Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* SCTP kernel implementation
3 * (C) Copyright IBM Corp. 2001, 2004
4 * Copyright (c) 1999-2000 Cisco, Inc.
5 * Copyright (c) 1999-2001 Motorola, Inc.
6 * Copyright (c) 2001-2003 Intel Corp.
7 * Copyright (c) 2001-2002 Nokia, Inc.
8 * Copyright (c) 2001 La Monte H.P. Yarroll
9 *
10 * This file is part of the SCTP kernel implementation
11 *
12 * These functions interface with the sockets layer to implement the
13 * SCTP Extensions for the Sockets API.
14 *
15 * Note that the descriptions from the specification are USER level
16 * functions--this file is the functions which populate the struct proto
17 * for SCTP which is the BOTTOM of the sockets interface.
18 *
19 * Please send any bug reports or fixes you make to the
20 * email address(es):
21 * lksctp developers <linux-sctp@vger.kernel.org>
22 *
23 * Written or modified by:
24 * La Monte H.P. Yarroll <piggy@acm.org>
25 * Narasimha Budihal <narsi@refcode.org>
26 * Karl Knutson <karl@athena.chicago.il.us>
27 * Jon Grimm <jgrimm@us.ibm.com>
28 * Xingang Guo <xingang.guo@intel.com>
29 * Daisy Chang <daisyc@us.ibm.com>
30 * Sridhar Samudrala <samudrala@us.ibm.com>
31 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com>
32 * Ardelle Fan <ardelle.fan@intel.com>
33 * Ryan Layer <rmlayer@us.ibm.com>
34 * Anup Pemmaiah <pemmaiah@cc.usu.edu>
35 * Kevin Gao <kevin.gao@intel.com>
36 */
37
38#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
39
40#include <crypto/hash.h>
41#include <linux/types.h>
42#include <linux/kernel.h>
43#include <linux/wait.h>
44#include <linux/time.h>
45#include <linux/sched/signal.h>
46#include <linux/ip.h>
47#include <linux/capability.h>
48#include <linux/fcntl.h>
49#include <linux/poll.h>
50#include <linux/init.h>
51#include <linux/slab.h>
52#include <linux/file.h>
53#include <linux/compat.h>
54#include <linux/rhashtable.h>
55
56#include <net/ip.h>
57#include <net/icmp.h>
58#include <net/route.h>
59#include <net/ipv6.h>
60#include <net/inet_common.h>
61#include <net/busy_poll.h>
62
63#include <linux/socket.h> /* for sa_family_t */
64#include <linux/export.h>
65#include <net/sock.h>
66#include <net/sctp/sctp.h>
67#include <net/sctp/sm.h>
68#include <net/sctp/stream_sched.h>
69
70/* Forward declarations for internal helper functions. */
71static bool sctp_writeable(struct sock *sk);
72static void sctp_wfree(struct sk_buff *skb);
73static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
74 size_t msg_len);
75static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
76static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
77static int sctp_wait_for_accept(struct sock *sk, long timeo);
78static void sctp_wait_for_close(struct sock *sk, long timeo);
79static void sctp_destruct_sock(struct sock *sk);
80static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
81 union sctp_addr *addr, int len);
82static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
83static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
84static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
85static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
86static int sctp_send_asconf(struct sctp_association *asoc,
87 struct sctp_chunk *chunk);
88static int sctp_do_bind(struct sock *, union sctp_addr *, int);
89static int sctp_autobind(struct sock *sk);
90static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
91 struct sctp_association *assoc,
92 enum sctp_socket_type type);
93
94static unsigned long sctp_memory_pressure;
95static atomic_long_t sctp_memory_allocated;
96struct percpu_counter sctp_sockets_allocated;
97
98static void sctp_enter_memory_pressure(struct sock *sk)
99{
100 sctp_memory_pressure = 1;
101}
102
103
104/* Get the sndbuf space available at the time on the association. */
105static inline int sctp_wspace(struct sctp_association *asoc)
106{
107 struct sock *sk = asoc->base.sk;
108
109 return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used
110 : sk_stream_wspace(sk);
111}
112
113/* Increment the used sndbuf space count of the corresponding association by
114 * the size of the outgoing data chunk.
115 * Also, set the skb destructor for sndbuf accounting later.
116 *
117 * Since it is always 1-1 between chunk and skb, and also a new skb is always
118 * allocated for chunk bundling in sctp_packet_transmit(), we can use the
119 * destructor in the data chunk skb for the purpose of the sndbuf space
120 * tracking.
121 */
122static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
123{
124 struct sctp_association *asoc = chunk->asoc;
125 struct sock *sk = asoc->base.sk;
126
127 /* The sndbuf space is tracked per association. */
128 sctp_association_hold(asoc);
129
130 if (chunk->shkey)
131 sctp_auth_shkey_hold(chunk->shkey);
132
133 skb_set_owner_w(chunk->skb, sk);
134
135 chunk->skb->destructor = sctp_wfree;
136 /* Save the chunk pointer in skb for sctp_wfree to use later. */
137 skb_shinfo(chunk->skb)->destructor_arg = chunk;
138
139 refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
140 asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk);
141 sk->sk_wmem_queued += chunk->skb->truesize + sizeof(struct sctp_chunk);
142 sk_mem_charge(sk, chunk->skb->truesize);
143}
144
145static void sctp_clear_owner_w(struct sctp_chunk *chunk)
146{
147 skb_orphan(chunk->skb);
148}
149
150#define traverse_and_process() \
151do { \
152 msg = chunk->msg; \
153 if (msg == prev_msg) \
154 continue; \
155 list_for_each_entry(c, &msg->chunks, frag_list) { \
156 if ((clear && asoc->base.sk == c->skb->sk) || \
157 (!clear && asoc->base.sk != c->skb->sk)) \
158 cb(c); \
159 } \
160 prev_msg = msg; \
161} while (0)
162
163static void sctp_for_each_tx_datachunk(struct sctp_association *asoc,
164 bool clear,
165 void (*cb)(struct sctp_chunk *))
166
167{
168 struct sctp_datamsg *msg, *prev_msg = NULL;
169 struct sctp_outq *q = &asoc->outqueue;
170 struct sctp_chunk *chunk, *c;
171 struct sctp_transport *t;
172
173 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports)
174 list_for_each_entry(chunk, &t->transmitted, transmitted_list)
175 traverse_and_process();
176
177 list_for_each_entry(chunk, &q->retransmit, transmitted_list)
178 traverse_and_process();
179
180 list_for_each_entry(chunk, &q->sacked, transmitted_list)
181 traverse_and_process();
182
183 list_for_each_entry(chunk, &q->abandoned, transmitted_list)
184 traverse_and_process();
185
186 list_for_each_entry(chunk, &q->out_chunk_list, list)
187 traverse_and_process();
188}
189
190static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk,
191 void (*cb)(struct sk_buff *, struct sock *))
192
193{
194 struct sk_buff *skb, *tmp;
195
196 sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp)
197 cb(skb, sk);
198
199 sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp)
200 cb(skb, sk);
201
202 sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp)
203 cb(skb, sk);
204}
205
206/* Verify that this is a valid address. */
207static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
208 int len)
209{
210 struct sctp_af *af;
211
212 /* Verify basic sockaddr. */
213 af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
214 if (!af)
215 return -EINVAL;
216
217 /* Is this a valid SCTP address? */
218 if (!af->addr_valid(addr, sctp_sk(sk), NULL))
219 return -EINVAL;
220
221 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
222 return -EINVAL;
223
224 return 0;
225}
226
227/* Look up the association by its id. If this is not a UDP-style
228 * socket, the ID field is always ignored.
229 */
230struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
231{
232 struct sctp_association *asoc = NULL;
233
234 /* If this is not a UDP-style socket, assoc id should be ignored. */
235 if (!sctp_style(sk, UDP)) {
236 /* Return NULL if the socket state is not ESTABLISHED. It
237 * could be a TCP-style listening socket or a socket which
238 * hasn't yet called connect() to establish an association.
239 */
240 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING))
241 return NULL;
242
243 /* Get the first and the only association from the list. */
244 if (!list_empty(&sctp_sk(sk)->ep->asocs))
245 asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
246 struct sctp_association, asocs);
247 return asoc;
248 }
249
250 /* Otherwise this is a UDP-style socket. */
251 if (id <= SCTP_ALL_ASSOC)
252 return NULL;
253
254 spin_lock_bh(&sctp_assocs_id_lock);
255 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
256 if (asoc && (asoc->base.sk != sk || asoc->base.dead))
257 asoc = NULL;
258 spin_unlock_bh(&sctp_assocs_id_lock);
259
260 return asoc;
261}
262
263/* Look up the transport from an address and an assoc id. If both address and
264 * id are specified, the associations matching the address and the id should be
265 * the same.
266 */
267static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
268 struct sockaddr_storage *addr,
269 sctp_assoc_t id)
270{
271 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
272 struct sctp_af *af = sctp_get_af_specific(addr->ss_family);
273 union sctp_addr *laddr = (union sctp_addr *)addr;
274 struct sctp_transport *transport;
275
276 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len))
277 return NULL;
278
279 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
280 laddr,
281 &transport);
282
283 if (!addr_asoc)
284 return NULL;
285
286 id_asoc = sctp_id2assoc(sk, id);
287 if (id_asoc && (id_asoc != addr_asoc))
288 return NULL;
289
290 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
291 (union sctp_addr *)addr);
292
293 return transport;
294}
295
296/* API 3.1.2 bind() - UDP Style Syntax
297 * The syntax of bind() is,
298 *
299 * ret = bind(int sd, struct sockaddr *addr, int addrlen);
300 *
301 * sd - the socket descriptor returned by socket().
302 * addr - the address structure (struct sockaddr_in or struct
303 * sockaddr_in6 [RFC 2553]),
304 * addr_len - the size of the address structure.
305 */
306static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
307{
308 int retval = 0;
309
310 lock_sock(sk);
311
312 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
313 addr, addr_len);
314
315 /* Disallow binding twice. */
316 if (!sctp_sk(sk)->ep->base.bind_addr.port)
317 retval = sctp_do_bind(sk, (union sctp_addr *)addr,
318 addr_len);
319 else
320 retval = -EINVAL;
321
322 release_sock(sk);
323
324 return retval;
325}
326
327static int sctp_get_port_local(struct sock *, union sctp_addr *);
328
329/* Verify this is a valid sockaddr. */
330static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
331 union sctp_addr *addr, int len)
332{
333 struct sctp_af *af;
334
335 /* Check minimum size. */
336 if (len < sizeof (struct sockaddr))
337 return NULL;
338
339 if (!opt->pf->af_supported(addr->sa.sa_family, opt))
340 return NULL;
341
342 if (addr->sa.sa_family == AF_INET6) {
343 if (len < SIN6_LEN_RFC2133)
344 return NULL;
345 /* V4 mapped address are really of AF_INET family */
346 if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) &&
347 !opt->pf->af_supported(AF_INET, opt))
348 return NULL;
349 }
350
351 /* If we get this far, af is valid. */
352 af = sctp_get_af_specific(addr->sa.sa_family);
353
354 if (len < af->sockaddr_len)
355 return NULL;
356
357 return af;
358}
359
360/* Bind a local address either to an endpoint or to an association. */
361static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
362{
363 struct net *net = sock_net(sk);
364 struct sctp_sock *sp = sctp_sk(sk);
365 struct sctp_endpoint *ep = sp->ep;
366 struct sctp_bind_addr *bp = &ep->base.bind_addr;
367 struct sctp_af *af;
368 unsigned short snum;
369 int ret = 0;
370
371 /* Common sockaddr verification. */
372 af = sctp_sockaddr_af(sp, addr, len);
373 if (!af) {
374 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
375 __func__, sk, addr, len);
376 return -EINVAL;
377 }
378
379 snum = ntohs(addr->v4.sin_port);
380
381 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
382 __func__, sk, &addr->sa, bp->port, snum, len);
383
384 /* PF specific bind() address verification. */
385 if (!sp->pf->bind_verify(sp, addr))
386 return -EADDRNOTAVAIL;
387
388 /* We must either be unbound, or bind to the same port.
389 * It's OK to allow 0 ports if we are already bound.
390 * We'll just inhert an already bound port in this case
391 */
392 if (bp->port) {
393 if (!snum)
394 snum = bp->port;
395 else if (snum != bp->port) {
396 pr_debug("%s: new port %d doesn't match existing port "
397 "%d\n", __func__, snum, bp->port);
398 return -EINVAL;
399 }
400 }
401
402 if (snum && inet_port_requires_bind_service(net, snum) &&
403 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
404 return -EACCES;
405
406 /* See if the address matches any of the addresses we may have
407 * already bound before checking against other endpoints.
408 */
409 if (sctp_bind_addr_match(bp, addr, sp))
410 return -EINVAL;
411
412 /* Make sure we are allowed to bind here.
413 * The function sctp_get_port_local() does duplicate address
414 * detection.
415 */
416 addr->v4.sin_port = htons(snum);
417 if (sctp_get_port_local(sk, addr))
418 return -EADDRINUSE;
419
420 /* Refresh ephemeral port. */
421 if (!bp->port)
422 bp->port = inet_sk(sk)->inet_num;
423
424 /* Add the address to the bind address list.
425 * Use GFP_ATOMIC since BHs will be disabled.
426 */
427 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len,
428 SCTP_ADDR_SRC, GFP_ATOMIC);
429
430 if (ret) {
431 sctp_put_port(sk);
432 return ret;
433 }
434 /* Copy back into socket for getsockname() use. */
435 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
436 sp->pf->to_sk_saddr(addr, sk);
437
438 return ret;
439}
440
441 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
442 *
443 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
444 * at any one time. If a sender, after sending an ASCONF chunk, decides
445 * it needs to transfer another ASCONF Chunk, it MUST wait until the
446 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
447 * subsequent ASCONF. Note this restriction binds each side, so at any
448 * time two ASCONF may be in-transit on any given association (one sent
449 * from each endpoint).
450 */
451static int sctp_send_asconf(struct sctp_association *asoc,
452 struct sctp_chunk *chunk)
453{
454 int retval = 0;
455
456 /* If there is an outstanding ASCONF chunk, queue it for later
457 * transmission.
458 */
459 if (asoc->addip_last_asconf) {
460 list_add_tail(&chunk->list, &asoc->addip_chunk_list);
461 goto out;
462 }
463
464 /* Hold the chunk until an ASCONF_ACK is received. */
465 sctp_chunk_hold(chunk);
466 retval = sctp_primitive_ASCONF(asoc->base.net, asoc, chunk);
467 if (retval)
468 sctp_chunk_free(chunk);
469 else
470 asoc->addip_last_asconf = chunk;
471
472out:
473 return retval;
474}
475
476/* Add a list of addresses as bind addresses to local endpoint or
477 * association.
478 *
479 * Basically run through each address specified in the addrs/addrcnt
480 * array/length pair, determine if it is IPv6 or IPv4 and call
481 * sctp_do_bind() on it.
482 *
483 * If any of them fails, then the operation will be reversed and the
484 * ones that were added will be removed.
485 *
486 * Only sctp_setsockopt_bindx() is supposed to call this function.
487 */
488static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
489{
490 int cnt;
491 int retval = 0;
492 void *addr_buf;
493 struct sockaddr *sa_addr;
494 struct sctp_af *af;
495
496 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
497 addrs, addrcnt);
498
499 addr_buf = addrs;
500 for (cnt = 0; cnt < addrcnt; cnt++) {
501 /* The list may contain either IPv4 or IPv6 address;
502 * determine the address length for walking thru the list.
503 */
504 sa_addr = addr_buf;
505 af = sctp_get_af_specific(sa_addr->sa_family);
506 if (!af) {
507 retval = -EINVAL;
508 goto err_bindx_add;
509 }
510
511 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
512 af->sockaddr_len);
513
514 addr_buf += af->sockaddr_len;
515
516err_bindx_add:
517 if (retval < 0) {
518 /* Failed. Cleanup the ones that have been added */
519 if (cnt > 0)
520 sctp_bindx_rem(sk, addrs, cnt);
521 return retval;
522 }
523 }
524
525 return retval;
526}
527
528/* Send an ASCONF chunk with Add IP address parameters to all the peers of the
529 * associations that are part of the endpoint indicating that a list of local
530 * addresses are added to the endpoint.
531 *
532 * If any of the addresses is already in the bind address list of the
533 * association, we do not send the chunk for that association. But it will not
534 * affect other associations.
535 *
536 * Only sctp_setsockopt_bindx() is supposed to call this function.
537 */
538static int sctp_send_asconf_add_ip(struct sock *sk,
539 struct sockaddr *addrs,
540 int addrcnt)
541{
542 struct sctp_sock *sp;
543 struct sctp_endpoint *ep;
544 struct sctp_association *asoc;
545 struct sctp_bind_addr *bp;
546 struct sctp_chunk *chunk;
547 struct sctp_sockaddr_entry *laddr;
548 union sctp_addr *addr;
549 union sctp_addr saveaddr;
550 void *addr_buf;
551 struct sctp_af *af;
552 struct list_head *p;
553 int i;
554 int retval = 0;
555
556 sp = sctp_sk(sk);
557 ep = sp->ep;
558
559 if (!ep->asconf_enable)
560 return retval;
561
562 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
563 __func__, sk, addrs, addrcnt);
564
565 list_for_each_entry(asoc, &ep->asocs, asocs) {
566 if (!asoc->peer.asconf_capable)
567 continue;
568
569 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
570 continue;
571
572 if (!sctp_state(asoc, ESTABLISHED))
573 continue;
574
575 /* Check if any address in the packed array of addresses is
576 * in the bind address list of the association. If so,
577 * do not send the asconf chunk to its peer, but continue with
578 * other associations.
579 */
580 addr_buf = addrs;
581 for (i = 0; i < addrcnt; i++) {
582 addr = addr_buf;
583 af = sctp_get_af_specific(addr->v4.sin_family);
584 if (!af) {
585 retval = -EINVAL;
586 goto out;
587 }
588
589 if (sctp_assoc_lookup_laddr(asoc, addr))
590 break;
591
592 addr_buf += af->sockaddr_len;
593 }
594 if (i < addrcnt)
595 continue;
596
597 /* Use the first valid address in bind addr list of
598 * association as Address Parameter of ASCONF CHUNK.
599 */
600 bp = &asoc->base.bind_addr;
601 p = bp->address_list.next;
602 laddr = list_entry(p, struct sctp_sockaddr_entry, list);
603 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
604 addrcnt, SCTP_PARAM_ADD_IP);
605 if (!chunk) {
606 retval = -ENOMEM;
607 goto out;
608 }
609
610 /* Add the new addresses to the bind address list with
611 * use_as_src set to 0.
612 */
613 addr_buf = addrs;
614 for (i = 0; i < addrcnt; i++) {
615 addr = addr_buf;
616 af = sctp_get_af_specific(addr->v4.sin_family);
617 memcpy(&saveaddr, addr, af->sockaddr_len);
618 retval = sctp_add_bind_addr(bp, &saveaddr,
619 sizeof(saveaddr),
620 SCTP_ADDR_NEW, GFP_ATOMIC);
621 addr_buf += af->sockaddr_len;
622 }
623 if (asoc->src_out_of_asoc_ok) {
624 struct sctp_transport *trans;
625
626 list_for_each_entry(trans,
627 &asoc->peer.transport_addr_list, transports) {
628 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
629 2*asoc->pathmtu, 4380));
630 trans->ssthresh = asoc->peer.i.a_rwnd;
631 trans->rto = asoc->rto_initial;
632 sctp_max_rto(asoc, trans);
633 trans->rtt = trans->srtt = trans->rttvar = 0;
634 /* Clear the source and route cache */
635 sctp_transport_route(trans, NULL,
636 sctp_sk(asoc->base.sk));
637 }
638 }
639 retval = sctp_send_asconf(asoc, chunk);
640 }
641
642out:
643 return retval;
644}
645
646/* Remove a list of addresses from bind addresses list. Do not remove the
647 * last address.
648 *
649 * Basically run through each address specified in the addrs/addrcnt
650 * array/length pair, determine if it is IPv6 or IPv4 and call
651 * sctp_del_bind() on it.
652 *
653 * If any of them fails, then the operation will be reversed and the
654 * ones that were removed will be added back.
655 *
656 * At least one address has to be left; if only one address is
657 * available, the operation will return -EBUSY.
658 *
659 * Only sctp_setsockopt_bindx() is supposed to call this function.
660 */
661static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
662{
663 struct sctp_sock *sp = sctp_sk(sk);
664 struct sctp_endpoint *ep = sp->ep;
665 int cnt;
666 struct sctp_bind_addr *bp = &ep->base.bind_addr;
667 int retval = 0;
668 void *addr_buf;
669 union sctp_addr *sa_addr;
670 struct sctp_af *af;
671
672 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
673 __func__, sk, addrs, addrcnt);
674
675 addr_buf = addrs;
676 for (cnt = 0; cnt < addrcnt; cnt++) {
677 /* If the bind address list is empty or if there is only one
678 * bind address, there is nothing more to be removed (we need
679 * at least one address here).
680 */
681 if (list_empty(&bp->address_list) ||
682 (sctp_list_single_entry(&bp->address_list))) {
683 retval = -EBUSY;
684 goto err_bindx_rem;
685 }
686
687 sa_addr = addr_buf;
688 af = sctp_get_af_specific(sa_addr->sa.sa_family);
689 if (!af) {
690 retval = -EINVAL;
691 goto err_bindx_rem;
692 }
693
694 if (!af->addr_valid(sa_addr, sp, NULL)) {
695 retval = -EADDRNOTAVAIL;
696 goto err_bindx_rem;
697 }
698
699 if (sa_addr->v4.sin_port &&
700 sa_addr->v4.sin_port != htons(bp->port)) {
701 retval = -EINVAL;
702 goto err_bindx_rem;
703 }
704
705 if (!sa_addr->v4.sin_port)
706 sa_addr->v4.sin_port = htons(bp->port);
707
708 /* FIXME - There is probably a need to check if sk->sk_saddr and
709 * sk->sk_rcv_addr are currently set to one of the addresses to
710 * be removed. This is something which needs to be looked into
711 * when we are fixing the outstanding issues with multi-homing
712 * socket routing and failover schemes. Refer to comments in
713 * sctp_do_bind(). -daisy
714 */
715 retval = sctp_del_bind_addr(bp, sa_addr);
716
717 addr_buf += af->sockaddr_len;
718err_bindx_rem:
719 if (retval < 0) {
720 /* Failed. Add the ones that has been removed back */
721 if (cnt > 0)
722 sctp_bindx_add(sk, addrs, cnt);
723 return retval;
724 }
725 }
726
727 return retval;
728}
729
730/* Send an ASCONF chunk with Delete IP address parameters to all the peers of
731 * the associations that are part of the endpoint indicating that a list of
732 * local addresses are removed from the endpoint.
733 *
734 * If any of the addresses is already in the bind address list of the
735 * association, we do not send the chunk for that association. But it will not
736 * affect other associations.
737 *
738 * Only sctp_setsockopt_bindx() is supposed to call this function.
739 */
740static int sctp_send_asconf_del_ip(struct sock *sk,
741 struct sockaddr *addrs,
742 int addrcnt)
743{
744 struct sctp_sock *sp;
745 struct sctp_endpoint *ep;
746 struct sctp_association *asoc;
747 struct sctp_transport *transport;
748 struct sctp_bind_addr *bp;
749 struct sctp_chunk *chunk;
750 union sctp_addr *laddr;
751 void *addr_buf;
752 struct sctp_af *af;
753 struct sctp_sockaddr_entry *saddr;
754 int i;
755 int retval = 0;
756 int stored = 0;
757
758 chunk = NULL;
759 sp = sctp_sk(sk);
760 ep = sp->ep;
761
762 if (!ep->asconf_enable)
763 return retval;
764
765 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
766 __func__, sk, addrs, addrcnt);
767
768 list_for_each_entry(asoc, &ep->asocs, asocs) {
769
770 if (!asoc->peer.asconf_capable)
771 continue;
772
773 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
774 continue;
775
776 if (!sctp_state(asoc, ESTABLISHED))
777 continue;
778
779 /* Check if any address in the packed array of addresses is
780 * not present in the bind address list of the association.
781 * If so, do not send the asconf chunk to its peer, but
782 * continue with other associations.
783 */
784 addr_buf = addrs;
785 for (i = 0; i < addrcnt; i++) {
786 laddr = addr_buf;
787 af = sctp_get_af_specific(laddr->v4.sin_family);
788 if (!af) {
789 retval = -EINVAL;
790 goto out;
791 }
792
793 if (!sctp_assoc_lookup_laddr(asoc, laddr))
794 break;
795
796 addr_buf += af->sockaddr_len;
797 }
798 if (i < addrcnt)
799 continue;
800
801 /* Find one address in the association's bind address list
802 * that is not in the packed array of addresses. This is to
803 * make sure that we do not delete all the addresses in the
804 * association.
805 */
806 bp = &asoc->base.bind_addr;
807 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
808 addrcnt, sp);
809 if ((laddr == NULL) && (addrcnt == 1)) {
810 if (asoc->asconf_addr_del_pending)
811 continue;
812 asoc->asconf_addr_del_pending =
813 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
814 if (asoc->asconf_addr_del_pending == NULL) {
815 retval = -ENOMEM;
816 goto out;
817 }
818 asoc->asconf_addr_del_pending->sa.sa_family =
819 addrs->sa_family;
820 asoc->asconf_addr_del_pending->v4.sin_port =
821 htons(bp->port);
822 if (addrs->sa_family == AF_INET) {
823 struct sockaddr_in *sin;
824
825 sin = (struct sockaddr_in *)addrs;
826 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
827 } else if (addrs->sa_family == AF_INET6) {
828 struct sockaddr_in6 *sin6;
829
830 sin6 = (struct sockaddr_in6 *)addrs;
831 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
832 }
833
834 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
835 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
836 asoc->asconf_addr_del_pending);
837
838 asoc->src_out_of_asoc_ok = 1;
839 stored = 1;
840 goto skip_mkasconf;
841 }
842
843 if (laddr == NULL)
844 return -EINVAL;
845
846 /* We do not need RCU protection throughout this loop
847 * because this is done under a socket lock from the
848 * setsockopt call.
849 */
850 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
851 SCTP_PARAM_DEL_IP);
852 if (!chunk) {
853 retval = -ENOMEM;
854 goto out;
855 }
856
857skip_mkasconf:
858 /* Reset use_as_src flag for the addresses in the bind address
859 * list that are to be deleted.
860 */
861 addr_buf = addrs;
862 for (i = 0; i < addrcnt; i++) {
863 laddr = addr_buf;
864 af = sctp_get_af_specific(laddr->v4.sin_family);
865 list_for_each_entry(saddr, &bp->address_list, list) {
866 if (sctp_cmp_addr_exact(&saddr->a, laddr))
867 saddr->state = SCTP_ADDR_DEL;
868 }
869 addr_buf += af->sockaddr_len;
870 }
871
872 /* Update the route and saddr entries for all the transports
873 * as some of the addresses in the bind address list are
874 * about to be deleted and cannot be used as source addresses.
875 */
876 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
877 transports) {
878 sctp_transport_route(transport, NULL,
879 sctp_sk(asoc->base.sk));
880 }
881
882 if (stored)
883 /* We don't need to transmit ASCONF */
884 continue;
885 retval = sctp_send_asconf(asoc, chunk);
886 }
887out:
888 return retval;
889}
890
891/* set addr events to assocs in the endpoint. ep and addr_wq must be locked */
892int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
893{
894 struct sock *sk = sctp_opt2sk(sp);
895 union sctp_addr *addr;
896 struct sctp_af *af;
897
898 /* It is safe to write port space in caller. */
899 addr = &addrw->a;
900 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
901 af = sctp_get_af_specific(addr->sa.sa_family);
902 if (!af)
903 return -EINVAL;
904 if (sctp_verify_addr(sk, addr, af->sockaddr_len))
905 return -EINVAL;
906
907 if (addrw->state == SCTP_ADDR_NEW)
908 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
909 else
910 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
911}
912
913/* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
914 *
915 * API 8.1
916 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
917 * int flags);
918 *
919 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
920 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
921 * or IPv6 addresses.
922 *
923 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
924 * Section 3.1.2 for this usage.
925 *
926 * addrs is a pointer to an array of one or more socket addresses. Each
927 * address is contained in its appropriate structure (i.e. struct
928 * sockaddr_in or struct sockaddr_in6) the family of the address type
929 * must be used to distinguish the address length (note that this
930 * representation is termed a "packed array" of addresses). The caller
931 * specifies the number of addresses in the array with addrcnt.
932 *
933 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
934 * -1, and sets errno to the appropriate error code.
935 *
936 * For SCTP, the port given in each socket address must be the same, or
937 * sctp_bindx() will fail, setting errno to EINVAL.
938 *
939 * The flags parameter is formed from the bitwise OR of zero or more of
940 * the following currently defined flags:
941 *
942 * SCTP_BINDX_ADD_ADDR
943 *
944 * SCTP_BINDX_REM_ADDR
945 *
946 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
947 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
948 * addresses from the association. The two flags are mutually exclusive;
949 * if both are given, sctp_bindx() will fail with EINVAL. A caller may
950 * not remove all addresses from an association; sctp_bindx() will
951 * reject such an attempt with EINVAL.
952 *
953 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
954 * additional addresses with an endpoint after calling bind(). Or use
955 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
956 * socket is associated with so that no new association accepted will be
957 * associated with those addresses. If the endpoint supports dynamic
958 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
959 * endpoint to send the appropriate message to the peer to change the
960 * peers address lists.
961 *
962 * Adding and removing addresses from a connected association is
963 * optional functionality. Implementations that do not support this
964 * functionality should return EOPNOTSUPP.
965 *
966 * Basically do nothing but copying the addresses from user to kernel
967 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
968 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
969 * from userspace.
970 *
971 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
972 * it.
973 *
974 * sk The sk of the socket
975 * addrs The pointer to the addresses
976 * addrssize Size of the addrs buffer
977 * op Operation to perform (add or remove, see the flags of
978 * sctp_bindx)
979 *
980 * Returns 0 if ok, <0 errno code on error.
981 */
982static int sctp_setsockopt_bindx(struct sock *sk, struct sockaddr *addrs,
983 int addrs_size, int op)
984{
985 int err;
986 int addrcnt = 0;
987 int walk_size = 0;
988 struct sockaddr *sa_addr;
989 void *addr_buf = addrs;
990 struct sctp_af *af;
991
992 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
993 __func__, sk, addr_buf, addrs_size, op);
994
995 if (unlikely(addrs_size <= 0))
996 return -EINVAL;
997
998 /* Walk through the addrs buffer and count the number of addresses. */
999 while (walk_size < addrs_size) {
1000 if (walk_size + sizeof(sa_family_t) > addrs_size)
1001 return -EINVAL;
1002
1003 sa_addr = addr_buf;
1004 af = sctp_get_af_specific(sa_addr->sa_family);
1005
1006 /* If the address family is not supported or if this address
1007 * causes the address buffer to overflow return EINVAL.
1008 */
1009 if (!af || (walk_size + af->sockaddr_len) > addrs_size)
1010 return -EINVAL;
1011 addrcnt++;
1012 addr_buf += af->sockaddr_len;
1013 walk_size += af->sockaddr_len;
1014 }
1015
1016 /* Do the work. */
1017 switch (op) {
1018 case SCTP_BINDX_ADD_ADDR:
1019 /* Allow security module to validate bindx addresses. */
1020 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD,
1021 addrs, addrs_size);
1022 if (err)
1023 return err;
1024 err = sctp_bindx_add(sk, addrs, addrcnt);
1025 if (err)
1026 return err;
1027 return sctp_send_asconf_add_ip(sk, addrs, addrcnt);
1028 case SCTP_BINDX_REM_ADDR:
1029 err = sctp_bindx_rem(sk, addrs, addrcnt);
1030 if (err)
1031 return err;
1032 return sctp_send_asconf_del_ip(sk, addrs, addrcnt);
1033
1034 default:
1035 return -EINVAL;
1036 }
1037}
1038
1039static int sctp_bind_add(struct sock *sk, struct sockaddr *addrs,
1040 int addrlen)
1041{
1042 int err;
1043
1044 lock_sock(sk);
1045 err = sctp_setsockopt_bindx(sk, addrs, addrlen, SCTP_BINDX_ADD_ADDR);
1046 release_sock(sk);
1047 return err;
1048}
1049
1050static int sctp_connect_new_asoc(struct sctp_endpoint *ep,
1051 const union sctp_addr *daddr,
1052 const struct sctp_initmsg *init,
1053 struct sctp_transport **tp)
1054{
1055 struct sctp_association *asoc;
1056 struct sock *sk = ep->base.sk;
1057 struct net *net = sock_net(sk);
1058 enum sctp_scope scope;
1059 int err;
1060
1061 if (sctp_endpoint_is_peeled_off(ep, daddr))
1062 return -EADDRNOTAVAIL;
1063
1064 if (!ep->base.bind_addr.port) {
1065 if (sctp_autobind(sk))
1066 return -EAGAIN;
1067 } else {
1068 if (inet_port_requires_bind_service(net, ep->base.bind_addr.port) &&
1069 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
1070 return -EACCES;
1071 }
1072
1073 scope = sctp_scope(daddr);
1074 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1075 if (!asoc)
1076 return -ENOMEM;
1077
1078 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1079 if (err < 0)
1080 goto free;
1081
1082 *tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN);
1083 if (!*tp) {
1084 err = -ENOMEM;
1085 goto free;
1086 }
1087
1088 if (!init)
1089 return 0;
1090
1091 if (init->sinit_num_ostreams) {
1092 __u16 outcnt = init->sinit_num_ostreams;
1093
1094 asoc->c.sinit_num_ostreams = outcnt;
1095 /* outcnt has been changed, need to re-init stream */
1096 err = sctp_stream_init(&asoc->stream, outcnt, 0, GFP_KERNEL);
1097 if (err)
1098 goto free;
1099 }
1100
1101 if (init->sinit_max_instreams)
1102 asoc->c.sinit_max_instreams = init->sinit_max_instreams;
1103
1104 if (init->sinit_max_attempts)
1105 asoc->max_init_attempts = init->sinit_max_attempts;
1106
1107 if (init->sinit_max_init_timeo)
1108 asoc->max_init_timeo =
1109 msecs_to_jiffies(init->sinit_max_init_timeo);
1110
1111 return 0;
1112free:
1113 sctp_association_free(asoc);
1114 return err;
1115}
1116
1117static int sctp_connect_add_peer(struct sctp_association *asoc,
1118 union sctp_addr *daddr, int addr_len)
1119{
1120 struct sctp_endpoint *ep = asoc->ep;
1121 struct sctp_association *old;
1122 struct sctp_transport *t;
1123 int err;
1124
1125 err = sctp_verify_addr(ep->base.sk, daddr, addr_len);
1126 if (err)
1127 return err;
1128
1129 old = sctp_endpoint_lookup_assoc(ep, daddr, &t);
1130 if (old && old != asoc)
1131 return old->state >= SCTP_STATE_ESTABLISHED ? -EISCONN
1132 : -EALREADY;
1133
1134 if (sctp_endpoint_is_peeled_off(ep, daddr))
1135 return -EADDRNOTAVAIL;
1136
1137 t = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN);
1138 if (!t)
1139 return -ENOMEM;
1140
1141 return 0;
1142}
1143
1144/* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1145 *
1146 * Common routine for handling connect() and sctp_connectx().
1147 * Connect will come in with just a single address.
1148 */
1149static int __sctp_connect(struct sock *sk, struct sockaddr *kaddrs,
1150 int addrs_size, int flags, sctp_assoc_t *assoc_id)
1151{
1152 struct sctp_sock *sp = sctp_sk(sk);
1153 struct sctp_endpoint *ep = sp->ep;
1154 struct sctp_transport *transport;
1155 struct sctp_association *asoc;
1156 void *addr_buf = kaddrs;
1157 union sctp_addr *daddr;
1158 struct sctp_af *af;
1159 int walk_size, err;
1160 long timeo;
1161
1162 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) ||
1163 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)))
1164 return -EISCONN;
1165
1166 daddr = addr_buf;
1167 af = sctp_get_af_specific(daddr->sa.sa_family);
1168 if (!af || af->sockaddr_len > addrs_size)
1169 return -EINVAL;
1170
1171 err = sctp_verify_addr(sk, daddr, af->sockaddr_len);
1172 if (err)
1173 return err;
1174
1175 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
1176 if (asoc)
1177 return asoc->state >= SCTP_STATE_ESTABLISHED ? -EISCONN
1178 : -EALREADY;
1179
1180 err = sctp_connect_new_asoc(ep, daddr, NULL, &transport);
1181 if (err)
1182 return err;
1183 asoc = transport->asoc;
1184
1185 addr_buf += af->sockaddr_len;
1186 walk_size = af->sockaddr_len;
1187 while (walk_size < addrs_size) {
1188 err = -EINVAL;
1189 if (walk_size + sizeof(sa_family_t) > addrs_size)
1190 goto out_free;
1191
1192 daddr = addr_buf;
1193 af = sctp_get_af_specific(daddr->sa.sa_family);
1194 if (!af || af->sockaddr_len + walk_size > addrs_size)
1195 goto out_free;
1196
1197 if (asoc->peer.port != ntohs(daddr->v4.sin_port))
1198 goto out_free;
1199
1200 err = sctp_connect_add_peer(asoc, daddr, af->sockaddr_len);
1201 if (err)
1202 goto out_free;
1203
1204 addr_buf += af->sockaddr_len;
1205 walk_size += af->sockaddr_len;
1206 }
1207
1208 /* In case the user of sctp_connectx() wants an association
1209 * id back, assign one now.
1210 */
1211 if (assoc_id) {
1212 err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1213 if (err < 0)
1214 goto out_free;
1215 }
1216
1217 err = sctp_primitive_ASSOCIATE(sock_net(sk), asoc, NULL);
1218 if (err < 0)
1219 goto out_free;
1220
1221 /* Initialize sk's dport and daddr for getpeername() */
1222 inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1223 sp->pf->to_sk_daddr(daddr, sk);
1224 sk->sk_err = 0;
1225
1226 if (assoc_id)
1227 *assoc_id = asoc->assoc_id;
1228
1229 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK);
1230 return sctp_wait_for_connect(asoc, &timeo);
1231
1232out_free:
1233 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1234 __func__, asoc, kaddrs, err);
1235 sctp_association_free(asoc);
1236 return err;
1237}
1238
1239/* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1240 *
1241 * API 8.9
1242 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1243 * sctp_assoc_t *asoc);
1244 *
1245 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1246 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1247 * or IPv6 addresses.
1248 *
1249 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1250 * Section 3.1.2 for this usage.
1251 *
1252 * addrs is a pointer to an array of one or more socket addresses. Each
1253 * address is contained in its appropriate structure (i.e. struct
1254 * sockaddr_in or struct sockaddr_in6) the family of the address type
1255 * must be used to distengish the address length (note that this
1256 * representation is termed a "packed array" of addresses). The caller
1257 * specifies the number of addresses in the array with addrcnt.
1258 *
1259 * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1260 * the association id of the new association. On failure, sctp_connectx()
1261 * returns -1, and sets errno to the appropriate error code. The assoc_id
1262 * is not touched by the kernel.
1263 *
1264 * For SCTP, the port given in each socket address must be the same, or
1265 * sctp_connectx() will fail, setting errno to EINVAL.
1266 *
1267 * An application can use sctp_connectx to initiate an association with
1268 * an endpoint that is multi-homed. Much like sctp_bindx() this call
1269 * allows a caller to specify multiple addresses at which a peer can be
1270 * reached. The way the SCTP stack uses the list of addresses to set up
1271 * the association is implementation dependent. This function only
1272 * specifies that the stack will try to make use of all the addresses in
1273 * the list when needed.
1274 *
1275 * Note that the list of addresses passed in is only used for setting up
1276 * the association. It does not necessarily equal the set of addresses
1277 * the peer uses for the resulting association. If the caller wants to
1278 * find out the set of peer addresses, it must use sctp_getpaddrs() to
1279 * retrieve them after the association has been set up.
1280 *
1281 * Basically do nothing but copying the addresses from user to kernel
1282 * land and invoking either sctp_connectx(). This is used for tunneling
1283 * the sctp_connectx() request through sctp_setsockopt() from userspace.
1284 *
1285 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1286 * it.
1287 *
1288 * sk The sk of the socket
1289 * addrs The pointer to the addresses
1290 * addrssize Size of the addrs buffer
1291 *
1292 * Returns >=0 if ok, <0 errno code on error.
1293 */
1294static int __sctp_setsockopt_connectx(struct sock *sk, struct sockaddr *kaddrs,
1295 int addrs_size, sctp_assoc_t *assoc_id)
1296{
1297 int err = 0, flags = 0;
1298
1299 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1300 __func__, sk, kaddrs, addrs_size);
1301
1302 /* make sure the 1st addr's sa_family is accessible later */
1303 if (unlikely(addrs_size < sizeof(sa_family_t)))
1304 return -EINVAL;
1305
1306 /* Allow security module to validate connectx addresses. */
1307 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX,
1308 (struct sockaddr *)kaddrs,
1309 addrs_size);
1310 if (err)
1311 return err;
1312
1313 /* in-kernel sockets don't generally have a file allocated to them
1314 * if all they do is call sock_create_kern().
1315 */
1316 if (sk->sk_socket->file)
1317 flags = sk->sk_socket->file->f_flags;
1318
1319 return __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id);
1320}
1321
1322/*
1323 * This is an older interface. It's kept for backward compatibility
1324 * to the option that doesn't provide association id.
1325 */
1326static int sctp_setsockopt_connectx_old(struct sock *sk,
1327 struct sockaddr *kaddrs,
1328 int addrs_size)
1329{
1330 return __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, NULL);
1331}
1332
1333/*
1334 * New interface for the API. The since the API is done with a socket
1335 * option, to make it simple we feed back the association id is as a return
1336 * indication to the call. Error is always negative and association id is
1337 * always positive.
1338 */
1339static int sctp_setsockopt_connectx(struct sock *sk,
1340 struct sockaddr *kaddrs,
1341 int addrs_size)
1342{
1343 sctp_assoc_t assoc_id = 0;
1344 int err = 0;
1345
1346 err = __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, &assoc_id);
1347
1348 if (err)
1349 return err;
1350 else
1351 return assoc_id;
1352}
1353
1354/*
1355 * New (hopefully final) interface for the API.
1356 * We use the sctp_getaddrs_old structure so that use-space library
1357 * can avoid any unnecessary allocations. The only different part
1358 * is that we store the actual length of the address buffer into the
1359 * addrs_num structure member. That way we can re-use the existing
1360 * code.
1361 */
1362#ifdef CONFIG_COMPAT
1363struct compat_sctp_getaddrs_old {
1364 sctp_assoc_t assoc_id;
1365 s32 addr_num;
1366 compat_uptr_t addrs; /* struct sockaddr * */
1367};
1368#endif
1369
1370static int sctp_getsockopt_connectx3(struct sock *sk, int len,
1371 char __user *optval,
1372 int __user *optlen)
1373{
1374 struct sctp_getaddrs_old param;
1375 sctp_assoc_t assoc_id = 0;
1376 struct sockaddr *kaddrs;
1377 int err = 0;
1378
1379#ifdef CONFIG_COMPAT
1380 if (in_compat_syscall()) {
1381 struct compat_sctp_getaddrs_old param32;
1382
1383 if (len < sizeof(param32))
1384 return -EINVAL;
1385 if (copy_from_user(¶m32, optval, sizeof(param32)))
1386 return -EFAULT;
1387
1388 param.assoc_id = param32.assoc_id;
1389 param.addr_num = param32.addr_num;
1390 param.addrs = compat_ptr(param32.addrs);
1391 } else
1392#endif
1393 {
1394 if (len < sizeof(param))
1395 return -EINVAL;
1396 if (copy_from_user(¶m, optval, sizeof(param)))
1397 return -EFAULT;
1398 }
1399
1400 kaddrs = memdup_user(param.addrs, param.addr_num);
1401 if (IS_ERR(kaddrs))
1402 return PTR_ERR(kaddrs);
1403
1404 err = __sctp_setsockopt_connectx(sk, kaddrs, param.addr_num, &assoc_id);
1405 kfree(kaddrs);
1406 if (err == 0 || err == -EINPROGRESS) {
1407 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1408 return -EFAULT;
1409 if (put_user(sizeof(assoc_id), optlen))
1410 return -EFAULT;
1411 }
1412
1413 return err;
1414}
1415
1416/* API 3.1.4 close() - UDP Style Syntax
1417 * Applications use close() to perform graceful shutdown (as described in
1418 * Section 10.1 of [SCTP]) on ALL the associations currently represented
1419 * by a UDP-style socket.
1420 *
1421 * The syntax is
1422 *
1423 * ret = close(int sd);
1424 *
1425 * sd - the socket descriptor of the associations to be closed.
1426 *
1427 * To gracefully shutdown a specific association represented by the
1428 * UDP-style socket, an application should use the sendmsg() call,
1429 * passing no user data, but including the appropriate flag in the
1430 * ancillary data (see Section xxxx).
1431 *
1432 * If sd in the close() call is a branched-off socket representing only
1433 * one association, the shutdown is performed on that association only.
1434 *
1435 * 4.1.6 close() - TCP Style Syntax
1436 *
1437 * Applications use close() to gracefully close down an association.
1438 *
1439 * The syntax is:
1440 *
1441 * int close(int sd);
1442 *
1443 * sd - the socket descriptor of the association to be closed.
1444 *
1445 * After an application calls close() on a socket descriptor, no further
1446 * socket operations will succeed on that descriptor.
1447 *
1448 * API 7.1.4 SO_LINGER
1449 *
1450 * An application using the TCP-style socket can use this option to
1451 * perform the SCTP ABORT primitive. The linger option structure is:
1452 *
1453 * struct linger {
1454 * int l_onoff; // option on/off
1455 * int l_linger; // linger time
1456 * };
1457 *
1458 * To enable the option, set l_onoff to 1. If the l_linger value is set
1459 * to 0, calling close() is the same as the ABORT primitive. If the
1460 * value is set to a negative value, the setsockopt() call will return
1461 * an error. If the value is set to a positive value linger_time, the
1462 * close() can be blocked for at most linger_time ms. If the graceful
1463 * shutdown phase does not finish during this period, close() will
1464 * return but the graceful shutdown phase continues in the system.
1465 */
1466static void sctp_close(struct sock *sk, long timeout)
1467{
1468 struct net *net = sock_net(sk);
1469 struct sctp_endpoint *ep;
1470 struct sctp_association *asoc;
1471 struct list_head *pos, *temp;
1472 unsigned int data_was_unread;
1473
1474 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1475
1476 lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
1477 sk->sk_shutdown = SHUTDOWN_MASK;
1478 inet_sk_set_state(sk, SCTP_SS_CLOSING);
1479
1480 ep = sctp_sk(sk)->ep;
1481
1482 /* Clean up any skbs sitting on the receive queue. */
1483 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1484 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1485
1486 /* Walk all associations on an endpoint. */
1487 list_for_each_safe(pos, temp, &ep->asocs) {
1488 asoc = list_entry(pos, struct sctp_association, asocs);
1489
1490 if (sctp_style(sk, TCP)) {
1491 /* A closed association can still be in the list if
1492 * it belongs to a TCP-style listening socket that is
1493 * not yet accepted. If so, free it. If not, send an
1494 * ABORT or SHUTDOWN based on the linger options.
1495 */
1496 if (sctp_state(asoc, CLOSED)) {
1497 sctp_association_free(asoc);
1498 continue;
1499 }
1500 }
1501
1502 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1503 !skb_queue_empty(&asoc->ulpq.reasm) ||
1504 !skb_queue_empty(&asoc->ulpq.reasm_uo) ||
1505 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1506 struct sctp_chunk *chunk;
1507
1508 chunk = sctp_make_abort_user(asoc, NULL, 0);
1509 sctp_primitive_ABORT(net, asoc, chunk);
1510 } else
1511 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1512 }
1513
1514 /* On a TCP-style socket, block for at most linger_time if set. */
1515 if (sctp_style(sk, TCP) && timeout)
1516 sctp_wait_for_close(sk, timeout);
1517
1518 /* This will run the backlog queue. */
1519 release_sock(sk);
1520
1521 /* Supposedly, no process has access to the socket, but
1522 * the net layers still may.
1523 */
1524 local_bh_disable();
1525 bh_lock_sock(sk);
1526
1527 /* Hold the sock, since sk_common_release() will put sock_put()
1528 * and we have just a little more cleanup.
1529 */
1530 sock_hold(sk);
1531 sk_common_release(sk);
1532
1533 bh_unlock_sock(sk);
1534 local_bh_enable();
1535
1536 sock_put(sk);
1537
1538 SCTP_DBG_OBJCNT_DEC(sock);
1539}
1540
1541/* Handle EPIPE error. */
1542static int sctp_error(struct sock *sk, int flags, int err)
1543{
1544 if (err == -EPIPE)
1545 err = sock_error(sk) ? : -EPIPE;
1546 if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1547 send_sig(SIGPIPE, current, 0);
1548 return err;
1549}
1550
1551/* API 3.1.3 sendmsg() - UDP Style Syntax
1552 *
1553 * An application uses sendmsg() and recvmsg() calls to transmit data to
1554 * and receive data from its peer.
1555 *
1556 * ssize_t sendmsg(int socket, const struct msghdr *message,
1557 * int flags);
1558 *
1559 * socket - the socket descriptor of the endpoint.
1560 * message - pointer to the msghdr structure which contains a single
1561 * user message and possibly some ancillary data.
1562 *
1563 * See Section 5 for complete description of the data
1564 * structures.
1565 *
1566 * flags - flags sent or received with the user message, see Section
1567 * 5 for complete description of the flags.
1568 *
1569 * Note: This function could use a rewrite especially when explicit
1570 * connect support comes in.
1571 */
1572/* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */
1573
1574static int sctp_msghdr_parse(const struct msghdr *msg,
1575 struct sctp_cmsgs *cmsgs);
1576
1577static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs,
1578 struct sctp_sndrcvinfo *srinfo,
1579 const struct msghdr *msg, size_t msg_len)
1580{
1581 __u16 sflags;
1582 int err;
1583
1584 if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP))
1585 return -EPIPE;
1586
1587 if (msg_len > sk->sk_sndbuf)
1588 return -EMSGSIZE;
1589
1590 memset(cmsgs, 0, sizeof(*cmsgs));
1591 err = sctp_msghdr_parse(msg, cmsgs);
1592 if (err) {
1593 pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1594 return err;
1595 }
1596
1597 memset(srinfo, 0, sizeof(*srinfo));
1598 if (cmsgs->srinfo) {
1599 srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream;
1600 srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags;
1601 srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid;
1602 srinfo->sinfo_context = cmsgs->srinfo->sinfo_context;
1603 srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id;
1604 srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive;
1605 }
1606
1607 if (cmsgs->sinfo) {
1608 srinfo->sinfo_stream = cmsgs->sinfo->snd_sid;
1609 srinfo->sinfo_flags = cmsgs->sinfo->snd_flags;
1610 srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid;
1611 srinfo->sinfo_context = cmsgs->sinfo->snd_context;
1612 srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id;
1613 }
1614
1615 if (cmsgs->prinfo) {
1616 srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value;
1617 SCTP_PR_SET_POLICY(srinfo->sinfo_flags,
1618 cmsgs->prinfo->pr_policy);
1619 }
1620
1621 sflags = srinfo->sinfo_flags;
1622 if (!sflags && msg_len)
1623 return 0;
1624
1625 if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT)))
1626 return -EINVAL;
1627
1628 if (((sflags & SCTP_EOF) && msg_len > 0) ||
1629 (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0))
1630 return -EINVAL;
1631
1632 if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name)
1633 return -EINVAL;
1634
1635 return 0;
1636}
1637
1638static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags,
1639 struct sctp_cmsgs *cmsgs,
1640 union sctp_addr *daddr,
1641 struct sctp_transport **tp)
1642{
1643 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
1644 struct sctp_association *asoc;
1645 struct cmsghdr *cmsg;
1646 __be32 flowinfo = 0;
1647 struct sctp_af *af;
1648 int err;
1649
1650 *tp = NULL;
1651
1652 if (sflags & (SCTP_EOF | SCTP_ABORT))
1653 return -EINVAL;
1654
1655 if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) ||
1656 sctp_sstate(sk, CLOSING)))
1657 return -EADDRNOTAVAIL;
1658
1659 /* Label connection socket for first association 1-to-many
1660 * style for client sequence socket()->sendmsg(). This
1661 * needs to be done before sctp_assoc_add_peer() as that will
1662 * set up the initial packet that needs to account for any
1663 * security ip options (CIPSO/CALIPSO) added to the packet.
1664 */
1665 af = sctp_get_af_specific(daddr->sa.sa_family);
1666 if (!af)
1667 return -EINVAL;
1668 err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT,
1669 (struct sockaddr *)daddr,
1670 af->sockaddr_len);
1671 if (err < 0)
1672 return err;
1673
1674 err = sctp_connect_new_asoc(ep, daddr, cmsgs->init, tp);
1675 if (err)
1676 return err;
1677 asoc = (*tp)->asoc;
1678
1679 if (!cmsgs->addrs_msg)
1680 return 0;
1681
1682 if (daddr->sa.sa_family == AF_INET6)
1683 flowinfo = daddr->v6.sin6_flowinfo;
1684
1685 /* sendv addr list parse */
1686 for_each_cmsghdr(cmsg, cmsgs->addrs_msg) {
1687 union sctp_addr _daddr;
1688 int dlen;
1689
1690 if (cmsg->cmsg_level != IPPROTO_SCTP ||
1691 (cmsg->cmsg_type != SCTP_DSTADDRV4 &&
1692 cmsg->cmsg_type != SCTP_DSTADDRV6))
1693 continue;
1694
1695 daddr = &_daddr;
1696 memset(daddr, 0, sizeof(*daddr));
1697 dlen = cmsg->cmsg_len - sizeof(struct cmsghdr);
1698 if (cmsg->cmsg_type == SCTP_DSTADDRV4) {
1699 if (dlen < sizeof(struct in_addr)) {
1700 err = -EINVAL;
1701 goto free;
1702 }
1703
1704 dlen = sizeof(struct in_addr);
1705 daddr->v4.sin_family = AF_INET;
1706 daddr->v4.sin_port = htons(asoc->peer.port);
1707 memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen);
1708 } else {
1709 if (dlen < sizeof(struct in6_addr)) {
1710 err = -EINVAL;
1711 goto free;
1712 }
1713
1714 dlen = sizeof(struct in6_addr);
1715 daddr->v6.sin6_flowinfo = flowinfo;
1716 daddr->v6.sin6_family = AF_INET6;
1717 daddr->v6.sin6_port = htons(asoc->peer.port);
1718 memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen);
1719 }
1720
1721 err = sctp_connect_add_peer(asoc, daddr, sizeof(*daddr));
1722 if (err)
1723 goto free;
1724 }
1725
1726 return 0;
1727
1728free:
1729 sctp_association_free(asoc);
1730 return err;
1731}
1732
1733static int sctp_sendmsg_check_sflags(struct sctp_association *asoc,
1734 __u16 sflags, struct msghdr *msg,
1735 size_t msg_len)
1736{
1737 struct sock *sk = asoc->base.sk;
1738 struct net *net = sock_net(sk);
1739
1740 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP))
1741 return -EPIPE;
1742
1743 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) &&
1744 !sctp_state(asoc, ESTABLISHED))
1745 return 0;
1746
1747 if (sflags & SCTP_EOF) {
1748 pr_debug("%s: shutting down association:%p\n", __func__, asoc);
1749 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1750
1751 return 0;
1752 }
1753
1754 if (sflags & SCTP_ABORT) {
1755 struct sctp_chunk *chunk;
1756
1757 chunk = sctp_make_abort_user(asoc, msg, msg_len);
1758 if (!chunk)
1759 return -ENOMEM;
1760
1761 pr_debug("%s: aborting association:%p\n", __func__, asoc);
1762 sctp_primitive_ABORT(net, asoc, chunk);
1763 iov_iter_revert(&msg->msg_iter, msg_len);
1764
1765 return 0;
1766 }
1767
1768 return 1;
1769}
1770
1771static int sctp_sendmsg_to_asoc(struct sctp_association *asoc,
1772 struct msghdr *msg, size_t msg_len,
1773 struct sctp_transport *transport,
1774 struct sctp_sndrcvinfo *sinfo)
1775{
1776 struct sock *sk = asoc->base.sk;
1777 struct sctp_sock *sp = sctp_sk(sk);
1778 struct net *net = sock_net(sk);
1779 struct sctp_datamsg *datamsg;
1780 bool wait_connect = false;
1781 struct sctp_chunk *chunk;
1782 long timeo;
1783 int err;
1784
1785 if (sinfo->sinfo_stream >= asoc->stream.outcnt) {
1786 err = -EINVAL;
1787 goto err;
1788 }
1789
1790 if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) {
1791 err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream);
1792 if (err)
1793 goto err;
1794 }
1795
1796 if (sp->disable_fragments && msg_len > asoc->frag_point) {
1797 err = -EMSGSIZE;
1798 goto err;
1799 }
1800
1801 if (asoc->pmtu_pending) {
1802 if (sp->param_flags & SPP_PMTUD_ENABLE)
1803 sctp_assoc_sync_pmtu(asoc);
1804 asoc->pmtu_pending = 0;
1805 }
1806
1807 if (sctp_wspace(asoc) < (int)msg_len)
1808 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc));
1809
1810 if (sk_under_memory_pressure(sk))
1811 sk_mem_reclaim(sk);
1812
1813 if (sctp_wspace(asoc) <= 0 || !sk_wmem_schedule(sk, msg_len)) {
1814 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1815 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1816 if (err)
1817 goto err;
1818 }
1819
1820 if (sctp_state(asoc, CLOSED)) {
1821 err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1822 if (err)
1823 goto err;
1824
1825 if (asoc->ep->intl_enable) {
1826 timeo = sock_sndtimeo(sk, 0);
1827 err = sctp_wait_for_connect(asoc, &timeo);
1828 if (err) {
1829 err = -ESRCH;
1830 goto err;
1831 }
1832 } else {
1833 wait_connect = true;
1834 }
1835
1836 pr_debug("%s: we associated primitively\n", __func__);
1837 }
1838
1839 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter);
1840 if (IS_ERR(datamsg)) {
1841 err = PTR_ERR(datamsg);
1842 goto err;
1843 }
1844
1845 asoc->force_delay = !!(msg->msg_flags & MSG_MORE);
1846
1847 list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1848 sctp_chunk_hold(chunk);
1849 sctp_set_owner_w(chunk);
1850 chunk->transport = transport;
1851 }
1852
1853 err = sctp_primitive_SEND(net, asoc, datamsg);
1854 if (err) {
1855 sctp_datamsg_free(datamsg);
1856 goto err;
1857 }
1858
1859 pr_debug("%s: we sent primitively\n", __func__);
1860
1861 sctp_datamsg_put(datamsg);
1862
1863 if (unlikely(wait_connect)) {
1864 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1865 sctp_wait_for_connect(asoc, &timeo);
1866 }
1867
1868 err = msg_len;
1869
1870err:
1871 return err;
1872}
1873
1874static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk,
1875 const struct msghdr *msg,
1876 struct sctp_cmsgs *cmsgs)
1877{
1878 union sctp_addr *daddr = NULL;
1879 int err;
1880
1881 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1882 int len = msg->msg_namelen;
1883
1884 if (len > sizeof(*daddr))
1885 len = sizeof(*daddr);
1886
1887 daddr = (union sctp_addr *)msg->msg_name;
1888
1889 err = sctp_verify_addr(sk, daddr, len);
1890 if (err)
1891 return ERR_PTR(err);
1892 }
1893
1894 return daddr;
1895}
1896
1897static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc,
1898 struct sctp_sndrcvinfo *sinfo,
1899 struct sctp_cmsgs *cmsgs)
1900{
1901 if (!cmsgs->srinfo && !cmsgs->sinfo) {
1902 sinfo->sinfo_stream = asoc->default_stream;
1903 sinfo->sinfo_ppid = asoc->default_ppid;
1904 sinfo->sinfo_context = asoc->default_context;
1905 sinfo->sinfo_assoc_id = sctp_assoc2id(asoc);
1906
1907 if (!cmsgs->prinfo)
1908 sinfo->sinfo_flags = asoc->default_flags;
1909 }
1910
1911 if (!cmsgs->srinfo && !cmsgs->prinfo)
1912 sinfo->sinfo_timetolive = asoc->default_timetolive;
1913
1914 if (cmsgs->authinfo) {
1915 /* Reuse sinfo_tsn to indicate that authinfo was set and
1916 * sinfo_ssn to save the keyid on tx path.
1917 */
1918 sinfo->sinfo_tsn = 1;
1919 sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber;
1920 }
1921}
1922
1923static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len)
1924{
1925 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
1926 struct sctp_transport *transport = NULL;
1927 struct sctp_sndrcvinfo _sinfo, *sinfo;
1928 struct sctp_association *asoc, *tmp;
1929 struct sctp_cmsgs cmsgs;
1930 union sctp_addr *daddr;
1931 bool new = false;
1932 __u16 sflags;
1933 int err;
1934
1935 /* Parse and get snd_info */
1936 err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len);
1937 if (err)
1938 goto out;
1939
1940 sinfo = &_sinfo;
1941 sflags = sinfo->sinfo_flags;
1942
1943 /* Get daddr from msg */
1944 daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs);
1945 if (IS_ERR(daddr)) {
1946 err = PTR_ERR(daddr);
1947 goto out;
1948 }
1949
1950 lock_sock(sk);
1951
1952 /* SCTP_SENDALL process */
1953 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) {
1954 list_for_each_entry_safe(asoc, tmp, &ep->asocs, asocs) {
1955 err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
1956 msg_len);
1957 if (err == 0)
1958 continue;
1959 if (err < 0)
1960 goto out_unlock;
1961
1962 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
1963
1964 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len,
1965 NULL, sinfo);
1966 if (err < 0)
1967 goto out_unlock;
1968
1969 iov_iter_revert(&msg->msg_iter, err);
1970 }
1971
1972 goto out_unlock;
1973 }
1974
1975 /* Get and check or create asoc */
1976 if (daddr) {
1977 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
1978 if (asoc) {
1979 err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
1980 msg_len);
1981 if (err <= 0)
1982 goto out_unlock;
1983 } else {
1984 err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr,
1985 &transport);
1986 if (err)
1987 goto out_unlock;
1988
1989 asoc = transport->asoc;
1990 new = true;
1991 }
1992
1993 if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER))
1994 transport = NULL;
1995 } else {
1996 asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id);
1997 if (!asoc) {
1998 err = -EPIPE;
1999 goto out_unlock;
2000 }
2001
2002 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len);
2003 if (err <= 0)
2004 goto out_unlock;
2005 }
2006
2007 /* Update snd_info with the asoc */
2008 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
2009
2010 /* Send msg to the asoc */
2011 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo);
2012 if (err < 0 && err != -ESRCH && new)
2013 sctp_association_free(asoc);
2014
2015out_unlock:
2016 release_sock(sk);
2017out:
2018 return sctp_error(sk, msg->msg_flags, err);
2019}
2020
2021/* This is an extended version of skb_pull() that removes the data from the
2022 * start of a skb even when data is spread across the list of skb's in the
2023 * frag_list. len specifies the total amount of data that needs to be removed.
2024 * when 'len' bytes could be removed from the skb, it returns 0.
2025 * If 'len' exceeds the total skb length, it returns the no. of bytes that
2026 * could not be removed.
2027 */
2028static int sctp_skb_pull(struct sk_buff *skb, int len)
2029{
2030 struct sk_buff *list;
2031 int skb_len = skb_headlen(skb);
2032 int rlen;
2033
2034 if (len <= skb_len) {
2035 __skb_pull(skb, len);
2036 return 0;
2037 }
2038 len -= skb_len;
2039 __skb_pull(skb, skb_len);
2040
2041 skb_walk_frags(skb, list) {
2042 rlen = sctp_skb_pull(list, len);
2043 skb->len -= (len-rlen);
2044 skb->data_len -= (len-rlen);
2045
2046 if (!rlen)
2047 return 0;
2048
2049 len = rlen;
2050 }
2051
2052 return len;
2053}
2054
2055/* API 3.1.3 recvmsg() - UDP Style Syntax
2056 *
2057 * ssize_t recvmsg(int socket, struct msghdr *message,
2058 * int flags);
2059 *
2060 * socket - the socket descriptor of the endpoint.
2061 * message - pointer to the msghdr structure which contains a single
2062 * user message and possibly some ancillary data.
2063 *
2064 * See Section 5 for complete description of the data
2065 * structures.
2066 *
2067 * flags - flags sent or received with the user message, see Section
2068 * 5 for complete description of the flags.
2069 */
2070static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2071 int noblock, int flags, int *addr_len)
2072{
2073 struct sctp_ulpevent *event = NULL;
2074 struct sctp_sock *sp = sctp_sk(sk);
2075 struct sk_buff *skb, *head_skb;
2076 int copied;
2077 int err = 0;
2078 int skb_len;
2079
2080 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
2081 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags,
2082 addr_len);
2083
2084 lock_sock(sk);
2085
2086 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) &&
2087 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) {
2088 err = -ENOTCONN;
2089 goto out;
2090 }
2091
2092 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2093 if (!skb)
2094 goto out;
2095
2096 /* Get the total length of the skb including any skb's in the
2097 * frag_list.
2098 */
2099 skb_len = skb->len;
2100
2101 copied = skb_len;
2102 if (copied > len)
2103 copied = len;
2104
2105 err = skb_copy_datagram_msg(skb, 0, msg, copied);
2106
2107 event = sctp_skb2event(skb);
2108
2109 if (err)
2110 goto out_free;
2111
2112 if (event->chunk && event->chunk->head_skb)
2113 head_skb = event->chunk->head_skb;
2114 else
2115 head_skb = skb;
2116 sock_recv_ts_and_drops(msg, sk, head_skb);
2117 if (sctp_ulpevent_is_notification(event)) {
2118 msg->msg_flags |= MSG_NOTIFICATION;
2119 sp->pf->event_msgname(event, msg->msg_name, addr_len);
2120 } else {
2121 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len);
2122 }
2123
2124 /* Check if we allow SCTP_NXTINFO. */
2125 if (sp->recvnxtinfo)
2126 sctp_ulpevent_read_nxtinfo(event, msg, sk);
2127 /* Check if we allow SCTP_RCVINFO. */
2128 if (sp->recvrcvinfo)
2129 sctp_ulpevent_read_rcvinfo(event, msg);
2130 /* Check if we allow SCTP_SNDRCVINFO. */
2131 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_DATA_IO_EVENT))
2132 sctp_ulpevent_read_sndrcvinfo(event, msg);
2133
2134 err = copied;
2135
2136 /* If skb's length exceeds the user's buffer, update the skb and
2137 * push it back to the receive_queue so that the next call to
2138 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2139 */
2140 if (skb_len > copied) {
2141 msg->msg_flags &= ~MSG_EOR;
2142 if (flags & MSG_PEEK)
2143 goto out_free;
2144 sctp_skb_pull(skb, copied);
2145 skb_queue_head(&sk->sk_receive_queue, skb);
2146
2147 /* When only partial message is copied to the user, increase
2148 * rwnd by that amount. If all the data in the skb is read,
2149 * rwnd is updated when the event is freed.
2150 */
2151 if (!sctp_ulpevent_is_notification(event))
2152 sctp_assoc_rwnd_increase(event->asoc, copied);
2153 goto out;
2154 } else if ((event->msg_flags & MSG_NOTIFICATION) ||
2155 (event->msg_flags & MSG_EOR))
2156 msg->msg_flags |= MSG_EOR;
2157 else
2158 msg->msg_flags &= ~MSG_EOR;
2159
2160out_free:
2161 if (flags & MSG_PEEK) {
2162 /* Release the skb reference acquired after peeking the skb in
2163 * sctp_skb_recv_datagram().
2164 */
2165 kfree_skb(skb);
2166 } else {
2167 /* Free the event which includes releasing the reference to
2168 * the owner of the skb, freeing the skb and updating the
2169 * rwnd.
2170 */
2171 sctp_ulpevent_free(event);
2172 }
2173out:
2174 release_sock(sk);
2175 return err;
2176}
2177
2178/* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2179 *
2180 * This option is a on/off flag. If enabled no SCTP message
2181 * fragmentation will be performed. Instead if a message being sent
2182 * exceeds the current PMTU size, the message will NOT be sent and
2183 * instead a error will be indicated to the user.
2184 */
2185static int sctp_setsockopt_disable_fragments(struct sock *sk, int *val,
2186 unsigned int optlen)
2187{
2188 if (optlen < sizeof(int))
2189 return -EINVAL;
2190 sctp_sk(sk)->disable_fragments = (*val == 0) ? 0 : 1;
2191 return 0;
2192}
2193
2194static int sctp_setsockopt_events(struct sock *sk, __u8 *sn_type,
2195 unsigned int optlen)
2196{
2197 struct sctp_sock *sp = sctp_sk(sk);
2198 struct sctp_association *asoc;
2199 int i;
2200
2201 if (optlen > sizeof(struct sctp_event_subscribe))
2202 return -EINVAL;
2203
2204 for (i = 0; i < optlen; i++)
2205 sctp_ulpevent_type_set(&sp->subscribe, SCTP_SN_TYPE_BASE + i,
2206 sn_type[i]);
2207
2208 list_for_each_entry(asoc, &sp->ep->asocs, asocs)
2209 asoc->subscribe = sctp_sk(sk)->subscribe;
2210
2211 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2212 * if there is no data to be sent or retransmit, the stack will
2213 * immediately send up this notification.
2214 */
2215 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_SENDER_DRY_EVENT)) {
2216 struct sctp_ulpevent *event;
2217
2218 asoc = sctp_id2assoc(sk, 0);
2219 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2220 event = sctp_ulpevent_make_sender_dry_event(asoc,
2221 GFP_USER | __GFP_NOWARN);
2222 if (!event)
2223 return -ENOMEM;
2224
2225 asoc->stream.si->enqueue_event(&asoc->ulpq, event);
2226 }
2227 }
2228
2229 return 0;
2230}
2231
2232/* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2233 *
2234 * This socket option is applicable to the UDP-style socket only. When
2235 * set it will cause associations that are idle for more than the
2236 * specified number of seconds to automatically close. An association
2237 * being idle is defined an association that has NOT sent or received
2238 * user data. The special value of '0' indicates that no automatic
2239 * close of any associations should be performed. The option expects an
2240 * integer defining the number of seconds of idle time before an
2241 * association is closed.
2242 */
2243static int sctp_setsockopt_autoclose(struct sock *sk, u32 *optval,
2244 unsigned int optlen)
2245{
2246 struct sctp_sock *sp = sctp_sk(sk);
2247 struct net *net = sock_net(sk);
2248
2249 /* Applicable to UDP-style socket only */
2250 if (sctp_style(sk, TCP))
2251 return -EOPNOTSUPP;
2252 if (optlen != sizeof(int))
2253 return -EINVAL;
2254
2255 sp->autoclose = *optval;
2256 if (sp->autoclose > net->sctp.max_autoclose)
2257 sp->autoclose = net->sctp.max_autoclose;
2258
2259 return 0;
2260}
2261
2262/* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2263 *
2264 * Applications can enable or disable heartbeats for any peer address of
2265 * an association, modify an address's heartbeat interval, force a
2266 * heartbeat to be sent immediately, and adjust the address's maximum
2267 * number of retransmissions sent before an address is considered
2268 * unreachable. The following structure is used to access and modify an
2269 * address's parameters:
2270 *
2271 * struct sctp_paddrparams {
2272 * sctp_assoc_t spp_assoc_id;
2273 * struct sockaddr_storage spp_address;
2274 * uint32_t spp_hbinterval;
2275 * uint16_t spp_pathmaxrxt;
2276 * uint32_t spp_pathmtu;
2277 * uint32_t spp_sackdelay;
2278 * uint32_t spp_flags;
2279 * uint32_t spp_ipv6_flowlabel;
2280 * uint8_t spp_dscp;
2281 * };
2282 *
2283 * spp_assoc_id - (one-to-many style socket) This is filled in the
2284 * application, and identifies the association for
2285 * this query.
2286 * spp_address - This specifies which address is of interest.
2287 * spp_hbinterval - This contains the value of the heartbeat interval,
2288 * in milliseconds. If a value of zero
2289 * is present in this field then no changes are to
2290 * be made to this parameter.
2291 * spp_pathmaxrxt - This contains the maximum number of
2292 * retransmissions before this address shall be
2293 * considered unreachable. If a value of zero
2294 * is present in this field then no changes are to
2295 * be made to this parameter.
2296 * spp_pathmtu - When Path MTU discovery is disabled the value
2297 * specified here will be the "fixed" path mtu.
2298 * Note that if the spp_address field is empty
2299 * then all associations on this address will
2300 * have this fixed path mtu set upon them.
2301 *
2302 * spp_sackdelay - When delayed sack is enabled, this value specifies
2303 * the number of milliseconds that sacks will be delayed
2304 * for. This value will apply to all addresses of an
2305 * association if the spp_address field is empty. Note
2306 * also, that if delayed sack is enabled and this
2307 * value is set to 0, no change is made to the last
2308 * recorded delayed sack timer value.
2309 *
2310 * spp_flags - These flags are used to control various features
2311 * on an association. The flag field may contain
2312 * zero or more of the following options.
2313 *
2314 * SPP_HB_ENABLE - Enable heartbeats on the
2315 * specified address. Note that if the address
2316 * field is empty all addresses for the association
2317 * have heartbeats enabled upon them.
2318 *
2319 * SPP_HB_DISABLE - Disable heartbeats on the
2320 * speicifed address. Note that if the address
2321 * field is empty all addresses for the association
2322 * will have their heartbeats disabled. Note also
2323 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
2324 * mutually exclusive, only one of these two should
2325 * be specified. Enabling both fields will have
2326 * undetermined results.
2327 *
2328 * SPP_HB_DEMAND - Request a user initiated heartbeat
2329 * to be made immediately.
2330 *
2331 * SPP_HB_TIME_IS_ZERO - Specify's that the time for
2332 * heartbeat delayis to be set to the value of 0
2333 * milliseconds.
2334 *
2335 * SPP_PMTUD_ENABLE - This field will enable PMTU
2336 * discovery upon the specified address. Note that
2337 * if the address feild is empty then all addresses
2338 * on the association are effected.
2339 *
2340 * SPP_PMTUD_DISABLE - This field will disable PMTU
2341 * discovery upon the specified address. Note that
2342 * if the address feild is empty then all addresses
2343 * on the association are effected. Not also that
2344 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2345 * exclusive. Enabling both will have undetermined
2346 * results.
2347 *
2348 * SPP_SACKDELAY_ENABLE - Setting this flag turns
2349 * on delayed sack. The time specified in spp_sackdelay
2350 * is used to specify the sack delay for this address. Note
2351 * that if spp_address is empty then all addresses will
2352 * enable delayed sack and take on the sack delay
2353 * value specified in spp_sackdelay.
2354 * SPP_SACKDELAY_DISABLE - Setting this flag turns
2355 * off delayed sack. If the spp_address field is blank then
2356 * delayed sack is disabled for the entire association. Note
2357 * also that this field is mutually exclusive to
2358 * SPP_SACKDELAY_ENABLE, setting both will have undefined
2359 * results.
2360 *
2361 * SPP_IPV6_FLOWLABEL: Setting this flag enables the
2362 * setting of the IPV6 flow label value. The value is
2363 * contained in the spp_ipv6_flowlabel field.
2364 * Upon retrieval, this flag will be set to indicate that
2365 * the spp_ipv6_flowlabel field has a valid value returned.
2366 * If a specific destination address is set (in the
2367 * spp_address field), then the value returned is that of
2368 * the address. If just an association is specified (and
2369 * no address), then the association's default flow label
2370 * is returned. If neither an association nor a destination
2371 * is specified, then the socket's default flow label is
2372 * returned. For non-IPv6 sockets, this flag will be left
2373 * cleared.
2374 *
2375 * SPP_DSCP: Setting this flag enables the setting of the
2376 * Differentiated Services Code Point (DSCP) value
2377 * associated with either the association or a specific
2378 * address. The value is obtained in the spp_dscp field.
2379 * Upon retrieval, this flag will be set to indicate that
2380 * the spp_dscp field has a valid value returned. If a
2381 * specific destination address is set when called (in the
2382 * spp_address field), then that specific destination
2383 * address's DSCP value is returned. If just an association
2384 * is specified, then the association's default DSCP is
2385 * returned. If neither an association nor a destination is
2386 * specified, then the socket's default DSCP is returned.
2387 *
2388 * spp_ipv6_flowlabel
2389 * - This field is used in conjunction with the
2390 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label.
2391 * The 20 least significant bits are used for the flow
2392 * label. This setting has precedence over any IPv6-layer
2393 * setting.
2394 *
2395 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag
2396 * and contains the DSCP. The 6 most significant bits are
2397 * used for the DSCP. This setting has precedence over any
2398 * IPv4- or IPv6- layer setting.
2399 */
2400static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2401 struct sctp_transport *trans,
2402 struct sctp_association *asoc,
2403 struct sctp_sock *sp,
2404 int hb_change,
2405 int pmtud_change,
2406 int sackdelay_change)
2407{
2408 int error;
2409
2410 if (params->spp_flags & SPP_HB_DEMAND && trans) {
2411 error = sctp_primitive_REQUESTHEARTBEAT(trans->asoc->base.net,
2412 trans->asoc, trans);
2413 if (error)
2414 return error;
2415 }
2416
2417 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2418 * this field is ignored. Note also that a value of zero indicates
2419 * the current setting should be left unchanged.
2420 */
2421 if (params->spp_flags & SPP_HB_ENABLE) {
2422
2423 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2424 * set. This lets us use 0 value when this flag
2425 * is set.
2426 */
2427 if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2428 params->spp_hbinterval = 0;
2429
2430 if (params->spp_hbinterval ||
2431 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2432 if (trans) {
2433 trans->hbinterval =
2434 msecs_to_jiffies(params->spp_hbinterval);
2435 } else if (asoc) {
2436 asoc->hbinterval =
2437 msecs_to_jiffies(params->spp_hbinterval);
2438 } else {
2439 sp->hbinterval = params->spp_hbinterval;
2440 }
2441 }
2442 }
2443
2444 if (hb_change) {
2445 if (trans) {
2446 trans->param_flags =
2447 (trans->param_flags & ~SPP_HB) | hb_change;
2448 } else if (asoc) {
2449 asoc->param_flags =
2450 (asoc->param_flags & ~SPP_HB) | hb_change;
2451 } else {
2452 sp->param_flags =
2453 (sp->param_flags & ~SPP_HB) | hb_change;
2454 }
2455 }
2456
2457 /* When Path MTU discovery is disabled the value specified here will
2458 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2459 * include the flag SPP_PMTUD_DISABLE for this field to have any
2460 * effect).
2461 */
2462 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2463 if (trans) {
2464 trans->pathmtu = params->spp_pathmtu;
2465 sctp_assoc_sync_pmtu(asoc);
2466 } else if (asoc) {
2467 sctp_assoc_set_pmtu(asoc, params->spp_pathmtu);
2468 } else {
2469 sp->pathmtu = params->spp_pathmtu;
2470 }
2471 }
2472
2473 if (pmtud_change) {
2474 if (trans) {
2475 int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2476 (params->spp_flags & SPP_PMTUD_ENABLE);
2477 trans->param_flags =
2478 (trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2479 if (update) {
2480 sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2481 sctp_assoc_sync_pmtu(asoc);
2482 }
2483 } else if (asoc) {
2484 asoc->param_flags =
2485 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2486 } else {
2487 sp->param_flags =
2488 (sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2489 }
2490 }
2491
2492 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2493 * value of this field is ignored. Note also that a value of zero
2494 * indicates the current setting should be left unchanged.
2495 */
2496 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2497 if (trans) {
2498 trans->sackdelay =
2499 msecs_to_jiffies(params->spp_sackdelay);
2500 } else if (asoc) {
2501 asoc->sackdelay =
2502 msecs_to_jiffies(params->spp_sackdelay);
2503 } else {
2504 sp->sackdelay = params->spp_sackdelay;
2505 }
2506 }
2507
2508 if (sackdelay_change) {
2509 if (trans) {
2510 trans->param_flags =
2511 (trans->param_flags & ~SPP_SACKDELAY) |
2512 sackdelay_change;
2513 } else if (asoc) {
2514 asoc->param_flags =
2515 (asoc->param_flags & ~SPP_SACKDELAY) |
2516 sackdelay_change;
2517 } else {
2518 sp->param_flags =
2519 (sp->param_flags & ~SPP_SACKDELAY) |
2520 sackdelay_change;
2521 }
2522 }
2523
2524 /* Note that a value of zero indicates the current setting should be
2525 left unchanged.
2526 */
2527 if (params->spp_pathmaxrxt) {
2528 if (trans) {
2529 trans->pathmaxrxt = params->spp_pathmaxrxt;
2530 } else if (asoc) {
2531 asoc->pathmaxrxt = params->spp_pathmaxrxt;
2532 } else {
2533 sp->pathmaxrxt = params->spp_pathmaxrxt;
2534 }
2535 }
2536
2537 if (params->spp_flags & SPP_IPV6_FLOWLABEL) {
2538 if (trans) {
2539 if (trans->ipaddr.sa.sa_family == AF_INET6) {
2540 trans->flowlabel = params->spp_ipv6_flowlabel &
2541 SCTP_FLOWLABEL_VAL_MASK;
2542 trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2543 }
2544 } else if (asoc) {
2545 struct sctp_transport *t;
2546
2547 list_for_each_entry(t, &asoc->peer.transport_addr_list,
2548 transports) {
2549 if (t->ipaddr.sa.sa_family != AF_INET6)
2550 continue;
2551 t->flowlabel = params->spp_ipv6_flowlabel &
2552 SCTP_FLOWLABEL_VAL_MASK;
2553 t->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2554 }
2555 asoc->flowlabel = params->spp_ipv6_flowlabel &
2556 SCTP_FLOWLABEL_VAL_MASK;
2557 asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2558 } else if (sctp_opt2sk(sp)->sk_family == AF_INET6) {
2559 sp->flowlabel = params->spp_ipv6_flowlabel &
2560 SCTP_FLOWLABEL_VAL_MASK;
2561 sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2562 }
2563 }
2564
2565 if (params->spp_flags & SPP_DSCP) {
2566 if (trans) {
2567 trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2568 trans->dscp |= SCTP_DSCP_SET_MASK;
2569 } else if (asoc) {
2570 struct sctp_transport *t;
2571
2572 list_for_each_entry(t, &asoc->peer.transport_addr_list,
2573 transports) {
2574 t->dscp = params->spp_dscp &
2575 SCTP_DSCP_VAL_MASK;
2576 t->dscp |= SCTP_DSCP_SET_MASK;
2577 }
2578 asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2579 asoc->dscp |= SCTP_DSCP_SET_MASK;
2580 } else {
2581 sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2582 sp->dscp |= SCTP_DSCP_SET_MASK;
2583 }
2584 }
2585
2586 return 0;
2587}
2588
2589static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2590 struct sctp_paddrparams *params,
2591 unsigned int optlen)
2592{
2593 struct sctp_transport *trans = NULL;
2594 struct sctp_association *asoc = NULL;
2595 struct sctp_sock *sp = sctp_sk(sk);
2596 int error;
2597 int hb_change, pmtud_change, sackdelay_change;
2598
2599 if (optlen == ALIGN(offsetof(struct sctp_paddrparams,
2600 spp_ipv6_flowlabel), 4)) {
2601 if (params->spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL))
2602 return -EINVAL;
2603 } else if (optlen != sizeof(*params)) {
2604 return -EINVAL;
2605 }
2606
2607 /* Validate flags and value parameters. */
2608 hb_change = params->spp_flags & SPP_HB;
2609 pmtud_change = params->spp_flags & SPP_PMTUD;
2610 sackdelay_change = params->spp_flags & SPP_SACKDELAY;
2611
2612 if (hb_change == SPP_HB ||
2613 pmtud_change == SPP_PMTUD ||
2614 sackdelay_change == SPP_SACKDELAY ||
2615 params->spp_sackdelay > 500 ||
2616 (params->spp_pathmtu &&
2617 params->spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2618 return -EINVAL;
2619
2620 /* If an address other than INADDR_ANY is specified, and
2621 * no transport is found, then the request is invalid.
2622 */
2623 if (!sctp_is_any(sk, (union sctp_addr *)¶ms->spp_address)) {
2624 trans = sctp_addr_id2transport(sk, ¶ms->spp_address,
2625 params->spp_assoc_id);
2626 if (!trans)
2627 return -EINVAL;
2628 }
2629
2630 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
2631 * socket is a one to many style socket, and an association
2632 * was not found, then the id was invalid.
2633 */
2634 asoc = sctp_id2assoc(sk, params->spp_assoc_id);
2635 if (!asoc && params->spp_assoc_id != SCTP_FUTURE_ASSOC &&
2636 sctp_style(sk, UDP))
2637 return -EINVAL;
2638
2639 /* Heartbeat demand can only be sent on a transport or
2640 * association, but not a socket.
2641 */
2642 if (params->spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2643 return -EINVAL;
2644
2645 /* Process parameters. */
2646 error = sctp_apply_peer_addr_params(params, trans, asoc, sp,
2647 hb_change, pmtud_change,
2648 sackdelay_change);
2649
2650 if (error)
2651 return error;
2652
2653 /* If changes are for association, also apply parameters to each
2654 * transport.
2655 */
2656 if (!trans && asoc) {
2657 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2658 transports) {
2659 sctp_apply_peer_addr_params(params, trans, asoc, sp,
2660 hb_change, pmtud_change,
2661 sackdelay_change);
2662 }
2663 }
2664
2665 return 0;
2666}
2667
2668static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags)
2669{
2670 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE;
2671}
2672
2673static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags)
2674{
2675 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE;
2676}
2677
2678static void sctp_apply_asoc_delayed_ack(struct sctp_sack_info *params,
2679 struct sctp_association *asoc)
2680{
2681 struct sctp_transport *trans;
2682
2683 if (params->sack_delay) {
2684 asoc->sackdelay = msecs_to_jiffies(params->sack_delay);
2685 asoc->param_flags =
2686 sctp_spp_sackdelay_enable(asoc->param_flags);
2687 }
2688 if (params->sack_freq == 1) {
2689 asoc->param_flags =
2690 sctp_spp_sackdelay_disable(asoc->param_flags);
2691 } else if (params->sack_freq > 1) {
2692 asoc->sackfreq = params->sack_freq;
2693 asoc->param_flags =
2694 sctp_spp_sackdelay_enable(asoc->param_flags);
2695 }
2696
2697 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2698 transports) {
2699 if (params->sack_delay) {
2700 trans->sackdelay = msecs_to_jiffies(params->sack_delay);
2701 trans->param_flags =
2702 sctp_spp_sackdelay_enable(trans->param_flags);
2703 }
2704 if (params->sack_freq == 1) {
2705 trans->param_flags =
2706 sctp_spp_sackdelay_disable(trans->param_flags);
2707 } else if (params->sack_freq > 1) {
2708 trans->sackfreq = params->sack_freq;
2709 trans->param_flags =
2710 sctp_spp_sackdelay_enable(trans->param_flags);
2711 }
2712 }
2713}
2714
2715/*
2716 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
2717 *
2718 * This option will effect the way delayed acks are performed. This
2719 * option allows you to get or set the delayed ack time, in
2720 * milliseconds. It also allows changing the delayed ack frequency.
2721 * Changing the frequency to 1 disables the delayed sack algorithm. If
2722 * the assoc_id is 0, then this sets or gets the endpoints default
2723 * values. If the assoc_id field is non-zero, then the set or get
2724 * effects the specified association for the one to many model (the
2725 * assoc_id field is ignored by the one to one model). Note that if
2726 * sack_delay or sack_freq are 0 when setting this option, then the
2727 * current values will remain unchanged.
2728 *
2729 * struct sctp_sack_info {
2730 * sctp_assoc_t sack_assoc_id;
2731 * uint32_t sack_delay;
2732 * uint32_t sack_freq;
2733 * };
2734 *
2735 * sack_assoc_id - This parameter, indicates which association the user
2736 * is performing an action upon. Note that if this field's value is
2737 * zero then the endpoints default value is changed (effecting future
2738 * associations only).
2739 *
2740 * sack_delay - This parameter contains the number of milliseconds that
2741 * the user is requesting the delayed ACK timer be set to. Note that
2742 * this value is defined in the standard to be between 200 and 500
2743 * milliseconds.
2744 *
2745 * sack_freq - This parameter contains the number of packets that must
2746 * be received before a sack is sent without waiting for the delay
2747 * timer to expire. The default value for this is 2, setting this
2748 * value to 1 will disable the delayed sack algorithm.
2749 */
2750static int __sctp_setsockopt_delayed_ack(struct sock *sk,
2751 struct sctp_sack_info *params)
2752{
2753 struct sctp_sock *sp = sctp_sk(sk);
2754 struct sctp_association *asoc;
2755
2756 /* Validate value parameter. */
2757 if (params->sack_delay > 500)
2758 return -EINVAL;
2759
2760 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the
2761 * socket is a one to many style socket, and an association
2762 * was not found, then the id was invalid.
2763 */
2764 asoc = sctp_id2assoc(sk, params->sack_assoc_id);
2765 if (!asoc && params->sack_assoc_id > SCTP_ALL_ASSOC &&
2766 sctp_style(sk, UDP))
2767 return -EINVAL;
2768
2769 if (asoc) {
2770 sctp_apply_asoc_delayed_ack(params, asoc);
2771
2772 return 0;
2773 }
2774
2775 if (sctp_style(sk, TCP))
2776 params->sack_assoc_id = SCTP_FUTURE_ASSOC;
2777
2778 if (params->sack_assoc_id == SCTP_FUTURE_ASSOC ||
2779 params->sack_assoc_id == SCTP_ALL_ASSOC) {
2780 if (params->sack_delay) {
2781 sp->sackdelay = params->sack_delay;
2782 sp->param_flags =
2783 sctp_spp_sackdelay_enable(sp->param_flags);
2784 }
2785 if (params->sack_freq == 1) {
2786 sp->param_flags =
2787 sctp_spp_sackdelay_disable(sp->param_flags);
2788 } else if (params->sack_freq > 1) {
2789 sp->sackfreq = params->sack_freq;
2790 sp->param_flags =
2791 sctp_spp_sackdelay_enable(sp->param_flags);
2792 }
2793 }
2794
2795 if (params->sack_assoc_id == SCTP_CURRENT_ASSOC ||
2796 params->sack_assoc_id == SCTP_ALL_ASSOC)
2797 list_for_each_entry(asoc, &sp->ep->asocs, asocs)
2798 sctp_apply_asoc_delayed_ack(params, asoc);
2799
2800 return 0;
2801}
2802
2803static int sctp_setsockopt_delayed_ack(struct sock *sk,
2804 struct sctp_sack_info *params,
2805 unsigned int optlen)
2806{
2807 if (optlen == sizeof(struct sctp_assoc_value)) {
2808 struct sctp_assoc_value *v = (struct sctp_assoc_value *)params;
2809 struct sctp_sack_info p;
2810
2811 pr_warn_ratelimited(DEPRECATED
2812 "%s (pid %d) "
2813 "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
2814 "Use struct sctp_sack_info instead\n",
2815 current->comm, task_pid_nr(current));
2816
2817 p.sack_assoc_id = v->assoc_id;
2818 p.sack_delay = v->assoc_value;
2819 p.sack_freq = v->assoc_value ? 0 : 1;
2820 return __sctp_setsockopt_delayed_ack(sk, &p);
2821 }
2822
2823 if (optlen != sizeof(struct sctp_sack_info))
2824 return -EINVAL;
2825 if (params->sack_delay == 0 && params->sack_freq == 0)
2826 return 0;
2827 return __sctp_setsockopt_delayed_ack(sk, params);
2828}
2829
2830/* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2831 *
2832 * Applications can specify protocol parameters for the default association
2833 * initialization. The option name argument to setsockopt() and getsockopt()
2834 * is SCTP_INITMSG.
2835 *
2836 * Setting initialization parameters is effective only on an unconnected
2837 * socket (for UDP-style sockets only future associations are effected
2838 * by the change). With TCP-style sockets, this option is inherited by
2839 * sockets derived from a listener socket.
2840 */
2841static int sctp_setsockopt_initmsg(struct sock *sk, struct sctp_initmsg *sinit,
2842 unsigned int optlen)
2843{
2844 struct sctp_sock *sp = sctp_sk(sk);
2845
2846 if (optlen != sizeof(struct sctp_initmsg))
2847 return -EINVAL;
2848
2849 if (sinit->sinit_num_ostreams)
2850 sp->initmsg.sinit_num_ostreams = sinit->sinit_num_ostreams;
2851 if (sinit->sinit_max_instreams)
2852 sp->initmsg.sinit_max_instreams = sinit->sinit_max_instreams;
2853 if (sinit->sinit_max_attempts)
2854 sp->initmsg.sinit_max_attempts = sinit->sinit_max_attempts;
2855 if (sinit->sinit_max_init_timeo)
2856 sp->initmsg.sinit_max_init_timeo = sinit->sinit_max_init_timeo;
2857
2858 return 0;
2859}
2860
2861/*
2862 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2863 *
2864 * Applications that wish to use the sendto() system call may wish to
2865 * specify a default set of parameters that would normally be supplied
2866 * through the inclusion of ancillary data. This socket option allows
2867 * such an application to set the default sctp_sndrcvinfo structure.
2868 * The application that wishes to use this socket option simply passes
2869 * in to this call the sctp_sndrcvinfo structure defined in Section
2870 * 5.2.2) The input parameters accepted by this call include
2871 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2872 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
2873 * to this call if the caller is using the UDP model.
2874 */
2875static int sctp_setsockopt_default_send_param(struct sock *sk,
2876 struct sctp_sndrcvinfo *info,
2877 unsigned int optlen)
2878{
2879 struct sctp_sock *sp = sctp_sk(sk);
2880 struct sctp_association *asoc;
2881
2882 if (optlen != sizeof(*info))
2883 return -EINVAL;
2884 if (info->sinfo_flags &
2885 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2886 SCTP_ABORT | SCTP_EOF))
2887 return -EINVAL;
2888
2889 asoc = sctp_id2assoc(sk, info->sinfo_assoc_id);
2890 if (!asoc && info->sinfo_assoc_id > SCTP_ALL_ASSOC &&
2891 sctp_style(sk, UDP))
2892 return -EINVAL;
2893
2894 if (asoc) {
2895 asoc->default_stream = info->sinfo_stream;
2896 asoc->default_flags = info->sinfo_flags;
2897 asoc->default_ppid = info->sinfo_ppid;
2898 asoc->default_context = info->sinfo_context;
2899 asoc->default_timetolive = info->sinfo_timetolive;
2900
2901 return 0;
2902 }
2903
2904 if (sctp_style(sk, TCP))
2905 info->sinfo_assoc_id = SCTP_FUTURE_ASSOC;
2906
2907 if (info->sinfo_assoc_id == SCTP_FUTURE_ASSOC ||
2908 info->sinfo_assoc_id == SCTP_ALL_ASSOC) {
2909 sp->default_stream = info->sinfo_stream;
2910 sp->default_flags = info->sinfo_flags;
2911 sp->default_ppid = info->sinfo_ppid;
2912 sp->default_context = info->sinfo_context;
2913 sp->default_timetolive = info->sinfo_timetolive;
2914 }
2915
2916 if (info->sinfo_assoc_id == SCTP_CURRENT_ASSOC ||
2917 info->sinfo_assoc_id == SCTP_ALL_ASSOC) {
2918 list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
2919 asoc->default_stream = info->sinfo_stream;
2920 asoc->default_flags = info->sinfo_flags;
2921 asoc->default_ppid = info->sinfo_ppid;
2922 asoc->default_context = info->sinfo_context;
2923 asoc->default_timetolive = info->sinfo_timetolive;
2924 }
2925 }
2926
2927 return 0;
2928}
2929
2930/* RFC6458, Section 8.1.31. Set/get Default Send Parameters
2931 * (SCTP_DEFAULT_SNDINFO)
2932 */
2933static int sctp_setsockopt_default_sndinfo(struct sock *sk,
2934 struct sctp_sndinfo *info,
2935 unsigned int optlen)
2936{
2937 struct sctp_sock *sp = sctp_sk(sk);
2938 struct sctp_association *asoc;
2939
2940 if (optlen != sizeof(*info))
2941 return -EINVAL;
2942 if (info->snd_flags &
2943 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2944 SCTP_ABORT | SCTP_EOF))
2945 return -EINVAL;
2946
2947 asoc = sctp_id2assoc(sk, info->snd_assoc_id);
2948 if (!asoc && info->snd_assoc_id > SCTP_ALL_ASSOC &&
2949 sctp_style(sk, UDP))
2950 return -EINVAL;
2951
2952 if (asoc) {
2953 asoc->default_stream = info->snd_sid;
2954 asoc->default_flags = info->snd_flags;
2955 asoc->default_ppid = info->snd_ppid;
2956 asoc->default_context = info->snd_context;
2957
2958 return 0;
2959 }
2960
2961 if (sctp_style(sk, TCP))
2962 info->snd_assoc_id = SCTP_FUTURE_ASSOC;
2963
2964 if (info->snd_assoc_id == SCTP_FUTURE_ASSOC ||
2965 info->snd_assoc_id == SCTP_ALL_ASSOC) {
2966 sp->default_stream = info->snd_sid;
2967 sp->default_flags = info->snd_flags;
2968 sp->default_ppid = info->snd_ppid;
2969 sp->default_context = info->snd_context;
2970 }
2971
2972 if (info->snd_assoc_id == SCTP_CURRENT_ASSOC ||
2973 info->snd_assoc_id == SCTP_ALL_ASSOC) {
2974 list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
2975 asoc->default_stream = info->snd_sid;
2976 asoc->default_flags = info->snd_flags;
2977 asoc->default_ppid = info->snd_ppid;
2978 asoc->default_context = info->snd_context;
2979 }
2980 }
2981
2982 return 0;
2983}
2984
2985/* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2986 *
2987 * Requests that the local SCTP stack use the enclosed peer address as
2988 * the association primary. The enclosed address must be one of the
2989 * association peer's addresses.
2990 */
2991static int sctp_setsockopt_primary_addr(struct sock *sk, struct sctp_prim *prim,
2992 unsigned int optlen)
2993{
2994 struct sctp_transport *trans;
2995 struct sctp_af *af;
2996 int err;
2997
2998 if (optlen != sizeof(struct sctp_prim))
2999 return -EINVAL;
3000
3001 /* Allow security module to validate address but need address len. */
3002 af = sctp_get_af_specific(prim->ssp_addr.ss_family);
3003 if (!af)
3004 return -EINVAL;
3005
3006 err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR,
3007 (struct sockaddr *)&prim->ssp_addr,
3008 af->sockaddr_len);
3009 if (err)
3010 return err;
3011
3012 trans = sctp_addr_id2transport(sk, &prim->ssp_addr, prim->ssp_assoc_id);
3013 if (!trans)
3014 return -EINVAL;
3015
3016 sctp_assoc_set_primary(trans->asoc, trans);
3017
3018 return 0;
3019}
3020
3021/*
3022 * 7.1.5 SCTP_NODELAY
3023 *
3024 * Turn on/off any Nagle-like algorithm. This means that packets are
3025 * generally sent as soon as possible and no unnecessary delays are
3026 * introduced, at the cost of more packets in the network. Expects an
3027 * integer boolean flag.
3028 */
3029static int sctp_setsockopt_nodelay(struct sock *sk, int *val,
3030 unsigned int optlen)
3031{
3032 if (optlen < sizeof(int))
3033 return -EINVAL;
3034 sctp_sk(sk)->nodelay = (*val == 0) ? 0 : 1;
3035 return 0;
3036}
3037
3038/*
3039 *
3040 * 7.1.1 SCTP_RTOINFO
3041 *
3042 * The protocol parameters used to initialize and bound retransmission
3043 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
3044 * and modify these parameters.
3045 * All parameters are time values, in milliseconds. A value of 0, when
3046 * modifying the parameters, indicates that the current value should not
3047 * be changed.
3048 *
3049 */
3050static int sctp_setsockopt_rtoinfo(struct sock *sk,
3051 struct sctp_rtoinfo *rtoinfo,
3052 unsigned int optlen)
3053{
3054 struct sctp_association *asoc;
3055 unsigned long rto_min, rto_max;
3056 struct sctp_sock *sp = sctp_sk(sk);
3057
3058 if (optlen != sizeof (struct sctp_rtoinfo))
3059 return -EINVAL;
3060
3061 asoc = sctp_id2assoc(sk, rtoinfo->srto_assoc_id);
3062
3063 /* Set the values to the specific association */
3064 if (!asoc && rtoinfo->srto_assoc_id != SCTP_FUTURE_ASSOC &&
3065 sctp_style(sk, UDP))
3066 return -EINVAL;
3067
3068 rto_max = rtoinfo->srto_max;
3069 rto_min = rtoinfo->srto_min;
3070
3071 if (rto_max)
3072 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
3073 else
3074 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
3075
3076 if (rto_min)
3077 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
3078 else
3079 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
3080
3081 if (rto_min > rto_max)
3082 return -EINVAL;
3083
3084 if (asoc) {
3085 if (rtoinfo->srto_initial != 0)
3086 asoc->rto_initial =
3087 msecs_to_jiffies(rtoinfo->srto_initial);
3088 asoc->rto_max = rto_max;
3089 asoc->rto_min = rto_min;
3090 } else {
3091 /* If there is no association or the association-id = 0
3092 * set the values to the endpoint.
3093 */
3094 if (rtoinfo->srto_initial != 0)
3095 sp->rtoinfo.srto_initial = rtoinfo->srto_initial;
3096 sp->rtoinfo.srto_max = rto_max;
3097 sp->rtoinfo.srto_min = rto_min;
3098 }
3099
3100 return 0;
3101}
3102
3103/*
3104 *
3105 * 7.1.2 SCTP_ASSOCINFO
3106 *
3107 * This option is used to tune the maximum retransmission attempts
3108 * of the association.
3109 * Returns an error if the new association retransmission value is
3110 * greater than the sum of the retransmission value of the peer.
3111 * See [SCTP] for more information.
3112 *
3113 */
3114static int sctp_setsockopt_associnfo(struct sock *sk,
3115 struct sctp_assocparams *assocparams,
3116 unsigned int optlen)
3117{
3118
3119 struct sctp_association *asoc;
3120
3121 if (optlen != sizeof(struct sctp_assocparams))
3122 return -EINVAL;
3123
3124 asoc = sctp_id2assoc(sk, assocparams->sasoc_assoc_id);
3125
3126 if (!asoc && assocparams->sasoc_assoc_id != SCTP_FUTURE_ASSOC &&
3127 sctp_style(sk, UDP))
3128 return -EINVAL;
3129
3130 /* Set the values to the specific association */
3131 if (asoc) {
3132 if (assocparams->sasoc_asocmaxrxt != 0) {
3133 __u32 path_sum = 0;
3134 int paths = 0;
3135 struct sctp_transport *peer_addr;
3136
3137 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
3138 transports) {
3139 path_sum += peer_addr->pathmaxrxt;
3140 paths++;
3141 }
3142
3143 /* Only validate asocmaxrxt if we have more than
3144 * one path/transport. We do this because path
3145 * retransmissions are only counted when we have more
3146 * then one path.
3147 */
3148 if (paths > 1 &&
3149 assocparams->sasoc_asocmaxrxt > path_sum)
3150 return -EINVAL;
3151
3152 asoc->max_retrans = assocparams->sasoc_asocmaxrxt;
3153 }
3154
3155 if (assocparams->sasoc_cookie_life != 0)
3156 asoc->cookie_life =
3157 ms_to_ktime(assocparams->sasoc_cookie_life);
3158 } else {
3159 /* Set the values to the endpoint */
3160 struct sctp_sock *sp = sctp_sk(sk);
3161
3162 if (assocparams->sasoc_asocmaxrxt != 0)
3163 sp->assocparams.sasoc_asocmaxrxt =
3164 assocparams->sasoc_asocmaxrxt;
3165 if (assocparams->sasoc_cookie_life != 0)
3166 sp->assocparams.sasoc_cookie_life =
3167 assocparams->sasoc_cookie_life;
3168 }
3169 return 0;
3170}
3171
3172/*
3173 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
3174 *
3175 * This socket option is a boolean flag which turns on or off mapped V4
3176 * addresses. If this option is turned on and the socket is type
3177 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
3178 * If this option is turned off, then no mapping will be done of V4
3179 * addresses and a user will receive both PF_INET6 and PF_INET type
3180 * addresses on the socket.
3181 */
3182static int sctp_setsockopt_mappedv4(struct sock *sk, int *val,
3183 unsigned int optlen)
3184{
3185 struct sctp_sock *sp = sctp_sk(sk);
3186
3187 if (optlen < sizeof(int))
3188 return -EINVAL;
3189 if (*val)
3190 sp->v4mapped = 1;
3191 else
3192 sp->v4mapped = 0;
3193
3194 return 0;
3195}
3196
3197/*
3198 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
3199 * This option will get or set the maximum size to put in any outgoing
3200 * SCTP DATA chunk. If a message is larger than this size it will be
3201 * fragmented by SCTP into the specified size. Note that the underlying
3202 * SCTP implementation may fragment into smaller sized chunks when the
3203 * PMTU of the underlying association is smaller than the value set by
3204 * the user. The default value for this option is '0' which indicates
3205 * the user is NOT limiting fragmentation and only the PMTU will effect
3206 * SCTP's choice of DATA chunk size. Note also that values set larger
3207 * than the maximum size of an IP datagram will effectively let SCTP
3208 * control fragmentation (i.e. the same as setting this option to 0).
3209 *
3210 * The following structure is used to access and modify this parameter:
3211 *
3212 * struct sctp_assoc_value {
3213 * sctp_assoc_t assoc_id;
3214 * uint32_t assoc_value;
3215 * };
3216 *
3217 * assoc_id: This parameter is ignored for one-to-one style sockets.
3218 * For one-to-many style sockets this parameter indicates which
3219 * association the user is performing an action upon. Note that if
3220 * this field's value is zero then the endpoints default value is
3221 * changed (effecting future associations only).
3222 * assoc_value: This parameter specifies the maximum size in bytes.
3223 */
3224static int sctp_setsockopt_maxseg(struct sock *sk,
3225 struct sctp_assoc_value *params,
3226 unsigned int optlen)
3227{
3228 struct sctp_sock *sp = sctp_sk(sk);
3229 struct sctp_association *asoc;
3230 sctp_assoc_t assoc_id;
3231 int val;
3232
3233 if (optlen == sizeof(int)) {
3234 pr_warn_ratelimited(DEPRECATED
3235 "%s (pid %d) "
3236 "Use of int in maxseg socket option.\n"
3237 "Use struct sctp_assoc_value instead\n",
3238 current->comm, task_pid_nr(current));
3239 assoc_id = SCTP_FUTURE_ASSOC;
3240 val = *(int *)params;
3241 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3242 assoc_id = params->assoc_id;
3243 val = params->assoc_value;
3244 } else {
3245 return -EINVAL;
3246 }
3247
3248 asoc = sctp_id2assoc(sk, assoc_id);
3249 if (!asoc && assoc_id != SCTP_FUTURE_ASSOC &&
3250 sctp_style(sk, UDP))
3251 return -EINVAL;
3252
3253 if (val) {
3254 int min_len, max_len;
3255 __u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) :
3256 sizeof(struct sctp_data_chunk);
3257
3258 min_len = sctp_min_frag_point(sp, datasize);
3259 max_len = SCTP_MAX_CHUNK_LEN - datasize;
3260
3261 if (val < min_len || val > max_len)
3262 return -EINVAL;
3263 }
3264
3265 if (asoc) {
3266 asoc->user_frag = val;
3267 sctp_assoc_update_frag_point(asoc);
3268 } else {
3269 sp->user_frag = val;
3270 }
3271
3272 return 0;
3273}
3274
3275
3276/*
3277 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3278 *
3279 * Requests that the peer mark the enclosed address as the association
3280 * primary. The enclosed address must be one of the association's
3281 * locally bound addresses. The following structure is used to make a
3282 * set primary request:
3283 */
3284static int sctp_setsockopt_peer_primary_addr(struct sock *sk,
3285 struct sctp_setpeerprim *prim,
3286 unsigned int optlen)
3287{
3288 struct sctp_sock *sp;
3289 struct sctp_association *asoc = NULL;
3290 struct sctp_chunk *chunk;
3291 struct sctp_af *af;
3292 int err;
3293
3294 sp = sctp_sk(sk);
3295
3296 if (!sp->ep->asconf_enable)
3297 return -EPERM;
3298
3299 if (optlen != sizeof(struct sctp_setpeerprim))
3300 return -EINVAL;
3301
3302 asoc = sctp_id2assoc(sk, prim->sspp_assoc_id);
3303 if (!asoc)
3304 return -EINVAL;
3305
3306 if (!asoc->peer.asconf_capable)
3307 return -EPERM;
3308
3309 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3310 return -EPERM;
3311
3312 if (!sctp_state(asoc, ESTABLISHED))
3313 return -ENOTCONN;
3314
3315 af = sctp_get_af_specific(prim->sspp_addr.ss_family);
3316 if (!af)
3317 return -EINVAL;
3318
3319 if (!af->addr_valid((union sctp_addr *)&prim->sspp_addr, sp, NULL))
3320 return -EADDRNOTAVAIL;
3321
3322 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim->sspp_addr))
3323 return -EADDRNOTAVAIL;
3324
3325 /* Allow security module to validate address. */
3326 err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR,
3327 (struct sockaddr *)&prim->sspp_addr,
3328 af->sockaddr_len);
3329 if (err)
3330 return err;
3331
3332 /* Create an ASCONF chunk with SET_PRIMARY parameter */
3333 chunk = sctp_make_asconf_set_prim(asoc,
3334 (union sctp_addr *)&prim->sspp_addr);
3335 if (!chunk)
3336 return -ENOMEM;
3337
3338 err = sctp_send_asconf(asoc, chunk);
3339
3340 pr_debug("%s: we set peer primary addr primitively\n", __func__);
3341
3342 return err;
3343}
3344
3345static int sctp_setsockopt_adaptation_layer(struct sock *sk,
3346 struct sctp_setadaptation *adapt,
3347 unsigned int optlen)
3348{
3349 if (optlen != sizeof(struct sctp_setadaptation))
3350 return -EINVAL;
3351
3352 sctp_sk(sk)->adaptation_ind = adapt->ssb_adaptation_ind;
3353
3354 return 0;
3355}
3356
3357/*
3358 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
3359 *
3360 * The context field in the sctp_sndrcvinfo structure is normally only
3361 * used when a failed message is retrieved holding the value that was
3362 * sent down on the actual send call. This option allows the setting of
3363 * a default context on an association basis that will be received on
3364 * reading messages from the peer. This is especially helpful in the
3365 * one-2-many model for an application to keep some reference to an
3366 * internal state machine that is processing messages on the
3367 * association. Note that the setting of this value only effects
3368 * received messages from the peer and does not effect the value that is
3369 * saved with outbound messages.
3370 */
3371static int sctp_setsockopt_context(struct sock *sk,
3372 struct sctp_assoc_value *params,
3373 unsigned int optlen)
3374{
3375 struct sctp_sock *sp = sctp_sk(sk);
3376 struct sctp_association *asoc;
3377
3378 if (optlen != sizeof(struct sctp_assoc_value))
3379 return -EINVAL;
3380
3381 asoc = sctp_id2assoc(sk, params->assoc_id);
3382 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC &&
3383 sctp_style(sk, UDP))
3384 return -EINVAL;
3385
3386 if (asoc) {
3387 asoc->default_rcv_context = params->assoc_value;
3388
3389 return 0;
3390 }
3391
3392 if (sctp_style(sk, TCP))
3393 params->assoc_id = SCTP_FUTURE_ASSOC;
3394
3395 if (params->assoc_id == SCTP_FUTURE_ASSOC ||
3396 params->assoc_id == SCTP_ALL_ASSOC)
3397 sp->default_rcv_context = params->assoc_value;
3398
3399 if (params->assoc_id == SCTP_CURRENT_ASSOC ||
3400 params->assoc_id == SCTP_ALL_ASSOC)
3401 list_for_each_entry(asoc, &sp->ep->asocs, asocs)
3402 asoc->default_rcv_context = params->assoc_value;
3403
3404 return 0;
3405}
3406
3407/*
3408 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3409 *
3410 * This options will at a minimum specify if the implementation is doing
3411 * fragmented interleave. Fragmented interleave, for a one to many
3412 * socket, is when subsequent calls to receive a message may return
3413 * parts of messages from different associations. Some implementations
3414 * may allow you to turn this value on or off. If so, when turned off,
3415 * no fragment interleave will occur (which will cause a head of line
3416 * blocking amongst multiple associations sharing the same one to many
3417 * socket). When this option is turned on, then each receive call may
3418 * come from a different association (thus the user must receive data
3419 * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3420 * association each receive belongs to.
3421 *
3422 * This option takes a boolean value. A non-zero value indicates that
3423 * fragmented interleave is on. A value of zero indicates that
3424 * fragmented interleave is off.
3425 *
3426 * Note that it is important that an implementation that allows this
3427 * option to be turned on, have it off by default. Otherwise an unaware
3428 * application using the one to many model may become confused and act
3429 * incorrectly.
3430 */
3431static int sctp_setsockopt_fragment_interleave(struct sock *sk, int *val,
3432 unsigned int optlen)
3433{
3434 if (optlen != sizeof(int))
3435 return -EINVAL;
3436
3437 sctp_sk(sk)->frag_interleave = !!*val;
3438
3439 if (!sctp_sk(sk)->frag_interleave)
3440 sctp_sk(sk)->ep->intl_enable = 0;
3441
3442 return 0;
3443}
3444
3445/*
3446 * 8.1.21. Set or Get the SCTP Partial Delivery Point
3447 * (SCTP_PARTIAL_DELIVERY_POINT)
3448 *
3449 * This option will set or get the SCTP partial delivery point. This
3450 * point is the size of a message where the partial delivery API will be
3451 * invoked to help free up rwnd space for the peer. Setting this to a
3452 * lower value will cause partial deliveries to happen more often. The
3453 * calls argument is an integer that sets or gets the partial delivery
3454 * point. Note also that the call will fail if the user attempts to set
3455 * this value larger than the socket receive buffer size.
3456 *
3457 * Note that any single message having a length smaller than or equal to
3458 * the SCTP partial delivery point will be delivered in one single read
3459 * call as long as the user provided buffer is large enough to hold the
3460 * message.
3461 */
3462static int sctp_setsockopt_partial_delivery_point(struct sock *sk, u32 *val,
3463 unsigned int optlen)
3464{
3465 if (optlen != sizeof(u32))
3466 return -EINVAL;
3467
3468 /* Note: We double the receive buffer from what the user sets
3469 * it to be, also initial rwnd is based on rcvbuf/2.
3470 */
3471 if (*val > (sk->sk_rcvbuf >> 1))
3472 return -EINVAL;
3473
3474 sctp_sk(sk)->pd_point = *val;
3475
3476 return 0; /* is this the right error code? */
3477}
3478
3479/*
3480 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
3481 *
3482 * This option will allow a user to change the maximum burst of packets
3483 * that can be emitted by this association. Note that the default value
3484 * is 4, and some implementations may restrict this setting so that it
3485 * can only be lowered.
3486 *
3487 * NOTE: This text doesn't seem right. Do this on a socket basis with
3488 * future associations inheriting the socket value.
3489 */
3490static int sctp_setsockopt_maxburst(struct sock *sk,
3491 struct sctp_assoc_value *params,
3492 unsigned int optlen)
3493{
3494 struct sctp_sock *sp = sctp_sk(sk);
3495 struct sctp_association *asoc;
3496 sctp_assoc_t assoc_id;
3497 u32 assoc_value;
3498
3499 if (optlen == sizeof(int)) {
3500 pr_warn_ratelimited(DEPRECATED
3501 "%s (pid %d) "
3502 "Use of int in max_burst socket option deprecated.\n"
3503 "Use struct sctp_assoc_value instead\n",
3504 current->comm, task_pid_nr(current));
3505 assoc_id = SCTP_FUTURE_ASSOC;
3506 assoc_value = *((int *)params);
3507 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3508 assoc_id = params->assoc_id;
3509 assoc_value = params->assoc_value;
3510 } else
3511 return -EINVAL;
3512
3513 asoc = sctp_id2assoc(sk, assoc_id);
3514 if (!asoc && assoc_id > SCTP_ALL_ASSOC && sctp_style(sk, UDP))
3515 return -EINVAL;
3516
3517 if (asoc) {
3518 asoc->max_burst = assoc_value;
3519
3520 return 0;
3521 }
3522
3523 if (sctp_style(sk, TCP))
3524 assoc_id = SCTP_FUTURE_ASSOC;
3525
3526 if (assoc_id == SCTP_FUTURE_ASSOC || assoc_id == SCTP_ALL_ASSOC)
3527 sp->max_burst = assoc_value;
3528
3529 if (assoc_id == SCTP_CURRENT_ASSOC || assoc_id == SCTP_ALL_ASSOC)
3530 list_for_each_entry(asoc, &sp->ep->asocs, asocs)
3531 asoc->max_burst = assoc_value;
3532
3533 return 0;
3534}
3535
3536/*
3537 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3538 *
3539 * This set option adds a chunk type that the user is requesting to be
3540 * received only in an authenticated way. Changes to the list of chunks
3541 * will only effect future associations on the socket.
3542 */
3543static int sctp_setsockopt_auth_chunk(struct sock *sk,
3544 struct sctp_authchunk *val,
3545 unsigned int optlen)
3546{
3547 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3548
3549 if (!ep->auth_enable)
3550 return -EACCES;
3551
3552 if (optlen != sizeof(struct sctp_authchunk))
3553 return -EINVAL;
3554
3555 switch (val->sauth_chunk) {
3556 case SCTP_CID_INIT:
3557 case SCTP_CID_INIT_ACK:
3558 case SCTP_CID_SHUTDOWN_COMPLETE:
3559 case SCTP_CID_AUTH:
3560 return -EINVAL;
3561 }
3562
3563 /* add this chunk id to the endpoint */
3564 return sctp_auth_ep_add_chunkid(ep, val->sauth_chunk);
3565}
3566
3567/*
3568 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3569 *
3570 * This option gets or sets the list of HMAC algorithms that the local
3571 * endpoint requires the peer to use.
3572 */
3573static int sctp_setsockopt_hmac_ident(struct sock *sk,
3574 struct sctp_hmacalgo *hmacs,
3575 unsigned int optlen)
3576{
3577 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3578 u32 idents;
3579
3580 if (!ep->auth_enable)
3581 return -EACCES;
3582
3583 if (optlen < sizeof(struct sctp_hmacalgo))
3584 return -EINVAL;
3585 optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) +
3586 SCTP_AUTH_NUM_HMACS * sizeof(u16));
3587
3588 idents = hmacs->shmac_num_idents;
3589 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3590 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo)))
3591 return -EINVAL;
3592
3593 return sctp_auth_ep_set_hmacs(ep, hmacs);
3594}
3595
3596/*
3597 * 7.1.20. Set a shared key (SCTP_AUTH_KEY)
3598 *
3599 * This option will set a shared secret key which is used to build an
3600 * association shared key.
3601 */
3602static int sctp_setsockopt_auth_key(struct sock *sk,
3603 struct sctp_authkey *authkey,
3604 unsigned int optlen)
3605{
3606 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3607 struct sctp_association *asoc;
3608 int ret = -EINVAL;
3609
3610 if (optlen <= sizeof(struct sctp_authkey))
3611 return -EINVAL;
3612 /* authkey->sca_keylength is u16, so optlen can't be bigger than
3613 * this.
3614 */
3615 optlen = min_t(unsigned int, optlen, USHRT_MAX + sizeof(*authkey));
3616
3617 if (authkey->sca_keylength > optlen - sizeof(*authkey))
3618 goto out;
3619
3620 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3621 if (!asoc && authkey->sca_assoc_id > SCTP_ALL_ASSOC &&
3622 sctp_style(sk, UDP))
3623 goto out;
3624
3625 if (asoc) {
3626 ret = sctp_auth_set_key(ep, asoc, authkey);
3627 goto out;
3628 }
3629
3630 if (sctp_style(sk, TCP))
3631 authkey->sca_assoc_id = SCTP_FUTURE_ASSOC;
3632
3633 if (authkey->sca_assoc_id == SCTP_FUTURE_ASSOC ||
3634 authkey->sca_assoc_id == SCTP_ALL_ASSOC) {
3635 ret = sctp_auth_set_key(ep, asoc, authkey);
3636 if (ret)
3637 goto out;
3638 }
3639
3640 ret = 0;
3641
3642 if (authkey->sca_assoc_id == SCTP_CURRENT_ASSOC ||
3643 authkey->sca_assoc_id == SCTP_ALL_ASSOC) {
3644 list_for_each_entry(asoc, &ep->asocs, asocs) {
3645 int res = sctp_auth_set_key(ep, asoc, authkey);
3646
3647 if (res && !ret)
3648 ret = res;
3649 }
3650 }
3651
3652out:
3653 memzero_explicit(authkey, optlen);
3654 return ret;
3655}
3656
3657/*
3658 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3659 *
3660 * This option will get or set the active shared key to be used to build
3661 * the association shared key.
3662 */
3663static int sctp_setsockopt_active_key(struct sock *sk,
3664 struct sctp_authkeyid *val,
3665 unsigned int optlen)
3666{
3667 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3668 struct sctp_association *asoc;
3669 int ret = 0;
3670
3671 if (optlen != sizeof(struct sctp_authkeyid))
3672 return -EINVAL;
3673
3674 asoc = sctp_id2assoc(sk, val->scact_assoc_id);
3675 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC &&
3676 sctp_style(sk, UDP))
3677 return -EINVAL;
3678
3679 if (asoc)
3680 return sctp_auth_set_active_key(ep, asoc, val->scact_keynumber);
3681
3682 if (sctp_style(sk, TCP))
3683 val->scact_assoc_id = SCTP_FUTURE_ASSOC;
3684
3685 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC ||
3686 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3687 ret = sctp_auth_set_active_key(ep, asoc, val->scact_keynumber);
3688 if (ret)
3689 return ret;
3690 }
3691
3692 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC ||
3693 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3694 list_for_each_entry(asoc, &ep->asocs, asocs) {
3695 int res = sctp_auth_set_active_key(ep, asoc,
3696 val->scact_keynumber);
3697
3698 if (res && !ret)
3699 ret = res;
3700 }
3701 }
3702
3703 return ret;
3704}
3705
3706/*
3707 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY)
3708 *
3709 * This set option will delete a shared secret key from use.
3710 */
3711static int sctp_setsockopt_del_key(struct sock *sk,
3712 struct sctp_authkeyid *val,
3713 unsigned int optlen)
3714{
3715 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3716 struct sctp_association *asoc;
3717 int ret = 0;
3718
3719 if (optlen != sizeof(struct sctp_authkeyid))
3720 return -EINVAL;
3721
3722 asoc = sctp_id2assoc(sk, val->scact_assoc_id);
3723 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC &&
3724 sctp_style(sk, UDP))
3725 return -EINVAL;
3726
3727 if (asoc)
3728 return sctp_auth_del_key_id(ep, asoc, val->scact_keynumber);
3729
3730 if (sctp_style(sk, TCP))
3731 val->scact_assoc_id = SCTP_FUTURE_ASSOC;
3732
3733 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC ||
3734 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3735 ret = sctp_auth_del_key_id(ep, asoc, val->scact_keynumber);
3736 if (ret)
3737 return ret;
3738 }
3739
3740 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC ||
3741 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3742 list_for_each_entry(asoc, &ep->asocs, asocs) {
3743 int res = sctp_auth_del_key_id(ep, asoc,
3744 val->scact_keynumber);
3745
3746 if (res && !ret)
3747 ret = res;
3748 }
3749 }
3750
3751 return ret;
3752}
3753
3754/*
3755 * 8.3.4 Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY)
3756 *
3757 * This set option will deactivate a shared secret key.
3758 */
3759static int sctp_setsockopt_deactivate_key(struct sock *sk,
3760 struct sctp_authkeyid *val,
3761 unsigned int optlen)
3762{
3763 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3764 struct sctp_association *asoc;
3765 int ret = 0;
3766
3767 if (optlen != sizeof(struct sctp_authkeyid))
3768 return -EINVAL;
3769
3770 asoc = sctp_id2assoc(sk, val->scact_assoc_id);
3771 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC &&
3772 sctp_style(sk, UDP))
3773 return -EINVAL;
3774
3775 if (asoc)
3776 return sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber);
3777
3778 if (sctp_style(sk, TCP))
3779 val->scact_assoc_id = SCTP_FUTURE_ASSOC;
3780
3781 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC ||
3782 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3783 ret = sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber);
3784 if (ret)
3785 return ret;
3786 }
3787
3788 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC ||
3789 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3790 list_for_each_entry(asoc, &ep->asocs, asocs) {
3791 int res = sctp_auth_deact_key_id(ep, asoc,
3792 val->scact_keynumber);
3793
3794 if (res && !ret)
3795 ret = res;
3796 }
3797 }
3798
3799 return ret;
3800}
3801
3802/*
3803 * 8.1.23 SCTP_AUTO_ASCONF
3804 *
3805 * This option will enable or disable the use of the automatic generation of
3806 * ASCONF chunks to add and delete addresses to an existing association. Note
3807 * that this option has two caveats namely: a) it only affects sockets that
3808 * are bound to all addresses available to the SCTP stack, and b) the system
3809 * administrator may have an overriding control that turns the ASCONF feature
3810 * off no matter what setting the socket option may have.
3811 * This option expects an integer boolean flag, where a non-zero value turns on
3812 * the option, and a zero value turns off the option.
3813 * Note. In this implementation, socket operation overrides default parameter
3814 * being set by sysctl as well as FreeBSD implementation
3815 */
3816static int sctp_setsockopt_auto_asconf(struct sock *sk, int *val,
3817 unsigned int optlen)
3818{
3819 struct sctp_sock *sp = sctp_sk(sk);
3820
3821 if (optlen < sizeof(int))
3822 return -EINVAL;
3823 if (!sctp_is_ep_boundall(sk) && *val)
3824 return -EINVAL;
3825 if ((*val && sp->do_auto_asconf) || (!*val && !sp->do_auto_asconf))
3826 return 0;
3827
3828 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3829 if (*val == 0 && sp->do_auto_asconf) {
3830 list_del(&sp->auto_asconf_list);
3831 sp->do_auto_asconf = 0;
3832 } else if (*val && !sp->do_auto_asconf) {
3833 list_add_tail(&sp->auto_asconf_list,
3834 &sock_net(sk)->sctp.auto_asconf_splist);
3835 sp->do_auto_asconf = 1;
3836 }
3837 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3838 return 0;
3839}
3840
3841/*
3842 * SCTP_PEER_ADDR_THLDS
3843 *
3844 * This option allows us to alter the partially failed threshold for one or all
3845 * transports in an association. See Section 6.1 of:
3846 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3847 */
3848static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3849 struct sctp_paddrthlds_v2 *val,
3850 unsigned int optlen, bool v2)
3851{
3852 struct sctp_transport *trans;
3853 struct sctp_association *asoc;
3854 int len;
3855
3856 len = v2 ? sizeof(*val) : sizeof(struct sctp_paddrthlds);
3857 if (optlen < len)
3858 return -EINVAL;
3859
3860 if (v2 && val->spt_pathpfthld > val->spt_pathcpthld)
3861 return -EINVAL;
3862
3863 if (!sctp_is_any(sk, (const union sctp_addr *)&val->spt_address)) {
3864 trans = sctp_addr_id2transport(sk, &val->spt_address,
3865 val->spt_assoc_id);
3866 if (!trans)
3867 return -ENOENT;
3868
3869 if (val->spt_pathmaxrxt)
3870 trans->pathmaxrxt = val->spt_pathmaxrxt;
3871 if (v2)
3872 trans->ps_retrans = val->spt_pathcpthld;
3873 trans->pf_retrans = val->spt_pathpfthld;
3874
3875 return 0;
3876 }
3877
3878 asoc = sctp_id2assoc(sk, val->spt_assoc_id);
3879 if (!asoc && val->spt_assoc_id != SCTP_FUTURE_ASSOC &&
3880 sctp_style(sk, UDP))
3881 return -EINVAL;
3882
3883 if (asoc) {
3884 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3885 transports) {
3886 if (val->spt_pathmaxrxt)
3887 trans->pathmaxrxt = val->spt_pathmaxrxt;
3888 if (v2)
3889 trans->ps_retrans = val->spt_pathcpthld;
3890 trans->pf_retrans = val->spt_pathpfthld;
3891 }
3892
3893 if (val->spt_pathmaxrxt)
3894 asoc->pathmaxrxt = val->spt_pathmaxrxt;
3895 if (v2)
3896 asoc->ps_retrans = val->spt_pathcpthld;
3897 asoc->pf_retrans = val->spt_pathpfthld;
3898 } else {
3899 struct sctp_sock *sp = sctp_sk(sk);
3900
3901 if (val->spt_pathmaxrxt)
3902 sp->pathmaxrxt = val->spt_pathmaxrxt;
3903 if (v2)
3904 sp->ps_retrans = val->spt_pathcpthld;
3905 sp->pf_retrans = val->spt_pathpfthld;
3906 }
3907
3908 return 0;
3909}
3910
3911static int sctp_setsockopt_recvrcvinfo(struct sock *sk, int *val,
3912 unsigned int optlen)
3913{
3914 if (optlen < sizeof(int))
3915 return -EINVAL;
3916
3917 sctp_sk(sk)->recvrcvinfo = (*val == 0) ? 0 : 1;
3918
3919 return 0;
3920}
3921
3922static int sctp_setsockopt_recvnxtinfo(struct sock *sk, int *val,
3923 unsigned int optlen)
3924{
3925 if (optlen < sizeof(int))
3926 return -EINVAL;
3927
3928 sctp_sk(sk)->recvnxtinfo = (*val == 0) ? 0 : 1;
3929
3930 return 0;
3931}
3932
3933static int sctp_setsockopt_pr_supported(struct sock *sk,
3934 struct sctp_assoc_value *params,
3935 unsigned int optlen)
3936{
3937 struct sctp_association *asoc;
3938
3939 if (optlen != sizeof(*params))
3940 return -EINVAL;
3941
3942 asoc = sctp_id2assoc(sk, params->assoc_id);
3943 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
3944 sctp_style(sk, UDP))
3945 return -EINVAL;
3946
3947 sctp_sk(sk)->ep->prsctp_enable = !!params->assoc_value;
3948
3949 return 0;
3950}
3951
3952static int sctp_setsockopt_default_prinfo(struct sock *sk,
3953 struct sctp_default_prinfo *info,
3954 unsigned int optlen)
3955{
3956 struct sctp_sock *sp = sctp_sk(sk);
3957 struct sctp_association *asoc;
3958 int retval = -EINVAL;
3959
3960 if (optlen != sizeof(*info))
3961 goto out;
3962
3963 if (info->pr_policy & ~SCTP_PR_SCTP_MASK)
3964 goto out;
3965
3966 if (info->pr_policy == SCTP_PR_SCTP_NONE)
3967 info->pr_value = 0;
3968
3969 asoc = sctp_id2assoc(sk, info->pr_assoc_id);
3970 if (!asoc && info->pr_assoc_id > SCTP_ALL_ASSOC &&
3971 sctp_style(sk, UDP))
3972 goto out;
3973
3974 retval = 0;
3975
3976 if (asoc) {
3977 SCTP_PR_SET_POLICY(asoc->default_flags, info->pr_policy);
3978 asoc->default_timetolive = info->pr_value;
3979 goto out;
3980 }
3981
3982 if (sctp_style(sk, TCP))
3983 info->pr_assoc_id = SCTP_FUTURE_ASSOC;
3984
3985 if (info->pr_assoc_id == SCTP_FUTURE_ASSOC ||
3986 info->pr_assoc_id == SCTP_ALL_ASSOC) {
3987 SCTP_PR_SET_POLICY(sp->default_flags, info->pr_policy);
3988 sp->default_timetolive = info->pr_value;
3989 }
3990
3991 if (info->pr_assoc_id == SCTP_CURRENT_ASSOC ||
3992 info->pr_assoc_id == SCTP_ALL_ASSOC) {
3993 list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
3994 SCTP_PR_SET_POLICY(asoc->default_flags,
3995 info->pr_policy);
3996 asoc->default_timetolive = info->pr_value;
3997 }
3998 }
3999
4000out:
4001 return retval;
4002}
4003
4004static int sctp_setsockopt_reconfig_supported(struct sock *sk,
4005 struct sctp_assoc_value *params,
4006 unsigned int optlen)
4007{
4008 struct sctp_association *asoc;
4009 int retval = -EINVAL;
4010
4011 if (optlen != sizeof(*params))
4012 goto out;
4013
4014 asoc = sctp_id2assoc(sk, params->assoc_id);
4015 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4016 sctp_style(sk, UDP))
4017 goto out;
4018
4019 sctp_sk(sk)->ep->reconf_enable = !!params->assoc_value;
4020
4021 retval = 0;
4022
4023out:
4024 return retval;
4025}
4026
4027static int sctp_setsockopt_enable_strreset(struct sock *sk,
4028 struct sctp_assoc_value *params,
4029 unsigned int optlen)
4030{
4031 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
4032 struct sctp_association *asoc;
4033 int retval = -EINVAL;
4034
4035 if (optlen != sizeof(*params))
4036 goto out;
4037
4038 if (params->assoc_value & (~SCTP_ENABLE_STRRESET_MASK))
4039 goto out;
4040
4041 asoc = sctp_id2assoc(sk, params->assoc_id);
4042 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC &&
4043 sctp_style(sk, UDP))
4044 goto out;
4045
4046 retval = 0;
4047
4048 if (asoc) {
4049 asoc->strreset_enable = params->assoc_value;
4050 goto out;
4051 }
4052
4053 if (sctp_style(sk, TCP))
4054 params->assoc_id = SCTP_FUTURE_ASSOC;
4055
4056 if (params->assoc_id == SCTP_FUTURE_ASSOC ||
4057 params->assoc_id == SCTP_ALL_ASSOC)
4058 ep->strreset_enable = params->assoc_value;
4059
4060 if (params->assoc_id == SCTP_CURRENT_ASSOC ||
4061 params->assoc_id == SCTP_ALL_ASSOC)
4062 list_for_each_entry(asoc, &ep->asocs, asocs)
4063 asoc->strreset_enable = params->assoc_value;
4064
4065out:
4066 return retval;
4067}
4068
4069static int sctp_setsockopt_reset_streams(struct sock *sk,
4070 struct sctp_reset_streams *params,
4071 unsigned int optlen)
4072{
4073 struct sctp_association *asoc;
4074
4075 if (optlen < sizeof(*params))
4076 return -EINVAL;
4077 /* srs_number_streams is u16, so optlen can't be bigger than this. */
4078 optlen = min_t(unsigned int, optlen, USHRT_MAX +
4079 sizeof(__u16) * sizeof(*params));
4080
4081 if (params->srs_number_streams * sizeof(__u16) >
4082 optlen - sizeof(*params))
4083 return -EINVAL;
4084
4085 asoc = sctp_id2assoc(sk, params->srs_assoc_id);
4086 if (!asoc)
4087 return -EINVAL;
4088
4089 return sctp_send_reset_streams(asoc, params);
4090}
4091
4092static int sctp_setsockopt_reset_assoc(struct sock *sk, sctp_assoc_t *associd,
4093 unsigned int optlen)
4094{
4095 struct sctp_association *asoc;
4096
4097 if (optlen != sizeof(*associd))
4098 return -EINVAL;
4099
4100 asoc = sctp_id2assoc(sk, *associd);
4101 if (!asoc)
4102 return -EINVAL;
4103
4104 return sctp_send_reset_assoc(asoc);
4105}
4106
4107static int sctp_setsockopt_add_streams(struct sock *sk,
4108 struct sctp_add_streams *params,
4109 unsigned int optlen)
4110{
4111 struct sctp_association *asoc;
4112
4113 if (optlen != sizeof(*params))
4114 return -EINVAL;
4115
4116 asoc = sctp_id2assoc(sk, params->sas_assoc_id);
4117 if (!asoc)
4118 return -EINVAL;
4119
4120 return sctp_send_add_streams(asoc, params);
4121}
4122
4123static int sctp_setsockopt_scheduler(struct sock *sk,
4124 struct sctp_assoc_value *params,
4125 unsigned int optlen)
4126{
4127 struct sctp_sock *sp = sctp_sk(sk);
4128 struct sctp_association *asoc;
4129 int retval = 0;
4130
4131 if (optlen < sizeof(*params))
4132 return -EINVAL;
4133
4134 if (params->assoc_value > SCTP_SS_MAX)
4135 return -EINVAL;
4136
4137 asoc = sctp_id2assoc(sk, params->assoc_id);
4138 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC &&
4139 sctp_style(sk, UDP))
4140 return -EINVAL;
4141
4142 if (asoc)
4143 return sctp_sched_set_sched(asoc, params->assoc_value);
4144
4145 if (sctp_style(sk, TCP))
4146 params->assoc_id = SCTP_FUTURE_ASSOC;
4147
4148 if (params->assoc_id == SCTP_FUTURE_ASSOC ||
4149 params->assoc_id == SCTP_ALL_ASSOC)
4150 sp->default_ss = params->assoc_value;
4151
4152 if (params->assoc_id == SCTP_CURRENT_ASSOC ||
4153 params->assoc_id == SCTP_ALL_ASSOC) {
4154 list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4155 int ret = sctp_sched_set_sched(asoc,
4156 params->assoc_value);
4157
4158 if (ret && !retval)
4159 retval = ret;
4160 }
4161 }
4162
4163 return retval;
4164}
4165
4166static int sctp_setsockopt_scheduler_value(struct sock *sk,
4167 struct sctp_stream_value *params,
4168 unsigned int optlen)
4169{
4170 struct sctp_association *asoc;
4171 int retval = -EINVAL;
4172
4173 if (optlen < sizeof(*params))
4174 goto out;
4175
4176 asoc = sctp_id2assoc(sk, params->assoc_id);
4177 if (!asoc && params->assoc_id != SCTP_CURRENT_ASSOC &&
4178 sctp_style(sk, UDP))
4179 goto out;
4180
4181 if (asoc) {
4182 retval = sctp_sched_set_value(asoc, params->stream_id,
4183 params->stream_value, GFP_KERNEL);
4184 goto out;
4185 }
4186
4187 retval = 0;
4188
4189 list_for_each_entry(asoc, &sctp_sk(sk)->ep->asocs, asocs) {
4190 int ret = sctp_sched_set_value(asoc, params->stream_id,
4191 params->stream_value,
4192 GFP_KERNEL);
4193 if (ret && !retval) /* try to return the 1st error. */
4194 retval = ret;
4195 }
4196
4197out:
4198 return retval;
4199}
4200
4201static int sctp_setsockopt_interleaving_supported(struct sock *sk,
4202 struct sctp_assoc_value *p,
4203 unsigned int optlen)
4204{
4205 struct sctp_sock *sp = sctp_sk(sk);
4206 struct sctp_association *asoc;
4207
4208 if (optlen < sizeof(*p))
4209 return -EINVAL;
4210
4211 asoc = sctp_id2assoc(sk, p->assoc_id);
4212 if (!asoc && p->assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP))
4213 return -EINVAL;
4214
4215 if (!sock_net(sk)->sctp.intl_enable || !sp->frag_interleave) {
4216 return -EPERM;
4217 }
4218
4219 sp->ep->intl_enable = !!p->assoc_value;
4220 return 0;
4221}
4222
4223static int sctp_setsockopt_reuse_port(struct sock *sk, int *val,
4224 unsigned int optlen)
4225{
4226 if (!sctp_style(sk, TCP))
4227 return -EOPNOTSUPP;
4228
4229 if (sctp_sk(sk)->ep->base.bind_addr.port)
4230 return -EFAULT;
4231
4232 if (optlen < sizeof(int))
4233 return -EINVAL;
4234
4235 sctp_sk(sk)->reuse = !!*val;
4236
4237 return 0;
4238}
4239
4240static int sctp_assoc_ulpevent_type_set(struct sctp_event *param,
4241 struct sctp_association *asoc)
4242{
4243 struct sctp_ulpevent *event;
4244
4245 sctp_ulpevent_type_set(&asoc->subscribe, param->se_type, param->se_on);
4246
4247 if (param->se_type == SCTP_SENDER_DRY_EVENT && param->se_on) {
4248 if (sctp_outq_is_empty(&asoc->outqueue)) {
4249 event = sctp_ulpevent_make_sender_dry_event(asoc,
4250 GFP_USER | __GFP_NOWARN);
4251 if (!event)
4252 return -ENOMEM;
4253
4254 asoc->stream.si->enqueue_event(&asoc->ulpq, event);
4255 }
4256 }
4257
4258 return 0;
4259}
4260
4261static int sctp_setsockopt_event(struct sock *sk, struct sctp_event *param,
4262 unsigned int optlen)
4263{
4264 struct sctp_sock *sp = sctp_sk(sk);
4265 struct sctp_association *asoc;
4266 int retval = 0;
4267
4268 if (optlen < sizeof(*param))
4269 return -EINVAL;
4270
4271 if (param->se_type < SCTP_SN_TYPE_BASE ||
4272 param->se_type > SCTP_SN_TYPE_MAX)
4273 return -EINVAL;
4274
4275 asoc = sctp_id2assoc(sk, param->se_assoc_id);
4276 if (!asoc && param->se_assoc_id > SCTP_ALL_ASSOC &&
4277 sctp_style(sk, UDP))
4278 return -EINVAL;
4279
4280 if (asoc)
4281 return sctp_assoc_ulpevent_type_set(param, asoc);
4282
4283 if (sctp_style(sk, TCP))
4284 param->se_assoc_id = SCTP_FUTURE_ASSOC;
4285
4286 if (param->se_assoc_id == SCTP_FUTURE_ASSOC ||
4287 param->se_assoc_id == SCTP_ALL_ASSOC)
4288 sctp_ulpevent_type_set(&sp->subscribe,
4289 param->se_type, param->se_on);
4290
4291 if (param->se_assoc_id == SCTP_CURRENT_ASSOC ||
4292 param->se_assoc_id == SCTP_ALL_ASSOC) {
4293 list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4294 int ret = sctp_assoc_ulpevent_type_set(param, asoc);
4295
4296 if (ret && !retval)
4297 retval = ret;
4298 }
4299 }
4300
4301 return retval;
4302}
4303
4304static int sctp_setsockopt_asconf_supported(struct sock *sk,
4305 struct sctp_assoc_value *params,
4306 unsigned int optlen)
4307{
4308 struct sctp_association *asoc;
4309 struct sctp_endpoint *ep;
4310 int retval = -EINVAL;
4311
4312 if (optlen != sizeof(*params))
4313 goto out;
4314
4315 asoc = sctp_id2assoc(sk, params->assoc_id);
4316 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4317 sctp_style(sk, UDP))
4318 goto out;
4319
4320 ep = sctp_sk(sk)->ep;
4321 ep->asconf_enable = !!params->assoc_value;
4322
4323 if (ep->asconf_enable && ep->auth_enable) {
4324 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF);
4325 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK);
4326 }
4327
4328 retval = 0;
4329
4330out:
4331 return retval;
4332}
4333
4334static int sctp_setsockopt_auth_supported(struct sock *sk,
4335 struct sctp_assoc_value *params,
4336 unsigned int optlen)
4337{
4338 struct sctp_association *asoc;
4339 struct sctp_endpoint *ep;
4340 int retval = -EINVAL;
4341
4342 if (optlen != sizeof(*params))
4343 goto out;
4344
4345 asoc = sctp_id2assoc(sk, params->assoc_id);
4346 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4347 sctp_style(sk, UDP))
4348 goto out;
4349
4350 ep = sctp_sk(sk)->ep;
4351 if (params->assoc_value) {
4352 retval = sctp_auth_init(ep, GFP_KERNEL);
4353 if (retval)
4354 goto out;
4355 if (ep->asconf_enable) {
4356 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF);
4357 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK);
4358 }
4359 }
4360
4361 ep->auth_enable = !!params->assoc_value;
4362 retval = 0;
4363
4364out:
4365 return retval;
4366}
4367
4368static int sctp_setsockopt_ecn_supported(struct sock *sk,
4369 struct sctp_assoc_value *params,
4370 unsigned int optlen)
4371{
4372 struct sctp_association *asoc;
4373 int retval = -EINVAL;
4374
4375 if (optlen != sizeof(*params))
4376 goto out;
4377
4378 asoc = sctp_id2assoc(sk, params->assoc_id);
4379 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4380 sctp_style(sk, UDP))
4381 goto out;
4382
4383 sctp_sk(sk)->ep->ecn_enable = !!params->assoc_value;
4384 retval = 0;
4385
4386out:
4387 return retval;
4388}
4389
4390static int sctp_setsockopt_pf_expose(struct sock *sk,
4391 struct sctp_assoc_value *params,
4392 unsigned int optlen)
4393{
4394 struct sctp_association *asoc;
4395 int retval = -EINVAL;
4396
4397 if (optlen != sizeof(*params))
4398 goto out;
4399
4400 if (params->assoc_value > SCTP_PF_EXPOSE_MAX)
4401 goto out;
4402
4403 asoc = sctp_id2assoc(sk, params->assoc_id);
4404 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4405 sctp_style(sk, UDP))
4406 goto out;
4407
4408 if (asoc)
4409 asoc->pf_expose = params->assoc_value;
4410 else
4411 sctp_sk(sk)->pf_expose = params->assoc_value;
4412 retval = 0;
4413
4414out:
4415 return retval;
4416}
4417
4418static int sctp_setsockopt_encap_port(struct sock *sk,
4419 struct sctp_udpencaps *encap,
4420 unsigned int optlen)
4421{
4422 struct sctp_association *asoc;
4423 struct sctp_transport *t;
4424 __be16 encap_port;
4425
4426 if (optlen != sizeof(*encap))
4427 return -EINVAL;
4428
4429 /* If an address other than INADDR_ANY is specified, and
4430 * no transport is found, then the request is invalid.
4431 */
4432 encap_port = (__force __be16)encap->sue_port;
4433 if (!sctp_is_any(sk, (union sctp_addr *)&encap->sue_address)) {
4434 t = sctp_addr_id2transport(sk, &encap->sue_address,
4435 encap->sue_assoc_id);
4436 if (!t)
4437 return -EINVAL;
4438
4439 t->encap_port = encap_port;
4440 return 0;
4441 }
4442
4443 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
4444 * socket is a one to many style socket, and an association
4445 * was not found, then the id was invalid.
4446 */
4447 asoc = sctp_id2assoc(sk, encap->sue_assoc_id);
4448 if (!asoc && encap->sue_assoc_id != SCTP_FUTURE_ASSOC &&
4449 sctp_style(sk, UDP))
4450 return -EINVAL;
4451
4452 /* If changes are for association, also apply encap_port to
4453 * each transport.
4454 */
4455 if (asoc) {
4456 list_for_each_entry(t, &asoc->peer.transport_addr_list,
4457 transports)
4458 t->encap_port = encap_port;
4459
4460 return 0;
4461 }
4462
4463 sctp_sk(sk)->encap_port = encap_port;
4464 return 0;
4465}
4466
4467/* API 6.2 setsockopt(), getsockopt()
4468 *
4469 * Applications use setsockopt() and getsockopt() to set or retrieve
4470 * socket options. Socket options are used to change the default
4471 * behavior of sockets calls. They are described in Section 7.
4472 *
4473 * The syntax is:
4474 *
4475 * ret = getsockopt(int sd, int level, int optname, void __user *optval,
4476 * int __user *optlen);
4477 * ret = setsockopt(int sd, int level, int optname, const void __user *optval,
4478 * int optlen);
4479 *
4480 * sd - the socket descript.
4481 * level - set to IPPROTO_SCTP for all SCTP options.
4482 * optname - the option name.
4483 * optval - the buffer to store the value of the option.
4484 * optlen - the size of the buffer.
4485 */
4486static int sctp_setsockopt(struct sock *sk, int level, int optname,
4487 sockptr_t optval, unsigned int optlen)
4488{
4489 void *kopt = NULL;
4490 int retval = 0;
4491
4492 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
4493
4494 /* I can hardly begin to describe how wrong this is. This is
4495 * so broken as to be worse than useless. The API draft
4496 * REALLY is NOT helpful here... I am not convinced that the
4497 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
4498 * are at all well-founded.
4499 */
4500 if (level != SOL_SCTP) {
4501 struct sctp_af *af = sctp_sk(sk)->pf->af;
4502
4503 return af->setsockopt(sk, level, optname, optval, optlen);
4504 }
4505
4506 if (optlen > 0) {
4507 kopt = memdup_sockptr(optval, optlen);
4508 if (IS_ERR(kopt))
4509 return PTR_ERR(kopt);
4510 }
4511
4512 lock_sock(sk);
4513
4514 switch (optname) {
4515 case SCTP_SOCKOPT_BINDX_ADD:
4516 /* 'optlen' is the size of the addresses buffer. */
4517 retval = sctp_setsockopt_bindx(sk, kopt, optlen,
4518 SCTP_BINDX_ADD_ADDR);
4519 break;
4520
4521 case SCTP_SOCKOPT_BINDX_REM:
4522 /* 'optlen' is the size of the addresses buffer. */
4523 retval = sctp_setsockopt_bindx(sk, kopt, optlen,
4524 SCTP_BINDX_REM_ADDR);
4525 break;
4526
4527 case SCTP_SOCKOPT_CONNECTX_OLD:
4528 /* 'optlen' is the size of the addresses buffer. */
4529 retval = sctp_setsockopt_connectx_old(sk, kopt, optlen);
4530 break;
4531
4532 case SCTP_SOCKOPT_CONNECTX:
4533 /* 'optlen' is the size of the addresses buffer. */
4534 retval = sctp_setsockopt_connectx(sk, kopt, optlen);
4535 break;
4536
4537 case SCTP_DISABLE_FRAGMENTS:
4538 retval = sctp_setsockopt_disable_fragments(sk, kopt, optlen);
4539 break;
4540
4541 case SCTP_EVENTS:
4542 retval = sctp_setsockopt_events(sk, kopt, optlen);
4543 break;
4544
4545 case SCTP_AUTOCLOSE:
4546 retval = sctp_setsockopt_autoclose(sk, kopt, optlen);
4547 break;
4548
4549 case SCTP_PEER_ADDR_PARAMS:
4550 retval = sctp_setsockopt_peer_addr_params(sk, kopt, optlen);
4551 break;
4552
4553 case SCTP_DELAYED_SACK:
4554 retval = sctp_setsockopt_delayed_ack(sk, kopt, optlen);
4555 break;
4556 case SCTP_PARTIAL_DELIVERY_POINT:
4557 retval = sctp_setsockopt_partial_delivery_point(sk, kopt, optlen);
4558 break;
4559
4560 case SCTP_INITMSG:
4561 retval = sctp_setsockopt_initmsg(sk, kopt, optlen);
4562 break;
4563 case SCTP_DEFAULT_SEND_PARAM:
4564 retval = sctp_setsockopt_default_send_param(sk, kopt, optlen);
4565 break;
4566 case SCTP_DEFAULT_SNDINFO:
4567 retval = sctp_setsockopt_default_sndinfo(sk, kopt, optlen);
4568 break;
4569 case SCTP_PRIMARY_ADDR:
4570 retval = sctp_setsockopt_primary_addr(sk, kopt, optlen);
4571 break;
4572 case SCTP_SET_PEER_PRIMARY_ADDR:
4573 retval = sctp_setsockopt_peer_primary_addr(sk, kopt, optlen);
4574 break;
4575 case SCTP_NODELAY:
4576 retval = sctp_setsockopt_nodelay(sk, kopt, optlen);
4577 break;
4578 case SCTP_RTOINFO:
4579 retval = sctp_setsockopt_rtoinfo(sk, kopt, optlen);
4580 break;
4581 case SCTP_ASSOCINFO:
4582 retval = sctp_setsockopt_associnfo(sk, kopt, optlen);
4583 break;
4584 case SCTP_I_WANT_MAPPED_V4_ADDR:
4585 retval = sctp_setsockopt_mappedv4(sk, kopt, optlen);
4586 break;
4587 case SCTP_MAXSEG:
4588 retval = sctp_setsockopt_maxseg(sk, kopt, optlen);
4589 break;
4590 case SCTP_ADAPTATION_LAYER:
4591 retval = sctp_setsockopt_adaptation_layer(sk, kopt, optlen);
4592 break;
4593 case SCTP_CONTEXT:
4594 retval = sctp_setsockopt_context(sk, kopt, optlen);
4595 break;
4596 case SCTP_FRAGMENT_INTERLEAVE:
4597 retval = sctp_setsockopt_fragment_interleave(sk, kopt, optlen);
4598 break;
4599 case SCTP_MAX_BURST:
4600 retval = sctp_setsockopt_maxburst(sk, kopt, optlen);
4601 break;
4602 case SCTP_AUTH_CHUNK:
4603 retval = sctp_setsockopt_auth_chunk(sk, kopt, optlen);
4604 break;
4605 case SCTP_HMAC_IDENT:
4606 retval = sctp_setsockopt_hmac_ident(sk, kopt, optlen);
4607 break;
4608 case SCTP_AUTH_KEY:
4609 retval = sctp_setsockopt_auth_key(sk, kopt, optlen);
4610 break;
4611 case SCTP_AUTH_ACTIVE_KEY:
4612 retval = sctp_setsockopt_active_key(sk, kopt, optlen);
4613 break;
4614 case SCTP_AUTH_DELETE_KEY:
4615 retval = sctp_setsockopt_del_key(sk, kopt, optlen);
4616 break;
4617 case SCTP_AUTH_DEACTIVATE_KEY:
4618 retval = sctp_setsockopt_deactivate_key(sk, kopt, optlen);
4619 break;
4620 case SCTP_AUTO_ASCONF:
4621 retval = sctp_setsockopt_auto_asconf(sk, kopt, optlen);
4622 break;
4623 case SCTP_PEER_ADDR_THLDS:
4624 retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen,
4625 false);
4626 break;
4627 case SCTP_PEER_ADDR_THLDS_V2:
4628 retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen,
4629 true);
4630 break;
4631 case SCTP_RECVRCVINFO:
4632 retval = sctp_setsockopt_recvrcvinfo(sk, kopt, optlen);
4633 break;
4634 case SCTP_RECVNXTINFO:
4635 retval = sctp_setsockopt_recvnxtinfo(sk, kopt, optlen);
4636 break;
4637 case SCTP_PR_SUPPORTED:
4638 retval = sctp_setsockopt_pr_supported(sk, kopt, optlen);
4639 break;
4640 case SCTP_DEFAULT_PRINFO:
4641 retval = sctp_setsockopt_default_prinfo(sk, kopt, optlen);
4642 break;
4643 case SCTP_RECONFIG_SUPPORTED:
4644 retval = sctp_setsockopt_reconfig_supported(sk, kopt, optlen);
4645 break;
4646 case SCTP_ENABLE_STREAM_RESET:
4647 retval = sctp_setsockopt_enable_strreset(sk, kopt, optlen);
4648 break;
4649 case SCTP_RESET_STREAMS:
4650 retval = sctp_setsockopt_reset_streams(sk, kopt, optlen);
4651 break;
4652 case SCTP_RESET_ASSOC:
4653 retval = sctp_setsockopt_reset_assoc(sk, kopt, optlen);
4654 break;
4655 case SCTP_ADD_STREAMS:
4656 retval = sctp_setsockopt_add_streams(sk, kopt, optlen);
4657 break;
4658 case SCTP_STREAM_SCHEDULER:
4659 retval = sctp_setsockopt_scheduler(sk, kopt, optlen);
4660 break;
4661 case SCTP_STREAM_SCHEDULER_VALUE:
4662 retval = sctp_setsockopt_scheduler_value(sk, kopt, optlen);
4663 break;
4664 case SCTP_INTERLEAVING_SUPPORTED:
4665 retval = sctp_setsockopt_interleaving_supported(sk, kopt,
4666 optlen);
4667 break;
4668 case SCTP_REUSE_PORT:
4669 retval = sctp_setsockopt_reuse_port(sk, kopt, optlen);
4670 break;
4671 case SCTP_EVENT:
4672 retval = sctp_setsockopt_event(sk, kopt, optlen);
4673 break;
4674 case SCTP_ASCONF_SUPPORTED:
4675 retval = sctp_setsockopt_asconf_supported(sk, kopt, optlen);
4676 break;
4677 case SCTP_AUTH_SUPPORTED:
4678 retval = sctp_setsockopt_auth_supported(sk, kopt, optlen);
4679 break;
4680 case SCTP_ECN_SUPPORTED:
4681 retval = sctp_setsockopt_ecn_supported(sk, kopt, optlen);
4682 break;
4683 case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE:
4684 retval = sctp_setsockopt_pf_expose(sk, kopt, optlen);
4685 break;
4686 case SCTP_REMOTE_UDP_ENCAPS_PORT:
4687 retval = sctp_setsockopt_encap_port(sk, kopt, optlen);
4688 break;
4689 default:
4690 retval = -ENOPROTOOPT;
4691 break;
4692 }
4693
4694 release_sock(sk);
4695 kfree(kopt);
4696 return retval;
4697}
4698
4699/* API 3.1.6 connect() - UDP Style Syntax
4700 *
4701 * An application may use the connect() call in the UDP model to initiate an
4702 * association without sending data.
4703 *
4704 * The syntax is:
4705 *
4706 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
4707 *
4708 * sd: the socket descriptor to have a new association added to.
4709 *
4710 * nam: the address structure (either struct sockaddr_in or struct
4711 * sockaddr_in6 defined in RFC2553 [7]).
4712 *
4713 * len: the size of the address.
4714 */
4715static int sctp_connect(struct sock *sk, struct sockaddr *addr,
4716 int addr_len, int flags)
4717{
4718 struct sctp_af *af;
4719 int err = -EINVAL;
4720
4721 lock_sock(sk);
4722 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
4723 addr, addr_len);
4724
4725 /* Validate addr_len before calling common connect/connectx routine. */
4726 af = sctp_get_af_specific(addr->sa_family);
4727 if (af && addr_len >= af->sockaddr_len)
4728 err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL);
4729
4730 release_sock(sk);
4731 return err;
4732}
4733
4734int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr,
4735 int addr_len, int flags)
4736{
4737 if (addr_len < sizeof(uaddr->sa_family))
4738 return -EINVAL;
4739
4740 if (uaddr->sa_family == AF_UNSPEC)
4741 return -EOPNOTSUPP;
4742
4743 return sctp_connect(sock->sk, uaddr, addr_len, flags);
4744}
4745
4746/* FIXME: Write comments. */
4747static int sctp_disconnect(struct sock *sk, int flags)
4748{
4749 return -EOPNOTSUPP; /* STUB */
4750}
4751
4752/* 4.1.4 accept() - TCP Style Syntax
4753 *
4754 * Applications use accept() call to remove an established SCTP
4755 * association from the accept queue of the endpoint. A new socket
4756 * descriptor will be returned from accept() to represent the newly
4757 * formed association.
4758 */
4759static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern)
4760{
4761 struct sctp_sock *sp;
4762 struct sctp_endpoint *ep;
4763 struct sock *newsk = NULL;
4764 struct sctp_association *asoc;
4765 long timeo;
4766 int error = 0;
4767
4768 lock_sock(sk);
4769
4770 sp = sctp_sk(sk);
4771 ep = sp->ep;
4772
4773 if (!sctp_style(sk, TCP)) {
4774 error = -EOPNOTSUPP;
4775 goto out;
4776 }
4777
4778 if (!sctp_sstate(sk, LISTENING)) {
4779 error = -EINVAL;
4780 goto out;
4781 }
4782
4783 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
4784
4785 error = sctp_wait_for_accept(sk, timeo);
4786 if (error)
4787 goto out;
4788
4789 /* We treat the list of associations on the endpoint as the accept
4790 * queue and pick the first association on the list.
4791 */
4792 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
4793
4794 newsk = sp->pf->create_accept_sk(sk, asoc, kern);
4795 if (!newsk) {
4796 error = -ENOMEM;
4797 goto out;
4798 }
4799
4800 /* Populate the fields of the newsk from the oldsk and migrate the
4801 * asoc to the newsk.
4802 */
4803 error = sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
4804 if (error) {
4805 sk_common_release(newsk);
4806 newsk = NULL;
4807 }
4808
4809out:
4810 release_sock(sk);
4811 *err = error;
4812 return newsk;
4813}
4814
4815/* The SCTP ioctl handler. */
4816static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
4817{
4818 int rc = -ENOTCONN;
4819
4820 lock_sock(sk);
4821
4822 /*
4823 * SEQPACKET-style sockets in LISTENING state are valid, for
4824 * SCTP, so only discard TCP-style sockets in LISTENING state.
4825 */
4826 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
4827 goto out;
4828
4829 switch (cmd) {
4830 case SIOCINQ: {
4831 struct sk_buff *skb;
4832 unsigned int amount = 0;
4833
4834 skb = skb_peek(&sk->sk_receive_queue);
4835 if (skb != NULL) {
4836 /*
4837 * We will only return the amount of this packet since
4838 * that is all that will be read.
4839 */
4840 amount = skb->len;
4841 }
4842 rc = put_user(amount, (int __user *)arg);
4843 break;
4844 }
4845 default:
4846 rc = -ENOIOCTLCMD;
4847 break;
4848 }
4849out:
4850 release_sock(sk);
4851 return rc;
4852}
4853
4854/* This is the function which gets called during socket creation to
4855 * initialized the SCTP-specific portion of the sock.
4856 * The sock structure should already be zero-filled memory.
4857 */
4858static int sctp_init_sock(struct sock *sk)
4859{
4860 struct net *net = sock_net(sk);
4861 struct sctp_sock *sp;
4862
4863 pr_debug("%s: sk:%p\n", __func__, sk);
4864
4865 sp = sctp_sk(sk);
4866
4867 /* Initialize the SCTP per socket area. */
4868 switch (sk->sk_type) {
4869 case SOCK_SEQPACKET:
4870 sp->type = SCTP_SOCKET_UDP;
4871 break;
4872 case SOCK_STREAM:
4873 sp->type = SCTP_SOCKET_TCP;
4874 break;
4875 default:
4876 return -ESOCKTNOSUPPORT;
4877 }
4878
4879 sk->sk_gso_type = SKB_GSO_SCTP;
4880
4881 /* Initialize default send parameters. These parameters can be
4882 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
4883 */
4884 sp->default_stream = 0;
4885 sp->default_ppid = 0;
4886 sp->default_flags = 0;
4887 sp->default_context = 0;
4888 sp->default_timetolive = 0;
4889
4890 sp->default_rcv_context = 0;
4891 sp->max_burst = net->sctp.max_burst;
4892
4893 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
4894
4895 /* Initialize default setup parameters. These parameters
4896 * can be modified with the SCTP_INITMSG socket option or
4897 * overridden by the SCTP_INIT CMSG.
4898 */
4899 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams;
4900 sp->initmsg.sinit_max_instreams = sctp_max_instreams;
4901 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init;
4902 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
4903
4904 /* Initialize default RTO related parameters. These parameters can
4905 * be modified for with the SCTP_RTOINFO socket option.
4906 */
4907 sp->rtoinfo.srto_initial = net->sctp.rto_initial;
4908 sp->rtoinfo.srto_max = net->sctp.rto_max;
4909 sp->rtoinfo.srto_min = net->sctp.rto_min;
4910
4911 /* Initialize default association related parameters. These parameters
4912 * can be modified with the SCTP_ASSOCINFO socket option.
4913 */
4914 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
4915 sp->assocparams.sasoc_number_peer_destinations = 0;
4916 sp->assocparams.sasoc_peer_rwnd = 0;
4917 sp->assocparams.sasoc_local_rwnd = 0;
4918 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
4919
4920 /* Initialize default event subscriptions. By default, all the
4921 * options are off.
4922 */
4923 sp->subscribe = 0;
4924
4925 /* Default Peer Address Parameters. These defaults can
4926 * be modified via SCTP_PEER_ADDR_PARAMS
4927 */
4928 sp->hbinterval = net->sctp.hb_interval;
4929 sp->udp_port = htons(net->sctp.udp_port);
4930 sp->encap_port = htons(net->sctp.encap_port);
4931 sp->pathmaxrxt = net->sctp.max_retrans_path;
4932 sp->pf_retrans = net->sctp.pf_retrans;
4933 sp->ps_retrans = net->sctp.ps_retrans;
4934 sp->pf_expose = net->sctp.pf_expose;
4935 sp->pathmtu = 0; /* allow default discovery */
4936 sp->sackdelay = net->sctp.sack_timeout;
4937 sp->sackfreq = 2;
4938 sp->param_flags = SPP_HB_ENABLE |
4939 SPP_PMTUD_ENABLE |
4940 SPP_SACKDELAY_ENABLE;
4941 sp->default_ss = SCTP_SS_DEFAULT;
4942
4943 /* If enabled no SCTP message fragmentation will be performed.
4944 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
4945 */
4946 sp->disable_fragments = 0;
4947
4948 /* Enable Nagle algorithm by default. */
4949 sp->nodelay = 0;
4950
4951 sp->recvrcvinfo = 0;
4952 sp->recvnxtinfo = 0;
4953
4954 /* Enable by default. */
4955 sp->v4mapped = 1;
4956
4957 /* Auto-close idle associations after the configured
4958 * number of seconds. A value of 0 disables this
4959 * feature. Configure through the SCTP_AUTOCLOSE socket option,
4960 * for UDP-style sockets only.
4961 */
4962 sp->autoclose = 0;
4963
4964 /* User specified fragmentation limit. */
4965 sp->user_frag = 0;
4966
4967 sp->adaptation_ind = 0;
4968
4969 sp->pf = sctp_get_pf_specific(sk->sk_family);
4970
4971 /* Control variables for partial data delivery. */
4972 atomic_set(&sp->pd_mode, 0);
4973 skb_queue_head_init(&sp->pd_lobby);
4974 sp->frag_interleave = 0;
4975
4976 /* Create a per socket endpoint structure. Even if we
4977 * change the data structure relationships, this may still
4978 * be useful for storing pre-connect address information.
4979 */
4980 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
4981 if (!sp->ep)
4982 return -ENOMEM;
4983
4984 sp->hmac = NULL;
4985
4986 sk->sk_destruct = sctp_destruct_sock;
4987
4988 SCTP_DBG_OBJCNT_INC(sock);
4989
4990 local_bh_disable();
4991 sk_sockets_allocated_inc(sk);
4992 sock_prot_inuse_add(net, sk->sk_prot, 1);
4993
4994 if (net->sctp.default_auto_asconf) {
4995 spin_lock(&sock_net(sk)->sctp.addr_wq_lock);
4996 list_add_tail(&sp->auto_asconf_list,
4997 &net->sctp.auto_asconf_splist);
4998 sp->do_auto_asconf = 1;
4999 spin_unlock(&sock_net(sk)->sctp.addr_wq_lock);
5000 } else {
5001 sp->do_auto_asconf = 0;
5002 }
5003
5004 local_bh_enable();
5005
5006 return 0;
5007}
5008
5009/* Cleanup any SCTP per socket resources. Must be called with
5010 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true
5011 */
5012static void sctp_destroy_sock(struct sock *sk)
5013{
5014 struct sctp_sock *sp;
5015
5016 pr_debug("%s: sk:%p\n", __func__, sk);
5017
5018 /* Release our hold on the endpoint. */
5019 sp = sctp_sk(sk);
5020 /* This could happen during socket init, thus we bail out
5021 * early, since the rest of the below is not setup either.
5022 */
5023 if (sp->ep == NULL)
5024 return;
5025
5026 if (sp->do_auto_asconf) {
5027 sp->do_auto_asconf = 0;
5028 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock);
5029 list_del(&sp->auto_asconf_list);
5030 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock);
5031 }
5032 sctp_endpoint_free(sp->ep);
5033 local_bh_disable();
5034 sk_sockets_allocated_dec(sk);
5035 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
5036 local_bh_enable();
5037}
5038
5039/* Triggered when there are no references on the socket anymore */
5040static void sctp_destruct_sock(struct sock *sk)
5041{
5042 struct sctp_sock *sp = sctp_sk(sk);
5043
5044 /* Free up the HMAC transform. */
5045 crypto_free_shash(sp->hmac);
5046
5047 inet_sock_destruct(sk);
5048}
5049
5050/* API 4.1.7 shutdown() - TCP Style Syntax
5051 * int shutdown(int socket, int how);
5052 *
5053 * sd - the socket descriptor of the association to be closed.
5054 * how - Specifies the type of shutdown. The values are
5055 * as follows:
5056 * SHUT_RD
5057 * Disables further receive operations. No SCTP
5058 * protocol action is taken.
5059 * SHUT_WR
5060 * Disables further send operations, and initiates
5061 * the SCTP shutdown sequence.
5062 * SHUT_RDWR
5063 * Disables further send and receive operations
5064 * and initiates the SCTP shutdown sequence.
5065 */
5066static void sctp_shutdown(struct sock *sk, int how)
5067{
5068 struct net *net = sock_net(sk);
5069 struct sctp_endpoint *ep;
5070
5071 if (!sctp_style(sk, TCP))
5072 return;
5073
5074 ep = sctp_sk(sk)->ep;
5075 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) {
5076 struct sctp_association *asoc;
5077
5078 inet_sk_set_state(sk, SCTP_SS_CLOSING);
5079 asoc = list_entry(ep->asocs.next,
5080 struct sctp_association, asocs);
5081 sctp_primitive_SHUTDOWN(net, asoc, NULL);
5082 }
5083}
5084
5085int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc,
5086 struct sctp_info *info)
5087{
5088 struct sctp_transport *prim;
5089 struct list_head *pos;
5090 int mask;
5091
5092 memset(info, 0, sizeof(*info));
5093 if (!asoc) {
5094 struct sctp_sock *sp = sctp_sk(sk);
5095
5096 info->sctpi_s_autoclose = sp->autoclose;
5097 info->sctpi_s_adaptation_ind = sp->adaptation_ind;
5098 info->sctpi_s_pd_point = sp->pd_point;
5099 info->sctpi_s_nodelay = sp->nodelay;
5100 info->sctpi_s_disable_fragments = sp->disable_fragments;
5101 info->sctpi_s_v4mapped = sp->v4mapped;
5102 info->sctpi_s_frag_interleave = sp->frag_interleave;
5103 info->sctpi_s_type = sp->type;
5104
5105 return 0;
5106 }
5107
5108 info->sctpi_tag = asoc->c.my_vtag;
5109 info->sctpi_state = asoc->state;
5110 info->sctpi_rwnd = asoc->a_rwnd;
5111 info->sctpi_unackdata = asoc->unack_data;
5112 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
5113 info->sctpi_instrms = asoc->stream.incnt;
5114 info->sctpi_outstrms = asoc->stream.outcnt;
5115 list_for_each(pos, &asoc->base.inqueue.in_chunk_list)
5116 info->sctpi_inqueue++;
5117 list_for_each(pos, &asoc->outqueue.out_chunk_list)
5118 info->sctpi_outqueue++;
5119 info->sctpi_overall_error = asoc->overall_error_count;
5120 info->sctpi_max_burst = asoc->max_burst;
5121 info->sctpi_maxseg = asoc->frag_point;
5122 info->sctpi_peer_rwnd = asoc->peer.rwnd;
5123 info->sctpi_peer_tag = asoc->c.peer_vtag;
5124
5125 mask = asoc->peer.ecn_capable << 1;
5126 mask = (mask | asoc->peer.ipv4_address) << 1;
5127 mask = (mask | asoc->peer.ipv6_address) << 1;
5128 mask = (mask | asoc->peer.hostname_address) << 1;
5129 mask = (mask | asoc->peer.asconf_capable) << 1;
5130 mask = (mask | asoc->peer.prsctp_capable) << 1;
5131 mask = (mask | asoc->peer.auth_capable);
5132 info->sctpi_peer_capable = mask;
5133 mask = asoc->peer.sack_needed << 1;
5134 mask = (mask | asoc->peer.sack_generation) << 1;
5135 mask = (mask | asoc->peer.zero_window_announced);
5136 info->sctpi_peer_sack = mask;
5137
5138 info->sctpi_isacks = asoc->stats.isacks;
5139 info->sctpi_osacks = asoc->stats.osacks;
5140 info->sctpi_opackets = asoc->stats.opackets;
5141 info->sctpi_ipackets = asoc->stats.ipackets;
5142 info->sctpi_rtxchunks = asoc->stats.rtxchunks;
5143 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns;
5144 info->sctpi_idupchunks = asoc->stats.idupchunks;
5145 info->sctpi_gapcnt = asoc->stats.gapcnt;
5146 info->sctpi_ouodchunks = asoc->stats.ouodchunks;
5147 info->sctpi_iuodchunks = asoc->stats.iuodchunks;
5148 info->sctpi_oodchunks = asoc->stats.oodchunks;
5149 info->sctpi_iodchunks = asoc->stats.iodchunks;
5150 info->sctpi_octrlchunks = asoc->stats.octrlchunks;
5151 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks;
5152
5153 prim = asoc->peer.primary_path;
5154 memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr));
5155 info->sctpi_p_state = prim->state;
5156 info->sctpi_p_cwnd = prim->cwnd;
5157 info->sctpi_p_srtt = prim->srtt;
5158 info->sctpi_p_rto = jiffies_to_msecs(prim->rto);
5159 info->sctpi_p_hbinterval = prim->hbinterval;
5160 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt;
5161 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay);
5162 info->sctpi_p_ssthresh = prim->ssthresh;
5163 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked;
5164 info->sctpi_p_flight_size = prim->flight_size;
5165 info->sctpi_p_error = prim->error_count;
5166
5167 return 0;
5168}
5169EXPORT_SYMBOL_GPL(sctp_get_sctp_info);
5170
5171/* use callback to avoid exporting the core structure */
5172void sctp_transport_walk_start(struct rhashtable_iter *iter) __acquires(RCU)
5173{
5174 rhltable_walk_enter(&sctp_transport_hashtable, iter);
5175
5176 rhashtable_walk_start(iter);
5177}
5178
5179void sctp_transport_walk_stop(struct rhashtable_iter *iter) __releases(RCU)
5180{
5181 rhashtable_walk_stop(iter);
5182 rhashtable_walk_exit(iter);
5183}
5184
5185struct sctp_transport *sctp_transport_get_next(struct net *net,
5186 struct rhashtable_iter *iter)
5187{
5188 struct sctp_transport *t;
5189
5190 t = rhashtable_walk_next(iter);
5191 for (; t; t = rhashtable_walk_next(iter)) {
5192 if (IS_ERR(t)) {
5193 if (PTR_ERR(t) == -EAGAIN)
5194 continue;
5195 break;
5196 }
5197
5198 if (!sctp_transport_hold(t))
5199 continue;
5200
5201 if (net_eq(t->asoc->base.net, net) &&
5202 t->asoc->peer.primary_path == t)
5203 break;
5204
5205 sctp_transport_put(t);
5206 }
5207
5208 return t;
5209}
5210
5211struct sctp_transport *sctp_transport_get_idx(struct net *net,
5212 struct rhashtable_iter *iter,
5213 int pos)
5214{
5215 struct sctp_transport *t;
5216
5217 if (!pos)
5218 return SEQ_START_TOKEN;
5219
5220 while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) {
5221 if (!--pos)
5222 break;
5223 sctp_transport_put(t);
5224 }
5225
5226 return t;
5227}
5228
5229int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *),
5230 void *p) {
5231 int err = 0;
5232 int hash = 0;
5233 struct sctp_ep_common *epb;
5234 struct sctp_hashbucket *head;
5235
5236 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize;
5237 hash++, head++) {
5238 read_lock_bh(&head->lock);
5239 sctp_for_each_hentry(epb, &head->chain) {
5240 err = cb(sctp_ep(epb), p);
5241 if (err)
5242 break;
5243 }
5244 read_unlock_bh(&head->lock);
5245 }
5246
5247 return err;
5248}
5249EXPORT_SYMBOL_GPL(sctp_for_each_endpoint);
5250
5251int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *),
5252 struct net *net,
5253 const union sctp_addr *laddr,
5254 const union sctp_addr *paddr, void *p)
5255{
5256 struct sctp_transport *transport;
5257 int err;
5258
5259 rcu_read_lock();
5260 transport = sctp_addrs_lookup_transport(net, laddr, paddr);
5261 rcu_read_unlock();
5262 if (!transport)
5263 return -ENOENT;
5264
5265 err = cb(transport, p);
5266 sctp_transport_put(transport);
5267
5268 return err;
5269}
5270EXPORT_SYMBOL_GPL(sctp_transport_lookup_process);
5271
5272int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *),
5273 int (*cb_done)(struct sctp_transport *, void *),
5274 struct net *net, int *pos, void *p) {
5275 struct rhashtable_iter hti;
5276 struct sctp_transport *tsp;
5277 int ret;
5278
5279again:
5280 ret = 0;
5281 sctp_transport_walk_start(&hti);
5282
5283 tsp = sctp_transport_get_idx(net, &hti, *pos + 1);
5284 for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) {
5285 ret = cb(tsp, p);
5286 if (ret)
5287 break;
5288 (*pos)++;
5289 sctp_transport_put(tsp);
5290 }
5291 sctp_transport_walk_stop(&hti);
5292
5293 if (ret) {
5294 if (cb_done && !cb_done(tsp, p)) {
5295 (*pos)++;
5296 sctp_transport_put(tsp);
5297 goto again;
5298 }
5299 sctp_transport_put(tsp);
5300 }
5301
5302 return ret;
5303}
5304EXPORT_SYMBOL_GPL(sctp_for_each_transport);
5305
5306/* 7.2.1 Association Status (SCTP_STATUS)
5307
5308 * Applications can retrieve current status information about an
5309 * association, including association state, peer receiver window size,
5310 * number of unacked data chunks, and number of data chunks pending
5311 * receipt. This information is read-only.
5312 */
5313static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
5314 char __user *optval,
5315 int __user *optlen)
5316{
5317 struct sctp_status status;
5318 struct sctp_association *asoc = NULL;
5319 struct sctp_transport *transport;
5320 sctp_assoc_t associd;
5321 int retval = 0;
5322
5323 if (len < sizeof(status)) {
5324 retval = -EINVAL;
5325 goto out;
5326 }
5327
5328 len = sizeof(status);
5329 if (copy_from_user(&status, optval, len)) {
5330 retval = -EFAULT;
5331 goto out;
5332 }
5333
5334 associd = status.sstat_assoc_id;
5335 asoc = sctp_id2assoc(sk, associd);
5336 if (!asoc) {
5337 retval = -EINVAL;
5338 goto out;
5339 }
5340
5341 transport = asoc->peer.primary_path;
5342
5343 status.sstat_assoc_id = sctp_assoc2id(asoc);
5344 status.sstat_state = sctp_assoc_to_state(asoc);
5345 status.sstat_rwnd = asoc->peer.rwnd;
5346 status.sstat_unackdata = asoc->unack_data;
5347
5348 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
5349 status.sstat_instrms = asoc->stream.incnt;
5350 status.sstat_outstrms = asoc->stream.outcnt;
5351 status.sstat_fragmentation_point = asoc->frag_point;
5352 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
5353 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
5354 transport->af_specific->sockaddr_len);
5355 /* Map ipv4 address into v4-mapped-on-v6 address. */
5356 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
5357 (union sctp_addr *)&status.sstat_primary.spinfo_address);
5358 status.sstat_primary.spinfo_state = transport->state;
5359 status.sstat_primary.spinfo_cwnd = transport->cwnd;
5360 status.sstat_primary.spinfo_srtt = transport->srtt;
5361 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
5362 status.sstat_primary.spinfo_mtu = transport->pathmtu;
5363
5364 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
5365 status.sstat_primary.spinfo_state = SCTP_ACTIVE;
5366
5367 if (put_user(len, optlen)) {
5368 retval = -EFAULT;
5369 goto out;
5370 }
5371
5372 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
5373 __func__, len, status.sstat_state, status.sstat_rwnd,
5374 status.sstat_assoc_id);
5375
5376 if (copy_to_user(optval, &status, len)) {
5377 retval = -EFAULT;
5378 goto out;
5379 }
5380
5381out:
5382 return retval;
5383}
5384
5385
5386/* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
5387 *
5388 * Applications can retrieve information about a specific peer address
5389 * of an association, including its reachability state, congestion
5390 * window, and retransmission timer values. This information is
5391 * read-only.
5392 */
5393static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
5394 char __user *optval,
5395 int __user *optlen)
5396{
5397 struct sctp_paddrinfo pinfo;
5398 struct sctp_transport *transport;
5399 int retval = 0;
5400
5401 if (len < sizeof(pinfo)) {
5402 retval = -EINVAL;
5403 goto out;
5404 }
5405
5406 len = sizeof(pinfo);
5407 if (copy_from_user(&pinfo, optval, len)) {
5408 retval = -EFAULT;
5409 goto out;
5410 }
5411
5412 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
5413 pinfo.spinfo_assoc_id);
5414 if (!transport) {
5415 retval = -EINVAL;
5416 goto out;
5417 }
5418
5419 if (transport->state == SCTP_PF &&
5420 transport->asoc->pf_expose == SCTP_PF_EXPOSE_DISABLE) {
5421 retval = -EACCES;
5422 goto out;
5423 }
5424
5425 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
5426 pinfo.spinfo_state = transport->state;
5427 pinfo.spinfo_cwnd = transport->cwnd;
5428 pinfo.spinfo_srtt = transport->srtt;
5429 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
5430 pinfo.spinfo_mtu = transport->pathmtu;
5431
5432 if (pinfo.spinfo_state == SCTP_UNKNOWN)
5433 pinfo.spinfo_state = SCTP_ACTIVE;
5434
5435 if (put_user(len, optlen)) {
5436 retval = -EFAULT;
5437 goto out;
5438 }
5439
5440 if (copy_to_user(optval, &pinfo, len)) {
5441 retval = -EFAULT;
5442 goto out;
5443 }
5444
5445out:
5446 return retval;
5447}
5448
5449/* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
5450 *
5451 * This option is a on/off flag. If enabled no SCTP message
5452 * fragmentation will be performed. Instead if a message being sent
5453 * exceeds the current PMTU size, the message will NOT be sent and
5454 * instead a error will be indicated to the user.
5455 */
5456static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
5457 char __user *optval, int __user *optlen)
5458{
5459 int val;
5460
5461 if (len < sizeof(int))
5462 return -EINVAL;
5463
5464 len = sizeof(int);
5465 val = (sctp_sk(sk)->disable_fragments == 1);
5466 if (put_user(len, optlen))
5467 return -EFAULT;
5468 if (copy_to_user(optval, &val, len))
5469 return -EFAULT;
5470 return 0;
5471}
5472
5473/* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
5474 *
5475 * This socket option is used to specify various notifications and
5476 * ancillary data the user wishes to receive.
5477 */
5478static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
5479 int __user *optlen)
5480{
5481 struct sctp_event_subscribe subscribe;
5482 __u8 *sn_type = (__u8 *)&subscribe;
5483 int i;
5484
5485 if (len == 0)
5486 return -EINVAL;
5487 if (len > sizeof(struct sctp_event_subscribe))
5488 len = sizeof(struct sctp_event_subscribe);
5489 if (put_user(len, optlen))
5490 return -EFAULT;
5491
5492 for (i = 0; i < len; i++)
5493 sn_type[i] = sctp_ulpevent_type_enabled(sctp_sk(sk)->subscribe,
5494 SCTP_SN_TYPE_BASE + i);
5495
5496 if (copy_to_user(optval, &subscribe, len))
5497 return -EFAULT;
5498
5499 return 0;
5500}
5501
5502/* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
5503 *
5504 * This socket option is applicable to the UDP-style socket only. When
5505 * set it will cause associations that are idle for more than the
5506 * specified number of seconds to automatically close. An association
5507 * being idle is defined an association that has NOT sent or received
5508 * user data. The special value of '0' indicates that no automatic
5509 * close of any associations should be performed. The option expects an
5510 * integer defining the number of seconds of idle time before an
5511 * association is closed.
5512 */
5513static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
5514{
5515 /* Applicable to UDP-style socket only */
5516 if (sctp_style(sk, TCP))
5517 return -EOPNOTSUPP;
5518 if (len < sizeof(int))
5519 return -EINVAL;
5520 len = sizeof(int);
5521 if (put_user(len, optlen))
5522 return -EFAULT;
5523 if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval))
5524 return -EFAULT;
5525 return 0;
5526}
5527
5528/* Helper routine to branch off an association to a new socket. */
5529int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
5530{
5531 struct sctp_association *asoc = sctp_id2assoc(sk, id);
5532 struct sctp_sock *sp = sctp_sk(sk);
5533 struct socket *sock;
5534 int err = 0;
5535
5536 /* Do not peel off from one netns to another one. */
5537 if (!net_eq(current->nsproxy->net_ns, sock_net(sk)))
5538 return -EINVAL;
5539
5540 if (!asoc)
5541 return -EINVAL;
5542
5543 /* An association cannot be branched off from an already peeled-off
5544 * socket, nor is this supported for tcp style sockets.
5545 */
5546 if (!sctp_style(sk, UDP))
5547 return -EINVAL;
5548
5549 /* Create a new socket. */
5550 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
5551 if (err < 0)
5552 return err;
5553
5554 sctp_copy_sock(sock->sk, sk, asoc);
5555
5556 /* Make peeled-off sockets more like 1-1 accepted sockets.
5557 * Set the daddr and initialize id to something more random and also
5558 * copy over any ip options.
5559 */
5560 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk);
5561 sp->pf->copy_ip_options(sk, sock->sk);
5562
5563 /* Populate the fields of the newsk from the oldsk and migrate the
5564 * asoc to the newsk.
5565 */
5566 err = sctp_sock_migrate(sk, sock->sk, asoc,
5567 SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
5568 if (err) {
5569 sock_release(sock);
5570 sock = NULL;
5571 }
5572
5573 *sockp = sock;
5574
5575 return err;
5576}
5577EXPORT_SYMBOL(sctp_do_peeloff);
5578
5579static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff,
5580 struct file **newfile, unsigned flags)
5581{
5582 struct socket *newsock;
5583 int retval;
5584
5585 retval = sctp_do_peeloff(sk, peeloff->associd, &newsock);
5586 if (retval < 0)
5587 goto out;
5588
5589 /* Map the socket to an unused fd that can be returned to the user. */
5590 retval = get_unused_fd_flags(flags & SOCK_CLOEXEC);
5591 if (retval < 0) {
5592 sock_release(newsock);
5593 goto out;
5594 }
5595
5596 *newfile = sock_alloc_file(newsock, 0, NULL);
5597 if (IS_ERR(*newfile)) {
5598 put_unused_fd(retval);
5599 retval = PTR_ERR(*newfile);
5600 *newfile = NULL;
5601 return retval;
5602 }
5603
5604 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
5605 retval);
5606
5607 peeloff->sd = retval;
5608
5609 if (flags & SOCK_NONBLOCK)
5610 (*newfile)->f_flags |= O_NONBLOCK;
5611out:
5612 return retval;
5613}
5614
5615static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
5616{
5617 sctp_peeloff_arg_t peeloff;
5618 struct file *newfile = NULL;
5619 int retval = 0;
5620
5621 if (len < sizeof(sctp_peeloff_arg_t))
5622 return -EINVAL;
5623 len = sizeof(sctp_peeloff_arg_t);
5624 if (copy_from_user(&peeloff, optval, len))
5625 return -EFAULT;
5626
5627 retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0);
5628 if (retval < 0)
5629 goto out;
5630
5631 /* Return the fd mapped to the new socket. */
5632 if (put_user(len, optlen)) {
5633 fput(newfile);
5634 put_unused_fd(retval);
5635 return -EFAULT;
5636 }
5637
5638 if (copy_to_user(optval, &peeloff, len)) {
5639 fput(newfile);
5640 put_unused_fd(retval);
5641 return -EFAULT;
5642 }
5643 fd_install(retval, newfile);
5644out:
5645 return retval;
5646}
5647
5648static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len,
5649 char __user *optval, int __user *optlen)
5650{
5651 sctp_peeloff_flags_arg_t peeloff;
5652 struct file *newfile = NULL;
5653 int retval = 0;
5654
5655 if (len < sizeof(sctp_peeloff_flags_arg_t))
5656 return -EINVAL;
5657 len = sizeof(sctp_peeloff_flags_arg_t);
5658 if (copy_from_user(&peeloff, optval, len))
5659 return -EFAULT;
5660
5661 retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg,
5662 &newfile, peeloff.flags);
5663 if (retval < 0)
5664 goto out;
5665
5666 /* Return the fd mapped to the new socket. */
5667 if (put_user(len, optlen)) {
5668 fput(newfile);
5669 put_unused_fd(retval);
5670 return -EFAULT;
5671 }
5672
5673 if (copy_to_user(optval, &peeloff, len)) {
5674 fput(newfile);
5675 put_unused_fd(retval);
5676 return -EFAULT;
5677 }
5678 fd_install(retval, newfile);
5679out:
5680 return retval;
5681}
5682
5683/* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
5684 *
5685 * Applications can enable or disable heartbeats for any peer address of
5686 * an association, modify an address's heartbeat interval, force a
5687 * heartbeat to be sent immediately, and adjust the address's maximum
5688 * number of retransmissions sent before an address is considered
5689 * unreachable. The following structure is used to access and modify an
5690 * address's parameters:
5691 *
5692 * struct sctp_paddrparams {
5693 * sctp_assoc_t spp_assoc_id;
5694 * struct sockaddr_storage spp_address;
5695 * uint32_t spp_hbinterval;
5696 * uint16_t spp_pathmaxrxt;
5697 * uint32_t spp_pathmtu;
5698 * uint32_t spp_sackdelay;
5699 * uint32_t spp_flags;
5700 * };
5701 *
5702 * spp_assoc_id - (one-to-many style socket) This is filled in the
5703 * application, and identifies the association for
5704 * this query.
5705 * spp_address - This specifies which address is of interest.
5706 * spp_hbinterval - This contains the value of the heartbeat interval,
5707 * in milliseconds. If a value of zero
5708 * is present in this field then no changes are to
5709 * be made to this parameter.
5710 * spp_pathmaxrxt - This contains the maximum number of
5711 * retransmissions before this address shall be
5712 * considered unreachable. If a value of zero
5713 * is present in this field then no changes are to
5714 * be made to this parameter.
5715 * spp_pathmtu - When Path MTU discovery is disabled the value
5716 * specified here will be the "fixed" path mtu.
5717 * Note that if the spp_address field is empty
5718 * then all associations on this address will
5719 * have this fixed path mtu set upon them.
5720 *
5721 * spp_sackdelay - When delayed sack is enabled, this value specifies
5722 * the number of milliseconds that sacks will be delayed
5723 * for. This value will apply to all addresses of an
5724 * association if the spp_address field is empty. Note
5725 * also, that if delayed sack is enabled and this
5726 * value is set to 0, no change is made to the last
5727 * recorded delayed sack timer value.
5728 *
5729 * spp_flags - These flags are used to control various features
5730 * on an association. The flag field may contain
5731 * zero or more of the following options.
5732 *
5733 * SPP_HB_ENABLE - Enable heartbeats on the
5734 * specified address. Note that if the address
5735 * field is empty all addresses for the association
5736 * have heartbeats enabled upon them.
5737 *
5738 * SPP_HB_DISABLE - Disable heartbeats on the
5739 * speicifed address. Note that if the address
5740 * field is empty all addresses for the association
5741 * will have their heartbeats disabled. Note also
5742 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
5743 * mutually exclusive, only one of these two should
5744 * be specified. Enabling both fields will have
5745 * undetermined results.
5746 *
5747 * SPP_HB_DEMAND - Request a user initiated heartbeat
5748 * to be made immediately.
5749 *
5750 * SPP_PMTUD_ENABLE - This field will enable PMTU
5751 * discovery upon the specified address. Note that
5752 * if the address feild is empty then all addresses
5753 * on the association are effected.
5754 *
5755 * SPP_PMTUD_DISABLE - This field will disable PMTU
5756 * discovery upon the specified address. Note that
5757 * if the address feild is empty then all addresses
5758 * on the association are effected. Not also that
5759 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
5760 * exclusive. Enabling both will have undetermined
5761 * results.
5762 *
5763 * SPP_SACKDELAY_ENABLE - Setting this flag turns
5764 * on delayed sack. The time specified in spp_sackdelay
5765 * is used to specify the sack delay for this address. Note
5766 * that if spp_address is empty then all addresses will
5767 * enable delayed sack and take on the sack delay
5768 * value specified in spp_sackdelay.
5769 * SPP_SACKDELAY_DISABLE - Setting this flag turns
5770 * off delayed sack. If the spp_address field is blank then
5771 * delayed sack is disabled for the entire association. Note
5772 * also that this field is mutually exclusive to
5773 * SPP_SACKDELAY_ENABLE, setting both will have undefined
5774 * results.
5775 *
5776 * SPP_IPV6_FLOWLABEL: Setting this flag enables the
5777 * setting of the IPV6 flow label value. The value is
5778 * contained in the spp_ipv6_flowlabel field.
5779 * Upon retrieval, this flag will be set to indicate that
5780 * the spp_ipv6_flowlabel field has a valid value returned.
5781 * If a specific destination address is set (in the
5782 * spp_address field), then the value returned is that of
5783 * the address. If just an association is specified (and
5784 * no address), then the association's default flow label
5785 * is returned. If neither an association nor a destination
5786 * is specified, then the socket's default flow label is
5787 * returned. For non-IPv6 sockets, this flag will be left
5788 * cleared.
5789 *
5790 * SPP_DSCP: Setting this flag enables the setting of the
5791 * Differentiated Services Code Point (DSCP) value
5792 * associated with either the association or a specific
5793 * address. The value is obtained in the spp_dscp field.
5794 * Upon retrieval, this flag will be set to indicate that
5795 * the spp_dscp field has a valid value returned. If a
5796 * specific destination address is set when called (in the
5797 * spp_address field), then that specific destination
5798 * address's DSCP value is returned. If just an association
5799 * is specified, then the association's default DSCP is
5800 * returned. If neither an association nor a destination is
5801 * specified, then the socket's default DSCP is returned.
5802 *
5803 * spp_ipv6_flowlabel
5804 * - This field is used in conjunction with the
5805 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label.
5806 * The 20 least significant bits are used for the flow
5807 * label. This setting has precedence over any IPv6-layer
5808 * setting.
5809 *
5810 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag
5811 * and contains the DSCP. The 6 most significant bits are
5812 * used for the DSCP. This setting has precedence over any
5813 * IPv4- or IPv6- layer setting.
5814 */
5815static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
5816 char __user *optval, int __user *optlen)
5817{
5818 struct sctp_paddrparams params;
5819 struct sctp_transport *trans = NULL;
5820 struct sctp_association *asoc = NULL;
5821 struct sctp_sock *sp = sctp_sk(sk);
5822
5823 if (len >= sizeof(params))
5824 len = sizeof(params);
5825 else if (len >= ALIGN(offsetof(struct sctp_paddrparams,
5826 spp_ipv6_flowlabel), 4))
5827 len = ALIGN(offsetof(struct sctp_paddrparams,
5828 spp_ipv6_flowlabel), 4);
5829 else
5830 return -EINVAL;
5831
5832 if (copy_from_user(¶ms, optval, len))
5833 return -EFAULT;
5834
5835 /* If an address other than INADDR_ANY is specified, and
5836 * no transport is found, then the request is invalid.
5837 */
5838 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) {
5839 trans = sctp_addr_id2transport(sk, ¶ms.spp_address,
5840 params.spp_assoc_id);
5841 if (!trans) {
5842 pr_debug("%s: failed no transport\n", __func__);
5843 return -EINVAL;
5844 }
5845 }
5846
5847 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
5848 * socket is a one to many style socket, and an association
5849 * was not found, then the id was invalid.
5850 */
5851 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
5852 if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC &&
5853 sctp_style(sk, UDP)) {
5854 pr_debug("%s: failed no association\n", __func__);
5855 return -EINVAL;
5856 }
5857
5858 if (trans) {
5859 /* Fetch transport values. */
5860 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
5861 params.spp_pathmtu = trans->pathmtu;
5862 params.spp_pathmaxrxt = trans->pathmaxrxt;
5863 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay);
5864
5865 /*draft-11 doesn't say what to return in spp_flags*/
5866 params.spp_flags = trans->param_flags;
5867 if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5868 params.spp_ipv6_flowlabel = trans->flowlabel &
5869 SCTP_FLOWLABEL_VAL_MASK;
5870 params.spp_flags |= SPP_IPV6_FLOWLABEL;
5871 }
5872 if (trans->dscp & SCTP_DSCP_SET_MASK) {
5873 params.spp_dscp = trans->dscp & SCTP_DSCP_VAL_MASK;
5874 params.spp_flags |= SPP_DSCP;
5875 }
5876 } else if (asoc) {
5877 /* Fetch association values. */
5878 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
5879 params.spp_pathmtu = asoc->pathmtu;
5880 params.spp_pathmaxrxt = asoc->pathmaxrxt;
5881 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay);
5882
5883 /*draft-11 doesn't say what to return in spp_flags*/
5884 params.spp_flags = asoc->param_flags;
5885 if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5886 params.spp_ipv6_flowlabel = asoc->flowlabel &
5887 SCTP_FLOWLABEL_VAL_MASK;
5888 params.spp_flags |= SPP_IPV6_FLOWLABEL;
5889 }
5890 if (asoc->dscp & SCTP_DSCP_SET_MASK) {
5891 params.spp_dscp = asoc->dscp & SCTP_DSCP_VAL_MASK;
5892 params.spp_flags |= SPP_DSCP;
5893 }
5894 } else {
5895 /* Fetch socket values. */
5896 params.spp_hbinterval = sp->hbinterval;
5897 params.spp_pathmtu = sp->pathmtu;
5898 params.spp_sackdelay = sp->sackdelay;
5899 params.spp_pathmaxrxt = sp->pathmaxrxt;
5900
5901 /*draft-11 doesn't say what to return in spp_flags*/
5902 params.spp_flags = sp->param_flags;
5903 if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5904 params.spp_ipv6_flowlabel = sp->flowlabel &
5905 SCTP_FLOWLABEL_VAL_MASK;
5906 params.spp_flags |= SPP_IPV6_FLOWLABEL;
5907 }
5908 if (sp->dscp & SCTP_DSCP_SET_MASK) {
5909 params.spp_dscp = sp->dscp & SCTP_DSCP_VAL_MASK;
5910 params.spp_flags |= SPP_DSCP;
5911 }
5912 }
5913
5914 if (copy_to_user(optval, ¶ms, len))
5915 return -EFAULT;
5916
5917 if (put_user(len, optlen))
5918 return -EFAULT;
5919
5920 return 0;
5921}
5922
5923/*
5924 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
5925 *
5926 * This option will effect the way delayed acks are performed. This
5927 * option allows you to get or set the delayed ack time, in
5928 * milliseconds. It also allows changing the delayed ack frequency.
5929 * Changing the frequency to 1 disables the delayed sack algorithm. If
5930 * the assoc_id is 0, then this sets or gets the endpoints default
5931 * values. If the assoc_id field is non-zero, then the set or get
5932 * effects the specified association for the one to many model (the
5933 * assoc_id field is ignored by the one to one model). Note that if
5934 * sack_delay or sack_freq are 0 when setting this option, then the
5935 * current values will remain unchanged.
5936 *
5937 * struct sctp_sack_info {
5938 * sctp_assoc_t sack_assoc_id;
5939 * uint32_t sack_delay;
5940 * uint32_t sack_freq;
5941 * };
5942 *
5943 * sack_assoc_id - This parameter, indicates which association the user
5944 * is performing an action upon. Note that if this field's value is
5945 * zero then the endpoints default value is changed (effecting future
5946 * associations only).
5947 *
5948 * sack_delay - This parameter contains the number of milliseconds that
5949 * the user is requesting the delayed ACK timer be set to. Note that
5950 * this value is defined in the standard to be between 200 and 500
5951 * milliseconds.
5952 *
5953 * sack_freq - This parameter contains the number of packets that must
5954 * be received before a sack is sent without waiting for the delay
5955 * timer to expire. The default value for this is 2, setting this
5956 * value to 1 will disable the delayed sack algorithm.
5957 */
5958static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
5959 char __user *optval,
5960 int __user *optlen)
5961{
5962 struct sctp_sack_info params;
5963 struct sctp_association *asoc = NULL;
5964 struct sctp_sock *sp = sctp_sk(sk);
5965
5966 if (len >= sizeof(struct sctp_sack_info)) {
5967 len = sizeof(struct sctp_sack_info);
5968
5969 if (copy_from_user(¶ms, optval, len))
5970 return -EFAULT;
5971 } else if (len == sizeof(struct sctp_assoc_value)) {
5972 pr_warn_ratelimited(DEPRECATED
5973 "%s (pid %d) "
5974 "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
5975 "Use struct sctp_sack_info instead\n",
5976 current->comm, task_pid_nr(current));
5977 if (copy_from_user(¶ms, optval, len))
5978 return -EFAULT;
5979 } else
5980 return -EINVAL;
5981
5982 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the
5983 * socket is a one to many style socket, and an association
5984 * was not found, then the id was invalid.
5985 */
5986 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
5987 if (!asoc && params.sack_assoc_id != SCTP_FUTURE_ASSOC &&
5988 sctp_style(sk, UDP))
5989 return -EINVAL;
5990
5991 if (asoc) {
5992 /* Fetch association values. */
5993 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
5994 params.sack_delay = jiffies_to_msecs(asoc->sackdelay);
5995 params.sack_freq = asoc->sackfreq;
5996
5997 } else {
5998 params.sack_delay = 0;
5999 params.sack_freq = 1;
6000 }
6001 } else {
6002 /* Fetch socket values. */
6003 if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
6004 params.sack_delay = sp->sackdelay;
6005 params.sack_freq = sp->sackfreq;
6006 } else {
6007 params.sack_delay = 0;
6008 params.sack_freq = 1;
6009 }
6010 }
6011
6012 if (copy_to_user(optval, ¶ms, len))
6013 return -EFAULT;
6014
6015 if (put_user(len, optlen))
6016 return -EFAULT;
6017
6018 return 0;
6019}
6020
6021/* 7.1.3 Initialization Parameters (SCTP_INITMSG)
6022 *
6023 * Applications can specify protocol parameters for the default association
6024 * initialization. The option name argument to setsockopt() and getsockopt()
6025 * is SCTP_INITMSG.
6026 *
6027 * Setting initialization parameters is effective only on an unconnected
6028 * socket (for UDP-style sockets only future associations are effected
6029 * by the change). With TCP-style sockets, this option is inherited by
6030 * sockets derived from a listener socket.
6031 */
6032static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
6033{
6034 if (len < sizeof(struct sctp_initmsg))
6035 return -EINVAL;
6036 len = sizeof(struct sctp_initmsg);
6037 if (put_user(len, optlen))
6038 return -EFAULT;
6039 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
6040 return -EFAULT;
6041 return 0;
6042}
6043
6044
6045static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
6046 char __user *optval, int __user *optlen)
6047{
6048 struct sctp_association *asoc;
6049 int cnt = 0;
6050 struct sctp_getaddrs getaddrs;
6051 struct sctp_transport *from;
6052 void __user *to;
6053 union sctp_addr temp;
6054 struct sctp_sock *sp = sctp_sk(sk);
6055 int addrlen;
6056 size_t space_left;
6057 int bytes_copied;
6058
6059 if (len < sizeof(struct sctp_getaddrs))
6060 return -EINVAL;
6061
6062 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
6063 return -EFAULT;
6064
6065 /* For UDP-style sockets, id specifies the association to query. */
6066 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
6067 if (!asoc)
6068 return -EINVAL;
6069
6070 to = optval + offsetof(struct sctp_getaddrs, addrs);
6071 space_left = len - offsetof(struct sctp_getaddrs, addrs);
6072
6073 list_for_each_entry(from, &asoc->peer.transport_addr_list,
6074 transports) {
6075 memcpy(&temp, &from->ipaddr, sizeof(temp));
6076 addrlen = sctp_get_pf_specific(sk->sk_family)
6077 ->addr_to_user(sp, &temp);
6078 if (space_left < addrlen)
6079 return -ENOMEM;
6080 if (copy_to_user(to, &temp, addrlen))
6081 return -EFAULT;
6082 to += addrlen;
6083 cnt++;
6084 space_left -= addrlen;
6085 }
6086
6087 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
6088 return -EFAULT;
6089 bytes_copied = ((char __user *)to) - optval;
6090 if (put_user(bytes_copied, optlen))
6091 return -EFAULT;
6092
6093 return 0;
6094}
6095
6096static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
6097 size_t space_left, int *bytes_copied)
6098{
6099 struct sctp_sockaddr_entry *addr;
6100 union sctp_addr temp;
6101 int cnt = 0;
6102 int addrlen;
6103 struct net *net = sock_net(sk);
6104
6105 rcu_read_lock();
6106 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
6107 if (!addr->valid)
6108 continue;
6109
6110 if ((PF_INET == sk->sk_family) &&
6111 (AF_INET6 == addr->a.sa.sa_family))
6112 continue;
6113 if ((PF_INET6 == sk->sk_family) &&
6114 inet_v6_ipv6only(sk) &&
6115 (AF_INET == addr->a.sa.sa_family))
6116 continue;
6117 memcpy(&temp, &addr->a, sizeof(temp));
6118 if (!temp.v4.sin_port)
6119 temp.v4.sin_port = htons(port);
6120
6121 addrlen = sctp_get_pf_specific(sk->sk_family)
6122 ->addr_to_user(sctp_sk(sk), &temp);
6123
6124 if (space_left < addrlen) {
6125 cnt = -ENOMEM;
6126 break;
6127 }
6128 memcpy(to, &temp, addrlen);
6129
6130 to += addrlen;
6131 cnt++;
6132 space_left -= addrlen;
6133 *bytes_copied += addrlen;
6134 }
6135 rcu_read_unlock();
6136
6137 return cnt;
6138}
6139
6140
6141static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
6142 char __user *optval, int __user *optlen)
6143{
6144 struct sctp_bind_addr *bp;
6145 struct sctp_association *asoc;
6146 int cnt = 0;
6147 struct sctp_getaddrs getaddrs;
6148 struct sctp_sockaddr_entry *addr;
6149 void __user *to;
6150 union sctp_addr temp;
6151 struct sctp_sock *sp = sctp_sk(sk);
6152 int addrlen;
6153 int err = 0;
6154 size_t space_left;
6155 int bytes_copied = 0;
6156 void *addrs;
6157 void *buf;
6158
6159 if (len < sizeof(struct sctp_getaddrs))
6160 return -EINVAL;
6161
6162 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
6163 return -EFAULT;
6164
6165 /*
6166 * For UDP-style sockets, id specifies the association to query.
6167 * If the id field is set to the value '0' then the locally bound
6168 * addresses are returned without regard to any particular
6169 * association.
6170 */
6171 if (0 == getaddrs.assoc_id) {
6172 bp = &sctp_sk(sk)->ep->base.bind_addr;
6173 } else {
6174 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
6175 if (!asoc)
6176 return -EINVAL;
6177 bp = &asoc->base.bind_addr;
6178 }
6179
6180 to = optval + offsetof(struct sctp_getaddrs, addrs);
6181 space_left = len - offsetof(struct sctp_getaddrs, addrs);
6182
6183 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN);
6184 if (!addrs)
6185 return -ENOMEM;
6186
6187 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
6188 * addresses from the global local address list.
6189 */
6190 if (sctp_list_single_entry(&bp->address_list)) {
6191 addr = list_entry(bp->address_list.next,
6192 struct sctp_sockaddr_entry, list);
6193 if (sctp_is_any(sk, &addr->a)) {
6194 cnt = sctp_copy_laddrs(sk, bp->port, addrs,
6195 space_left, &bytes_copied);
6196 if (cnt < 0) {
6197 err = cnt;
6198 goto out;
6199 }
6200 goto copy_getaddrs;
6201 }
6202 }
6203
6204 buf = addrs;
6205 /* Protection on the bound address list is not needed since
6206 * in the socket option context we hold a socket lock and
6207 * thus the bound address list can't change.
6208 */
6209 list_for_each_entry(addr, &bp->address_list, list) {
6210 memcpy(&temp, &addr->a, sizeof(temp));
6211 addrlen = sctp_get_pf_specific(sk->sk_family)
6212 ->addr_to_user(sp, &temp);
6213 if (space_left < addrlen) {
6214 err = -ENOMEM; /*fixme: right error?*/
6215 goto out;
6216 }
6217 memcpy(buf, &temp, addrlen);
6218 buf += addrlen;
6219 bytes_copied += addrlen;
6220 cnt++;
6221 space_left -= addrlen;
6222 }
6223
6224copy_getaddrs:
6225 if (copy_to_user(to, addrs, bytes_copied)) {
6226 err = -EFAULT;
6227 goto out;
6228 }
6229 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
6230 err = -EFAULT;
6231 goto out;
6232 }
6233 /* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too,
6234 * but we can't change it anymore.
6235 */
6236 if (put_user(bytes_copied, optlen))
6237 err = -EFAULT;
6238out:
6239 kfree(addrs);
6240 return err;
6241}
6242
6243/* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
6244 *
6245 * Requests that the local SCTP stack use the enclosed peer address as
6246 * the association primary. The enclosed address must be one of the
6247 * association peer's addresses.
6248 */
6249static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
6250 char __user *optval, int __user *optlen)
6251{
6252 struct sctp_prim prim;
6253 struct sctp_association *asoc;
6254 struct sctp_sock *sp = sctp_sk(sk);
6255
6256 if (len < sizeof(struct sctp_prim))
6257 return -EINVAL;
6258
6259 len = sizeof(struct sctp_prim);
6260
6261 if (copy_from_user(&prim, optval, len))
6262 return -EFAULT;
6263
6264 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
6265 if (!asoc)
6266 return -EINVAL;
6267
6268 if (!asoc->peer.primary_path)
6269 return -ENOTCONN;
6270
6271 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
6272 asoc->peer.primary_path->af_specific->sockaddr_len);
6273
6274 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp,
6275 (union sctp_addr *)&prim.ssp_addr);
6276
6277 if (put_user(len, optlen))
6278 return -EFAULT;
6279 if (copy_to_user(optval, &prim, len))
6280 return -EFAULT;
6281
6282 return 0;
6283}
6284
6285/*
6286 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
6287 *
6288 * Requests that the local endpoint set the specified Adaptation Layer
6289 * Indication parameter for all future INIT and INIT-ACK exchanges.
6290 */
6291static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
6292 char __user *optval, int __user *optlen)
6293{
6294 struct sctp_setadaptation adaptation;
6295
6296 if (len < sizeof(struct sctp_setadaptation))
6297 return -EINVAL;
6298
6299 len = sizeof(struct sctp_setadaptation);
6300
6301 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
6302
6303 if (put_user(len, optlen))
6304 return -EFAULT;
6305 if (copy_to_user(optval, &adaptation, len))
6306 return -EFAULT;
6307
6308 return 0;
6309}
6310
6311/*
6312 *
6313 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
6314 *
6315 * Applications that wish to use the sendto() system call may wish to
6316 * specify a default set of parameters that would normally be supplied
6317 * through the inclusion of ancillary data. This socket option allows
6318 * such an application to set the default sctp_sndrcvinfo structure.
6319
6320
6321 * The application that wishes to use this socket option simply passes
6322 * in to this call the sctp_sndrcvinfo structure defined in Section
6323 * 5.2.2) The input parameters accepted by this call include
6324 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
6325 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
6326 * to this call if the caller is using the UDP model.
6327 *
6328 * For getsockopt, it get the default sctp_sndrcvinfo structure.
6329 */
6330static int sctp_getsockopt_default_send_param(struct sock *sk,
6331 int len, char __user *optval,
6332 int __user *optlen)
6333{
6334 struct sctp_sock *sp = sctp_sk(sk);
6335 struct sctp_association *asoc;
6336 struct sctp_sndrcvinfo info;
6337
6338 if (len < sizeof(info))
6339 return -EINVAL;
6340
6341 len = sizeof(info);
6342
6343 if (copy_from_user(&info, optval, len))
6344 return -EFAULT;
6345
6346 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
6347 if (!asoc && info.sinfo_assoc_id != SCTP_FUTURE_ASSOC &&
6348 sctp_style(sk, UDP))
6349 return -EINVAL;
6350
6351 if (asoc) {
6352 info.sinfo_stream = asoc->default_stream;
6353 info.sinfo_flags = asoc->default_flags;
6354 info.sinfo_ppid = asoc->default_ppid;
6355 info.sinfo_context = asoc->default_context;
6356 info.sinfo_timetolive = asoc->default_timetolive;
6357 } else {
6358 info.sinfo_stream = sp->default_stream;
6359 info.sinfo_flags = sp->default_flags;
6360 info.sinfo_ppid = sp->default_ppid;
6361 info.sinfo_context = sp->default_context;
6362 info.sinfo_timetolive = sp->default_timetolive;
6363 }
6364
6365 if (put_user(len, optlen))
6366 return -EFAULT;
6367 if (copy_to_user(optval, &info, len))
6368 return -EFAULT;
6369
6370 return 0;
6371}
6372
6373/* RFC6458, Section 8.1.31. Set/get Default Send Parameters
6374 * (SCTP_DEFAULT_SNDINFO)
6375 */
6376static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len,
6377 char __user *optval,
6378 int __user *optlen)
6379{
6380 struct sctp_sock *sp = sctp_sk(sk);
6381 struct sctp_association *asoc;
6382 struct sctp_sndinfo info;
6383
6384 if (len < sizeof(info))
6385 return -EINVAL;
6386
6387 len = sizeof(info);
6388
6389 if (copy_from_user(&info, optval, len))
6390 return -EFAULT;
6391
6392 asoc = sctp_id2assoc(sk, info.snd_assoc_id);
6393 if (!asoc && info.snd_assoc_id != SCTP_FUTURE_ASSOC &&
6394 sctp_style(sk, UDP))
6395 return -EINVAL;
6396
6397 if (asoc) {
6398 info.snd_sid = asoc->default_stream;
6399 info.snd_flags = asoc->default_flags;
6400 info.snd_ppid = asoc->default_ppid;
6401 info.snd_context = asoc->default_context;
6402 } else {
6403 info.snd_sid = sp->default_stream;
6404 info.snd_flags = sp->default_flags;
6405 info.snd_ppid = sp->default_ppid;
6406 info.snd_context = sp->default_context;
6407 }
6408
6409 if (put_user(len, optlen))
6410 return -EFAULT;
6411 if (copy_to_user(optval, &info, len))
6412 return -EFAULT;
6413
6414 return 0;
6415}
6416
6417/*
6418 *
6419 * 7.1.5 SCTP_NODELAY
6420 *
6421 * Turn on/off any Nagle-like algorithm. This means that packets are
6422 * generally sent as soon as possible and no unnecessary delays are
6423 * introduced, at the cost of more packets in the network. Expects an
6424 * integer boolean flag.
6425 */
6426
6427static int sctp_getsockopt_nodelay(struct sock *sk, int len,
6428 char __user *optval, int __user *optlen)
6429{
6430 int val;
6431
6432 if (len < sizeof(int))
6433 return -EINVAL;
6434
6435 len = sizeof(int);
6436 val = (sctp_sk(sk)->nodelay == 1);
6437 if (put_user(len, optlen))
6438 return -EFAULT;
6439 if (copy_to_user(optval, &val, len))
6440 return -EFAULT;
6441 return 0;
6442}
6443
6444/*
6445 *
6446 * 7.1.1 SCTP_RTOINFO
6447 *
6448 * The protocol parameters used to initialize and bound retransmission
6449 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
6450 * and modify these parameters.
6451 * All parameters are time values, in milliseconds. A value of 0, when
6452 * modifying the parameters, indicates that the current value should not
6453 * be changed.
6454 *
6455 */
6456static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
6457 char __user *optval,
6458 int __user *optlen) {
6459 struct sctp_rtoinfo rtoinfo;
6460 struct sctp_association *asoc;
6461
6462 if (len < sizeof (struct sctp_rtoinfo))
6463 return -EINVAL;
6464
6465 len = sizeof(struct sctp_rtoinfo);
6466
6467 if (copy_from_user(&rtoinfo, optval, len))
6468 return -EFAULT;
6469
6470 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
6471
6472 if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC &&
6473 sctp_style(sk, UDP))
6474 return -EINVAL;
6475
6476 /* Values corresponding to the specific association. */
6477 if (asoc) {
6478 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
6479 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
6480 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
6481 } else {
6482 /* Values corresponding to the endpoint. */
6483 struct sctp_sock *sp = sctp_sk(sk);
6484
6485 rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
6486 rtoinfo.srto_max = sp->rtoinfo.srto_max;
6487 rtoinfo.srto_min = sp->rtoinfo.srto_min;
6488 }
6489
6490 if (put_user(len, optlen))
6491 return -EFAULT;
6492
6493 if (copy_to_user(optval, &rtoinfo, len))
6494 return -EFAULT;
6495
6496 return 0;
6497}
6498
6499/*
6500 *
6501 * 7.1.2 SCTP_ASSOCINFO
6502 *
6503 * This option is used to tune the maximum retransmission attempts
6504 * of the association.
6505 * Returns an error if the new association retransmission value is
6506 * greater than the sum of the retransmission value of the peer.
6507 * See [SCTP] for more information.
6508 *
6509 */
6510static int sctp_getsockopt_associnfo(struct sock *sk, int len,
6511 char __user *optval,
6512 int __user *optlen)
6513{
6514
6515 struct sctp_assocparams assocparams;
6516 struct sctp_association *asoc;
6517 struct list_head *pos;
6518 int cnt = 0;
6519
6520 if (len < sizeof (struct sctp_assocparams))
6521 return -EINVAL;
6522
6523 len = sizeof(struct sctp_assocparams);
6524
6525 if (copy_from_user(&assocparams, optval, len))
6526 return -EFAULT;
6527
6528 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
6529
6530 if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC &&
6531 sctp_style(sk, UDP))
6532 return -EINVAL;
6533
6534 /* Values correspoinding to the specific association */
6535 if (asoc) {
6536 assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
6537 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
6538 assocparams.sasoc_local_rwnd = asoc->a_rwnd;
6539 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
6540
6541 list_for_each(pos, &asoc->peer.transport_addr_list) {
6542 cnt++;
6543 }
6544
6545 assocparams.sasoc_number_peer_destinations = cnt;
6546 } else {
6547 /* Values corresponding to the endpoint */
6548 struct sctp_sock *sp = sctp_sk(sk);
6549
6550 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
6551 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
6552 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
6553 assocparams.sasoc_cookie_life =
6554 sp->assocparams.sasoc_cookie_life;
6555 assocparams.sasoc_number_peer_destinations =
6556 sp->assocparams.
6557 sasoc_number_peer_destinations;
6558 }
6559
6560 if (put_user(len, optlen))
6561 return -EFAULT;
6562
6563 if (copy_to_user(optval, &assocparams, len))
6564 return -EFAULT;
6565
6566 return 0;
6567}
6568
6569/*
6570 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
6571 *
6572 * This socket option is a boolean flag which turns on or off mapped V4
6573 * addresses. If this option is turned on and the socket is type
6574 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
6575 * If this option is turned off, then no mapping will be done of V4
6576 * addresses and a user will receive both PF_INET6 and PF_INET type
6577 * addresses on the socket.
6578 */
6579static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
6580 char __user *optval, int __user *optlen)
6581{
6582 int val;
6583 struct sctp_sock *sp = sctp_sk(sk);
6584
6585 if (len < sizeof(int))
6586 return -EINVAL;
6587
6588 len = sizeof(int);
6589 val = sp->v4mapped;
6590 if (put_user(len, optlen))
6591 return -EFAULT;
6592 if (copy_to_user(optval, &val, len))
6593 return -EFAULT;
6594
6595 return 0;
6596}
6597
6598/*
6599 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
6600 * (chapter and verse is quoted at sctp_setsockopt_context())
6601 */
6602static int sctp_getsockopt_context(struct sock *sk, int len,
6603 char __user *optval, int __user *optlen)
6604{
6605 struct sctp_assoc_value params;
6606 struct sctp_association *asoc;
6607
6608 if (len < sizeof(struct sctp_assoc_value))
6609 return -EINVAL;
6610
6611 len = sizeof(struct sctp_assoc_value);
6612
6613 if (copy_from_user(¶ms, optval, len))
6614 return -EFAULT;
6615
6616 asoc = sctp_id2assoc(sk, params.assoc_id);
6617 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6618 sctp_style(sk, UDP))
6619 return -EINVAL;
6620
6621 params.assoc_value = asoc ? asoc->default_rcv_context
6622 : sctp_sk(sk)->default_rcv_context;
6623
6624 if (put_user(len, optlen))
6625 return -EFAULT;
6626 if (copy_to_user(optval, ¶ms, len))
6627 return -EFAULT;
6628
6629 return 0;
6630}
6631
6632/*
6633 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
6634 * This option will get or set the maximum size to put in any outgoing
6635 * SCTP DATA chunk. If a message is larger than this size it will be
6636 * fragmented by SCTP into the specified size. Note that the underlying
6637 * SCTP implementation may fragment into smaller sized chunks when the
6638 * PMTU of the underlying association is smaller than the value set by
6639 * the user. The default value for this option is '0' which indicates
6640 * the user is NOT limiting fragmentation and only the PMTU will effect
6641 * SCTP's choice of DATA chunk size. Note also that values set larger
6642 * than the maximum size of an IP datagram will effectively let SCTP
6643 * control fragmentation (i.e. the same as setting this option to 0).
6644 *
6645 * The following structure is used to access and modify this parameter:
6646 *
6647 * struct sctp_assoc_value {
6648 * sctp_assoc_t assoc_id;
6649 * uint32_t assoc_value;
6650 * };
6651 *
6652 * assoc_id: This parameter is ignored for one-to-one style sockets.
6653 * For one-to-many style sockets this parameter indicates which
6654 * association the user is performing an action upon. Note that if
6655 * this field's value is zero then the endpoints default value is
6656 * changed (effecting future associations only).
6657 * assoc_value: This parameter specifies the maximum size in bytes.
6658 */
6659static int sctp_getsockopt_maxseg(struct sock *sk, int len,
6660 char __user *optval, int __user *optlen)
6661{
6662 struct sctp_assoc_value params;
6663 struct sctp_association *asoc;
6664
6665 if (len == sizeof(int)) {
6666 pr_warn_ratelimited(DEPRECATED
6667 "%s (pid %d) "
6668 "Use of int in maxseg socket option.\n"
6669 "Use struct sctp_assoc_value instead\n",
6670 current->comm, task_pid_nr(current));
6671 params.assoc_id = SCTP_FUTURE_ASSOC;
6672 } else if (len >= sizeof(struct sctp_assoc_value)) {
6673 len = sizeof(struct sctp_assoc_value);
6674 if (copy_from_user(¶ms, optval, len))
6675 return -EFAULT;
6676 } else
6677 return -EINVAL;
6678
6679 asoc = sctp_id2assoc(sk, params.assoc_id);
6680 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6681 sctp_style(sk, UDP))
6682 return -EINVAL;
6683
6684 if (asoc)
6685 params.assoc_value = asoc->frag_point;
6686 else
6687 params.assoc_value = sctp_sk(sk)->user_frag;
6688
6689 if (put_user(len, optlen))
6690 return -EFAULT;
6691 if (len == sizeof(int)) {
6692 if (copy_to_user(optval, ¶ms.assoc_value, len))
6693 return -EFAULT;
6694 } else {
6695 if (copy_to_user(optval, ¶ms, len))
6696 return -EFAULT;
6697 }
6698
6699 return 0;
6700}
6701
6702/*
6703 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
6704 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
6705 */
6706static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
6707 char __user *optval, int __user *optlen)
6708{
6709 int val;
6710
6711 if (len < sizeof(int))
6712 return -EINVAL;
6713
6714 len = sizeof(int);
6715
6716 val = sctp_sk(sk)->frag_interleave;
6717 if (put_user(len, optlen))
6718 return -EFAULT;
6719 if (copy_to_user(optval, &val, len))
6720 return -EFAULT;
6721
6722 return 0;
6723}
6724
6725/*
6726 * 7.1.25. Set or Get the sctp partial delivery point
6727 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
6728 */
6729static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
6730 char __user *optval,
6731 int __user *optlen)
6732{
6733 u32 val;
6734
6735 if (len < sizeof(u32))
6736 return -EINVAL;
6737
6738 len = sizeof(u32);
6739
6740 val = sctp_sk(sk)->pd_point;
6741 if (put_user(len, optlen))
6742 return -EFAULT;
6743 if (copy_to_user(optval, &val, len))
6744 return -EFAULT;
6745
6746 return 0;
6747}
6748
6749/*
6750 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
6751 * (chapter and verse is quoted at sctp_setsockopt_maxburst())
6752 */
6753static int sctp_getsockopt_maxburst(struct sock *sk, int len,
6754 char __user *optval,
6755 int __user *optlen)
6756{
6757 struct sctp_assoc_value params;
6758 struct sctp_association *asoc;
6759
6760 if (len == sizeof(int)) {
6761 pr_warn_ratelimited(DEPRECATED
6762 "%s (pid %d) "
6763 "Use of int in max_burst socket option.\n"
6764 "Use struct sctp_assoc_value instead\n",
6765 current->comm, task_pid_nr(current));
6766 params.assoc_id = SCTP_FUTURE_ASSOC;
6767 } else if (len >= sizeof(struct sctp_assoc_value)) {
6768 len = sizeof(struct sctp_assoc_value);
6769 if (copy_from_user(¶ms, optval, len))
6770 return -EFAULT;
6771 } else
6772 return -EINVAL;
6773
6774 asoc = sctp_id2assoc(sk, params.assoc_id);
6775 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6776 sctp_style(sk, UDP))
6777 return -EINVAL;
6778
6779 params.assoc_value = asoc ? asoc->max_burst : sctp_sk(sk)->max_burst;
6780
6781 if (len == sizeof(int)) {
6782 if (copy_to_user(optval, ¶ms.assoc_value, len))
6783 return -EFAULT;
6784 } else {
6785 if (copy_to_user(optval, ¶ms, len))
6786 return -EFAULT;
6787 }
6788
6789 return 0;
6790
6791}
6792
6793static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
6794 char __user *optval, int __user *optlen)
6795{
6796 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6797 struct sctp_hmacalgo __user *p = (void __user *)optval;
6798 struct sctp_hmac_algo_param *hmacs;
6799 __u16 data_len = 0;
6800 u32 num_idents;
6801 int i;
6802
6803 if (!ep->auth_enable)
6804 return -EACCES;
6805
6806 hmacs = ep->auth_hmacs_list;
6807 data_len = ntohs(hmacs->param_hdr.length) -
6808 sizeof(struct sctp_paramhdr);
6809
6810 if (len < sizeof(struct sctp_hmacalgo) + data_len)
6811 return -EINVAL;
6812
6813 len = sizeof(struct sctp_hmacalgo) + data_len;
6814 num_idents = data_len / sizeof(u16);
6815
6816 if (put_user(len, optlen))
6817 return -EFAULT;
6818 if (put_user(num_idents, &p->shmac_num_idents))
6819 return -EFAULT;
6820 for (i = 0; i < num_idents; i++) {
6821 __u16 hmacid = ntohs(hmacs->hmac_ids[i]);
6822
6823 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16)))
6824 return -EFAULT;
6825 }
6826 return 0;
6827}
6828
6829static int sctp_getsockopt_active_key(struct sock *sk, int len,
6830 char __user *optval, int __user *optlen)
6831{
6832 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6833 struct sctp_authkeyid val;
6834 struct sctp_association *asoc;
6835
6836 if (len < sizeof(struct sctp_authkeyid))
6837 return -EINVAL;
6838
6839 len = sizeof(struct sctp_authkeyid);
6840 if (copy_from_user(&val, optval, len))
6841 return -EFAULT;
6842
6843 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
6844 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
6845 return -EINVAL;
6846
6847 if (asoc) {
6848 if (!asoc->peer.auth_capable)
6849 return -EACCES;
6850 val.scact_keynumber = asoc->active_key_id;
6851 } else {
6852 if (!ep->auth_enable)
6853 return -EACCES;
6854 val.scact_keynumber = ep->active_key_id;
6855 }
6856
6857 if (put_user(len, optlen))
6858 return -EFAULT;
6859 if (copy_to_user(optval, &val, len))
6860 return -EFAULT;
6861
6862 return 0;
6863}
6864
6865static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
6866 char __user *optval, int __user *optlen)
6867{
6868 struct sctp_authchunks __user *p = (void __user *)optval;
6869 struct sctp_authchunks val;
6870 struct sctp_association *asoc;
6871 struct sctp_chunks_param *ch;
6872 u32 num_chunks = 0;
6873 char __user *to;
6874
6875 if (len < sizeof(struct sctp_authchunks))
6876 return -EINVAL;
6877
6878 if (copy_from_user(&val, optval, sizeof(val)))
6879 return -EFAULT;
6880
6881 to = p->gauth_chunks;
6882 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
6883 if (!asoc)
6884 return -EINVAL;
6885
6886 if (!asoc->peer.auth_capable)
6887 return -EACCES;
6888
6889 ch = asoc->peer.peer_chunks;
6890 if (!ch)
6891 goto num;
6892
6893 /* See if the user provided enough room for all the data */
6894 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
6895 if (len < num_chunks)
6896 return -EINVAL;
6897
6898 if (copy_to_user(to, ch->chunks, num_chunks))
6899 return -EFAULT;
6900num:
6901 len = sizeof(struct sctp_authchunks) + num_chunks;
6902 if (put_user(len, optlen))
6903 return -EFAULT;
6904 if (put_user(num_chunks, &p->gauth_number_of_chunks))
6905 return -EFAULT;
6906 return 0;
6907}
6908
6909static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
6910 char __user *optval, int __user *optlen)
6911{
6912 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6913 struct sctp_authchunks __user *p = (void __user *)optval;
6914 struct sctp_authchunks val;
6915 struct sctp_association *asoc;
6916 struct sctp_chunks_param *ch;
6917 u32 num_chunks = 0;
6918 char __user *to;
6919
6920 if (len < sizeof(struct sctp_authchunks))
6921 return -EINVAL;
6922
6923 if (copy_from_user(&val, optval, sizeof(val)))
6924 return -EFAULT;
6925
6926 to = p->gauth_chunks;
6927 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
6928 if (!asoc && val.gauth_assoc_id != SCTP_FUTURE_ASSOC &&
6929 sctp_style(sk, UDP))
6930 return -EINVAL;
6931
6932 if (asoc) {
6933 if (!asoc->peer.auth_capable)
6934 return -EACCES;
6935 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks;
6936 } else {
6937 if (!ep->auth_enable)
6938 return -EACCES;
6939 ch = ep->auth_chunk_list;
6940 }
6941 if (!ch)
6942 goto num;
6943
6944 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
6945 if (len < sizeof(struct sctp_authchunks) + num_chunks)
6946 return -EINVAL;
6947
6948 if (copy_to_user(to, ch->chunks, num_chunks))
6949 return -EFAULT;
6950num:
6951 len = sizeof(struct sctp_authchunks) + num_chunks;
6952 if (put_user(len, optlen))
6953 return -EFAULT;
6954 if (put_user(num_chunks, &p->gauth_number_of_chunks))
6955 return -EFAULT;
6956
6957 return 0;
6958}
6959
6960/*
6961 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
6962 * This option gets the current number of associations that are attached
6963 * to a one-to-many style socket. The option value is an uint32_t.
6964 */
6965static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
6966 char __user *optval, int __user *optlen)
6967{
6968 struct sctp_sock *sp = sctp_sk(sk);
6969 struct sctp_association *asoc;
6970 u32 val = 0;
6971
6972 if (sctp_style(sk, TCP))
6973 return -EOPNOTSUPP;
6974
6975 if (len < sizeof(u32))
6976 return -EINVAL;
6977
6978 len = sizeof(u32);
6979
6980 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6981 val++;
6982 }
6983
6984 if (put_user(len, optlen))
6985 return -EFAULT;
6986 if (copy_to_user(optval, &val, len))
6987 return -EFAULT;
6988
6989 return 0;
6990}
6991
6992/*
6993 * 8.1.23 SCTP_AUTO_ASCONF
6994 * See the corresponding setsockopt entry as description
6995 */
6996static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
6997 char __user *optval, int __user *optlen)
6998{
6999 int val = 0;
7000
7001 if (len < sizeof(int))
7002 return -EINVAL;
7003
7004 len = sizeof(int);
7005 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
7006 val = 1;
7007 if (put_user(len, optlen))
7008 return -EFAULT;
7009 if (copy_to_user(optval, &val, len))
7010 return -EFAULT;
7011 return 0;
7012}
7013
7014/*
7015 * 8.2.6. Get the Current Identifiers of Associations
7016 * (SCTP_GET_ASSOC_ID_LIST)
7017 *
7018 * This option gets the current list of SCTP association identifiers of
7019 * the SCTP associations handled by a one-to-many style socket.
7020 */
7021static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
7022 char __user *optval, int __user *optlen)
7023{
7024 struct sctp_sock *sp = sctp_sk(sk);
7025 struct sctp_association *asoc;
7026 struct sctp_assoc_ids *ids;
7027 u32 num = 0;
7028
7029 if (sctp_style(sk, TCP))
7030 return -EOPNOTSUPP;
7031
7032 if (len < sizeof(struct sctp_assoc_ids))
7033 return -EINVAL;
7034
7035 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
7036 num++;
7037 }
7038
7039 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
7040 return -EINVAL;
7041
7042 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
7043
7044 ids = kmalloc(len, GFP_USER | __GFP_NOWARN);
7045 if (unlikely(!ids))
7046 return -ENOMEM;
7047
7048 ids->gaids_number_of_ids = num;
7049 num = 0;
7050 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
7051 ids->gaids_assoc_id[num++] = asoc->assoc_id;
7052 }
7053
7054 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
7055 kfree(ids);
7056 return -EFAULT;
7057 }
7058
7059 kfree(ids);
7060 return 0;
7061}
7062
7063/*
7064 * SCTP_PEER_ADDR_THLDS
7065 *
7066 * This option allows us to fetch the partially failed threshold for one or all
7067 * transports in an association. See Section 6.1 of:
7068 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
7069 */
7070static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
7071 char __user *optval, int len,
7072 int __user *optlen, bool v2)
7073{
7074 struct sctp_paddrthlds_v2 val;
7075 struct sctp_transport *trans;
7076 struct sctp_association *asoc;
7077 int min;
7078
7079 min = v2 ? sizeof(val) : sizeof(struct sctp_paddrthlds);
7080 if (len < min)
7081 return -EINVAL;
7082 len = min;
7083 if (copy_from_user(&val, optval, len))
7084 return -EFAULT;
7085
7086 if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
7087 trans = sctp_addr_id2transport(sk, &val.spt_address,
7088 val.spt_assoc_id);
7089 if (!trans)
7090 return -ENOENT;
7091
7092 val.spt_pathmaxrxt = trans->pathmaxrxt;
7093 val.spt_pathpfthld = trans->pf_retrans;
7094 val.spt_pathcpthld = trans->ps_retrans;
7095
7096 goto out;
7097 }
7098
7099 asoc = sctp_id2assoc(sk, val.spt_assoc_id);
7100 if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC &&
7101 sctp_style(sk, UDP))
7102 return -EINVAL;
7103
7104 if (asoc) {
7105 val.spt_pathpfthld = asoc->pf_retrans;
7106 val.spt_pathmaxrxt = asoc->pathmaxrxt;
7107 val.spt_pathcpthld = asoc->ps_retrans;
7108 } else {
7109 struct sctp_sock *sp = sctp_sk(sk);
7110
7111 val.spt_pathpfthld = sp->pf_retrans;
7112 val.spt_pathmaxrxt = sp->pathmaxrxt;
7113 val.spt_pathcpthld = sp->ps_retrans;
7114 }
7115
7116out:
7117 if (put_user(len, optlen) || copy_to_user(optval, &val, len))
7118 return -EFAULT;
7119
7120 return 0;
7121}
7122
7123/*
7124 * SCTP_GET_ASSOC_STATS
7125 *
7126 * This option retrieves local per endpoint statistics. It is modeled
7127 * after OpenSolaris' implementation
7128 */
7129static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
7130 char __user *optval,
7131 int __user *optlen)
7132{
7133 struct sctp_assoc_stats sas;
7134 struct sctp_association *asoc = NULL;
7135
7136 /* User must provide at least the assoc id */
7137 if (len < sizeof(sctp_assoc_t))
7138 return -EINVAL;
7139
7140 /* Allow the struct to grow and fill in as much as possible */
7141 len = min_t(size_t, len, sizeof(sas));
7142
7143 if (copy_from_user(&sas, optval, len))
7144 return -EFAULT;
7145
7146 asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
7147 if (!asoc)
7148 return -EINVAL;
7149
7150 sas.sas_rtxchunks = asoc->stats.rtxchunks;
7151 sas.sas_gapcnt = asoc->stats.gapcnt;
7152 sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
7153 sas.sas_osacks = asoc->stats.osacks;
7154 sas.sas_isacks = asoc->stats.isacks;
7155 sas.sas_octrlchunks = asoc->stats.octrlchunks;
7156 sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
7157 sas.sas_oodchunks = asoc->stats.oodchunks;
7158 sas.sas_iodchunks = asoc->stats.iodchunks;
7159 sas.sas_ouodchunks = asoc->stats.ouodchunks;
7160 sas.sas_iuodchunks = asoc->stats.iuodchunks;
7161 sas.sas_idupchunks = asoc->stats.idupchunks;
7162 sas.sas_opackets = asoc->stats.opackets;
7163 sas.sas_ipackets = asoc->stats.ipackets;
7164
7165 /* New high max rto observed, will return 0 if not a single
7166 * RTO update took place. obs_rto_ipaddr will be bogus
7167 * in such a case
7168 */
7169 sas.sas_maxrto = asoc->stats.max_obs_rto;
7170 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
7171 sizeof(struct sockaddr_storage));
7172
7173 /* Mark beginning of a new observation period */
7174 asoc->stats.max_obs_rto = asoc->rto_min;
7175
7176 if (put_user(len, optlen))
7177 return -EFAULT;
7178
7179 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
7180
7181 if (copy_to_user(optval, &sas, len))
7182 return -EFAULT;
7183
7184 return 0;
7185}
7186
7187static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len,
7188 char __user *optval,
7189 int __user *optlen)
7190{
7191 int val = 0;
7192
7193 if (len < sizeof(int))
7194 return -EINVAL;
7195
7196 len = sizeof(int);
7197 if (sctp_sk(sk)->recvrcvinfo)
7198 val = 1;
7199 if (put_user(len, optlen))
7200 return -EFAULT;
7201 if (copy_to_user(optval, &val, len))
7202 return -EFAULT;
7203
7204 return 0;
7205}
7206
7207static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len,
7208 char __user *optval,
7209 int __user *optlen)
7210{
7211 int val = 0;
7212
7213 if (len < sizeof(int))
7214 return -EINVAL;
7215
7216 len = sizeof(int);
7217 if (sctp_sk(sk)->recvnxtinfo)
7218 val = 1;
7219 if (put_user(len, optlen))
7220 return -EFAULT;
7221 if (copy_to_user(optval, &val, len))
7222 return -EFAULT;
7223
7224 return 0;
7225}
7226
7227static int sctp_getsockopt_pr_supported(struct sock *sk, int len,
7228 char __user *optval,
7229 int __user *optlen)
7230{
7231 struct sctp_assoc_value params;
7232 struct sctp_association *asoc;
7233 int retval = -EFAULT;
7234
7235 if (len < sizeof(params)) {
7236 retval = -EINVAL;
7237 goto out;
7238 }
7239
7240 len = sizeof(params);
7241 if (copy_from_user(¶ms, optval, len))
7242 goto out;
7243
7244 asoc = sctp_id2assoc(sk, params.assoc_id);
7245 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7246 sctp_style(sk, UDP)) {
7247 retval = -EINVAL;
7248 goto out;
7249 }
7250
7251 params.assoc_value = asoc ? asoc->peer.prsctp_capable
7252 : sctp_sk(sk)->ep->prsctp_enable;
7253
7254 if (put_user(len, optlen))
7255 goto out;
7256
7257 if (copy_to_user(optval, ¶ms, len))
7258 goto out;
7259
7260 retval = 0;
7261
7262out:
7263 return retval;
7264}
7265
7266static int sctp_getsockopt_default_prinfo(struct sock *sk, int len,
7267 char __user *optval,
7268 int __user *optlen)
7269{
7270 struct sctp_default_prinfo info;
7271 struct sctp_association *asoc;
7272 int retval = -EFAULT;
7273
7274 if (len < sizeof(info)) {
7275 retval = -EINVAL;
7276 goto out;
7277 }
7278
7279 len = sizeof(info);
7280 if (copy_from_user(&info, optval, len))
7281 goto out;
7282
7283 asoc = sctp_id2assoc(sk, info.pr_assoc_id);
7284 if (!asoc && info.pr_assoc_id != SCTP_FUTURE_ASSOC &&
7285 sctp_style(sk, UDP)) {
7286 retval = -EINVAL;
7287 goto out;
7288 }
7289
7290 if (asoc) {
7291 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags);
7292 info.pr_value = asoc->default_timetolive;
7293 } else {
7294 struct sctp_sock *sp = sctp_sk(sk);
7295
7296 info.pr_policy = SCTP_PR_POLICY(sp->default_flags);
7297 info.pr_value = sp->default_timetolive;
7298 }
7299
7300 if (put_user(len, optlen))
7301 goto out;
7302
7303 if (copy_to_user(optval, &info, len))
7304 goto out;
7305
7306 retval = 0;
7307
7308out:
7309 return retval;
7310}
7311
7312static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len,
7313 char __user *optval,
7314 int __user *optlen)
7315{
7316 struct sctp_prstatus params;
7317 struct sctp_association *asoc;
7318 int policy;
7319 int retval = -EINVAL;
7320
7321 if (len < sizeof(params))
7322 goto out;
7323
7324 len = sizeof(params);
7325 if (copy_from_user(¶ms, optval, len)) {
7326 retval = -EFAULT;
7327 goto out;
7328 }
7329
7330 policy = params.sprstat_policy;
7331 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) ||
7332 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK)))
7333 goto out;
7334
7335 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
7336 if (!asoc)
7337 goto out;
7338
7339 if (policy == SCTP_PR_SCTP_ALL) {
7340 params.sprstat_abandoned_unsent = 0;
7341 params.sprstat_abandoned_sent = 0;
7342 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
7343 params.sprstat_abandoned_unsent +=
7344 asoc->abandoned_unsent[policy];
7345 params.sprstat_abandoned_sent +=
7346 asoc->abandoned_sent[policy];
7347 }
7348 } else {
7349 params.sprstat_abandoned_unsent =
7350 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)];
7351 params.sprstat_abandoned_sent =
7352 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)];
7353 }
7354
7355 if (put_user(len, optlen)) {
7356 retval = -EFAULT;
7357 goto out;
7358 }
7359
7360 if (copy_to_user(optval, ¶ms, len)) {
7361 retval = -EFAULT;
7362 goto out;
7363 }
7364
7365 retval = 0;
7366
7367out:
7368 return retval;
7369}
7370
7371static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len,
7372 char __user *optval,
7373 int __user *optlen)
7374{
7375 struct sctp_stream_out_ext *streamoute;
7376 struct sctp_association *asoc;
7377 struct sctp_prstatus params;
7378 int retval = -EINVAL;
7379 int policy;
7380
7381 if (len < sizeof(params))
7382 goto out;
7383
7384 len = sizeof(params);
7385 if (copy_from_user(¶ms, optval, len)) {
7386 retval = -EFAULT;
7387 goto out;
7388 }
7389
7390 policy = params.sprstat_policy;
7391 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) ||
7392 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK)))
7393 goto out;
7394
7395 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
7396 if (!asoc || params.sprstat_sid >= asoc->stream.outcnt)
7397 goto out;
7398
7399 streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext;
7400 if (!streamoute) {
7401 /* Not allocated yet, means all stats are 0 */
7402 params.sprstat_abandoned_unsent = 0;
7403 params.sprstat_abandoned_sent = 0;
7404 retval = 0;
7405 goto out;
7406 }
7407
7408 if (policy == SCTP_PR_SCTP_ALL) {
7409 params.sprstat_abandoned_unsent = 0;
7410 params.sprstat_abandoned_sent = 0;
7411 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
7412 params.sprstat_abandoned_unsent +=
7413 streamoute->abandoned_unsent[policy];
7414 params.sprstat_abandoned_sent +=
7415 streamoute->abandoned_sent[policy];
7416 }
7417 } else {
7418 params.sprstat_abandoned_unsent =
7419 streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)];
7420 params.sprstat_abandoned_sent =
7421 streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)];
7422 }
7423
7424 if (put_user(len, optlen) || copy_to_user(optval, ¶ms, len)) {
7425 retval = -EFAULT;
7426 goto out;
7427 }
7428
7429 retval = 0;
7430
7431out:
7432 return retval;
7433}
7434
7435static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len,
7436 char __user *optval,
7437 int __user *optlen)
7438{
7439 struct sctp_assoc_value params;
7440 struct sctp_association *asoc;
7441 int retval = -EFAULT;
7442
7443 if (len < sizeof(params)) {
7444 retval = -EINVAL;
7445 goto out;
7446 }
7447
7448 len = sizeof(params);
7449 if (copy_from_user(¶ms, optval, len))
7450 goto out;
7451
7452 asoc = sctp_id2assoc(sk, params.assoc_id);
7453 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7454 sctp_style(sk, UDP)) {
7455 retval = -EINVAL;
7456 goto out;
7457 }
7458
7459 params.assoc_value = asoc ? asoc->peer.reconf_capable
7460 : sctp_sk(sk)->ep->reconf_enable;
7461
7462 if (put_user(len, optlen))
7463 goto out;
7464
7465 if (copy_to_user(optval, ¶ms, len))
7466 goto out;
7467
7468 retval = 0;
7469
7470out:
7471 return retval;
7472}
7473
7474static int sctp_getsockopt_enable_strreset(struct sock *sk, int len,
7475 char __user *optval,
7476 int __user *optlen)
7477{
7478 struct sctp_assoc_value params;
7479 struct sctp_association *asoc;
7480 int retval = -EFAULT;
7481
7482 if (len < sizeof(params)) {
7483 retval = -EINVAL;
7484 goto out;
7485 }
7486
7487 len = sizeof(params);
7488 if (copy_from_user(¶ms, optval, len))
7489 goto out;
7490
7491 asoc = sctp_id2assoc(sk, params.assoc_id);
7492 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7493 sctp_style(sk, UDP)) {
7494 retval = -EINVAL;
7495 goto out;
7496 }
7497
7498 params.assoc_value = asoc ? asoc->strreset_enable
7499 : sctp_sk(sk)->ep->strreset_enable;
7500
7501 if (put_user(len, optlen))
7502 goto out;
7503
7504 if (copy_to_user(optval, ¶ms, len))
7505 goto out;
7506
7507 retval = 0;
7508
7509out:
7510 return retval;
7511}
7512
7513static int sctp_getsockopt_scheduler(struct sock *sk, int len,
7514 char __user *optval,
7515 int __user *optlen)
7516{
7517 struct sctp_assoc_value params;
7518 struct sctp_association *asoc;
7519 int retval = -EFAULT;
7520
7521 if (len < sizeof(params)) {
7522 retval = -EINVAL;
7523 goto out;
7524 }
7525
7526 len = sizeof(params);
7527 if (copy_from_user(¶ms, optval, len))
7528 goto out;
7529
7530 asoc = sctp_id2assoc(sk, params.assoc_id);
7531 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7532 sctp_style(sk, UDP)) {
7533 retval = -EINVAL;
7534 goto out;
7535 }
7536
7537 params.assoc_value = asoc ? sctp_sched_get_sched(asoc)
7538 : sctp_sk(sk)->default_ss;
7539
7540 if (put_user(len, optlen))
7541 goto out;
7542
7543 if (copy_to_user(optval, ¶ms, len))
7544 goto out;
7545
7546 retval = 0;
7547
7548out:
7549 return retval;
7550}
7551
7552static int sctp_getsockopt_scheduler_value(struct sock *sk, int len,
7553 char __user *optval,
7554 int __user *optlen)
7555{
7556 struct sctp_stream_value params;
7557 struct sctp_association *asoc;
7558 int retval = -EFAULT;
7559
7560 if (len < sizeof(params)) {
7561 retval = -EINVAL;
7562 goto out;
7563 }
7564
7565 len = sizeof(params);
7566 if (copy_from_user(¶ms, optval, len))
7567 goto out;
7568
7569 asoc = sctp_id2assoc(sk, params.assoc_id);
7570 if (!asoc) {
7571 retval = -EINVAL;
7572 goto out;
7573 }
7574
7575 retval = sctp_sched_get_value(asoc, params.stream_id,
7576 ¶ms.stream_value);
7577 if (retval)
7578 goto out;
7579
7580 if (put_user(len, optlen)) {
7581 retval = -EFAULT;
7582 goto out;
7583 }
7584
7585 if (copy_to_user(optval, ¶ms, len)) {
7586 retval = -EFAULT;
7587 goto out;
7588 }
7589
7590out:
7591 return retval;
7592}
7593
7594static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len,
7595 char __user *optval,
7596 int __user *optlen)
7597{
7598 struct sctp_assoc_value params;
7599 struct sctp_association *asoc;
7600 int retval = -EFAULT;
7601
7602 if (len < sizeof(params)) {
7603 retval = -EINVAL;
7604 goto out;
7605 }
7606
7607 len = sizeof(params);
7608 if (copy_from_user(¶ms, optval, len))
7609 goto out;
7610
7611 asoc = sctp_id2assoc(sk, params.assoc_id);
7612 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7613 sctp_style(sk, UDP)) {
7614 retval = -EINVAL;
7615 goto out;
7616 }
7617
7618 params.assoc_value = asoc ? asoc->peer.intl_capable
7619 : sctp_sk(sk)->ep->intl_enable;
7620
7621 if (put_user(len, optlen))
7622 goto out;
7623
7624 if (copy_to_user(optval, ¶ms, len))
7625 goto out;
7626
7627 retval = 0;
7628
7629out:
7630 return retval;
7631}
7632
7633static int sctp_getsockopt_reuse_port(struct sock *sk, int len,
7634 char __user *optval,
7635 int __user *optlen)
7636{
7637 int val;
7638
7639 if (len < sizeof(int))
7640 return -EINVAL;
7641
7642 len = sizeof(int);
7643 val = sctp_sk(sk)->reuse;
7644 if (put_user(len, optlen))
7645 return -EFAULT;
7646
7647 if (copy_to_user(optval, &val, len))
7648 return -EFAULT;
7649
7650 return 0;
7651}
7652
7653static int sctp_getsockopt_event(struct sock *sk, int len, char __user *optval,
7654 int __user *optlen)
7655{
7656 struct sctp_association *asoc;
7657 struct sctp_event param;
7658 __u16 subscribe;
7659
7660 if (len < sizeof(param))
7661 return -EINVAL;
7662
7663 len = sizeof(param);
7664 if (copy_from_user(¶m, optval, len))
7665 return -EFAULT;
7666
7667 if (param.se_type < SCTP_SN_TYPE_BASE ||
7668 param.se_type > SCTP_SN_TYPE_MAX)
7669 return -EINVAL;
7670
7671 asoc = sctp_id2assoc(sk, param.se_assoc_id);
7672 if (!asoc && param.se_assoc_id != SCTP_FUTURE_ASSOC &&
7673 sctp_style(sk, UDP))
7674 return -EINVAL;
7675
7676 subscribe = asoc ? asoc->subscribe : sctp_sk(sk)->subscribe;
7677 param.se_on = sctp_ulpevent_type_enabled(subscribe, param.se_type);
7678
7679 if (put_user(len, optlen))
7680 return -EFAULT;
7681
7682 if (copy_to_user(optval, ¶m, len))
7683 return -EFAULT;
7684
7685 return 0;
7686}
7687
7688static int sctp_getsockopt_asconf_supported(struct sock *sk, int len,
7689 char __user *optval,
7690 int __user *optlen)
7691{
7692 struct sctp_assoc_value params;
7693 struct sctp_association *asoc;
7694 int retval = -EFAULT;
7695
7696 if (len < sizeof(params)) {
7697 retval = -EINVAL;
7698 goto out;
7699 }
7700
7701 len = sizeof(params);
7702 if (copy_from_user(¶ms, optval, len))
7703 goto out;
7704
7705 asoc = sctp_id2assoc(sk, params.assoc_id);
7706 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7707 sctp_style(sk, UDP)) {
7708 retval = -EINVAL;
7709 goto out;
7710 }
7711
7712 params.assoc_value = asoc ? asoc->peer.asconf_capable
7713 : sctp_sk(sk)->ep->asconf_enable;
7714
7715 if (put_user(len, optlen))
7716 goto out;
7717
7718 if (copy_to_user(optval, ¶ms, len))
7719 goto out;
7720
7721 retval = 0;
7722
7723out:
7724 return retval;
7725}
7726
7727static int sctp_getsockopt_auth_supported(struct sock *sk, int len,
7728 char __user *optval,
7729 int __user *optlen)
7730{
7731 struct sctp_assoc_value params;
7732 struct sctp_association *asoc;
7733 int retval = -EFAULT;
7734
7735 if (len < sizeof(params)) {
7736 retval = -EINVAL;
7737 goto out;
7738 }
7739
7740 len = sizeof(params);
7741 if (copy_from_user(¶ms, optval, len))
7742 goto out;
7743
7744 asoc = sctp_id2assoc(sk, params.assoc_id);
7745 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7746 sctp_style(sk, UDP)) {
7747 retval = -EINVAL;
7748 goto out;
7749 }
7750
7751 params.assoc_value = asoc ? asoc->peer.auth_capable
7752 : sctp_sk(sk)->ep->auth_enable;
7753
7754 if (put_user(len, optlen))
7755 goto out;
7756
7757 if (copy_to_user(optval, ¶ms, len))
7758 goto out;
7759
7760 retval = 0;
7761
7762out:
7763 return retval;
7764}
7765
7766static int sctp_getsockopt_ecn_supported(struct sock *sk, int len,
7767 char __user *optval,
7768 int __user *optlen)
7769{
7770 struct sctp_assoc_value params;
7771 struct sctp_association *asoc;
7772 int retval = -EFAULT;
7773
7774 if (len < sizeof(params)) {
7775 retval = -EINVAL;
7776 goto out;
7777 }
7778
7779 len = sizeof(params);
7780 if (copy_from_user(¶ms, optval, len))
7781 goto out;
7782
7783 asoc = sctp_id2assoc(sk, params.assoc_id);
7784 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7785 sctp_style(sk, UDP)) {
7786 retval = -EINVAL;
7787 goto out;
7788 }
7789
7790 params.assoc_value = asoc ? asoc->peer.ecn_capable
7791 : sctp_sk(sk)->ep->ecn_enable;
7792
7793 if (put_user(len, optlen))
7794 goto out;
7795
7796 if (copy_to_user(optval, ¶ms, len))
7797 goto out;
7798
7799 retval = 0;
7800
7801out:
7802 return retval;
7803}
7804
7805static int sctp_getsockopt_pf_expose(struct sock *sk, int len,
7806 char __user *optval,
7807 int __user *optlen)
7808{
7809 struct sctp_assoc_value params;
7810 struct sctp_association *asoc;
7811 int retval = -EFAULT;
7812
7813 if (len < sizeof(params)) {
7814 retval = -EINVAL;
7815 goto out;
7816 }
7817
7818 len = sizeof(params);
7819 if (copy_from_user(¶ms, optval, len))
7820 goto out;
7821
7822 asoc = sctp_id2assoc(sk, params.assoc_id);
7823 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7824 sctp_style(sk, UDP)) {
7825 retval = -EINVAL;
7826 goto out;
7827 }
7828
7829 params.assoc_value = asoc ? asoc->pf_expose
7830 : sctp_sk(sk)->pf_expose;
7831
7832 if (put_user(len, optlen))
7833 goto out;
7834
7835 if (copy_to_user(optval, ¶ms, len))
7836 goto out;
7837
7838 retval = 0;
7839
7840out:
7841 return retval;
7842}
7843
7844static int sctp_getsockopt_encap_port(struct sock *sk, int len,
7845 char __user *optval, int __user *optlen)
7846{
7847 struct sctp_association *asoc;
7848 struct sctp_udpencaps encap;
7849 struct sctp_transport *t;
7850 __be16 encap_port;
7851
7852 if (len < sizeof(encap))
7853 return -EINVAL;
7854
7855 len = sizeof(encap);
7856 if (copy_from_user(&encap, optval, len))
7857 return -EFAULT;
7858
7859 /* If an address other than INADDR_ANY is specified, and
7860 * no transport is found, then the request is invalid.
7861 */
7862 if (!sctp_is_any(sk, (union sctp_addr *)&encap.sue_address)) {
7863 t = sctp_addr_id2transport(sk, &encap.sue_address,
7864 encap.sue_assoc_id);
7865 if (!t) {
7866 pr_debug("%s: failed no transport\n", __func__);
7867 return -EINVAL;
7868 }
7869
7870 encap_port = t->encap_port;
7871 goto out;
7872 }
7873
7874 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
7875 * socket is a one to many style socket, and an association
7876 * was not found, then the id was invalid.
7877 */
7878 asoc = sctp_id2assoc(sk, encap.sue_assoc_id);
7879 if (!asoc && encap.sue_assoc_id != SCTP_FUTURE_ASSOC &&
7880 sctp_style(sk, UDP)) {
7881 pr_debug("%s: failed no association\n", __func__);
7882 return -EINVAL;
7883 }
7884
7885 if (asoc) {
7886 encap_port = asoc->encap_port;
7887 goto out;
7888 }
7889
7890 encap_port = sctp_sk(sk)->encap_port;
7891
7892out:
7893 encap.sue_port = (__force uint16_t)encap_port;
7894 if (copy_to_user(optval, &encap, len))
7895 return -EFAULT;
7896
7897 if (put_user(len, optlen))
7898 return -EFAULT;
7899
7900 return 0;
7901}
7902
7903static int sctp_getsockopt(struct sock *sk, int level, int optname,
7904 char __user *optval, int __user *optlen)
7905{
7906 int retval = 0;
7907 int len;
7908
7909 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
7910
7911 /* I can hardly begin to describe how wrong this is. This is
7912 * so broken as to be worse than useless. The API draft
7913 * REALLY is NOT helpful here... I am not convinced that the
7914 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
7915 * are at all well-founded.
7916 */
7917 if (level != SOL_SCTP) {
7918 struct sctp_af *af = sctp_sk(sk)->pf->af;
7919
7920 retval = af->getsockopt(sk, level, optname, optval, optlen);
7921 return retval;
7922 }
7923
7924 if (get_user(len, optlen))
7925 return -EFAULT;
7926
7927 if (len < 0)
7928 return -EINVAL;
7929
7930 lock_sock(sk);
7931
7932 switch (optname) {
7933 case SCTP_STATUS:
7934 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
7935 break;
7936 case SCTP_DISABLE_FRAGMENTS:
7937 retval = sctp_getsockopt_disable_fragments(sk, len, optval,
7938 optlen);
7939 break;
7940 case SCTP_EVENTS:
7941 retval = sctp_getsockopt_events(sk, len, optval, optlen);
7942 break;
7943 case SCTP_AUTOCLOSE:
7944 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
7945 break;
7946 case SCTP_SOCKOPT_PEELOFF:
7947 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
7948 break;
7949 case SCTP_SOCKOPT_PEELOFF_FLAGS:
7950 retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen);
7951 break;
7952 case SCTP_PEER_ADDR_PARAMS:
7953 retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
7954 optlen);
7955 break;
7956 case SCTP_DELAYED_SACK:
7957 retval = sctp_getsockopt_delayed_ack(sk, len, optval,
7958 optlen);
7959 break;
7960 case SCTP_INITMSG:
7961 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
7962 break;
7963 case SCTP_GET_PEER_ADDRS:
7964 retval = sctp_getsockopt_peer_addrs(sk, len, optval,
7965 optlen);
7966 break;
7967 case SCTP_GET_LOCAL_ADDRS:
7968 retval = sctp_getsockopt_local_addrs(sk, len, optval,
7969 optlen);
7970 break;
7971 case SCTP_SOCKOPT_CONNECTX3:
7972 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
7973 break;
7974 case SCTP_DEFAULT_SEND_PARAM:
7975 retval = sctp_getsockopt_default_send_param(sk, len,
7976 optval, optlen);
7977 break;
7978 case SCTP_DEFAULT_SNDINFO:
7979 retval = sctp_getsockopt_default_sndinfo(sk, len,
7980 optval, optlen);
7981 break;
7982 case SCTP_PRIMARY_ADDR:
7983 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
7984 break;
7985 case SCTP_NODELAY:
7986 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
7987 break;
7988 case SCTP_RTOINFO:
7989 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
7990 break;
7991 case SCTP_ASSOCINFO:
7992 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
7993 break;
7994 case SCTP_I_WANT_MAPPED_V4_ADDR:
7995 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
7996 break;
7997 case SCTP_MAXSEG:
7998 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
7999 break;
8000 case SCTP_GET_PEER_ADDR_INFO:
8001 retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
8002 optlen);
8003 break;
8004 case SCTP_ADAPTATION_LAYER:
8005 retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
8006 optlen);
8007 break;
8008 case SCTP_CONTEXT:
8009 retval = sctp_getsockopt_context(sk, len, optval, optlen);
8010 break;
8011 case SCTP_FRAGMENT_INTERLEAVE:
8012 retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
8013 optlen);
8014 break;
8015 case SCTP_PARTIAL_DELIVERY_POINT:
8016 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
8017 optlen);
8018 break;
8019 case SCTP_MAX_BURST:
8020 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
8021 break;
8022 case SCTP_AUTH_KEY:
8023 case SCTP_AUTH_CHUNK:
8024 case SCTP_AUTH_DELETE_KEY:
8025 case SCTP_AUTH_DEACTIVATE_KEY:
8026 retval = -EOPNOTSUPP;
8027 break;
8028 case SCTP_HMAC_IDENT:
8029 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
8030 break;
8031 case SCTP_AUTH_ACTIVE_KEY:
8032 retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
8033 break;
8034 case SCTP_PEER_AUTH_CHUNKS:
8035 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
8036 optlen);
8037 break;
8038 case SCTP_LOCAL_AUTH_CHUNKS:
8039 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
8040 optlen);
8041 break;
8042 case SCTP_GET_ASSOC_NUMBER:
8043 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
8044 break;
8045 case SCTP_GET_ASSOC_ID_LIST:
8046 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
8047 break;
8048 case SCTP_AUTO_ASCONF:
8049 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
8050 break;
8051 case SCTP_PEER_ADDR_THLDS:
8052 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len,
8053 optlen, false);
8054 break;
8055 case SCTP_PEER_ADDR_THLDS_V2:
8056 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len,
8057 optlen, true);
8058 break;
8059 case SCTP_GET_ASSOC_STATS:
8060 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
8061 break;
8062 case SCTP_RECVRCVINFO:
8063 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen);
8064 break;
8065 case SCTP_RECVNXTINFO:
8066 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen);
8067 break;
8068 case SCTP_PR_SUPPORTED:
8069 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen);
8070 break;
8071 case SCTP_DEFAULT_PRINFO:
8072 retval = sctp_getsockopt_default_prinfo(sk, len, optval,
8073 optlen);
8074 break;
8075 case SCTP_PR_ASSOC_STATUS:
8076 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval,
8077 optlen);
8078 break;
8079 case SCTP_PR_STREAM_STATUS:
8080 retval = sctp_getsockopt_pr_streamstatus(sk, len, optval,
8081 optlen);
8082 break;
8083 case SCTP_RECONFIG_SUPPORTED:
8084 retval = sctp_getsockopt_reconfig_supported(sk, len, optval,
8085 optlen);
8086 break;
8087 case SCTP_ENABLE_STREAM_RESET:
8088 retval = sctp_getsockopt_enable_strreset(sk, len, optval,
8089 optlen);
8090 break;
8091 case SCTP_STREAM_SCHEDULER:
8092 retval = sctp_getsockopt_scheduler(sk, len, optval,
8093 optlen);
8094 break;
8095 case SCTP_STREAM_SCHEDULER_VALUE:
8096 retval = sctp_getsockopt_scheduler_value(sk, len, optval,
8097 optlen);
8098 break;
8099 case SCTP_INTERLEAVING_SUPPORTED:
8100 retval = sctp_getsockopt_interleaving_supported(sk, len, optval,
8101 optlen);
8102 break;
8103 case SCTP_REUSE_PORT:
8104 retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen);
8105 break;
8106 case SCTP_EVENT:
8107 retval = sctp_getsockopt_event(sk, len, optval, optlen);
8108 break;
8109 case SCTP_ASCONF_SUPPORTED:
8110 retval = sctp_getsockopt_asconf_supported(sk, len, optval,
8111 optlen);
8112 break;
8113 case SCTP_AUTH_SUPPORTED:
8114 retval = sctp_getsockopt_auth_supported(sk, len, optval,
8115 optlen);
8116 break;
8117 case SCTP_ECN_SUPPORTED:
8118 retval = sctp_getsockopt_ecn_supported(sk, len, optval, optlen);
8119 break;
8120 case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE:
8121 retval = sctp_getsockopt_pf_expose(sk, len, optval, optlen);
8122 break;
8123 case SCTP_REMOTE_UDP_ENCAPS_PORT:
8124 retval = sctp_getsockopt_encap_port(sk, len, optval, optlen);
8125 break;
8126 default:
8127 retval = -ENOPROTOOPT;
8128 break;
8129 }
8130
8131 release_sock(sk);
8132 return retval;
8133}
8134
8135static int sctp_hash(struct sock *sk)
8136{
8137 /* STUB */
8138 return 0;
8139}
8140
8141static void sctp_unhash(struct sock *sk)
8142{
8143 /* STUB */
8144}
8145
8146/* Check if port is acceptable. Possibly find first available port.
8147 *
8148 * The port hash table (contained in the 'global' SCTP protocol storage
8149 * returned by struct sctp_protocol *sctp_get_protocol()). The hash
8150 * table is an array of 4096 lists (sctp_bind_hashbucket). Each
8151 * list (the list number is the port number hashed out, so as you
8152 * would expect from a hash function, all the ports in a given list have
8153 * such a number that hashes out to the same list number; you were
8154 * expecting that, right?); so each list has a set of ports, with a
8155 * link to the socket (struct sock) that uses it, the port number and
8156 * a fastreuse flag (FIXME: NPI ipg).
8157 */
8158static struct sctp_bind_bucket *sctp_bucket_create(
8159 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
8160
8161static int sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
8162{
8163 struct sctp_sock *sp = sctp_sk(sk);
8164 bool reuse = (sk->sk_reuse || sp->reuse);
8165 struct sctp_bind_hashbucket *head; /* hash list */
8166 struct net *net = sock_net(sk);
8167 kuid_t uid = sock_i_uid(sk);
8168 struct sctp_bind_bucket *pp;
8169 unsigned short snum;
8170 int ret;
8171
8172 snum = ntohs(addr->v4.sin_port);
8173
8174 pr_debug("%s: begins, snum:%d\n", __func__, snum);
8175
8176 if (snum == 0) {
8177 /* Search for an available port. */
8178 int low, high, remaining, index;
8179 unsigned int rover;
8180
8181 inet_get_local_port_range(net, &low, &high);
8182 remaining = (high - low) + 1;
8183 rover = prandom_u32() % remaining + low;
8184
8185 do {
8186 rover++;
8187 if ((rover < low) || (rover > high))
8188 rover = low;
8189 if (inet_is_local_reserved_port(net, rover))
8190 continue;
8191 index = sctp_phashfn(net, rover);
8192 head = &sctp_port_hashtable[index];
8193 spin_lock_bh(&head->lock);
8194 sctp_for_each_hentry(pp, &head->chain)
8195 if ((pp->port == rover) &&
8196 net_eq(net, pp->net))
8197 goto next;
8198 break;
8199 next:
8200 spin_unlock_bh(&head->lock);
8201 cond_resched();
8202 } while (--remaining > 0);
8203
8204 /* Exhausted local port range during search? */
8205 ret = 1;
8206 if (remaining <= 0)
8207 return ret;
8208
8209 /* OK, here is the one we will use. HEAD (the port
8210 * hash table list entry) is non-NULL and we hold it's
8211 * mutex.
8212 */
8213 snum = rover;
8214 } else {
8215 /* We are given an specific port number; we verify
8216 * that it is not being used. If it is used, we will
8217 * exahust the search in the hash list corresponding
8218 * to the port number (snum) - we detect that with the
8219 * port iterator, pp being NULL.
8220 */
8221 head = &sctp_port_hashtable[sctp_phashfn(net, snum)];
8222 spin_lock_bh(&head->lock);
8223 sctp_for_each_hentry(pp, &head->chain) {
8224 if ((pp->port == snum) && net_eq(pp->net, net))
8225 goto pp_found;
8226 }
8227 }
8228 pp = NULL;
8229 goto pp_not_found;
8230pp_found:
8231 if (!hlist_empty(&pp->owner)) {
8232 /* We had a port hash table hit - there is an
8233 * available port (pp != NULL) and it is being
8234 * used by other socket (pp->owner not empty); that other
8235 * socket is going to be sk2.
8236 */
8237 struct sock *sk2;
8238
8239 pr_debug("%s: found a possible match\n", __func__);
8240
8241 if ((pp->fastreuse && reuse &&
8242 sk->sk_state != SCTP_SS_LISTENING) ||
8243 (pp->fastreuseport && sk->sk_reuseport &&
8244 uid_eq(pp->fastuid, uid)))
8245 goto success;
8246
8247 /* Run through the list of sockets bound to the port
8248 * (pp->port) [via the pointers bind_next and
8249 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
8250 * we get the endpoint they describe and run through
8251 * the endpoint's list of IP (v4 or v6) addresses,
8252 * comparing each of the addresses with the address of
8253 * the socket sk. If we find a match, then that means
8254 * that this port/socket (sk) combination are already
8255 * in an endpoint.
8256 */
8257 sk_for_each_bound(sk2, &pp->owner) {
8258 struct sctp_sock *sp2 = sctp_sk(sk2);
8259 struct sctp_endpoint *ep2 = sp2->ep;
8260
8261 if (sk == sk2 ||
8262 (reuse && (sk2->sk_reuse || sp2->reuse) &&
8263 sk2->sk_state != SCTP_SS_LISTENING) ||
8264 (sk->sk_reuseport && sk2->sk_reuseport &&
8265 uid_eq(uid, sock_i_uid(sk2))))
8266 continue;
8267
8268 if (sctp_bind_addr_conflict(&ep2->base.bind_addr,
8269 addr, sp2, sp)) {
8270 ret = 1;
8271 goto fail_unlock;
8272 }
8273 }
8274
8275 pr_debug("%s: found a match\n", __func__);
8276 }
8277pp_not_found:
8278 /* If there was a hash table miss, create a new port. */
8279 ret = 1;
8280 if (!pp && !(pp = sctp_bucket_create(head, net, snum)))
8281 goto fail_unlock;
8282
8283 /* In either case (hit or miss), make sure fastreuse is 1 only
8284 * if sk->sk_reuse is too (that is, if the caller requested
8285 * SO_REUSEADDR on this socket -sk-).
8286 */
8287 if (hlist_empty(&pp->owner)) {
8288 if (reuse && sk->sk_state != SCTP_SS_LISTENING)
8289 pp->fastreuse = 1;
8290 else
8291 pp->fastreuse = 0;
8292
8293 if (sk->sk_reuseport) {
8294 pp->fastreuseport = 1;
8295 pp->fastuid = uid;
8296 } else {
8297 pp->fastreuseport = 0;
8298 }
8299 } else {
8300 if (pp->fastreuse &&
8301 (!reuse || sk->sk_state == SCTP_SS_LISTENING))
8302 pp->fastreuse = 0;
8303
8304 if (pp->fastreuseport &&
8305 (!sk->sk_reuseport || !uid_eq(pp->fastuid, uid)))
8306 pp->fastreuseport = 0;
8307 }
8308
8309 /* We are set, so fill up all the data in the hash table
8310 * entry, tie the socket list information with the rest of the
8311 * sockets FIXME: Blurry, NPI (ipg).
8312 */
8313success:
8314 if (!sp->bind_hash) {
8315 inet_sk(sk)->inet_num = snum;
8316 sk_add_bind_node(sk, &pp->owner);
8317 sp->bind_hash = pp;
8318 }
8319 ret = 0;
8320
8321fail_unlock:
8322 spin_unlock_bh(&head->lock);
8323 return ret;
8324}
8325
8326/* Assign a 'snum' port to the socket. If snum == 0, an ephemeral
8327 * port is requested.
8328 */
8329static int sctp_get_port(struct sock *sk, unsigned short snum)
8330{
8331 union sctp_addr addr;
8332 struct sctp_af *af = sctp_sk(sk)->pf->af;
8333
8334 /* Set up a dummy address struct from the sk. */
8335 af->from_sk(&addr, sk);
8336 addr.v4.sin_port = htons(snum);
8337
8338 /* Note: sk->sk_num gets filled in if ephemeral port request. */
8339 return sctp_get_port_local(sk, &addr);
8340}
8341
8342/*
8343 * Move a socket to LISTENING state.
8344 */
8345static int sctp_listen_start(struct sock *sk, int backlog)
8346{
8347 struct sctp_sock *sp = sctp_sk(sk);
8348 struct sctp_endpoint *ep = sp->ep;
8349 struct crypto_shash *tfm = NULL;
8350 char alg[32];
8351
8352 /* Allocate HMAC for generating cookie. */
8353 if (!sp->hmac && sp->sctp_hmac_alg) {
8354 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
8355 tfm = crypto_alloc_shash(alg, 0, 0);
8356 if (IS_ERR(tfm)) {
8357 net_info_ratelimited("failed to load transform for %s: %ld\n",
8358 sp->sctp_hmac_alg, PTR_ERR(tfm));
8359 return -ENOSYS;
8360 }
8361 sctp_sk(sk)->hmac = tfm;
8362 }
8363
8364 /*
8365 * If a bind() or sctp_bindx() is not called prior to a listen()
8366 * call that allows new associations to be accepted, the system
8367 * picks an ephemeral port and will choose an address set equivalent
8368 * to binding with a wildcard address.
8369 *
8370 * This is not currently spelled out in the SCTP sockets
8371 * extensions draft, but follows the practice as seen in TCP
8372 * sockets.
8373 *
8374 */
8375 inet_sk_set_state(sk, SCTP_SS_LISTENING);
8376 if (!ep->base.bind_addr.port) {
8377 if (sctp_autobind(sk))
8378 return -EAGAIN;
8379 } else {
8380 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
8381 inet_sk_set_state(sk, SCTP_SS_CLOSED);
8382 return -EADDRINUSE;
8383 }
8384 }
8385
8386 WRITE_ONCE(sk->sk_max_ack_backlog, backlog);
8387 return sctp_hash_endpoint(ep);
8388}
8389
8390/*
8391 * 4.1.3 / 5.1.3 listen()
8392 *
8393 * By default, new associations are not accepted for UDP style sockets.
8394 * An application uses listen() to mark a socket as being able to
8395 * accept new associations.
8396 *
8397 * On TCP style sockets, applications use listen() to ready the SCTP
8398 * endpoint for accepting inbound associations.
8399 *
8400 * On both types of endpoints a backlog of '0' disables listening.
8401 *
8402 * Move a socket to LISTENING state.
8403 */
8404int sctp_inet_listen(struct socket *sock, int backlog)
8405{
8406 struct sock *sk = sock->sk;
8407 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
8408 int err = -EINVAL;
8409
8410 if (unlikely(backlog < 0))
8411 return err;
8412
8413 lock_sock(sk);
8414
8415 /* Peeled-off sockets are not allowed to listen(). */
8416 if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
8417 goto out;
8418
8419 if (sock->state != SS_UNCONNECTED)
8420 goto out;
8421
8422 if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED))
8423 goto out;
8424
8425 /* If backlog is zero, disable listening. */
8426 if (!backlog) {
8427 if (sctp_sstate(sk, CLOSED))
8428 goto out;
8429
8430 err = 0;
8431 sctp_unhash_endpoint(ep);
8432 sk->sk_state = SCTP_SS_CLOSED;
8433 if (sk->sk_reuse || sctp_sk(sk)->reuse)
8434 sctp_sk(sk)->bind_hash->fastreuse = 1;
8435 goto out;
8436 }
8437
8438 /* If we are already listening, just update the backlog */
8439 if (sctp_sstate(sk, LISTENING))
8440 WRITE_ONCE(sk->sk_max_ack_backlog, backlog);
8441 else {
8442 err = sctp_listen_start(sk, backlog);
8443 if (err)
8444 goto out;
8445 }
8446
8447 err = 0;
8448out:
8449 release_sock(sk);
8450 return err;
8451}
8452
8453/*
8454 * This function is done by modeling the current datagram_poll() and the
8455 * tcp_poll(). Note that, based on these implementations, we don't
8456 * lock the socket in this function, even though it seems that,
8457 * ideally, locking or some other mechanisms can be used to ensure
8458 * the integrity of the counters (sndbuf and wmem_alloc) used
8459 * in this place. We assume that we don't need locks either until proven
8460 * otherwise.
8461 *
8462 * Another thing to note is that we include the Async I/O support
8463 * here, again, by modeling the current TCP/UDP code. We don't have
8464 * a good way to test with it yet.
8465 */
8466__poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
8467{
8468 struct sock *sk = sock->sk;
8469 struct sctp_sock *sp = sctp_sk(sk);
8470 __poll_t mask;
8471
8472 poll_wait(file, sk_sleep(sk), wait);
8473
8474 sock_rps_record_flow(sk);
8475
8476 /* A TCP-style listening socket becomes readable when the accept queue
8477 * is not empty.
8478 */
8479 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
8480 return (!list_empty(&sp->ep->asocs)) ?
8481 (EPOLLIN | EPOLLRDNORM) : 0;
8482
8483 mask = 0;
8484
8485 /* Is there any exceptional events? */
8486 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
8487 mask |= EPOLLERR |
8488 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0);
8489 if (sk->sk_shutdown & RCV_SHUTDOWN)
8490 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM;
8491 if (sk->sk_shutdown == SHUTDOWN_MASK)
8492 mask |= EPOLLHUP;
8493
8494 /* Is it readable? Reconsider this code with TCP-style support. */
8495 if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
8496 mask |= EPOLLIN | EPOLLRDNORM;
8497
8498 /* The association is either gone or not ready. */
8499 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
8500 return mask;
8501
8502 /* Is it writable? */
8503 if (sctp_writeable(sk)) {
8504 mask |= EPOLLOUT | EPOLLWRNORM;
8505 } else {
8506 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
8507 /*
8508 * Since the socket is not locked, the buffer
8509 * might be made available after the writeable check and
8510 * before the bit is set. This could cause a lost I/O
8511 * signal. tcp_poll() has a race breaker for this race
8512 * condition. Based on their implementation, we put
8513 * in the following code to cover it as well.
8514 */
8515 if (sctp_writeable(sk))
8516 mask |= EPOLLOUT | EPOLLWRNORM;
8517 }
8518 return mask;
8519}
8520
8521/********************************************************************
8522 * 2nd Level Abstractions
8523 ********************************************************************/
8524
8525static struct sctp_bind_bucket *sctp_bucket_create(
8526 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
8527{
8528 struct sctp_bind_bucket *pp;
8529
8530 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
8531 if (pp) {
8532 SCTP_DBG_OBJCNT_INC(bind_bucket);
8533 pp->port = snum;
8534 pp->fastreuse = 0;
8535 INIT_HLIST_HEAD(&pp->owner);
8536 pp->net = net;
8537 hlist_add_head(&pp->node, &head->chain);
8538 }
8539 return pp;
8540}
8541
8542/* Caller must hold hashbucket lock for this tb with local BH disabled */
8543static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
8544{
8545 if (pp && hlist_empty(&pp->owner)) {
8546 __hlist_del(&pp->node);
8547 kmem_cache_free(sctp_bucket_cachep, pp);
8548 SCTP_DBG_OBJCNT_DEC(bind_bucket);
8549 }
8550}
8551
8552/* Release this socket's reference to a local port. */
8553static inline void __sctp_put_port(struct sock *sk)
8554{
8555 struct sctp_bind_hashbucket *head =
8556 &sctp_port_hashtable[sctp_phashfn(sock_net(sk),
8557 inet_sk(sk)->inet_num)];
8558 struct sctp_bind_bucket *pp;
8559
8560 spin_lock(&head->lock);
8561 pp = sctp_sk(sk)->bind_hash;
8562 __sk_del_bind_node(sk);
8563 sctp_sk(sk)->bind_hash = NULL;
8564 inet_sk(sk)->inet_num = 0;
8565 sctp_bucket_destroy(pp);
8566 spin_unlock(&head->lock);
8567}
8568
8569void sctp_put_port(struct sock *sk)
8570{
8571 local_bh_disable();
8572 __sctp_put_port(sk);
8573 local_bh_enable();
8574}
8575
8576/*
8577 * The system picks an ephemeral port and choose an address set equivalent
8578 * to binding with a wildcard address.
8579 * One of those addresses will be the primary address for the association.
8580 * This automatically enables the multihoming capability of SCTP.
8581 */
8582static int sctp_autobind(struct sock *sk)
8583{
8584 union sctp_addr autoaddr;
8585 struct sctp_af *af;
8586 __be16 port;
8587
8588 /* Initialize a local sockaddr structure to INADDR_ANY. */
8589 af = sctp_sk(sk)->pf->af;
8590
8591 port = htons(inet_sk(sk)->inet_num);
8592 af->inaddr_any(&autoaddr, port);
8593
8594 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
8595}
8596
8597/* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation.
8598 *
8599 * From RFC 2292
8600 * 4.2 The cmsghdr Structure *
8601 *
8602 * When ancillary data is sent or received, any number of ancillary data
8603 * objects can be specified by the msg_control and msg_controllen members of
8604 * the msghdr structure, because each object is preceded by
8605 * a cmsghdr structure defining the object's length (the cmsg_len member).
8606 * Historically Berkeley-derived implementations have passed only one object
8607 * at a time, but this API allows multiple objects to be
8608 * passed in a single call to sendmsg() or recvmsg(). The following example
8609 * shows two ancillary data objects in a control buffer.
8610 *
8611 * |<--------------------------- msg_controllen -------------------------->|
8612 * | |
8613 *
8614 * |<----- ancillary data object ----->|<----- ancillary data object ----->|
8615 *
8616 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
8617 * | | |
8618 *
8619 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| |
8620 *
8621 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| |
8622 * | | | | |
8623 *
8624 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
8625 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX|
8626 *
8627 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX|
8628 *
8629 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
8630 * ^
8631 * |
8632 *
8633 * msg_control
8634 * points here
8635 */
8636static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs)
8637{
8638 struct msghdr *my_msg = (struct msghdr *)msg;
8639 struct cmsghdr *cmsg;
8640
8641 for_each_cmsghdr(cmsg, my_msg) {
8642 if (!CMSG_OK(my_msg, cmsg))
8643 return -EINVAL;
8644
8645 /* Should we parse this header or ignore? */
8646 if (cmsg->cmsg_level != IPPROTO_SCTP)
8647 continue;
8648
8649 /* Strictly check lengths following example in SCM code. */
8650 switch (cmsg->cmsg_type) {
8651 case SCTP_INIT:
8652 /* SCTP Socket API Extension
8653 * 5.3.1 SCTP Initiation Structure (SCTP_INIT)
8654 *
8655 * This cmsghdr structure provides information for
8656 * initializing new SCTP associations with sendmsg().
8657 * The SCTP_INITMSG socket option uses this same data
8658 * structure. This structure is not used for
8659 * recvmsg().
8660 *
8661 * cmsg_level cmsg_type cmsg_data[]
8662 * ------------ ------------ ----------------------
8663 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg
8664 */
8665 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg)))
8666 return -EINVAL;
8667
8668 cmsgs->init = CMSG_DATA(cmsg);
8669 break;
8670
8671 case SCTP_SNDRCV:
8672 /* SCTP Socket API Extension
8673 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV)
8674 *
8675 * This cmsghdr structure specifies SCTP options for
8676 * sendmsg() and describes SCTP header information
8677 * about a received message through recvmsg().
8678 *
8679 * cmsg_level cmsg_type cmsg_data[]
8680 * ------------ ------------ ----------------------
8681 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo
8682 */
8683 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
8684 return -EINVAL;
8685
8686 cmsgs->srinfo = CMSG_DATA(cmsg);
8687
8688 if (cmsgs->srinfo->sinfo_flags &
8689 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
8690 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
8691 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
8692 return -EINVAL;
8693 break;
8694
8695 case SCTP_SNDINFO:
8696 /* SCTP Socket API Extension
8697 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO)
8698 *
8699 * This cmsghdr structure specifies SCTP options for
8700 * sendmsg(). This structure and SCTP_RCVINFO replaces
8701 * SCTP_SNDRCV which has been deprecated.
8702 *
8703 * cmsg_level cmsg_type cmsg_data[]
8704 * ------------ ------------ ---------------------
8705 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo
8706 */
8707 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo)))
8708 return -EINVAL;
8709
8710 cmsgs->sinfo = CMSG_DATA(cmsg);
8711
8712 if (cmsgs->sinfo->snd_flags &
8713 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
8714 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
8715 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
8716 return -EINVAL;
8717 break;
8718 case SCTP_PRINFO:
8719 /* SCTP Socket API Extension
8720 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO)
8721 *
8722 * This cmsghdr structure specifies SCTP options for sendmsg().
8723 *
8724 * cmsg_level cmsg_type cmsg_data[]
8725 * ------------ ------------ ---------------------
8726 * IPPROTO_SCTP SCTP_PRINFO struct sctp_prinfo
8727 */
8728 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo)))
8729 return -EINVAL;
8730
8731 cmsgs->prinfo = CMSG_DATA(cmsg);
8732 if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK)
8733 return -EINVAL;
8734
8735 if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE)
8736 cmsgs->prinfo->pr_value = 0;
8737 break;
8738 case SCTP_AUTHINFO:
8739 /* SCTP Socket API Extension
8740 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO)
8741 *
8742 * This cmsghdr structure specifies SCTP options for sendmsg().
8743 *
8744 * cmsg_level cmsg_type cmsg_data[]
8745 * ------------ ------------ ---------------------
8746 * IPPROTO_SCTP SCTP_AUTHINFO struct sctp_authinfo
8747 */
8748 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo)))
8749 return -EINVAL;
8750
8751 cmsgs->authinfo = CMSG_DATA(cmsg);
8752 break;
8753 case SCTP_DSTADDRV4:
8754 case SCTP_DSTADDRV6:
8755 /* SCTP Socket API Extension
8756 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6)
8757 *
8758 * This cmsghdr structure specifies SCTP options for sendmsg().
8759 *
8760 * cmsg_level cmsg_type cmsg_data[]
8761 * ------------ ------------ ---------------------
8762 * IPPROTO_SCTP SCTP_DSTADDRV4 struct in_addr
8763 * ------------ ------------ ---------------------
8764 * IPPROTO_SCTP SCTP_DSTADDRV6 struct in6_addr
8765 */
8766 cmsgs->addrs_msg = my_msg;
8767 break;
8768 default:
8769 return -EINVAL;
8770 }
8771 }
8772
8773 return 0;
8774}
8775
8776/*
8777 * Wait for a packet..
8778 * Note: This function is the same function as in core/datagram.c
8779 * with a few modifications to make lksctp work.
8780 */
8781static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p)
8782{
8783 int error;
8784 DEFINE_WAIT(wait);
8785
8786 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
8787
8788 /* Socket errors? */
8789 error = sock_error(sk);
8790 if (error)
8791 goto out;
8792
8793 if (!skb_queue_empty(&sk->sk_receive_queue))
8794 goto ready;
8795
8796 /* Socket shut down? */
8797 if (sk->sk_shutdown & RCV_SHUTDOWN)
8798 goto out;
8799
8800 /* Sequenced packets can come disconnected. If so we report the
8801 * problem.
8802 */
8803 error = -ENOTCONN;
8804
8805 /* Is there a good reason to think that we may receive some data? */
8806 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
8807 goto out;
8808
8809 /* Handle signals. */
8810 if (signal_pending(current))
8811 goto interrupted;
8812
8813 /* Let another process have a go. Since we are going to sleep
8814 * anyway. Note: This may cause odd behaviors if the message
8815 * does not fit in the user's buffer, but this seems to be the
8816 * only way to honor MSG_DONTWAIT realistically.
8817 */
8818 release_sock(sk);
8819 *timeo_p = schedule_timeout(*timeo_p);
8820 lock_sock(sk);
8821
8822ready:
8823 finish_wait(sk_sleep(sk), &wait);
8824 return 0;
8825
8826interrupted:
8827 error = sock_intr_errno(*timeo_p);
8828
8829out:
8830 finish_wait(sk_sleep(sk), &wait);
8831 *err = error;
8832 return error;
8833}
8834
8835/* Receive a datagram.
8836 * Note: This is pretty much the same routine as in core/datagram.c
8837 * with a few changes to make lksctp work.
8838 */
8839struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
8840 int noblock, int *err)
8841{
8842 int error;
8843 struct sk_buff *skb;
8844 long timeo;
8845
8846 timeo = sock_rcvtimeo(sk, noblock);
8847
8848 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
8849 MAX_SCHEDULE_TIMEOUT);
8850
8851 do {
8852 /* Again only user level code calls this function,
8853 * so nothing interrupt level
8854 * will suddenly eat the receive_queue.
8855 *
8856 * Look at current nfs client by the way...
8857 * However, this function was correct in any case. 8)
8858 */
8859 if (flags & MSG_PEEK) {
8860 skb = skb_peek(&sk->sk_receive_queue);
8861 if (skb)
8862 refcount_inc(&skb->users);
8863 } else {
8864 skb = __skb_dequeue(&sk->sk_receive_queue);
8865 }
8866
8867 if (skb)
8868 return skb;
8869
8870 /* Caller is allowed not to check sk->sk_err before calling. */
8871 error = sock_error(sk);
8872 if (error)
8873 goto no_packet;
8874
8875 if (sk->sk_shutdown & RCV_SHUTDOWN)
8876 break;
8877
8878 if (sk_can_busy_loop(sk)) {
8879 sk_busy_loop(sk, noblock);
8880
8881 if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
8882 continue;
8883 }
8884
8885 /* User doesn't want to wait. */
8886 error = -EAGAIN;
8887 if (!timeo)
8888 goto no_packet;
8889 } while (sctp_wait_for_packet(sk, err, &timeo) == 0);
8890
8891 return NULL;
8892
8893no_packet:
8894 *err = error;
8895 return NULL;
8896}
8897
8898/* If sndbuf has changed, wake up per association sndbuf waiters. */
8899static void __sctp_write_space(struct sctp_association *asoc)
8900{
8901 struct sock *sk = asoc->base.sk;
8902
8903 if (sctp_wspace(asoc) <= 0)
8904 return;
8905
8906 if (waitqueue_active(&asoc->wait))
8907 wake_up_interruptible(&asoc->wait);
8908
8909 if (sctp_writeable(sk)) {
8910 struct socket_wq *wq;
8911
8912 rcu_read_lock();
8913 wq = rcu_dereference(sk->sk_wq);
8914 if (wq) {
8915 if (waitqueue_active(&wq->wait))
8916 wake_up_interruptible(&wq->wait);
8917
8918 /* Note that we try to include the Async I/O support
8919 * here by modeling from the current TCP/UDP code.
8920 * We have not tested with it yet.
8921 */
8922 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
8923 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT);
8924 }
8925 rcu_read_unlock();
8926 }
8927}
8928
8929static void sctp_wake_up_waiters(struct sock *sk,
8930 struct sctp_association *asoc)
8931{
8932 struct sctp_association *tmp = asoc;
8933
8934 /* We do accounting for the sndbuf space per association,
8935 * so we only need to wake our own association.
8936 */
8937 if (asoc->ep->sndbuf_policy)
8938 return __sctp_write_space(asoc);
8939
8940 /* If association goes down and is just flushing its
8941 * outq, then just normally notify others.
8942 */
8943 if (asoc->base.dead)
8944 return sctp_write_space(sk);
8945
8946 /* Accounting for the sndbuf space is per socket, so we
8947 * need to wake up others, try to be fair and in case of
8948 * other associations, let them have a go first instead
8949 * of just doing a sctp_write_space() call.
8950 *
8951 * Note that we reach sctp_wake_up_waiters() only when
8952 * associations free up queued chunks, thus we are under
8953 * lock and the list of associations on a socket is
8954 * guaranteed not to change.
8955 */
8956 for (tmp = list_next_entry(tmp, asocs); 1;
8957 tmp = list_next_entry(tmp, asocs)) {
8958 /* Manually skip the head element. */
8959 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs))
8960 continue;
8961 /* Wake up association. */
8962 __sctp_write_space(tmp);
8963 /* We've reached the end. */
8964 if (tmp == asoc)
8965 break;
8966 }
8967}
8968
8969/* Do accounting for the sndbuf space.
8970 * Decrement the used sndbuf space of the corresponding association by the
8971 * data size which was just transmitted(freed).
8972 */
8973static void sctp_wfree(struct sk_buff *skb)
8974{
8975 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg;
8976 struct sctp_association *asoc = chunk->asoc;
8977 struct sock *sk = asoc->base.sk;
8978
8979 sk_mem_uncharge(sk, skb->truesize);
8980 sk->sk_wmem_queued -= skb->truesize + sizeof(struct sctp_chunk);
8981 asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk);
8982 WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk),
8983 &sk->sk_wmem_alloc));
8984
8985 if (chunk->shkey) {
8986 struct sctp_shared_key *shkey = chunk->shkey;
8987
8988 /* refcnt == 2 and !list_empty mean after this release, it's
8989 * not being used anywhere, and it's time to notify userland
8990 * that this shkey can be freed if it's been deactivated.
8991 */
8992 if (shkey->deactivated && !list_empty(&shkey->key_list) &&
8993 refcount_read(&shkey->refcnt) == 2) {
8994 struct sctp_ulpevent *ev;
8995
8996 ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id,
8997 SCTP_AUTH_FREE_KEY,
8998 GFP_KERNEL);
8999 if (ev)
9000 asoc->stream.si->enqueue_event(&asoc->ulpq, ev);
9001 }
9002 sctp_auth_shkey_release(chunk->shkey);
9003 }
9004
9005 sock_wfree(skb);
9006 sctp_wake_up_waiters(sk, asoc);
9007
9008 sctp_association_put(asoc);
9009}
9010
9011/* Do accounting for the receive space on the socket.
9012 * Accounting for the association is done in ulpevent.c
9013 * We set this as a destructor for the cloned data skbs so that
9014 * accounting is done at the correct time.
9015 */
9016void sctp_sock_rfree(struct sk_buff *skb)
9017{
9018 struct sock *sk = skb->sk;
9019 struct sctp_ulpevent *event = sctp_skb2event(skb);
9020
9021 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
9022
9023 /*
9024 * Mimic the behavior of sock_rfree
9025 */
9026 sk_mem_uncharge(sk, event->rmem_len);
9027}
9028
9029
9030/* Helper function to wait for space in the sndbuf. */
9031static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
9032 size_t msg_len)
9033{
9034 struct sock *sk = asoc->base.sk;
9035 long current_timeo = *timeo_p;
9036 DEFINE_WAIT(wait);
9037 int err = 0;
9038
9039 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
9040 *timeo_p, msg_len);
9041
9042 /* Increment the association's refcnt. */
9043 sctp_association_hold(asoc);
9044
9045 /* Wait on the association specific sndbuf space. */
9046 for (;;) {
9047 prepare_to_wait_exclusive(&asoc->wait, &wait,
9048 TASK_INTERRUPTIBLE);
9049 if (asoc->base.dead)
9050 goto do_dead;
9051 if (!*timeo_p)
9052 goto do_nonblock;
9053 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING)
9054 goto do_error;
9055 if (signal_pending(current))
9056 goto do_interrupted;
9057 if (sk_under_memory_pressure(sk))
9058 sk_mem_reclaim(sk);
9059 if ((int)msg_len <= sctp_wspace(asoc) &&
9060 sk_wmem_schedule(sk, msg_len))
9061 break;
9062
9063 /* Let another process have a go. Since we are going
9064 * to sleep anyway.
9065 */
9066 release_sock(sk);
9067 current_timeo = schedule_timeout(current_timeo);
9068 lock_sock(sk);
9069 if (sk != asoc->base.sk)
9070 goto do_error;
9071
9072 *timeo_p = current_timeo;
9073 }
9074
9075out:
9076 finish_wait(&asoc->wait, &wait);
9077
9078 /* Release the association's refcnt. */
9079 sctp_association_put(asoc);
9080
9081 return err;
9082
9083do_dead:
9084 err = -ESRCH;
9085 goto out;
9086
9087do_error:
9088 err = -EPIPE;
9089 goto out;
9090
9091do_interrupted:
9092 err = sock_intr_errno(*timeo_p);
9093 goto out;
9094
9095do_nonblock:
9096 err = -EAGAIN;
9097 goto out;
9098}
9099
9100void sctp_data_ready(struct sock *sk)
9101{
9102 struct socket_wq *wq;
9103
9104 rcu_read_lock();
9105 wq = rcu_dereference(sk->sk_wq);
9106 if (skwq_has_sleeper(wq))
9107 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN |
9108 EPOLLRDNORM | EPOLLRDBAND);
9109 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
9110 rcu_read_unlock();
9111}
9112
9113/* If socket sndbuf has changed, wake up all per association waiters. */
9114void sctp_write_space(struct sock *sk)
9115{
9116 struct sctp_association *asoc;
9117
9118 /* Wake up the tasks in each wait queue. */
9119 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
9120 __sctp_write_space(asoc);
9121 }
9122}
9123
9124/* Is there any sndbuf space available on the socket?
9125 *
9126 * Note that sk_wmem_alloc is the sum of the send buffers on all of the
9127 * associations on the same socket. For a UDP-style socket with
9128 * multiple associations, it is possible for it to be "unwriteable"
9129 * prematurely. I assume that this is acceptable because
9130 * a premature "unwriteable" is better than an accidental "writeable" which
9131 * would cause an unwanted block under certain circumstances. For the 1-1
9132 * UDP-style sockets or TCP-style sockets, this code should work.
9133 * - Daisy
9134 */
9135static bool sctp_writeable(struct sock *sk)
9136{
9137 return sk->sk_sndbuf > sk->sk_wmem_queued;
9138}
9139
9140/* Wait for an association to go into ESTABLISHED state. If timeout is 0,
9141 * returns immediately with EINPROGRESS.
9142 */
9143static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
9144{
9145 struct sock *sk = asoc->base.sk;
9146 int err = 0;
9147 long current_timeo = *timeo_p;
9148 DEFINE_WAIT(wait);
9149
9150 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
9151
9152 /* Increment the association's refcnt. */
9153 sctp_association_hold(asoc);
9154
9155 for (;;) {
9156 prepare_to_wait_exclusive(&asoc->wait, &wait,
9157 TASK_INTERRUPTIBLE);
9158 if (!*timeo_p)
9159 goto do_nonblock;
9160 if (sk->sk_shutdown & RCV_SHUTDOWN)
9161 break;
9162 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
9163 asoc->base.dead)
9164 goto do_error;
9165 if (signal_pending(current))
9166 goto do_interrupted;
9167
9168 if (sctp_state(asoc, ESTABLISHED))
9169 break;
9170
9171 /* Let another process have a go. Since we are going
9172 * to sleep anyway.
9173 */
9174 release_sock(sk);
9175 current_timeo = schedule_timeout(current_timeo);
9176 lock_sock(sk);
9177
9178 *timeo_p = current_timeo;
9179 }
9180
9181out:
9182 finish_wait(&asoc->wait, &wait);
9183
9184 /* Release the association's refcnt. */
9185 sctp_association_put(asoc);
9186
9187 return err;
9188
9189do_error:
9190 if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
9191 err = -ETIMEDOUT;
9192 else
9193 err = -ECONNREFUSED;
9194 goto out;
9195
9196do_interrupted:
9197 err = sock_intr_errno(*timeo_p);
9198 goto out;
9199
9200do_nonblock:
9201 err = -EINPROGRESS;
9202 goto out;
9203}
9204
9205static int sctp_wait_for_accept(struct sock *sk, long timeo)
9206{
9207 struct sctp_endpoint *ep;
9208 int err = 0;
9209 DEFINE_WAIT(wait);
9210
9211 ep = sctp_sk(sk)->ep;
9212
9213
9214 for (;;) {
9215 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
9216 TASK_INTERRUPTIBLE);
9217
9218 if (list_empty(&ep->asocs)) {
9219 release_sock(sk);
9220 timeo = schedule_timeout(timeo);
9221 lock_sock(sk);
9222 }
9223
9224 err = -EINVAL;
9225 if (!sctp_sstate(sk, LISTENING))
9226 break;
9227
9228 err = 0;
9229 if (!list_empty(&ep->asocs))
9230 break;
9231
9232 err = sock_intr_errno(timeo);
9233 if (signal_pending(current))
9234 break;
9235
9236 err = -EAGAIN;
9237 if (!timeo)
9238 break;
9239 }
9240
9241 finish_wait(sk_sleep(sk), &wait);
9242
9243 return err;
9244}
9245
9246static void sctp_wait_for_close(struct sock *sk, long timeout)
9247{
9248 DEFINE_WAIT(wait);
9249
9250 do {
9251 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
9252 if (list_empty(&sctp_sk(sk)->ep->asocs))
9253 break;
9254 release_sock(sk);
9255 timeout = schedule_timeout(timeout);
9256 lock_sock(sk);
9257 } while (!signal_pending(current) && timeout);
9258
9259 finish_wait(sk_sleep(sk), &wait);
9260}
9261
9262static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
9263{
9264 struct sk_buff *frag;
9265
9266 if (!skb->data_len)
9267 goto done;
9268
9269 /* Don't forget the fragments. */
9270 skb_walk_frags(skb, frag)
9271 sctp_skb_set_owner_r_frag(frag, sk);
9272
9273done:
9274 sctp_skb_set_owner_r(skb, sk);
9275}
9276
9277void sctp_copy_sock(struct sock *newsk, struct sock *sk,
9278 struct sctp_association *asoc)
9279{
9280 struct inet_sock *inet = inet_sk(sk);
9281 struct inet_sock *newinet;
9282 struct sctp_sock *sp = sctp_sk(sk);
9283 struct sctp_endpoint *ep = sp->ep;
9284
9285 newsk->sk_type = sk->sk_type;
9286 newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
9287 newsk->sk_flags = sk->sk_flags;
9288 newsk->sk_tsflags = sk->sk_tsflags;
9289 newsk->sk_no_check_tx = sk->sk_no_check_tx;
9290 newsk->sk_no_check_rx = sk->sk_no_check_rx;
9291 newsk->sk_reuse = sk->sk_reuse;
9292 sctp_sk(newsk)->reuse = sp->reuse;
9293
9294 newsk->sk_shutdown = sk->sk_shutdown;
9295 newsk->sk_destruct = sctp_destruct_sock;
9296 newsk->sk_family = sk->sk_family;
9297 newsk->sk_protocol = IPPROTO_SCTP;
9298 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
9299 newsk->sk_sndbuf = sk->sk_sndbuf;
9300 newsk->sk_rcvbuf = sk->sk_rcvbuf;
9301 newsk->sk_lingertime = sk->sk_lingertime;
9302 newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
9303 newsk->sk_sndtimeo = sk->sk_sndtimeo;
9304 newsk->sk_rxhash = sk->sk_rxhash;
9305
9306 newinet = inet_sk(newsk);
9307
9308 /* Initialize sk's sport, dport, rcv_saddr and daddr for
9309 * getsockname() and getpeername()
9310 */
9311 newinet->inet_sport = inet->inet_sport;
9312 newinet->inet_saddr = inet->inet_saddr;
9313 newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
9314 newinet->inet_dport = htons(asoc->peer.port);
9315 newinet->pmtudisc = inet->pmtudisc;
9316 newinet->inet_id = prandom_u32();
9317
9318 newinet->uc_ttl = inet->uc_ttl;
9319 newinet->mc_loop = 1;
9320 newinet->mc_ttl = 1;
9321 newinet->mc_index = 0;
9322 newinet->mc_list = NULL;
9323
9324 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
9325 net_enable_timestamp();
9326
9327 /* Set newsk security attributes from orginal sk and connection
9328 * security attribute from ep.
9329 */
9330 security_sctp_sk_clone(ep, sk, newsk);
9331}
9332
9333static inline void sctp_copy_descendant(struct sock *sk_to,
9334 const struct sock *sk_from)
9335{
9336 size_t ancestor_size = sizeof(struct inet_sock);
9337
9338 ancestor_size += sk_from->sk_prot->obj_size;
9339 ancestor_size -= offsetof(struct sctp_sock, pd_lobby);
9340 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size);
9341}
9342
9343/* Populate the fields of the newsk from the oldsk and migrate the assoc
9344 * and its messages to the newsk.
9345 */
9346static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
9347 struct sctp_association *assoc,
9348 enum sctp_socket_type type)
9349{
9350 struct sctp_sock *oldsp = sctp_sk(oldsk);
9351 struct sctp_sock *newsp = sctp_sk(newsk);
9352 struct sctp_bind_bucket *pp; /* hash list port iterator */
9353 struct sctp_endpoint *newep = newsp->ep;
9354 struct sk_buff *skb, *tmp;
9355 struct sctp_ulpevent *event;
9356 struct sctp_bind_hashbucket *head;
9357 int err;
9358
9359 /* Migrate socket buffer sizes and all the socket level options to the
9360 * new socket.
9361 */
9362 newsk->sk_sndbuf = oldsk->sk_sndbuf;
9363 newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
9364 /* Brute force copy old sctp opt. */
9365 sctp_copy_descendant(newsk, oldsk);
9366
9367 /* Restore the ep value that was overwritten with the above structure
9368 * copy.
9369 */
9370 newsp->ep = newep;
9371 newsp->hmac = NULL;
9372
9373 /* Hook this new socket in to the bind_hash list. */
9374 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
9375 inet_sk(oldsk)->inet_num)];
9376 spin_lock_bh(&head->lock);
9377 pp = sctp_sk(oldsk)->bind_hash;
9378 sk_add_bind_node(newsk, &pp->owner);
9379 sctp_sk(newsk)->bind_hash = pp;
9380 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
9381 spin_unlock_bh(&head->lock);
9382
9383 /* Copy the bind_addr list from the original endpoint to the new
9384 * endpoint so that we can handle restarts properly
9385 */
9386 err = sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
9387 &oldsp->ep->base.bind_addr, GFP_KERNEL);
9388 if (err)
9389 return err;
9390
9391 /* New ep's auth_hmacs should be set if old ep's is set, in case
9392 * that net->sctp.auth_enable has been changed to 0 by users and
9393 * new ep's auth_hmacs couldn't be set in sctp_endpoint_init().
9394 */
9395 if (oldsp->ep->auth_hmacs) {
9396 err = sctp_auth_init_hmacs(newsp->ep, GFP_KERNEL);
9397 if (err)
9398 return err;
9399 }
9400
9401 /* Move any messages in the old socket's receive queue that are for the
9402 * peeled off association to the new socket's receive queue.
9403 */
9404 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
9405 event = sctp_skb2event(skb);
9406 if (event->asoc == assoc) {
9407 __skb_unlink(skb, &oldsk->sk_receive_queue);
9408 __skb_queue_tail(&newsk->sk_receive_queue, skb);
9409 sctp_skb_set_owner_r_frag(skb, newsk);
9410 }
9411 }
9412
9413 /* Clean up any messages pending delivery due to partial
9414 * delivery. Three cases:
9415 * 1) No partial deliver; no work.
9416 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
9417 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
9418 */
9419 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
9420
9421 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
9422 struct sk_buff_head *queue;
9423
9424 /* Decide which queue to move pd_lobby skbs to. */
9425 if (assoc->ulpq.pd_mode) {
9426 queue = &newsp->pd_lobby;
9427 } else
9428 queue = &newsk->sk_receive_queue;
9429
9430 /* Walk through the pd_lobby, looking for skbs that
9431 * need moved to the new socket.
9432 */
9433 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
9434 event = sctp_skb2event(skb);
9435 if (event->asoc == assoc) {
9436 __skb_unlink(skb, &oldsp->pd_lobby);
9437 __skb_queue_tail(queue, skb);
9438 sctp_skb_set_owner_r_frag(skb, newsk);
9439 }
9440 }
9441
9442 /* Clear up any skbs waiting for the partial
9443 * delivery to finish.
9444 */
9445 if (assoc->ulpq.pd_mode)
9446 sctp_clear_pd(oldsk, NULL);
9447
9448 }
9449
9450 sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag);
9451
9452 /* Set the type of socket to indicate that it is peeled off from the
9453 * original UDP-style socket or created with the accept() call on a
9454 * TCP-style socket..
9455 */
9456 newsp->type = type;
9457
9458 /* Mark the new socket "in-use" by the user so that any packets
9459 * that may arrive on the association after we've moved it are
9460 * queued to the backlog. This prevents a potential race between
9461 * backlog processing on the old socket and new-packet processing
9462 * on the new socket.
9463 *
9464 * The caller has just allocated newsk so we can guarantee that other
9465 * paths won't try to lock it and then oldsk.
9466 */
9467 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
9468 sctp_for_each_tx_datachunk(assoc, true, sctp_clear_owner_w);
9469 sctp_assoc_migrate(assoc, newsk);
9470 sctp_for_each_tx_datachunk(assoc, false, sctp_set_owner_w);
9471
9472 /* If the association on the newsk is already closed before accept()
9473 * is called, set RCV_SHUTDOWN flag.
9474 */
9475 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) {
9476 inet_sk_set_state(newsk, SCTP_SS_CLOSED);
9477 newsk->sk_shutdown |= RCV_SHUTDOWN;
9478 } else {
9479 inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED);
9480 }
9481
9482 release_sock(newsk);
9483
9484 return 0;
9485}
9486
9487
9488/* This proto struct describes the ULP interface for SCTP. */
9489struct proto sctp_prot = {
9490 .name = "SCTP",
9491 .owner = THIS_MODULE,
9492 .close = sctp_close,
9493 .disconnect = sctp_disconnect,
9494 .accept = sctp_accept,
9495 .ioctl = sctp_ioctl,
9496 .init = sctp_init_sock,
9497 .destroy = sctp_destroy_sock,
9498 .shutdown = sctp_shutdown,
9499 .setsockopt = sctp_setsockopt,
9500 .getsockopt = sctp_getsockopt,
9501 .sendmsg = sctp_sendmsg,
9502 .recvmsg = sctp_recvmsg,
9503 .bind = sctp_bind,
9504 .bind_add = sctp_bind_add,
9505 .backlog_rcv = sctp_backlog_rcv,
9506 .hash = sctp_hash,
9507 .unhash = sctp_unhash,
9508 .no_autobind = true,
9509 .obj_size = sizeof(struct sctp_sock),
9510 .useroffset = offsetof(struct sctp_sock, subscribe),
9511 .usersize = offsetof(struct sctp_sock, initmsg) -
9512 offsetof(struct sctp_sock, subscribe) +
9513 sizeof_field(struct sctp_sock, initmsg),
9514 .sysctl_mem = sysctl_sctp_mem,
9515 .sysctl_rmem = sysctl_sctp_rmem,
9516 .sysctl_wmem = sysctl_sctp_wmem,
9517 .memory_pressure = &sctp_memory_pressure,
9518 .enter_memory_pressure = sctp_enter_memory_pressure,
9519 .memory_allocated = &sctp_memory_allocated,
9520 .sockets_allocated = &sctp_sockets_allocated,
9521};
9522
9523#if IS_ENABLED(CONFIG_IPV6)
9524
9525#include <net/transp_v6.h>
9526static void sctp_v6_destroy_sock(struct sock *sk)
9527{
9528 sctp_destroy_sock(sk);
9529 inet6_destroy_sock(sk);
9530}
9531
9532struct proto sctpv6_prot = {
9533 .name = "SCTPv6",
9534 .owner = THIS_MODULE,
9535 .close = sctp_close,
9536 .disconnect = sctp_disconnect,
9537 .accept = sctp_accept,
9538 .ioctl = sctp_ioctl,
9539 .init = sctp_init_sock,
9540 .destroy = sctp_v6_destroy_sock,
9541 .shutdown = sctp_shutdown,
9542 .setsockopt = sctp_setsockopt,
9543 .getsockopt = sctp_getsockopt,
9544 .sendmsg = sctp_sendmsg,
9545 .recvmsg = sctp_recvmsg,
9546 .bind = sctp_bind,
9547 .bind_add = sctp_bind_add,
9548 .backlog_rcv = sctp_backlog_rcv,
9549 .hash = sctp_hash,
9550 .unhash = sctp_unhash,
9551 .no_autobind = true,
9552 .obj_size = sizeof(struct sctp6_sock),
9553 .useroffset = offsetof(struct sctp6_sock, sctp.subscribe),
9554 .usersize = offsetof(struct sctp6_sock, sctp.initmsg) -
9555 offsetof(struct sctp6_sock, sctp.subscribe) +
9556 sizeof_field(struct sctp6_sock, sctp.initmsg),
9557 .sysctl_mem = sysctl_sctp_mem,
9558 .sysctl_rmem = sysctl_sctp_rmem,
9559 .sysctl_wmem = sysctl_sctp_wmem,
9560 .memory_pressure = &sctp_memory_pressure,
9561 .enter_memory_pressure = sctp_enter_memory_pressure,
9562 .memory_allocated = &sctp_memory_allocated,
9563 .sockets_allocated = &sctp_sockets_allocated,
9564};
9565#endif /* IS_ENABLED(CONFIG_IPV6) */