Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2/*
3 * Performance events:
4 *
5 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
6 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
7 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
8 *
9 * Data type definitions, declarations, prototypes.
10 *
11 * Started by: Thomas Gleixner and Ingo Molnar
12 *
13 * For licencing details see kernel-base/COPYING
14 */
15#ifndef _UAPI_LINUX_PERF_EVENT_H
16#define _UAPI_LINUX_PERF_EVENT_H
17
18#include <linux/types.h>
19#include <linux/ioctl.h>
20#include <asm/byteorder.h>
21
22/*
23 * User-space ABI bits:
24 */
25
26/*
27 * attr.type
28 */
29enum perf_type_id {
30 PERF_TYPE_HARDWARE = 0,
31 PERF_TYPE_SOFTWARE = 1,
32 PERF_TYPE_TRACEPOINT = 2,
33 PERF_TYPE_HW_CACHE = 3,
34 PERF_TYPE_RAW = 4,
35 PERF_TYPE_BREAKPOINT = 5,
36
37 PERF_TYPE_MAX, /* non-ABI */
38};
39
40/*
41 * Generalized performance event event_id types, used by the
42 * attr.event_id parameter of the sys_perf_event_open()
43 * syscall:
44 */
45enum perf_hw_id {
46 /*
47 * Common hardware events, generalized by the kernel:
48 */
49 PERF_COUNT_HW_CPU_CYCLES = 0,
50 PERF_COUNT_HW_INSTRUCTIONS = 1,
51 PERF_COUNT_HW_CACHE_REFERENCES = 2,
52 PERF_COUNT_HW_CACHE_MISSES = 3,
53 PERF_COUNT_HW_BRANCH_INSTRUCTIONS = 4,
54 PERF_COUNT_HW_BRANCH_MISSES = 5,
55 PERF_COUNT_HW_BUS_CYCLES = 6,
56 PERF_COUNT_HW_STALLED_CYCLES_FRONTEND = 7,
57 PERF_COUNT_HW_STALLED_CYCLES_BACKEND = 8,
58 PERF_COUNT_HW_REF_CPU_CYCLES = 9,
59
60 PERF_COUNT_HW_MAX, /* non-ABI */
61};
62
63/*
64 * Generalized hardware cache events:
65 *
66 * { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x
67 * { read, write, prefetch } x
68 * { accesses, misses }
69 */
70enum perf_hw_cache_id {
71 PERF_COUNT_HW_CACHE_L1D = 0,
72 PERF_COUNT_HW_CACHE_L1I = 1,
73 PERF_COUNT_HW_CACHE_LL = 2,
74 PERF_COUNT_HW_CACHE_DTLB = 3,
75 PERF_COUNT_HW_CACHE_ITLB = 4,
76 PERF_COUNT_HW_CACHE_BPU = 5,
77 PERF_COUNT_HW_CACHE_NODE = 6,
78
79 PERF_COUNT_HW_CACHE_MAX, /* non-ABI */
80};
81
82enum perf_hw_cache_op_id {
83 PERF_COUNT_HW_CACHE_OP_READ = 0,
84 PERF_COUNT_HW_CACHE_OP_WRITE = 1,
85 PERF_COUNT_HW_CACHE_OP_PREFETCH = 2,
86
87 PERF_COUNT_HW_CACHE_OP_MAX, /* non-ABI */
88};
89
90enum perf_hw_cache_op_result_id {
91 PERF_COUNT_HW_CACHE_RESULT_ACCESS = 0,
92 PERF_COUNT_HW_CACHE_RESULT_MISS = 1,
93
94 PERF_COUNT_HW_CACHE_RESULT_MAX, /* non-ABI */
95};
96
97/*
98 * Special "software" events provided by the kernel, even if the hardware
99 * does not support performance events. These events measure various
100 * physical and sw events of the kernel (and allow the profiling of them as
101 * well):
102 */
103enum perf_sw_ids {
104 PERF_COUNT_SW_CPU_CLOCK = 0,
105 PERF_COUNT_SW_TASK_CLOCK = 1,
106 PERF_COUNT_SW_PAGE_FAULTS = 2,
107 PERF_COUNT_SW_CONTEXT_SWITCHES = 3,
108 PERF_COUNT_SW_CPU_MIGRATIONS = 4,
109 PERF_COUNT_SW_PAGE_FAULTS_MIN = 5,
110 PERF_COUNT_SW_PAGE_FAULTS_MAJ = 6,
111 PERF_COUNT_SW_ALIGNMENT_FAULTS = 7,
112 PERF_COUNT_SW_EMULATION_FAULTS = 8,
113 PERF_COUNT_SW_DUMMY = 9,
114 PERF_COUNT_SW_BPF_OUTPUT = 10,
115
116 PERF_COUNT_SW_MAX, /* non-ABI */
117};
118
119/*
120 * Bits that can be set in attr.sample_type to request information
121 * in the overflow packets.
122 */
123enum perf_event_sample_format {
124 PERF_SAMPLE_IP = 1U << 0,
125 PERF_SAMPLE_TID = 1U << 1,
126 PERF_SAMPLE_TIME = 1U << 2,
127 PERF_SAMPLE_ADDR = 1U << 3,
128 PERF_SAMPLE_READ = 1U << 4,
129 PERF_SAMPLE_CALLCHAIN = 1U << 5,
130 PERF_SAMPLE_ID = 1U << 6,
131 PERF_SAMPLE_CPU = 1U << 7,
132 PERF_SAMPLE_PERIOD = 1U << 8,
133 PERF_SAMPLE_STREAM_ID = 1U << 9,
134 PERF_SAMPLE_RAW = 1U << 10,
135 PERF_SAMPLE_BRANCH_STACK = 1U << 11,
136 PERF_SAMPLE_REGS_USER = 1U << 12,
137 PERF_SAMPLE_STACK_USER = 1U << 13,
138 PERF_SAMPLE_WEIGHT = 1U << 14,
139 PERF_SAMPLE_DATA_SRC = 1U << 15,
140 PERF_SAMPLE_IDENTIFIER = 1U << 16,
141 PERF_SAMPLE_TRANSACTION = 1U << 17,
142 PERF_SAMPLE_REGS_INTR = 1U << 18,
143 PERF_SAMPLE_PHYS_ADDR = 1U << 19,
144 PERF_SAMPLE_AUX = 1U << 20,
145 PERF_SAMPLE_CGROUP = 1U << 21,
146 PERF_SAMPLE_DATA_PAGE_SIZE = 1U << 22,
147 PERF_SAMPLE_CODE_PAGE_SIZE = 1U << 23,
148 PERF_SAMPLE_WEIGHT_STRUCT = 1U << 24,
149
150 PERF_SAMPLE_MAX = 1U << 25, /* non-ABI */
151
152 __PERF_SAMPLE_CALLCHAIN_EARLY = 1ULL << 63, /* non-ABI; internal use */
153};
154
155#define PERF_SAMPLE_WEIGHT_TYPE (PERF_SAMPLE_WEIGHT | PERF_SAMPLE_WEIGHT_STRUCT)
156/*
157 * values to program into branch_sample_type when PERF_SAMPLE_BRANCH is set
158 *
159 * If the user does not pass priv level information via branch_sample_type,
160 * the kernel uses the event's priv level. Branch and event priv levels do
161 * not have to match. Branch priv level is checked for permissions.
162 *
163 * The branch types can be combined, however BRANCH_ANY covers all types
164 * of branches and therefore it supersedes all the other types.
165 */
166enum perf_branch_sample_type_shift {
167 PERF_SAMPLE_BRANCH_USER_SHIFT = 0, /* user branches */
168 PERF_SAMPLE_BRANCH_KERNEL_SHIFT = 1, /* kernel branches */
169 PERF_SAMPLE_BRANCH_HV_SHIFT = 2, /* hypervisor branches */
170
171 PERF_SAMPLE_BRANCH_ANY_SHIFT = 3, /* any branch types */
172 PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT = 4, /* any call branch */
173 PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT = 5, /* any return branch */
174 PERF_SAMPLE_BRANCH_IND_CALL_SHIFT = 6, /* indirect calls */
175 PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT = 7, /* transaction aborts */
176 PERF_SAMPLE_BRANCH_IN_TX_SHIFT = 8, /* in transaction */
177 PERF_SAMPLE_BRANCH_NO_TX_SHIFT = 9, /* not in transaction */
178 PERF_SAMPLE_BRANCH_COND_SHIFT = 10, /* conditional branches */
179
180 PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT = 11, /* call/ret stack */
181 PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT = 12, /* indirect jumps */
182 PERF_SAMPLE_BRANCH_CALL_SHIFT = 13, /* direct call */
183
184 PERF_SAMPLE_BRANCH_NO_FLAGS_SHIFT = 14, /* no flags */
185 PERF_SAMPLE_BRANCH_NO_CYCLES_SHIFT = 15, /* no cycles */
186
187 PERF_SAMPLE_BRANCH_TYPE_SAVE_SHIFT = 16, /* save branch type */
188
189 PERF_SAMPLE_BRANCH_HW_INDEX_SHIFT = 17, /* save low level index of raw branch records */
190
191 PERF_SAMPLE_BRANCH_MAX_SHIFT /* non-ABI */
192};
193
194enum perf_branch_sample_type {
195 PERF_SAMPLE_BRANCH_USER = 1U << PERF_SAMPLE_BRANCH_USER_SHIFT,
196 PERF_SAMPLE_BRANCH_KERNEL = 1U << PERF_SAMPLE_BRANCH_KERNEL_SHIFT,
197 PERF_SAMPLE_BRANCH_HV = 1U << PERF_SAMPLE_BRANCH_HV_SHIFT,
198
199 PERF_SAMPLE_BRANCH_ANY = 1U << PERF_SAMPLE_BRANCH_ANY_SHIFT,
200 PERF_SAMPLE_BRANCH_ANY_CALL = 1U << PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT,
201 PERF_SAMPLE_BRANCH_ANY_RETURN = 1U << PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT,
202 PERF_SAMPLE_BRANCH_IND_CALL = 1U << PERF_SAMPLE_BRANCH_IND_CALL_SHIFT,
203 PERF_SAMPLE_BRANCH_ABORT_TX = 1U << PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT,
204 PERF_SAMPLE_BRANCH_IN_TX = 1U << PERF_SAMPLE_BRANCH_IN_TX_SHIFT,
205 PERF_SAMPLE_BRANCH_NO_TX = 1U << PERF_SAMPLE_BRANCH_NO_TX_SHIFT,
206 PERF_SAMPLE_BRANCH_COND = 1U << PERF_SAMPLE_BRANCH_COND_SHIFT,
207
208 PERF_SAMPLE_BRANCH_CALL_STACK = 1U << PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT,
209 PERF_SAMPLE_BRANCH_IND_JUMP = 1U << PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT,
210 PERF_SAMPLE_BRANCH_CALL = 1U << PERF_SAMPLE_BRANCH_CALL_SHIFT,
211
212 PERF_SAMPLE_BRANCH_NO_FLAGS = 1U << PERF_SAMPLE_BRANCH_NO_FLAGS_SHIFT,
213 PERF_SAMPLE_BRANCH_NO_CYCLES = 1U << PERF_SAMPLE_BRANCH_NO_CYCLES_SHIFT,
214
215 PERF_SAMPLE_BRANCH_TYPE_SAVE =
216 1U << PERF_SAMPLE_BRANCH_TYPE_SAVE_SHIFT,
217
218 PERF_SAMPLE_BRANCH_HW_INDEX = 1U << PERF_SAMPLE_BRANCH_HW_INDEX_SHIFT,
219
220 PERF_SAMPLE_BRANCH_MAX = 1U << PERF_SAMPLE_BRANCH_MAX_SHIFT,
221};
222
223/*
224 * Common flow change classification
225 */
226enum {
227 PERF_BR_UNKNOWN = 0, /* unknown */
228 PERF_BR_COND = 1, /* conditional */
229 PERF_BR_UNCOND = 2, /* unconditional */
230 PERF_BR_IND = 3, /* indirect */
231 PERF_BR_CALL = 4, /* function call */
232 PERF_BR_IND_CALL = 5, /* indirect function call */
233 PERF_BR_RET = 6, /* function return */
234 PERF_BR_SYSCALL = 7, /* syscall */
235 PERF_BR_SYSRET = 8, /* syscall return */
236 PERF_BR_COND_CALL = 9, /* conditional function call */
237 PERF_BR_COND_RET = 10, /* conditional function return */
238 PERF_BR_MAX,
239};
240
241#define PERF_SAMPLE_BRANCH_PLM_ALL \
242 (PERF_SAMPLE_BRANCH_USER|\
243 PERF_SAMPLE_BRANCH_KERNEL|\
244 PERF_SAMPLE_BRANCH_HV)
245
246/*
247 * Values to determine ABI of the registers dump.
248 */
249enum perf_sample_regs_abi {
250 PERF_SAMPLE_REGS_ABI_NONE = 0,
251 PERF_SAMPLE_REGS_ABI_32 = 1,
252 PERF_SAMPLE_REGS_ABI_64 = 2,
253};
254
255/*
256 * Values for the memory transaction event qualifier, mostly for
257 * abort events. Multiple bits can be set.
258 */
259enum {
260 PERF_TXN_ELISION = (1 << 0), /* From elision */
261 PERF_TXN_TRANSACTION = (1 << 1), /* From transaction */
262 PERF_TXN_SYNC = (1 << 2), /* Instruction is related */
263 PERF_TXN_ASYNC = (1 << 3), /* Instruction not related */
264 PERF_TXN_RETRY = (1 << 4), /* Retry possible */
265 PERF_TXN_CONFLICT = (1 << 5), /* Conflict abort */
266 PERF_TXN_CAPACITY_WRITE = (1 << 6), /* Capacity write abort */
267 PERF_TXN_CAPACITY_READ = (1 << 7), /* Capacity read abort */
268
269 PERF_TXN_MAX = (1 << 8), /* non-ABI */
270
271 /* bits 32..63 are reserved for the abort code */
272
273 PERF_TXN_ABORT_MASK = (0xffffffffULL << 32),
274 PERF_TXN_ABORT_SHIFT = 32,
275};
276
277/*
278 * The format of the data returned by read() on a perf event fd,
279 * as specified by attr.read_format:
280 *
281 * struct read_format {
282 * { u64 value;
283 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
284 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
285 * { u64 id; } && PERF_FORMAT_ID
286 * } && !PERF_FORMAT_GROUP
287 *
288 * { u64 nr;
289 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
290 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
291 * { u64 value;
292 * { u64 id; } && PERF_FORMAT_ID
293 * } cntr[nr];
294 * } && PERF_FORMAT_GROUP
295 * };
296 */
297enum perf_event_read_format {
298 PERF_FORMAT_TOTAL_TIME_ENABLED = 1U << 0,
299 PERF_FORMAT_TOTAL_TIME_RUNNING = 1U << 1,
300 PERF_FORMAT_ID = 1U << 2,
301 PERF_FORMAT_GROUP = 1U << 3,
302
303 PERF_FORMAT_MAX = 1U << 4, /* non-ABI */
304};
305
306#define PERF_ATTR_SIZE_VER0 64 /* sizeof first published struct */
307#define PERF_ATTR_SIZE_VER1 72 /* add: config2 */
308#define PERF_ATTR_SIZE_VER2 80 /* add: branch_sample_type */
309#define PERF_ATTR_SIZE_VER3 96 /* add: sample_regs_user */
310 /* add: sample_stack_user */
311#define PERF_ATTR_SIZE_VER4 104 /* add: sample_regs_intr */
312#define PERF_ATTR_SIZE_VER5 112 /* add: aux_watermark */
313#define PERF_ATTR_SIZE_VER6 120 /* add: aux_sample_size */
314
315/*
316 * Hardware event_id to monitor via a performance monitoring event:
317 *
318 * @sample_max_stack: Max number of frame pointers in a callchain,
319 * should be < /proc/sys/kernel/perf_event_max_stack
320 */
321struct perf_event_attr {
322
323 /*
324 * Major type: hardware/software/tracepoint/etc.
325 */
326 __u32 type;
327
328 /*
329 * Size of the attr structure, for fwd/bwd compat.
330 */
331 __u32 size;
332
333 /*
334 * Type specific configuration information.
335 */
336 __u64 config;
337
338 union {
339 __u64 sample_period;
340 __u64 sample_freq;
341 };
342
343 __u64 sample_type;
344 __u64 read_format;
345
346 __u64 disabled : 1, /* off by default */
347 inherit : 1, /* children inherit it */
348 pinned : 1, /* must always be on PMU */
349 exclusive : 1, /* only group on PMU */
350 exclude_user : 1, /* don't count user */
351 exclude_kernel : 1, /* ditto kernel */
352 exclude_hv : 1, /* ditto hypervisor */
353 exclude_idle : 1, /* don't count when idle */
354 mmap : 1, /* include mmap data */
355 comm : 1, /* include comm data */
356 freq : 1, /* use freq, not period */
357 inherit_stat : 1, /* per task counts */
358 enable_on_exec : 1, /* next exec enables */
359 task : 1, /* trace fork/exit */
360 watermark : 1, /* wakeup_watermark */
361 /*
362 * precise_ip:
363 *
364 * 0 - SAMPLE_IP can have arbitrary skid
365 * 1 - SAMPLE_IP must have constant skid
366 * 2 - SAMPLE_IP requested to have 0 skid
367 * 3 - SAMPLE_IP must have 0 skid
368 *
369 * See also PERF_RECORD_MISC_EXACT_IP
370 */
371 precise_ip : 2, /* skid constraint */
372 mmap_data : 1, /* non-exec mmap data */
373 sample_id_all : 1, /* sample_type all events */
374
375 exclude_host : 1, /* don't count in host */
376 exclude_guest : 1, /* don't count in guest */
377
378 exclude_callchain_kernel : 1, /* exclude kernel callchains */
379 exclude_callchain_user : 1, /* exclude user callchains */
380 mmap2 : 1, /* include mmap with inode data */
381 comm_exec : 1, /* flag comm events that are due to an exec */
382 use_clockid : 1, /* use @clockid for time fields */
383 context_switch : 1, /* context switch data */
384 write_backward : 1, /* Write ring buffer from end to beginning */
385 namespaces : 1, /* include namespaces data */
386 ksymbol : 1, /* include ksymbol events */
387 bpf_event : 1, /* include bpf events */
388 aux_output : 1, /* generate AUX records instead of events */
389 cgroup : 1, /* include cgroup events */
390 text_poke : 1, /* include text poke events */
391 build_id : 1, /* use build id in mmap2 events */
392 __reserved_1 : 29;
393
394 union {
395 __u32 wakeup_events; /* wakeup every n events */
396 __u32 wakeup_watermark; /* bytes before wakeup */
397 };
398
399 __u32 bp_type;
400 union {
401 __u64 bp_addr;
402 __u64 kprobe_func; /* for perf_kprobe */
403 __u64 uprobe_path; /* for perf_uprobe */
404 __u64 config1; /* extension of config */
405 };
406 union {
407 __u64 bp_len;
408 __u64 kprobe_addr; /* when kprobe_func == NULL */
409 __u64 probe_offset; /* for perf_[k,u]probe */
410 __u64 config2; /* extension of config1 */
411 };
412 __u64 branch_sample_type; /* enum perf_branch_sample_type */
413
414 /*
415 * Defines set of user regs to dump on samples.
416 * See asm/perf_regs.h for details.
417 */
418 __u64 sample_regs_user;
419
420 /*
421 * Defines size of the user stack to dump on samples.
422 */
423 __u32 sample_stack_user;
424
425 __s32 clockid;
426 /*
427 * Defines set of regs to dump for each sample
428 * state captured on:
429 * - precise = 0: PMU interrupt
430 * - precise > 0: sampled instruction
431 *
432 * See asm/perf_regs.h for details.
433 */
434 __u64 sample_regs_intr;
435
436 /*
437 * Wakeup watermark for AUX area
438 */
439 __u32 aux_watermark;
440 __u16 sample_max_stack;
441 __u16 __reserved_2;
442 __u32 aux_sample_size;
443 __u32 __reserved_3;
444};
445
446/*
447 * Structure used by below PERF_EVENT_IOC_QUERY_BPF command
448 * to query bpf programs attached to the same perf tracepoint
449 * as the given perf event.
450 */
451struct perf_event_query_bpf {
452 /*
453 * The below ids array length
454 */
455 __u32 ids_len;
456 /*
457 * Set by the kernel to indicate the number of
458 * available programs
459 */
460 __u32 prog_cnt;
461 /*
462 * User provided buffer to store program ids
463 */
464 __u32 ids[0];
465};
466
467/*
468 * Ioctls that can be done on a perf event fd:
469 */
470#define PERF_EVENT_IOC_ENABLE _IO ('$', 0)
471#define PERF_EVENT_IOC_DISABLE _IO ('$', 1)
472#define PERF_EVENT_IOC_REFRESH _IO ('$', 2)
473#define PERF_EVENT_IOC_RESET _IO ('$', 3)
474#define PERF_EVENT_IOC_PERIOD _IOW('$', 4, __u64)
475#define PERF_EVENT_IOC_SET_OUTPUT _IO ('$', 5)
476#define PERF_EVENT_IOC_SET_FILTER _IOW('$', 6, char *)
477#define PERF_EVENT_IOC_ID _IOR('$', 7, __u64 *)
478#define PERF_EVENT_IOC_SET_BPF _IOW('$', 8, __u32)
479#define PERF_EVENT_IOC_PAUSE_OUTPUT _IOW('$', 9, __u32)
480#define PERF_EVENT_IOC_QUERY_BPF _IOWR('$', 10, struct perf_event_query_bpf *)
481#define PERF_EVENT_IOC_MODIFY_ATTRIBUTES _IOW('$', 11, struct perf_event_attr *)
482
483enum perf_event_ioc_flags {
484 PERF_IOC_FLAG_GROUP = 1U << 0,
485};
486
487/*
488 * Structure of the page that can be mapped via mmap
489 */
490struct perf_event_mmap_page {
491 __u32 version; /* version number of this structure */
492 __u32 compat_version; /* lowest version this is compat with */
493
494 /*
495 * Bits needed to read the hw events in user-space.
496 *
497 * u32 seq, time_mult, time_shift, index, width;
498 * u64 count, enabled, running;
499 * u64 cyc, time_offset;
500 * s64 pmc = 0;
501 *
502 * do {
503 * seq = pc->lock;
504 * barrier()
505 *
506 * enabled = pc->time_enabled;
507 * running = pc->time_running;
508 *
509 * if (pc->cap_usr_time && enabled != running) {
510 * cyc = rdtsc();
511 * time_offset = pc->time_offset;
512 * time_mult = pc->time_mult;
513 * time_shift = pc->time_shift;
514 * }
515 *
516 * index = pc->index;
517 * count = pc->offset;
518 * if (pc->cap_user_rdpmc && index) {
519 * width = pc->pmc_width;
520 * pmc = rdpmc(index - 1);
521 * }
522 *
523 * barrier();
524 * } while (pc->lock != seq);
525 *
526 * NOTE: for obvious reason this only works on self-monitoring
527 * processes.
528 */
529 __u32 lock; /* seqlock for synchronization */
530 __u32 index; /* hardware event identifier */
531 __s64 offset; /* add to hardware event value */
532 __u64 time_enabled; /* time event active */
533 __u64 time_running; /* time event on cpu */
534 union {
535 __u64 capabilities;
536 struct {
537 __u64 cap_bit0 : 1, /* Always 0, deprecated, see commit 860f085b74e9 */
538 cap_bit0_is_deprecated : 1, /* Always 1, signals that bit 0 is zero */
539
540 cap_user_rdpmc : 1, /* The RDPMC instruction can be used to read counts */
541 cap_user_time : 1, /* The time_{shift,mult,offset} fields are used */
542 cap_user_time_zero : 1, /* The time_zero field is used */
543 cap_user_time_short : 1, /* the time_{cycle,mask} fields are used */
544 cap_____res : 58;
545 };
546 };
547
548 /*
549 * If cap_user_rdpmc this field provides the bit-width of the value
550 * read using the rdpmc() or equivalent instruction. This can be used
551 * to sign extend the result like:
552 *
553 * pmc <<= 64 - width;
554 * pmc >>= 64 - width; // signed shift right
555 * count += pmc;
556 */
557 __u16 pmc_width;
558
559 /*
560 * If cap_usr_time the below fields can be used to compute the time
561 * delta since time_enabled (in ns) using rdtsc or similar.
562 *
563 * u64 quot, rem;
564 * u64 delta;
565 *
566 * quot = (cyc >> time_shift);
567 * rem = cyc & (((u64)1 << time_shift) - 1);
568 * delta = time_offset + quot * time_mult +
569 * ((rem * time_mult) >> time_shift);
570 *
571 * Where time_offset,time_mult,time_shift and cyc are read in the
572 * seqcount loop described above. This delta can then be added to
573 * enabled and possible running (if index), improving the scaling:
574 *
575 * enabled += delta;
576 * if (index)
577 * running += delta;
578 *
579 * quot = count / running;
580 * rem = count % running;
581 * count = quot * enabled + (rem * enabled) / running;
582 */
583 __u16 time_shift;
584 __u32 time_mult;
585 __u64 time_offset;
586 /*
587 * If cap_usr_time_zero, the hardware clock (e.g. TSC) can be calculated
588 * from sample timestamps.
589 *
590 * time = timestamp - time_zero;
591 * quot = time / time_mult;
592 * rem = time % time_mult;
593 * cyc = (quot << time_shift) + (rem << time_shift) / time_mult;
594 *
595 * And vice versa:
596 *
597 * quot = cyc >> time_shift;
598 * rem = cyc & (((u64)1 << time_shift) - 1);
599 * timestamp = time_zero + quot * time_mult +
600 * ((rem * time_mult) >> time_shift);
601 */
602 __u64 time_zero;
603
604 __u32 size; /* Header size up to __reserved[] fields. */
605 __u32 __reserved_1;
606
607 /*
608 * If cap_usr_time_short, the hardware clock is less than 64bit wide
609 * and we must compute the 'cyc' value, as used by cap_usr_time, as:
610 *
611 * cyc = time_cycles + ((cyc - time_cycles) & time_mask)
612 *
613 * NOTE: this form is explicitly chosen such that cap_usr_time_short
614 * is a correction on top of cap_usr_time, and code that doesn't
615 * know about cap_usr_time_short still works under the assumption
616 * the counter doesn't wrap.
617 */
618 __u64 time_cycles;
619 __u64 time_mask;
620
621 /*
622 * Hole for extension of the self monitor capabilities
623 */
624
625 __u8 __reserved[116*8]; /* align to 1k. */
626
627 /*
628 * Control data for the mmap() data buffer.
629 *
630 * User-space reading the @data_head value should issue an smp_rmb(),
631 * after reading this value.
632 *
633 * When the mapping is PROT_WRITE the @data_tail value should be
634 * written by userspace to reflect the last read data, after issueing
635 * an smp_mb() to separate the data read from the ->data_tail store.
636 * In this case the kernel will not over-write unread data.
637 *
638 * See perf_output_put_handle() for the data ordering.
639 *
640 * data_{offset,size} indicate the location and size of the perf record
641 * buffer within the mmapped area.
642 */
643 __u64 data_head; /* head in the data section */
644 __u64 data_tail; /* user-space written tail */
645 __u64 data_offset; /* where the buffer starts */
646 __u64 data_size; /* data buffer size */
647
648 /*
649 * AUX area is defined by aux_{offset,size} fields that should be set
650 * by the userspace, so that
651 *
652 * aux_offset >= data_offset + data_size
653 *
654 * prior to mmap()ing it. Size of the mmap()ed area should be aux_size.
655 *
656 * Ring buffer pointers aux_{head,tail} have the same semantics as
657 * data_{head,tail} and same ordering rules apply.
658 */
659 __u64 aux_head;
660 __u64 aux_tail;
661 __u64 aux_offset;
662 __u64 aux_size;
663};
664
665/*
666 * The current state of perf_event_header::misc bits usage:
667 * ('|' used bit, '-' unused bit)
668 *
669 * 012 CDEF
670 * |||---------||||
671 *
672 * Where:
673 * 0-2 CPUMODE_MASK
674 *
675 * C PROC_MAP_PARSE_TIMEOUT
676 * D MMAP_DATA / COMM_EXEC / FORK_EXEC / SWITCH_OUT
677 * E MMAP_BUILD_ID / EXACT_IP / SCHED_OUT_PREEMPT
678 * F (reserved)
679 */
680
681#define PERF_RECORD_MISC_CPUMODE_MASK (7 << 0)
682#define PERF_RECORD_MISC_CPUMODE_UNKNOWN (0 << 0)
683#define PERF_RECORD_MISC_KERNEL (1 << 0)
684#define PERF_RECORD_MISC_USER (2 << 0)
685#define PERF_RECORD_MISC_HYPERVISOR (3 << 0)
686#define PERF_RECORD_MISC_GUEST_KERNEL (4 << 0)
687#define PERF_RECORD_MISC_GUEST_USER (5 << 0)
688
689/*
690 * Indicates that /proc/PID/maps parsing are truncated by time out.
691 */
692#define PERF_RECORD_MISC_PROC_MAP_PARSE_TIMEOUT (1 << 12)
693/*
694 * Following PERF_RECORD_MISC_* are used on different
695 * events, so can reuse the same bit position:
696 *
697 * PERF_RECORD_MISC_MMAP_DATA - PERF_RECORD_MMAP* events
698 * PERF_RECORD_MISC_COMM_EXEC - PERF_RECORD_COMM event
699 * PERF_RECORD_MISC_FORK_EXEC - PERF_RECORD_FORK event (perf internal)
700 * PERF_RECORD_MISC_SWITCH_OUT - PERF_RECORD_SWITCH* events
701 */
702#define PERF_RECORD_MISC_MMAP_DATA (1 << 13)
703#define PERF_RECORD_MISC_COMM_EXEC (1 << 13)
704#define PERF_RECORD_MISC_FORK_EXEC (1 << 13)
705#define PERF_RECORD_MISC_SWITCH_OUT (1 << 13)
706/*
707 * These PERF_RECORD_MISC_* flags below are safely reused
708 * for the following events:
709 *
710 * PERF_RECORD_MISC_EXACT_IP - PERF_RECORD_SAMPLE of precise events
711 * PERF_RECORD_MISC_SWITCH_OUT_PREEMPT - PERF_RECORD_SWITCH* events
712 * PERF_RECORD_MISC_MMAP_BUILD_ID - PERF_RECORD_MMAP2 event
713 *
714 *
715 * PERF_RECORD_MISC_EXACT_IP:
716 * Indicates that the content of PERF_SAMPLE_IP points to
717 * the actual instruction that triggered the event. See also
718 * perf_event_attr::precise_ip.
719 *
720 * PERF_RECORD_MISC_SWITCH_OUT_PREEMPT:
721 * Indicates that thread was preempted in TASK_RUNNING state.
722 *
723 * PERF_RECORD_MISC_MMAP_BUILD_ID:
724 * Indicates that mmap2 event carries build id data.
725 */
726#define PERF_RECORD_MISC_EXACT_IP (1 << 14)
727#define PERF_RECORD_MISC_SWITCH_OUT_PREEMPT (1 << 14)
728#define PERF_RECORD_MISC_MMAP_BUILD_ID (1 << 14)
729/*
730 * Reserve the last bit to indicate some extended misc field
731 */
732#define PERF_RECORD_MISC_EXT_RESERVED (1 << 15)
733
734struct perf_event_header {
735 __u32 type;
736 __u16 misc;
737 __u16 size;
738};
739
740struct perf_ns_link_info {
741 __u64 dev;
742 __u64 ino;
743};
744
745enum {
746 NET_NS_INDEX = 0,
747 UTS_NS_INDEX = 1,
748 IPC_NS_INDEX = 2,
749 PID_NS_INDEX = 3,
750 USER_NS_INDEX = 4,
751 MNT_NS_INDEX = 5,
752 CGROUP_NS_INDEX = 6,
753
754 NR_NAMESPACES, /* number of available namespaces */
755};
756
757enum perf_event_type {
758
759 /*
760 * If perf_event_attr.sample_id_all is set then all event types will
761 * have the sample_type selected fields related to where/when
762 * (identity) an event took place (TID, TIME, ID, STREAM_ID, CPU,
763 * IDENTIFIER) described in PERF_RECORD_SAMPLE below, it will be stashed
764 * just after the perf_event_header and the fields already present for
765 * the existing fields, i.e. at the end of the payload. That way a newer
766 * perf.data file will be supported by older perf tools, with these new
767 * optional fields being ignored.
768 *
769 * struct sample_id {
770 * { u32 pid, tid; } && PERF_SAMPLE_TID
771 * { u64 time; } && PERF_SAMPLE_TIME
772 * { u64 id; } && PERF_SAMPLE_ID
773 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID
774 * { u32 cpu, res; } && PERF_SAMPLE_CPU
775 * { u64 id; } && PERF_SAMPLE_IDENTIFIER
776 * } && perf_event_attr::sample_id_all
777 *
778 * Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID. The
779 * advantage of PERF_SAMPLE_IDENTIFIER is that its position is fixed
780 * relative to header.size.
781 */
782
783 /*
784 * The MMAP events record the PROT_EXEC mappings so that we can
785 * correlate userspace IPs to code. They have the following structure:
786 *
787 * struct {
788 * struct perf_event_header header;
789 *
790 * u32 pid, tid;
791 * u64 addr;
792 * u64 len;
793 * u64 pgoff;
794 * char filename[];
795 * struct sample_id sample_id;
796 * };
797 */
798 PERF_RECORD_MMAP = 1,
799
800 /*
801 * struct {
802 * struct perf_event_header header;
803 * u64 id;
804 * u64 lost;
805 * struct sample_id sample_id;
806 * };
807 */
808 PERF_RECORD_LOST = 2,
809
810 /*
811 * struct {
812 * struct perf_event_header header;
813 *
814 * u32 pid, tid;
815 * char comm[];
816 * struct sample_id sample_id;
817 * };
818 */
819 PERF_RECORD_COMM = 3,
820
821 /*
822 * struct {
823 * struct perf_event_header header;
824 * u32 pid, ppid;
825 * u32 tid, ptid;
826 * u64 time;
827 * struct sample_id sample_id;
828 * };
829 */
830 PERF_RECORD_EXIT = 4,
831
832 /*
833 * struct {
834 * struct perf_event_header header;
835 * u64 time;
836 * u64 id;
837 * u64 stream_id;
838 * struct sample_id sample_id;
839 * };
840 */
841 PERF_RECORD_THROTTLE = 5,
842 PERF_RECORD_UNTHROTTLE = 6,
843
844 /*
845 * struct {
846 * struct perf_event_header header;
847 * u32 pid, ppid;
848 * u32 tid, ptid;
849 * u64 time;
850 * struct sample_id sample_id;
851 * };
852 */
853 PERF_RECORD_FORK = 7,
854
855 /*
856 * struct {
857 * struct perf_event_header header;
858 * u32 pid, tid;
859 *
860 * struct read_format values;
861 * struct sample_id sample_id;
862 * };
863 */
864 PERF_RECORD_READ = 8,
865
866 /*
867 * struct {
868 * struct perf_event_header header;
869 *
870 * #
871 * # Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID.
872 * # The advantage of PERF_SAMPLE_IDENTIFIER is that its position
873 * # is fixed relative to header.
874 * #
875 *
876 * { u64 id; } && PERF_SAMPLE_IDENTIFIER
877 * { u64 ip; } && PERF_SAMPLE_IP
878 * { u32 pid, tid; } && PERF_SAMPLE_TID
879 * { u64 time; } && PERF_SAMPLE_TIME
880 * { u64 addr; } && PERF_SAMPLE_ADDR
881 * { u64 id; } && PERF_SAMPLE_ID
882 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID
883 * { u32 cpu, res; } && PERF_SAMPLE_CPU
884 * { u64 period; } && PERF_SAMPLE_PERIOD
885 *
886 * { struct read_format values; } && PERF_SAMPLE_READ
887 *
888 * { u64 nr,
889 * u64 ips[nr]; } && PERF_SAMPLE_CALLCHAIN
890 *
891 * #
892 * # The RAW record below is opaque data wrt the ABI
893 * #
894 * # That is, the ABI doesn't make any promises wrt to
895 * # the stability of its content, it may vary depending
896 * # on event, hardware, kernel version and phase of
897 * # the moon.
898 * #
899 * # In other words, PERF_SAMPLE_RAW contents are not an ABI.
900 * #
901 *
902 * { u32 size;
903 * char data[size];}&& PERF_SAMPLE_RAW
904 *
905 * { u64 nr;
906 * { u64 hw_idx; } && PERF_SAMPLE_BRANCH_HW_INDEX
907 * { u64 from, to, flags } lbr[nr];
908 * } && PERF_SAMPLE_BRANCH_STACK
909 *
910 * { u64 abi; # enum perf_sample_regs_abi
911 * u64 regs[weight(mask)]; } && PERF_SAMPLE_REGS_USER
912 *
913 * { u64 size;
914 * char data[size];
915 * u64 dyn_size; } && PERF_SAMPLE_STACK_USER
916 *
917 * { union perf_sample_weight
918 * {
919 * u64 full; && PERF_SAMPLE_WEIGHT
920 * #if defined(__LITTLE_ENDIAN_BITFIELD)
921 * struct {
922 * u32 var1_dw;
923 * u16 var2_w;
924 * u16 var3_w;
925 * } && PERF_SAMPLE_WEIGHT_STRUCT
926 * #elif defined(__BIG_ENDIAN_BITFIELD)
927 * struct {
928 * u16 var3_w;
929 * u16 var2_w;
930 * u32 var1_dw;
931 * } && PERF_SAMPLE_WEIGHT_STRUCT
932 * #endif
933 * }
934 * }
935 * { u64 data_src; } && PERF_SAMPLE_DATA_SRC
936 * { u64 transaction; } && PERF_SAMPLE_TRANSACTION
937 * { u64 abi; # enum perf_sample_regs_abi
938 * u64 regs[weight(mask)]; } && PERF_SAMPLE_REGS_INTR
939 * { u64 phys_addr;} && PERF_SAMPLE_PHYS_ADDR
940 * { u64 size;
941 * char data[size]; } && PERF_SAMPLE_AUX
942 * { u64 data_page_size;} && PERF_SAMPLE_DATA_PAGE_SIZE
943 * { u64 code_page_size;} && PERF_SAMPLE_CODE_PAGE_SIZE
944 * };
945 */
946 PERF_RECORD_SAMPLE = 9,
947
948 /*
949 * The MMAP2 records are an augmented version of MMAP, they add
950 * maj, min, ino numbers to be used to uniquely identify each mapping
951 *
952 * struct {
953 * struct perf_event_header header;
954 *
955 * u32 pid, tid;
956 * u64 addr;
957 * u64 len;
958 * u64 pgoff;
959 * union {
960 * struct {
961 * u32 maj;
962 * u32 min;
963 * u64 ino;
964 * u64 ino_generation;
965 * };
966 * struct {
967 * u8 build_id_size;
968 * u8 __reserved_1;
969 * u16 __reserved_2;
970 * u8 build_id[20];
971 * };
972 * };
973 * u32 prot, flags;
974 * char filename[];
975 * struct sample_id sample_id;
976 * };
977 */
978 PERF_RECORD_MMAP2 = 10,
979
980 /*
981 * Records that new data landed in the AUX buffer part.
982 *
983 * struct {
984 * struct perf_event_header header;
985 *
986 * u64 aux_offset;
987 * u64 aux_size;
988 * u64 flags;
989 * struct sample_id sample_id;
990 * };
991 */
992 PERF_RECORD_AUX = 11,
993
994 /*
995 * Indicates that instruction trace has started
996 *
997 * struct {
998 * struct perf_event_header header;
999 * u32 pid;
1000 * u32 tid;
1001 * struct sample_id sample_id;
1002 * };
1003 */
1004 PERF_RECORD_ITRACE_START = 12,
1005
1006 /*
1007 * Records the dropped/lost sample number.
1008 *
1009 * struct {
1010 * struct perf_event_header header;
1011 *
1012 * u64 lost;
1013 * struct sample_id sample_id;
1014 * };
1015 */
1016 PERF_RECORD_LOST_SAMPLES = 13,
1017
1018 /*
1019 * Records a context switch in or out (flagged by
1020 * PERF_RECORD_MISC_SWITCH_OUT). See also
1021 * PERF_RECORD_SWITCH_CPU_WIDE.
1022 *
1023 * struct {
1024 * struct perf_event_header header;
1025 * struct sample_id sample_id;
1026 * };
1027 */
1028 PERF_RECORD_SWITCH = 14,
1029
1030 /*
1031 * CPU-wide version of PERF_RECORD_SWITCH with next_prev_pid and
1032 * next_prev_tid that are the next (switching out) or previous
1033 * (switching in) pid/tid.
1034 *
1035 * struct {
1036 * struct perf_event_header header;
1037 * u32 next_prev_pid;
1038 * u32 next_prev_tid;
1039 * struct sample_id sample_id;
1040 * };
1041 */
1042 PERF_RECORD_SWITCH_CPU_WIDE = 15,
1043
1044 /*
1045 * struct {
1046 * struct perf_event_header header;
1047 * u32 pid;
1048 * u32 tid;
1049 * u64 nr_namespaces;
1050 * { u64 dev, inode; } [nr_namespaces];
1051 * struct sample_id sample_id;
1052 * };
1053 */
1054 PERF_RECORD_NAMESPACES = 16,
1055
1056 /*
1057 * Record ksymbol register/unregister events:
1058 *
1059 * struct {
1060 * struct perf_event_header header;
1061 * u64 addr;
1062 * u32 len;
1063 * u16 ksym_type;
1064 * u16 flags;
1065 * char name[];
1066 * struct sample_id sample_id;
1067 * };
1068 */
1069 PERF_RECORD_KSYMBOL = 17,
1070
1071 /*
1072 * Record bpf events:
1073 * enum perf_bpf_event_type {
1074 * PERF_BPF_EVENT_UNKNOWN = 0,
1075 * PERF_BPF_EVENT_PROG_LOAD = 1,
1076 * PERF_BPF_EVENT_PROG_UNLOAD = 2,
1077 * };
1078 *
1079 * struct {
1080 * struct perf_event_header header;
1081 * u16 type;
1082 * u16 flags;
1083 * u32 id;
1084 * u8 tag[BPF_TAG_SIZE];
1085 * struct sample_id sample_id;
1086 * };
1087 */
1088 PERF_RECORD_BPF_EVENT = 18,
1089
1090 /*
1091 * struct {
1092 * struct perf_event_header header;
1093 * u64 id;
1094 * char path[];
1095 * struct sample_id sample_id;
1096 * };
1097 */
1098 PERF_RECORD_CGROUP = 19,
1099
1100 /*
1101 * Records changes to kernel text i.e. self-modified code. 'old_len' is
1102 * the number of old bytes, 'new_len' is the number of new bytes. Either
1103 * 'old_len' or 'new_len' may be zero to indicate, for example, the
1104 * addition or removal of a trampoline. 'bytes' contains the old bytes
1105 * followed immediately by the new bytes.
1106 *
1107 * struct {
1108 * struct perf_event_header header;
1109 * u64 addr;
1110 * u16 old_len;
1111 * u16 new_len;
1112 * u8 bytes[];
1113 * struct sample_id sample_id;
1114 * };
1115 */
1116 PERF_RECORD_TEXT_POKE = 20,
1117
1118 PERF_RECORD_MAX, /* non-ABI */
1119};
1120
1121enum perf_record_ksymbol_type {
1122 PERF_RECORD_KSYMBOL_TYPE_UNKNOWN = 0,
1123 PERF_RECORD_KSYMBOL_TYPE_BPF = 1,
1124 /*
1125 * Out of line code such as kprobe-replaced instructions or optimized
1126 * kprobes or ftrace trampolines.
1127 */
1128 PERF_RECORD_KSYMBOL_TYPE_OOL = 2,
1129 PERF_RECORD_KSYMBOL_TYPE_MAX /* non-ABI */
1130};
1131
1132#define PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER (1 << 0)
1133
1134enum perf_bpf_event_type {
1135 PERF_BPF_EVENT_UNKNOWN = 0,
1136 PERF_BPF_EVENT_PROG_LOAD = 1,
1137 PERF_BPF_EVENT_PROG_UNLOAD = 2,
1138 PERF_BPF_EVENT_MAX, /* non-ABI */
1139};
1140
1141#define PERF_MAX_STACK_DEPTH 127
1142#define PERF_MAX_CONTEXTS_PER_STACK 8
1143
1144enum perf_callchain_context {
1145 PERF_CONTEXT_HV = (__u64)-32,
1146 PERF_CONTEXT_KERNEL = (__u64)-128,
1147 PERF_CONTEXT_USER = (__u64)-512,
1148
1149 PERF_CONTEXT_GUEST = (__u64)-2048,
1150 PERF_CONTEXT_GUEST_KERNEL = (__u64)-2176,
1151 PERF_CONTEXT_GUEST_USER = (__u64)-2560,
1152
1153 PERF_CONTEXT_MAX = (__u64)-4095,
1154};
1155
1156/**
1157 * PERF_RECORD_AUX::flags bits
1158 */
1159#define PERF_AUX_FLAG_TRUNCATED 0x01 /* record was truncated to fit */
1160#define PERF_AUX_FLAG_OVERWRITE 0x02 /* snapshot from overwrite mode */
1161#define PERF_AUX_FLAG_PARTIAL 0x04 /* record contains gaps */
1162#define PERF_AUX_FLAG_COLLISION 0x08 /* sample collided with another */
1163
1164#define PERF_FLAG_FD_NO_GROUP (1UL << 0)
1165#define PERF_FLAG_FD_OUTPUT (1UL << 1)
1166#define PERF_FLAG_PID_CGROUP (1UL << 2) /* pid=cgroup id, per-cpu mode only */
1167#define PERF_FLAG_FD_CLOEXEC (1UL << 3) /* O_CLOEXEC */
1168
1169#if defined(__LITTLE_ENDIAN_BITFIELD)
1170union perf_mem_data_src {
1171 __u64 val;
1172 struct {
1173 __u64 mem_op:5, /* type of opcode */
1174 mem_lvl:14, /* memory hierarchy level */
1175 mem_snoop:5, /* snoop mode */
1176 mem_lock:2, /* lock instr */
1177 mem_dtlb:7, /* tlb access */
1178 mem_lvl_num:4, /* memory hierarchy level number */
1179 mem_remote:1, /* remote */
1180 mem_snoopx:2, /* snoop mode, ext */
1181 mem_blk:3, /* access blocked */
1182 mem_rsvd:21;
1183 };
1184};
1185#elif defined(__BIG_ENDIAN_BITFIELD)
1186union perf_mem_data_src {
1187 __u64 val;
1188 struct {
1189 __u64 mem_rsvd:21,
1190 mem_blk:3, /* access blocked */
1191 mem_snoopx:2, /* snoop mode, ext */
1192 mem_remote:1, /* remote */
1193 mem_lvl_num:4, /* memory hierarchy level number */
1194 mem_dtlb:7, /* tlb access */
1195 mem_lock:2, /* lock instr */
1196 mem_snoop:5, /* snoop mode */
1197 mem_lvl:14, /* memory hierarchy level */
1198 mem_op:5; /* type of opcode */
1199 };
1200};
1201#else
1202#error "Unknown endianness"
1203#endif
1204
1205/* type of opcode (load/store/prefetch,code) */
1206#define PERF_MEM_OP_NA 0x01 /* not available */
1207#define PERF_MEM_OP_LOAD 0x02 /* load instruction */
1208#define PERF_MEM_OP_STORE 0x04 /* store instruction */
1209#define PERF_MEM_OP_PFETCH 0x08 /* prefetch */
1210#define PERF_MEM_OP_EXEC 0x10 /* code (execution) */
1211#define PERF_MEM_OP_SHIFT 0
1212
1213/* memory hierarchy (memory level, hit or miss) */
1214#define PERF_MEM_LVL_NA 0x01 /* not available */
1215#define PERF_MEM_LVL_HIT 0x02 /* hit level */
1216#define PERF_MEM_LVL_MISS 0x04 /* miss level */
1217#define PERF_MEM_LVL_L1 0x08 /* L1 */
1218#define PERF_MEM_LVL_LFB 0x10 /* Line Fill Buffer */
1219#define PERF_MEM_LVL_L2 0x20 /* L2 */
1220#define PERF_MEM_LVL_L3 0x40 /* L3 */
1221#define PERF_MEM_LVL_LOC_RAM 0x80 /* Local DRAM */
1222#define PERF_MEM_LVL_REM_RAM1 0x100 /* Remote DRAM (1 hop) */
1223#define PERF_MEM_LVL_REM_RAM2 0x200 /* Remote DRAM (2 hops) */
1224#define PERF_MEM_LVL_REM_CCE1 0x400 /* Remote Cache (1 hop) */
1225#define PERF_MEM_LVL_REM_CCE2 0x800 /* Remote Cache (2 hops) */
1226#define PERF_MEM_LVL_IO 0x1000 /* I/O memory */
1227#define PERF_MEM_LVL_UNC 0x2000 /* Uncached memory */
1228#define PERF_MEM_LVL_SHIFT 5
1229
1230#define PERF_MEM_REMOTE_REMOTE 0x01 /* Remote */
1231#define PERF_MEM_REMOTE_SHIFT 37
1232
1233#define PERF_MEM_LVLNUM_L1 0x01 /* L1 */
1234#define PERF_MEM_LVLNUM_L2 0x02 /* L2 */
1235#define PERF_MEM_LVLNUM_L3 0x03 /* L3 */
1236#define PERF_MEM_LVLNUM_L4 0x04 /* L4 */
1237/* 5-0xa available */
1238#define PERF_MEM_LVLNUM_ANY_CACHE 0x0b /* Any cache */
1239#define PERF_MEM_LVLNUM_LFB 0x0c /* LFB */
1240#define PERF_MEM_LVLNUM_RAM 0x0d /* RAM */
1241#define PERF_MEM_LVLNUM_PMEM 0x0e /* PMEM */
1242#define PERF_MEM_LVLNUM_NA 0x0f /* N/A */
1243
1244#define PERF_MEM_LVLNUM_SHIFT 33
1245
1246/* snoop mode */
1247#define PERF_MEM_SNOOP_NA 0x01 /* not available */
1248#define PERF_MEM_SNOOP_NONE 0x02 /* no snoop */
1249#define PERF_MEM_SNOOP_HIT 0x04 /* snoop hit */
1250#define PERF_MEM_SNOOP_MISS 0x08 /* snoop miss */
1251#define PERF_MEM_SNOOP_HITM 0x10 /* snoop hit modified */
1252#define PERF_MEM_SNOOP_SHIFT 19
1253
1254#define PERF_MEM_SNOOPX_FWD 0x01 /* forward */
1255/* 1 free */
1256#define PERF_MEM_SNOOPX_SHIFT 38
1257
1258/* locked instruction */
1259#define PERF_MEM_LOCK_NA 0x01 /* not available */
1260#define PERF_MEM_LOCK_LOCKED 0x02 /* locked transaction */
1261#define PERF_MEM_LOCK_SHIFT 24
1262
1263/* TLB access */
1264#define PERF_MEM_TLB_NA 0x01 /* not available */
1265#define PERF_MEM_TLB_HIT 0x02 /* hit level */
1266#define PERF_MEM_TLB_MISS 0x04 /* miss level */
1267#define PERF_MEM_TLB_L1 0x08 /* L1 */
1268#define PERF_MEM_TLB_L2 0x10 /* L2 */
1269#define PERF_MEM_TLB_WK 0x20 /* Hardware Walker*/
1270#define PERF_MEM_TLB_OS 0x40 /* OS fault handler */
1271#define PERF_MEM_TLB_SHIFT 26
1272
1273/* Access blocked */
1274#define PERF_MEM_BLK_NA 0x01 /* not available */
1275#define PERF_MEM_BLK_DATA 0x02 /* data could not be forwarded */
1276#define PERF_MEM_BLK_ADDR 0x04 /* address conflict */
1277#define PERF_MEM_BLK_SHIFT 40
1278
1279#define PERF_MEM_S(a, s) \
1280 (((__u64)PERF_MEM_##a##_##s) << PERF_MEM_##a##_SHIFT)
1281
1282/*
1283 * single taken branch record layout:
1284 *
1285 * from: source instruction (may not always be a branch insn)
1286 * to: branch target
1287 * mispred: branch target was mispredicted
1288 * predicted: branch target was predicted
1289 *
1290 * support for mispred, predicted is optional. In case it
1291 * is not supported mispred = predicted = 0.
1292 *
1293 * in_tx: running in a hardware transaction
1294 * abort: aborting a hardware transaction
1295 * cycles: cycles from last branch (or 0 if not supported)
1296 * type: branch type
1297 */
1298struct perf_branch_entry {
1299 __u64 from;
1300 __u64 to;
1301 __u64 mispred:1, /* target mispredicted */
1302 predicted:1,/* target predicted */
1303 in_tx:1, /* in transaction */
1304 abort:1, /* transaction abort */
1305 cycles:16, /* cycle count to last branch */
1306 type:4, /* branch type */
1307 reserved:40;
1308};
1309
1310union perf_sample_weight {
1311 __u64 full;
1312#if defined(__LITTLE_ENDIAN_BITFIELD)
1313 struct {
1314 __u32 var1_dw;
1315 __u16 var2_w;
1316 __u16 var3_w;
1317 };
1318#elif defined(__BIG_ENDIAN_BITFIELD)
1319 struct {
1320 __u16 var3_w;
1321 __u16 var2_w;
1322 __u32 var1_dw;
1323 };
1324#else
1325#error "Unknown endianness"
1326#endif
1327};
1328
1329#endif /* _UAPI_LINUX_PERF_EVENT_H */