Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_BLKDEV_H
3#define _LINUX_BLKDEV_H
4
5#include <linux/sched.h>
6#include <linux/sched/clock.h>
7#include <linux/major.h>
8#include <linux/genhd.h>
9#include <linux/list.h>
10#include <linux/llist.h>
11#include <linux/minmax.h>
12#include <linux/timer.h>
13#include <linux/workqueue.h>
14#include <linux/backing-dev-defs.h>
15#include <linux/wait.h>
16#include <linux/mempool.h>
17#include <linux/pfn.h>
18#include <linux/bio.h>
19#include <linux/stringify.h>
20#include <linux/gfp.h>
21#include <linux/bsg.h>
22#include <linux/smp.h>
23#include <linux/rcupdate.h>
24#include <linux/percpu-refcount.h>
25#include <linux/scatterlist.h>
26#include <linux/blkzoned.h>
27#include <linux/pm.h>
28
29struct module;
30struct scsi_ioctl_command;
31
32struct request_queue;
33struct elevator_queue;
34struct blk_trace;
35struct request;
36struct sg_io_hdr;
37struct bsg_job;
38struct blkcg_gq;
39struct blk_flush_queue;
40struct pr_ops;
41struct rq_qos;
42struct blk_queue_stats;
43struct blk_stat_callback;
44struct blk_keyslot_manager;
45
46#define BLKDEV_MIN_RQ 4
47#define BLKDEV_MAX_RQ 128 /* Default maximum */
48
49/* Must be consistent with blk_mq_poll_stats_bkt() */
50#define BLK_MQ_POLL_STATS_BKTS 16
51
52/* Doing classic polling */
53#define BLK_MQ_POLL_CLASSIC -1
54
55/*
56 * Maximum number of blkcg policies allowed to be registered concurrently.
57 * Defined here to simplify include dependency.
58 */
59#define BLKCG_MAX_POLS 5
60
61typedef void (rq_end_io_fn)(struct request *, blk_status_t);
62
63/*
64 * request flags */
65typedef __u32 __bitwise req_flags_t;
66
67/* drive already may have started this one */
68#define RQF_STARTED ((__force req_flags_t)(1 << 1))
69/* may not be passed by ioscheduler */
70#define RQF_SOFTBARRIER ((__force req_flags_t)(1 << 3))
71/* request for flush sequence */
72#define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << 4))
73/* merge of different types, fail separately */
74#define RQF_MIXED_MERGE ((__force req_flags_t)(1 << 5))
75/* track inflight for MQ */
76#define RQF_MQ_INFLIGHT ((__force req_flags_t)(1 << 6))
77/* don't call prep for this one */
78#define RQF_DONTPREP ((__force req_flags_t)(1 << 7))
79/* vaguely specified driver internal error. Ignored by the block layer */
80#define RQF_FAILED ((__force req_flags_t)(1 << 10))
81/* don't warn about errors */
82#define RQF_QUIET ((__force req_flags_t)(1 << 11))
83/* elevator private data attached */
84#define RQF_ELVPRIV ((__force req_flags_t)(1 << 12))
85/* account into disk and partition IO statistics */
86#define RQF_IO_STAT ((__force req_flags_t)(1 << 13))
87/* runtime pm request */
88#define RQF_PM ((__force req_flags_t)(1 << 15))
89/* on IO scheduler merge hash */
90#define RQF_HASHED ((__force req_flags_t)(1 << 16))
91/* track IO completion time */
92#define RQF_STATS ((__force req_flags_t)(1 << 17))
93/* Look at ->special_vec for the actual data payload instead of the
94 bio chain. */
95#define RQF_SPECIAL_PAYLOAD ((__force req_flags_t)(1 << 18))
96/* The per-zone write lock is held for this request */
97#define RQF_ZONE_WRITE_LOCKED ((__force req_flags_t)(1 << 19))
98/* already slept for hybrid poll */
99#define RQF_MQ_POLL_SLEPT ((__force req_flags_t)(1 << 20))
100/* ->timeout has been called, don't expire again */
101#define RQF_TIMED_OUT ((__force req_flags_t)(1 << 21))
102
103/* flags that prevent us from merging requests: */
104#define RQF_NOMERGE_FLAGS \
105 (RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD)
106
107/*
108 * Request state for blk-mq.
109 */
110enum mq_rq_state {
111 MQ_RQ_IDLE = 0,
112 MQ_RQ_IN_FLIGHT = 1,
113 MQ_RQ_COMPLETE = 2,
114};
115
116/*
117 * Try to put the fields that are referenced together in the same cacheline.
118 *
119 * If you modify this structure, make sure to update blk_rq_init() and
120 * especially blk_mq_rq_ctx_init() to take care of the added fields.
121 */
122struct request {
123 struct request_queue *q;
124 struct blk_mq_ctx *mq_ctx;
125 struct blk_mq_hw_ctx *mq_hctx;
126
127 unsigned int cmd_flags; /* op and common flags */
128 req_flags_t rq_flags;
129
130 int tag;
131 int internal_tag;
132
133 /* the following two fields are internal, NEVER access directly */
134 unsigned int __data_len; /* total data len */
135 sector_t __sector; /* sector cursor */
136
137 struct bio *bio;
138 struct bio *biotail;
139
140 struct list_head queuelist;
141
142 /*
143 * The hash is used inside the scheduler, and killed once the
144 * request reaches the dispatch list. The ipi_list is only used
145 * to queue the request for softirq completion, which is long
146 * after the request has been unhashed (and even removed from
147 * the dispatch list).
148 */
149 union {
150 struct hlist_node hash; /* merge hash */
151 struct llist_node ipi_list;
152 };
153
154 /*
155 * The rb_node is only used inside the io scheduler, requests
156 * are pruned when moved to the dispatch queue. So let the
157 * completion_data share space with the rb_node.
158 */
159 union {
160 struct rb_node rb_node; /* sort/lookup */
161 struct bio_vec special_vec;
162 void *completion_data;
163 int error_count; /* for legacy drivers, don't use */
164 };
165
166 /*
167 * Three pointers are available for the IO schedulers, if they need
168 * more they have to dynamically allocate it. Flush requests are
169 * never put on the IO scheduler. So let the flush fields share
170 * space with the elevator data.
171 */
172 union {
173 struct {
174 struct io_cq *icq;
175 void *priv[2];
176 } elv;
177
178 struct {
179 unsigned int seq;
180 struct list_head list;
181 rq_end_io_fn *saved_end_io;
182 } flush;
183 };
184
185 struct gendisk *rq_disk;
186 struct block_device *part;
187#ifdef CONFIG_BLK_RQ_ALLOC_TIME
188 /* Time that the first bio started allocating this request. */
189 u64 alloc_time_ns;
190#endif
191 /* Time that this request was allocated for this IO. */
192 u64 start_time_ns;
193 /* Time that I/O was submitted to the device. */
194 u64 io_start_time_ns;
195
196#ifdef CONFIG_BLK_WBT
197 unsigned short wbt_flags;
198#endif
199 /*
200 * rq sectors used for blk stats. It has the same value
201 * with blk_rq_sectors(rq), except that it never be zeroed
202 * by completion.
203 */
204 unsigned short stats_sectors;
205
206 /*
207 * Number of scatter-gather DMA addr+len pairs after
208 * physical address coalescing is performed.
209 */
210 unsigned short nr_phys_segments;
211
212#if defined(CONFIG_BLK_DEV_INTEGRITY)
213 unsigned short nr_integrity_segments;
214#endif
215
216#ifdef CONFIG_BLK_INLINE_ENCRYPTION
217 struct bio_crypt_ctx *crypt_ctx;
218 struct blk_ksm_keyslot *crypt_keyslot;
219#endif
220
221 unsigned short write_hint;
222 unsigned short ioprio;
223
224 enum mq_rq_state state;
225 refcount_t ref;
226
227 unsigned int timeout;
228 unsigned long deadline;
229
230 union {
231 struct __call_single_data csd;
232 u64 fifo_time;
233 };
234
235 /*
236 * completion callback.
237 */
238 rq_end_io_fn *end_io;
239 void *end_io_data;
240};
241
242static inline bool blk_op_is_scsi(unsigned int op)
243{
244 return op == REQ_OP_SCSI_IN || op == REQ_OP_SCSI_OUT;
245}
246
247static inline bool blk_op_is_private(unsigned int op)
248{
249 return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT;
250}
251
252static inline bool blk_rq_is_scsi(struct request *rq)
253{
254 return blk_op_is_scsi(req_op(rq));
255}
256
257static inline bool blk_rq_is_private(struct request *rq)
258{
259 return blk_op_is_private(req_op(rq));
260}
261
262static inline bool blk_rq_is_passthrough(struct request *rq)
263{
264 return blk_rq_is_scsi(rq) || blk_rq_is_private(rq);
265}
266
267static inline bool bio_is_passthrough(struct bio *bio)
268{
269 unsigned op = bio_op(bio);
270
271 return blk_op_is_scsi(op) || blk_op_is_private(op);
272}
273
274static inline bool blk_op_is_passthrough(unsigned int op)
275{
276 return (blk_op_is_scsi(op & REQ_OP_MASK) ||
277 blk_op_is_private(op & REQ_OP_MASK));
278}
279
280static inline unsigned short req_get_ioprio(struct request *req)
281{
282 return req->ioprio;
283}
284
285#include <linux/elevator.h>
286
287struct blk_queue_ctx;
288
289struct bio_vec;
290
291enum blk_eh_timer_return {
292 BLK_EH_DONE, /* drivers has completed the command */
293 BLK_EH_RESET_TIMER, /* reset timer and try again */
294};
295
296enum blk_queue_state {
297 Queue_down,
298 Queue_up,
299};
300
301#define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */
302#define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */
303
304#define BLK_SCSI_MAX_CMDS (256)
305#define BLK_SCSI_CMD_PER_LONG (BLK_SCSI_MAX_CMDS / (sizeof(long) * 8))
306
307/*
308 * Zoned block device models (zoned limit).
309 *
310 * Note: This needs to be ordered from the least to the most severe
311 * restrictions for the inheritance in blk_stack_limits() to work.
312 */
313enum blk_zoned_model {
314 BLK_ZONED_NONE = 0, /* Regular block device */
315 BLK_ZONED_HA, /* Host-aware zoned block device */
316 BLK_ZONED_HM, /* Host-managed zoned block device */
317};
318
319/*
320 * BLK_BOUNCE_NONE: never bounce (default)
321 * BLK_BOUNCE_HIGH: bounce all highmem pages
322 */
323enum blk_bounce {
324 BLK_BOUNCE_NONE,
325 BLK_BOUNCE_HIGH,
326};
327
328struct queue_limits {
329 enum blk_bounce bounce;
330 unsigned long seg_boundary_mask;
331 unsigned long virt_boundary_mask;
332
333 unsigned int max_hw_sectors;
334 unsigned int max_dev_sectors;
335 unsigned int chunk_sectors;
336 unsigned int max_sectors;
337 unsigned int max_segment_size;
338 unsigned int physical_block_size;
339 unsigned int logical_block_size;
340 unsigned int alignment_offset;
341 unsigned int io_min;
342 unsigned int io_opt;
343 unsigned int max_discard_sectors;
344 unsigned int max_hw_discard_sectors;
345 unsigned int max_write_same_sectors;
346 unsigned int max_write_zeroes_sectors;
347 unsigned int max_zone_append_sectors;
348 unsigned int discard_granularity;
349 unsigned int discard_alignment;
350 unsigned int zone_write_granularity;
351
352 unsigned short max_segments;
353 unsigned short max_integrity_segments;
354 unsigned short max_discard_segments;
355
356 unsigned char misaligned;
357 unsigned char discard_misaligned;
358 unsigned char raid_partial_stripes_expensive;
359 enum blk_zoned_model zoned;
360};
361
362typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx,
363 void *data);
364
365void blk_queue_set_zoned(struct gendisk *disk, enum blk_zoned_model model);
366
367#ifdef CONFIG_BLK_DEV_ZONED
368
369#define BLK_ALL_ZONES ((unsigned int)-1)
370int blkdev_report_zones(struct block_device *bdev, sector_t sector,
371 unsigned int nr_zones, report_zones_cb cb, void *data);
372unsigned int blkdev_nr_zones(struct gendisk *disk);
373extern int blkdev_zone_mgmt(struct block_device *bdev, enum req_opf op,
374 sector_t sectors, sector_t nr_sectors,
375 gfp_t gfp_mask);
376int blk_revalidate_disk_zones(struct gendisk *disk,
377 void (*update_driver_data)(struct gendisk *disk));
378
379extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode,
380 unsigned int cmd, unsigned long arg);
381extern int blkdev_zone_mgmt_ioctl(struct block_device *bdev, fmode_t mode,
382 unsigned int cmd, unsigned long arg);
383
384#else /* CONFIG_BLK_DEV_ZONED */
385
386static inline unsigned int blkdev_nr_zones(struct gendisk *disk)
387{
388 return 0;
389}
390
391static inline int blkdev_report_zones_ioctl(struct block_device *bdev,
392 fmode_t mode, unsigned int cmd,
393 unsigned long arg)
394{
395 return -ENOTTY;
396}
397
398static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev,
399 fmode_t mode, unsigned int cmd,
400 unsigned long arg)
401{
402 return -ENOTTY;
403}
404
405#endif /* CONFIG_BLK_DEV_ZONED */
406
407struct request_queue {
408 struct request *last_merge;
409 struct elevator_queue *elevator;
410
411 struct percpu_ref q_usage_counter;
412
413 struct blk_queue_stats *stats;
414 struct rq_qos *rq_qos;
415
416 const struct blk_mq_ops *mq_ops;
417
418 /* sw queues */
419 struct blk_mq_ctx __percpu *queue_ctx;
420
421 unsigned int queue_depth;
422
423 /* hw dispatch queues */
424 struct blk_mq_hw_ctx **queue_hw_ctx;
425 unsigned int nr_hw_queues;
426
427 struct backing_dev_info *backing_dev_info;
428
429 /*
430 * The queue owner gets to use this for whatever they like.
431 * ll_rw_blk doesn't touch it.
432 */
433 void *queuedata;
434
435 /*
436 * various queue flags, see QUEUE_* below
437 */
438 unsigned long queue_flags;
439 /*
440 * Number of contexts that have called blk_set_pm_only(). If this
441 * counter is above zero then only RQF_PM requests are processed.
442 */
443 atomic_t pm_only;
444
445 /*
446 * ida allocated id for this queue. Used to index queues from
447 * ioctx.
448 */
449 int id;
450
451 spinlock_t queue_lock;
452
453 /*
454 * queue kobject
455 */
456 struct kobject kobj;
457
458 /*
459 * mq queue kobject
460 */
461 struct kobject *mq_kobj;
462
463#ifdef CONFIG_BLK_DEV_INTEGRITY
464 struct blk_integrity integrity;
465#endif /* CONFIG_BLK_DEV_INTEGRITY */
466
467#ifdef CONFIG_PM
468 struct device *dev;
469 enum rpm_status rpm_status;
470#endif
471
472 /*
473 * queue settings
474 */
475 unsigned long nr_requests; /* Max # of requests */
476
477 unsigned int dma_pad_mask;
478 unsigned int dma_alignment;
479
480#ifdef CONFIG_BLK_INLINE_ENCRYPTION
481 /* Inline crypto capabilities */
482 struct blk_keyslot_manager *ksm;
483#endif
484
485 unsigned int rq_timeout;
486 int poll_nsec;
487
488 struct blk_stat_callback *poll_cb;
489 struct blk_rq_stat poll_stat[BLK_MQ_POLL_STATS_BKTS];
490
491 struct timer_list timeout;
492 struct work_struct timeout_work;
493
494 atomic_t nr_active_requests_shared_sbitmap;
495
496 struct list_head icq_list;
497#ifdef CONFIG_BLK_CGROUP
498 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS);
499 struct blkcg_gq *root_blkg;
500 struct list_head blkg_list;
501#endif
502
503 struct queue_limits limits;
504
505 unsigned int required_elevator_features;
506
507#ifdef CONFIG_BLK_DEV_ZONED
508 /*
509 * Zoned block device information for request dispatch control.
510 * nr_zones is the total number of zones of the device. This is always
511 * 0 for regular block devices. conv_zones_bitmap is a bitmap of nr_zones
512 * bits which indicates if a zone is conventional (bit set) or
513 * sequential (bit clear). seq_zones_wlock is a bitmap of nr_zones
514 * bits which indicates if a zone is write locked, that is, if a write
515 * request targeting the zone was dispatched. All three fields are
516 * initialized by the low level device driver (e.g. scsi/sd.c).
517 * Stacking drivers (device mappers) may or may not initialize
518 * these fields.
519 *
520 * Reads of this information must be protected with blk_queue_enter() /
521 * blk_queue_exit(). Modifying this information is only allowed while
522 * no requests are being processed. See also blk_mq_freeze_queue() and
523 * blk_mq_unfreeze_queue().
524 */
525 unsigned int nr_zones;
526 unsigned long *conv_zones_bitmap;
527 unsigned long *seq_zones_wlock;
528 unsigned int max_open_zones;
529 unsigned int max_active_zones;
530#endif /* CONFIG_BLK_DEV_ZONED */
531
532 /*
533 * sg stuff
534 */
535 unsigned int sg_timeout;
536 unsigned int sg_reserved_size;
537 int node;
538 struct mutex debugfs_mutex;
539#ifdef CONFIG_BLK_DEV_IO_TRACE
540 struct blk_trace __rcu *blk_trace;
541#endif
542 /*
543 * for flush operations
544 */
545 struct blk_flush_queue *fq;
546
547 struct list_head requeue_list;
548 spinlock_t requeue_lock;
549 struct delayed_work requeue_work;
550
551 struct mutex sysfs_lock;
552 struct mutex sysfs_dir_lock;
553
554 /*
555 * for reusing dead hctx instance in case of updating
556 * nr_hw_queues
557 */
558 struct list_head unused_hctx_list;
559 spinlock_t unused_hctx_lock;
560
561 int mq_freeze_depth;
562
563#if defined(CONFIG_BLK_DEV_BSG)
564 struct bsg_class_device bsg_dev;
565#endif
566
567#ifdef CONFIG_BLK_DEV_THROTTLING
568 /* Throttle data */
569 struct throtl_data *td;
570#endif
571 struct rcu_head rcu_head;
572 wait_queue_head_t mq_freeze_wq;
573 /*
574 * Protect concurrent access to q_usage_counter by
575 * percpu_ref_kill() and percpu_ref_reinit().
576 */
577 struct mutex mq_freeze_lock;
578
579 struct blk_mq_tag_set *tag_set;
580 struct list_head tag_set_list;
581 struct bio_set bio_split;
582
583 struct dentry *debugfs_dir;
584
585#ifdef CONFIG_BLK_DEBUG_FS
586 struct dentry *sched_debugfs_dir;
587 struct dentry *rqos_debugfs_dir;
588#endif
589
590 bool mq_sysfs_init_done;
591
592 size_t cmd_size;
593
594#define BLK_MAX_WRITE_HINTS 5
595 u64 write_hints[BLK_MAX_WRITE_HINTS];
596};
597
598/* Keep blk_queue_flag_name[] in sync with the definitions below */
599#define QUEUE_FLAG_STOPPED 0 /* queue is stopped */
600#define QUEUE_FLAG_DYING 1 /* queue being torn down */
601#define QUEUE_FLAG_NOMERGES 3 /* disable merge attempts */
602#define QUEUE_FLAG_SAME_COMP 4 /* complete on same CPU-group */
603#define QUEUE_FLAG_FAIL_IO 5 /* fake timeout */
604#define QUEUE_FLAG_NONROT 6 /* non-rotational device (SSD) */
605#define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */
606#define QUEUE_FLAG_IO_STAT 7 /* do disk/partitions IO accounting */
607#define QUEUE_FLAG_DISCARD 8 /* supports DISCARD */
608#define QUEUE_FLAG_NOXMERGES 9 /* No extended merges */
609#define QUEUE_FLAG_ADD_RANDOM 10 /* Contributes to random pool */
610#define QUEUE_FLAG_SECERASE 11 /* supports secure erase */
611#define QUEUE_FLAG_SAME_FORCE 12 /* force complete on same CPU */
612#define QUEUE_FLAG_DEAD 13 /* queue tear-down finished */
613#define QUEUE_FLAG_INIT_DONE 14 /* queue is initialized */
614#define QUEUE_FLAG_STABLE_WRITES 15 /* don't modify blks until WB is done */
615#define QUEUE_FLAG_POLL 16 /* IO polling enabled if set */
616#define QUEUE_FLAG_WC 17 /* Write back caching */
617#define QUEUE_FLAG_FUA 18 /* device supports FUA writes */
618#define QUEUE_FLAG_DAX 19 /* device supports DAX */
619#define QUEUE_FLAG_STATS 20 /* track IO start and completion times */
620#define QUEUE_FLAG_POLL_STATS 21 /* collecting stats for hybrid polling */
621#define QUEUE_FLAG_REGISTERED 22 /* queue has been registered to a disk */
622#define QUEUE_FLAG_SCSI_PASSTHROUGH 23 /* queue supports SCSI commands */
623#define QUEUE_FLAG_QUIESCED 24 /* queue has been quiesced */
624#define QUEUE_FLAG_PCI_P2PDMA 25 /* device supports PCI p2p requests */
625#define QUEUE_FLAG_ZONE_RESETALL 26 /* supports Zone Reset All */
626#define QUEUE_FLAG_RQ_ALLOC_TIME 27 /* record rq->alloc_time_ns */
627#define QUEUE_FLAG_HCTX_ACTIVE 28 /* at least one blk-mq hctx is active */
628#define QUEUE_FLAG_NOWAIT 29 /* device supports NOWAIT */
629
630#define QUEUE_FLAG_MQ_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \
631 (1 << QUEUE_FLAG_SAME_COMP) | \
632 (1 << QUEUE_FLAG_NOWAIT))
633
634void blk_queue_flag_set(unsigned int flag, struct request_queue *q);
635void blk_queue_flag_clear(unsigned int flag, struct request_queue *q);
636bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q);
637
638#define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags)
639#define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags)
640#define blk_queue_dead(q) test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags)
641#define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags)
642#define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags)
643#define blk_queue_noxmerges(q) \
644 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags)
645#define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags)
646#define blk_queue_stable_writes(q) \
647 test_bit(QUEUE_FLAG_STABLE_WRITES, &(q)->queue_flags)
648#define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags)
649#define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags)
650#define blk_queue_discard(q) test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags)
651#define blk_queue_zone_resetall(q) \
652 test_bit(QUEUE_FLAG_ZONE_RESETALL, &(q)->queue_flags)
653#define blk_queue_secure_erase(q) \
654 (test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags))
655#define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags)
656#define blk_queue_scsi_passthrough(q) \
657 test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags)
658#define blk_queue_pci_p2pdma(q) \
659 test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags)
660#ifdef CONFIG_BLK_RQ_ALLOC_TIME
661#define blk_queue_rq_alloc_time(q) \
662 test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags)
663#else
664#define blk_queue_rq_alloc_time(q) false
665#endif
666
667#define blk_noretry_request(rq) \
668 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \
669 REQ_FAILFAST_DRIVER))
670#define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags)
671#define blk_queue_pm_only(q) atomic_read(&(q)->pm_only)
672#define blk_queue_fua(q) test_bit(QUEUE_FLAG_FUA, &(q)->queue_flags)
673#define blk_queue_registered(q) test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags)
674#define blk_queue_nowait(q) test_bit(QUEUE_FLAG_NOWAIT, &(q)->queue_flags)
675
676extern void blk_set_pm_only(struct request_queue *q);
677extern void blk_clear_pm_only(struct request_queue *q);
678
679static inline bool blk_account_rq(struct request *rq)
680{
681 return (rq->rq_flags & RQF_STARTED) && !blk_rq_is_passthrough(rq);
682}
683
684#define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist)
685
686#define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ)
687
688#define rq_dma_dir(rq) \
689 (op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE)
690
691#define dma_map_bvec(dev, bv, dir, attrs) \
692 dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \
693 (dir), (attrs))
694
695#define queue_to_disk(q) (dev_to_disk(kobj_to_dev((q)->kobj.parent)))
696
697static inline bool queue_is_mq(struct request_queue *q)
698{
699 return q->mq_ops;
700}
701
702#ifdef CONFIG_PM
703static inline enum rpm_status queue_rpm_status(struct request_queue *q)
704{
705 return q->rpm_status;
706}
707#else
708static inline enum rpm_status queue_rpm_status(struct request_queue *q)
709{
710 return RPM_ACTIVE;
711}
712#endif
713
714static inline enum blk_zoned_model
715blk_queue_zoned_model(struct request_queue *q)
716{
717 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED))
718 return q->limits.zoned;
719 return BLK_ZONED_NONE;
720}
721
722static inline bool blk_queue_is_zoned(struct request_queue *q)
723{
724 switch (blk_queue_zoned_model(q)) {
725 case BLK_ZONED_HA:
726 case BLK_ZONED_HM:
727 return true;
728 default:
729 return false;
730 }
731}
732
733static inline sector_t blk_queue_zone_sectors(struct request_queue *q)
734{
735 return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0;
736}
737
738#ifdef CONFIG_BLK_DEV_ZONED
739static inline unsigned int blk_queue_nr_zones(struct request_queue *q)
740{
741 return blk_queue_is_zoned(q) ? q->nr_zones : 0;
742}
743
744static inline unsigned int blk_queue_zone_no(struct request_queue *q,
745 sector_t sector)
746{
747 if (!blk_queue_is_zoned(q))
748 return 0;
749 return sector >> ilog2(q->limits.chunk_sectors);
750}
751
752static inline bool blk_queue_zone_is_seq(struct request_queue *q,
753 sector_t sector)
754{
755 if (!blk_queue_is_zoned(q))
756 return false;
757 if (!q->conv_zones_bitmap)
758 return true;
759 return !test_bit(blk_queue_zone_no(q, sector), q->conv_zones_bitmap);
760}
761
762static inline void blk_queue_max_open_zones(struct request_queue *q,
763 unsigned int max_open_zones)
764{
765 q->max_open_zones = max_open_zones;
766}
767
768static inline unsigned int queue_max_open_zones(const struct request_queue *q)
769{
770 return q->max_open_zones;
771}
772
773static inline void blk_queue_max_active_zones(struct request_queue *q,
774 unsigned int max_active_zones)
775{
776 q->max_active_zones = max_active_zones;
777}
778
779static inline unsigned int queue_max_active_zones(const struct request_queue *q)
780{
781 return q->max_active_zones;
782}
783#else /* CONFIG_BLK_DEV_ZONED */
784static inline unsigned int blk_queue_nr_zones(struct request_queue *q)
785{
786 return 0;
787}
788static inline bool blk_queue_zone_is_seq(struct request_queue *q,
789 sector_t sector)
790{
791 return false;
792}
793static inline unsigned int blk_queue_zone_no(struct request_queue *q,
794 sector_t sector)
795{
796 return 0;
797}
798static inline unsigned int queue_max_open_zones(const struct request_queue *q)
799{
800 return 0;
801}
802static inline unsigned int queue_max_active_zones(const struct request_queue *q)
803{
804 return 0;
805}
806#endif /* CONFIG_BLK_DEV_ZONED */
807
808static inline bool rq_is_sync(struct request *rq)
809{
810 return op_is_sync(rq->cmd_flags);
811}
812
813static inline bool rq_mergeable(struct request *rq)
814{
815 if (blk_rq_is_passthrough(rq))
816 return false;
817
818 if (req_op(rq) == REQ_OP_FLUSH)
819 return false;
820
821 if (req_op(rq) == REQ_OP_WRITE_ZEROES)
822 return false;
823
824 if (req_op(rq) == REQ_OP_ZONE_APPEND)
825 return false;
826
827 if (rq->cmd_flags & REQ_NOMERGE_FLAGS)
828 return false;
829 if (rq->rq_flags & RQF_NOMERGE_FLAGS)
830 return false;
831
832 return true;
833}
834
835static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b)
836{
837 if (bio_page(a) == bio_page(b) &&
838 bio_offset(a) == bio_offset(b))
839 return true;
840
841 return false;
842}
843
844static inline unsigned int blk_queue_depth(struct request_queue *q)
845{
846 if (q->queue_depth)
847 return q->queue_depth;
848
849 return q->nr_requests;
850}
851
852/*
853 * default timeout for SG_IO if none specified
854 */
855#define BLK_DEFAULT_SG_TIMEOUT (60 * HZ)
856#define BLK_MIN_SG_TIMEOUT (7 * HZ)
857
858struct rq_map_data {
859 struct page **pages;
860 int page_order;
861 int nr_entries;
862 unsigned long offset;
863 int null_mapped;
864 int from_user;
865};
866
867struct req_iterator {
868 struct bvec_iter iter;
869 struct bio *bio;
870};
871
872/* This should not be used directly - use rq_for_each_segment */
873#define for_each_bio(_bio) \
874 for (; _bio; _bio = _bio->bi_next)
875#define __rq_for_each_bio(_bio, rq) \
876 if ((rq->bio)) \
877 for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next)
878
879#define rq_for_each_segment(bvl, _rq, _iter) \
880 __rq_for_each_bio(_iter.bio, _rq) \
881 bio_for_each_segment(bvl, _iter.bio, _iter.iter)
882
883#define rq_for_each_bvec(bvl, _rq, _iter) \
884 __rq_for_each_bio(_iter.bio, _rq) \
885 bio_for_each_bvec(bvl, _iter.bio, _iter.iter)
886
887#define rq_iter_last(bvec, _iter) \
888 (_iter.bio->bi_next == NULL && \
889 bio_iter_last(bvec, _iter.iter))
890
891#ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
892# error "You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform"
893#endif
894#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
895extern void rq_flush_dcache_pages(struct request *rq);
896#else
897static inline void rq_flush_dcache_pages(struct request *rq)
898{
899}
900#endif
901
902extern int blk_register_queue(struct gendisk *disk);
903extern void blk_unregister_queue(struct gendisk *disk);
904blk_qc_t submit_bio_noacct(struct bio *bio);
905extern void blk_rq_init(struct request_queue *q, struct request *rq);
906extern void blk_put_request(struct request *);
907extern struct request *blk_get_request(struct request_queue *, unsigned int op,
908 blk_mq_req_flags_t flags);
909extern int blk_lld_busy(struct request_queue *q);
910extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
911 struct bio_set *bs, gfp_t gfp_mask,
912 int (*bio_ctr)(struct bio *, struct bio *, void *),
913 void *data);
914extern void blk_rq_unprep_clone(struct request *rq);
915extern blk_status_t blk_insert_cloned_request(struct request_queue *q,
916 struct request *rq);
917int blk_rq_append_bio(struct request *rq, struct bio *bio);
918extern void blk_queue_split(struct bio **);
919extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int);
920extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t,
921 unsigned int, void __user *);
922extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t,
923 unsigned int, void __user *);
924extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t,
925 struct scsi_ioctl_command __user *);
926extern int get_sg_io_hdr(struct sg_io_hdr *hdr, const void __user *argp);
927extern int put_sg_io_hdr(const struct sg_io_hdr *hdr, void __user *argp);
928
929extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags);
930extern void blk_queue_exit(struct request_queue *q);
931extern void blk_sync_queue(struct request_queue *q);
932extern int blk_rq_map_user(struct request_queue *, struct request *,
933 struct rq_map_data *, void __user *, unsigned long,
934 gfp_t);
935extern int blk_rq_unmap_user(struct bio *);
936extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t);
937extern int blk_rq_map_user_iov(struct request_queue *, struct request *,
938 struct rq_map_data *, const struct iov_iter *,
939 gfp_t);
940extern void blk_execute_rq(struct gendisk *, struct request *, int);
941extern void blk_execute_rq_nowait(struct gendisk *,
942 struct request *, int, rq_end_io_fn *);
943
944/* Helper to convert REQ_OP_XXX to its string format XXX */
945extern const char *blk_op_str(unsigned int op);
946
947int blk_status_to_errno(blk_status_t status);
948blk_status_t errno_to_blk_status(int errno);
949
950int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin);
951
952static inline struct request_queue *bdev_get_queue(struct block_device *bdev)
953{
954 return bdev->bd_disk->queue; /* this is never NULL */
955}
956
957/*
958 * The basic unit of block I/O is a sector. It is used in a number of contexts
959 * in Linux (blk, bio, genhd). The size of one sector is 512 = 2**9
960 * bytes. Variables of type sector_t represent an offset or size that is a
961 * multiple of 512 bytes. Hence these two constants.
962 */
963#ifndef SECTOR_SHIFT
964#define SECTOR_SHIFT 9
965#endif
966#ifndef SECTOR_SIZE
967#define SECTOR_SIZE (1 << SECTOR_SHIFT)
968#endif
969
970/*
971 * blk_rq_pos() : the current sector
972 * blk_rq_bytes() : bytes left in the entire request
973 * blk_rq_cur_bytes() : bytes left in the current segment
974 * blk_rq_err_bytes() : bytes left till the next error boundary
975 * blk_rq_sectors() : sectors left in the entire request
976 * blk_rq_cur_sectors() : sectors left in the current segment
977 * blk_rq_stats_sectors() : sectors of the entire request used for stats
978 */
979static inline sector_t blk_rq_pos(const struct request *rq)
980{
981 return rq->__sector;
982}
983
984static inline unsigned int blk_rq_bytes(const struct request *rq)
985{
986 return rq->__data_len;
987}
988
989static inline int blk_rq_cur_bytes(const struct request *rq)
990{
991 return rq->bio ? bio_cur_bytes(rq->bio) : 0;
992}
993
994extern unsigned int blk_rq_err_bytes(const struct request *rq);
995
996static inline unsigned int blk_rq_sectors(const struct request *rq)
997{
998 return blk_rq_bytes(rq) >> SECTOR_SHIFT;
999}
1000
1001static inline unsigned int blk_rq_cur_sectors(const struct request *rq)
1002{
1003 return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT;
1004}
1005
1006static inline unsigned int blk_rq_stats_sectors(const struct request *rq)
1007{
1008 return rq->stats_sectors;
1009}
1010
1011#ifdef CONFIG_BLK_DEV_ZONED
1012
1013/* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */
1014const char *blk_zone_cond_str(enum blk_zone_cond zone_cond);
1015
1016static inline unsigned int blk_rq_zone_no(struct request *rq)
1017{
1018 return blk_queue_zone_no(rq->q, blk_rq_pos(rq));
1019}
1020
1021static inline unsigned int blk_rq_zone_is_seq(struct request *rq)
1022{
1023 return blk_queue_zone_is_seq(rq->q, blk_rq_pos(rq));
1024}
1025#endif /* CONFIG_BLK_DEV_ZONED */
1026
1027/*
1028 * Some commands like WRITE SAME have a payload or data transfer size which
1029 * is different from the size of the request. Any driver that supports such
1030 * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to
1031 * calculate the data transfer size.
1032 */
1033static inline unsigned int blk_rq_payload_bytes(struct request *rq)
1034{
1035 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1036 return rq->special_vec.bv_len;
1037 return blk_rq_bytes(rq);
1038}
1039
1040/*
1041 * Return the first full biovec in the request. The caller needs to check that
1042 * there are any bvecs before calling this helper.
1043 */
1044static inline struct bio_vec req_bvec(struct request *rq)
1045{
1046 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1047 return rq->special_vec;
1048 return mp_bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter);
1049}
1050
1051static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q,
1052 int op)
1053{
1054 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE))
1055 return min(q->limits.max_discard_sectors,
1056 UINT_MAX >> SECTOR_SHIFT);
1057
1058 if (unlikely(op == REQ_OP_WRITE_SAME))
1059 return q->limits.max_write_same_sectors;
1060
1061 if (unlikely(op == REQ_OP_WRITE_ZEROES))
1062 return q->limits.max_write_zeroes_sectors;
1063
1064 return q->limits.max_sectors;
1065}
1066
1067/*
1068 * Return maximum size of a request at given offset. Only valid for
1069 * file system requests.
1070 */
1071static inline unsigned int blk_max_size_offset(struct request_queue *q,
1072 sector_t offset,
1073 unsigned int chunk_sectors)
1074{
1075 if (!chunk_sectors) {
1076 if (q->limits.chunk_sectors)
1077 chunk_sectors = q->limits.chunk_sectors;
1078 else
1079 return q->limits.max_sectors;
1080 }
1081
1082 if (likely(is_power_of_2(chunk_sectors)))
1083 chunk_sectors -= offset & (chunk_sectors - 1);
1084 else
1085 chunk_sectors -= sector_div(offset, chunk_sectors);
1086
1087 return min(q->limits.max_sectors, chunk_sectors);
1088}
1089
1090static inline unsigned int blk_rq_get_max_sectors(struct request *rq,
1091 sector_t offset)
1092{
1093 struct request_queue *q = rq->q;
1094
1095 if (blk_rq_is_passthrough(rq))
1096 return q->limits.max_hw_sectors;
1097
1098 if (!q->limits.chunk_sectors ||
1099 req_op(rq) == REQ_OP_DISCARD ||
1100 req_op(rq) == REQ_OP_SECURE_ERASE)
1101 return blk_queue_get_max_sectors(q, req_op(rq));
1102
1103 return min(blk_max_size_offset(q, offset, 0),
1104 blk_queue_get_max_sectors(q, req_op(rq)));
1105}
1106
1107static inline unsigned int blk_rq_count_bios(struct request *rq)
1108{
1109 unsigned int nr_bios = 0;
1110 struct bio *bio;
1111
1112 __rq_for_each_bio(bio, rq)
1113 nr_bios++;
1114
1115 return nr_bios;
1116}
1117
1118void blk_steal_bios(struct bio_list *list, struct request *rq);
1119
1120/*
1121 * Request completion related functions.
1122 *
1123 * blk_update_request() completes given number of bytes and updates
1124 * the request without completing it.
1125 */
1126extern bool blk_update_request(struct request *rq, blk_status_t error,
1127 unsigned int nr_bytes);
1128
1129extern void blk_abort_request(struct request *);
1130
1131/*
1132 * Access functions for manipulating queue properties
1133 */
1134extern void blk_cleanup_queue(struct request_queue *);
1135void blk_queue_bounce_limit(struct request_queue *q, enum blk_bounce limit);
1136extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int);
1137extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int);
1138extern void blk_queue_max_segments(struct request_queue *, unsigned short);
1139extern void blk_queue_max_discard_segments(struct request_queue *,
1140 unsigned short);
1141extern void blk_queue_max_segment_size(struct request_queue *, unsigned int);
1142extern void blk_queue_max_discard_sectors(struct request_queue *q,
1143 unsigned int max_discard_sectors);
1144extern void blk_queue_max_write_same_sectors(struct request_queue *q,
1145 unsigned int max_write_same_sectors);
1146extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
1147 unsigned int max_write_same_sectors);
1148extern void blk_queue_logical_block_size(struct request_queue *, unsigned int);
1149extern void blk_queue_max_zone_append_sectors(struct request_queue *q,
1150 unsigned int max_zone_append_sectors);
1151extern void blk_queue_physical_block_size(struct request_queue *, unsigned int);
1152void blk_queue_zone_write_granularity(struct request_queue *q,
1153 unsigned int size);
1154extern void blk_queue_alignment_offset(struct request_queue *q,
1155 unsigned int alignment);
1156void blk_queue_update_readahead(struct request_queue *q);
1157extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min);
1158extern void blk_queue_io_min(struct request_queue *q, unsigned int min);
1159extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt);
1160extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt);
1161extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth);
1162extern void blk_set_default_limits(struct queue_limits *lim);
1163extern void blk_set_stacking_limits(struct queue_limits *lim);
1164extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
1165 sector_t offset);
1166extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
1167 sector_t offset);
1168extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int);
1169extern void blk_queue_segment_boundary(struct request_queue *, unsigned long);
1170extern void blk_queue_virt_boundary(struct request_queue *, unsigned long);
1171extern void blk_queue_dma_alignment(struct request_queue *, int);
1172extern void blk_queue_update_dma_alignment(struct request_queue *, int);
1173extern void blk_queue_rq_timeout(struct request_queue *, unsigned int);
1174extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua);
1175extern void blk_queue_required_elevator_features(struct request_queue *q,
1176 unsigned int features);
1177extern bool blk_queue_can_use_dma_map_merging(struct request_queue *q,
1178 struct device *dev);
1179
1180/*
1181 * Number of physical segments as sent to the device.
1182 *
1183 * Normally this is the number of discontiguous data segments sent by the
1184 * submitter. But for data-less command like discard we might have no
1185 * actual data segments submitted, but the driver might have to add it's
1186 * own special payload. In that case we still return 1 here so that this
1187 * special payload will be mapped.
1188 */
1189static inline unsigned short blk_rq_nr_phys_segments(struct request *rq)
1190{
1191 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1192 return 1;
1193 return rq->nr_phys_segments;
1194}
1195
1196/*
1197 * Number of discard segments (or ranges) the driver needs to fill in.
1198 * Each discard bio merged into a request is counted as one segment.
1199 */
1200static inline unsigned short blk_rq_nr_discard_segments(struct request *rq)
1201{
1202 return max_t(unsigned short, rq->nr_phys_segments, 1);
1203}
1204
1205int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
1206 struct scatterlist *sglist, struct scatterlist **last_sg);
1207static inline int blk_rq_map_sg(struct request_queue *q, struct request *rq,
1208 struct scatterlist *sglist)
1209{
1210 struct scatterlist *last_sg = NULL;
1211
1212 return __blk_rq_map_sg(q, rq, sglist, &last_sg);
1213}
1214extern void blk_dump_rq_flags(struct request *, char *);
1215
1216bool __must_check blk_get_queue(struct request_queue *);
1217struct request_queue *blk_alloc_queue(int node_id);
1218extern void blk_put_queue(struct request_queue *);
1219extern void blk_set_queue_dying(struct request_queue *);
1220
1221#ifdef CONFIG_BLOCK
1222/*
1223 * blk_plug permits building a queue of related requests by holding the I/O
1224 * fragments for a short period. This allows merging of sequential requests
1225 * into single larger request. As the requests are moved from a per-task list to
1226 * the device's request_queue in a batch, this results in improved scalability
1227 * as the lock contention for request_queue lock is reduced.
1228 *
1229 * It is ok not to disable preemption when adding the request to the plug list
1230 * or when attempting a merge, because blk_schedule_flush_list() will only flush
1231 * the plug list when the task sleeps by itself. For details, please see
1232 * schedule() where blk_schedule_flush_plug() is called.
1233 */
1234struct blk_plug {
1235 struct list_head mq_list; /* blk-mq requests */
1236 struct list_head cb_list; /* md requires an unplug callback */
1237 unsigned short rq_count;
1238 bool multiple_queues;
1239 bool nowait;
1240};
1241#define BLK_MAX_REQUEST_COUNT 16
1242#define BLK_PLUG_FLUSH_SIZE (128 * 1024)
1243
1244struct blk_plug_cb;
1245typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool);
1246struct blk_plug_cb {
1247 struct list_head list;
1248 blk_plug_cb_fn callback;
1249 void *data;
1250};
1251extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug,
1252 void *data, int size);
1253extern void blk_start_plug(struct blk_plug *);
1254extern void blk_finish_plug(struct blk_plug *);
1255extern void blk_flush_plug_list(struct blk_plug *, bool);
1256
1257static inline void blk_flush_plug(struct task_struct *tsk)
1258{
1259 struct blk_plug *plug = tsk->plug;
1260
1261 if (plug)
1262 blk_flush_plug_list(plug, false);
1263}
1264
1265static inline void blk_schedule_flush_plug(struct task_struct *tsk)
1266{
1267 struct blk_plug *plug = tsk->plug;
1268
1269 if (plug)
1270 blk_flush_plug_list(plug, true);
1271}
1272
1273static inline bool blk_needs_flush_plug(struct task_struct *tsk)
1274{
1275 struct blk_plug *plug = tsk->plug;
1276
1277 return plug &&
1278 (!list_empty(&plug->mq_list) ||
1279 !list_empty(&plug->cb_list));
1280}
1281
1282int blkdev_issue_flush(struct block_device *bdev);
1283long nr_blockdev_pages(void);
1284#else /* CONFIG_BLOCK */
1285struct blk_plug {
1286};
1287
1288static inline void blk_start_plug(struct blk_plug *plug)
1289{
1290}
1291
1292static inline void blk_finish_plug(struct blk_plug *plug)
1293{
1294}
1295
1296static inline void blk_flush_plug(struct task_struct *task)
1297{
1298}
1299
1300static inline void blk_schedule_flush_plug(struct task_struct *task)
1301{
1302}
1303
1304
1305static inline bool blk_needs_flush_plug(struct task_struct *tsk)
1306{
1307 return false;
1308}
1309
1310static inline int blkdev_issue_flush(struct block_device *bdev)
1311{
1312 return 0;
1313}
1314
1315static inline long nr_blockdev_pages(void)
1316{
1317 return 0;
1318}
1319#endif /* CONFIG_BLOCK */
1320
1321extern void blk_io_schedule(void);
1322
1323extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector,
1324 sector_t nr_sects, gfp_t gfp_mask, struct page *page);
1325
1326#define BLKDEV_DISCARD_SECURE (1 << 0) /* issue a secure erase */
1327
1328extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1329 sector_t nr_sects, gfp_t gfp_mask, unsigned long flags);
1330extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1331 sector_t nr_sects, gfp_t gfp_mask, int flags,
1332 struct bio **biop);
1333
1334#define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */
1335#define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */
1336
1337extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1338 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop,
1339 unsigned flags);
1340extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1341 sector_t nr_sects, gfp_t gfp_mask, unsigned flags);
1342
1343static inline int sb_issue_discard(struct super_block *sb, sector_t block,
1344 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags)
1345{
1346 return blkdev_issue_discard(sb->s_bdev,
1347 block << (sb->s_blocksize_bits -
1348 SECTOR_SHIFT),
1349 nr_blocks << (sb->s_blocksize_bits -
1350 SECTOR_SHIFT),
1351 gfp_mask, flags);
1352}
1353static inline int sb_issue_zeroout(struct super_block *sb, sector_t block,
1354 sector_t nr_blocks, gfp_t gfp_mask)
1355{
1356 return blkdev_issue_zeroout(sb->s_bdev,
1357 block << (sb->s_blocksize_bits -
1358 SECTOR_SHIFT),
1359 nr_blocks << (sb->s_blocksize_bits -
1360 SECTOR_SHIFT),
1361 gfp_mask, 0);
1362}
1363
1364extern int blk_verify_command(unsigned char *cmd, fmode_t mode);
1365
1366static inline bool bdev_is_partition(struct block_device *bdev)
1367{
1368 return bdev->bd_partno;
1369}
1370
1371enum blk_default_limits {
1372 BLK_MAX_SEGMENTS = 128,
1373 BLK_SAFE_MAX_SECTORS = 255,
1374 BLK_DEF_MAX_SECTORS = 2560,
1375 BLK_MAX_SEGMENT_SIZE = 65536,
1376 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL,
1377};
1378
1379static inline unsigned long queue_segment_boundary(const struct request_queue *q)
1380{
1381 return q->limits.seg_boundary_mask;
1382}
1383
1384static inline unsigned long queue_virt_boundary(const struct request_queue *q)
1385{
1386 return q->limits.virt_boundary_mask;
1387}
1388
1389static inline unsigned int queue_max_sectors(const struct request_queue *q)
1390{
1391 return q->limits.max_sectors;
1392}
1393
1394static inline unsigned int queue_max_hw_sectors(const struct request_queue *q)
1395{
1396 return q->limits.max_hw_sectors;
1397}
1398
1399static inline unsigned short queue_max_segments(const struct request_queue *q)
1400{
1401 return q->limits.max_segments;
1402}
1403
1404static inline unsigned short queue_max_discard_segments(const struct request_queue *q)
1405{
1406 return q->limits.max_discard_segments;
1407}
1408
1409static inline unsigned int queue_max_segment_size(const struct request_queue *q)
1410{
1411 return q->limits.max_segment_size;
1412}
1413
1414static inline unsigned int queue_max_zone_append_sectors(const struct request_queue *q)
1415{
1416
1417 const struct queue_limits *l = &q->limits;
1418
1419 return min(l->max_zone_append_sectors, l->max_sectors);
1420}
1421
1422static inline unsigned queue_logical_block_size(const struct request_queue *q)
1423{
1424 int retval = 512;
1425
1426 if (q && q->limits.logical_block_size)
1427 retval = q->limits.logical_block_size;
1428
1429 return retval;
1430}
1431
1432static inline unsigned int bdev_logical_block_size(struct block_device *bdev)
1433{
1434 return queue_logical_block_size(bdev_get_queue(bdev));
1435}
1436
1437static inline unsigned int queue_physical_block_size(const struct request_queue *q)
1438{
1439 return q->limits.physical_block_size;
1440}
1441
1442static inline unsigned int bdev_physical_block_size(struct block_device *bdev)
1443{
1444 return queue_physical_block_size(bdev_get_queue(bdev));
1445}
1446
1447static inline unsigned int queue_io_min(const struct request_queue *q)
1448{
1449 return q->limits.io_min;
1450}
1451
1452static inline int bdev_io_min(struct block_device *bdev)
1453{
1454 return queue_io_min(bdev_get_queue(bdev));
1455}
1456
1457static inline unsigned int queue_io_opt(const struct request_queue *q)
1458{
1459 return q->limits.io_opt;
1460}
1461
1462static inline int bdev_io_opt(struct block_device *bdev)
1463{
1464 return queue_io_opt(bdev_get_queue(bdev));
1465}
1466
1467static inline unsigned int
1468queue_zone_write_granularity(const struct request_queue *q)
1469{
1470 return q->limits.zone_write_granularity;
1471}
1472
1473static inline unsigned int
1474bdev_zone_write_granularity(struct block_device *bdev)
1475{
1476 return queue_zone_write_granularity(bdev_get_queue(bdev));
1477}
1478
1479static inline int queue_alignment_offset(const struct request_queue *q)
1480{
1481 if (q->limits.misaligned)
1482 return -1;
1483
1484 return q->limits.alignment_offset;
1485}
1486
1487static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector)
1488{
1489 unsigned int granularity = max(lim->physical_block_size, lim->io_min);
1490 unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT)
1491 << SECTOR_SHIFT;
1492
1493 return (granularity + lim->alignment_offset - alignment) % granularity;
1494}
1495
1496static inline int bdev_alignment_offset(struct block_device *bdev)
1497{
1498 struct request_queue *q = bdev_get_queue(bdev);
1499
1500 if (q->limits.misaligned)
1501 return -1;
1502 if (bdev_is_partition(bdev))
1503 return queue_limit_alignment_offset(&q->limits,
1504 bdev->bd_start_sect);
1505 return q->limits.alignment_offset;
1506}
1507
1508static inline int queue_discard_alignment(const struct request_queue *q)
1509{
1510 if (q->limits.discard_misaligned)
1511 return -1;
1512
1513 return q->limits.discard_alignment;
1514}
1515
1516static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector)
1517{
1518 unsigned int alignment, granularity, offset;
1519
1520 if (!lim->max_discard_sectors)
1521 return 0;
1522
1523 /* Why are these in bytes, not sectors? */
1524 alignment = lim->discard_alignment >> SECTOR_SHIFT;
1525 granularity = lim->discard_granularity >> SECTOR_SHIFT;
1526 if (!granularity)
1527 return 0;
1528
1529 /* Offset of the partition start in 'granularity' sectors */
1530 offset = sector_div(sector, granularity);
1531
1532 /* And why do we do this modulus *again* in blkdev_issue_discard()? */
1533 offset = (granularity + alignment - offset) % granularity;
1534
1535 /* Turn it back into bytes, gaah */
1536 return offset << SECTOR_SHIFT;
1537}
1538
1539static inline int bdev_discard_alignment(struct block_device *bdev)
1540{
1541 struct request_queue *q = bdev_get_queue(bdev);
1542
1543 if (bdev_is_partition(bdev))
1544 return queue_limit_discard_alignment(&q->limits,
1545 bdev->bd_start_sect);
1546 return q->limits.discard_alignment;
1547}
1548
1549static inline unsigned int bdev_write_same(struct block_device *bdev)
1550{
1551 struct request_queue *q = bdev_get_queue(bdev);
1552
1553 if (q)
1554 return q->limits.max_write_same_sectors;
1555
1556 return 0;
1557}
1558
1559static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev)
1560{
1561 struct request_queue *q = bdev_get_queue(bdev);
1562
1563 if (q)
1564 return q->limits.max_write_zeroes_sectors;
1565
1566 return 0;
1567}
1568
1569static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev)
1570{
1571 struct request_queue *q = bdev_get_queue(bdev);
1572
1573 if (q)
1574 return blk_queue_zoned_model(q);
1575
1576 return BLK_ZONED_NONE;
1577}
1578
1579static inline bool bdev_is_zoned(struct block_device *bdev)
1580{
1581 struct request_queue *q = bdev_get_queue(bdev);
1582
1583 if (q)
1584 return blk_queue_is_zoned(q);
1585
1586 return false;
1587}
1588
1589static inline sector_t bdev_zone_sectors(struct block_device *bdev)
1590{
1591 struct request_queue *q = bdev_get_queue(bdev);
1592
1593 if (q)
1594 return blk_queue_zone_sectors(q);
1595 return 0;
1596}
1597
1598static inline unsigned int bdev_max_open_zones(struct block_device *bdev)
1599{
1600 struct request_queue *q = bdev_get_queue(bdev);
1601
1602 if (q)
1603 return queue_max_open_zones(q);
1604 return 0;
1605}
1606
1607static inline unsigned int bdev_max_active_zones(struct block_device *bdev)
1608{
1609 struct request_queue *q = bdev_get_queue(bdev);
1610
1611 if (q)
1612 return queue_max_active_zones(q);
1613 return 0;
1614}
1615
1616static inline int queue_dma_alignment(const struct request_queue *q)
1617{
1618 return q ? q->dma_alignment : 511;
1619}
1620
1621static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr,
1622 unsigned int len)
1623{
1624 unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask;
1625 return !(addr & alignment) && !(len & alignment);
1626}
1627
1628/* assumes size > 256 */
1629static inline unsigned int blksize_bits(unsigned int size)
1630{
1631 unsigned int bits = 8;
1632 do {
1633 bits++;
1634 size >>= 1;
1635 } while (size > 256);
1636 return bits;
1637}
1638
1639static inline unsigned int block_size(struct block_device *bdev)
1640{
1641 return 1 << bdev->bd_inode->i_blkbits;
1642}
1643
1644int kblockd_schedule_work(struct work_struct *work);
1645int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
1646
1647#define MODULE_ALIAS_BLOCKDEV(major,minor) \
1648 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor))
1649#define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \
1650 MODULE_ALIAS("block-major-" __stringify(major) "-*")
1651
1652#if defined(CONFIG_BLK_DEV_INTEGRITY)
1653
1654enum blk_integrity_flags {
1655 BLK_INTEGRITY_VERIFY = 1 << 0,
1656 BLK_INTEGRITY_GENERATE = 1 << 1,
1657 BLK_INTEGRITY_DEVICE_CAPABLE = 1 << 2,
1658 BLK_INTEGRITY_IP_CHECKSUM = 1 << 3,
1659};
1660
1661struct blk_integrity_iter {
1662 void *prot_buf;
1663 void *data_buf;
1664 sector_t seed;
1665 unsigned int data_size;
1666 unsigned short interval;
1667 const char *disk_name;
1668};
1669
1670typedef blk_status_t (integrity_processing_fn) (struct blk_integrity_iter *);
1671typedef void (integrity_prepare_fn) (struct request *);
1672typedef void (integrity_complete_fn) (struct request *, unsigned int);
1673
1674struct blk_integrity_profile {
1675 integrity_processing_fn *generate_fn;
1676 integrity_processing_fn *verify_fn;
1677 integrity_prepare_fn *prepare_fn;
1678 integrity_complete_fn *complete_fn;
1679 const char *name;
1680};
1681
1682extern void blk_integrity_register(struct gendisk *, struct blk_integrity *);
1683extern void blk_integrity_unregister(struct gendisk *);
1684extern int blk_integrity_compare(struct gendisk *, struct gendisk *);
1685extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *,
1686 struct scatterlist *);
1687extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *);
1688
1689static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1690{
1691 struct blk_integrity *bi = &disk->queue->integrity;
1692
1693 if (!bi->profile)
1694 return NULL;
1695
1696 return bi;
1697}
1698
1699static inline
1700struct blk_integrity *bdev_get_integrity(struct block_device *bdev)
1701{
1702 return blk_get_integrity(bdev->bd_disk);
1703}
1704
1705static inline bool
1706blk_integrity_queue_supports_integrity(struct request_queue *q)
1707{
1708 return q->integrity.profile;
1709}
1710
1711static inline bool blk_integrity_rq(struct request *rq)
1712{
1713 return rq->cmd_flags & REQ_INTEGRITY;
1714}
1715
1716static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1717 unsigned int segs)
1718{
1719 q->limits.max_integrity_segments = segs;
1720}
1721
1722static inline unsigned short
1723queue_max_integrity_segments(const struct request_queue *q)
1724{
1725 return q->limits.max_integrity_segments;
1726}
1727
1728/**
1729 * bio_integrity_intervals - Return number of integrity intervals for a bio
1730 * @bi: blk_integrity profile for device
1731 * @sectors: Size of the bio in 512-byte sectors
1732 *
1733 * Description: The block layer calculates everything in 512 byte
1734 * sectors but integrity metadata is done in terms of the data integrity
1735 * interval size of the storage device. Convert the block layer sectors
1736 * to the appropriate number of integrity intervals.
1737 */
1738static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi,
1739 unsigned int sectors)
1740{
1741 return sectors >> (bi->interval_exp - 9);
1742}
1743
1744static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi,
1745 unsigned int sectors)
1746{
1747 return bio_integrity_intervals(bi, sectors) * bi->tuple_size;
1748}
1749
1750/*
1751 * Return the first bvec that contains integrity data. Only drivers that are
1752 * limited to a single integrity segment should use this helper.
1753 */
1754static inline struct bio_vec *rq_integrity_vec(struct request *rq)
1755{
1756 if (WARN_ON_ONCE(queue_max_integrity_segments(rq->q) > 1))
1757 return NULL;
1758 return rq->bio->bi_integrity->bip_vec;
1759}
1760
1761#else /* CONFIG_BLK_DEV_INTEGRITY */
1762
1763struct bio;
1764struct block_device;
1765struct gendisk;
1766struct blk_integrity;
1767
1768static inline int blk_integrity_rq(struct request *rq)
1769{
1770 return 0;
1771}
1772static inline int blk_rq_count_integrity_sg(struct request_queue *q,
1773 struct bio *b)
1774{
1775 return 0;
1776}
1777static inline int blk_rq_map_integrity_sg(struct request_queue *q,
1778 struct bio *b,
1779 struct scatterlist *s)
1780{
1781 return 0;
1782}
1783static inline struct blk_integrity *bdev_get_integrity(struct block_device *b)
1784{
1785 return NULL;
1786}
1787static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1788{
1789 return NULL;
1790}
1791static inline bool
1792blk_integrity_queue_supports_integrity(struct request_queue *q)
1793{
1794 return false;
1795}
1796static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b)
1797{
1798 return 0;
1799}
1800static inline void blk_integrity_register(struct gendisk *d,
1801 struct blk_integrity *b)
1802{
1803}
1804static inline void blk_integrity_unregister(struct gendisk *d)
1805{
1806}
1807static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1808 unsigned int segs)
1809{
1810}
1811static inline unsigned short queue_max_integrity_segments(const struct request_queue *q)
1812{
1813 return 0;
1814}
1815
1816static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi,
1817 unsigned int sectors)
1818{
1819 return 0;
1820}
1821
1822static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi,
1823 unsigned int sectors)
1824{
1825 return 0;
1826}
1827
1828static inline struct bio_vec *rq_integrity_vec(struct request *rq)
1829{
1830 return NULL;
1831}
1832
1833#endif /* CONFIG_BLK_DEV_INTEGRITY */
1834
1835#ifdef CONFIG_BLK_INLINE_ENCRYPTION
1836
1837bool blk_ksm_register(struct blk_keyslot_manager *ksm, struct request_queue *q);
1838
1839void blk_ksm_unregister(struct request_queue *q);
1840
1841#else /* CONFIG_BLK_INLINE_ENCRYPTION */
1842
1843static inline bool blk_ksm_register(struct blk_keyslot_manager *ksm,
1844 struct request_queue *q)
1845{
1846 return true;
1847}
1848
1849static inline void blk_ksm_unregister(struct request_queue *q) { }
1850
1851#endif /* CONFIG_BLK_INLINE_ENCRYPTION */
1852
1853
1854struct block_device_operations {
1855 blk_qc_t (*submit_bio) (struct bio *bio);
1856 int (*open) (struct block_device *, fmode_t);
1857 void (*release) (struct gendisk *, fmode_t);
1858 int (*rw_page)(struct block_device *, sector_t, struct page *, unsigned int);
1859 int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1860 int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1861 unsigned int (*check_events) (struct gendisk *disk,
1862 unsigned int clearing);
1863 void (*unlock_native_capacity) (struct gendisk *);
1864 int (*getgeo)(struct block_device *, struct hd_geometry *);
1865 int (*set_read_only)(struct block_device *bdev, bool ro);
1866 /* this callback is with swap_lock and sometimes page table lock held */
1867 void (*swap_slot_free_notify) (struct block_device *, unsigned long);
1868 int (*report_zones)(struct gendisk *, sector_t sector,
1869 unsigned int nr_zones, report_zones_cb cb, void *data);
1870 char *(*devnode)(struct gendisk *disk, umode_t *mode);
1871 struct module *owner;
1872 const struct pr_ops *pr_ops;
1873};
1874
1875#ifdef CONFIG_COMPAT
1876extern int blkdev_compat_ptr_ioctl(struct block_device *, fmode_t,
1877 unsigned int, unsigned long);
1878#else
1879#define blkdev_compat_ptr_ioctl NULL
1880#endif
1881
1882extern int bdev_read_page(struct block_device *, sector_t, struct page *);
1883extern int bdev_write_page(struct block_device *, sector_t, struct page *,
1884 struct writeback_control *);
1885
1886#ifdef CONFIG_BLK_DEV_ZONED
1887bool blk_req_needs_zone_write_lock(struct request *rq);
1888bool blk_req_zone_write_trylock(struct request *rq);
1889void __blk_req_zone_write_lock(struct request *rq);
1890void __blk_req_zone_write_unlock(struct request *rq);
1891
1892static inline void blk_req_zone_write_lock(struct request *rq)
1893{
1894 if (blk_req_needs_zone_write_lock(rq))
1895 __blk_req_zone_write_lock(rq);
1896}
1897
1898static inline void blk_req_zone_write_unlock(struct request *rq)
1899{
1900 if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED)
1901 __blk_req_zone_write_unlock(rq);
1902}
1903
1904static inline bool blk_req_zone_is_write_locked(struct request *rq)
1905{
1906 return rq->q->seq_zones_wlock &&
1907 test_bit(blk_rq_zone_no(rq), rq->q->seq_zones_wlock);
1908}
1909
1910static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
1911{
1912 if (!blk_req_needs_zone_write_lock(rq))
1913 return true;
1914 return !blk_req_zone_is_write_locked(rq);
1915}
1916#else
1917static inline bool blk_req_needs_zone_write_lock(struct request *rq)
1918{
1919 return false;
1920}
1921
1922static inline void blk_req_zone_write_lock(struct request *rq)
1923{
1924}
1925
1926static inline void blk_req_zone_write_unlock(struct request *rq)
1927{
1928}
1929static inline bool blk_req_zone_is_write_locked(struct request *rq)
1930{
1931 return false;
1932}
1933
1934static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
1935{
1936 return true;
1937}
1938#endif /* CONFIG_BLK_DEV_ZONED */
1939
1940static inline void blk_wake_io_task(struct task_struct *waiter)
1941{
1942 /*
1943 * If we're polling, the task itself is doing the completions. For
1944 * that case, we don't need to signal a wakeup, it's enough to just
1945 * mark us as RUNNING.
1946 */
1947 if (waiter == current)
1948 __set_current_state(TASK_RUNNING);
1949 else
1950 wake_up_process(waiter);
1951}
1952
1953unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors,
1954 unsigned int op);
1955void disk_end_io_acct(struct gendisk *disk, unsigned int op,
1956 unsigned long start_time);
1957
1958unsigned long bio_start_io_acct(struct bio *bio);
1959void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1960 struct block_device *orig_bdev);
1961
1962/**
1963 * bio_end_io_acct - end I/O accounting for bio based drivers
1964 * @bio: bio to end account for
1965 * @start: start time returned by bio_start_io_acct()
1966 */
1967static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time)
1968{
1969 return bio_end_io_acct_remapped(bio, start_time, bio->bi_bdev);
1970}
1971
1972int bdev_read_only(struct block_device *bdev);
1973int set_blocksize(struct block_device *bdev, int size);
1974
1975const char *bdevname(struct block_device *bdev, char *buffer);
1976int lookup_bdev(const char *pathname, dev_t *dev);
1977
1978void blkdev_show(struct seq_file *seqf, off_t offset);
1979
1980#define BDEVNAME_SIZE 32 /* Largest string for a blockdev identifier */
1981#define BDEVT_SIZE 10 /* Largest string for MAJ:MIN for blkdev */
1982#ifdef CONFIG_BLOCK
1983#define BLKDEV_MAJOR_MAX 512
1984#else
1985#define BLKDEV_MAJOR_MAX 0
1986#endif
1987
1988struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1989 void *holder);
1990struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder);
1991int bd_prepare_to_claim(struct block_device *bdev, void *holder);
1992void bd_abort_claiming(struct block_device *bdev, void *holder);
1993void blkdev_put(struct block_device *bdev, fmode_t mode);
1994
1995/* just for blk-cgroup, don't use elsewhere */
1996struct block_device *blkdev_get_no_open(dev_t dev);
1997void blkdev_put_no_open(struct block_device *bdev);
1998
1999struct block_device *bdev_alloc(struct gendisk *disk, u8 partno);
2000void bdev_add(struct block_device *bdev, dev_t dev);
2001struct block_device *I_BDEV(struct inode *inode);
2002struct block_device *bdgrab(struct block_device *bdev);
2003void bdput(struct block_device *);
2004int truncate_bdev_range(struct block_device *bdev, fmode_t mode, loff_t lstart,
2005 loff_t lend);
2006
2007#ifdef CONFIG_BLOCK
2008void invalidate_bdev(struct block_device *bdev);
2009int sync_blockdev(struct block_device *bdev);
2010#else
2011static inline void invalidate_bdev(struct block_device *bdev)
2012{
2013}
2014static inline int sync_blockdev(struct block_device *bdev)
2015{
2016 return 0;
2017}
2018#endif
2019int fsync_bdev(struct block_device *bdev);
2020
2021int freeze_bdev(struct block_device *bdev);
2022int thaw_bdev(struct block_device *bdev);
2023
2024#endif /* _LINUX_BLKDEV_H */