfi(x) (x) 135#endif 136 137/* 138 * To prevent common memory management code establishing 139 * a zero page mapping on a read fault. 140 * This macro should be defined within <asm/pgtable.h>. 141 * s390 does this to prevent multiplexing of hardware bits 142 * related to the physical page in case of virtualization. 143 */ 144#ifndef mm_forbids_zeropage 145#define mm_forbids_zeropage(X) (0) 146#endif 147 148/* 149 * On some architectures it is expensive to call memset() for small sizes. 150 * If an architecture decides to implement their own version of 151 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 152 * define their own version of this macro in <asm/pgtable.h> 153 */ 154#if BITS_PER_LONG == 64 155/* This function must be updated when the size of struct page grows above 80 156 * or reduces below 56. The idea that compiler optimizes out switch() 157 * statement, and only leaves move/store instructions. Also the compiler can 158 * combine write statments if they are both assignments and can be reordered, 159 * this can result in several of the writes here being dropped. 160 */ 161#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 162static inline void __mm_zero_struct_page(struct page *page) 163{ 164 unsigned long *_pp = (void *)page; 165 166 /* Check that struct page is either 56, 64, 72, or 80 bytes */ 167 BUILD_BUG_ON(sizeof(struct page) & 7); 168 BUILD_BUG_ON(sizeof(struct page) < 56); 169 BUILD_BUG_ON(sizeof(struct page) > 80); 170 171 switch (sizeof(struct page)) { 172 case 80: 173 _pp[9] = 0; 174 fallthrough; 175 case 72: 176 _pp[8] = 0; 177 fallthrough; 178 case 64: 179 _pp[7] = 0; 180 fallthrough; 181 case 56: 182 _pp[6] = 0; 183 _pp[5] = 0; 184 _pp[4] = 0; 185 _pp[3] = 0; 186 _pp[2] = 0; 187 _pp[1] = 0; 188 _pp[0] = 0; 189 } 190} 191#else 192#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 193#endif 194 195/* 196 * Default maximum number of active map areas, this limits the number of vmas 197 * per mm struct. Users can overwrite this number by sysctl but there is a 198 * problem. 199 * 200 * When a program's coredump is generated as ELF format, a section is created 201 * per a vma. In ELF, the number of sections is represented in unsigned short. 202 * This means the number of sections should be smaller than 65535 at coredump. 203 * Because the kernel adds some informative sections to a image of program at 204 * generating coredump, we need some margin. The number of extra sections is 205 * 1-3 now and depends on arch. We use "5" as safe margin, here. 206 * 207 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 208 * not a hard limit any more. Although some userspace tools can be surprised by 209 * that. 210 */ 211#define MAPCOUNT_ELF_CORE_MARGIN (5) 212#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 213 214extern int sysctl_max_map_count; 215 216extern unsigned long sysctl_user_reserve_kbytes; 217extern unsigned long sysctl_admin_reserve_kbytes; 218 219extern int sysctl_overcommit_memory; 220extern int sysctl_overcommit_ratio; 221extern unsigned long sysctl_overcommit_kbytes; 222 223int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *, 224 loff_t *); 225int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *, 226 loff_t *); 227int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *, 228 loff_t *); 229/* 230 * Any attempt to mark this function as static leads to build failure 231 * when CONFIG_DEBUG_INFO_BTF is enabled because __add_to_page_cache_locked() 232 * is referred to by BPF code. This must be visible for error injection. 233 */ 234int __add_to_page_cache_locked(struct page *page, struct address_space *mapping, 235 pgoff_t index, gfp_t gfp, void **shadowp); 236 237#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 238 239/* to align the pointer to the (next) page boundary */ 240#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 241 242/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 243#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 244 245#define lru_to_page(head) (list_entry((head)->prev, struct page, lru)) 246 247/* 248 * Linux kernel virtual memory manager primitives. 249 * The idea being to have a "virtual" mm in the same way 250 * we have a virtual fs - giving a cleaner interface to the 251 * mm details, and allowing different kinds of memory mappings 252 * (from shared memory to executable loading to arbitrary 253 * mmap() functions). 254 */ 255 256struct vm_area_struct *vm_area_alloc(struct mm_struct *); 257struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 258void vm_area_free(struct vm_area_struct *); 259 260#ifndef CONFIG_MMU 261extern struct rb_root nommu_region_tree; 262extern struct rw_semaphore nommu_region_sem; 263 264extern unsigned int kobjsize(const void *objp); 265#endif 266 267/* 268 * vm_flags in vm_area_struct, see mm_types.h. 269 * When changing, update also include/trace/events/mmflags.h 270 */ 271#define VM_NONE 0x00000000 272 273#define VM_READ 0x00000001 /* currently active flags */ 274#define VM_WRITE 0x00000002 275#define VM_EXEC 0x00000004 276#define VM_SHARED 0x00000008 277 278/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 279#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 280#define VM_MAYWRITE 0x00000020 281#define VM_MAYEXEC 0x00000040 282#define VM_MAYSHARE 0x00000080 283 284#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 285#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 286#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 287#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 288#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 289 290#define VM_LOCKED 0x00002000 291#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 292 293 /* Used by sys_madvise() */ 294#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 295#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 296 297#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 298#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 299#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 300#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 301#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 302#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 303#define VM_SYNC 0x00800000 /* Synchronous page faults */ 304#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 305#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 306#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 307 308#ifdef CONFIG_MEM_SOFT_DIRTY 309# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 310#else 311# define VM_SOFTDIRTY 0 312#endif 313 314#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 315#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 316#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 317#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 318 319#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 320#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 321#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 322#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 323#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 324#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 325#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 326#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 327#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 328#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 329#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 330#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 331 332#ifdef CONFIG_ARCH_HAS_PKEYS 333# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 334# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 335# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 336# define VM_PKEY_BIT2 VM_HIGH_ARCH_2 337# define VM_PKEY_BIT3 VM_HIGH_ARCH_3 338#ifdef CONFIG_PPC 339# define VM_PKEY_BIT4 VM_HIGH_ARCH_4 340#else 341# define VM_PKEY_BIT4 0 342#endif 343#endif /* CONFIG_ARCH_HAS_PKEYS */ 344 345#if defined(CONFIG_X86) 346# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 347#elif defined(CONFIG_PPC) 348# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 349#elif defined(CONFIG_PARISC) 350# define VM_GROWSUP VM_ARCH_1 351#elif defined(CONFIG_IA64) 352# define VM_GROWSUP VM_ARCH_1 353#elif defined(CONFIG_SPARC64) 354# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 355# define VM_ARCH_CLEAR VM_SPARC_ADI 356#elif defined(CONFIG_ARM64) 357# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ 358# define VM_ARCH_CLEAR VM_ARM64_BTI 359#elif !defined(CONFIG_MMU) 360# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 361#endif 362 363#if defined(CONFIG_ARM64_MTE) 364# define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */ 365# define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */ 366#else 367# define VM_MTE VM_NONE 368# define VM_MTE_ALLOWED VM_NONE 369#endif 370 371#ifndef VM_GROWSUP 372# define VM_GROWSUP VM_NONE 373#endif 374 375#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 376# define VM_UFFD_MINOR_BIT 37 377# define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */ 378#else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 379# define VM_UFFD_MINOR VM_NONE 380#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 381 382/* Bits set in the VMA until the stack is in its final location */ 383#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 384 385#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 386 387/* Common data flag combinations */ 388#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 389 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 390#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 391 VM_MAYWRITE | VM_MAYEXEC) 392#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 393 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 394 395#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 396#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 397#endif 398 399#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 400#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 401#endif 402 403#ifdef CONFIG_STACK_GROWSUP 404#define VM_STACK VM_GROWSUP 405#else 406#define VM_STACK VM_GROWSDOWN 407#endif 408 409#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 410 411/* VMA basic access permission flags */ 412#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 413 414 415/* 416 * Special vmas that are non-mergable, non-mlock()able. 417 */ 418#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 419 420/* This mask prevents VMA from being scanned with khugepaged */ 421#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 422 423/* This mask defines which mm->def_flags a process can inherit its parent */ 424#define VM_INIT_DEF_MASK VM_NOHUGEPAGE 425 426/* This mask is used to clear all the VMA flags used by mlock */ 427#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 428 429/* Arch-specific flags to clear when updating VM flags on protection change */ 430#ifndef VM_ARCH_CLEAR 431# define VM_ARCH_CLEAR VM_NONE 432#endif 433#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 434 435/* 436 * mapping from the currently active vm_flags protection bits (the 437 * low four bits) to a page protection mask.. 438 */ 439extern pgprot_t protection_map[16]; 440 441/** 442 * enum fault_flag - Fault flag definitions. 443 * @FAULT_FLAG_WRITE: Fault was a write fault. 444 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE. 445 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked. 446 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying. 447 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region. 448 * @FAULT_FLAG_TRIED: The fault has been tried once. 449 * @FAULT_FLAG_USER: The fault originated in userspace. 450 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm. 451 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch. 452 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals. 453 * 454 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify 455 * whether we would allow page faults to retry by specifying these two 456 * fault flags correctly. Currently there can be three legal combinations: 457 * 458 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and 459 * this is the first try 460 * 461 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and 462 * we've already tried at least once 463 * 464 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry 465 * 466 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never 467 * be used. Note that page faults can be allowed to retry for multiple times, 468 * in which case we'll have an initial fault with flags (a) then later on 469 * continuous faults with flags (b). We should always try to detect pending 470 * signals before a retry to make sure the continuous page faults can still be 471 * interrupted if necessary. 472 */ 473enum fault_flag { 474 FAULT_FLAG_WRITE = 1 << 0, 475 FAULT_FLAG_MKWRITE = 1 << 1, 476 FAULT_FLAG_ALLOW_RETRY = 1 << 2, 477 FAULT_FLAG_RETRY_NOWAIT = 1 << 3, 478 FAULT_FLAG_KILLABLE = 1 << 4, 479 FAULT_FLAG_TRIED = 1 << 5, 480 FAULT_FLAG_USER = 1 << 6, 481 FAULT_FLAG_REMOTE = 1 << 7, 482 FAULT_FLAG_INSTRUCTION = 1 << 8, 483 FAULT_FLAG_INTERRUPTIBLE = 1 << 9, 484}; 485 486/* 487 * The default fault flags that should be used by most of the 488 * arch-specific page fault handlers. 489 */ 490#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 491 FAULT_FLAG_KILLABLE | \ 492 FAULT_FLAG_INTERRUPTIBLE) 493 494/** 495 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 496 * @flags: Fault flags. 497 * 498 * This is mostly used for places where we want to try to avoid taking 499 * the mmap_lock for too long a time when waiting for another condition 500 * to change, in which case we can try to be polite to release the 501 * mmap_lock in the first round to avoid potential starvation of other 502 * processes that would also want the mmap_lock. 503 * 504 * Return: true if the page fault allows retry and this is the first 505 * attempt of the fault handling; false otherwise. 506 */ 507static inline bool fault_flag_allow_retry_first(enum fault_flag flags) 508{ 509 return (flags & FAULT_FLAG_ALLOW_RETRY) && 510 (!(flags & FAULT_FLAG_TRIED)); 511} 512 513#define FAULT_FLAG_TRACE \ 514 { FAULT_FLAG_WRITE, "WRITE" }, \ 515 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 516 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 517 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 518 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 519 { FAULT_FLAG_TRIED, "TRIED" }, \ 520 { FAULT_FLAG_USER, "USER" }, \ 521 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 522 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 523 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" } 524 525/* 526 * vm_fault is filled by the pagefault handler and passed to the vma's 527 * ->fault function. The vma's ->fault is responsible for returning a bitmask 528 * of VM_FAULT_xxx flags that give details about how the fault was handled. 529 * 530 * MM layer fills up gfp_mask for page allocations but fault handler might 531 * alter it if its implementation requires a different allocation context. 532 * 533 * pgoff should be used in favour of virtual_address, if possible. 534 */ 535struct vm_fault { 536 const struct { 537 struct vm_area_struct *vma; /* Target VMA */ 538 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 539 pgoff_t pgoff; /* Logical page offset based on vma */ 540 unsigned long address; /* Faulting virtual address */ 541 }; 542 enum fault_flag flags; /* FAULT_FLAG_xxx flags 543 * XXX: should really be 'const' */ 544 pmd_t *pmd; /* Pointer to pmd entry matching 545 * the 'address' */ 546 pud_t *pud; /* Pointer to pud entry matching 547 * the 'address' 548 */ 549 pte_t orig_pte; /* Value of PTE at the time of fault */ 550 551 struct page *cow_page; /* Page handler may use for COW fault */ 552 struct page *page; /* ->fault handlers should return a 553 * page here, unless VM_FAULT_NOPAGE 554 * is set (which is also implied by 555 * VM_FAULT_ERROR). 556 */ 557 /* These three entries are valid only while holding ptl lock */ 558 pte_t *pte; /* Pointer to pte entry matching 559 * the 'address'. NULL if the page 560 * table hasn't been allocated. 561 */ 562 spinlock_t *ptl; /* Page table lock. 563 * Protects pte page table if 'pte' 564 * is not NULL, otherwise pmd. 565 */ 566 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 567 * vm_ops->map_pages() sets up a page 568 * table from atomic context. 569 * do_fault_around() pre-allocates 570 * page table to avoid allocation from 571 * atomic context. 572 */ 573}; 574 575/* page entry size for vm->huge_fault() */ 576enum page_entry_size { 577 PE_SIZE_PTE = 0, 578 PE_SIZE_PMD, 579 PE_SIZE_PUD, 580}; 581 582/* 583 * These are the virtual MM functions - opening of an area, closing and 584 * unmapping it (needed to keep files on disk up-to-date etc), pointer 585 * to the functions called when a no-page or a wp-page exception occurs. 586 */ 587struct vm_operations_struct { 588 void (*open)(struct vm_area_struct * area); 589 void (*close)(struct vm_area_struct * area); 590 /* Called any time before splitting to check if it's allowed */ 591 int (*may_split)(struct vm_area_struct *area, unsigned long addr); 592 int (*mremap)(struct vm_area_struct *area); 593 /* 594 * Called by mprotect() to make driver-specific permission 595 * checks before mprotect() is finalised. The VMA must not 596 * be modified. Returns 0 if eprotect() can proceed. 597 */ 598 int (*mprotect)(struct vm_area_struct *vma, unsigned long start, 599 unsigned long end, unsigned long newflags); 600 vm_fault_t (*fault)(struct vm_fault *vmf); 601 vm_fault_t (*huge_fault)(struct vm_fault *vmf, 602 enum page_entry_size pe_size); 603 vm_fault_t (*map_pages)(struct vm_fault *vmf, 604 pgoff_t start_pgoff, pgoff_t end_pgoff); 605 unsigned long (*pagesize)(struct vm_area_struct * area); 606 607 /* notification that a previously read-only page is about to become 608 * writable, if an error is returned it will cause a SIGBUS */ 609 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 610 611 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 612 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 613 614 /* called by access_process_vm when get_user_pages() fails, typically 615 * for use by special VMAs. See also generic_access_phys() for a generic 616 * implementation useful for any iomem mapping. 617 */ 618 int (*access)(struct vm_area_struct *vma, unsigned long addr, 619 void *buf, int len, int write); 620 621 /* Called by the /proc/PID/maps code to ask the vma whether it 622 * has a special name. Returning non-NULL will also cause this 623 * vma to be dumped unconditionally. */ 624 const char *(*name)(struct vm_area_struct *vma); 625 626#ifdef CONFIG_NUMA 627 /* 628 * set_policy() op must add a reference to any non-NULL @new mempolicy 629 * to hold the policy upon return. Caller should pass NULL @new to 630 * remove a policy and fall back to surrounding context--i.e. do not 631 * install a MPOL_DEFAULT policy, nor the task or system default 632 * mempolicy. 633 */ 634 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 635 636 /* 637 * get_policy() op must add reference [mpol_get()] to any policy at 638 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 639 * in mm/mempolicy.c will do this automatically. 640 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 641 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 642 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 643 * must return NULL--i.e., do not "fallback" to task or system default 644 * policy. 645 */ 646 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 647 unsigned long addr); 648#endif 649 /* 650 * Called by vm_normal_page() for special PTEs to find the 651 * page for @addr. This is useful if the default behavior 652 * (using pte_page()) would not find the correct page. 653 */ 654 struct page *(*find_special_page)(struct vm_area_struct *vma, 655 unsigned long addr); 656}; 657 658static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 659{ 660 static const struct vm_operations_struct dummy_vm_ops = {}; 661 662 memset(vma, 0, sizeof(*vma)); 663 vma->vm_mm = mm; 664 vma->vm_ops = &dummy_vm_ops; 665 INIT_LIST_HEAD(&vma->anon_vma_chain); 666} 667 668static inline void vma_set_anonymous(struct vm_area_struct *vma) 669{ 670 vma->vm_ops = NULL; 671} 672 673static inline bool vma_is_anonymous(struct vm_area_struct *vma) 674{ 675 return !vma->vm_ops; 676} 677 678static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) 679{ 680 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 681 682 if (!maybe_stack) 683 return false; 684 685 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 686 VM_STACK_INCOMPLETE_SETUP) 687 return true; 688 689 return false; 690} 691 692static inline bool vma_is_foreign(struct vm_area_struct *vma) 693{ 694 if (!current->mm) 695 return true; 696 697 if (current->mm != vma->vm_mm) 698 return true; 699 700 return false; 701} 702 703static inline bool vma_is_accessible(struct vm_area_struct *vma) 704{ 705 return vma->vm_flags & VM_ACCESS_FLAGS; 706} 707 708#ifdef CONFIG_SHMEM 709/* 710 * The vma_is_shmem is not inline because it is used only by slow 711 * paths in userfault. 712 */ 713bool vma_is_shmem(struct vm_area_struct *vma); 714#else 715static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 716#endif 717 718int vma_is_stack_for_current(struct vm_area_struct *vma); 719 720/* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 721#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 722 723struct mmu_gather; 724struct inode; 725 726#include <linux/huge_mm.h> 727 728/* 729 * Methods to modify the page usage count. 730 * 731 * What counts for a page usage: 732 * - cache mapping (page->mapping) 733 * - private data (page->private) 734 * - page mapped in a task's page tables, each mapping 735 * is counted separately 736 * 737 * Also, many kernel routines increase the page count before a critical 738 * routine so they can be sure the page doesn't go away from under them. 739 */ 740 741/* 742 * Drop a ref, return true if the refcount fell to zero (the page has no users) 743 */ 744static inline int put_page_testzero(struct page *page) 745{ 746 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 747 return page_ref_dec_and_test(page); 748} 749 750/* 751 * Try to grab a ref unless the page has a refcount of zero, return false if 752 * that is the case. 753 * This can be called when MMU is off so it must not access 754 * any of the virtual mappings. 755 */ 756static inline int get_page_unless_zero(struct page *page) 757{ 758 return page_ref_add_unless(page, 1, 0); 759} 760 761extern int page_is_ram(unsigned long pfn); 762 763enum { 764 REGION_INTERSECTS, 765 REGION_DISJOINT, 766 REGION_MIXED, 767}; 768 769int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 770 unsigned long desc); 771 772/* Support for virtually mapped pages */ 773struct page *vmalloc_to_page(const void *addr); 774unsigned long vmalloc_to_pfn(const void *addr); 775 776/* 777 * Determine if an address is within the vmalloc range 778 * 779 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 780 * is no special casing required. 781 */ 782 783#ifndef is_ioremap_addr 784#define is_ioremap_addr(x) is_vmalloc_addr(x) 785#endif 786 787#ifdef CONFIG_MMU 788extern bool is_vmalloc_addr(const void *x); 789extern int is_vmalloc_or_module_addr(const void *x); 790#else 791static inline bool is_vmalloc_addr(const void *x) 792{ 793 return false; 794} 795static inline int is_vmalloc_or_module_addr(const void *x) 796{ 797 return 0; 798} 799#endif 800 801extern void *kvmalloc_node(size_t size, gfp_t flags, int node); 802static inline void *kvmalloc(size_t size, gfp_t flags) 803{ 804 return kvmalloc_node(size, flags, NUMA_NO_NODE); 805} 806static inline void *kvzalloc_node(size_t size, gfp_t flags, int node) 807{ 808 return kvmalloc_node(size, flags | __GFP_ZERO, node); 809} 810static inline void *kvzalloc(size_t size, gfp_t flags) 811{ 812 return kvmalloc(size, flags | __GFP_ZERO); 813} 814 815static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags) 816{ 817 size_t bytes; 818 819 if (unlikely(check_mul_overflow(n, size, &bytes))) 820 return NULL; 821 822 return kvmalloc(bytes, flags); 823} 824 825static inline void *kvcalloc(size_t n, size_t size, gfp_t flags) 826{ 827 return kvmalloc_array(n, size, flags | __GFP_ZERO); 828} 829 830extern void kvfree(const void *addr); 831extern void kvfree_sensitive(const void *addr, size_t len); 832 833static inline int head_compound_mapcount(struct page *head) 834{ 835 return atomic_read(compound_mapcount_ptr(head)) + 1; 836} 837 838/* 839 * Mapcount of compound page as a whole, does not include mapped sub-pages. 840 * 841 * Must be called only for compound pages or any their tail sub-pages. 842 */ 843static inline int compound_mapcount(struct page *page) 844{ 845 VM_BUG_ON_PAGE(!PageCompound(page), page); 846 page = compound_head(page); 847 return head_compound_mapcount(page); 848} 849 850/* 851 * The atomic page->_mapcount, starts from -1: so that transitions 852 * both from it and to it can be tracked, using atomic_inc_and_test 853 * and atomic_add_negative(-1). 854 */ 855static inline void page_mapcount_reset(struct page *page) 856{ 857 atomic_set(&(page)->_mapcount, -1); 858} 859 860int __page_mapcount(struct page *page); 861 862/* 863 * Mapcount of 0-order page; when compound sub-page, includes 864 * compound_mapcount(). 865 * 866 * Result is undefined for pages which cannot be mapped into userspace. 867 * For example SLAB or special types of pages. See function page_has_type(). 868 * They use this place in struct page differently. 869 */ 870static inline int page_mapcount(struct page *page) 871{ 872 if (unlikely(PageCompound(page))) 873 return __page_mapcount(page); 874 return atomic_read(&page->_mapcount) + 1; 875} 876 877#ifdef CONFIG_TRANSPARENT_HUGEPAGE 878int total_mapcount(struct page *page); 879int page_trans_huge_mapcount(struct page *page, int *total_mapcount); 880#else 881static inline int total_mapcount(struct page *page) 882{ 883 return page_mapcount(page); 884} 885static inline int page_trans_huge_mapcount(struct page *page, 886 int *total_mapcount) 887{ 888 int mapcount = page_mapcount(page); 889 if (total_mapcount) 890 *total_mapcount = mapcount; 891 return mapcount; 892} 893#endif 894 895static inline struct page *virt_to_head_page(const void *x) 896{ 897 struct page *page = virt_to_page(x); 898 899 return compound_head(page); 900} 901 902void __put_page(struct page *page); 903 904void put_pages_list(struct list_head *pages); 905 906void split_page(struct page *page, unsigned int order); 907 908/* 909 * Compound pages have a destructor function. Provide a 910 * prototype for that function and accessor functions. 911 * These are _only_ valid on the head of a compound page. 912 */ 913typedef void compound_page_dtor(struct page *); 914 915/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 916enum compound_dtor_id { 917 NULL_COMPOUND_DTOR, 918 COMPOUND_PAGE_DTOR, 919#ifdef CONFIG_HUGETLB_PAGE 920 HUGETLB_PAGE_DTOR, 921#endif 922#ifdef CONFIG_TRANSPARENT_HUGEPAGE 923 TRANSHUGE_PAGE_DTOR, 924#endif 925 NR_COMPOUND_DTORS, 926}; 927extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS]; 928 929static inline void set_compound_page_dtor(struct page *page, 930 enum compound_dtor_id compound_dtor) 931{ 932 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 933 page[1].compound_dtor = compound_dtor; 934} 935 936static inline void destroy_compound_page(struct page *page) 937{ 938 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 939 compound_page_dtors[page[1].compound_dtor](page); 940} 941 942static inline unsigned int compound_order(struct page *page) 943{ 944 if (!PageHead(page)) 945 return 0; 946 return page[1].compound_order; 947} 948 949static inline bool hpage_pincount_available(struct page *page) 950{ 951 /* 952 * Can the page->hpage_pinned_refcount field be used? That field is in 953 * the 3rd page of the compound page, so the smallest (2-page) compound 954 * pages cannot support it. 955 */ 956 page = compound_head(page); 957 return PageCompound(page) && compound_order(page) > 1; 958} 959 960static inline int head_compound_pincount(struct page *head) 961{ 962 return atomic_read(compound_pincount_ptr(head)); 963} 964 965static inline int compound_pincount(struct page *page) 966{ 967 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); 968 page = compound_head(page); 969 return head_compound_pincount(page); 970} 971 972static inline void set_compound_order(struct page *page, unsigned int order) 973{ 974 page[1].compound_order = order; 975 page[1].compound_nr = 1U << order; 976} 977 978/* Returns the number of pages in this potentially compound page. */ 979static inline unsigned long compound_nr(struct page *page) 980{ 981 if (!PageHead(page)) 982 return 1; 983 return page[1].compound_nr; 984} 985 986/* Returns the number of bytes in this potentially compound page. */ 987static inline unsigned long page_size(struct page *page) 988{ 989 return PAGE_SIZE << compound_order(page); 990} 991 992/* Returns the number of bits needed for the number of bytes in a page */ 993static inline unsigned int page_shift(struct page *page) 994{ 995 return PAGE_SHIFT + compound_order(page); 996} 997 998void free_compound_page(struct page *page); 999 1000#ifdef CONFIG_MMU 1001/* 1002 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 1003 * servicing faults for write access. In the normal case, do always want 1004 * pte_mkwrite. But get_user_pages can cause write faults for mappings 1005 * that do not have writing enabled, when used by access_process_vm. 1006 */ 1007static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 1008{ 1009 if (likely(vma->vm_flags & VM_WRITE)) 1010 pte = pte_mkwrite(pte); 1011 return pte; 1012} 1013 1014vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page); 1015void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr); 1016 1017vm_fault_t finish_fault(struct vm_fault *vmf); 1018vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf); 1019#endif 1020 1021/* 1022 * Multiple processes may "see" the same page. E.g. for untouched 1023 * mappings of /dev/null, all processes see the same page full of 1024 * zeroes, and text pages of executables and shared libraries have 1025 * only one copy in memory, at most, normally. 1026 * 1027 * For the non-reserved pages, page_count(page) denotes a reference count. 1028 * page_count() == 0 means the page is free. page->lru is then used for 1029 * freelist management in the buddy allocator. 1030 * page_count() > 0 means the page has been allocated. 1031 * 1032 * Pages are allocated by the slab allocator in order to provide memory 1033 * to kmalloc and kmem_cache_alloc. In this case, the management of the 1034 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 1035 * unless a particular usage is carefully commented. (the responsibility of 1036 * freeing the kmalloc memory is the caller's, of course). 1037 * 1038 * A page may be used by anyone else who does a __get_free_page(). 1039 * In this case, page_count still tracks the references, and should only 1040 * be used through the normal accessor functions. The top bits of page->flags 1041 * and page->virtual store page management information, but all other fields 1042 * are unused and could be used privately, carefully. The management of this 1043 * page is the responsibility of the one who allocated it, and those who have 1044 * subsequently been given references to it. 1045 * 1046 * The other pages (we may call them "pagecache pages") are completely 1047 * managed by the Linux memory manager: I/O, buffers, swapping etc. 1048 * The following discussion applies only to them. 1049 * 1050 * A pagecache page contains an opaque `private' member, which belongs to the 1051 * page's address_space. Usually, this is the address of a circular list of 1052 * the page's disk buffers. PG_private must be set to tell the VM to call 1053 * into the filesystem to release these pages. 1054 * 1055 * A page may belong to an inode's memory mapping. In this case, page->mapping 1056 * is the pointer to the inode, and page->index is the file offset of the page, 1057 * in units of PAGE_SIZE. 1058 * 1059 * If pagecache pages are not associated with an inode, they are said to be 1060 * anonymous pages. These may become associated with the swapcache, and in that 1061 * case PG_swapcache is set, and page->private is an offset into the swapcache. 1062 * 1063 * In either case (swapcache or inode backed), the pagecache itself holds one 1064 * reference to the page. Setting PG_private should also increment the 1065 * refcount. The each user mapping also has a reference to the page. 1066 * 1067 * The pagecache pages are stored in a per-mapping radix tree, which is 1068 * rooted at mapping->i_pages, and indexed by offset. 1069 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1070 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1071 * 1072 * All pagecache pages may be subject to I/O: 1073 * - inode pages may need to be read from disk, 1074 * - inode pages which have been modified and are MAP_SHARED may need 1075 * to be written back to the inode on disk, 1076 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1077 * modified may need to be swapped out to swap space and (later) to be read 1078 * back into memory. 1079 */ 1080 1081/* 1082 * The zone field is never updated after free_area_init_core() 1083 * sets it, so none of the operations on it need to be atomic. 1084 */ 1085 1086/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 1087#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 1088#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 1089#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 1090#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 1091#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) 1092 1093/* 1094 * Define the bit shifts to access each section. For non-existent 1095 * sections we define the shift as 0; that plus a 0 mask ensures 1096 * the compiler will optimise away reference to them. 1097 */ 1098#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 1099#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 1100#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 1101#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 1102#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) 1103 1104/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 1105#ifdef NODE_NOT_IN_PAGE_FLAGS 1106#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 1107#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 1108 SECTIONS_PGOFF : ZONES_PGOFF) 1109#else 1110#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 1111#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 1112 NODES_PGOFF : ZONES_PGOFF) 1113#endif 1114 1115#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 1116 1117#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 1118#define NODES_MASK ((1UL << NODES_WIDTH) - 1) 1119#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 1120#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 1121#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1) 1122#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 1123 1124static inline enum zone_type page_zonenum(const struct page *page) 1125{ 1126 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT); 1127 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 1128} 1129 1130#ifdef CONFIG_ZONE_DEVICE 1131static inline bool is_zone_device_page(const struct page *page) 1132{ 1133 return page_zonenum(page) == ZONE_DEVICE; 1134} 1135extern void memmap_init_zone_device(struct zone *, unsigned long, 1136 unsigned long, struct dev_pagemap *); 1137#else 1138static inline bool is_zone_device_page(const struct page *page) 1139{ 1140 return false; 1141} 1142#endif 1143 1144static inline bool is_zone_movable_page(const struct page *page) 1145{ 1146 return page_zonenum(page) == ZONE_MOVABLE; 1147} 1148 1149#ifdef CONFIG_DEV_PAGEMAP_OPS 1150void free_devmap_managed_page(struct page *page); 1151DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 1152 1153static inline bool page_is_devmap_managed(struct page *page) 1154{ 1155 if (!static_branch_unlikely(&devmap_managed_key)) 1156 return false; 1157 if (!is_zone_device_page(page)) 1158 return false; 1159 switch (page->pgmap->type) { 1160 case MEMORY_DEVICE_PRIVATE: 1161 case MEMORY_DEVICE_FS_DAX: 1162 return true; 1163 default: 1164 break; 1165 } 1166 return false; 1167} 1168 1169void put_devmap_managed_page(struct page *page); 1170 1171#else /* CONFIG_DEV_PAGEMAP_OPS */ 1172static inline bool page_is_devmap_managed(struct page *page) 1173{ 1174 return false; 1175} 1176 1177static inline void put_devmap_managed_page(struct page *page) 1178{ 1179} 1180#endif /* CONFIG_DEV_PAGEMAP_OPS */ 1181 1182static inline bool is_device_private_page(const struct page *page) 1183{ 1184 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && 1185 IS_ENABLED(CONFIG_DEVICE_PRIVATE) && 1186 is_zone_device_page(page) && 1187 page->pgmap->type == MEMORY_DEVICE_PRIVATE; 1188} 1189 1190static inline bool is_pci_p2pdma_page(const struct page *page) 1191{ 1192 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && 1193 IS_ENABLED(CONFIG_PCI_P2PDMA) && 1194 is_zone_device_page(page) && 1195 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA; 1196} 1197 1198/* 127: arbitrary random number, small enough to assemble well */ 1199#define page_ref_zero_or_close_to_overflow(page) \ 1200 ((unsigned int) page_ref_count(page) + 127u <= 127u) 1201 1202static inline void get_page(struct page *page) 1203{ 1204 page = compound_head(page); 1205 /* 1206 * Getting a normal page or the head of a compound page 1207 * requires to already have an elevated page->_refcount. 1208 */ 1209 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page); 1210 page_ref_inc(page); 1211} 1212 1213bool __must_check try_grab_page(struct page *page, unsigned int flags); 1214__maybe_unused struct page *try_grab_compound_head(struct page *page, int refs, 1215 unsigned int flags); 1216 1217 1218static inline __must_check bool try_get_page(struct page *page) 1219{ 1220 page = compound_head(page); 1221 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1222 return false; 1223 page_ref_inc(page); 1224 return true; 1225} 1226 1227static inline void put_page(struct page *page) 1228{ 1229 page = compound_head(page); 1230 1231 /* 1232 * For devmap managed pages we need to catch refcount transition from 1233 * 2 to 1, when refcount reach one it means the page is free and we 1234 * need to inform the device driver through callback. See 1235 * include/linux/memremap.h and HMM for details. 1236 */ 1237 if (page_is_devmap_managed(page)) { 1238 put_devmap_managed_page(page); 1239 return; 1240 } 1241 1242 if (put_page_testzero(page)) 1243 __put_page(page); 1244} 1245 1246/* 1247 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1248 * the page's refcount so that two separate items are tracked: the original page 1249 * reference count, and also a new count of how many pin_user_pages() calls were 1250 * made against the page. ("gup-pinned" is another term for the latter). 1251 * 1252 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1253 * distinct from normal pages. As such, the unpin_user_page() call (and its 1254 * variants) must be used in order to release gup-pinned pages. 1255 * 1256 * Choice of value: 1257 * 1258 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1259 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1260 * simpler, due to the fact that adding an even power of two to the page 1261 * refcount has the effect of using only the upper N bits, for the code that 1262 * counts up using the bias value. This means that the lower bits are left for 1263 * the exclusive use of the original code that increments and decrements by one 1264 * (or at least, by much smaller values than the bias value). 1265 * 1266 * Of course, once the lower bits overflow into the upper bits (and this is 1267 * OK, because subtraction recovers the original values), then visual inspection 1268 * no longer suffices to directly view the separate counts. However, for normal 1269 * applications that don't have huge page reference counts, this won't be an 1270 * issue. 1271 * 1272 * Locking: the lockless algorithm described in page_cache_get_speculative() 1273 * and page_cache_gup_pin_speculative() provides safe operation for 1274 * get_user_pages and page_mkclean and other calls that race to set up page 1275 * table entries. 1276 */ 1277#define GUP_PIN_COUNTING_BIAS (1U << 10) 1278 1279void unpin_user_page(struct page *page); 1280void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1281 bool make_dirty); 1282void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 1283 bool make_dirty); 1284void unpin_user_pages(struct page **pages, unsigned long npages); 1285 1286/** 1287 * page_maybe_dma_pinned - Report if a page is pinned for DMA. 1288 * @page: The page. 1289 * 1290 * This function checks if a page has been pinned via a call to 1291 * a function in the pin_user_pages() family. 1292 * 1293 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy, 1294 * because it means "definitely not pinned for DMA", but true means "probably 1295 * pinned for DMA, but possibly a false positive due to having at least 1296 * GUP_PIN_COUNTING_BIAS worth of normal page references". 1297 * 1298 * False positives are OK, because: a) it's unlikely for a page to get that many 1299 * refcounts, and b) all the callers of this routine are expected to be able to 1300 * deal gracefully with a false positive. 1301 * 1302 * For huge pages, the result will be exactly correct. That's because we have 1303 * more tracking data available: the 3rd struct page in the compound page is 1304 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS 1305 * scheme). 1306 * 1307 * For more information, please see Documentation/core-api/pin_user_pages.rst. 1308 * 1309 * Return: True, if it is likely that the page has been "dma-pinned". 1310 * False, if the page is definitely not dma-pinned. 1311 */ 1312static inline bool page_maybe_dma_pinned(struct page *page) 1313{ 1314 if (hpage_pincount_available(page)) 1315 return compound_pincount(page) > 0; 1316 1317 /* 1318 * page_ref_count() is signed. If that refcount overflows, then 1319 * page_ref_count() returns a negative value, and callers will avoid 1320 * further incrementing the refcount. 1321 * 1322 * Here, for that overflow case, use the signed bit to count a little 1323 * bit higher via unsigned math, and thus still get an accurate result. 1324 */ 1325 return ((unsigned int)page_ref_count(compound_head(page))) >= 1326 GUP_PIN_COUNTING_BIAS; 1327} 1328 1329static inline bool is_cow_mapping(vm_flags_t flags) 1330{ 1331 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 1332} 1333 1334/* 1335 * This should most likely only be called during fork() to see whether we 1336 * should break the cow immediately for a page on the src mm. 1337 */ 1338static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma, 1339 struct page *page) 1340{ 1341 if (!is_cow_mapping(vma->vm_flags)) 1342 return false; 1343 1344 if (!atomic_read(&vma->vm_mm->has_pinned)) 1345 return false; 1346 1347 return page_maybe_dma_pinned(page); 1348} 1349 1350#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1351#define SECTION_IN_PAGE_FLAGS 1352#endif 1353 1354/* 1355 * The identification function is mainly used by the buddy allocator for 1356 * determining if two pages could be buddies. We are not really identifying 1357 * the zone since we could be using the section number id if we do not have 1358 * node id available in page flags. 1359 * We only guarantee that it will return the same value for two combinable 1360 * pages in a zone. 1361 */ 1362static inline int page_zone_id(struct page *page) 1363{ 1364 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1365} 1366 1367#ifdef NODE_NOT_IN_PAGE_FLAGS 1368extern int page_to_nid(const struct page *page); 1369#else 1370static inline int page_to_nid(const struct page *page) 1371{ 1372 struct page *p = (struct page *)page; 1373 1374 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK; 1375} 1376#endif 1377 1378#ifdef CONFIG_NUMA_BALANCING 1379static inline int cpu_pid_to_cpupid(int cpu, int pid) 1380{ 1381 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1382} 1383 1384static inline int cpupid_to_pid(int cpupid) 1385{ 1386 return cpupid & LAST__PID_MASK; 1387} 1388 1389static inline int cpupid_to_cpu(int cpupid) 1390{ 1391 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1392} 1393 1394static inline int cpupid_to_nid(int cpupid) 1395{ 1396 return cpu_to_node(cpupid_to_cpu(cpupid)); 1397} 1398 1399static inline bool cpupid_pid_unset(int cpupid) 1400{ 1401 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1402} 1403 1404static inline bool cpupid_cpu_unset(int cpupid) 1405{ 1406 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1407} 1408 1409static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1410{ 1411 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1412} 1413 1414#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1415#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1416static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1417{ 1418 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1419} 1420 1421static inline int page_cpupid_last(struct page *page) 1422{ 1423 return page->_last_cpupid; 1424} 1425static inline void page_cpupid_reset_last(struct page *page) 1426{ 1427 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1428} 1429#else 1430static inline int page_cpupid_last(struct page *page) 1431{ 1432 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1433} 1434 1435extern int page_cpupid_xchg_last(struct page *page, int cpupid); 1436 1437static inline void page_cpupid_reset_last(struct page *page) 1438{ 1439 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1440} 1441#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1442#else /* !CONFIG_NUMA_BALANCING */ 1443static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1444{ 1445 return page_to_nid(page); /* XXX */ 1446} 1447 1448static inline int page_cpupid_last(struct page *page) 1449{ 1450 return page_to_nid(page); /* XXX */ 1451} 1452 1453static inline int cpupid_to_nid(int cpupid) 1454{ 1455 return -1; 1456} 1457 1458static inline int cpupid_to_pid(int cpupid) 1459{ 1460 return -1; 1461} 1462 1463static inline int cpupid_to_cpu(int cpupid) 1464{ 1465 return -1; 1466} 1467 1468static inline int cpu_pid_to_cpupid(int nid, int pid) 1469{ 1470 return -1; 1471} 1472 1473static inline bool cpupid_pid_unset(int cpupid) 1474{ 1475 return true; 1476} 1477 1478static inline void page_cpupid_reset_last(struct page *page) 1479{ 1480} 1481 1482static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1483{ 1484 return false; 1485} 1486#endif /* CONFIG_NUMA_BALANCING */ 1487 1488#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) 1489 1490/* 1491 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid 1492 * setting tags for all pages to native kernel tag value 0xff, as the default 1493 * value 0x00 maps to 0xff. 1494 */ 1495 1496static inline u8 page_kasan_tag(const struct page *page) 1497{ 1498 u8 tag = 0xff; 1499 1500 if (kasan_enabled()) { 1501 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1502 tag ^= 0xff; 1503 } 1504 1505 return tag; 1506} 1507 1508static inline void page_kasan_tag_set(struct page *page, u8 tag) 1509{ 1510 if (kasan_enabled()) { 1511 tag ^= 0xff; 1512 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1513 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1514 } 1515} 1516 1517static inline void page_kasan_tag_reset(struct page *page) 1518{ 1519 if (kasan_enabled()) 1520 page_kasan_tag_set(page, 0xff); 1521} 1522 1523#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1524 1525static inline u8 page_kasan_tag(const struct page *page) 1526{ 1527 return 0xff; 1528} 1529 1530static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1531static inline void page_kasan_tag_reset(struct page *page) { } 1532 1533#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1534 1535static inline struct zone *page_zone(const struct page *page) 1536{ 1537 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1538} 1539 1540static inline pg_data_t *page_pgdat(const struct page *page) 1541{ 1542 return NODE_DATA(page_to_nid(page)); 1543} 1544 1545#ifdef SECTION_IN_PAGE_FLAGS 1546static inline void set_page_section(struct page *page, unsigned long section) 1547{ 1548 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1549 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1550} 1551 1552static inline unsigned long page_to_section(const struct page *page) 1553{ 1554 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1555} 1556#endif 1557 1558/* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */ 1559#ifdef CONFIG_MIGRATION 1560static inline bool is_pinnable_page(struct page *page) 1561{ 1562 return !(is_zone_movable_page(page) || is_migrate_cma_page(page)) || 1563 is_zero_pfn(page_to_pfn(page)); 1564} 1565#else 1566static inline bool is_pinnable_page(struct page *page) 1567{ 1568 return true; 1569} 1570#endif 1571 1572static inline void set_page_zone(struct page *page, enum zone_type zone) 1573{ 1574 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 1575 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 1576} 1577 1578static inline void set_page_node(struct page *page, unsigned long node) 1579{ 1580 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 1581 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 1582} 1583 1584static inline void set_page_links(struct page *page, enum zone_type zone, 1585 unsigned long node, unsigned long pfn) 1586{ 1587 set_page_zone(page, zone); 1588 set_page_node(page, node); 1589#ifdef SECTION_IN_PAGE_FLAGS 1590 set_page_section(page, pfn_to_section_nr(pfn)); 1591#endif 1592} 1593 1594/* 1595 * Some inline functions in vmstat.h depend on page_zone() 1596 */ 1597#include <linux/vmstat.h> 1598 1599static __always_inline void *lowmem_page_address(const struct page *page) 1600{ 1601 return page_to_virt(page); 1602} 1603 1604#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 1605#define HASHED_PAGE_VIRTUAL 1606#endif 1607 1608#if defined(WANT_PAGE_VIRTUAL) 1609static inline void *page_address(const struct page *page) 1610{ 1611 return page->virtual; 1612} 1613static inline void set_page_address(struct page *page, void *address) 1614{ 1615 page->virtual = address; 1616} 1617#define page_address_init() do { } while(0) 1618#endif 1619 1620#if defined(HASHED_PAGE_VIRTUAL) 1621void *page_address(const struct page *page); 1622void set_page_address(struct page *page, void *virtual); 1623void page_address_init(void); 1624#endif 1625 1626#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 1627#define page_address(page) lowmem_page_address(page) 1628#define set_page_address(page, address) do { } while(0) 1629#define page_address_init() do { } while(0) 1630#endif 1631 1632extern void *page_rmapping(struct page *page); 1633extern struct anon_vma *page_anon_vma(struct page *page); 1634extern struct address_space *page_mapping(struct page *page); 1635 1636extern struct address_space *__page_file_mapping(struct page *); 1637 1638static inline 1639struct address_space *page_file_mapping(struct page *page) 1640{ 1641 if (unlikely(PageSwapCache(page))) 1642 return __page_file_mapping(page); 1643 1644 return page->mapping; 1645} 1646 1647extern pgoff_t __page_file_index(struct page *page); 1648 1649/* 1650 * Return the pagecache index of the passed page. Regular pagecache pages 1651 * use ->index whereas swapcache pages use swp_offset(->private) 1652 */ 1653static inline pgoff_t page_index(struct page *page) 1654{ 1655 if (unlikely(PageSwapCache(page))) 1656 return __page_file_index(page); 1657 return page->index; 1658} 1659 1660bool page_mapped(struct page *page); 1661struct address_space *page_mapping(struct page *page); 1662 1663/* 1664 * Return true only if the page has been allocated with 1665 * ALLOC_NO_WATERMARKS and the low watermark was not 1666 * met implying that the system is under some pressure. 1667 */ 1668static inline bool page_is_pfmemalloc(const struct page *page) 1669{ 1670 /* 1671 * Page index cannot be this large so this must be 1672 * a pfmemalloc page. 1673 */ 1674 return page->index == -1UL; 1675} 1676 1677/* 1678 * Only to be called by the page allocator on a freshly allocated 1679 * page. 1680 */ 1681static inline void set_page_pfmemalloc(struct page *page) 1682{ 1683 page->index = -1UL; 1684} 1685 1686static inline void clear_page_pfmemalloc(struct page *page) 1687{ 1688 page->index = 0; 1689} 1690 1691/* 1692 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1693 */ 1694extern void pagefault_out_of_memory(void); 1695 1696#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1697#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1)) 1698 1699/* 1700 * Flags passed to show_mem() and show_free_areas() to suppress output in 1701 * various contexts. 1702 */ 1703#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1704 1705extern void show_free_areas(unsigned int flags, nodemask_t *nodemask); 1706 1707#ifdef CONFIG_MMU 1708extern bool can_do_mlock(void); 1709#else 1710static inline bool can_do_mlock(void) { return false; } 1711#endif 1712extern int user_shm_lock(size_t, struct user_struct *); 1713extern void user_shm_unlock(size_t, struct user_struct *); 1714 1715/* 1716 * Parameter block passed down to zap_pte_range in exceptional cases. 1717 */ 1718struct zap_details { 1719 struct address_space *check_mapping; /* Check page->mapping if set */ 1720 pgoff_t first_index; /* Lowest page->index to unmap */ 1721 pgoff_t last_index; /* Highest page->index to unmap */ 1722}; 1723 1724struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1725 pte_t pte); 1726struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1727 pmd_t pmd); 1728 1729void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1730 unsigned long size); 1731void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1732 unsigned long size); 1733void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1734 unsigned long start, unsigned long end); 1735 1736struct mmu_notifier_range; 1737 1738void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1739 unsigned long end, unsigned long floor, unsigned long ceiling); 1740int 1741copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); 1742int follow_invalidate_pte(struct mm_struct *mm, unsigned long address, 1743 struct mmu_notifier_range *range, pte_t **ptepp, 1744 pmd_t **pmdpp, spinlock_t **ptlp); 1745int follow_pte(struct mm_struct *mm, unsigned long address, 1746 pte_t **ptepp, spinlock_t **ptlp); 1747int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1748 unsigned long *pfn); 1749int follow_phys(struct vm_area_struct *vma, unsigned long address, 1750 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1751int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1752 void *buf, int len, int write); 1753 1754extern void truncate_pagecache(struct inode *inode, loff_t new); 1755extern void truncate_setsize(struct inode *inode, loff_t newsize); 1756void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1757void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1758int truncate_inode_page(struct address_space *mapping, struct page *page); 1759int generic_error_remove_page(struct address_space *mapping, struct page *page); 1760int invalidate_inode_page(struct page *page); 1761 1762#ifdef CONFIG_MMU 1763extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1764 unsigned long address, unsigned int flags, 1765 struct pt_regs *regs); 1766extern int fixup_user_fault(struct mm_struct *mm, 1767 unsigned long address, unsigned int fault_flags, 1768 bool *unlocked); 1769void unmap_mapping_pages(struct address_space *mapping, 1770 pgoff_t start, pgoff_t nr, bool even_cows); 1771void unmap_mapping_range(struct address_space *mapping, 1772 loff_t const holebegin, loff_t const holelen, int even_cows); 1773#else 1774static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1775 unsigned long address, unsigned int flags, 1776 struct pt_regs *regs) 1777{ 1778 /* should never happen if there's no MMU */ 1779 BUG(); 1780 return VM_FAULT_SIGBUS; 1781} 1782static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, 1783 unsigned int fault_flags, bool *unlocked) 1784{ 1785 /* should never happen if there's no MMU */ 1786 BUG(); 1787 return -EFAULT; 1788} 1789static inline void unmap_mapping_pages(struct address_space *mapping, 1790 pgoff_t start, pgoff_t nr, bool even_cows) { } 1791static inline void unmap_mapping_range(struct address_space *mapping, 1792 loff_t const holebegin, loff_t const holelen, int even_cows) { } 1793#endif 1794 1795static inline void unmap_shared_mapping_range(struct address_space *mapping, 1796 loff_t const holebegin, loff_t const holelen) 1797{ 1798 unmap_mapping_range(mapping, holebegin, holelen, 0); 1799} 1800 1801extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 1802 void *buf, int len, unsigned int gup_flags); 1803extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1804 void *buf, int len, unsigned int gup_flags); 1805extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr, 1806 void *buf, int len, unsigned int gup_flags); 1807 1808long get_user_pages_remote(struct mm_struct *mm, 1809 unsigned long start, unsigned long nr_pages, 1810 unsigned int gup_flags, struct page **pages, 1811 struct vm_area_struct **vmas, int *locked); 1812long pin_user_pages_remote(struct mm_struct *mm, 1813 unsigned long start, unsigned long nr_pages, 1814 unsigned int gup_flags, struct page **pages, 1815 struct vm_area_struct **vmas, int *locked); 1816long get_user_pages(unsigned long start, unsigned long nr_pages, 1817 unsigned int gup_flags, struct page **pages, 1818 struct vm_area_struct **vmas); 1819long pin_user_pages(unsigned long start, unsigned long nr_pages, 1820 unsigned int gup_flags, struct page **pages, 1821 struct vm_area_struct **vmas); 1822long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1823 unsigned int gup_flags, struct page **pages, int *locked); 1824long pin_user_pages_locked(unsigned long start, unsigned long nr_pages, 1825 unsigned int gup_flags, struct page **pages, int *locked); 1826long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1827 struct page **pages, unsigned int gup_flags); 1828long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1829 struct page **pages, unsigned int gup_flags); 1830 1831int get_user_pages_fast(unsigned long start, int nr_pages, 1832 unsigned int gup_flags, struct page **pages); 1833int pin_user_pages_fast(unsigned long start, int nr_pages, 1834 unsigned int gup_flags, struct page **pages); 1835 1836int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 1837int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 1838 struct task_struct *task, bool bypass_rlim); 1839 1840struct kvec; 1841int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1842 struct page **pages); 1843int get_kernel_page(unsigned long start, int write, struct page **pages); 1844struct page *get_dump_page(unsigned long addr); 1845 1846extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1847extern void do_invalidatepage(struct page *page, unsigned int offset, 1848 unsigned int length); 1849 1850void __set_page_dirty(struct page *, struct address_space *, int warn); 1851int __set_page_dirty_nobuffers(struct page *page); 1852int __set_page_dirty_no_writeback(struct page *page); 1853int redirty_page_for_writepage(struct writeback_control *wbc, 1854 struct page *page); 1855void account_page_dirtied(struct page *page, struct address_space *mapping); 1856void account_page_cleaned(struct page *page, struct address_space *mapping, 1857 struct bdi_writeback *wb); 1858int set_page_dirty(struct page *page); 1859int set_page_dirty_lock(struct page *page); 1860void __cancel_dirty_page(struct page *page); 1861static inline void cancel_dirty_page(struct page *page) 1862{ 1863 /* Avoid atomic ops, locking, etc. when not actually needed. */ 1864 if (PageDirty(page)) 1865 __cancel_dirty_page(page); 1866} 1867int clear_page_dirty_for_io(struct page *page); 1868 1869int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1870 1871extern unsigned long move_page_tables(struct vm_area_struct *vma, 1872 unsigned long old_addr, struct vm_area_struct *new_vma, 1873 unsigned long new_addr, unsigned long len, 1874 bool need_rmap_locks); 1875 1876/* 1877 * Flags used by change_protection(). For now we make it a bitmap so 1878 * that we can pass in multiple flags just like parameters. However 1879 * for now all the callers are only use one of the flags at the same 1880 * time. 1881 */ 1882/* Whether we should allow dirty bit accounting */ 1883#define MM_CP_DIRTY_ACCT (1UL << 0) 1884/* Whether this protection change is for NUMA hints */ 1885#define MM_CP_PROT_NUMA (1UL << 1) 1886/* Whether this change is for write protecting */ 1887#define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 1888#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 1889#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 1890 MM_CP_UFFD_WP_RESOLVE) 1891 1892extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1893 unsigned long end, pgprot_t newprot, 1894 unsigned long cp_flags); 1895extern int mprotect_fixup(struct vm_area_struct *vma, 1896 struct vm_area_struct **pprev, unsigned long start, 1897 unsigned long end, unsigned long newflags); 1898 1899/* 1900 * doesn't attempt to fault and will return short. 1901 */ 1902int get_user_pages_fast_only(unsigned long start, int nr_pages, 1903 unsigned int gup_flags, struct page **pages); 1904int pin_user_pages_fast_only(unsigned long start, int nr_pages, 1905 unsigned int gup_flags, struct page **pages); 1906 1907static inline bool get_user_page_fast_only(unsigned long addr, 1908 unsigned int gup_flags, struct page **pagep) 1909{ 1910 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; 1911} 1912/* 1913 * per-process(per-mm_struct) statistics. 1914 */ 1915static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1916{ 1917 long val = atomic_long_read(&mm->rss_stat.count[member]); 1918 1919#ifdef SPLIT_RSS_COUNTING 1920 /* 1921 * counter is updated in asynchronous manner and may go to minus. 1922 * But it's never be expected number for users. 1923 */ 1924 if (val < 0) 1925 val = 0; 1926#endif 1927 return (unsigned long)val; 1928} 1929 1930void mm_trace_rss_stat(struct mm_struct *mm, int member, long count); 1931 1932static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1933{ 1934 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]); 1935 1936 mm_trace_rss_stat(mm, member, count); 1937} 1938 1939static inline void inc_mm_counter(struct mm_struct *mm, int member) 1940{ 1941 long count = atomic_long_inc_return(&mm->rss_stat.count[member]); 1942 1943 mm_trace_rss_stat(mm, member, count); 1944} 1945 1946static inline void dec_mm_counter(struct mm_struct *mm, int member) 1947{ 1948 long count = atomic_long_dec_return(&mm->rss_stat.count[member]); 1949 1950 mm_trace_rss_stat(mm, member, count); 1951} 1952 1953/* Optimized variant when page is already known not to be PageAnon */ 1954static inline int mm_counter_file(struct page *page) 1955{ 1956 if (PageSwapBacked(page)) 1957 return MM_SHMEMPAGES; 1958 return MM_FILEPAGES; 1959} 1960 1961static inline int mm_counter(struct page *page) 1962{ 1963 if (PageAnon(page)) 1964 return MM_ANONPAGES; 1965 return mm_counter_file(page); 1966} 1967 1968static inline unsigned long get_mm_rss(struct mm_struct *mm) 1969{ 1970 return get_mm_counter(mm, MM_FILEPAGES) + 1971 get_mm_counter(mm, MM_ANONPAGES) + 1972 get_mm_counter(mm, MM_SHMEMPAGES); 1973} 1974 1975static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1976{ 1977 return max(mm->hiwater_rss, get_mm_rss(mm)); 1978} 1979 1980static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1981{ 1982 return max(mm->hiwater_vm, mm->total_vm); 1983} 1984 1985static inline void update_hiwater_rss(struct mm_struct *mm) 1986{ 1987 unsigned long _rss = get_mm_rss(mm); 1988 1989 if ((mm)->hiwater_rss < _rss) 1990 (mm)->hiwater_rss = _rss; 1991} 1992 1993static inline void update_hiwater_vm(struct mm_struct *mm) 1994{ 1995 if (mm->hiwater_vm < mm->total_vm) 1996 mm->hiwater_vm = mm->total_vm; 1997} 1998 1999static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 2000{ 2001 mm->hiwater_rss = get_mm_rss(mm); 2002} 2003 2004static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 2005 struct mm_struct *mm) 2006{ 2007 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 2008 2009 if (*maxrss < hiwater_rss) 2010 *maxrss = hiwater_rss; 2011} 2012 2013#if defined(SPLIT_RSS_COUNTING) 2014void sync_mm_rss(struct mm_struct *mm); 2015#else 2016static inline void sync_mm_rss(struct mm_struct *mm) 2017{ 2018} 2019#endif 2020 2021#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 2022static inline int pte_special(pte_t pte) 2023{ 2024 return 0; 2025} 2026 2027static inline pte_t pte_mkspecial(pte_t pte) 2028{ 2029 return pte; 2030} 2031#endif 2032 2033#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 2034static inline int pte_devmap(pte_t pte) 2035{ 2036 return 0; 2037} 2038#endif 2039 2040int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 2041 2042extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2043 spinlock_t **ptl); 2044static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 2045 spinlock_t **ptl) 2046{ 2047 pte_t *ptep; 2048 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 2049 return ptep; 2050} 2051 2052#ifdef __PAGETABLE_P4D_FOLDED 2053static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2054 unsigned long address) 2055{ 2056 return 0; 2057} 2058#else 2059int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 2060#endif 2061 2062#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 2063static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2064 unsigned long address) 2065{ 2066 return 0; 2067} 2068static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 2069static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 2070 2071#else 2072int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 2073 2074static inline void mm_inc_nr_puds(struct mm_struct *mm) 2075{ 2076 if (mm_pud_folded(mm)) 2077 return; 2078 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2079} 2080 2081static inline void mm_dec_nr_puds(struct mm_struct *mm) 2082{ 2083 if (mm_pud_folded(mm)) 2084 return; 2085 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2086} 2087#endif 2088 2089#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 2090static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 2091 unsigned long address) 2092{ 2093 return 0; 2094} 2095 2096static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 2097static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 2098 2099#else 2100int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 2101 2102static inline void mm_inc_nr_pmds(struct mm_struct *mm) 2103{ 2104 if (mm_pmd_folded(mm)) 2105 return; 2106 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2107} 2108 2109static inline void mm_dec_nr_pmds(struct mm_struct *mm) 2110{ 2111 if (mm_pmd_folded(mm)) 2112 return; 2113 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2114} 2115#endif 2116 2117#ifdef CONFIG_MMU 2118static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 2119{ 2120 atomic_long_set(&mm->pgtables_bytes, 0); 2121} 2122 2123static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2124{ 2125 return atomic_long_read(&mm->pgtables_bytes); 2126} 2127 2128static inline void mm_inc_nr_ptes(struct mm_struct *mm) 2129{ 2130 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2131} 2132 2133static inline void mm_dec_nr_ptes(struct mm_struct *mm) 2134{ 2135 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2136} 2137#else 2138 2139static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 2140static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2141{ 2142 return 0; 2143} 2144 2145static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 2146static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 2147#endif 2148 2149int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 2150int __pte_alloc_kernel(pmd_t *pmd); 2151 2152#if defined(CONFIG_MMU) 2153 2154static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2155 unsigned long address) 2156{ 2157 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 2158 NULL : p4d_offset(pgd, address); 2159} 2160 2161static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2162 unsigned long address) 2163{ 2164 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 2165 NULL : pud_offset(p4d, address); 2166} 2167 2168static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2169{ 2170 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 2171 NULL: pmd_offset(pud, address); 2172} 2173#endif /* CONFIG_MMU */ 2174 2175#if USE_SPLIT_PTE_PTLOCKS 2176#if ALLOC_SPLIT_PTLOCKS 2177void __init ptlock_cache_init(void); 2178extern bool ptlock_alloc(struct page *page); 2179extern void ptlock_free(struct page *page); 2180 2181static inline spinlock_t *ptlock_ptr(struct page *page) 2182{ 2183 return page->ptl; 2184} 2185#else /* ALLOC_SPLIT_PTLOCKS */ 2186static inline void ptlock_cache_init(void) 2187{ 2188} 2189 2190static inline bool ptlock_alloc(struct page *page) 2191{ 2192 return true; 2193} 2194 2195static inline void ptlock_free(struct page *page) 2196{ 2197} 2198 2199static inline spinlock_t *ptlock_ptr(struct page *page) 2200{ 2201 return &page->ptl; 2202} 2203#endif /* ALLOC_SPLIT_PTLOCKS */ 2204 2205static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2206{ 2207 return ptlock_ptr(pmd_page(*pmd)); 2208} 2209 2210static inline bool ptlock_init(struct page *page) 2211{ 2212 /* 2213 * prep_new_page() initialize page->private (and therefore page->ptl) 2214 * with 0. Make sure nobody took it in use in between. 2215 * 2216 * It can happen if arch try to use slab for page table allocation: 2217 * slab code uses page->slab_cache, which share storage with page->ptl. 2218 */ 2219 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 2220 if (!ptlock_alloc(page)) 2221 return false; 2222 spin_lock_init(ptlock_ptr(page)); 2223 return true; 2224} 2225 2226#else /* !USE_SPLIT_PTE_PTLOCKS */ 2227/* 2228 * We use mm->page_table_lock to guard all pagetable pages of the mm. 2229 */ 2230static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2231{ 2232 return &mm->page_table_lock; 2233} 2234static inline void ptlock_cache_init(void) {} 2235static inline bool ptlock_init(struct page *page) { return true; } 2236static inline void ptlock_free(struct page *page) {} 2237#endif /* USE_SPLIT_PTE_PTLOCKS */ 2238 2239static inline void pgtable_init(void) 2240{ 2241 ptlock_cache_init(); 2242 pgtable_cache_init(); 2243} 2244 2245static inline bool pgtable_pte_page_ctor(struct page *page) 2246{ 2247 if (!ptlock_init(page)) 2248 return false; 2249 __SetPageTable(page); 2250 inc_lruvec_page_state(page, NR_PAGETABLE); 2251 return true; 2252} 2253 2254static inline void pgtable_pte_page_dtor(struct page *page) 2255{ 2256 ptlock_free(page); 2257 __ClearPageTable(page); 2258 dec_lruvec_page_state(page, NR_PAGETABLE); 2259} 2260 2261#define pte_offset_map_lock(mm, pmd, address, ptlp) \ 2262({ \ 2263 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 2264 pte_t *__pte = pte_offset_map(pmd, address); \ 2265 *(ptlp) = __ptl; \ 2266 spin_lock(__ptl); \ 2267 __pte; \ 2268}) 2269 2270#define pte_unmap_unlock(pte, ptl) do { \ 2271 spin_unlock(ptl); \ 2272 pte_unmap(pte); \ 2273} while (0) 2274 2275#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 2276 2277#define pte_alloc_map(mm, pmd, address) \ 2278 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 2279 2280#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 2281 (pte_alloc(mm, pmd) ? \ 2282 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 2283 2284#define pte_alloc_kernel(pmd, address) \ 2285 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 2286 NULL: pte_offset_kernel(pmd, address)) 2287 2288#if USE_SPLIT_PMD_PTLOCKS 2289 2290static struct page *pmd_to_page(pmd_t *pmd) 2291{ 2292 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 2293 return virt_to_page((void *)((unsigned long) pmd & mask)); 2294} 2295 2296static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2297{ 2298 return ptlock_ptr(pmd_to_page(pmd)); 2299} 2300 2301static inline bool pmd_ptlock_init(struct page *page) 2302{ 2303#ifdef CONFIG_TRANSPARENT_HUGEPAGE 2304 page->pmd_huge_pte = NULL; 2305#endif 2306 return ptlock_init(page); 2307} 2308 2309static inline void pmd_ptlock_free(struct page *page) 2310{ 2311#ifdef CONFIG_TRANSPARENT_HUGEPAGE 2312 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 2313#endif 2314 ptlock_free(page); 2315} 2316 2317#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 2318 2319#else 2320 2321static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2322{ 2323 return &mm->page_table_lock; 2324} 2325 2326static inline bool pmd_ptlock_init(struct page *page) { return true; } 2327static inline void pmd_ptlock_free(struct page *page) {} 2328 2329#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 2330 2331#endif 2332 2333static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 2334{ 2335 spinlock_t *ptl = pmd_lockptr(mm, pmd); 2336 spin_lock(ptl); 2337 return ptl; 2338} 2339 2340static inline bool pgtable_pmd_page_ctor(struct page *page) 2341{ 2342 if (!pmd_ptlock_init(page)) 2343 return false; 2344 __SetPageTable(page); 2345 inc_lruvec_page_state(page, NR_PAGETABLE); 2346 return true; 2347} 2348 2349static inline void pgtable_pmd_page_dtor(struct page *page) 2350{ 2351 pmd_ptlock_free(page); 2352 __ClearPageTable(page); 2353 dec_lruvec_page_state(page, NR_PAGETABLE); 2354} 2355 2356/* 2357 * No scalability reason to split PUD locks yet, but follow the same pattern 2358 * as the PMD locks to make it easier if we decide to. The VM should not be 2359 * considered ready to switch to split PUD locks yet; there may be places 2360 * which need to be converted from page_table_lock. 2361 */ 2362static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 2363{ 2364 return &mm->page_table_lock; 2365} 2366 2367static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 2368{ 2369 spinlock_t *ptl = pud_lockptr(mm, pud); 2370 2371 spin_lock(ptl); 2372 return ptl; 2373} 2374 2375extern void __init pagecache_init(void); 2376extern void __init free_area_init_memoryless_node(int nid); 2377extern void free_initmem(void); 2378 2379/* 2380 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 2381 * into the buddy system. The freed pages will be poisoned with pattern 2382 * "poison" if it's within range [0, UCHAR_MAX]. 2383 * Return pages freed into the buddy system. 2384 */ 2385extern unsigned long free_reserved_area(void *start, void *end, 2386 int poison, const char *s); 2387 2388extern void adjust_managed_page_count(struct page *page, long count); 2389extern void mem_init_print_info(void); 2390 2391extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 2392 2393/* Free the reserved page into the buddy system, so it gets managed. */ 2394static inline void free_reserved_page(struct page *page) 2395{ 2396 ClearPageReserved(page); 2397 init_page_count(page); 2398 __free_page(page); 2399 adjust_managed_page_count(page, 1); 2400} 2401#define free_highmem_page(page) free_reserved_page(page) 2402 2403static inline void mark_page_reserved(struct page *page) 2404{ 2405 SetPageReserved(page); 2406 adjust_managed_page_count(page, -1); 2407} 2408 2409/* 2410 * Default method to free all the __init memory into the buddy system. 2411 * The freed pages will be poisoned with pattern "poison" if it's within 2412 * range [0, UCHAR_MAX]. 2413 * Return pages freed into the buddy system. 2414 */ 2415static inline unsigned long free_initmem_default(int poison) 2416{ 2417 extern char __init_begin[], __init_end[]; 2418 2419 return free_reserved_area(&__init_begin, &__init_end, 2420 poison, "unused kernel"); 2421} 2422 2423static inline unsigned long get_num_physpages(void) 2424{ 2425 int nid; 2426 unsigned long phys_pages = 0; 2427 2428 for_each_online_node(nid) 2429 phys_pages += node_present_pages(nid); 2430 2431 return phys_pages; 2432} 2433 2434/* 2435 * Using memblock node mappings, an architecture may initialise its 2436 * zones, allocate the backing mem_map and account for memory holes in an 2437 * architecture independent manner. 2438 * 2439 * An architecture is expected to register range of page frames backed by 2440 * physical memory with memblock_add[_node]() before calling 2441 * free_area_init() passing in the PFN each zone ends at. At a basic 2442 * usage, an architecture is expected to do something like 2443 * 2444 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 2445 * max_highmem_pfn}; 2446 * for_each_valid_physical_page_range() 2447 * memblock_add_node(base, size, nid) 2448 * free_area_init(max_zone_pfns); 2449 */ 2450void free_area_init(unsigned long *max_zone_pfn); 2451unsigned long node_map_pfn_alignment(void); 2452unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 2453 unsigned long end_pfn); 2454extern unsigned long absent_pages_in_range(unsigned long start_pfn, 2455 unsigned long end_pfn); 2456extern void get_pfn_range_for_nid(unsigned int nid, 2457 unsigned long *start_pfn, unsigned long *end_pfn); 2458extern unsigned long find_min_pfn_with_active_regions(void); 2459 2460#ifndef CONFIG_NEED_MULTIPLE_NODES 2461static inline int early_pfn_to_nid(unsigned long pfn) 2462{ 2463 return 0; 2464} 2465#else 2466/* please see mm/page_alloc.c */ 2467extern int __meminit early_pfn_to_nid(unsigned long pfn); 2468#endif 2469 2470extern void set_dma_reserve(unsigned long new_dma_reserve); 2471extern void memmap_init_range(unsigned long, int, unsigned long, 2472 unsigned long, unsigned long, enum meminit_context, 2473 struct vmem_altmap *, int migratetype); 2474extern void memmap_init_zone(struct zone *zone); 2475extern void setup_per_zone_wmarks(void); 2476extern int __meminit init_per_zone_wmark_min(void); 2477extern void mem_init(void); 2478extern void __init mmap_init(void); 2479extern void show_mem(unsigned int flags, nodemask_t *nodemask); 2480extern long si_mem_available(void); 2481extern void si_meminfo(struct sysinfo * val); 2482extern void si_meminfo_node(struct sysinfo *val, int nid); 2483#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 2484extern unsigned long arch_reserved_kernel_pages(void); 2485#endif 2486 2487extern __printf(3, 4) 2488void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 2489 2490extern void setup_per_cpu_pageset(void); 2491 2492/* page_alloc.c */ 2493extern int min_free_kbytes; 2494extern int watermark_boost_factor; 2495extern int watermark_scale_factor; 2496extern bool arch_has_descending_max_zone_pfns(void); 2497 2498/* nommu.c */ 2499extern atomic_long_t mmap_pages_allocated; 2500extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 2501 2502/* interval_tree.c */ 2503void vma_interval_tree_insert(struct vm_area_struct *node, 2504 struct rb_root_cached *root); 2505void vma_interval_tree_insert_after(struct vm_area_struct *node, 2506 struct vm_area_struct *prev, 2507 struct rb_root_cached *root); 2508void vma_interval_tree_remove(struct vm_area_struct *node, 2509 struct rb_root_cached *root); 2510struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 2511 unsigned long start, unsigned long last); 2512struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 2513 unsigned long start, unsigned long last); 2514 2515#define vma_interval_tree_foreach(vma, root, start, last) \ 2516 for (vma = vma_interval_tree_iter_first(root, start, last); \ 2517 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 2518 2519void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 2520 struct rb_root_cached *root); 2521void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 2522 struct rb_root_cached *root); 2523struct anon_vma_chain * 2524anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 2525 unsigned long start, unsigned long last); 2526struct anon_vma_chain *anon_vma_interval_tree_iter_next( 2527 struct anon_vma_chain *node, unsigned long start, unsigned long last); 2528#ifdef CONFIG_DEBUG_VM_RB 2529void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 2530#endif 2531 2532#define anon_vma_interval_tree_foreach(avc, root, start, last) \ 2533 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 2534 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 2535 2536/* mmap.c */ 2537extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 2538extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 2539 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 2540 struct vm_area_struct *expand); 2541static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, 2542 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 2543{ 2544 return __vma_adjust(vma, start, end, pgoff, insert, NULL); 2545} 2546extern struct vm_area_struct *vma_merge(struct mm_struct *, 2547 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 2548 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 2549 struct mempolicy *, struct vm_userfaultfd_ctx); 2550extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 2551extern int __split_vma(struct mm_struct *, struct vm_area_struct *, 2552 unsigned long addr, int new_below); 2553extern int split_vma(struct mm_struct *, struct vm_area_struct *, 2554 unsigned long addr, int new_below); 2555extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 2556extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 2557 struct rb_node **, struct rb_node *); 2558extern void unlink_file_vma(struct vm_area_struct *); 2559extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 2560 unsigned long addr, unsigned long len, pgoff_t pgoff, 2561 bool *need_rmap_locks); 2562extern void exit_mmap(struct mm_struct *); 2563 2564static inline int check_data_rlimit(unsigned long rlim, 2565 unsigned long new, 2566 unsigned long start, 2567 unsigned long end_data, 2568 unsigned long start_data) 2569{ 2570 if (rlim < RLIM_INFINITY) { 2571 if (((new - start) + (end_data - start_data)) > rlim) 2572 return -ENOSPC; 2573 } 2574 2575 return 0; 2576} 2577 2578extern int mm_take_all_locks(struct mm_struct *mm); 2579extern void mm_drop_all_locks(struct mm_struct *mm); 2580 2581extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2582extern struct file *get_mm_exe_file(struct mm_struct *mm); 2583extern struct file *get_task_exe_file(struct task_struct *task); 2584 2585extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 2586extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 2587 2588extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 2589 const struct vm_special_mapping *sm); 2590extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 2591 unsigned long addr, unsigned long len, 2592 unsigned long flags, 2593 const struct vm_special_mapping *spec); 2594/* This is an obsolete alternative to _install_special_mapping. */ 2595extern int install_special_mapping(struct mm_struct *mm, 2596 unsigned long addr, unsigned long len, 2597 unsigned long flags, struct page **pages); 2598 2599unsigned long randomize_stack_top(unsigned long stack_top); 2600 2601extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2602 2603extern unsigned long mmap_region(struct file *file, unsigned long addr, 2604 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2605 struct list_head *uf); 2606extern unsigned long do_mmap(struct file *file, unsigned long addr, 2607 unsigned long len, unsigned long prot, unsigned long flags, 2608 unsigned long pgoff, unsigned long *populate, struct list_head *uf); 2609extern int __do_munmap(struct mm_struct *, unsigned long, size_t, 2610 struct list_head *uf, bool downgrade); 2611extern int do_munmap(struct mm_struct *, unsigned long, size_t, 2612 struct list_head *uf); 2613extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior); 2614 2615#ifdef CONFIG_MMU 2616extern int __mm_populate(unsigned long addr, unsigned long len, 2617 int ignore_errors); 2618static inline void mm_populate(unsigned long addr, unsigned long len) 2619{ 2620 /* Ignore errors */ 2621 (void) __mm_populate(addr, len, 1); 2622} 2623#else 2624static inline void mm_populate(unsigned long addr, unsigned long len) {} 2625#endif 2626 2627/* These take the mm semaphore themselves */ 2628extern int __must_check vm_brk(unsigned long, unsigned long); 2629extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 2630extern int vm_munmap(unsigned long, size_t); 2631extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 2632 unsigned long, unsigned long, 2633 unsigned long, unsigned long); 2634 2635struct vm_unmapped_area_info { 2636#define VM_UNMAPPED_AREA_TOPDOWN 1 2637 unsigned long flags; 2638 unsigned long length; 2639 unsigned long low_limit; 2640 unsigned long high_limit; 2641 unsigned long align_mask; 2642 unsigned long align_offset; 2643}; 2644 2645extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 2646 2647/* truncate.c */ 2648extern void truncate_inode_pages(struct address_space *, loff_t); 2649extern void truncate_inode_pages_range(struct address_space *, 2650 loff_t lstart, loff_t lend); 2651extern void truncate_inode_pages_final(struct address_space *); 2652 2653/* generic vm_area_ops exported for stackable file systems */ 2654extern vm_fault_t filemap_fault(struct vm_fault *vmf); 2655extern vm_fault_t filemap_map_pages(struct vm_fault *vmf, 2656 pgoff_t start_pgoff, pgoff_t end_pgoff); 2657extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 2658 2659/* mm/page-writeback.c */ 2660int __must_check write_one_page(struct page *page); 2661void task_dirty_inc(struct task_struct *tsk); 2662 2663extern unsigned long stack_guard_gap; 2664/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2665extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2666 2667/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */ 2668extern int expand_downwards(struct vm_area_struct *vma, 2669 unsigned long address); 2670#if VM_GROWSUP 2671extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2672#else 2673 #define expand_upwards(vma, address) (0) 2674#endif 2675 2676/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2677extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2678extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2679 struct vm_area_struct **pprev); 2680 2681/* Look up the first VMA which intersects the interval start_addr..end_addr-1, 2682 NULL if none. Assume start_addr < end_addr. */ 2683static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 2684{ 2685 struct vm_area_struct * vma = find_vma(mm,start_addr); 2686 2687 if (vma && end_addr <= vma->vm_start) 2688 vma = NULL; 2689 return vma; 2690} 2691 2692static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 2693{ 2694 unsigned long vm_start = vma->vm_start; 2695 2696 if (vma->vm_flags & VM_GROWSDOWN) { 2697 vm_start -= stack_guard_gap; 2698 if (vm_start > vma->vm_start) 2699 vm_start = 0; 2700 } 2701 return vm_start; 2702} 2703 2704static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 2705{ 2706 unsigned long vm_end = vma->vm_end; 2707 2708 if (vma->vm_flags & VM_GROWSUP) { 2709 vm_end += stack_guard_gap; 2710 if (vm_end < vma->vm_end) 2711 vm_end = -PAGE_SIZE; 2712 } 2713 return vm_end; 2714} 2715 2716static inline unsigned long vma_pages(struct vm_area_struct *vma) 2717{ 2718 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2719} 2720 2721/* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2722static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2723 unsigned long vm_start, unsigned long vm_end) 2724{ 2725 struct vm_area_struct *vma = find_vma(mm, vm_start); 2726 2727 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2728 vma = NULL; 2729 2730 return vma; 2731} 2732 2733static inline bool range_in_vma(struct vm_area_struct *vma, 2734 unsigned long start, unsigned long end) 2735{ 2736 return (vma && vma->vm_start <= start && end <= vma->vm_end); 2737} 2738 2739#ifdef CONFIG_MMU 2740pgprot_t vm_get_page_prot(unsigned long vm_flags); 2741void vma_set_page_prot(struct vm_area_struct *vma); 2742#else 2743static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2744{ 2745 return __pgprot(0); 2746} 2747static inline void vma_set_page_prot(struct vm_area_struct *vma) 2748{ 2749 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2750} 2751#endif 2752 2753void vma_set_file(struct vm_area_struct *vma, struct file *file); 2754 2755#ifdef CONFIG_NUMA_BALANCING 2756unsigned long change_prot_numa(struct vm_area_struct *vma, 2757 unsigned long start, unsigned long end); 2758#endif 2759 2760struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2761int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2762 unsigned long pfn, unsigned long size, pgprot_t); 2763int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 2764 unsigned long pfn, unsigned long size, pgprot_t prot); 2765int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2766int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 2767 struct page **pages, unsigned long *num); 2768int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2769 unsigned long num); 2770int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2771 unsigned long num); 2772vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2773 unsigned long pfn); 2774vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2775 unsigned long pfn, pgprot_t pgprot); 2776vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2777 pfn_t pfn); 2778vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, 2779 pfn_t pfn, pgprot_t pgprot); 2780vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2781 unsigned long addr, pfn_t pfn); 2782int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2783 2784static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 2785 unsigned long addr, struct page *page) 2786{ 2787 int err = vm_insert_page(vma, addr, page); 2788 2789 if (err == -ENOMEM) 2790 return VM_FAULT_OOM; 2791 if (err < 0 && err != -EBUSY) 2792 return VM_FAULT_SIGBUS; 2793 2794 return VM_FAULT_NOPAGE; 2795} 2796 2797#ifndef io_remap_pfn_range 2798static inline int io_remap_pfn_range(struct vm_area_struct *vma, 2799 unsigned long addr, unsigned long pfn, 2800 unsigned long size, pgprot_t prot) 2801{ 2802 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot)); 2803} 2804#endif 2805 2806static inline vm_fault_t vmf_error(int err) 2807{ 2808 if (err == -ENOMEM) 2809 return VM_FAULT_OOM; 2810 return VM_FAULT_SIGBUS; 2811} 2812 2813struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 2814 unsigned int foll_flags); 2815 2816#define FOLL_WRITE 0x01 /* check pte is writable */ 2817#define FOLL_TOUCH 0x02 /* mark page accessed */ 2818#define FOLL_GET 0x04 /* do get_page on page */ 2819#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2820#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2821#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2822 * and return without waiting upon it */ 2823#define FOLL_POPULATE 0x40 /* fault in page */ 2824#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2825#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2826#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2827#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2828#define FOLL_MLOCK 0x1000 /* lock present pages */ 2829#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 2830#define FOLL_COW 0x4000 /* internal GUP flag */ 2831#define FOLL_ANON 0x8000 /* don't do file mappings */ 2832#define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */ 2833#define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */ 2834#define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */ 2835#define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */ 2836 2837/* 2838 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each 2839 * other. Here is what they mean, and how to use them: 2840 * 2841 * FOLL_LONGTERM indicates that the page will be held for an indefinite time 2842 * period _often_ under userspace control. This is in contrast to 2843 * iov_iter_get_pages(), whose usages are transient. 2844 * 2845 * FIXME: For pages which are part of a filesystem, mappings are subject to the 2846 * lifetime enforced by the filesystem and we need guarantees that longterm 2847 * users like RDMA and V4L2 only establish mappings which coordinate usage with 2848 * the filesystem. Ideas for this coordination include revoking the longterm 2849 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was 2850 * added after the problem with filesystems was found FS DAX VMAs are 2851 * specifically failed. Filesystem pages are still subject to bugs and use of 2852 * FOLL_LONGTERM should be avoided on those pages. 2853 * 2854 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call. 2855 * Currently only get_user_pages() and get_user_pages_fast() support this flag 2856 * and calls to get_user_pages_[un]locked are specifically not allowed. This 2857 * is due to an incompatibility with the FS DAX check and 2858 * FAULT_FLAG_ALLOW_RETRY. 2859 * 2860 * In the CMA case: long term pins in a CMA region would unnecessarily fragment 2861 * that region. And so, CMA attempts to migrate the page before pinning, when 2862 * FOLL_LONGTERM is specified. 2863 * 2864 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount, 2865 * but an additional pin counting system) will be invoked. This is intended for 2866 * anything that gets a page reference and then touches page data (for example, 2867 * Direct IO). This lets the filesystem know that some non-file-system entity is 2868 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages 2869 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by 2870 * a call to unpin_user_page(). 2871 * 2872 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different 2873 * and separate refcounting mechanisms, however, and that means that each has 2874 * its own acquire and release mechanisms: 2875 * 2876 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release. 2877 * 2878 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release. 2879 * 2880 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call. 2881 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based 2882 * calls applied to them, and that's perfectly OK. This is a constraint on the 2883 * callers, not on the pages.) 2884 * 2885 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never 2886 * directly by the caller. That's in order to help avoid mismatches when 2887 * releasing pages: get_user_pages*() pages must be released via put_page(), 2888 * while pin_user_pages*() pages must be released via unpin_user_page(). 2889 * 2890 * Please see Documentation/core-api/pin_user_pages.rst for more information. 2891 */ 2892 2893static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 2894{ 2895 if (vm_fault & VM_FAULT_OOM) 2896 return -ENOMEM; 2897 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 2898 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 2899 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 2900 return -EFAULT; 2901 return 0; 2902} 2903 2904typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 2905extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2906 unsigned long size, pte_fn_t fn, void *data); 2907extern int apply_to_existing_page_range(struct mm_struct *mm, 2908 unsigned long address, unsigned long size, 2909 pte_fn_t fn, void *data); 2910 2911extern void init_mem_debugging_and_hardening(void); 2912#ifdef CONFIG_PAGE_POISONING 2913extern void __kernel_poison_pages(struct page *page, int numpages); 2914extern void __kernel_unpoison_pages(struct page *page, int numpages); 2915extern bool _page_poisoning_enabled_early; 2916DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled); 2917static inline bool page_poisoning_enabled(void) 2918{ 2919 return _page_poisoning_enabled_early; 2920} 2921/* 2922 * For use in fast paths after init_mem_debugging() has run, or when a 2923 * false negative result is not harmful when called too early. 2924 */ 2925static inline bool page_poisoning_enabled_static(void) 2926{ 2927 return static_branch_unlikely(&_page_poisoning_enabled); 2928} 2929static inline void kernel_poison_pages(struct page *page, int numpages) 2930{ 2931 if (page_poisoning_enabled_static()) 2932 __kernel_poison_pages(page, numpages); 2933} 2934static inline void kernel_unpoison_pages(struct page *page, int numpages) 2935{ 2936 if (page_poisoning_enabled_static()) 2937 __kernel_unpoison_pages(page, numpages); 2938} 2939#else 2940static inline bool page_poisoning_enabled(void) { return false; } 2941static inline bool page_poisoning_enabled_static(void) { return false; } 2942static inline void __kernel_poison_pages(struct page *page, int nunmpages) { } 2943static inline void kernel_poison_pages(struct page *page, int numpages) { } 2944static inline void kernel_unpoison_pages(struct page *page, int numpages) { } 2945#endif 2946 2947DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 2948static inline bool want_init_on_alloc(gfp_t flags) 2949{ 2950 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 2951 &init_on_alloc)) 2952 return true; 2953 return flags & __GFP_ZERO; 2954} 2955 2956DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 2957static inline bool want_init_on_free(void) 2958{ 2959 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON, 2960 &init_on_free); 2961} 2962 2963extern bool _debug_pagealloc_enabled_early; 2964DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 2965 2966static inline bool debug_pagealloc_enabled(void) 2967{ 2968 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 2969 _debug_pagealloc_enabled_early; 2970} 2971 2972/* 2973 * For use in fast paths after init_debug_pagealloc() has run, or when a 2974 * false negative result is not harmful when called too early. 2975 */ 2976static inline bool debug_pagealloc_enabled_static(void) 2977{ 2978 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 2979 return false; 2980 2981 return static_branch_unlikely(&_debug_pagealloc_enabled); 2982} 2983 2984#ifdef CONFIG_DEBUG_PAGEALLOC 2985/* 2986 * To support DEBUG_PAGEALLOC architecture must ensure that 2987 * __kernel_map_pages() never fails 2988 */ 2989extern void __kernel_map_pages(struct page *page, int numpages, int enable); 2990 2991static inline void debug_pagealloc_map_pages(struct page *page, int numpages) 2992{ 2993 if (debug_pagealloc_enabled_static()) 2994 __kernel_map_pages(page, numpages, 1); 2995} 2996 2997static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) 2998{ 2999 if (debug_pagealloc_enabled_static()) 3000 __kernel_map_pages(page, numpages, 0); 3001} 3002#else /* CONFIG_DEBUG_PAGEALLOC */ 3003static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {} 3004static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {} 3005#endif /* CONFIG_DEBUG_PAGEALLOC */ 3006 3007#ifdef __HAVE_ARCH_GATE_AREA 3008extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 3009extern int in_gate_area_no_mm(unsigned long addr); 3010extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 3011#else 3012static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 3013{ 3014 return NULL; 3015} 3016static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 3017static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 3018{ 3019 return 0; 3020} 3021#endif /* __HAVE_ARCH_GATE_AREA */ 3022 3023extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 3024 3025#ifdef CONFIG_SYSCTL 3026extern int sysctl_drop_caches; 3027int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *, 3028 loff_t *); 3029#endif 3030 3031void drop_slab(void); 3032void drop_slab_node(int nid); 3033 3034#ifndef CONFIG_MMU 3035#define randomize_va_space 0 3036#else 3037extern int randomize_va_space; 3038#endif 3039 3040const char * arch_vma_name(struct vm_area_struct *vma); 3041#ifdef CONFIG_MMU 3042void print_vma_addr(char *prefix, unsigned long rip); 3043#else 3044static inline void print_vma_addr(char *prefix, unsigned long rip) 3045{ 3046} 3047#endif 3048 3049void *sparse_buffer_alloc(unsigned long size); 3050struct page * __populate_section_memmap(unsigned long pfn, 3051 unsigned long nr_pages, int nid, struct vmem_altmap *altmap); 3052pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 3053p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 3054pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 3055pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 3056pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, 3057 struct vmem_altmap *altmap); 3058void *vmemmap_alloc_block(unsigned long size, int node); 3059struct vmem_altmap; 3060void *vmemmap_alloc_block_buf(unsigned long size, int node, 3061 struct vmem_altmap *altmap); 3062void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 3063int vmemmap_populate_basepages(unsigned long start, unsigned long end, 3064 int node, struct vmem_altmap *altmap); 3065int vmemmap_populate(unsigned long start, unsigned long end, int node, 3066 struct vmem_altmap *altmap); 3067void vmemmap_populate_print_last(void); 3068#ifdef CONFIG_MEMORY_HOTPLUG 3069void vmemmap_free(unsigned long start, unsigned long end, 3070 struct vmem_altmap *altmap); 3071#endif 3072void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 3073 unsigned long nr_pages); 3074 3075enum mf_flags { 3076 MF_COUNT_INCREASED = 1 << 0, 3077 MF_ACTION_REQUIRED = 1 << 1, 3078 MF_MUST_KILL = 1 << 2, 3079 MF_SOFT_OFFLINE = 1 << 3, 3080}; 3081extern int memory_failure(unsigned long pfn, int flags); 3082extern void memory_failure_queue(unsigned long pfn, int flags); 3083extern void memory_failure_queue_kick(int cpu); 3084extern int unpoison_memory(unsigned long pfn); 3085extern int sysctl_memory_failure_early_kill; 3086extern int sysctl_memory_failure_recovery; 3087extern void shake_page(struct page *p, int access); 3088extern atomic_long_t num_poisoned_pages __read_mostly; 3089extern int soft_offline_page(unsigned long pfn, int flags); 3090 3091 3092/* 3093 * Error handlers for various types of pages. 3094 */ 3095enum mf_result { 3096 MF_IGNORED, /* Error: cannot be handled */ 3097 MF_FAILED, /* Error: handling failed */ 3098 MF_DELAYED, /* Will be handled later */ 3099 MF_RECOVERED, /* Successfully recovered */ 3100}; 3101 3102enum mf_action_page_type { 3103 MF_MSG_KERNEL, 3104 MF_MSG_KERNEL_HIGH_ORDER, 3105 MF_MSG_SLAB, 3106 MF_MSG_DIFFERENT_COMPOUND, 3107 MF_MSG_POISONED_HUGE, 3108 MF_MSG_HUGE, 3109 MF_MSG_FREE_HUGE, 3110 MF_MSG_NON_PMD_HUGE, 3111 MF_MSG_UNMAP_FAILED, 3112 MF_MSG_DIRTY_SWAPCACHE, 3113 MF_MSG_CLEAN_SWAPCACHE, 3114 MF_MSG_DIRTY_MLOCKED_LRU, 3115 MF_MSG_CLEAN_MLOCKED_LRU, 3116 MF_MSG_DIRTY_UNEVICTABLE_LRU, 3117 MF_MSG_CLEAN_UNEVICTABLE_LRU, 3118 MF_MSG_DIRTY_LRU, 3119 MF_MSG_CLEAN_LRU, 3120 MF_MSG_TRUNCATED_LRU, 3121 MF_MSG_BUDDY, 3122 MF_MSG_BUDDY_2ND, 3123 MF_MSG_DAX, 3124 MF_MSG_UNSPLIT_THP, 3125 MF_MSG_UNKNOWN, 3126}; 3127 3128#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 3129extern void clear_huge_page(struct page *page, 3130 unsigned long addr_hint, 3131 unsigned int pages_per_huge_page); 3132extern void copy_user_huge_page(struct page *dst, struct page *src, 3133 unsigned long addr_hint, 3134 struct vm_area_struct *vma, 3135 unsigned int pages_per_huge_page); 3136extern long copy_huge_page_from_user(struct page *dst_page, 3137 const void __user *usr_src, 3138 unsigned int pages_per_huge_page, 3139 bool allow_pagefault); 3140 3141/** 3142 * vma_is_special_huge - Are transhuge page-table entries considered special? 3143 * @vma: Pointer to the struct vm_area_struct to consider 3144 * 3145 * Whether transhuge page-table entries are considered "special" following 3146 * the definition in vm_normal_page(). 3147 * 3148 * Return: true if transhuge page-table entries should be considered special, 3149 * false otherwise. 3150 */ 3151static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 3152{ 3153 return vma_is_dax(vma) || (vma->vm_file && 3154 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 3155} 3156 3157#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 3158 3159#ifdef CONFIG_DEBUG_PAGEALLOC 3160extern unsigned int _debug_guardpage_minorder; 3161DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 3162 3163static inline unsigned int debug_guardpage_minorder(void) 3164{ 3165 return _debug_guardpage_minorder; 3166} 3167 3168static inline bool debug_guardpage_enabled(void) 3169{ 3170 return static_branch_unlikely(&_debug_guardpage_enabled); 3171} 3172 3173static inline bool page_is_guard(struct page *page) 3174{ 3175 if (!debug_guardpage_enabled()) 3176 return false; 3177 3178 return PageGuard(page); 3179} 3180#else 3181static inline unsigned int debug_guardpage_minorder(void) { return 0; } 3182static inline bool debug_guardpage_enabled(void) { return false; } 3183static inline bool page_is_guard(struct page *page) { return false; } 3184#endif /* CONFIG_DEBUG_PAGEALLOC */ 3185 3186#if MAX_NUMNODES > 1 3187void __init setup_nr_node_ids(void); 3188#else 3189static inline void setup_nr_node_ids(void) {} 3190#endif 3191 3192extern int memcmp_pages(struct page *page1, struct page *page2); 3193 3194static inline int pages_identical(struct page *page1, struct page *page2) 3195{ 3196 return !memcmp_pages(page1, page2); 3197} 3198 3199#ifdef CONFIG_MAPPING_DIRTY_HELPERS 3200unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 3201 pgoff_t first_index, pgoff_t nr, 3202 pgoff_t bitmap_pgoff, 3203 unsigned long *bitmap, 3204 pgoff_t *start, 3205 pgoff_t *end); 3206 3207unsigned long wp_shared_mapping_range(struct address_space *mapping, 3208 pgoff_t first_index, pgoff_t nr); 3209#endif 3210 3211extern int sysctl_nr_trim_pages; 3212 3213#ifdef CONFIG_PRINTK 3214void mem_dump_obj(void *object); 3215#else 3216static inline void mem_dump_obj(void *object) {} 3217#endif 3218 3219/** 3220 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it 3221 * @seals: the seals to check 3222 * @vma: the vma to operate on 3223 * 3224 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on 3225 * the vma flags. Return 0 if check pass, or <0 for errors. 3226 */ 3227static inline int seal_check_future_write(int seals, struct vm_area_struct *vma) 3228{ 3229 if (seals & F_SEAL_FUTURE_WRITE) { 3230 /* 3231 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when 3232 * "future write" seal active. 3233 */ 3234 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE)) 3235 return -EPERM; 3236 3237 /* 3238 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as 3239 * MAP_SHARED and read-only, take care to not allow mprotect to 3240 * revert protections on such mappings. Do this only for shared 3241 * mappings. For private mappings, don't need to mask 3242 * VM_MAYWRITE as we still want them to be COW-writable. 3243 */ 3244 if (vma->vm_flags & VM_SHARED) 3245 vma->vm_flags &= ~(VM_MAYWRITE); 3246 } 3247 3248 return 0; 3249} 3250 3251#endif /* __KERNEL__ */ 3252#endif /* _LINUX_MM_H */