Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-only */
2#ifndef __KVM_HOST_H
3#define __KVM_HOST_H
4
5
6#include <linux/types.h>
7#include <linux/hardirq.h>
8#include <linux/list.h>
9#include <linux/mutex.h>
10#include <linux/spinlock.h>
11#include <linux/signal.h>
12#include <linux/sched.h>
13#include <linux/bug.h>
14#include <linux/minmax.h>
15#include <linux/mm.h>
16#include <linux/mmu_notifier.h>
17#include <linux/preempt.h>
18#include <linux/msi.h>
19#include <linux/slab.h>
20#include <linux/vmalloc.h>
21#include <linux/rcupdate.h>
22#include <linux/ratelimit.h>
23#include <linux/err.h>
24#include <linux/irqflags.h>
25#include <linux/context_tracking.h>
26#include <linux/irqbypass.h>
27#include <linux/rcuwait.h>
28#include <linux/refcount.h>
29#include <linux/nospec.h>
30#include <asm/signal.h>
31
32#include <linux/kvm.h>
33#include <linux/kvm_para.h>
34
35#include <linux/kvm_types.h>
36
37#include <asm/kvm_host.h>
38#include <linux/kvm_dirty_ring.h>
39
40#ifndef KVM_MAX_VCPU_ID
41#define KVM_MAX_VCPU_ID KVM_MAX_VCPUS
42#endif
43
44/*
45 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used
46 * in kvm, other bits are visible for userspace which are defined in
47 * include/linux/kvm_h.
48 */
49#define KVM_MEMSLOT_INVALID (1UL << 16)
50
51/*
52 * Bit 63 of the memslot generation number is an "update in-progress flag",
53 * e.g. is temporarily set for the duration of install_new_memslots().
54 * This flag effectively creates a unique generation number that is used to
55 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
56 * i.e. may (or may not) have come from the previous memslots generation.
57 *
58 * This is necessary because the actual memslots update is not atomic with
59 * respect to the generation number update. Updating the generation number
60 * first would allow a vCPU to cache a spte from the old memslots using the
61 * new generation number, and updating the generation number after switching
62 * to the new memslots would allow cache hits using the old generation number
63 * to reference the defunct memslots.
64 *
65 * This mechanism is used to prevent getting hits in KVM's caches while a
66 * memslot update is in-progress, and to prevent cache hits *after* updating
67 * the actual generation number against accesses that were inserted into the
68 * cache *before* the memslots were updated.
69 */
70#define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63)
71
72/* Two fragments for cross MMIO pages. */
73#define KVM_MAX_MMIO_FRAGMENTS 2
74
75#ifndef KVM_ADDRESS_SPACE_NUM
76#define KVM_ADDRESS_SPACE_NUM 1
77#endif
78
79/*
80 * For the normal pfn, the highest 12 bits should be zero,
81 * so we can mask bit 62 ~ bit 52 to indicate the error pfn,
82 * mask bit 63 to indicate the noslot pfn.
83 */
84#define KVM_PFN_ERR_MASK (0x7ffULL << 52)
85#define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52)
86#define KVM_PFN_NOSLOT (0x1ULL << 63)
87
88#define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK)
89#define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1)
90#define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2)
91
92/*
93 * error pfns indicate that the gfn is in slot but faild to
94 * translate it to pfn on host.
95 */
96static inline bool is_error_pfn(kvm_pfn_t pfn)
97{
98 return !!(pfn & KVM_PFN_ERR_MASK);
99}
100
101/*
102 * error_noslot pfns indicate that the gfn can not be
103 * translated to pfn - it is not in slot or failed to
104 * translate it to pfn.
105 */
106static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
107{
108 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
109}
110
111/* noslot pfn indicates that the gfn is not in slot. */
112static inline bool is_noslot_pfn(kvm_pfn_t pfn)
113{
114 return pfn == KVM_PFN_NOSLOT;
115}
116
117/*
118 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
119 * provide own defines and kvm_is_error_hva
120 */
121#ifndef KVM_HVA_ERR_BAD
122
123#define KVM_HVA_ERR_BAD (PAGE_OFFSET)
124#define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE)
125
126static inline bool kvm_is_error_hva(unsigned long addr)
127{
128 return addr >= PAGE_OFFSET;
129}
130
131#endif
132
133#define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT))
134
135static inline bool is_error_page(struct page *page)
136{
137 return IS_ERR(page);
138}
139
140#define KVM_REQUEST_MASK GENMASK(7,0)
141#define KVM_REQUEST_NO_WAKEUP BIT(8)
142#define KVM_REQUEST_WAIT BIT(9)
143/*
144 * Architecture-independent vcpu->requests bit members
145 * Bits 4-7 are reserved for more arch-independent bits.
146 */
147#define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
148#define KVM_REQ_MMU_RELOAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
149#define KVM_REQ_PENDING_TIMER 2
150#define KVM_REQ_UNHALT 3
151#define KVM_REQUEST_ARCH_BASE 8
152
153#define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
154 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
155 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
156})
157#define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0)
158
159#define KVM_USERSPACE_IRQ_SOURCE_ID 0
160#define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1
161
162extern struct mutex kvm_lock;
163extern struct list_head vm_list;
164
165struct kvm_io_range {
166 gpa_t addr;
167 int len;
168 struct kvm_io_device *dev;
169};
170
171#define NR_IOBUS_DEVS 1000
172
173struct kvm_io_bus {
174 int dev_count;
175 int ioeventfd_count;
176 struct kvm_io_range range[];
177};
178
179enum kvm_bus {
180 KVM_MMIO_BUS,
181 KVM_PIO_BUS,
182 KVM_VIRTIO_CCW_NOTIFY_BUS,
183 KVM_FAST_MMIO_BUS,
184 KVM_NR_BUSES
185};
186
187int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
188 int len, const void *val);
189int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
190 gpa_t addr, int len, const void *val, long cookie);
191int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
192 int len, void *val);
193int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
194 int len, struct kvm_io_device *dev);
195int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
196 struct kvm_io_device *dev);
197struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
198 gpa_t addr);
199
200#ifdef CONFIG_KVM_ASYNC_PF
201struct kvm_async_pf {
202 struct work_struct work;
203 struct list_head link;
204 struct list_head queue;
205 struct kvm_vcpu *vcpu;
206 struct mm_struct *mm;
207 gpa_t cr2_or_gpa;
208 unsigned long addr;
209 struct kvm_arch_async_pf arch;
210 bool wakeup_all;
211 bool notpresent_injected;
212};
213
214void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
215void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
216bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
217 unsigned long hva, struct kvm_arch_async_pf *arch);
218int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
219#endif
220
221#ifdef KVM_ARCH_WANT_MMU_NOTIFIER
222struct kvm_gfn_range {
223 struct kvm_memory_slot *slot;
224 gfn_t start;
225 gfn_t end;
226 pte_t pte;
227 bool may_block;
228};
229bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
230bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
231bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
232bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
233#endif
234
235enum {
236 OUTSIDE_GUEST_MODE,
237 IN_GUEST_MODE,
238 EXITING_GUEST_MODE,
239 READING_SHADOW_PAGE_TABLES,
240};
241
242#define KVM_UNMAPPED_PAGE ((void *) 0x500 + POISON_POINTER_DELTA)
243
244struct kvm_host_map {
245 /*
246 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
247 * a 'struct page' for it. When using mem= kernel parameter some memory
248 * can be used as guest memory but they are not managed by host
249 * kernel).
250 * If 'pfn' is not managed by the host kernel, this field is
251 * initialized to KVM_UNMAPPED_PAGE.
252 */
253 struct page *page;
254 void *hva;
255 kvm_pfn_t pfn;
256 kvm_pfn_t gfn;
257};
258
259/*
260 * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
261 * directly to check for that.
262 */
263static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
264{
265 return !!map->hva;
266}
267
268/*
269 * Sometimes a large or cross-page mmio needs to be broken up into separate
270 * exits for userspace servicing.
271 */
272struct kvm_mmio_fragment {
273 gpa_t gpa;
274 void *data;
275 unsigned len;
276};
277
278struct kvm_vcpu {
279 struct kvm *kvm;
280#ifdef CONFIG_PREEMPT_NOTIFIERS
281 struct preempt_notifier preempt_notifier;
282#endif
283 int cpu;
284 int vcpu_id; /* id given by userspace at creation */
285 int vcpu_idx; /* index in kvm->vcpus array */
286 int srcu_idx;
287 int mode;
288 u64 requests;
289 unsigned long guest_debug;
290
291 int pre_pcpu;
292 struct list_head blocked_vcpu_list;
293
294 struct mutex mutex;
295 struct kvm_run *run;
296
297 struct rcuwait wait;
298 struct pid __rcu *pid;
299 int sigset_active;
300 sigset_t sigset;
301 struct kvm_vcpu_stat stat;
302 unsigned int halt_poll_ns;
303 bool valid_wakeup;
304
305#ifdef CONFIG_HAS_IOMEM
306 int mmio_needed;
307 int mmio_read_completed;
308 int mmio_is_write;
309 int mmio_cur_fragment;
310 int mmio_nr_fragments;
311 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
312#endif
313
314#ifdef CONFIG_KVM_ASYNC_PF
315 struct {
316 u32 queued;
317 struct list_head queue;
318 struct list_head done;
319 spinlock_t lock;
320 } async_pf;
321#endif
322
323#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
324 /*
325 * Cpu relax intercept or pause loop exit optimization
326 * in_spin_loop: set when a vcpu does a pause loop exit
327 * or cpu relax intercepted.
328 * dy_eligible: indicates whether vcpu is eligible for directed yield.
329 */
330 struct {
331 bool in_spin_loop;
332 bool dy_eligible;
333 } spin_loop;
334#endif
335 bool preempted;
336 bool ready;
337 struct kvm_vcpu_arch arch;
338 struct kvm_dirty_ring dirty_ring;
339};
340
341/* must be called with irqs disabled */
342static __always_inline void guest_enter_irqoff(void)
343{
344 /*
345 * This is running in ioctl context so its safe to assume that it's the
346 * stime pending cputime to flush.
347 */
348 instrumentation_begin();
349 vtime_account_guest_enter();
350 instrumentation_end();
351
352 /*
353 * KVM does not hold any references to rcu protected data when it
354 * switches CPU into a guest mode. In fact switching to a guest mode
355 * is very similar to exiting to userspace from rcu point of view. In
356 * addition CPU may stay in a guest mode for quite a long time (up to
357 * one time slice). Lets treat guest mode as quiescent state, just like
358 * we do with user-mode execution.
359 */
360 if (!context_tracking_guest_enter()) {
361 instrumentation_begin();
362 rcu_virt_note_context_switch(smp_processor_id());
363 instrumentation_end();
364 }
365}
366
367static __always_inline void guest_exit_irqoff(void)
368{
369 context_tracking_guest_exit();
370
371 instrumentation_begin();
372 /* Flush the guest cputime we spent on the guest */
373 vtime_account_guest_exit();
374 instrumentation_end();
375}
376
377static inline void guest_exit(void)
378{
379 unsigned long flags;
380
381 local_irq_save(flags);
382 guest_exit_irqoff();
383 local_irq_restore(flags);
384}
385
386static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
387{
388 /*
389 * The memory barrier ensures a previous write to vcpu->requests cannot
390 * be reordered with the read of vcpu->mode. It pairs with the general
391 * memory barrier following the write of vcpu->mode in VCPU RUN.
392 */
393 smp_mb__before_atomic();
394 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
395}
396
397/*
398 * Some of the bitops functions do not support too long bitmaps.
399 * This number must be determined not to exceed such limits.
400 */
401#define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
402
403struct kvm_memory_slot {
404 gfn_t base_gfn;
405 unsigned long npages;
406 unsigned long *dirty_bitmap;
407 struct kvm_arch_memory_slot arch;
408 unsigned long userspace_addr;
409 u32 flags;
410 short id;
411 u16 as_id;
412};
413
414static inline bool kvm_slot_dirty_track_enabled(struct kvm_memory_slot *slot)
415{
416 return slot->flags & KVM_MEM_LOG_DIRTY_PAGES;
417}
418
419static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
420{
421 return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
422}
423
424static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
425{
426 unsigned long len = kvm_dirty_bitmap_bytes(memslot);
427
428 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
429}
430
431#ifndef KVM_DIRTY_LOG_MANUAL_CAPS
432#define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
433#endif
434
435struct kvm_s390_adapter_int {
436 u64 ind_addr;
437 u64 summary_addr;
438 u64 ind_offset;
439 u32 summary_offset;
440 u32 adapter_id;
441};
442
443struct kvm_hv_sint {
444 u32 vcpu;
445 u32 sint;
446};
447
448struct kvm_kernel_irq_routing_entry {
449 u32 gsi;
450 u32 type;
451 int (*set)(struct kvm_kernel_irq_routing_entry *e,
452 struct kvm *kvm, int irq_source_id, int level,
453 bool line_status);
454 union {
455 struct {
456 unsigned irqchip;
457 unsigned pin;
458 } irqchip;
459 struct {
460 u32 address_lo;
461 u32 address_hi;
462 u32 data;
463 u32 flags;
464 u32 devid;
465 } msi;
466 struct kvm_s390_adapter_int adapter;
467 struct kvm_hv_sint hv_sint;
468 };
469 struct hlist_node link;
470};
471
472#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
473struct kvm_irq_routing_table {
474 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
475 u32 nr_rt_entries;
476 /*
477 * Array indexed by gsi. Each entry contains list of irq chips
478 * the gsi is connected to.
479 */
480 struct hlist_head map[];
481};
482#endif
483
484#ifndef KVM_PRIVATE_MEM_SLOTS
485#define KVM_PRIVATE_MEM_SLOTS 0
486#endif
487
488#define KVM_MEM_SLOTS_NUM SHRT_MAX
489#define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_PRIVATE_MEM_SLOTS)
490
491#ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
492static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
493{
494 return 0;
495}
496#endif
497
498/*
499 * Note:
500 * memslots are not sorted by id anymore, please use id_to_memslot()
501 * to get the memslot by its id.
502 */
503struct kvm_memslots {
504 u64 generation;
505 /* The mapping table from slot id to the index in memslots[]. */
506 short id_to_index[KVM_MEM_SLOTS_NUM];
507 atomic_t lru_slot;
508 int used_slots;
509 struct kvm_memory_slot memslots[];
510};
511
512struct kvm {
513#ifdef KVM_HAVE_MMU_RWLOCK
514 rwlock_t mmu_lock;
515#else
516 spinlock_t mmu_lock;
517#endif /* KVM_HAVE_MMU_RWLOCK */
518
519 struct mutex slots_lock;
520 struct mm_struct *mm; /* userspace tied to this vm */
521 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM];
522 struct kvm_vcpu *vcpus[KVM_MAX_VCPUS];
523
524 /*
525 * created_vcpus is protected by kvm->lock, and is incremented
526 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only
527 * incremented after storing the kvm_vcpu pointer in vcpus,
528 * and is accessed atomically.
529 */
530 atomic_t online_vcpus;
531 int created_vcpus;
532 int last_boosted_vcpu;
533 struct list_head vm_list;
534 struct mutex lock;
535 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
536#ifdef CONFIG_HAVE_KVM_EVENTFD
537 struct {
538 spinlock_t lock;
539 struct list_head items;
540 struct list_head resampler_list;
541 struct mutex resampler_lock;
542 } irqfds;
543 struct list_head ioeventfds;
544#endif
545 struct kvm_vm_stat stat;
546 struct kvm_arch arch;
547 refcount_t users_count;
548#ifdef CONFIG_KVM_MMIO
549 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
550 spinlock_t ring_lock;
551 struct list_head coalesced_zones;
552#endif
553
554 struct mutex irq_lock;
555#ifdef CONFIG_HAVE_KVM_IRQCHIP
556 /*
557 * Update side is protected by irq_lock.
558 */
559 struct kvm_irq_routing_table __rcu *irq_routing;
560#endif
561#ifdef CONFIG_HAVE_KVM_IRQFD
562 struct hlist_head irq_ack_notifier_list;
563#endif
564
565#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
566 struct mmu_notifier mmu_notifier;
567 unsigned long mmu_notifier_seq;
568 long mmu_notifier_count;
569 unsigned long mmu_notifier_range_start;
570 unsigned long mmu_notifier_range_end;
571#endif
572 long tlbs_dirty;
573 struct list_head devices;
574 u64 manual_dirty_log_protect;
575 struct dentry *debugfs_dentry;
576 struct kvm_stat_data **debugfs_stat_data;
577 struct srcu_struct srcu;
578 struct srcu_struct irq_srcu;
579 pid_t userspace_pid;
580 unsigned int max_halt_poll_ns;
581 u32 dirty_ring_size;
582};
583
584#define kvm_err(fmt, ...) \
585 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
586#define kvm_info(fmt, ...) \
587 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
588#define kvm_debug(fmt, ...) \
589 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
590#define kvm_debug_ratelimited(fmt, ...) \
591 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
592 ## __VA_ARGS__)
593#define kvm_pr_unimpl(fmt, ...) \
594 pr_err_ratelimited("kvm [%i]: " fmt, \
595 task_tgid_nr(current), ## __VA_ARGS__)
596
597/* The guest did something we don't support. */
598#define vcpu_unimpl(vcpu, fmt, ...) \
599 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \
600 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
601
602#define vcpu_debug(vcpu, fmt, ...) \
603 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
604#define vcpu_debug_ratelimited(vcpu, fmt, ...) \
605 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \
606 ## __VA_ARGS__)
607#define vcpu_err(vcpu, fmt, ...) \
608 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
609
610static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
611{
612 return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
613}
614
615static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
616{
617 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
618 lockdep_is_held(&kvm->slots_lock) ||
619 !refcount_read(&kvm->users_count));
620}
621
622static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
623{
624 int num_vcpus = atomic_read(&kvm->online_vcpus);
625 i = array_index_nospec(i, num_vcpus);
626
627 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */
628 smp_rmb();
629 return kvm->vcpus[i];
630}
631
632#define kvm_for_each_vcpu(idx, vcpup, kvm) \
633 for (idx = 0; \
634 idx < atomic_read(&kvm->online_vcpus) && \
635 (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \
636 idx++)
637
638static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
639{
640 struct kvm_vcpu *vcpu = NULL;
641 int i;
642
643 if (id < 0)
644 return NULL;
645 if (id < KVM_MAX_VCPUS)
646 vcpu = kvm_get_vcpu(kvm, id);
647 if (vcpu && vcpu->vcpu_id == id)
648 return vcpu;
649 kvm_for_each_vcpu(i, vcpu, kvm)
650 if (vcpu->vcpu_id == id)
651 return vcpu;
652 return NULL;
653}
654
655static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu)
656{
657 return vcpu->vcpu_idx;
658}
659
660#define kvm_for_each_memslot(memslot, slots) \
661 for (memslot = &slots->memslots[0]; \
662 memslot < slots->memslots + slots->used_slots; memslot++) \
663 if (WARN_ON_ONCE(!memslot->npages)) { \
664 } else
665
666void kvm_vcpu_destroy(struct kvm_vcpu *vcpu);
667
668void vcpu_load(struct kvm_vcpu *vcpu);
669void vcpu_put(struct kvm_vcpu *vcpu);
670
671#ifdef __KVM_HAVE_IOAPIC
672void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
673void kvm_arch_post_irq_routing_update(struct kvm *kvm);
674#else
675static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
676{
677}
678static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
679{
680}
681#endif
682
683#ifdef CONFIG_HAVE_KVM_IRQFD
684int kvm_irqfd_init(void);
685void kvm_irqfd_exit(void);
686#else
687static inline int kvm_irqfd_init(void)
688{
689 return 0;
690}
691
692static inline void kvm_irqfd_exit(void)
693{
694}
695#endif
696int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
697 struct module *module);
698void kvm_exit(void);
699
700void kvm_get_kvm(struct kvm *kvm);
701void kvm_put_kvm(struct kvm *kvm);
702bool file_is_kvm(struct file *file);
703void kvm_put_kvm_no_destroy(struct kvm *kvm);
704
705static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
706{
707 as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM);
708 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
709 lockdep_is_held(&kvm->slots_lock) ||
710 !refcount_read(&kvm->users_count));
711}
712
713static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
714{
715 return __kvm_memslots(kvm, 0);
716}
717
718static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
719{
720 int as_id = kvm_arch_vcpu_memslots_id(vcpu);
721
722 return __kvm_memslots(vcpu->kvm, as_id);
723}
724
725static inline
726struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
727{
728 int index = slots->id_to_index[id];
729 struct kvm_memory_slot *slot;
730
731 if (index < 0)
732 return NULL;
733
734 slot = &slots->memslots[index];
735
736 WARN_ON(slot->id != id);
737 return slot;
738}
739
740/*
741 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
742 * - create a new memory slot
743 * - delete an existing memory slot
744 * - modify an existing memory slot
745 * -- move it in the guest physical memory space
746 * -- just change its flags
747 *
748 * Since flags can be changed by some of these operations, the following
749 * differentiation is the best we can do for __kvm_set_memory_region():
750 */
751enum kvm_mr_change {
752 KVM_MR_CREATE,
753 KVM_MR_DELETE,
754 KVM_MR_MOVE,
755 KVM_MR_FLAGS_ONLY,
756};
757
758int kvm_set_memory_region(struct kvm *kvm,
759 const struct kvm_userspace_memory_region *mem);
760int __kvm_set_memory_region(struct kvm *kvm,
761 const struct kvm_userspace_memory_region *mem);
762void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
763void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
764int kvm_arch_prepare_memory_region(struct kvm *kvm,
765 struct kvm_memory_slot *memslot,
766 const struct kvm_userspace_memory_region *mem,
767 enum kvm_mr_change change);
768void kvm_arch_commit_memory_region(struct kvm *kvm,
769 const struct kvm_userspace_memory_region *mem,
770 struct kvm_memory_slot *old,
771 const struct kvm_memory_slot *new,
772 enum kvm_mr_change change);
773/* flush all memory translations */
774void kvm_arch_flush_shadow_all(struct kvm *kvm);
775/* flush memory translations pointing to 'slot' */
776void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
777 struct kvm_memory_slot *slot);
778
779int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
780 struct page **pages, int nr_pages);
781
782struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
783unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
784unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
785unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
786unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
787 bool *writable);
788void kvm_release_page_clean(struct page *page);
789void kvm_release_page_dirty(struct page *page);
790void kvm_set_page_accessed(struct page *page);
791
792kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
793kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
794 bool *writable);
795kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
796kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn);
797kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
798 bool atomic, bool *async, bool write_fault,
799 bool *writable, hva_t *hva);
800
801void kvm_release_pfn_clean(kvm_pfn_t pfn);
802void kvm_release_pfn_dirty(kvm_pfn_t pfn);
803void kvm_set_pfn_dirty(kvm_pfn_t pfn);
804void kvm_set_pfn_accessed(kvm_pfn_t pfn);
805void kvm_get_pfn(kvm_pfn_t pfn);
806
807void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache);
808int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
809 int len);
810int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
811int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
812 void *data, unsigned long len);
813int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
814 void *data, unsigned int offset,
815 unsigned long len);
816int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
817 int offset, int len);
818int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
819 unsigned long len);
820int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
821 void *data, unsigned long len);
822int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
823 void *data, unsigned int offset,
824 unsigned long len);
825int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
826 gpa_t gpa, unsigned long len);
827
828#define __kvm_get_guest(kvm, gfn, offset, v) \
829({ \
830 unsigned long __addr = gfn_to_hva(kvm, gfn); \
831 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
832 int __ret = -EFAULT; \
833 \
834 if (!kvm_is_error_hva(__addr)) \
835 __ret = get_user(v, __uaddr); \
836 __ret; \
837})
838
839#define kvm_get_guest(kvm, gpa, v) \
840({ \
841 gpa_t __gpa = gpa; \
842 struct kvm *__kvm = kvm; \
843 \
844 __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT, \
845 offset_in_page(__gpa), v); \
846})
847
848#define __kvm_put_guest(kvm, gfn, offset, v) \
849({ \
850 unsigned long __addr = gfn_to_hva(kvm, gfn); \
851 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
852 int __ret = -EFAULT; \
853 \
854 if (!kvm_is_error_hva(__addr)) \
855 __ret = put_user(v, __uaddr); \
856 if (!__ret) \
857 mark_page_dirty(kvm, gfn); \
858 __ret; \
859})
860
861#define kvm_put_guest(kvm, gpa, v) \
862({ \
863 gpa_t __gpa = gpa; \
864 struct kvm *__kvm = kvm; \
865 \
866 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \
867 offset_in_page(__gpa), v); \
868})
869
870int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
871struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
872bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
873bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
874unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
875void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot, gfn_t gfn);
876void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
877
878struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
879struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
880kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn);
881kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
882int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map);
883int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
884 struct gfn_to_pfn_cache *cache, bool atomic);
885struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn);
886void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty);
887int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
888 struct gfn_to_pfn_cache *cache, bool dirty, bool atomic);
889unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
890unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
891int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
892 int len);
893int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
894 unsigned long len);
895int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
896 unsigned long len);
897int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
898 int offset, int len);
899int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
900 unsigned long len);
901void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
902
903void kvm_sigset_activate(struct kvm_vcpu *vcpu);
904void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
905
906void kvm_vcpu_block(struct kvm_vcpu *vcpu);
907void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
908void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
909bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
910void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
911int kvm_vcpu_yield_to(struct kvm_vcpu *target);
912void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible);
913
914void kvm_flush_remote_tlbs(struct kvm *kvm);
915void kvm_reload_remote_mmus(struct kvm *kvm);
916
917#ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
918int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min);
919int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc);
920void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc);
921void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
922#endif
923
924bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
925 struct kvm_vcpu *except,
926 unsigned long *vcpu_bitmap, cpumask_var_t tmp);
927bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
928bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
929 struct kvm_vcpu *except);
930bool kvm_make_cpus_request_mask(struct kvm *kvm, unsigned int req,
931 unsigned long *vcpu_bitmap);
932
933long kvm_arch_dev_ioctl(struct file *filp,
934 unsigned int ioctl, unsigned long arg);
935long kvm_arch_vcpu_ioctl(struct file *filp,
936 unsigned int ioctl, unsigned long arg);
937vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
938
939int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
940
941void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
942 struct kvm_memory_slot *slot,
943 gfn_t gfn_offset,
944 unsigned long mask);
945void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
946
947#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
948void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
949 const struct kvm_memory_slot *memslot);
950#else /* !CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
951int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
952int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
953 int *is_dirty, struct kvm_memory_slot **memslot);
954#endif
955
956int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
957 bool line_status);
958int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
959 struct kvm_enable_cap *cap);
960long kvm_arch_vm_ioctl(struct file *filp,
961 unsigned int ioctl, unsigned long arg);
962
963int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
964int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
965
966int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
967 struct kvm_translation *tr);
968
969int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
970int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
971int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
972 struct kvm_sregs *sregs);
973int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
974 struct kvm_sregs *sregs);
975int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
976 struct kvm_mp_state *mp_state);
977int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
978 struct kvm_mp_state *mp_state);
979int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
980 struct kvm_guest_debug *dbg);
981int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);
982
983int kvm_arch_init(void *opaque);
984void kvm_arch_exit(void);
985
986void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu);
987
988void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
989void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
990int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
991int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
992void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
993void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
994
995#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
996void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
997#endif
998
999int kvm_arch_hardware_enable(void);
1000void kvm_arch_hardware_disable(void);
1001int kvm_arch_hardware_setup(void *opaque);
1002void kvm_arch_hardware_unsetup(void);
1003int kvm_arch_check_processor_compat(void *opaque);
1004int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
1005bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
1006int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
1007bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
1008bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu);
1009int kvm_arch_post_init_vm(struct kvm *kvm);
1010void kvm_arch_pre_destroy_vm(struct kvm *kvm);
1011
1012#ifndef __KVM_HAVE_ARCH_VM_ALLOC
1013/*
1014 * All architectures that want to use vzalloc currently also
1015 * need their own kvm_arch_alloc_vm implementation.
1016 */
1017static inline struct kvm *kvm_arch_alloc_vm(void)
1018{
1019 return kzalloc(sizeof(struct kvm), GFP_KERNEL);
1020}
1021
1022static inline void kvm_arch_free_vm(struct kvm *kvm)
1023{
1024 kfree(kvm);
1025}
1026#endif
1027
1028#ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
1029static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
1030{
1031 return -ENOTSUPP;
1032}
1033#endif
1034
1035#ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
1036void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
1037void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
1038bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
1039#else
1040static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
1041{
1042}
1043
1044static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
1045{
1046}
1047
1048static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
1049{
1050 return false;
1051}
1052#endif
1053#ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1054void kvm_arch_start_assignment(struct kvm *kvm);
1055void kvm_arch_end_assignment(struct kvm *kvm);
1056bool kvm_arch_has_assigned_device(struct kvm *kvm);
1057#else
1058static inline void kvm_arch_start_assignment(struct kvm *kvm)
1059{
1060}
1061
1062static inline void kvm_arch_end_assignment(struct kvm *kvm)
1063{
1064}
1065
1066static inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
1067{
1068 return false;
1069}
1070#endif
1071
1072static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
1073{
1074#ifdef __KVM_HAVE_ARCH_WQP
1075 return vcpu->arch.waitp;
1076#else
1077 return &vcpu->wait;
1078#endif
1079}
1080
1081#ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
1082/*
1083 * returns true if the virtual interrupt controller is initialized and
1084 * ready to accept virtual IRQ. On some architectures the virtual interrupt
1085 * controller is dynamically instantiated and this is not always true.
1086 */
1087bool kvm_arch_intc_initialized(struct kvm *kvm);
1088#else
1089static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
1090{
1091 return true;
1092}
1093#endif
1094
1095int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
1096void kvm_arch_destroy_vm(struct kvm *kvm);
1097void kvm_arch_sync_events(struct kvm *kvm);
1098
1099int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
1100
1101bool kvm_is_reserved_pfn(kvm_pfn_t pfn);
1102bool kvm_is_zone_device_pfn(kvm_pfn_t pfn);
1103bool kvm_is_transparent_hugepage(kvm_pfn_t pfn);
1104
1105struct kvm_irq_ack_notifier {
1106 struct hlist_node link;
1107 unsigned gsi;
1108 void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
1109};
1110
1111int kvm_irq_map_gsi(struct kvm *kvm,
1112 struct kvm_kernel_irq_routing_entry *entries, int gsi);
1113int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
1114
1115int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1116 bool line_status);
1117int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1118 int irq_source_id, int level, bool line_status);
1119int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1120 struct kvm *kvm, int irq_source_id,
1121 int level, bool line_status);
1122bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1123void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1124void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1125void kvm_register_irq_ack_notifier(struct kvm *kvm,
1126 struct kvm_irq_ack_notifier *kian);
1127void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1128 struct kvm_irq_ack_notifier *kian);
1129int kvm_request_irq_source_id(struct kvm *kvm);
1130void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
1131bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1132
1133/*
1134 * search_memslots() and __gfn_to_memslot() are here because they are
1135 * used in non-modular code in arch/powerpc/kvm/book3s_hv_rm_mmu.c.
1136 * gfn_to_memslot() itself isn't here as an inline because that would
1137 * bloat other code too much.
1138 *
1139 * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!
1140 */
1141static inline struct kvm_memory_slot *
1142search_memslots(struct kvm_memslots *slots, gfn_t gfn)
1143{
1144 int start = 0, end = slots->used_slots;
1145 int slot = atomic_read(&slots->lru_slot);
1146 struct kvm_memory_slot *memslots = slots->memslots;
1147
1148 if (unlikely(!slots->used_slots))
1149 return NULL;
1150
1151 if (gfn >= memslots[slot].base_gfn &&
1152 gfn < memslots[slot].base_gfn + memslots[slot].npages)
1153 return &memslots[slot];
1154
1155 while (start < end) {
1156 slot = start + (end - start) / 2;
1157
1158 if (gfn >= memslots[slot].base_gfn)
1159 end = slot;
1160 else
1161 start = slot + 1;
1162 }
1163
1164 if (start < slots->used_slots && gfn >= memslots[start].base_gfn &&
1165 gfn < memslots[start].base_gfn + memslots[start].npages) {
1166 atomic_set(&slots->lru_slot, start);
1167 return &memslots[start];
1168 }
1169
1170 return NULL;
1171}
1172
1173static inline struct kvm_memory_slot *
1174__gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1175{
1176 return search_memslots(slots, gfn);
1177}
1178
1179static inline unsigned long
1180__gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
1181{
1182 return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE;
1183}
1184
1185static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1186{
1187 return gfn_to_memslot(kvm, gfn)->id;
1188}
1189
1190static inline gfn_t
1191hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1192{
1193 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1194
1195 return slot->base_gfn + gfn_offset;
1196}
1197
1198static inline gpa_t gfn_to_gpa(gfn_t gfn)
1199{
1200 return (gpa_t)gfn << PAGE_SHIFT;
1201}
1202
1203static inline gfn_t gpa_to_gfn(gpa_t gpa)
1204{
1205 return (gfn_t)(gpa >> PAGE_SHIFT);
1206}
1207
1208static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1209{
1210 return (hpa_t)pfn << PAGE_SHIFT;
1211}
1212
1213static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu,
1214 gpa_t gpa)
1215{
1216 return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa));
1217}
1218
1219static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa)
1220{
1221 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1222
1223 return kvm_is_error_hva(hva);
1224}
1225
1226enum kvm_stat_kind {
1227 KVM_STAT_VM,
1228 KVM_STAT_VCPU,
1229};
1230
1231struct kvm_stat_data {
1232 struct kvm *kvm;
1233 struct kvm_stats_debugfs_item *dbgfs_item;
1234};
1235
1236struct kvm_stats_debugfs_item {
1237 const char *name;
1238 int offset;
1239 enum kvm_stat_kind kind;
1240 int mode;
1241};
1242
1243#define KVM_DBGFS_GET_MODE(dbgfs_item) \
1244 ((dbgfs_item)->mode ? (dbgfs_item)->mode : 0644)
1245
1246#define VM_STAT(n, x, ...) \
1247 { n, offsetof(struct kvm, stat.x), KVM_STAT_VM, ## __VA_ARGS__ }
1248#define VCPU_STAT(n, x, ...) \
1249 { n, offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU, ## __VA_ARGS__ }
1250
1251extern struct kvm_stats_debugfs_item debugfs_entries[];
1252extern struct dentry *kvm_debugfs_dir;
1253
1254#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1255static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq)
1256{
1257 if (unlikely(kvm->mmu_notifier_count))
1258 return 1;
1259 /*
1260 * Ensure the read of mmu_notifier_count happens before the read
1261 * of mmu_notifier_seq. This interacts with the smp_wmb() in
1262 * mmu_notifier_invalidate_range_end to make sure that the caller
1263 * either sees the old (non-zero) value of mmu_notifier_count or
1264 * the new (incremented) value of mmu_notifier_seq.
1265 * PowerPC Book3s HV KVM calls this under a per-page lock
1266 * rather than under kvm->mmu_lock, for scalability, so
1267 * can't rely on kvm->mmu_lock to keep things ordered.
1268 */
1269 smp_rmb();
1270 if (kvm->mmu_notifier_seq != mmu_seq)
1271 return 1;
1272 return 0;
1273}
1274
1275static inline int mmu_notifier_retry_hva(struct kvm *kvm,
1276 unsigned long mmu_seq,
1277 unsigned long hva)
1278{
1279 lockdep_assert_held(&kvm->mmu_lock);
1280 /*
1281 * If mmu_notifier_count is non-zero, then the range maintained by
1282 * kvm_mmu_notifier_invalidate_range_start contains all addresses that
1283 * might be being invalidated. Note that it may include some false
1284 * positives, due to shortcuts when handing concurrent invalidations.
1285 */
1286 if (unlikely(kvm->mmu_notifier_count) &&
1287 hva >= kvm->mmu_notifier_range_start &&
1288 hva < kvm->mmu_notifier_range_end)
1289 return 1;
1290 if (kvm->mmu_notifier_seq != mmu_seq)
1291 return 1;
1292 return 0;
1293}
1294#endif
1295
1296#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
1297
1298#define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
1299
1300bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
1301int kvm_set_irq_routing(struct kvm *kvm,
1302 const struct kvm_irq_routing_entry *entries,
1303 unsigned nr,
1304 unsigned flags);
1305int kvm_set_routing_entry(struct kvm *kvm,
1306 struct kvm_kernel_irq_routing_entry *e,
1307 const struct kvm_irq_routing_entry *ue);
1308void kvm_free_irq_routing(struct kvm *kvm);
1309
1310#else
1311
1312static inline void kvm_free_irq_routing(struct kvm *kvm) {}
1313
1314#endif
1315
1316int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
1317
1318#ifdef CONFIG_HAVE_KVM_EVENTFD
1319
1320void kvm_eventfd_init(struct kvm *kvm);
1321int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
1322
1323#ifdef CONFIG_HAVE_KVM_IRQFD
1324int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
1325void kvm_irqfd_release(struct kvm *kvm);
1326void kvm_irq_routing_update(struct kvm *);
1327#else
1328static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1329{
1330 return -EINVAL;
1331}
1332
1333static inline void kvm_irqfd_release(struct kvm *kvm) {}
1334#endif
1335
1336#else
1337
1338static inline void kvm_eventfd_init(struct kvm *kvm) {}
1339
1340static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1341{
1342 return -EINVAL;
1343}
1344
1345static inline void kvm_irqfd_release(struct kvm *kvm) {}
1346
1347#ifdef CONFIG_HAVE_KVM_IRQCHIP
1348static inline void kvm_irq_routing_update(struct kvm *kvm)
1349{
1350}
1351#endif
1352
1353static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args)
1354{
1355 return -ENOSYS;
1356}
1357
1358#endif /* CONFIG_HAVE_KVM_EVENTFD */
1359
1360void kvm_arch_irq_routing_update(struct kvm *kvm);
1361
1362static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
1363{
1364 /*
1365 * Ensure the rest of the request is published to kvm_check_request's
1366 * caller. Paired with the smp_mb__after_atomic in kvm_check_request.
1367 */
1368 smp_wmb();
1369 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1370}
1371
1372static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
1373{
1374 return READ_ONCE(vcpu->requests);
1375}
1376
1377static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
1378{
1379 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1380}
1381
1382static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
1383{
1384 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1385}
1386
1387static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
1388{
1389 if (kvm_test_request(req, vcpu)) {
1390 kvm_clear_request(req, vcpu);
1391
1392 /*
1393 * Ensure the rest of the request is visible to kvm_check_request's
1394 * caller. Paired with the smp_wmb in kvm_make_request.
1395 */
1396 smp_mb__after_atomic();
1397 return true;
1398 } else {
1399 return false;
1400 }
1401}
1402
1403extern bool kvm_rebooting;
1404
1405extern unsigned int halt_poll_ns;
1406extern unsigned int halt_poll_ns_grow;
1407extern unsigned int halt_poll_ns_grow_start;
1408extern unsigned int halt_poll_ns_shrink;
1409
1410struct kvm_device {
1411 const struct kvm_device_ops *ops;
1412 struct kvm *kvm;
1413 void *private;
1414 struct list_head vm_node;
1415};
1416
1417/* create, destroy, and name are mandatory */
1418struct kvm_device_ops {
1419 const char *name;
1420
1421 /*
1422 * create is called holding kvm->lock and any operations not suitable
1423 * to do while holding the lock should be deferred to init (see
1424 * below).
1425 */
1426 int (*create)(struct kvm_device *dev, u32 type);
1427
1428 /*
1429 * init is called after create if create is successful and is called
1430 * outside of holding kvm->lock.
1431 */
1432 void (*init)(struct kvm_device *dev);
1433
1434 /*
1435 * Destroy is responsible for freeing dev.
1436 *
1437 * Destroy may be called before or after destructors are called
1438 * on emulated I/O regions, depending on whether a reference is
1439 * held by a vcpu or other kvm component that gets destroyed
1440 * after the emulated I/O.
1441 */
1442 void (*destroy)(struct kvm_device *dev);
1443
1444 /*
1445 * Release is an alternative method to free the device. It is
1446 * called when the device file descriptor is closed. Once
1447 * release is called, the destroy method will not be called
1448 * anymore as the device is removed from the device list of
1449 * the VM. kvm->lock is held.
1450 */
1451 void (*release)(struct kvm_device *dev);
1452
1453 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1454 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1455 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1456 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
1457 unsigned long arg);
1458 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
1459};
1460
1461void kvm_device_get(struct kvm_device *dev);
1462void kvm_device_put(struct kvm_device *dev);
1463struct kvm_device *kvm_device_from_filp(struct file *filp);
1464int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
1465void kvm_unregister_device_ops(u32 type);
1466
1467extern struct kvm_device_ops kvm_mpic_ops;
1468extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
1469extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
1470
1471#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1472
1473static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1474{
1475 vcpu->spin_loop.in_spin_loop = val;
1476}
1477static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1478{
1479 vcpu->spin_loop.dy_eligible = val;
1480}
1481
1482#else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1483
1484static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1485{
1486}
1487
1488static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1489{
1490}
1491#endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1492
1493static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
1494{
1495 return (memslot && memslot->id < KVM_USER_MEM_SLOTS &&
1496 !(memslot->flags & KVM_MEMSLOT_INVALID));
1497}
1498
1499struct kvm_vcpu *kvm_get_running_vcpu(void);
1500struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
1501
1502#ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
1503bool kvm_arch_has_irq_bypass(void);
1504int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
1505 struct irq_bypass_producer *);
1506void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
1507 struct irq_bypass_producer *);
1508void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
1509void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
1510int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
1511 uint32_t guest_irq, bool set);
1512#endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
1513
1514#ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
1515/* If we wakeup during the poll time, was it a sucessful poll? */
1516static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1517{
1518 return vcpu->valid_wakeup;
1519}
1520
1521#else
1522static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1523{
1524 return true;
1525}
1526#endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
1527
1528#ifdef CONFIG_HAVE_KVM_NO_POLL
1529/* Callback that tells if we must not poll */
1530bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
1531#else
1532static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
1533{
1534 return false;
1535}
1536#endif /* CONFIG_HAVE_KVM_NO_POLL */
1537
1538#ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
1539long kvm_arch_vcpu_async_ioctl(struct file *filp,
1540 unsigned int ioctl, unsigned long arg);
1541#else
1542static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
1543 unsigned int ioctl,
1544 unsigned long arg)
1545{
1546 return -ENOIOCTLCMD;
1547}
1548#endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
1549
1550void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
1551 unsigned long start, unsigned long end);
1552
1553#ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
1554int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
1555#else
1556static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
1557{
1558 return 0;
1559}
1560#endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
1561
1562typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data);
1563
1564int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
1565 uintptr_t data, const char *name,
1566 struct task_struct **thread_ptr);
1567
1568#ifdef CONFIG_KVM_XFER_TO_GUEST_WORK
1569static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu)
1570{
1571 vcpu->run->exit_reason = KVM_EXIT_INTR;
1572 vcpu->stat.signal_exits++;
1573}
1574#endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */
1575
1576/*
1577 * This defines how many reserved entries we want to keep before we
1578 * kick the vcpu to the userspace to avoid dirty ring full. This
1579 * value can be tuned to higher if e.g. PML is enabled on the host.
1580 */
1581#define KVM_DIRTY_RING_RSVD_ENTRIES 64
1582
1583/* Max number of entries allowed for each kvm dirty ring */
1584#define KVM_DIRTY_RING_MAX_ENTRIES 65536
1585
1586#endif