Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2/*
3 * Performance events:
4 *
5 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
6 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
7 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
8 *
9 * Data type definitions, declarations, prototypes.
10 *
11 * Started by: Thomas Gleixner and Ingo Molnar
12 *
13 * For licencing details see kernel-base/COPYING
14 */
15#ifndef _UAPI_LINUX_PERF_EVENT_H
16#define _UAPI_LINUX_PERF_EVENT_H
17
18#include <linux/types.h>
19#include <linux/ioctl.h>
20#include <asm/byteorder.h>
21
22/*
23 * User-space ABI bits:
24 */
25
26/*
27 * attr.type
28 */
29enum perf_type_id {
30 PERF_TYPE_HARDWARE = 0,
31 PERF_TYPE_SOFTWARE = 1,
32 PERF_TYPE_TRACEPOINT = 2,
33 PERF_TYPE_HW_CACHE = 3,
34 PERF_TYPE_RAW = 4,
35 PERF_TYPE_BREAKPOINT = 5,
36
37 PERF_TYPE_MAX, /* non-ABI */
38};
39
40/*
41 * attr.config layout for type PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
42 * PERF_TYPE_HARDWARE: 0xEEEEEEEE000000AA
43 * AA: hardware event ID
44 * EEEEEEEE: PMU type ID
45 * PERF_TYPE_HW_CACHE: 0xEEEEEEEE00DDCCBB
46 * BB: hardware cache ID
47 * CC: hardware cache op ID
48 * DD: hardware cache op result ID
49 * EEEEEEEE: PMU type ID
50 * If the PMU type ID is 0, the PERF_TYPE_RAW will be applied.
51 */
52#define PERF_PMU_TYPE_SHIFT 32
53#define PERF_HW_EVENT_MASK 0xffffffff
54
55/*
56 * Generalized performance event event_id types, used by the
57 * attr.event_id parameter of the sys_perf_event_open()
58 * syscall:
59 */
60enum perf_hw_id {
61 /*
62 * Common hardware events, generalized by the kernel:
63 */
64 PERF_COUNT_HW_CPU_CYCLES = 0,
65 PERF_COUNT_HW_INSTRUCTIONS = 1,
66 PERF_COUNT_HW_CACHE_REFERENCES = 2,
67 PERF_COUNT_HW_CACHE_MISSES = 3,
68 PERF_COUNT_HW_BRANCH_INSTRUCTIONS = 4,
69 PERF_COUNT_HW_BRANCH_MISSES = 5,
70 PERF_COUNT_HW_BUS_CYCLES = 6,
71 PERF_COUNT_HW_STALLED_CYCLES_FRONTEND = 7,
72 PERF_COUNT_HW_STALLED_CYCLES_BACKEND = 8,
73 PERF_COUNT_HW_REF_CPU_CYCLES = 9,
74
75 PERF_COUNT_HW_MAX, /* non-ABI */
76};
77
78/*
79 * Generalized hardware cache events:
80 *
81 * { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x
82 * { read, write, prefetch } x
83 * { accesses, misses }
84 */
85enum perf_hw_cache_id {
86 PERF_COUNT_HW_CACHE_L1D = 0,
87 PERF_COUNT_HW_CACHE_L1I = 1,
88 PERF_COUNT_HW_CACHE_LL = 2,
89 PERF_COUNT_HW_CACHE_DTLB = 3,
90 PERF_COUNT_HW_CACHE_ITLB = 4,
91 PERF_COUNT_HW_CACHE_BPU = 5,
92 PERF_COUNT_HW_CACHE_NODE = 6,
93
94 PERF_COUNT_HW_CACHE_MAX, /* non-ABI */
95};
96
97enum perf_hw_cache_op_id {
98 PERF_COUNT_HW_CACHE_OP_READ = 0,
99 PERF_COUNT_HW_CACHE_OP_WRITE = 1,
100 PERF_COUNT_HW_CACHE_OP_PREFETCH = 2,
101
102 PERF_COUNT_HW_CACHE_OP_MAX, /* non-ABI */
103};
104
105enum perf_hw_cache_op_result_id {
106 PERF_COUNT_HW_CACHE_RESULT_ACCESS = 0,
107 PERF_COUNT_HW_CACHE_RESULT_MISS = 1,
108
109 PERF_COUNT_HW_CACHE_RESULT_MAX, /* non-ABI */
110};
111
112/*
113 * Special "software" events provided by the kernel, even if the hardware
114 * does not support performance events. These events measure various
115 * physical and sw events of the kernel (and allow the profiling of them as
116 * well):
117 */
118enum perf_sw_ids {
119 PERF_COUNT_SW_CPU_CLOCK = 0,
120 PERF_COUNT_SW_TASK_CLOCK = 1,
121 PERF_COUNT_SW_PAGE_FAULTS = 2,
122 PERF_COUNT_SW_CONTEXT_SWITCHES = 3,
123 PERF_COUNT_SW_CPU_MIGRATIONS = 4,
124 PERF_COUNT_SW_PAGE_FAULTS_MIN = 5,
125 PERF_COUNT_SW_PAGE_FAULTS_MAJ = 6,
126 PERF_COUNT_SW_ALIGNMENT_FAULTS = 7,
127 PERF_COUNT_SW_EMULATION_FAULTS = 8,
128 PERF_COUNT_SW_DUMMY = 9,
129 PERF_COUNT_SW_BPF_OUTPUT = 10,
130
131 PERF_COUNT_SW_MAX, /* non-ABI */
132};
133
134/*
135 * Bits that can be set in attr.sample_type to request information
136 * in the overflow packets.
137 */
138enum perf_event_sample_format {
139 PERF_SAMPLE_IP = 1U << 0,
140 PERF_SAMPLE_TID = 1U << 1,
141 PERF_SAMPLE_TIME = 1U << 2,
142 PERF_SAMPLE_ADDR = 1U << 3,
143 PERF_SAMPLE_READ = 1U << 4,
144 PERF_SAMPLE_CALLCHAIN = 1U << 5,
145 PERF_SAMPLE_ID = 1U << 6,
146 PERF_SAMPLE_CPU = 1U << 7,
147 PERF_SAMPLE_PERIOD = 1U << 8,
148 PERF_SAMPLE_STREAM_ID = 1U << 9,
149 PERF_SAMPLE_RAW = 1U << 10,
150 PERF_SAMPLE_BRANCH_STACK = 1U << 11,
151 PERF_SAMPLE_REGS_USER = 1U << 12,
152 PERF_SAMPLE_STACK_USER = 1U << 13,
153 PERF_SAMPLE_WEIGHT = 1U << 14,
154 PERF_SAMPLE_DATA_SRC = 1U << 15,
155 PERF_SAMPLE_IDENTIFIER = 1U << 16,
156 PERF_SAMPLE_TRANSACTION = 1U << 17,
157 PERF_SAMPLE_REGS_INTR = 1U << 18,
158 PERF_SAMPLE_PHYS_ADDR = 1U << 19,
159 PERF_SAMPLE_AUX = 1U << 20,
160 PERF_SAMPLE_CGROUP = 1U << 21,
161 PERF_SAMPLE_DATA_PAGE_SIZE = 1U << 22,
162 PERF_SAMPLE_CODE_PAGE_SIZE = 1U << 23,
163 PERF_SAMPLE_WEIGHT_STRUCT = 1U << 24,
164
165 PERF_SAMPLE_MAX = 1U << 25, /* non-ABI */
166
167 __PERF_SAMPLE_CALLCHAIN_EARLY = 1ULL << 63, /* non-ABI; internal use */
168};
169
170#define PERF_SAMPLE_WEIGHT_TYPE (PERF_SAMPLE_WEIGHT | PERF_SAMPLE_WEIGHT_STRUCT)
171/*
172 * values to program into branch_sample_type when PERF_SAMPLE_BRANCH is set
173 *
174 * If the user does not pass priv level information via branch_sample_type,
175 * the kernel uses the event's priv level. Branch and event priv levels do
176 * not have to match. Branch priv level is checked for permissions.
177 *
178 * The branch types can be combined, however BRANCH_ANY covers all types
179 * of branches and therefore it supersedes all the other types.
180 */
181enum perf_branch_sample_type_shift {
182 PERF_SAMPLE_BRANCH_USER_SHIFT = 0, /* user branches */
183 PERF_SAMPLE_BRANCH_KERNEL_SHIFT = 1, /* kernel branches */
184 PERF_SAMPLE_BRANCH_HV_SHIFT = 2, /* hypervisor branches */
185
186 PERF_SAMPLE_BRANCH_ANY_SHIFT = 3, /* any branch types */
187 PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT = 4, /* any call branch */
188 PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT = 5, /* any return branch */
189 PERF_SAMPLE_BRANCH_IND_CALL_SHIFT = 6, /* indirect calls */
190 PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT = 7, /* transaction aborts */
191 PERF_SAMPLE_BRANCH_IN_TX_SHIFT = 8, /* in transaction */
192 PERF_SAMPLE_BRANCH_NO_TX_SHIFT = 9, /* not in transaction */
193 PERF_SAMPLE_BRANCH_COND_SHIFT = 10, /* conditional branches */
194
195 PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT = 11, /* call/ret stack */
196 PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT = 12, /* indirect jumps */
197 PERF_SAMPLE_BRANCH_CALL_SHIFT = 13, /* direct call */
198
199 PERF_SAMPLE_BRANCH_NO_FLAGS_SHIFT = 14, /* no flags */
200 PERF_SAMPLE_BRANCH_NO_CYCLES_SHIFT = 15, /* no cycles */
201
202 PERF_SAMPLE_BRANCH_TYPE_SAVE_SHIFT = 16, /* save branch type */
203
204 PERF_SAMPLE_BRANCH_HW_INDEX_SHIFT = 17, /* save low level index of raw branch records */
205
206 PERF_SAMPLE_BRANCH_MAX_SHIFT /* non-ABI */
207};
208
209enum perf_branch_sample_type {
210 PERF_SAMPLE_BRANCH_USER = 1U << PERF_SAMPLE_BRANCH_USER_SHIFT,
211 PERF_SAMPLE_BRANCH_KERNEL = 1U << PERF_SAMPLE_BRANCH_KERNEL_SHIFT,
212 PERF_SAMPLE_BRANCH_HV = 1U << PERF_SAMPLE_BRANCH_HV_SHIFT,
213
214 PERF_SAMPLE_BRANCH_ANY = 1U << PERF_SAMPLE_BRANCH_ANY_SHIFT,
215 PERF_SAMPLE_BRANCH_ANY_CALL = 1U << PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT,
216 PERF_SAMPLE_BRANCH_ANY_RETURN = 1U << PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT,
217 PERF_SAMPLE_BRANCH_IND_CALL = 1U << PERF_SAMPLE_BRANCH_IND_CALL_SHIFT,
218 PERF_SAMPLE_BRANCH_ABORT_TX = 1U << PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT,
219 PERF_SAMPLE_BRANCH_IN_TX = 1U << PERF_SAMPLE_BRANCH_IN_TX_SHIFT,
220 PERF_SAMPLE_BRANCH_NO_TX = 1U << PERF_SAMPLE_BRANCH_NO_TX_SHIFT,
221 PERF_SAMPLE_BRANCH_COND = 1U << PERF_SAMPLE_BRANCH_COND_SHIFT,
222
223 PERF_SAMPLE_BRANCH_CALL_STACK = 1U << PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT,
224 PERF_SAMPLE_BRANCH_IND_JUMP = 1U << PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT,
225 PERF_SAMPLE_BRANCH_CALL = 1U << PERF_SAMPLE_BRANCH_CALL_SHIFT,
226
227 PERF_SAMPLE_BRANCH_NO_FLAGS = 1U << PERF_SAMPLE_BRANCH_NO_FLAGS_SHIFT,
228 PERF_SAMPLE_BRANCH_NO_CYCLES = 1U << PERF_SAMPLE_BRANCH_NO_CYCLES_SHIFT,
229
230 PERF_SAMPLE_BRANCH_TYPE_SAVE =
231 1U << PERF_SAMPLE_BRANCH_TYPE_SAVE_SHIFT,
232
233 PERF_SAMPLE_BRANCH_HW_INDEX = 1U << PERF_SAMPLE_BRANCH_HW_INDEX_SHIFT,
234
235 PERF_SAMPLE_BRANCH_MAX = 1U << PERF_SAMPLE_BRANCH_MAX_SHIFT,
236};
237
238/*
239 * Common flow change classification
240 */
241enum {
242 PERF_BR_UNKNOWN = 0, /* unknown */
243 PERF_BR_COND = 1, /* conditional */
244 PERF_BR_UNCOND = 2, /* unconditional */
245 PERF_BR_IND = 3, /* indirect */
246 PERF_BR_CALL = 4, /* function call */
247 PERF_BR_IND_CALL = 5, /* indirect function call */
248 PERF_BR_RET = 6, /* function return */
249 PERF_BR_SYSCALL = 7, /* syscall */
250 PERF_BR_SYSRET = 8, /* syscall return */
251 PERF_BR_COND_CALL = 9, /* conditional function call */
252 PERF_BR_COND_RET = 10, /* conditional function return */
253 PERF_BR_MAX,
254};
255
256#define PERF_SAMPLE_BRANCH_PLM_ALL \
257 (PERF_SAMPLE_BRANCH_USER|\
258 PERF_SAMPLE_BRANCH_KERNEL|\
259 PERF_SAMPLE_BRANCH_HV)
260
261/*
262 * Values to determine ABI of the registers dump.
263 */
264enum perf_sample_regs_abi {
265 PERF_SAMPLE_REGS_ABI_NONE = 0,
266 PERF_SAMPLE_REGS_ABI_32 = 1,
267 PERF_SAMPLE_REGS_ABI_64 = 2,
268};
269
270/*
271 * Values for the memory transaction event qualifier, mostly for
272 * abort events. Multiple bits can be set.
273 */
274enum {
275 PERF_TXN_ELISION = (1 << 0), /* From elision */
276 PERF_TXN_TRANSACTION = (1 << 1), /* From transaction */
277 PERF_TXN_SYNC = (1 << 2), /* Instruction is related */
278 PERF_TXN_ASYNC = (1 << 3), /* Instruction not related */
279 PERF_TXN_RETRY = (1 << 4), /* Retry possible */
280 PERF_TXN_CONFLICT = (1 << 5), /* Conflict abort */
281 PERF_TXN_CAPACITY_WRITE = (1 << 6), /* Capacity write abort */
282 PERF_TXN_CAPACITY_READ = (1 << 7), /* Capacity read abort */
283
284 PERF_TXN_MAX = (1 << 8), /* non-ABI */
285
286 /* bits 32..63 are reserved for the abort code */
287
288 PERF_TXN_ABORT_MASK = (0xffffffffULL << 32),
289 PERF_TXN_ABORT_SHIFT = 32,
290};
291
292/*
293 * The format of the data returned by read() on a perf event fd,
294 * as specified by attr.read_format:
295 *
296 * struct read_format {
297 * { u64 value;
298 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
299 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
300 * { u64 id; } && PERF_FORMAT_ID
301 * } && !PERF_FORMAT_GROUP
302 *
303 * { u64 nr;
304 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
305 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
306 * { u64 value;
307 * { u64 id; } && PERF_FORMAT_ID
308 * } cntr[nr];
309 * } && PERF_FORMAT_GROUP
310 * };
311 */
312enum perf_event_read_format {
313 PERF_FORMAT_TOTAL_TIME_ENABLED = 1U << 0,
314 PERF_FORMAT_TOTAL_TIME_RUNNING = 1U << 1,
315 PERF_FORMAT_ID = 1U << 2,
316 PERF_FORMAT_GROUP = 1U << 3,
317
318 PERF_FORMAT_MAX = 1U << 4, /* non-ABI */
319};
320
321#define PERF_ATTR_SIZE_VER0 64 /* sizeof first published struct */
322#define PERF_ATTR_SIZE_VER1 72 /* add: config2 */
323#define PERF_ATTR_SIZE_VER2 80 /* add: branch_sample_type */
324#define PERF_ATTR_SIZE_VER3 96 /* add: sample_regs_user */
325 /* add: sample_stack_user */
326#define PERF_ATTR_SIZE_VER4 104 /* add: sample_regs_intr */
327#define PERF_ATTR_SIZE_VER5 112 /* add: aux_watermark */
328#define PERF_ATTR_SIZE_VER6 120 /* add: aux_sample_size */
329
330/*
331 * Hardware event_id to monitor via a performance monitoring event:
332 *
333 * @sample_max_stack: Max number of frame pointers in a callchain,
334 * should be < /proc/sys/kernel/perf_event_max_stack
335 */
336struct perf_event_attr {
337
338 /*
339 * Major type: hardware/software/tracepoint/etc.
340 */
341 __u32 type;
342
343 /*
344 * Size of the attr structure, for fwd/bwd compat.
345 */
346 __u32 size;
347
348 /*
349 * Type specific configuration information.
350 */
351 __u64 config;
352
353 union {
354 __u64 sample_period;
355 __u64 sample_freq;
356 };
357
358 __u64 sample_type;
359 __u64 read_format;
360
361 __u64 disabled : 1, /* off by default */
362 inherit : 1, /* children inherit it */
363 pinned : 1, /* must always be on PMU */
364 exclusive : 1, /* only group on PMU */
365 exclude_user : 1, /* don't count user */
366 exclude_kernel : 1, /* ditto kernel */
367 exclude_hv : 1, /* ditto hypervisor */
368 exclude_idle : 1, /* don't count when idle */
369 mmap : 1, /* include mmap data */
370 comm : 1, /* include comm data */
371 freq : 1, /* use freq, not period */
372 inherit_stat : 1, /* per task counts */
373 enable_on_exec : 1, /* next exec enables */
374 task : 1, /* trace fork/exit */
375 watermark : 1, /* wakeup_watermark */
376 /*
377 * precise_ip:
378 *
379 * 0 - SAMPLE_IP can have arbitrary skid
380 * 1 - SAMPLE_IP must have constant skid
381 * 2 - SAMPLE_IP requested to have 0 skid
382 * 3 - SAMPLE_IP must have 0 skid
383 *
384 * See also PERF_RECORD_MISC_EXACT_IP
385 */
386 precise_ip : 2, /* skid constraint */
387 mmap_data : 1, /* non-exec mmap data */
388 sample_id_all : 1, /* sample_type all events */
389
390 exclude_host : 1, /* don't count in host */
391 exclude_guest : 1, /* don't count in guest */
392
393 exclude_callchain_kernel : 1, /* exclude kernel callchains */
394 exclude_callchain_user : 1, /* exclude user callchains */
395 mmap2 : 1, /* include mmap with inode data */
396 comm_exec : 1, /* flag comm events that are due to an exec */
397 use_clockid : 1, /* use @clockid for time fields */
398 context_switch : 1, /* context switch data */
399 write_backward : 1, /* Write ring buffer from end to beginning */
400 namespaces : 1, /* include namespaces data */
401 ksymbol : 1, /* include ksymbol events */
402 bpf_event : 1, /* include bpf events */
403 aux_output : 1, /* generate AUX records instead of events */
404 cgroup : 1, /* include cgroup events */
405 text_poke : 1, /* include text poke events */
406 build_id : 1, /* use build id in mmap2 events */
407 __reserved_1 : 29;
408
409 union {
410 __u32 wakeup_events; /* wakeup every n events */
411 __u32 wakeup_watermark; /* bytes before wakeup */
412 };
413
414 __u32 bp_type;
415 union {
416 __u64 bp_addr;
417 __u64 kprobe_func; /* for perf_kprobe */
418 __u64 uprobe_path; /* for perf_uprobe */
419 __u64 config1; /* extension of config */
420 };
421 union {
422 __u64 bp_len;
423 __u64 kprobe_addr; /* when kprobe_func == NULL */
424 __u64 probe_offset; /* for perf_[k,u]probe */
425 __u64 config2; /* extension of config1 */
426 };
427 __u64 branch_sample_type; /* enum perf_branch_sample_type */
428
429 /*
430 * Defines set of user regs to dump on samples.
431 * See asm/perf_regs.h for details.
432 */
433 __u64 sample_regs_user;
434
435 /*
436 * Defines size of the user stack to dump on samples.
437 */
438 __u32 sample_stack_user;
439
440 __s32 clockid;
441 /*
442 * Defines set of regs to dump for each sample
443 * state captured on:
444 * - precise = 0: PMU interrupt
445 * - precise > 0: sampled instruction
446 *
447 * See asm/perf_regs.h for details.
448 */
449 __u64 sample_regs_intr;
450
451 /*
452 * Wakeup watermark for AUX area
453 */
454 __u32 aux_watermark;
455 __u16 sample_max_stack;
456 __u16 __reserved_2;
457 __u32 aux_sample_size;
458 __u32 __reserved_3;
459};
460
461/*
462 * Structure used by below PERF_EVENT_IOC_QUERY_BPF command
463 * to query bpf programs attached to the same perf tracepoint
464 * as the given perf event.
465 */
466struct perf_event_query_bpf {
467 /*
468 * The below ids array length
469 */
470 __u32 ids_len;
471 /*
472 * Set by the kernel to indicate the number of
473 * available programs
474 */
475 __u32 prog_cnt;
476 /*
477 * User provided buffer to store program ids
478 */
479 __u32 ids[0];
480};
481
482/*
483 * Ioctls that can be done on a perf event fd:
484 */
485#define PERF_EVENT_IOC_ENABLE _IO ('$', 0)
486#define PERF_EVENT_IOC_DISABLE _IO ('$', 1)
487#define PERF_EVENT_IOC_REFRESH _IO ('$', 2)
488#define PERF_EVENT_IOC_RESET _IO ('$', 3)
489#define PERF_EVENT_IOC_PERIOD _IOW('$', 4, __u64)
490#define PERF_EVENT_IOC_SET_OUTPUT _IO ('$', 5)
491#define PERF_EVENT_IOC_SET_FILTER _IOW('$', 6, char *)
492#define PERF_EVENT_IOC_ID _IOR('$', 7, __u64 *)
493#define PERF_EVENT_IOC_SET_BPF _IOW('$', 8, __u32)
494#define PERF_EVENT_IOC_PAUSE_OUTPUT _IOW('$', 9, __u32)
495#define PERF_EVENT_IOC_QUERY_BPF _IOWR('$', 10, struct perf_event_query_bpf *)
496#define PERF_EVENT_IOC_MODIFY_ATTRIBUTES _IOW('$', 11, struct perf_event_attr *)
497
498enum perf_event_ioc_flags {
499 PERF_IOC_FLAG_GROUP = 1U << 0,
500};
501
502/*
503 * Structure of the page that can be mapped via mmap
504 */
505struct perf_event_mmap_page {
506 __u32 version; /* version number of this structure */
507 __u32 compat_version; /* lowest version this is compat with */
508
509 /*
510 * Bits needed to read the hw events in user-space.
511 *
512 * u32 seq, time_mult, time_shift, index, width;
513 * u64 count, enabled, running;
514 * u64 cyc, time_offset;
515 * s64 pmc = 0;
516 *
517 * do {
518 * seq = pc->lock;
519 * barrier()
520 *
521 * enabled = pc->time_enabled;
522 * running = pc->time_running;
523 *
524 * if (pc->cap_usr_time && enabled != running) {
525 * cyc = rdtsc();
526 * time_offset = pc->time_offset;
527 * time_mult = pc->time_mult;
528 * time_shift = pc->time_shift;
529 * }
530 *
531 * index = pc->index;
532 * count = pc->offset;
533 * if (pc->cap_user_rdpmc && index) {
534 * width = pc->pmc_width;
535 * pmc = rdpmc(index - 1);
536 * }
537 *
538 * barrier();
539 * } while (pc->lock != seq);
540 *
541 * NOTE: for obvious reason this only works on self-monitoring
542 * processes.
543 */
544 __u32 lock; /* seqlock for synchronization */
545 __u32 index; /* hardware event identifier */
546 __s64 offset; /* add to hardware event value */
547 __u64 time_enabled; /* time event active */
548 __u64 time_running; /* time event on cpu */
549 union {
550 __u64 capabilities;
551 struct {
552 __u64 cap_bit0 : 1, /* Always 0, deprecated, see commit 860f085b74e9 */
553 cap_bit0_is_deprecated : 1, /* Always 1, signals that bit 0 is zero */
554
555 cap_user_rdpmc : 1, /* The RDPMC instruction can be used to read counts */
556 cap_user_time : 1, /* The time_{shift,mult,offset} fields are used */
557 cap_user_time_zero : 1, /* The time_zero field is used */
558 cap_user_time_short : 1, /* the time_{cycle,mask} fields are used */
559 cap_____res : 58;
560 };
561 };
562
563 /*
564 * If cap_user_rdpmc this field provides the bit-width of the value
565 * read using the rdpmc() or equivalent instruction. This can be used
566 * to sign extend the result like:
567 *
568 * pmc <<= 64 - width;
569 * pmc >>= 64 - width; // signed shift right
570 * count += pmc;
571 */
572 __u16 pmc_width;
573
574 /*
575 * If cap_usr_time the below fields can be used to compute the time
576 * delta since time_enabled (in ns) using rdtsc or similar.
577 *
578 * u64 quot, rem;
579 * u64 delta;
580 *
581 * quot = (cyc >> time_shift);
582 * rem = cyc & (((u64)1 << time_shift) - 1);
583 * delta = time_offset + quot * time_mult +
584 * ((rem * time_mult) >> time_shift);
585 *
586 * Where time_offset,time_mult,time_shift and cyc are read in the
587 * seqcount loop described above. This delta can then be added to
588 * enabled and possible running (if index), improving the scaling:
589 *
590 * enabled += delta;
591 * if (index)
592 * running += delta;
593 *
594 * quot = count / running;
595 * rem = count % running;
596 * count = quot * enabled + (rem * enabled) / running;
597 */
598 __u16 time_shift;
599 __u32 time_mult;
600 __u64 time_offset;
601 /*
602 * If cap_usr_time_zero, the hardware clock (e.g. TSC) can be calculated
603 * from sample timestamps.
604 *
605 * time = timestamp - time_zero;
606 * quot = time / time_mult;
607 * rem = time % time_mult;
608 * cyc = (quot << time_shift) + (rem << time_shift) / time_mult;
609 *
610 * And vice versa:
611 *
612 * quot = cyc >> time_shift;
613 * rem = cyc & (((u64)1 << time_shift) - 1);
614 * timestamp = time_zero + quot * time_mult +
615 * ((rem * time_mult) >> time_shift);
616 */
617 __u64 time_zero;
618
619 __u32 size; /* Header size up to __reserved[] fields. */
620 __u32 __reserved_1;
621
622 /*
623 * If cap_usr_time_short, the hardware clock is less than 64bit wide
624 * and we must compute the 'cyc' value, as used by cap_usr_time, as:
625 *
626 * cyc = time_cycles + ((cyc - time_cycles) & time_mask)
627 *
628 * NOTE: this form is explicitly chosen such that cap_usr_time_short
629 * is a correction on top of cap_usr_time, and code that doesn't
630 * know about cap_usr_time_short still works under the assumption
631 * the counter doesn't wrap.
632 */
633 __u64 time_cycles;
634 __u64 time_mask;
635
636 /*
637 * Hole for extension of the self monitor capabilities
638 */
639
640 __u8 __reserved[116*8]; /* align to 1k. */
641
642 /*
643 * Control data for the mmap() data buffer.
644 *
645 * User-space reading the @data_head value should issue an smp_rmb(),
646 * after reading this value.
647 *
648 * When the mapping is PROT_WRITE the @data_tail value should be
649 * written by userspace to reflect the last read data, after issueing
650 * an smp_mb() to separate the data read from the ->data_tail store.
651 * In this case the kernel will not over-write unread data.
652 *
653 * See perf_output_put_handle() for the data ordering.
654 *
655 * data_{offset,size} indicate the location and size of the perf record
656 * buffer within the mmapped area.
657 */
658 __u64 data_head; /* head in the data section */
659 __u64 data_tail; /* user-space written tail */
660 __u64 data_offset; /* where the buffer starts */
661 __u64 data_size; /* data buffer size */
662
663 /*
664 * AUX area is defined by aux_{offset,size} fields that should be set
665 * by the userspace, so that
666 *
667 * aux_offset >= data_offset + data_size
668 *
669 * prior to mmap()ing it. Size of the mmap()ed area should be aux_size.
670 *
671 * Ring buffer pointers aux_{head,tail} have the same semantics as
672 * data_{head,tail} and same ordering rules apply.
673 */
674 __u64 aux_head;
675 __u64 aux_tail;
676 __u64 aux_offset;
677 __u64 aux_size;
678};
679
680/*
681 * The current state of perf_event_header::misc bits usage:
682 * ('|' used bit, '-' unused bit)
683 *
684 * 012 CDEF
685 * |||---------||||
686 *
687 * Where:
688 * 0-2 CPUMODE_MASK
689 *
690 * C PROC_MAP_PARSE_TIMEOUT
691 * D MMAP_DATA / COMM_EXEC / FORK_EXEC / SWITCH_OUT
692 * E MMAP_BUILD_ID / EXACT_IP / SCHED_OUT_PREEMPT
693 * F (reserved)
694 */
695
696#define PERF_RECORD_MISC_CPUMODE_MASK (7 << 0)
697#define PERF_RECORD_MISC_CPUMODE_UNKNOWN (0 << 0)
698#define PERF_RECORD_MISC_KERNEL (1 << 0)
699#define PERF_RECORD_MISC_USER (2 << 0)
700#define PERF_RECORD_MISC_HYPERVISOR (3 << 0)
701#define PERF_RECORD_MISC_GUEST_KERNEL (4 << 0)
702#define PERF_RECORD_MISC_GUEST_USER (5 << 0)
703
704/*
705 * Indicates that /proc/PID/maps parsing are truncated by time out.
706 */
707#define PERF_RECORD_MISC_PROC_MAP_PARSE_TIMEOUT (1 << 12)
708/*
709 * Following PERF_RECORD_MISC_* are used on different
710 * events, so can reuse the same bit position:
711 *
712 * PERF_RECORD_MISC_MMAP_DATA - PERF_RECORD_MMAP* events
713 * PERF_RECORD_MISC_COMM_EXEC - PERF_RECORD_COMM event
714 * PERF_RECORD_MISC_FORK_EXEC - PERF_RECORD_FORK event (perf internal)
715 * PERF_RECORD_MISC_SWITCH_OUT - PERF_RECORD_SWITCH* events
716 */
717#define PERF_RECORD_MISC_MMAP_DATA (1 << 13)
718#define PERF_RECORD_MISC_COMM_EXEC (1 << 13)
719#define PERF_RECORD_MISC_FORK_EXEC (1 << 13)
720#define PERF_RECORD_MISC_SWITCH_OUT (1 << 13)
721/*
722 * These PERF_RECORD_MISC_* flags below are safely reused
723 * for the following events:
724 *
725 * PERF_RECORD_MISC_EXACT_IP - PERF_RECORD_SAMPLE of precise events
726 * PERF_RECORD_MISC_SWITCH_OUT_PREEMPT - PERF_RECORD_SWITCH* events
727 * PERF_RECORD_MISC_MMAP_BUILD_ID - PERF_RECORD_MMAP2 event
728 *
729 *
730 * PERF_RECORD_MISC_EXACT_IP:
731 * Indicates that the content of PERF_SAMPLE_IP points to
732 * the actual instruction that triggered the event. See also
733 * perf_event_attr::precise_ip.
734 *
735 * PERF_RECORD_MISC_SWITCH_OUT_PREEMPT:
736 * Indicates that thread was preempted in TASK_RUNNING state.
737 *
738 * PERF_RECORD_MISC_MMAP_BUILD_ID:
739 * Indicates that mmap2 event carries build id data.
740 */
741#define PERF_RECORD_MISC_EXACT_IP (1 << 14)
742#define PERF_RECORD_MISC_SWITCH_OUT_PREEMPT (1 << 14)
743#define PERF_RECORD_MISC_MMAP_BUILD_ID (1 << 14)
744/*
745 * Reserve the last bit to indicate some extended misc field
746 */
747#define PERF_RECORD_MISC_EXT_RESERVED (1 << 15)
748
749struct perf_event_header {
750 __u32 type;
751 __u16 misc;
752 __u16 size;
753};
754
755struct perf_ns_link_info {
756 __u64 dev;
757 __u64 ino;
758};
759
760enum {
761 NET_NS_INDEX = 0,
762 UTS_NS_INDEX = 1,
763 IPC_NS_INDEX = 2,
764 PID_NS_INDEX = 3,
765 USER_NS_INDEX = 4,
766 MNT_NS_INDEX = 5,
767 CGROUP_NS_INDEX = 6,
768
769 NR_NAMESPACES, /* number of available namespaces */
770};
771
772enum perf_event_type {
773
774 /*
775 * If perf_event_attr.sample_id_all is set then all event types will
776 * have the sample_type selected fields related to where/when
777 * (identity) an event took place (TID, TIME, ID, STREAM_ID, CPU,
778 * IDENTIFIER) described in PERF_RECORD_SAMPLE below, it will be stashed
779 * just after the perf_event_header and the fields already present for
780 * the existing fields, i.e. at the end of the payload. That way a newer
781 * perf.data file will be supported by older perf tools, with these new
782 * optional fields being ignored.
783 *
784 * struct sample_id {
785 * { u32 pid, tid; } && PERF_SAMPLE_TID
786 * { u64 time; } && PERF_SAMPLE_TIME
787 * { u64 id; } && PERF_SAMPLE_ID
788 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID
789 * { u32 cpu, res; } && PERF_SAMPLE_CPU
790 * { u64 id; } && PERF_SAMPLE_IDENTIFIER
791 * } && perf_event_attr::sample_id_all
792 *
793 * Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID. The
794 * advantage of PERF_SAMPLE_IDENTIFIER is that its position is fixed
795 * relative to header.size.
796 */
797
798 /*
799 * The MMAP events record the PROT_EXEC mappings so that we can
800 * correlate userspace IPs to code. They have the following structure:
801 *
802 * struct {
803 * struct perf_event_header header;
804 *
805 * u32 pid, tid;
806 * u64 addr;
807 * u64 len;
808 * u64 pgoff;
809 * char filename[];
810 * struct sample_id sample_id;
811 * };
812 */
813 PERF_RECORD_MMAP = 1,
814
815 /*
816 * struct {
817 * struct perf_event_header header;
818 * u64 id;
819 * u64 lost;
820 * struct sample_id sample_id;
821 * };
822 */
823 PERF_RECORD_LOST = 2,
824
825 /*
826 * struct {
827 * struct perf_event_header header;
828 *
829 * u32 pid, tid;
830 * char comm[];
831 * struct sample_id sample_id;
832 * };
833 */
834 PERF_RECORD_COMM = 3,
835
836 /*
837 * struct {
838 * struct perf_event_header header;
839 * u32 pid, ppid;
840 * u32 tid, ptid;
841 * u64 time;
842 * struct sample_id sample_id;
843 * };
844 */
845 PERF_RECORD_EXIT = 4,
846
847 /*
848 * struct {
849 * struct perf_event_header header;
850 * u64 time;
851 * u64 id;
852 * u64 stream_id;
853 * struct sample_id sample_id;
854 * };
855 */
856 PERF_RECORD_THROTTLE = 5,
857 PERF_RECORD_UNTHROTTLE = 6,
858
859 /*
860 * struct {
861 * struct perf_event_header header;
862 * u32 pid, ppid;
863 * u32 tid, ptid;
864 * u64 time;
865 * struct sample_id sample_id;
866 * };
867 */
868 PERF_RECORD_FORK = 7,
869
870 /*
871 * struct {
872 * struct perf_event_header header;
873 * u32 pid, tid;
874 *
875 * struct read_format values;
876 * struct sample_id sample_id;
877 * };
878 */
879 PERF_RECORD_READ = 8,
880
881 /*
882 * struct {
883 * struct perf_event_header header;
884 *
885 * #
886 * # Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID.
887 * # The advantage of PERF_SAMPLE_IDENTIFIER is that its position
888 * # is fixed relative to header.
889 * #
890 *
891 * { u64 id; } && PERF_SAMPLE_IDENTIFIER
892 * { u64 ip; } && PERF_SAMPLE_IP
893 * { u32 pid, tid; } && PERF_SAMPLE_TID
894 * { u64 time; } && PERF_SAMPLE_TIME
895 * { u64 addr; } && PERF_SAMPLE_ADDR
896 * { u64 id; } && PERF_SAMPLE_ID
897 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID
898 * { u32 cpu, res; } && PERF_SAMPLE_CPU
899 * { u64 period; } && PERF_SAMPLE_PERIOD
900 *
901 * { struct read_format values; } && PERF_SAMPLE_READ
902 *
903 * { u64 nr,
904 * u64 ips[nr]; } && PERF_SAMPLE_CALLCHAIN
905 *
906 * #
907 * # The RAW record below is opaque data wrt the ABI
908 * #
909 * # That is, the ABI doesn't make any promises wrt to
910 * # the stability of its content, it may vary depending
911 * # on event, hardware, kernel version and phase of
912 * # the moon.
913 * #
914 * # In other words, PERF_SAMPLE_RAW contents are not an ABI.
915 * #
916 *
917 * { u32 size;
918 * char data[size];}&& PERF_SAMPLE_RAW
919 *
920 * { u64 nr;
921 * { u64 hw_idx; } && PERF_SAMPLE_BRANCH_HW_INDEX
922 * { u64 from, to, flags } lbr[nr];
923 * } && PERF_SAMPLE_BRANCH_STACK
924 *
925 * { u64 abi; # enum perf_sample_regs_abi
926 * u64 regs[weight(mask)]; } && PERF_SAMPLE_REGS_USER
927 *
928 * { u64 size;
929 * char data[size];
930 * u64 dyn_size; } && PERF_SAMPLE_STACK_USER
931 *
932 * { union perf_sample_weight
933 * {
934 * u64 full; && PERF_SAMPLE_WEIGHT
935 * #if defined(__LITTLE_ENDIAN_BITFIELD)
936 * struct {
937 * u32 var1_dw;
938 * u16 var2_w;
939 * u16 var3_w;
940 * } && PERF_SAMPLE_WEIGHT_STRUCT
941 * #elif defined(__BIG_ENDIAN_BITFIELD)
942 * struct {
943 * u16 var3_w;
944 * u16 var2_w;
945 * u32 var1_dw;
946 * } && PERF_SAMPLE_WEIGHT_STRUCT
947 * #endif
948 * }
949 * }
950 * { u64 data_src; } && PERF_SAMPLE_DATA_SRC
951 * { u64 transaction; } && PERF_SAMPLE_TRANSACTION
952 * { u64 abi; # enum perf_sample_regs_abi
953 * u64 regs[weight(mask)]; } && PERF_SAMPLE_REGS_INTR
954 * { u64 phys_addr;} && PERF_SAMPLE_PHYS_ADDR
955 * { u64 size;
956 * char data[size]; } && PERF_SAMPLE_AUX
957 * { u64 data_page_size;} && PERF_SAMPLE_DATA_PAGE_SIZE
958 * { u64 code_page_size;} && PERF_SAMPLE_CODE_PAGE_SIZE
959 * };
960 */
961 PERF_RECORD_SAMPLE = 9,
962
963 /*
964 * The MMAP2 records are an augmented version of MMAP, they add
965 * maj, min, ino numbers to be used to uniquely identify each mapping
966 *
967 * struct {
968 * struct perf_event_header header;
969 *
970 * u32 pid, tid;
971 * u64 addr;
972 * u64 len;
973 * u64 pgoff;
974 * union {
975 * struct {
976 * u32 maj;
977 * u32 min;
978 * u64 ino;
979 * u64 ino_generation;
980 * };
981 * struct {
982 * u8 build_id_size;
983 * u8 __reserved_1;
984 * u16 __reserved_2;
985 * u8 build_id[20];
986 * };
987 * };
988 * u32 prot, flags;
989 * char filename[];
990 * struct sample_id sample_id;
991 * };
992 */
993 PERF_RECORD_MMAP2 = 10,
994
995 /*
996 * Records that new data landed in the AUX buffer part.
997 *
998 * struct {
999 * struct perf_event_header header;
1000 *
1001 * u64 aux_offset;
1002 * u64 aux_size;
1003 * u64 flags;
1004 * struct sample_id sample_id;
1005 * };
1006 */
1007 PERF_RECORD_AUX = 11,
1008
1009 /*
1010 * Indicates that instruction trace has started
1011 *
1012 * struct {
1013 * struct perf_event_header header;
1014 * u32 pid;
1015 * u32 tid;
1016 * struct sample_id sample_id;
1017 * };
1018 */
1019 PERF_RECORD_ITRACE_START = 12,
1020
1021 /*
1022 * Records the dropped/lost sample number.
1023 *
1024 * struct {
1025 * struct perf_event_header header;
1026 *
1027 * u64 lost;
1028 * struct sample_id sample_id;
1029 * };
1030 */
1031 PERF_RECORD_LOST_SAMPLES = 13,
1032
1033 /*
1034 * Records a context switch in or out (flagged by
1035 * PERF_RECORD_MISC_SWITCH_OUT). See also
1036 * PERF_RECORD_SWITCH_CPU_WIDE.
1037 *
1038 * struct {
1039 * struct perf_event_header header;
1040 * struct sample_id sample_id;
1041 * };
1042 */
1043 PERF_RECORD_SWITCH = 14,
1044
1045 /*
1046 * CPU-wide version of PERF_RECORD_SWITCH with next_prev_pid and
1047 * next_prev_tid that are the next (switching out) or previous
1048 * (switching in) pid/tid.
1049 *
1050 * struct {
1051 * struct perf_event_header header;
1052 * u32 next_prev_pid;
1053 * u32 next_prev_tid;
1054 * struct sample_id sample_id;
1055 * };
1056 */
1057 PERF_RECORD_SWITCH_CPU_WIDE = 15,
1058
1059 /*
1060 * struct {
1061 * struct perf_event_header header;
1062 * u32 pid;
1063 * u32 tid;
1064 * u64 nr_namespaces;
1065 * { u64 dev, inode; } [nr_namespaces];
1066 * struct sample_id sample_id;
1067 * };
1068 */
1069 PERF_RECORD_NAMESPACES = 16,
1070
1071 /*
1072 * Record ksymbol register/unregister events:
1073 *
1074 * struct {
1075 * struct perf_event_header header;
1076 * u64 addr;
1077 * u32 len;
1078 * u16 ksym_type;
1079 * u16 flags;
1080 * char name[];
1081 * struct sample_id sample_id;
1082 * };
1083 */
1084 PERF_RECORD_KSYMBOL = 17,
1085
1086 /*
1087 * Record bpf events:
1088 * enum perf_bpf_event_type {
1089 * PERF_BPF_EVENT_UNKNOWN = 0,
1090 * PERF_BPF_EVENT_PROG_LOAD = 1,
1091 * PERF_BPF_EVENT_PROG_UNLOAD = 2,
1092 * };
1093 *
1094 * struct {
1095 * struct perf_event_header header;
1096 * u16 type;
1097 * u16 flags;
1098 * u32 id;
1099 * u8 tag[BPF_TAG_SIZE];
1100 * struct sample_id sample_id;
1101 * };
1102 */
1103 PERF_RECORD_BPF_EVENT = 18,
1104
1105 /*
1106 * struct {
1107 * struct perf_event_header header;
1108 * u64 id;
1109 * char path[];
1110 * struct sample_id sample_id;
1111 * };
1112 */
1113 PERF_RECORD_CGROUP = 19,
1114
1115 /*
1116 * Records changes to kernel text i.e. self-modified code. 'old_len' is
1117 * the number of old bytes, 'new_len' is the number of new bytes. Either
1118 * 'old_len' or 'new_len' may be zero to indicate, for example, the
1119 * addition or removal of a trampoline. 'bytes' contains the old bytes
1120 * followed immediately by the new bytes.
1121 *
1122 * struct {
1123 * struct perf_event_header header;
1124 * u64 addr;
1125 * u16 old_len;
1126 * u16 new_len;
1127 * u8 bytes[];
1128 * struct sample_id sample_id;
1129 * };
1130 */
1131 PERF_RECORD_TEXT_POKE = 20,
1132
1133 PERF_RECORD_MAX, /* non-ABI */
1134};
1135
1136enum perf_record_ksymbol_type {
1137 PERF_RECORD_KSYMBOL_TYPE_UNKNOWN = 0,
1138 PERF_RECORD_KSYMBOL_TYPE_BPF = 1,
1139 /*
1140 * Out of line code such as kprobe-replaced instructions or optimized
1141 * kprobes or ftrace trampolines.
1142 */
1143 PERF_RECORD_KSYMBOL_TYPE_OOL = 2,
1144 PERF_RECORD_KSYMBOL_TYPE_MAX /* non-ABI */
1145};
1146
1147#define PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER (1 << 0)
1148
1149enum perf_bpf_event_type {
1150 PERF_BPF_EVENT_UNKNOWN = 0,
1151 PERF_BPF_EVENT_PROG_LOAD = 1,
1152 PERF_BPF_EVENT_PROG_UNLOAD = 2,
1153 PERF_BPF_EVENT_MAX, /* non-ABI */
1154};
1155
1156#define PERF_MAX_STACK_DEPTH 127
1157#define PERF_MAX_CONTEXTS_PER_STACK 8
1158
1159enum perf_callchain_context {
1160 PERF_CONTEXT_HV = (__u64)-32,
1161 PERF_CONTEXT_KERNEL = (__u64)-128,
1162 PERF_CONTEXT_USER = (__u64)-512,
1163
1164 PERF_CONTEXT_GUEST = (__u64)-2048,
1165 PERF_CONTEXT_GUEST_KERNEL = (__u64)-2176,
1166 PERF_CONTEXT_GUEST_USER = (__u64)-2560,
1167
1168 PERF_CONTEXT_MAX = (__u64)-4095,
1169};
1170
1171/**
1172 * PERF_RECORD_AUX::flags bits
1173 */
1174#define PERF_AUX_FLAG_TRUNCATED 0x01 /* record was truncated to fit */
1175#define PERF_AUX_FLAG_OVERWRITE 0x02 /* snapshot from overwrite mode */
1176#define PERF_AUX_FLAG_PARTIAL 0x04 /* record contains gaps */
1177#define PERF_AUX_FLAG_COLLISION 0x08 /* sample collided with another */
1178
1179#define PERF_FLAG_FD_NO_GROUP (1UL << 0)
1180#define PERF_FLAG_FD_OUTPUT (1UL << 1)
1181#define PERF_FLAG_PID_CGROUP (1UL << 2) /* pid=cgroup id, per-cpu mode only */
1182#define PERF_FLAG_FD_CLOEXEC (1UL << 3) /* O_CLOEXEC */
1183
1184#if defined(__LITTLE_ENDIAN_BITFIELD)
1185union perf_mem_data_src {
1186 __u64 val;
1187 struct {
1188 __u64 mem_op:5, /* type of opcode */
1189 mem_lvl:14, /* memory hierarchy level */
1190 mem_snoop:5, /* snoop mode */
1191 mem_lock:2, /* lock instr */
1192 mem_dtlb:7, /* tlb access */
1193 mem_lvl_num:4, /* memory hierarchy level number */
1194 mem_remote:1, /* remote */
1195 mem_snoopx:2, /* snoop mode, ext */
1196 mem_blk:3, /* access blocked */
1197 mem_rsvd:21;
1198 };
1199};
1200#elif defined(__BIG_ENDIAN_BITFIELD)
1201union perf_mem_data_src {
1202 __u64 val;
1203 struct {
1204 __u64 mem_rsvd:21,
1205 mem_blk:3, /* access blocked */
1206 mem_snoopx:2, /* snoop mode, ext */
1207 mem_remote:1, /* remote */
1208 mem_lvl_num:4, /* memory hierarchy level number */
1209 mem_dtlb:7, /* tlb access */
1210 mem_lock:2, /* lock instr */
1211 mem_snoop:5, /* snoop mode */
1212 mem_lvl:14, /* memory hierarchy level */
1213 mem_op:5; /* type of opcode */
1214 };
1215};
1216#else
1217#error "Unknown endianness"
1218#endif
1219
1220/* type of opcode (load/store/prefetch,code) */
1221#define PERF_MEM_OP_NA 0x01 /* not available */
1222#define PERF_MEM_OP_LOAD 0x02 /* load instruction */
1223#define PERF_MEM_OP_STORE 0x04 /* store instruction */
1224#define PERF_MEM_OP_PFETCH 0x08 /* prefetch */
1225#define PERF_MEM_OP_EXEC 0x10 /* code (execution) */
1226#define PERF_MEM_OP_SHIFT 0
1227
1228/* memory hierarchy (memory level, hit or miss) */
1229#define PERF_MEM_LVL_NA 0x01 /* not available */
1230#define PERF_MEM_LVL_HIT 0x02 /* hit level */
1231#define PERF_MEM_LVL_MISS 0x04 /* miss level */
1232#define PERF_MEM_LVL_L1 0x08 /* L1 */
1233#define PERF_MEM_LVL_LFB 0x10 /* Line Fill Buffer */
1234#define PERF_MEM_LVL_L2 0x20 /* L2 */
1235#define PERF_MEM_LVL_L3 0x40 /* L3 */
1236#define PERF_MEM_LVL_LOC_RAM 0x80 /* Local DRAM */
1237#define PERF_MEM_LVL_REM_RAM1 0x100 /* Remote DRAM (1 hop) */
1238#define PERF_MEM_LVL_REM_RAM2 0x200 /* Remote DRAM (2 hops) */
1239#define PERF_MEM_LVL_REM_CCE1 0x400 /* Remote Cache (1 hop) */
1240#define PERF_MEM_LVL_REM_CCE2 0x800 /* Remote Cache (2 hops) */
1241#define PERF_MEM_LVL_IO 0x1000 /* I/O memory */
1242#define PERF_MEM_LVL_UNC 0x2000 /* Uncached memory */
1243#define PERF_MEM_LVL_SHIFT 5
1244
1245#define PERF_MEM_REMOTE_REMOTE 0x01 /* Remote */
1246#define PERF_MEM_REMOTE_SHIFT 37
1247
1248#define PERF_MEM_LVLNUM_L1 0x01 /* L1 */
1249#define PERF_MEM_LVLNUM_L2 0x02 /* L2 */
1250#define PERF_MEM_LVLNUM_L3 0x03 /* L3 */
1251#define PERF_MEM_LVLNUM_L4 0x04 /* L4 */
1252/* 5-0xa available */
1253#define PERF_MEM_LVLNUM_ANY_CACHE 0x0b /* Any cache */
1254#define PERF_MEM_LVLNUM_LFB 0x0c /* LFB */
1255#define PERF_MEM_LVLNUM_RAM 0x0d /* RAM */
1256#define PERF_MEM_LVLNUM_PMEM 0x0e /* PMEM */
1257#define PERF_MEM_LVLNUM_NA 0x0f /* N/A */
1258
1259#define PERF_MEM_LVLNUM_SHIFT 33
1260
1261/* snoop mode */
1262#define PERF_MEM_SNOOP_NA 0x01 /* not available */
1263#define PERF_MEM_SNOOP_NONE 0x02 /* no snoop */
1264#define PERF_MEM_SNOOP_HIT 0x04 /* snoop hit */
1265#define PERF_MEM_SNOOP_MISS 0x08 /* snoop miss */
1266#define PERF_MEM_SNOOP_HITM 0x10 /* snoop hit modified */
1267#define PERF_MEM_SNOOP_SHIFT 19
1268
1269#define PERF_MEM_SNOOPX_FWD 0x01 /* forward */
1270/* 1 free */
1271#define PERF_MEM_SNOOPX_SHIFT 38
1272
1273/* locked instruction */
1274#define PERF_MEM_LOCK_NA 0x01 /* not available */
1275#define PERF_MEM_LOCK_LOCKED 0x02 /* locked transaction */
1276#define PERF_MEM_LOCK_SHIFT 24
1277
1278/* TLB access */
1279#define PERF_MEM_TLB_NA 0x01 /* not available */
1280#define PERF_MEM_TLB_HIT 0x02 /* hit level */
1281#define PERF_MEM_TLB_MISS 0x04 /* miss level */
1282#define PERF_MEM_TLB_L1 0x08 /* L1 */
1283#define PERF_MEM_TLB_L2 0x10 /* L2 */
1284#define PERF_MEM_TLB_WK 0x20 /* Hardware Walker*/
1285#define PERF_MEM_TLB_OS 0x40 /* OS fault handler */
1286#define PERF_MEM_TLB_SHIFT 26
1287
1288/* Access blocked */
1289#define PERF_MEM_BLK_NA 0x01 /* not available */
1290#define PERF_MEM_BLK_DATA 0x02 /* data could not be forwarded */
1291#define PERF_MEM_BLK_ADDR 0x04 /* address conflict */
1292#define PERF_MEM_BLK_SHIFT 40
1293
1294#define PERF_MEM_S(a, s) \
1295 (((__u64)PERF_MEM_##a##_##s) << PERF_MEM_##a##_SHIFT)
1296
1297/*
1298 * single taken branch record layout:
1299 *
1300 * from: source instruction (may not always be a branch insn)
1301 * to: branch target
1302 * mispred: branch target was mispredicted
1303 * predicted: branch target was predicted
1304 *
1305 * support for mispred, predicted is optional. In case it
1306 * is not supported mispred = predicted = 0.
1307 *
1308 * in_tx: running in a hardware transaction
1309 * abort: aborting a hardware transaction
1310 * cycles: cycles from last branch (or 0 if not supported)
1311 * type: branch type
1312 */
1313struct perf_branch_entry {
1314 __u64 from;
1315 __u64 to;
1316 __u64 mispred:1, /* target mispredicted */
1317 predicted:1,/* target predicted */
1318 in_tx:1, /* in transaction */
1319 abort:1, /* transaction abort */
1320 cycles:16, /* cycle count to last branch */
1321 type:4, /* branch type */
1322 reserved:40;
1323};
1324
1325union perf_sample_weight {
1326 __u64 full;
1327#if defined(__LITTLE_ENDIAN_BITFIELD)
1328 struct {
1329 __u32 var1_dw;
1330 __u16 var2_w;
1331 __u16 var3_w;
1332 };
1333#elif defined(__BIG_ENDIAN_BITFIELD)
1334 struct {
1335 __u16 var3_w;
1336 __u16 var2_w;
1337 __u32 var1_dw;
1338 };
1339#else
1340#error "Unknown endianness"
1341#endif
1342};
1343
1344#endif /* _UAPI_LINUX_PERF_EVENT_H */