Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_PGTABLE_H
3#define _LINUX_PGTABLE_H
4
5#include <linux/pfn.h>
6#include <asm/pgtable.h>
7
8#ifndef __ASSEMBLY__
9#ifdef CONFIG_MMU
10
11#include <linux/mm_types.h>
12#include <linux/bug.h>
13#include <linux/errno.h>
14#include <asm-generic/pgtable_uffd.h>
15
16#if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
17 defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
18#error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
19#endif
20
21/*
22 * On almost all architectures and configurations, 0 can be used as the
23 * upper ceiling to free_pgtables(): on many architectures it has the same
24 * effect as using TASK_SIZE. However, there is one configuration which
25 * must impose a more careful limit, to avoid freeing kernel pgtables.
26 */
27#ifndef USER_PGTABLES_CEILING
28#define USER_PGTABLES_CEILING 0UL
29#endif
30
31/*
32 * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD]
33 *
34 * The pXx_index() functions return the index of the entry in the page
35 * table page which would control the given virtual address
36 *
37 * As these functions may be used by the same code for different levels of
38 * the page table folding, they are always available, regardless of
39 * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0
40 * because in such cases PTRS_PER_PxD equals 1.
41 */
42
43static inline unsigned long pte_index(unsigned long address)
44{
45 return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
46}
47
48#ifndef pmd_index
49static inline unsigned long pmd_index(unsigned long address)
50{
51 return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
52}
53#define pmd_index pmd_index
54#endif
55
56#ifndef pud_index
57static inline unsigned long pud_index(unsigned long address)
58{
59 return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
60}
61#define pud_index pud_index
62#endif
63
64#ifndef pgd_index
65/* Must be a compile-time constant, so implement it as a macro */
66#define pgd_index(a) (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
67#endif
68
69#ifndef pte_offset_kernel
70static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
71{
72 return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
73}
74#define pte_offset_kernel pte_offset_kernel
75#endif
76
77#if defined(CONFIG_HIGHPTE)
78#define pte_offset_map(dir, address) \
79 ((pte_t *)kmap_atomic(pmd_page(*(dir))) + \
80 pte_index((address)))
81#define pte_unmap(pte) kunmap_atomic((pte))
82#else
83#define pte_offset_map(dir, address) pte_offset_kernel((dir), (address))
84#define pte_unmap(pte) ((void)(pte)) /* NOP */
85#endif
86
87/* Find an entry in the second-level page table.. */
88#ifndef pmd_offset
89static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
90{
91 return (pmd_t *)pud_page_vaddr(*pud) + pmd_index(address);
92}
93#define pmd_offset pmd_offset
94#endif
95
96#ifndef pud_offset
97static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
98{
99 return (pud_t *)p4d_page_vaddr(*p4d) + pud_index(address);
100}
101#define pud_offset pud_offset
102#endif
103
104static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address)
105{
106 return (pgd + pgd_index(address));
107};
108
109/*
110 * a shortcut to get a pgd_t in a given mm
111 */
112#ifndef pgd_offset
113#define pgd_offset(mm, address) pgd_offset_pgd((mm)->pgd, (address))
114#endif
115
116/*
117 * a shortcut which implies the use of the kernel's pgd, instead
118 * of a process's
119 */
120#ifndef pgd_offset_k
121#define pgd_offset_k(address) pgd_offset(&init_mm, (address))
122#endif
123
124/*
125 * In many cases it is known that a virtual address is mapped at PMD or PTE
126 * level, so instead of traversing all the page table levels, we can get a
127 * pointer to the PMD entry in user or kernel page table or translate a virtual
128 * address to the pointer in the PTE in the kernel page tables with simple
129 * helpers.
130 */
131static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va)
132{
133 return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va);
134}
135
136static inline pmd_t *pmd_off_k(unsigned long va)
137{
138 return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va);
139}
140
141static inline pte_t *virt_to_kpte(unsigned long vaddr)
142{
143 pmd_t *pmd = pmd_off_k(vaddr);
144
145 return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr);
146}
147
148#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
149extern int ptep_set_access_flags(struct vm_area_struct *vma,
150 unsigned long address, pte_t *ptep,
151 pte_t entry, int dirty);
152#endif
153
154#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
155#ifdef CONFIG_TRANSPARENT_HUGEPAGE
156extern int pmdp_set_access_flags(struct vm_area_struct *vma,
157 unsigned long address, pmd_t *pmdp,
158 pmd_t entry, int dirty);
159extern int pudp_set_access_flags(struct vm_area_struct *vma,
160 unsigned long address, pud_t *pudp,
161 pud_t entry, int dirty);
162#else
163static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
164 unsigned long address, pmd_t *pmdp,
165 pmd_t entry, int dirty)
166{
167 BUILD_BUG();
168 return 0;
169}
170static inline int pudp_set_access_flags(struct vm_area_struct *vma,
171 unsigned long address, pud_t *pudp,
172 pud_t entry, int dirty)
173{
174 BUILD_BUG();
175 return 0;
176}
177#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
178#endif
179
180#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
181static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
182 unsigned long address,
183 pte_t *ptep)
184{
185 pte_t pte = *ptep;
186 int r = 1;
187 if (!pte_young(pte))
188 r = 0;
189 else
190 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
191 return r;
192}
193#endif
194
195#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
196#ifdef CONFIG_TRANSPARENT_HUGEPAGE
197static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
198 unsigned long address,
199 pmd_t *pmdp)
200{
201 pmd_t pmd = *pmdp;
202 int r = 1;
203 if (!pmd_young(pmd))
204 r = 0;
205 else
206 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
207 return r;
208}
209#else
210static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
211 unsigned long address,
212 pmd_t *pmdp)
213{
214 BUILD_BUG();
215 return 0;
216}
217#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
218#endif
219
220#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
221int ptep_clear_flush_young(struct vm_area_struct *vma,
222 unsigned long address, pte_t *ptep);
223#endif
224
225#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
226#ifdef CONFIG_TRANSPARENT_HUGEPAGE
227extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
228 unsigned long address, pmd_t *pmdp);
229#else
230/*
231 * Despite relevant to THP only, this API is called from generic rmap code
232 * under PageTransHuge(), hence needs a dummy implementation for !THP
233 */
234static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
235 unsigned long address, pmd_t *pmdp)
236{
237 BUILD_BUG();
238 return 0;
239}
240#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
241#endif
242
243#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
244static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
245 unsigned long address,
246 pte_t *ptep)
247{
248 pte_t pte = *ptep;
249 pte_clear(mm, address, ptep);
250 return pte;
251}
252#endif
253
254#ifndef __HAVE_ARCH_PTEP_GET
255static inline pte_t ptep_get(pte_t *ptep)
256{
257 return READ_ONCE(*ptep);
258}
259#endif
260
261#ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
262/*
263 * WARNING: only to be used in the get_user_pages_fast() implementation.
264 *
265 * With get_user_pages_fast(), we walk down the pagetables without taking any
266 * locks. For this we would like to load the pointers atomically, but sometimes
267 * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE). What
268 * we do have is the guarantee that a PTE will only either go from not present
269 * to present, or present to not present or both -- it will not switch to a
270 * completely different present page without a TLB flush in between; something
271 * that we are blocking by holding interrupts off.
272 *
273 * Setting ptes from not present to present goes:
274 *
275 * ptep->pte_high = h;
276 * smp_wmb();
277 * ptep->pte_low = l;
278 *
279 * And present to not present goes:
280 *
281 * ptep->pte_low = 0;
282 * smp_wmb();
283 * ptep->pte_high = 0;
284 *
285 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
286 * We load pte_high *after* loading pte_low, which ensures we don't see an older
287 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't
288 * picked up a changed pte high. We might have gotten rubbish values from
289 * pte_low and pte_high, but we are guaranteed that pte_low will not have the
290 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
291 * operates on present ptes we're safe.
292 */
293static inline pte_t ptep_get_lockless(pte_t *ptep)
294{
295 pte_t pte;
296
297 do {
298 pte.pte_low = ptep->pte_low;
299 smp_rmb();
300 pte.pte_high = ptep->pte_high;
301 smp_rmb();
302 } while (unlikely(pte.pte_low != ptep->pte_low));
303
304 return pte;
305}
306#else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
307/*
308 * We require that the PTE can be read atomically.
309 */
310static inline pte_t ptep_get_lockless(pte_t *ptep)
311{
312 return ptep_get(ptep);
313}
314#endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
315
316#ifdef CONFIG_TRANSPARENT_HUGEPAGE
317#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
318static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
319 unsigned long address,
320 pmd_t *pmdp)
321{
322 pmd_t pmd = *pmdp;
323 pmd_clear(pmdp);
324 return pmd;
325}
326#endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
327#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
328static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
329 unsigned long address,
330 pud_t *pudp)
331{
332 pud_t pud = *pudp;
333
334 pud_clear(pudp);
335 return pud;
336}
337#endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
338#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
339
340#ifdef CONFIG_TRANSPARENT_HUGEPAGE
341#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
342static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
343 unsigned long address, pmd_t *pmdp,
344 int full)
345{
346 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
347}
348#endif
349
350#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
351static inline pud_t pudp_huge_get_and_clear_full(struct mm_struct *mm,
352 unsigned long address, pud_t *pudp,
353 int full)
354{
355 return pudp_huge_get_and_clear(mm, address, pudp);
356}
357#endif
358#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
359
360#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
361static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
362 unsigned long address, pte_t *ptep,
363 int full)
364{
365 pte_t pte;
366 pte = ptep_get_and_clear(mm, address, ptep);
367 return pte;
368}
369#endif
370
371
372/*
373 * If two threads concurrently fault at the same page, the thread that
374 * won the race updates the PTE and its local TLB/Cache. The other thread
375 * gives up, simply does nothing, and continues; on architectures where
376 * software can update TLB, local TLB can be updated here to avoid next page
377 * fault. This function updates TLB only, do nothing with cache or others.
378 * It is the difference with function update_mmu_cache.
379 */
380#ifndef __HAVE_ARCH_UPDATE_MMU_TLB
381static inline void update_mmu_tlb(struct vm_area_struct *vma,
382 unsigned long address, pte_t *ptep)
383{
384}
385#define __HAVE_ARCH_UPDATE_MMU_TLB
386#endif
387
388/*
389 * Some architectures may be able to avoid expensive synchronization
390 * primitives when modifications are made to PTE's which are already
391 * not present, or in the process of an address space destruction.
392 */
393#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
394static inline void pte_clear_not_present_full(struct mm_struct *mm,
395 unsigned long address,
396 pte_t *ptep,
397 int full)
398{
399 pte_clear(mm, address, ptep);
400}
401#endif
402
403#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
404extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
405 unsigned long address,
406 pte_t *ptep);
407#endif
408
409#ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
410extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
411 unsigned long address,
412 pmd_t *pmdp);
413extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
414 unsigned long address,
415 pud_t *pudp);
416#endif
417
418#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
419struct mm_struct;
420static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
421{
422 pte_t old_pte = *ptep;
423 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
424}
425#endif
426
427/*
428 * On some architectures hardware does not set page access bit when accessing
429 * memory page, it is responsibility of software setting this bit. It brings
430 * out extra page fault penalty to track page access bit. For optimization page
431 * access bit can be set during all page fault flow on these arches.
432 * To be differentiate with macro pte_mkyoung, this macro is used on platforms
433 * where software maintains page access bit.
434 */
435#ifndef pte_savedwrite
436#define pte_savedwrite pte_write
437#endif
438
439#ifndef pte_mk_savedwrite
440#define pte_mk_savedwrite pte_mkwrite
441#endif
442
443#ifndef pte_clear_savedwrite
444#define pte_clear_savedwrite pte_wrprotect
445#endif
446
447#ifndef pmd_savedwrite
448#define pmd_savedwrite pmd_write
449#endif
450
451#ifndef pmd_mk_savedwrite
452#define pmd_mk_savedwrite pmd_mkwrite
453#endif
454
455#ifndef pmd_clear_savedwrite
456#define pmd_clear_savedwrite pmd_wrprotect
457#endif
458
459#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
460#ifdef CONFIG_TRANSPARENT_HUGEPAGE
461static inline void pmdp_set_wrprotect(struct mm_struct *mm,
462 unsigned long address, pmd_t *pmdp)
463{
464 pmd_t old_pmd = *pmdp;
465 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
466}
467#else
468static inline void pmdp_set_wrprotect(struct mm_struct *mm,
469 unsigned long address, pmd_t *pmdp)
470{
471 BUILD_BUG();
472}
473#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
474#endif
475#ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
476#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
477static inline void pudp_set_wrprotect(struct mm_struct *mm,
478 unsigned long address, pud_t *pudp)
479{
480 pud_t old_pud = *pudp;
481
482 set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
483}
484#else
485static inline void pudp_set_wrprotect(struct mm_struct *mm,
486 unsigned long address, pud_t *pudp)
487{
488 BUILD_BUG();
489}
490#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
491#endif
492
493#ifndef pmdp_collapse_flush
494#ifdef CONFIG_TRANSPARENT_HUGEPAGE
495extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
496 unsigned long address, pmd_t *pmdp);
497#else
498static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
499 unsigned long address,
500 pmd_t *pmdp)
501{
502 BUILD_BUG();
503 return *pmdp;
504}
505#define pmdp_collapse_flush pmdp_collapse_flush
506#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
507#endif
508
509#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
510extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
511 pgtable_t pgtable);
512#endif
513
514#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
515extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
516#endif
517
518#ifdef CONFIG_TRANSPARENT_HUGEPAGE
519/*
520 * This is an implementation of pmdp_establish() that is only suitable for an
521 * architecture that doesn't have hardware dirty/accessed bits. In this case we
522 * can't race with CPU which sets these bits and non-atomic approach is fine.
523 */
524static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma,
525 unsigned long address, pmd_t *pmdp, pmd_t pmd)
526{
527 pmd_t old_pmd = *pmdp;
528 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
529 return old_pmd;
530}
531#endif
532
533#ifndef __HAVE_ARCH_PMDP_INVALIDATE
534extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
535 pmd_t *pmdp);
536#endif
537
538#ifndef __HAVE_ARCH_PTE_SAME
539static inline int pte_same(pte_t pte_a, pte_t pte_b)
540{
541 return pte_val(pte_a) == pte_val(pte_b);
542}
543#endif
544
545#ifndef __HAVE_ARCH_PTE_UNUSED
546/*
547 * Some architectures provide facilities to virtualization guests
548 * so that they can flag allocated pages as unused. This allows the
549 * host to transparently reclaim unused pages. This function returns
550 * whether the pte's page is unused.
551 */
552static inline int pte_unused(pte_t pte)
553{
554 return 0;
555}
556#endif
557
558#ifndef pte_access_permitted
559#define pte_access_permitted(pte, write) \
560 (pte_present(pte) && (!(write) || pte_write(pte)))
561#endif
562
563#ifndef pmd_access_permitted
564#define pmd_access_permitted(pmd, write) \
565 (pmd_present(pmd) && (!(write) || pmd_write(pmd)))
566#endif
567
568#ifndef pud_access_permitted
569#define pud_access_permitted(pud, write) \
570 (pud_present(pud) && (!(write) || pud_write(pud)))
571#endif
572
573#ifndef p4d_access_permitted
574#define p4d_access_permitted(p4d, write) \
575 (p4d_present(p4d) && (!(write) || p4d_write(p4d)))
576#endif
577
578#ifndef pgd_access_permitted
579#define pgd_access_permitted(pgd, write) \
580 (pgd_present(pgd) && (!(write) || pgd_write(pgd)))
581#endif
582
583#ifndef __HAVE_ARCH_PMD_SAME
584static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
585{
586 return pmd_val(pmd_a) == pmd_val(pmd_b);
587}
588
589static inline int pud_same(pud_t pud_a, pud_t pud_b)
590{
591 return pud_val(pud_a) == pud_val(pud_b);
592}
593#endif
594
595#ifndef __HAVE_ARCH_P4D_SAME
596static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b)
597{
598 return p4d_val(p4d_a) == p4d_val(p4d_b);
599}
600#endif
601
602#ifndef __HAVE_ARCH_PGD_SAME
603static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b)
604{
605 return pgd_val(pgd_a) == pgd_val(pgd_b);
606}
607#endif
608
609/*
610 * Use set_p*_safe(), and elide TLB flushing, when confident that *no*
611 * TLB flush will be required as a result of the "set". For example, use
612 * in scenarios where it is known ahead of time that the routine is
613 * setting non-present entries, or re-setting an existing entry to the
614 * same value. Otherwise, use the typical "set" helpers and flush the
615 * TLB.
616 */
617#define set_pte_safe(ptep, pte) \
618({ \
619 WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \
620 set_pte(ptep, pte); \
621})
622
623#define set_pmd_safe(pmdp, pmd) \
624({ \
625 WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \
626 set_pmd(pmdp, pmd); \
627})
628
629#define set_pud_safe(pudp, pud) \
630({ \
631 WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \
632 set_pud(pudp, pud); \
633})
634
635#define set_p4d_safe(p4dp, p4d) \
636({ \
637 WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \
638 set_p4d(p4dp, p4d); \
639})
640
641#define set_pgd_safe(pgdp, pgd) \
642({ \
643 WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \
644 set_pgd(pgdp, pgd); \
645})
646
647#ifndef __HAVE_ARCH_DO_SWAP_PAGE
648/*
649 * Some architectures support metadata associated with a page. When a
650 * page is being swapped out, this metadata must be saved so it can be
651 * restored when the page is swapped back in. SPARC M7 and newer
652 * processors support an ADI (Application Data Integrity) tag for the
653 * page as metadata for the page. arch_do_swap_page() can restore this
654 * metadata when a page is swapped back in.
655 */
656static inline void arch_do_swap_page(struct mm_struct *mm,
657 struct vm_area_struct *vma,
658 unsigned long addr,
659 pte_t pte, pte_t oldpte)
660{
661
662}
663#endif
664
665#ifndef __HAVE_ARCH_UNMAP_ONE
666/*
667 * Some architectures support metadata associated with a page. When a
668 * page is being swapped out, this metadata must be saved so it can be
669 * restored when the page is swapped back in. SPARC M7 and newer
670 * processors support an ADI (Application Data Integrity) tag for the
671 * page as metadata for the page. arch_unmap_one() can save this
672 * metadata on a swap-out of a page.
673 */
674static inline int arch_unmap_one(struct mm_struct *mm,
675 struct vm_area_struct *vma,
676 unsigned long addr,
677 pte_t orig_pte)
678{
679 return 0;
680}
681#endif
682
683/*
684 * Allow architectures to preserve additional metadata associated with
685 * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function
686 * prototypes must be defined in the arch-specific asm/pgtable.h file.
687 */
688#ifndef __HAVE_ARCH_PREPARE_TO_SWAP
689static inline int arch_prepare_to_swap(struct page *page)
690{
691 return 0;
692}
693#endif
694
695#ifndef __HAVE_ARCH_SWAP_INVALIDATE
696static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
697{
698}
699
700static inline void arch_swap_invalidate_area(int type)
701{
702}
703#endif
704
705#ifndef __HAVE_ARCH_SWAP_RESTORE
706static inline void arch_swap_restore(swp_entry_t entry, struct page *page)
707{
708}
709#endif
710
711#ifndef __HAVE_ARCH_PGD_OFFSET_GATE
712#define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
713#endif
714
715#ifndef __HAVE_ARCH_MOVE_PTE
716#define move_pte(pte, prot, old_addr, new_addr) (pte)
717#endif
718
719#ifndef pte_accessible
720# define pte_accessible(mm, pte) ((void)(pte), 1)
721#endif
722
723#ifndef flush_tlb_fix_spurious_fault
724#define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
725#endif
726
727/*
728 * When walking page tables, get the address of the next boundary,
729 * or the end address of the range if that comes earlier. Although no
730 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
731 */
732
733#define pgd_addr_end(addr, end) \
734({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
735 (__boundary - 1 < (end) - 1)? __boundary: (end); \
736})
737
738#ifndef p4d_addr_end
739#define p4d_addr_end(addr, end) \
740({ unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK; \
741 (__boundary - 1 < (end) - 1)? __boundary: (end); \
742})
743#endif
744
745#ifndef pud_addr_end
746#define pud_addr_end(addr, end) \
747({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
748 (__boundary - 1 < (end) - 1)? __boundary: (end); \
749})
750#endif
751
752#ifndef pmd_addr_end
753#define pmd_addr_end(addr, end) \
754({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
755 (__boundary - 1 < (end) - 1)? __boundary: (end); \
756})
757#endif
758
759/*
760 * When walking page tables, we usually want to skip any p?d_none entries;
761 * and any p?d_bad entries - reporting the error before resetting to none.
762 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
763 */
764void pgd_clear_bad(pgd_t *);
765
766#ifndef __PAGETABLE_P4D_FOLDED
767void p4d_clear_bad(p4d_t *);
768#else
769#define p4d_clear_bad(p4d) do { } while (0)
770#endif
771
772#ifndef __PAGETABLE_PUD_FOLDED
773void pud_clear_bad(pud_t *);
774#else
775#define pud_clear_bad(p4d) do { } while (0)
776#endif
777
778void pmd_clear_bad(pmd_t *);
779
780static inline int pgd_none_or_clear_bad(pgd_t *pgd)
781{
782 if (pgd_none(*pgd))
783 return 1;
784 if (unlikely(pgd_bad(*pgd))) {
785 pgd_clear_bad(pgd);
786 return 1;
787 }
788 return 0;
789}
790
791static inline int p4d_none_or_clear_bad(p4d_t *p4d)
792{
793 if (p4d_none(*p4d))
794 return 1;
795 if (unlikely(p4d_bad(*p4d))) {
796 p4d_clear_bad(p4d);
797 return 1;
798 }
799 return 0;
800}
801
802static inline int pud_none_or_clear_bad(pud_t *pud)
803{
804 if (pud_none(*pud))
805 return 1;
806 if (unlikely(pud_bad(*pud))) {
807 pud_clear_bad(pud);
808 return 1;
809 }
810 return 0;
811}
812
813static inline int pmd_none_or_clear_bad(pmd_t *pmd)
814{
815 if (pmd_none(*pmd))
816 return 1;
817 if (unlikely(pmd_bad(*pmd))) {
818 pmd_clear_bad(pmd);
819 return 1;
820 }
821 return 0;
822}
823
824static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma,
825 unsigned long addr,
826 pte_t *ptep)
827{
828 /*
829 * Get the current pte state, but zero it out to make it
830 * non-present, preventing the hardware from asynchronously
831 * updating it.
832 */
833 return ptep_get_and_clear(vma->vm_mm, addr, ptep);
834}
835
836static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma,
837 unsigned long addr,
838 pte_t *ptep, pte_t pte)
839{
840 /*
841 * The pte is non-present, so there's no hardware state to
842 * preserve.
843 */
844 set_pte_at(vma->vm_mm, addr, ptep, pte);
845}
846
847#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
848/*
849 * Start a pte protection read-modify-write transaction, which
850 * protects against asynchronous hardware modifications to the pte.
851 * The intention is not to prevent the hardware from making pte
852 * updates, but to prevent any updates it may make from being lost.
853 *
854 * This does not protect against other software modifications of the
855 * pte; the appropriate pte lock must be held over the transaction.
856 *
857 * Note that this interface is intended to be batchable, meaning that
858 * ptep_modify_prot_commit may not actually update the pte, but merely
859 * queue the update to be done at some later time. The update must be
860 * actually committed before the pte lock is released, however.
861 */
862static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
863 unsigned long addr,
864 pte_t *ptep)
865{
866 return __ptep_modify_prot_start(vma, addr, ptep);
867}
868
869/*
870 * Commit an update to a pte, leaving any hardware-controlled bits in
871 * the PTE unmodified.
872 */
873static inline void ptep_modify_prot_commit(struct vm_area_struct *vma,
874 unsigned long addr,
875 pte_t *ptep, pte_t old_pte, pte_t pte)
876{
877 __ptep_modify_prot_commit(vma, addr, ptep, pte);
878}
879#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
880#endif /* CONFIG_MMU */
881
882/*
883 * No-op macros that just return the current protection value. Defined here
884 * because these macros can be used even if CONFIG_MMU is not defined.
885 */
886
887#ifndef pgprot_nx
888#define pgprot_nx(prot) (prot)
889#endif
890
891#ifndef pgprot_noncached
892#define pgprot_noncached(prot) (prot)
893#endif
894
895#ifndef pgprot_writecombine
896#define pgprot_writecombine pgprot_noncached
897#endif
898
899#ifndef pgprot_writethrough
900#define pgprot_writethrough pgprot_noncached
901#endif
902
903#ifndef pgprot_device
904#define pgprot_device pgprot_noncached
905#endif
906
907#ifndef pgprot_mhp
908#define pgprot_mhp(prot) (prot)
909#endif
910
911#ifdef CONFIG_MMU
912#ifndef pgprot_modify
913#define pgprot_modify pgprot_modify
914static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
915{
916 if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
917 newprot = pgprot_noncached(newprot);
918 if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
919 newprot = pgprot_writecombine(newprot);
920 if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
921 newprot = pgprot_device(newprot);
922 return newprot;
923}
924#endif
925#endif /* CONFIG_MMU */
926
927#ifndef pgprot_encrypted
928#define pgprot_encrypted(prot) (prot)
929#endif
930
931#ifndef pgprot_decrypted
932#define pgprot_decrypted(prot) (prot)
933#endif
934
935/*
936 * A facility to provide lazy MMU batching. This allows PTE updates and
937 * page invalidations to be delayed until a call to leave lazy MMU mode
938 * is issued. Some architectures may benefit from doing this, and it is
939 * beneficial for both shadow and direct mode hypervisors, which may batch
940 * the PTE updates which happen during this window. Note that using this
941 * interface requires that read hazards be removed from the code. A read
942 * hazard could result in the direct mode hypervisor case, since the actual
943 * write to the page tables may not yet have taken place, so reads though
944 * a raw PTE pointer after it has been modified are not guaranteed to be
945 * up to date. This mode can only be entered and left under the protection of
946 * the page table locks for all page tables which may be modified. In the UP
947 * case, this is required so that preemption is disabled, and in the SMP case,
948 * it must synchronize the delayed page table writes properly on other CPUs.
949 */
950#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
951#define arch_enter_lazy_mmu_mode() do {} while (0)
952#define arch_leave_lazy_mmu_mode() do {} while (0)
953#define arch_flush_lazy_mmu_mode() do {} while (0)
954#endif
955
956/*
957 * A facility to provide batching of the reload of page tables and
958 * other process state with the actual context switch code for
959 * paravirtualized guests. By convention, only one of the batched
960 * update (lazy) modes (CPU, MMU) should be active at any given time,
961 * entry should never be nested, and entry and exits should always be
962 * paired. This is for sanity of maintaining and reasoning about the
963 * kernel code. In this case, the exit (end of the context switch) is
964 * in architecture-specific code, and so doesn't need a generic
965 * definition.
966 */
967#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
968#define arch_start_context_switch(prev) do {} while (0)
969#endif
970
971#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
972#ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION
973static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
974{
975 return pmd;
976}
977
978static inline int pmd_swp_soft_dirty(pmd_t pmd)
979{
980 return 0;
981}
982
983static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
984{
985 return pmd;
986}
987#endif
988#else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */
989static inline int pte_soft_dirty(pte_t pte)
990{
991 return 0;
992}
993
994static inline int pmd_soft_dirty(pmd_t pmd)
995{
996 return 0;
997}
998
999static inline pte_t pte_mksoft_dirty(pte_t pte)
1000{
1001 return pte;
1002}
1003
1004static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
1005{
1006 return pmd;
1007}
1008
1009static inline pte_t pte_clear_soft_dirty(pte_t pte)
1010{
1011 return pte;
1012}
1013
1014static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
1015{
1016 return pmd;
1017}
1018
1019static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
1020{
1021 return pte;
1022}
1023
1024static inline int pte_swp_soft_dirty(pte_t pte)
1025{
1026 return 0;
1027}
1028
1029static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
1030{
1031 return pte;
1032}
1033
1034static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1035{
1036 return pmd;
1037}
1038
1039static inline int pmd_swp_soft_dirty(pmd_t pmd)
1040{
1041 return 0;
1042}
1043
1044static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1045{
1046 return pmd;
1047}
1048#endif
1049
1050#ifndef __HAVE_PFNMAP_TRACKING
1051/*
1052 * Interfaces that can be used by architecture code to keep track of
1053 * memory type of pfn mappings specified by the remap_pfn_range,
1054 * vmf_insert_pfn.
1055 */
1056
1057/*
1058 * track_pfn_remap is called when a _new_ pfn mapping is being established
1059 * by remap_pfn_range() for physical range indicated by pfn and size.
1060 */
1061static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1062 unsigned long pfn, unsigned long addr,
1063 unsigned long size)
1064{
1065 return 0;
1066}
1067
1068/*
1069 * track_pfn_insert is called when a _new_ single pfn is established
1070 * by vmf_insert_pfn().
1071 */
1072static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1073 pfn_t pfn)
1074{
1075}
1076
1077/*
1078 * track_pfn_copy is called when vma that is covering the pfnmap gets
1079 * copied through copy_page_range().
1080 */
1081static inline int track_pfn_copy(struct vm_area_struct *vma)
1082{
1083 return 0;
1084}
1085
1086/*
1087 * untrack_pfn is called while unmapping a pfnmap for a region.
1088 * untrack can be called for a specific region indicated by pfn and size or
1089 * can be for the entire vma (in which case pfn, size are zero).
1090 */
1091static inline void untrack_pfn(struct vm_area_struct *vma,
1092 unsigned long pfn, unsigned long size)
1093{
1094}
1095
1096/*
1097 * untrack_pfn_moved is called while mremapping a pfnmap for a new region.
1098 */
1099static inline void untrack_pfn_moved(struct vm_area_struct *vma)
1100{
1101}
1102#else
1103extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1104 unsigned long pfn, unsigned long addr,
1105 unsigned long size);
1106extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1107 pfn_t pfn);
1108extern int track_pfn_copy(struct vm_area_struct *vma);
1109extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
1110 unsigned long size);
1111extern void untrack_pfn_moved(struct vm_area_struct *vma);
1112#endif
1113
1114#ifdef CONFIG_MMU
1115#ifdef __HAVE_COLOR_ZERO_PAGE
1116static inline int is_zero_pfn(unsigned long pfn)
1117{
1118 extern unsigned long zero_pfn;
1119 unsigned long offset_from_zero_pfn = pfn - zero_pfn;
1120 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
1121}
1122
1123#define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr))
1124
1125#else
1126static inline int is_zero_pfn(unsigned long pfn)
1127{
1128 extern unsigned long zero_pfn;
1129 return pfn == zero_pfn;
1130}
1131
1132static inline unsigned long my_zero_pfn(unsigned long addr)
1133{
1134 extern unsigned long zero_pfn;
1135 return zero_pfn;
1136}
1137#endif
1138#else
1139static inline int is_zero_pfn(unsigned long pfn)
1140{
1141 return 0;
1142}
1143
1144static inline unsigned long my_zero_pfn(unsigned long addr)
1145{
1146 return 0;
1147}
1148#endif /* CONFIG_MMU */
1149
1150#ifdef CONFIG_MMU
1151
1152#ifndef CONFIG_TRANSPARENT_HUGEPAGE
1153static inline int pmd_trans_huge(pmd_t pmd)
1154{
1155 return 0;
1156}
1157#ifndef pmd_write
1158static inline int pmd_write(pmd_t pmd)
1159{
1160 BUG();
1161 return 0;
1162}
1163#endif /* pmd_write */
1164#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1165
1166#ifndef pud_write
1167static inline int pud_write(pud_t pud)
1168{
1169 BUG();
1170 return 0;
1171}
1172#endif /* pud_write */
1173
1174#if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
1175static inline int pmd_devmap(pmd_t pmd)
1176{
1177 return 0;
1178}
1179static inline int pud_devmap(pud_t pud)
1180{
1181 return 0;
1182}
1183static inline int pgd_devmap(pgd_t pgd)
1184{
1185 return 0;
1186}
1187#endif
1188
1189#if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
1190 (defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1191 !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD))
1192static inline int pud_trans_huge(pud_t pud)
1193{
1194 return 0;
1195}
1196#endif
1197
1198/* See pmd_none_or_trans_huge_or_clear_bad for discussion. */
1199static inline int pud_none_or_trans_huge_or_dev_or_clear_bad(pud_t *pud)
1200{
1201 pud_t pudval = READ_ONCE(*pud);
1202
1203 if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval))
1204 return 1;
1205 if (unlikely(pud_bad(pudval))) {
1206 pud_clear_bad(pud);
1207 return 1;
1208 }
1209 return 0;
1210}
1211
1212/* See pmd_trans_unstable for discussion. */
1213static inline int pud_trans_unstable(pud_t *pud)
1214{
1215#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1216 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1217 return pud_none_or_trans_huge_or_dev_or_clear_bad(pud);
1218#else
1219 return 0;
1220#endif
1221}
1222
1223#ifndef pmd_read_atomic
1224static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
1225{
1226 /*
1227 * Depend on compiler for an atomic pmd read. NOTE: this is
1228 * only going to work, if the pmdval_t isn't larger than
1229 * an unsigned long.
1230 */
1231 return *pmdp;
1232}
1233#endif
1234
1235#ifndef arch_needs_pgtable_deposit
1236#define arch_needs_pgtable_deposit() (false)
1237#endif
1238/*
1239 * This function is meant to be used by sites walking pagetables with
1240 * the mmap_lock held in read mode to protect against MADV_DONTNEED and
1241 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
1242 * into a null pmd and the transhuge page fault can convert a null pmd
1243 * into an hugepmd or into a regular pmd (if the hugepage allocation
1244 * fails). While holding the mmap_lock in read mode the pmd becomes
1245 * stable and stops changing under us only if it's not null and not a
1246 * transhuge pmd. When those races occurs and this function makes a
1247 * difference vs the standard pmd_none_or_clear_bad, the result is
1248 * undefined so behaving like if the pmd was none is safe (because it
1249 * can return none anyway). The compiler level barrier() is critically
1250 * important to compute the two checks atomically on the same pmdval.
1251 *
1252 * For 32bit kernels with a 64bit large pmd_t this automatically takes
1253 * care of reading the pmd atomically to avoid SMP race conditions
1254 * against pmd_populate() when the mmap_lock is hold for reading by the
1255 * caller (a special atomic read not done by "gcc" as in the generic
1256 * version above, is also needed when THP is disabled because the page
1257 * fault can populate the pmd from under us).
1258 */
1259static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
1260{
1261 pmd_t pmdval = pmd_read_atomic(pmd);
1262 /*
1263 * The barrier will stabilize the pmdval in a register or on
1264 * the stack so that it will stop changing under the code.
1265 *
1266 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
1267 * pmd_read_atomic is allowed to return a not atomic pmdval
1268 * (for example pointing to an hugepage that has never been
1269 * mapped in the pmd). The below checks will only care about
1270 * the low part of the pmd with 32bit PAE x86 anyway, with the
1271 * exception of pmd_none(). So the important thing is that if
1272 * the low part of the pmd is found null, the high part will
1273 * be also null or the pmd_none() check below would be
1274 * confused.
1275 */
1276#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1277 barrier();
1278#endif
1279 /*
1280 * !pmd_present() checks for pmd migration entries
1281 *
1282 * The complete check uses is_pmd_migration_entry() in linux/swapops.h
1283 * But using that requires moving current function and pmd_trans_unstable()
1284 * to linux/swapops.h to resolve dependency, which is too much code move.
1285 *
1286 * !pmd_present() is equivalent to is_pmd_migration_entry() currently,
1287 * because !pmd_present() pages can only be under migration not swapped
1288 * out.
1289 *
1290 * pmd_none() is preserved for future condition checks on pmd migration
1291 * entries and not confusing with this function name, although it is
1292 * redundant with !pmd_present().
1293 */
1294 if (pmd_none(pmdval) || pmd_trans_huge(pmdval) ||
1295 (IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION) && !pmd_present(pmdval)))
1296 return 1;
1297 if (unlikely(pmd_bad(pmdval))) {
1298 pmd_clear_bad(pmd);
1299 return 1;
1300 }
1301 return 0;
1302}
1303
1304/*
1305 * This is a noop if Transparent Hugepage Support is not built into
1306 * the kernel. Otherwise it is equivalent to
1307 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
1308 * places that already verified the pmd is not none and they want to
1309 * walk ptes while holding the mmap sem in read mode (write mode don't
1310 * need this). If THP is not enabled, the pmd can't go away under the
1311 * code even if MADV_DONTNEED runs, but if THP is enabled we need to
1312 * run a pmd_trans_unstable before walking the ptes after
1313 * split_huge_pmd returns (because it may have run when the pmd become
1314 * null, but then a page fault can map in a THP and not a regular page).
1315 */
1316static inline int pmd_trans_unstable(pmd_t *pmd)
1317{
1318#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1319 return pmd_none_or_trans_huge_or_clear_bad(pmd);
1320#else
1321 return 0;
1322#endif
1323}
1324
1325/*
1326 * the ordering of these checks is important for pmds with _page_devmap set.
1327 * if we check pmd_trans_unstable() first we will trip the bad_pmd() check
1328 * inside of pmd_none_or_trans_huge_or_clear_bad(). this will end up correctly
1329 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
1330 */
1331static inline int pmd_devmap_trans_unstable(pmd_t *pmd)
1332{
1333 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
1334}
1335
1336#ifndef CONFIG_NUMA_BALANCING
1337/*
1338 * Technically a PTE can be PROTNONE even when not doing NUMA balancing but
1339 * the only case the kernel cares is for NUMA balancing and is only ever set
1340 * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked
1341 * _PAGE_PROTNONE so by default, implement the helper as "always no". It
1342 * is the responsibility of the caller to distinguish between PROT_NONE
1343 * protections and NUMA hinting fault protections.
1344 */
1345static inline int pte_protnone(pte_t pte)
1346{
1347 return 0;
1348}
1349
1350static inline int pmd_protnone(pmd_t pmd)
1351{
1352 return 0;
1353}
1354#endif /* CONFIG_NUMA_BALANCING */
1355
1356#endif /* CONFIG_MMU */
1357
1358#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
1359
1360#ifndef __PAGETABLE_P4D_FOLDED
1361int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
1362int p4d_clear_huge(p4d_t *p4d);
1363#else
1364static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1365{
1366 return 0;
1367}
1368static inline int p4d_clear_huge(p4d_t *p4d)
1369{
1370 return 0;
1371}
1372#endif /* !__PAGETABLE_P4D_FOLDED */
1373
1374int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
1375int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
1376int pud_clear_huge(pud_t *pud);
1377int pmd_clear_huge(pmd_t *pmd);
1378int p4d_free_pud_page(p4d_t *p4d, unsigned long addr);
1379int pud_free_pmd_page(pud_t *pud, unsigned long addr);
1380int pmd_free_pte_page(pmd_t *pmd, unsigned long addr);
1381#else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */
1382static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1383{
1384 return 0;
1385}
1386static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1387{
1388 return 0;
1389}
1390static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1391{
1392 return 0;
1393}
1394static inline int p4d_clear_huge(p4d_t *p4d)
1395{
1396 return 0;
1397}
1398static inline int pud_clear_huge(pud_t *pud)
1399{
1400 return 0;
1401}
1402static inline int pmd_clear_huge(pmd_t *pmd)
1403{
1404 return 0;
1405}
1406static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
1407{
1408 return 0;
1409}
1410static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1411{
1412 return 0;
1413}
1414static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1415{
1416 return 0;
1417}
1418#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
1419
1420#ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
1421#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1422/*
1423 * ARCHes with special requirements for evicting THP backing TLB entries can
1424 * implement this. Otherwise also, it can help optimize normal TLB flush in
1425 * THP regime. Stock flush_tlb_range() typically has optimization to nuke the
1426 * entire TLB if flush span is greater than a threshold, which will
1427 * likely be true for a single huge page. Thus a single THP flush will
1428 * invalidate the entire TLB which is not desirable.
1429 * e.g. see arch/arc: flush_pmd_tlb_range
1430 */
1431#define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1432#define flush_pud_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1433#else
1434#define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG()
1435#define flush_pud_tlb_range(vma, addr, end) BUILD_BUG()
1436#endif
1437#endif
1438
1439struct file;
1440int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
1441 unsigned long size, pgprot_t *vma_prot);
1442
1443#ifndef CONFIG_X86_ESPFIX64
1444static inline void init_espfix_bsp(void) { }
1445#endif
1446
1447extern void __init pgtable_cache_init(void);
1448
1449#ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED
1450static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot)
1451{
1452 return true;
1453}
1454
1455static inline bool arch_has_pfn_modify_check(void)
1456{
1457 return false;
1458}
1459#endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */
1460
1461/*
1462 * Architecture PAGE_KERNEL_* fallbacks
1463 *
1464 * Some architectures don't define certain PAGE_KERNEL_* flags. This is either
1465 * because they really don't support them, or the port needs to be updated to
1466 * reflect the required functionality. Below are a set of relatively safe
1467 * fallbacks, as best effort, which we can count on in lieu of the architectures
1468 * not defining them on their own yet.
1469 */
1470
1471#ifndef PAGE_KERNEL_RO
1472# define PAGE_KERNEL_RO PAGE_KERNEL
1473#endif
1474
1475#ifndef PAGE_KERNEL_EXEC
1476# define PAGE_KERNEL_EXEC PAGE_KERNEL
1477#endif
1478
1479/*
1480 * Page Table Modification bits for pgtbl_mod_mask.
1481 *
1482 * These are used by the p?d_alloc_track*() set of functions an in the generic
1483 * vmalloc/ioremap code to track at which page-table levels entries have been
1484 * modified. Based on that the code can better decide when vmalloc and ioremap
1485 * mapping changes need to be synchronized to other page-tables in the system.
1486 */
1487#define __PGTBL_PGD_MODIFIED 0
1488#define __PGTBL_P4D_MODIFIED 1
1489#define __PGTBL_PUD_MODIFIED 2
1490#define __PGTBL_PMD_MODIFIED 3
1491#define __PGTBL_PTE_MODIFIED 4
1492
1493#define PGTBL_PGD_MODIFIED BIT(__PGTBL_PGD_MODIFIED)
1494#define PGTBL_P4D_MODIFIED BIT(__PGTBL_P4D_MODIFIED)
1495#define PGTBL_PUD_MODIFIED BIT(__PGTBL_PUD_MODIFIED)
1496#define PGTBL_PMD_MODIFIED BIT(__PGTBL_PMD_MODIFIED)
1497#define PGTBL_PTE_MODIFIED BIT(__PGTBL_PTE_MODIFIED)
1498
1499/* Page-Table Modification Mask */
1500typedef unsigned int pgtbl_mod_mask;
1501
1502#endif /* !__ASSEMBLY__ */
1503
1504#if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT)
1505#ifdef CONFIG_PHYS_ADDR_T_64BIT
1506/*
1507 * ZSMALLOC needs to know the highest PFN on 32-bit architectures
1508 * with physical address space extension, but falls back to
1509 * BITS_PER_LONG otherwise.
1510 */
1511#error Missing MAX_POSSIBLE_PHYSMEM_BITS definition
1512#else
1513#define MAX_POSSIBLE_PHYSMEM_BITS 32
1514#endif
1515#endif
1516
1517#ifndef has_transparent_hugepage
1518#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1519#define has_transparent_hugepage() 1
1520#else
1521#define has_transparent_hugepage() 0
1522#endif
1523#endif
1524
1525/*
1526 * On some architectures it depends on the mm if the p4d/pud or pmd
1527 * layer of the page table hierarchy is folded or not.
1528 */
1529#ifndef mm_p4d_folded
1530#define mm_p4d_folded(mm) __is_defined(__PAGETABLE_P4D_FOLDED)
1531#endif
1532
1533#ifndef mm_pud_folded
1534#define mm_pud_folded(mm) __is_defined(__PAGETABLE_PUD_FOLDED)
1535#endif
1536
1537#ifndef mm_pmd_folded
1538#define mm_pmd_folded(mm) __is_defined(__PAGETABLE_PMD_FOLDED)
1539#endif
1540
1541#ifndef p4d_offset_lockless
1542#define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address)
1543#endif
1544#ifndef pud_offset_lockless
1545#define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address)
1546#endif
1547#ifndef pmd_offset_lockless
1548#define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address)
1549#endif
1550
1551/*
1552 * p?d_leaf() - true if this entry is a final mapping to a physical address.
1553 * This differs from p?d_huge() by the fact that they are always available (if
1554 * the architecture supports large pages at the appropriate level) even
1555 * if CONFIG_HUGETLB_PAGE is not defined.
1556 * Only meaningful when called on a valid entry.
1557 */
1558#ifndef pgd_leaf
1559#define pgd_leaf(x) 0
1560#endif
1561#ifndef p4d_leaf
1562#define p4d_leaf(x) 0
1563#endif
1564#ifndef pud_leaf
1565#define pud_leaf(x) 0
1566#endif
1567#ifndef pmd_leaf
1568#define pmd_leaf(x) 0
1569#endif
1570
1571#ifndef pgd_leaf_size
1572#define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT)
1573#endif
1574#ifndef p4d_leaf_size
1575#define p4d_leaf_size(x) P4D_SIZE
1576#endif
1577#ifndef pud_leaf_size
1578#define pud_leaf_size(x) PUD_SIZE
1579#endif
1580#ifndef pmd_leaf_size
1581#define pmd_leaf_size(x) PMD_SIZE
1582#endif
1583#ifndef pte_leaf_size
1584#define pte_leaf_size(x) PAGE_SIZE
1585#endif
1586
1587#endif /* _LINUX_PGTABLE_H */