Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * NET3 Protocol independent device support routines.
4 *
5 * Derived from the non IP parts of dev.c 1.0.19
6 * Authors: Ross Biro
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
69 */
70
71#include <linux/uaccess.h>
72#include <linux/bitops.h>
73#include <linux/capability.h>
74#include <linux/cpu.h>
75#include <linux/types.h>
76#include <linux/kernel.h>
77#include <linux/hash.h>
78#include <linux/slab.h>
79#include <linux/sched.h>
80#include <linux/sched/mm.h>
81#include <linux/mutex.h>
82#include <linux/rwsem.h>
83#include <linux/string.h>
84#include <linux/mm.h>
85#include <linux/socket.h>
86#include <linux/sockios.h>
87#include <linux/errno.h>
88#include <linux/interrupt.h>
89#include <linux/if_ether.h>
90#include <linux/netdevice.h>
91#include <linux/etherdevice.h>
92#include <linux/ethtool.h>
93#include <linux/skbuff.h>
94#include <linux/kthread.h>
95#include <linux/bpf.h>
96#include <linux/bpf_trace.h>
97#include <net/net_namespace.h>
98#include <net/sock.h>
99#include <net/busy_poll.h>
100#include <linux/rtnetlink.h>
101#include <linux/stat.h>
102#include <net/dsa.h>
103#include <net/dst.h>
104#include <net/dst_metadata.h>
105#include <net/gro.h>
106#include <net/pkt_sched.h>
107#include <net/pkt_cls.h>
108#include <net/checksum.h>
109#include <net/xfrm.h>
110#include <linux/highmem.h>
111#include <linux/init.h>
112#include <linux/module.h>
113#include <linux/netpoll.h>
114#include <linux/rcupdate.h>
115#include <linux/delay.h>
116#include <net/iw_handler.h>
117#include <asm/current.h>
118#include <linux/audit.h>
119#include <linux/dmaengine.h>
120#include <linux/err.h>
121#include <linux/ctype.h>
122#include <linux/if_arp.h>
123#include <linux/if_vlan.h>
124#include <linux/ip.h>
125#include <net/ip.h>
126#include <net/mpls.h>
127#include <linux/ipv6.h>
128#include <linux/in.h>
129#include <linux/jhash.h>
130#include <linux/random.h>
131#include <trace/events/napi.h>
132#include <trace/events/net.h>
133#include <trace/events/skb.h>
134#include <linux/inetdevice.h>
135#include <linux/cpu_rmap.h>
136#include <linux/static_key.h>
137#include <linux/hashtable.h>
138#include <linux/vmalloc.h>
139#include <linux/if_macvlan.h>
140#include <linux/errqueue.h>
141#include <linux/hrtimer.h>
142#include <linux/netfilter_ingress.h>
143#include <linux/crash_dump.h>
144#include <linux/sctp.h>
145#include <net/udp_tunnel.h>
146#include <linux/net_namespace.h>
147#include <linux/indirect_call_wrapper.h>
148#include <net/devlink.h>
149#include <linux/pm_runtime.h>
150#include <linux/prandom.h>
151
152#include "net-sysfs.h"
153
154#define MAX_GRO_SKBS 8
155
156/* This should be increased if a protocol with a bigger head is added. */
157#define GRO_MAX_HEAD (MAX_HEADER + 128)
158
159static DEFINE_SPINLOCK(ptype_lock);
160static DEFINE_SPINLOCK(offload_lock);
161struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
162struct list_head ptype_all __read_mostly; /* Taps */
163static struct list_head offload_base __read_mostly;
164
165static int netif_rx_internal(struct sk_buff *skb);
166static int call_netdevice_notifiers_info(unsigned long val,
167 struct netdev_notifier_info *info);
168static int call_netdevice_notifiers_extack(unsigned long val,
169 struct net_device *dev,
170 struct netlink_ext_ack *extack);
171static struct napi_struct *napi_by_id(unsigned int napi_id);
172
173/*
174 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
175 * semaphore.
176 *
177 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
178 *
179 * Writers must hold the rtnl semaphore while they loop through the
180 * dev_base_head list, and hold dev_base_lock for writing when they do the
181 * actual updates. This allows pure readers to access the list even
182 * while a writer is preparing to update it.
183 *
184 * To put it another way, dev_base_lock is held for writing only to
185 * protect against pure readers; the rtnl semaphore provides the
186 * protection against other writers.
187 *
188 * See, for example usages, register_netdevice() and
189 * unregister_netdevice(), which must be called with the rtnl
190 * semaphore held.
191 */
192DEFINE_RWLOCK(dev_base_lock);
193EXPORT_SYMBOL(dev_base_lock);
194
195static DEFINE_MUTEX(ifalias_mutex);
196
197/* protects napi_hash addition/deletion and napi_gen_id */
198static DEFINE_SPINLOCK(napi_hash_lock);
199
200static unsigned int napi_gen_id = NR_CPUS;
201static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
202
203static DECLARE_RWSEM(devnet_rename_sem);
204
205static inline void dev_base_seq_inc(struct net *net)
206{
207 while (++net->dev_base_seq == 0)
208 ;
209}
210
211static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
212{
213 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
214
215 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
216}
217
218static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
219{
220 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
221}
222
223static inline void rps_lock(struct softnet_data *sd)
224{
225#ifdef CONFIG_RPS
226 spin_lock(&sd->input_pkt_queue.lock);
227#endif
228}
229
230static inline void rps_unlock(struct softnet_data *sd)
231{
232#ifdef CONFIG_RPS
233 spin_unlock(&sd->input_pkt_queue.lock);
234#endif
235}
236
237static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
238 const char *name)
239{
240 struct netdev_name_node *name_node;
241
242 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
243 if (!name_node)
244 return NULL;
245 INIT_HLIST_NODE(&name_node->hlist);
246 name_node->dev = dev;
247 name_node->name = name;
248 return name_node;
249}
250
251static struct netdev_name_node *
252netdev_name_node_head_alloc(struct net_device *dev)
253{
254 struct netdev_name_node *name_node;
255
256 name_node = netdev_name_node_alloc(dev, dev->name);
257 if (!name_node)
258 return NULL;
259 INIT_LIST_HEAD(&name_node->list);
260 return name_node;
261}
262
263static void netdev_name_node_free(struct netdev_name_node *name_node)
264{
265 kfree(name_node);
266}
267
268static void netdev_name_node_add(struct net *net,
269 struct netdev_name_node *name_node)
270{
271 hlist_add_head_rcu(&name_node->hlist,
272 dev_name_hash(net, name_node->name));
273}
274
275static void netdev_name_node_del(struct netdev_name_node *name_node)
276{
277 hlist_del_rcu(&name_node->hlist);
278}
279
280static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
281 const char *name)
282{
283 struct hlist_head *head = dev_name_hash(net, name);
284 struct netdev_name_node *name_node;
285
286 hlist_for_each_entry(name_node, head, hlist)
287 if (!strcmp(name_node->name, name))
288 return name_node;
289 return NULL;
290}
291
292static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
293 const char *name)
294{
295 struct hlist_head *head = dev_name_hash(net, name);
296 struct netdev_name_node *name_node;
297
298 hlist_for_each_entry_rcu(name_node, head, hlist)
299 if (!strcmp(name_node->name, name))
300 return name_node;
301 return NULL;
302}
303
304int netdev_name_node_alt_create(struct net_device *dev, const char *name)
305{
306 struct netdev_name_node *name_node;
307 struct net *net = dev_net(dev);
308
309 name_node = netdev_name_node_lookup(net, name);
310 if (name_node)
311 return -EEXIST;
312 name_node = netdev_name_node_alloc(dev, name);
313 if (!name_node)
314 return -ENOMEM;
315 netdev_name_node_add(net, name_node);
316 /* The node that holds dev->name acts as a head of per-device list. */
317 list_add_tail(&name_node->list, &dev->name_node->list);
318
319 return 0;
320}
321EXPORT_SYMBOL(netdev_name_node_alt_create);
322
323static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
324{
325 list_del(&name_node->list);
326 netdev_name_node_del(name_node);
327 kfree(name_node->name);
328 netdev_name_node_free(name_node);
329}
330
331int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
332{
333 struct netdev_name_node *name_node;
334 struct net *net = dev_net(dev);
335
336 name_node = netdev_name_node_lookup(net, name);
337 if (!name_node)
338 return -ENOENT;
339 /* lookup might have found our primary name or a name belonging
340 * to another device.
341 */
342 if (name_node == dev->name_node || name_node->dev != dev)
343 return -EINVAL;
344
345 __netdev_name_node_alt_destroy(name_node);
346
347 return 0;
348}
349EXPORT_SYMBOL(netdev_name_node_alt_destroy);
350
351static void netdev_name_node_alt_flush(struct net_device *dev)
352{
353 struct netdev_name_node *name_node, *tmp;
354
355 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
356 __netdev_name_node_alt_destroy(name_node);
357}
358
359/* Device list insertion */
360static void list_netdevice(struct net_device *dev)
361{
362 struct net *net = dev_net(dev);
363
364 ASSERT_RTNL();
365
366 write_lock_bh(&dev_base_lock);
367 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
368 netdev_name_node_add(net, dev->name_node);
369 hlist_add_head_rcu(&dev->index_hlist,
370 dev_index_hash(net, dev->ifindex));
371 write_unlock_bh(&dev_base_lock);
372
373 dev_base_seq_inc(net);
374}
375
376/* Device list removal
377 * caller must respect a RCU grace period before freeing/reusing dev
378 */
379static void unlist_netdevice(struct net_device *dev)
380{
381 ASSERT_RTNL();
382
383 /* Unlink dev from the device chain */
384 write_lock_bh(&dev_base_lock);
385 list_del_rcu(&dev->dev_list);
386 netdev_name_node_del(dev->name_node);
387 hlist_del_rcu(&dev->index_hlist);
388 write_unlock_bh(&dev_base_lock);
389
390 dev_base_seq_inc(dev_net(dev));
391}
392
393/*
394 * Our notifier list
395 */
396
397static RAW_NOTIFIER_HEAD(netdev_chain);
398
399/*
400 * Device drivers call our routines to queue packets here. We empty the
401 * queue in the local softnet handler.
402 */
403
404DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
405EXPORT_PER_CPU_SYMBOL(softnet_data);
406
407#ifdef CONFIG_LOCKDEP
408/*
409 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
410 * according to dev->type
411 */
412static const unsigned short netdev_lock_type[] = {
413 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
414 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
415 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
416 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
417 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
418 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
419 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
420 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
421 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
422 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
423 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
424 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
425 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
426 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
427 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
428
429static const char *const netdev_lock_name[] = {
430 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
431 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
432 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
433 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
434 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
435 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
436 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
437 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
438 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
439 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
440 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
441 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
442 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
443 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
444 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
445
446static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
447static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
448
449static inline unsigned short netdev_lock_pos(unsigned short dev_type)
450{
451 int i;
452
453 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
454 if (netdev_lock_type[i] == dev_type)
455 return i;
456 /* the last key is used by default */
457 return ARRAY_SIZE(netdev_lock_type) - 1;
458}
459
460static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
461 unsigned short dev_type)
462{
463 int i;
464
465 i = netdev_lock_pos(dev_type);
466 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
467 netdev_lock_name[i]);
468}
469
470static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
471{
472 int i;
473
474 i = netdev_lock_pos(dev->type);
475 lockdep_set_class_and_name(&dev->addr_list_lock,
476 &netdev_addr_lock_key[i],
477 netdev_lock_name[i]);
478}
479#else
480static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
481 unsigned short dev_type)
482{
483}
484
485static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
486{
487}
488#endif
489
490/*******************************************************************************
491 *
492 * Protocol management and registration routines
493 *
494 *******************************************************************************/
495
496
497/*
498 * Add a protocol ID to the list. Now that the input handler is
499 * smarter we can dispense with all the messy stuff that used to be
500 * here.
501 *
502 * BEWARE!!! Protocol handlers, mangling input packets,
503 * MUST BE last in hash buckets and checking protocol handlers
504 * MUST start from promiscuous ptype_all chain in net_bh.
505 * It is true now, do not change it.
506 * Explanation follows: if protocol handler, mangling packet, will
507 * be the first on list, it is not able to sense, that packet
508 * is cloned and should be copied-on-write, so that it will
509 * change it and subsequent readers will get broken packet.
510 * --ANK (980803)
511 */
512
513static inline struct list_head *ptype_head(const struct packet_type *pt)
514{
515 if (pt->type == htons(ETH_P_ALL))
516 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
517 else
518 return pt->dev ? &pt->dev->ptype_specific :
519 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
520}
521
522/**
523 * dev_add_pack - add packet handler
524 * @pt: packet type declaration
525 *
526 * Add a protocol handler to the networking stack. The passed &packet_type
527 * is linked into kernel lists and may not be freed until it has been
528 * removed from the kernel lists.
529 *
530 * This call does not sleep therefore it can not
531 * guarantee all CPU's that are in middle of receiving packets
532 * will see the new packet type (until the next received packet).
533 */
534
535void dev_add_pack(struct packet_type *pt)
536{
537 struct list_head *head = ptype_head(pt);
538
539 spin_lock(&ptype_lock);
540 list_add_rcu(&pt->list, head);
541 spin_unlock(&ptype_lock);
542}
543EXPORT_SYMBOL(dev_add_pack);
544
545/**
546 * __dev_remove_pack - remove packet handler
547 * @pt: packet type declaration
548 *
549 * Remove a protocol handler that was previously added to the kernel
550 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
551 * from the kernel lists and can be freed or reused once this function
552 * returns.
553 *
554 * The packet type might still be in use by receivers
555 * and must not be freed until after all the CPU's have gone
556 * through a quiescent state.
557 */
558void __dev_remove_pack(struct packet_type *pt)
559{
560 struct list_head *head = ptype_head(pt);
561 struct packet_type *pt1;
562
563 spin_lock(&ptype_lock);
564
565 list_for_each_entry(pt1, head, list) {
566 if (pt == pt1) {
567 list_del_rcu(&pt->list);
568 goto out;
569 }
570 }
571
572 pr_warn("dev_remove_pack: %p not found\n", pt);
573out:
574 spin_unlock(&ptype_lock);
575}
576EXPORT_SYMBOL(__dev_remove_pack);
577
578/**
579 * dev_remove_pack - remove packet handler
580 * @pt: packet type declaration
581 *
582 * Remove a protocol handler that was previously added to the kernel
583 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
584 * from the kernel lists and can be freed or reused once this function
585 * returns.
586 *
587 * This call sleeps to guarantee that no CPU is looking at the packet
588 * type after return.
589 */
590void dev_remove_pack(struct packet_type *pt)
591{
592 __dev_remove_pack(pt);
593
594 synchronize_net();
595}
596EXPORT_SYMBOL(dev_remove_pack);
597
598
599/**
600 * dev_add_offload - register offload handlers
601 * @po: protocol offload declaration
602 *
603 * Add protocol offload handlers to the networking stack. The passed
604 * &proto_offload is linked into kernel lists and may not be freed until
605 * it has been removed from the kernel lists.
606 *
607 * This call does not sleep therefore it can not
608 * guarantee all CPU's that are in middle of receiving packets
609 * will see the new offload handlers (until the next received packet).
610 */
611void dev_add_offload(struct packet_offload *po)
612{
613 struct packet_offload *elem;
614
615 spin_lock(&offload_lock);
616 list_for_each_entry(elem, &offload_base, list) {
617 if (po->priority < elem->priority)
618 break;
619 }
620 list_add_rcu(&po->list, elem->list.prev);
621 spin_unlock(&offload_lock);
622}
623EXPORT_SYMBOL(dev_add_offload);
624
625/**
626 * __dev_remove_offload - remove offload handler
627 * @po: packet offload declaration
628 *
629 * Remove a protocol offload handler that was previously added to the
630 * kernel offload handlers by dev_add_offload(). The passed &offload_type
631 * is removed from the kernel lists and can be freed or reused once this
632 * function returns.
633 *
634 * The packet type might still be in use by receivers
635 * and must not be freed until after all the CPU's have gone
636 * through a quiescent state.
637 */
638static void __dev_remove_offload(struct packet_offload *po)
639{
640 struct list_head *head = &offload_base;
641 struct packet_offload *po1;
642
643 spin_lock(&offload_lock);
644
645 list_for_each_entry(po1, head, list) {
646 if (po == po1) {
647 list_del_rcu(&po->list);
648 goto out;
649 }
650 }
651
652 pr_warn("dev_remove_offload: %p not found\n", po);
653out:
654 spin_unlock(&offload_lock);
655}
656
657/**
658 * dev_remove_offload - remove packet offload handler
659 * @po: packet offload declaration
660 *
661 * Remove a packet offload handler that was previously added to the kernel
662 * offload handlers by dev_add_offload(). The passed &offload_type is
663 * removed from the kernel lists and can be freed or reused once this
664 * function returns.
665 *
666 * This call sleeps to guarantee that no CPU is looking at the packet
667 * type after return.
668 */
669void dev_remove_offload(struct packet_offload *po)
670{
671 __dev_remove_offload(po);
672
673 synchronize_net();
674}
675EXPORT_SYMBOL(dev_remove_offload);
676
677/******************************************************************************
678 *
679 * Device Boot-time Settings Routines
680 *
681 ******************************************************************************/
682
683/* Boot time configuration table */
684static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
685
686/**
687 * netdev_boot_setup_add - add new setup entry
688 * @name: name of the device
689 * @map: configured settings for the device
690 *
691 * Adds new setup entry to the dev_boot_setup list. The function
692 * returns 0 on error and 1 on success. This is a generic routine to
693 * all netdevices.
694 */
695static int netdev_boot_setup_add(char *name, struct ifmap *map)
696{
697 struct netdev_boot_setup *s;
698 int i;
699
700 s = dev_boot_setup;
701 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
702 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
703 memset(s[i].name, 0, sizeof(s[i].name));
704 strlcpy(s[i].name, name, IFNAMSIZ);
705 memcpy(&s[i].map, map, sizeof(s[i].map));
706 break;
707 }
708 }
709
710 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
711}
712
713/**
714 * netdev_boot_setup_check - check boot time settings
715 * @dev: the netdevice
716 *
717 * Check boot time settings for the device.
718 * The found settings are set for the device to be used
719 * later in the device probing.
720 * Returns 0 if no settings found, 1 if they are.
721 */
722int netdev_boot_setup_check(struct net_device *dev)
723{
724 struct netdev_boot_setup *s = dev_boot_setup;
725 int i;
726
727 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
728 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
729 !strcmp(dev->name, s[i].name)) {
730 dev->irq = s[i].map.irq;
731 dev->base_addr = s[i].map.base_addr;
732 dev->mem_start = s[i].map.mem_start;
733 dev->mem_end = s[i].map.mem_end;
734 return 1;
735 }
736 }
737 return 0;
738}
739EXPORT_SYMBOL(netdev_boot_setup_check);
740
741
742/**
743 * netdev_boot_base - get address from boot time settings
744 * @prefix: prefix for network device
745 * @unit: id for network device
746 *
747 * Check boot time settings for the base address of device.
748 * The found settings are set for the device to be used
749 * later in the device probing.
750 * Returns 0 if no settings found.
751 */
752unsigned long netdev_boot_base(const char *prefix, int unit)
753{
754 const struct netdev_boot_setup *s = dev_boot_setup;
755 char name[IFNAMSIZ];
756 int i;
757
758 sprintf(name, "%s%d", prefix, unit);
759
760 /*
761 * If device already registered then return base of 1
762 * to indicate not to probe for this interface
763 */
764 if (__dev_get_by_name(&init_net, name))
765 return 1;
766
767 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
768 if (!strcmp(name, s[i].name))
769 return s[i].map.base_addr;
770 return 0;
771}
772
773/*
774 * Saves at boot time configured settings for any netdevice.
775 */
776int __init netdev_boot_setup(char *str)
777{
778 int ints[5];
779 struct ifmap map;
780
781 str = get_options(str, ARRAY_SIZE(ints), ints);
782 if (!str || !*str)
783 return 0;
784
785 /* Save settings */
786 memset(&map, 0, sizeof(map));
787 if (ints[0] > 0)
788 map.irq = ints[1];
789 if (ints[0] > 1)
790 map.base_addr = ints[2];
791 if (ints[0] > 2)
792 map.mem_start = ints[3];
793 if (ints[0] > 3)
794 map.mem_end = ints[4];
795
796 /* Add new entry to the list */
797 return netdev_boot_setup_add(str, &map);
798}
799
800__setup("netdev=", netdev_boot_setup);
801
802/*******************************************************************************
803 *
804 * Device Interface Subroutines
805 *
806 *******************************************************************************/
807
808/**
809 * dev_get_iflink - get 'iflink' value of a interface
810 * @dev: targeted interface
811 *
812 * Indicates the ifindex the interface is linked to.
813 * Physical interfaces have the same 'ifindex' and 'iflink' values.
814 */
815
816int dev_get_iflink(const struct net_device *dev)
817{
818 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
819 return dev->netdev_ops->ndo_get_iflink(dev);
820
821 return dev->ifindex;
822}
823EXPORT_SYMBOL(dev_get_iflink);
824
825/**
826 * dev_fill_metadata_dst - Retrieve tunnel egress information.
827 * @dev: targeted interface
828 * @skb: The packet.
829 *
830 * For better visibility of tunnel traffic OVS needs to retrieve
831 * egress tunnel information for a packet. Following API allows
832 * user to get this info.
833 */
834int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
835{
836 struct ip_tunnel_info *info;
837
838 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
839 return -EINVAL;
840
841 info = skb_tunnel_info_unclone(skb);
842 if (!info)
843 return -ENOMEM;
844 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
845 return -EINVAL;
846
847 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
848}
849EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
850
851/**
852 * __dev_get_by_name - find a device by its name
853 * @net: the applicable net namespace
854 * @name: name to find
855 *
856 * Find an interface by name. Must be called under RTNL semaphore
857 * or @dev_base_lock. If the name is found a pointer to the device
858 * is returned. If the name is not found then %NULL is returned. The
859 * reference counters are not incremented so the caller must be
860 * careful with locks.
861 */
862
863struct net_device *__dev_get_by_name(struct net *net, const char *name)
864{
865 struct netdev_name_node *node_name;
866
867 node_name = netdev_name_node_lookup(net, name);
868 return node_name ? node_name->dev : NULL;
869}
870EXPORT_SYMBOL(__dev_get_by_name);
871
872/**
873 * dev_get_by_name_rcu - find a device by its name
874 * @net: the applicable net namespace
875 * @name: name to find
876 *
877 * Find an interface by name.
878 * If the name is found a pointer to the device is returned.
879 * If the name is not found then %NULL is returned.
880 * The reference counters are not incremented so the caller must be
881 * careful with locks. The caller must hold RCU lock.
882 */
883
884struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
885{
886 struct netdev_name_node *node_name;
887
888 node_name = netdev_name_node_lookup_rcu(net, name);
889 return node_name ? node_name->dev : NULL;
890}
891EXPORT_SYMBOL(dev_get_by_name_rcu);
892
893/**
894 * dev_get_by_name - find a device by its name
895 * @net: the applicable net namespace
896 * @name: name to find
897 *
898 * Find an interface by name. This can be called from any
899 * context and does its own locking. The returned handle has
900 * the usage count incremented and the caller must use dev_put() to
901 * release it when it is no longer needed. %NULL is returned if no
902 * matching device is found.
903 */
904
905struct net_device *dev_get_by_name(struct net *net, const char *name)
906{
907 struct net_device *dev;
908
909 rcu_read_lock();
910 dev = dev_get_by_name_rcu(net, name);
911 if (dev)
912 dev_hold(dev);
913 rcu_read_unlock();
914 return dev;
915}
916EXPORT_SYMBOL(dev_get_by_name);
917
918/**
919 * __dev_get_by_index - find a device by its ifindex
920 * @net: the applicable net namespace
921 * @ifindex: index of device
922 *
923 * Search for an interface by index. Returns %NULL if the device
924 * is not found or a pointer to the device. The device has not
925 * had its reference counter increased so the caller must be careful
926 * about locking. The caller must hold either the RTNL semaphore
927 * or @dev_base_lock.
928 */
929
930struct net_device *__dev_get_by_index(struct net *net, int ifindex)
931{
932 struct net_device *dev;
933 struct hlist_head *head = dev_index_hash(net, ifindex);
934
935 hlist_for_each_entry(dev, head, index_hlist)
936 if (dev->ifindex == ifindex)
937 return dev;
938
939 return NULL;
940}
941EXPORT_SYMBOL(__dev_get_by_index);
942
943/**
944 * dev_get_by_index_rcu - find a device by its ifindex
945 * @net: the applicable net namespace
946 * @ifindex: index of device
947 *
948 * Search for an interface by index. Returns %NULL if the device
949 * is not found or a pointer to the device. The device has not
950 * had its reference counter increased so the caller must be careful
951 * about locking. The caller must hold RCU lock.
952 */
953
954struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
955{
956 struct net_device *dev;
957 struct hlist_head *head = dev_index_hash(net, ifindex);
958
959 hlist_for_each_entry_rcu(dev, head, index_hlist)
960 if (dev->ifindex == ifindex)
961 return dev;
962
963 return NULL;
964}
965EXPORT_SYMBOL(dev_get_by_index_rcu);
966
967
968/**
969 * dev_get_by_index - find a device by its ifindex
970 * @net: the applicable net namespace
971 * @ifindex: index of device
972 *
973 * Search for an interface by index. Returns NULL if the device
974 * is not found or a pointer to the device. The device returned has
975 * had a reference added and the pointer is safe until the user calls
976 * dev_put to indicate they have finished with it.
977 */
978
979struct net_device *dev_get_by_index(struct net *net, int ifindex)
980{
981 struct net_device *dev;
982
983 rcu_read_lock();
984 dev = dev_get_by_index_rcu(net, ifindex);
985 if (dev)
986 dev_hold(dev);
987 rcu_read_unlock();
988 return dev;
989}
990EXPORT_SYMBOL(dev_get_by_index);
991
992/**
993 * dev_get_by_napi_id - find a device by napi_id
994 * @napi_id: ID of the NAPI struct
995 *
996 * Search for an interface by NAPI ID. Returns %NULL if the device
997 * is not found or a pointer to the device. The device has not had
998 * its reference counter increased so the caller must be careful
999 * about locking. The caller must hold RCU lock.
1000 */
1001
1002struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1003{
1004 struct napi_struct *napi;
1005
1006 WARN_ON_ONCE(!rcu_read_lock_held());
1007
1008 if (napi_id < MIN_NAPI_ID)
1009 return NULL;
1010
1011 napi = napi_by_id(napi_id);
1012
1013 return napi ? napi->dev : NULL;
1014}
1015EXPORT_SYMBOL(dev_get_by_napi_id);
1016
1017/**
1018 * netdev_get_name - get a netdevice name, knowing its ifindex.
1019 * @net: network namespace
1020 * @name: a pointer to the buffer where the name will be stored.
1021 * @ifindex: the ifindex of the interface to get the name from.
1022 */
1023int netdev_get_name(struct net *net, char *name, int ifindex)
1024{
1025 struct net_device *dev;
1026 int ret;
1027
1028 down_read(&devnet_rename_sem);
1029 rcu_read_lock();
1030
1031 dev = dev_get_by_index_rcu(net, ifindex);
1032 if (!dev) {
1033 ret = -ENODEV;
1034 goto out;
1035 }
1036
1037 strcpy(name, dev->name);
1038
1039 ret = 0;
1040out:
1041 rcu_read_unlock();
1042 up_read(&devnet_rename_sem);
1043 return ret;
1044}
1045
1046/**
1047 * dev_getbyhwaddr_rcu - find a device by its hardware address
1048 * @net: the applicable net namespace
1049 * @type: media type of device
1050 * @ha: hardware address
1051 *
1052 * Search for an interface by MAC address. Returns NULL if the device
1053 * is not found or a pointer to the device.
1054 * The caller must hold RCU or RTNL.
1055 * The returned device has not had its ref count increased
1056 * and the caller must therefore be careful about locking
1057 *
1058 */
1059
1060struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1061 const char *ha)
1062{
1063 struct net_device *dev;
1064
1065 for_each_netdev_rcu(net, dev)
1066 if (dev->type == type &&
1067 !memcmp(dev->dev_addr, ha, dev->addr_len))
1068 return dev;
1069
1070 return NULL;
1071}
1072EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1073
1074struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1075{
1076 struct net_device *dev, *ret = NULL;
1077
1078 rcu_read_lock();
1079 for_each_netdev_rcu(net, dev)
1080 if (dev->type == type) {
1081 dev_hold(dev);
1082 ret = dev;
1083 break;
1084 }
1085 rcu_read_unlock();
1086 return ret;
1087}
1088EXPORT_SYMBOL(dev_getfirstbyhwtype);
1089
1090/**
1091 * __dev_get_by_flags - find any device with given flags
1092 * @net: the applicable net namespace
1093 * @if_flags: IFF_* values
1094 * @mask: bitmask of bits in if_flags to check
1095 *
1096 * Search for any interface with the given flags. Returns NULL if a device
1097 * is not found or a pointer to the device. Must be called inside
1098 * rtnl_lock(), and result refcount is unchanged.
1099 */
1100
1101struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1102 unsigned short mask)
1103{
1104 struct net_device *dev, *ret;
1105
1106 ASSERT_RTNL();
1107
1108 ret = NULL;
1109 for_each_netdev(net, dev) {
1110 if (((dev->flags ^ if_flags) & mask) == 0) {
1111 ret = dev;
1112 break;
1113 }
1114 }
1115 return ret;
1116}
1117EXPORT_SYMBOL(__dev_get_by_flags);
1118
1119/**
1120 * dev_valid_name - check if name is okay for network device
1121 * @name: name string
1122 *
1123 * Network device names need to be valid file names to
1124 * allow sysfs to work. We also disallow any kind of
1125 * whitespace.
1126 */
1127bool dev_valid_name(const char *name)
1128{
1129 if (*name == '\0')
1130 return false;
1131 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1132 return false;
1133 if (!strcmp(name, ".") || !strcmp(name, ".."))
1134 return false;
1135
1136 while (*name) {
1137 if (*name == '/' || *name == ':' || isspace(*name))
1138 return false;
1139 name++;
1140 }
1141 return true;
1142}
1143EXPORT_SYMBOL(dev_valid_name);
1144
1145/**
1146 * __dev_alloc_name - allocate a name for a device
1147 * @net: network namespace to allocate the device name in
1148 * @name: name format string
1149 * @buf: scratch buffer and result name string
1150 *
1151 * Passed a format string - eg "lt%d" it will try and find a suitable
1152 * id. It scans list of devices to build up a free map, then chooses
1153 * the first empty slot. The caller must hold the dev_base or rtnl lock
1154 * while allocating the name and adding the device in order to avoid
1155 * duplicates.
1156 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1157 * Returns the number of the unit assigned or a negative errno code.
1158 */
1159
1160static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1161{
1162 int i = 0;
1163 const char *p;
1164 const int max_netdevices = 8*PAGE_SIZE;
1165 unsigned long *inuse;
1166 struct net_device *d;
1167
1168 if (!dev_valid_name(name))
1169 return -EINVAL;
1170
1171 p = strchr(name, '%');
1172 if (p) {
1173 /*
1174 * Verify the string as this thing may have come from
1175 * the user. There must be either one "%d" and no other "%"
1176 * characters.
1177 */
1178 if (p[1] != 'd' || strchr(p + 2, '%'))
1179 return -EINVAL;
1180
1181 /* Use one page as a bit array of possible slots */
1182 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1183 if (!inuse)
1184 return -ENOMEM;
1185
1186 for_each_netdev(net, d) {
1187 struct netdev_name_node *name_node;
1188 list_for_each_entry(name_node, &d->name_node->list, list) {
1189 if (!sscanf(name_node->name, name, &i))
1190 continue;
1191 if (i < 0 || i >= max_netdevices)
1192 continue;
1193
1194 /* avoid cases where sscanf is not exact inverse of printf */
1195 snprintf(buf, IFNAMSIZ, name, i);
1196 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1197 set_bit(i, inuse);
1198 }
1199 if (!sscanf(d->name, name, &i))
1200 continue;
1201 if (i < 0 || i >= max_netdevices)
1202 continue;
1203
1204 /* avoid cases where sscanf is not exact inverse of printf */
1205 snprintf(buf, IFNAMSIZ, name, i);
1206 if (!strncmp(buf, d->name, IFNAMSIZ))
1207 set_bit(i, inuse);
1208 }
1209
1210 i = find_first_zero_bit(inuse, max_netdevices);
1211 free_page((unsigned long) inuse);
1212 }
1213
1214 snprintf(buf, IFNAMSIZ, name, i);
1215 if (!__dev_get_by_name(net, buf))
1216 return i;
1217
1218 /* It is possible to run out of possible slots
1219 * when the name is long and there isn't enough space left
1220 * for the digits, or if all bits are used.
1221 */
1222 return -ENFILE;
1223}
1224
1225static int dev_alloc_name_ns(struct net *net,
1226 struct net_device *dev,
1227 const char *name)
1228{
1229 char buf[IFNAMSIZ];
1230 int ret;
1231
1232 BUG_ON(!net);
1233 ret = __dev_alloc_name(net, name, buf);
1234 if (ret >= 0)
1235 strlcpy(dev->name, buf, IFNAMSIZ);
1236 return ret;
1237}
1238
1239/**
1240 * dev_alloc_name - allocate a name for a device
1241 * @dev: device
1242 * @name: name format string
1243 *
1244 * Passed a format string - eg "lt%d" it will try and find a suitable
1245 * id. It scans list of devices to build up a free map, then chooses
1246 * the first empty slot. The caller must hold the dev_base or rtnl lock
1247 * while allocating the name and adding the device in order to avoid
1248 * duplicates.
1249 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1250 * Returns the number of the unit assigned or a negative errno code.
1251 */
1252
1253int dev_alloc_name(struct net_device *dev, const char *name)
1254{
1255 return dev_alloc_name_ns(dev_net(dev), dev, name);
1256}
1257EXPORT_SYMBOL(dev_alloc_name);
1258
1259static int dev_get_valid_name(struct net *net, struct net_device *dev,
1260 const char *name)
1261{
1262 BUG_ON(!net);
1263
1264 if (!dev_valid_name(name))
1265 return -EINVAL;
1266
1267 if (strchr(name, '%'))
1268 return dev_alloc_name_ns(net, dev, name);
1269 else if (__dev_get_by_name(net, name))
1270 return -EEXIST;
1271 else if (dev->name != name)
1272 strlcpy(dev->name, name, IFNAMSIZ);
1273
1274 return 0;
1275}
1276
1277/**
1278 * dev_change_name - change name of a device
1279 * @dev: device
1280 * @newname: name (or format string) must be at least IFNAMSIZ
1281 *
1282 * Change name of a device, can pass format strings "eth%d".
1283 * for wildcarding.
1284 */
1285int dev_change_name(struct net_device *dev, const char *newname)
1286{
1287 unsigned char old_assign_type;
1288 char oldname[IFNAMSIZ];
1289 int err = 0;
1290 int ret;
1291 struct net *net;
1292
1293 ASSERT_RTNL();
1294 BUG_ON(!dev_net(dev));
1295
1296 net = dev_net(dev);
1297
1298 /* Some auto-enslaved devices e.g. failover slaves are
1299 * special, as userspace might rename the device after
1300 * the interface had been brought up and running since
1301 * the point kernel initiated auto-enslavement. Allow
1302 * live name change even when these slave devices are
1303 * up and running.
1304 *
1305 * Typically, users of these auto-enslaving devices
1306 * don't actually care about slave name change, as
1307 * they are supposed to operate on master interface
1308 * directly.
1309 */
1310 if (dev->flags & IFF_UP &&
1311 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1312 return -EBUSY;
1313
1314 down_write(&devnet_rename_sem);
1315
1316 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1317 up_write(&devnet_rename_sem);
1318 return 0;
1319 }
1320
1321 memcpy(oldname, dev->name, IFNAMSIZ);
1322
1323 err = dev_get_valid_name(net, dev, newname);
1324 if (err < 0) {
1325 up_write(&devnet_rename_sem);
1326 return err;
1327 }
1328
1329 if (oldname[0] && !strchr(oldname, '%'))
1330 netdev_info(dev, "renamed from %s\n", oldname);
1331
1332 old_assign_type = dev->name_assign_type;
1333 dev->name_assign_type = NET_NAME_RENAMED;
1334
1335rollback:
1336 ret = device_rename(&dev->dev, dev->name);
1337 if (ret) {
1338 memcpy(dev->name, oldname, IFNAMSIZ);
1339 dev->name_assign_type = old_assign_type;
1340 up_write(&devnet_rename_sem);
1341 return ret;
1342 }
1343
1344 up_write(&devnet_rename_sem);
1345
1346 netdev_adjacent_rename_links(dev, oldname);
1347
1348 write_lock_bh(&dev_base_lock);
1349 netdev_name_node_del(dev->name_node);
1350 write_unlock_bh(&dev_base_lock);
1351
1352 synchronize_rcu();
1353
1354 write_lock_bh(&dev_base_lock);
1355 netdev_name_node_add(net, dev->name_node);
1356 write_unlock_bh(&dev_base_lock);
1357
1358 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1359 ret = notifier_to_errno(ret);
1360
1361 if (ret) {
1362 /* err >= 0 after dev_alloc_name() or stores the first errno */
1363 if (err >= 0) {
1364 err = ret;
1365 down_write(&devnet_rename_sem);
1366 memcpy(dev->name, oldname, IFNAMSIZ);
1367 memcpy(oldname, newname, IFNAMSIZ);
1368 dev->name_assign_type = old_assign_type;
1369 old_assign_type = NET_NAME_RENAMED;
1370 goto rollback;
1371 } else {
1372 pr_err("%s: name change rollback failed: %d\n",
1373 dev->name, ret);
1374 }
1375 }
1376
1377 return err;
1378}
1379
1380/**
1381 * dev_set_alias - change ifalias of a device
1382 * @dev: device
1383 * @alias: name up to IFALIASZ
1384 * @len: limit of bytes to copy from info
1385 *
1386 * Set ifalias for a device,
1387 */
1388int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1389{
1390 struct dev_ifalias *new_alias = NULL;
1391
1392 if (len >= IFALIASZ)
1393 return -EINVAL;
1394
1395 if (len) {
1396 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1397 if (!new_alias)
1398 return -ENOMEM;
1399
1400 memcpy(new_alias->ifalias, alias, len);
1401 new_alias->ifalias[len] = 0;
1402 }
1403
1404 mutex_lock(&ifalias_mutex);
1405 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1406 mutex_is_locked(&ifalias_mutex));
1407 mutex_unlock(&ifalias_mutex);
1408
1409 if (new_alias)
1410 kfree_rcu(new_alias, rcuhead);
1411
1412 return len;
1413}
1414EXPORT_SYMBOL(dev_set_alias);
1415
1416/**
1417 * dev_get_alias - get ifalias of a device
1418 * @dev: device
1419 * @name: buffer to store name of ifalias
1420 * @len: size of buffer
1421 *
1422 * get ifalias for a device. Caller must make sure dev cannot go
1423 * away, e.g. rcu read lock or own a reference count to device.
1424 */
1425int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1426{
1427 const struct dev_ifalias *alias;
1428 int ret = 0;
1429
1430 rcu_read_lock();
1431 alias = rcu_dereference(dev->ifalias);
1432 if (alias)
1433 ret = snprintf(name, len, "%s", alias->ifalias);
1434 rcu_read_unlock();
1435
1436 return ret;
1437}
1438
1439/**
1440 * netdev_features_change - device changes features
1441 * @dev: device to cause notification
1442 *
1443 * Called to indicate a device has changed features.
1444 */
1445void netdev_features_change(struct net_device *dev)
1446{
1447 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1448}
1449EXPORT_SYMBOL(netdev_features_change);
1450
1451/**
1452 * netdev_state_change - device changes state
1453 * @dev: device to cause notification
1454 *
1455 * Called to indicate a device has changed state. This function calls
1456 * the notifier chains for netdev_chain and sends a NEWLINK message
1457 * to the routing socket.
1458 */
1459void netdev_state_change(struct net_device *dev)
1460{
1461 if (dev->flags & IFF_UP) {
1462 struct netdev_notifier_change_info change_info = {
1463 .info.dev = dev,
1464 };
1465
1466 call_netdevice_notifiers_info(NETDEV_CHANGE,
1467 &change_info.info);
1468 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1469 }
1470}
1471EXPORT_SYMBOL(netdev_state_change);
1472
1473/**
1474 * __netdev_notify_peers - notify network peers about existence of @dev,
1475 * to be called when rtnl lock is already held.
1476 * @dev: network device
1477 *
1478 * Generate traffic such that interested network peers are aware of
1479 * @dev, such as by generating a gratuitous ARP. This may be used when
1480 * a device wants to inform the rest of the network about some sort of
1481 * reconfiguration such as a failover event or virtual machine
1482 * migration.
1483 */
1484void __netdev_notify_peers(struct net_device *dev)
1485{
1486 ASSERT_RTNL();
1487 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1488 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1489}
1490EXPORT_SYMBOL(__netdev_notify_peers);
1491
1492/**
1493 * netdev_notify_peers - notify network peers about existence of @dev
1494 * @dev: network device
1495 *
1496 * Generate traffic such that interested network peers are aware of
1497 * @dev, such as by generating a gratuitous ARP. This may be used when
1498 * a device wants to inform the rest of the network about some sort of
1499 * reconfiguration such as a failover event or virtual machine
1500 * migration.
1501 */
1502void netdev_notify_peers(struct net_device *dev)
1503{
1504 rtnl_lock();
1505 __netdev_notify_peers(dev);
1506 rtnl_unlock();
1507}
1508EXPORT_SYMBOL(netdev_notify_peers);
1509
1510static int napi_threaded_poll(void *data);
1511
1512static int napi_kthread_create(struct napi_struct *n)
1513{
1514 int err = 0;
1515
1516 /* Create and wake up the kthread once to put it in
1517 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1518 * warning and work with loadavg.
1519 */
1520 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1521 n->dev->name, n->napi_id);
1522 if (IS_ERR(n->thread)) {
1523 err = PTR_ERR(n->thread);
1524 pr_err("kthread_run failed with err %d\n", err);
1525 n->thread = NULL;
1526 }
1527
1528 return err;
1529}
1530
1531static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1532{
1533 const struct net_device_ops *ops = dev->netdev_ops;
1534 int ret;
1535
1536 ASSERT_RTNL();
1537
1538 if (!netif_device_present(dev)) {
1539 /* may be detached because parent is runtime-suspended */
1540 if (dev->dev.parent)
1541 pm_runtime_resume(dev->dev.parent);
1542 if (!netif_device_present(dev))
1543 return -ENODEV;
1544 }
1545
1546 /* Block netpoll from trying to do any rx path servicing.
1547 * If we don't do this there is a chance ndo_poll_controller
1548 * or ndo_poll may be running while we open the device
1549 */
1550 netpoll_poll_disable(dev);
1551
1552 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1553 ret = notifier_to_errno(ret);
1554 if (ret)
1555 return ret;
1556
1557 set_bit(__LINK_STATE_START, &dev->state);
1558
1559 if (ops->ndo_validate_addr)
1560 ret = ops->ndo_validate_addr(dev);
1561
1562 if (!ret && ops->ndo_open)
1563 ret = ops->ndo_open(dev);
1564
1565 netpoll_poll_enable(dev);
1566
1567 if (ret)
1568 clear_bit(__LINK_STATE_START, &dev->state);
1569 else {
1570 dev->flags |= IFF_UP;
1571 dev_set_rx_mode(dev);
1572 dev_activate(dev);
1573 add_device_randomness(dev->dev_addr, dev->addr_len);
1574 }
1575
1576 return ret;
1577}
1578
1579/**
1580 * dev_open - prepare an interface for use.
1581 * @dev: device to open
1582 * @extack: netlink extended ack
1583 *
1584 * Takes a device from down to up state. The device's private open
1585 * function is invoked and then the multicast lists are loaded. Finally
1586 * the device is moved into the up state and a %NETDEV_UP message is
1587 * sent to the netdev notifier chain.
1588 *
1589 * Calling this function on an active interface is a nop. On a failure
1590 * a negative errno code is returned.
1591 */
1592int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1593{
1594 int ret;
1595
1596 if (dev->flags & IFF_UP)
1597 return 0;
1598
1599 ret = __dev_open(dev, extack);
1600 if (ret < 0)
1601 return ret;
1602
1603 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1604 call_netdevice_notifiers(NETDEV_UP, dev);
1605
1606 return ret;
1607}
1608EXPORT_SYMBOL(dev_open);
1609
1610static void __dev_close_many(struct list_head *head)
1611{
1612 struct net_device *dev;
1613
1614 ASSERT_RTNL();
1615 might_sleep();
1616
1617 list_for_each_entry(dev, head, close_list) {
1618 /* Temporarily disable netpoll until the interface is down */
1619 netpoll_poll_disable(dev);
1620
1621 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1622
1623 clear_bit(__LINK_STATE_START, &dev->state);
1624
1625 /* Synchronize to scheduled poll. We cannot touch poll list, it
1626 * can be even on different cpu. So just clear netif_running().
1627 *
1628 * dev->stop() will invoke napi_disable() on all of it's
1629 * napi_struct instances on this device.
1630 */
1631 smp_mb__after_atomic(); /* Commit netif_running(). */
1632 }
1633
1634 dev_deactivate_many(head);
1635
1636 list_for_each_entry(dev, head, close_list) {
1637 const struct net_device_ops *ops = dev->netdev_ops;
1638
1639 /*
1640 * Call the device specific close. This cannot fail.
1641 * Only if device is UP
1642 *
1643 * We allow it to be called even after a DETACH hot-plug
1644 * event.
1645 */
1646 if (ops->ndo_stop)
1647 ops->ndo_stop(dev);
1648
1649 dev->flags &= ~IFF_UP;
1650 netpoll_poll_enable(dev);
1651 }
1652}
1653
1654static void __dev_close(struct net_device *dev)
1655{
1656 LIST_HEAD(single);
1657
1658 list_add(&dev->close_list, &single);
1659 __dev_close_many(&single);
1660 list_del(&single);
1661}
1662
1663void dev_close_many(struct list_head *head, bool unlink)
1664{
1665 struct net_device *dev, *tmp;
1666
1667 /* Remove the devices that don't need to be closed */
1668 list_for_each_entry_safe(dev, tmp, head, close_list)
1669 if (!(dev->flags & IFF_UP))
1670 list_del_init(&dev->close_list);
1671
1672 __dev_close_many(head);
1673
1674 list_for_each_entry_safe(dev, tmp, head, close_list) {
1675 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1676 call_netdevice_notifiers(NETDEV_DOWN, dev);
1677 if (unlink)
1678 list_del_init(&dev->close_list);
1679 }
1680}
1681EXPORT_SYMBOL(dev_close_many);
1682
1683/**
1684 * dev_close - shutdown an interface.
1685 * @dev: device to shutdown
1686 *
1687 * This function moves an active device into down state. A
1688 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1689 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1690 * chain.
1691 */
1692void dev_close(struct net_device *dev)
1693{
1694 if (dev->flags & IFF_UP) {
1695 LIST_HEAD(single);
1696
1697 list_add(&dev->close_list, &single);
1698 dev_close_many(&single, true);
1699 list_del(&single);
1700 }
1701}
1702EXPORT_SYMBOL(dev_close);
1703
1704
1705/**
1706 * dev_disable_lro - disable Large Receive Offload on a device
1707 * @dev: device
1708 *
1709 * Disable Large Receive Offload (LRO) on a net device. Must be
1710 * called under RTNL. This is needed if received packets may be
1711 * forwarded to another interface.
1712 */
1713void dev_disable_lro(struct net_device *dev)
1714{
1715 struct net_device *lower_dev;
1716 struct list_head *iter;
1717
1718 dev->wanted_features &= ~NETIF_F_LRO;
1719 netdev_update_features(dev);
1720
1721 if (unlikely(dev->features & NETIF_F_LRO))
1722 netdev_WARN(dev, "failed to disable LRO!\n");
1723
1724 netdev_for_each_lower_dev(dev, lower_dev, iter)
1725 dev_disable_lro(lower_dev);
1726}
1727EXPORT_SYMBOL(dev_disable_lro);
1728
1729/**
1730 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1731 * @dev: device
1732 *
1733 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1734 * called under RTNL. This is needed if Generic XDP is installed on
1735 * the device.
1736 */
1737static void dev_disable_gro_hw(struct net_device *dev)
1738{
1739 dev->wanted_features &= ~NETIF_F_GRO_HW;
1740 netdev_update_features(dev);
1741
1742 if (unlikely(dev->features & NETIF_F_GRO_HW))
1743 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1744}
1745
1746const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1747{
1748#define N(val) \
1749 case NETDEV_##val: \
1750 return "NETDEV_" __stringify(val);
1751 switch (cmd) {
1752 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1753 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1754 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1755 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1756 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1757 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1758 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1759 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1760 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1761 N(PRE_CHANGEADDR)
1762 }
1763#undef N
1764 return "UNKNOWN_NETDEV_EVENT";
1765}
1766EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1767
1768static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1769 struct net_device *dev)
1770{
1771 struct netdev_notifier_info info = {
1772 .dev = dev,
1773 };
1774
1775 return nb->notifier_call(nb, val, &info);
1776}
1777
1778static int call_netdevice_register_notifiers(struct notifier_block *nb,
1779 struct net_device *dev)
1780{
1781 int err;
1782
1783 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1784 err = notifier_to_errno(err);
1785 if (err)
1786 return err;
1787
1788 if (!(dev->flags & IFF_UP))
1789 return 0;
1790
1791 call_netdevice_notifier(nb, NETDEV_UP, dev);
1792 return 0;
1793}
1794
1795static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1796 struct net_device *dev)
1797{
1798 if (dev->flags & IFF_UP) {
1799 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1800 dev);
1801 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1802 }
1803 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1804}
1805
1806static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1807 struct net *net)
1808{
1809 struct net_device *dev;
1810 int err;
1811
1812 for_each_netdev(net, dev) {
1813 err = call_netdevice_register_notifiers(nb, dev);
1814 if (err)
1815 goto rollback;
1816 }
1817 return 0;
1818
1819rollback:
1820 for_each_netdev_continue_reverse(net, dev)
1821 call_netdevice_unregister_notifiers(nb, dev);
1822 return err;
1823}
1824
1825static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1826 struct net *net)
1827{
1828 struct net_device *dev;
1829
1830 for_each_netdev(net, dev)
1831 call_netdevice_unregister_notifiers(nb, dev);
1832}
1833
1834static int dev_boot_phase = 1;
1835
1836/**
1837 * register_netdevice_notifier - register a network notifier block
1838 * @nb: notifier
1839 *
1840 * Register a notifier to be called when network device events occur.
1841 * The notifier passed is linked into the kernel structures and must
1842 * not be reused until it has been unregistered. A negative errno code
1843 * is returned on a failure.
1844 *
1845 * When registered all registration and up events are replayed
1846 * to the new notifier to allow device to have a race free
1847 * view of the network device list.
1848 */
1849
1850int register_netdevice_notifier(struct notifier_block *nb)
1851{
1852 struct net *net;
1853 int err;
1854
1855 /* Close race with setup_net() and cleanup_net() */
1856 down_write(&pernet_ops_rwsem);
1857 rtnl_lock();
1858 err = raw_notifier_chain_register(&netdev_chain, nb);
1859 if (err)
1860 goto unlock;
1861 if (dev_boot_phase)
1862 goto unlock;
1863 for_each_net(net) {
1864 err = call_netdevice_register_net_notifiers(nb, net);
1865 if (err)
1866 goto rollback;
1867 }
1868
1869unlock:
1870 rtnl_unlock();
1871 up_write(&pernet_ops_rwsem);
1872 return err;
1873
1874rollback:
1875 for_each_net_continue_reverse(net)
1876 call_netdevice_unregister_net_notifiers(nb, net);
1877
1878 raw_notifier_chain_unregister(&netdev_chain, nb);
1879 goto unlock;
1880}
1881EXPORT_SYMBOL(register_netdevice_notifier);
1882
1883/**
1884 * unregister_netdevice_notifier - unregister a network notifier block
1885 * @nb: notifier
1886 *
1887 * Unregister a notifier previously registered by
1888 * register_netdevice_notifier(). The notifier is unlinked into the
1889 * kernel structures and may then be reused. A negative errno code
1890 * is returned on a failure.
1891 *
1892 * After unregistering unregister and down device events are synthesized
1893 * for all devices on the device list to the removed notifier to remove
1894 * the need for special case cleanup code.
1895 */
1896
1897int unregister_netdevice_notifier(struct notifier_block *nb)
1898{
1899 struct net *net;
1900 int err;
1901
1902 /* Close race with setup_net() and cleanup_net() */
1903 down_write(&pernet_ops_rwsem);
1904 rtnl_lock();
1905 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1906 if (err)
1907 goto unlock;
1908
1909 for_each_net(net)
1910 call_netdevice_unregister_net_notifiers(nb, net);
1911
1912unlock:
1913 rtnl_unlock();
1914 up_write(&pernet_ops_rwsem);
1915 return err;
1916}
1917EXPORT_SYMBOL(unregister_netdevice_notifier);
1918
1919static int __register_netdevice_notifier_net(struct net *net,
1920 struct notifier_block *nb,
1921 bool ignore_call_fail)
1922{
1923 int err;
1924
1925 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1926 if (err)
1927 return err;
1928 if (dev_boot_phase)
1929 return 0;
1930
1931 err = call_netdevice_register_net_notifiers(nb, net);
1932 if (err && !ignore_call_fail)
1933 goto chain_unregister;
1934
1935 return 0;
1936
1937chain_unregister:
1938 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1939 return err;
1940}
1941
1942static int __unregister_netdevice_notifier_net(struct net *net,
1943 struct notifier_block *nb)
1944{
1945 int err;
1946
1947 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1948 if (err)
1949 return err;
1950
1951 call_netdevice_unregister_net_notifiers(nb, net);
1952 return 0;
1953}
1954
1955/**
1956 * register_netdevice_notifier_net - register a per-netns network notifier block
1957 * @net: network namespace
1958 * @nb: notifier
1959 *
1960 * Register a notifier to be called when network device events occur.
1961 * The notifier passed is linked into the kernel structures and must
1962 * not be reused until it has been unregistered. A negative errno code
1963 * is returned on a failure.
1964 *
1965 * When registered all registration and up events are replayed
1966 * to the new notifier to allow device to have a race free
1967 * view of the network device list.
1968 */
1969
1970int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1971{
1972 int err;
1973
1974 rtnl_lock();
1975 err = __register_netdevice_notifier_net(net, nb, false);
1976 rtnl_unlock();
1977 return err;
1978}
1979EXPORT_SYMBOL(register_netdevice_notifier_net);
1980
1981/**
1982 * unregister_netdevice_notifier_net - unregister a per-netns
1983 * network notifier block
1984 * @net: network namespace
1985 * @nb: notifier
1986 *
1987 * Unregister a notifier previously registered by
1988 * register_netdevice_notifier(). The notifier is unlinked into the
1989 * kernel structures and may then be reused. A negative errno code
1990 * is returned on a failure.
1991 *
1992 * After unregistering unregister and down device events are synthesized
1993 * for all devices on the device list to the removed notifier to remove
1994 * the need for special case cleanup code.
1995 */
1996
1997int unregister_netdevice_notifier_net(struct net *net,
1998 struct notifier_block *nb)
1999{
2000 int err;
2001
2002 rtnl_lock();
2003 err = __unregister_netdevice_notifier_net(net, nb);
2004 rtnl_unlock();
2005 return err;
2006}
2007EXPORT_SYMBOL(unregister_netdevice_notifier_net);
2008
2009int register_netdevice_notifier_dev_net(struct net_device *dev,
2010 struct notifier_block *nb,
2011 struct netdev_net_notifier *nn)
2012{
2013 int err;
2014
2015 rtnl_lock();
2016 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
2017 if (!err) {
2018 nn->nb = nb;
2019 list_add(&nn->list, &dev->net_notifier_list);
2020 }
2021 rtnl_unlock();
2022 return err;
2023}
2024EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2025
2026int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2027 struct notifier_block *nb,
2028 struct netdev_net_notifier *nn)
2029{
2030 int err;
2031
2032 rtnl_lock();
2033 list_del(&nn->list);
2034 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2035 rtnl_unlock();
2036 return err;
2037}
2038EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2039
2040static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2041 struct net *net)
2042{
2043 struct netdev_net_notifier *nn;
2044
2045 list_for_each_entry(nn, &dev->net_notifier_list, list) {
2046 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2047 __register_netdevice_notifier_net(net, nn->nb, true);
2048 }
2049}
2050
2051/**
2052 * call_netdevice_notifiers_info - call all network notifier blocks
2053 * @val: value passed unmodified to notifier function
2054 * @info: notifier information data
2055 *
2056 * Call all network notifier blocks. Parameters and return value
2057 * are as for raw_notifier_call_chain().
2058 */
2059
2060static int call_netdevice_notifiers_info(unsigned long val,
2061 struct netdev_notifier_info *info)
2062{
2063 struct net *net = dev_net(info->dev);
2064 int ret;
2065
2066 ASSERT_RTNL();
2067
2068 /* Run per-netns notifier block chain first, then run the global one.
2069 * Hopefully, one day, the global one is going to be removed after
2070 * all notifier block registrators get converted to be per-netns.
2071 */
2072 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2073 if (ret & NOTIFY_STOP_MASK)
2074 return ret;
2075 return raw_notifier_call_chain(&netdev_chain, val, info);
2076}
2077
2078static int call_netdevice_notifiers_extack(unsigned long val,
2079 struct net_device *dev,
2080 struct netlink_ext_ack *extack)
2081{
2082 struct netdev_notifier_info info = {
2083 .dev = dev,
2084 .extack = extack,
2085 };
2086
2087 return call_netdevice_notifiers_info(val, &info);
2088}
2089
2090/**
2091 * call_netdevice_notifiers - call all network notifier blocks
2092 * @val: value passed unmodified to notifier function
2093 * @dev: net_device pointer passed unmodified to notifier function
2094 *
2095 * Call all network notifier blocks. Parameters and return value
2096 * are as for raw_notifier_call_chain().
2097 */
2098
2099int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2100{
2101 return call_netdevice_notifiers_extack(val, dev, NULL);
2102}
2103EXPORT_SYMBOL(call_netdevice_notifiers);
2104
2105/**
2106 * call_netdevice_notifiers_mtu - call all network notifier blocks
2107 * @val: value passed unmodified to notifier function
2108 * @dev: net_device pointer passed unmodified to notifier function
2109 * @arg: additional u32 argument passed to the notifier function
2110 *
2111 * Call all network notifier blocks. Parameters and return value
2112 * are as for raw_notifier_call_chain().
2113 */
2114static int call_netdevice_notifiers_mtu(unsigned long val,
2115 struct net_device *dev, u32 arg)
2116{
2117 struct netdev_notifier_info_ext info = {
2118 .info.dev = dev,
2119 .ext.mtu = arg,
2120 };
2121
2122 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2123
2124 return call_netdevice_notifiers_info(val, &info.info);
2125}
2126
2127#ifdef CONFIG_NET_INGRESS
2128static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2129
2130void net_inc_ingress_queue(void)
2131{
2132 static_branch_inc(&ingress_needed_key);
2133}
2134EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2135
2136void net_dec_ingress_queue(void)
2137{
2138 static_branch_dec(&ingress_needed_key);
2139}
2140EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2141#endif
2142
2143#ifdef CONFIG_NET_EGRESS
2144static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2145
2146void net_inc_egress_queue(void)
2147{
2148 static_branch_inc(&egress_needed_key);
2149}
2150EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2151
2152void net_dec_egress_queue(void)
2153{
2154 static_branch_dec(&egress_needed_key);
2155}
2156EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2157#endif
2158
2159static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2160#ifdef CONFIG_JUMP_LABEL
2161static atomic_t netstamp_needed_deferred;
2162static atomic_t netstamp_wanted;
2163static void netstamp_clear(struct work_struct *work)
2164{
2165 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2166 int wanted;
2167
2168 wanted = atomic_add_return(deferred, &netstamp_wanted);
2169 if (wanted > 0)
2170 static_branch_enable(&netstamp_needed_key);
2171 else
2172 static_branch_disable(&netstamp_needed_key);
2173}
2174static DECLARE_WORK(netstamp_work, netstamp_clear);
2175#endif
2176
2177void net_enable_timestamp(void)
2178{
2179#ifdef CONFIG_JUMP_LABEL
2180 int wanted;
2181
2182 while (1) {
2183 wanted = atomic_read(&netstamp_wanted);
2184 if (wanted <= 0)
2185 break;
2186 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2187 return;
2188 }
2189 atomic_inc(&netstamp_needed_deferred);
2190 schedule_work(&netstamp_work);
2191#else
2192 static_branch_inc(&netstamp_needed_key);
2193#endif
2194}
2195EXPORT_SYMBOL(net_enable_timestamp);
2196
2197void net_disable_timestamp(void)
2198{
2199#ifdef CONFIG_JUMP_LABEL
2200 int wanted;
2201
2202 while (1) {
2203 wanted = atomic_read(&netstamp_wanted);
2204 if (wanted <= 1)
2205 break;
2206 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2207 return;
2208 }
2209 atomic_dec(&netstamp_needed_deferred);
2210 schedule_work(&netstamp_work);
2211#else
2212 static_branch_dec(&netstamp_needed_key);
2213#endif
2214}
2215EXPORT_SYMBOL(net_disable_timestamp);
2216
2217static inline void net_timestamp_set(struct sk_buff *skb)
2218{
2219 skb->tstamp = 0;
2220 if (static_branch_unlikely(&netstamp_needed_key))
2221 __net_timestamp(skb);
2222}
2223
2224#define net_timestamp_check(COND, SKB) \
2225 if (static_branch_unlikely(&netstamp_needed_key)) { \
2226 if ((COND) && !(SKB)->tstamp) \
2227 __net_timestamp(SKB); \
2228 } \
2229
2230bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2231{
2232 return __is_skb_forwardable(dev, skb, true);
2233}
2234EXPORT_SYMBOL_GPL(is_skb_forwardable);
2235
2236static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2237 bool check_mtu)
2238{
2239 int ret = ____dev_forward_skb(dev, skb, check_mtu);
2240
2241 if (likely(!ret)) {
2242 skb->protocol = eth_type_trans(skb, dev);
2243 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2244 }
2245
2246 return ret;
2247}
2248
2249int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2250{
2251 return __dev_forward_skb2(dev, skb, true);
2252}
2253EXPORT_SYMBOL_GPL(__dev_forward_skb);
2254
2255/**
2256 * dev_forward_skb - loopback an skb to another netif
2257 *
2258 * @dev: destination network device
2259 * @skb: buffer to forward
2260 *
2261 * return values:
2262 * NET_RX_SUCCESS (no congestion)
2263 * NET_RX_DROP (packet was dropped, but freed)
2264 *
2265 * dev_forward_skb can be used for injecting an skb from the
2266 * start_xmit function of one device into the receive queue
2267 * of another device.
2268 *
2269 * The receiving device may be in another namespace, so
2270 * we have to clear all information in the skb that could
2271 * impact namespace isolation.
2272 */
2273int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2274{
2275 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2276}
2277EXPORT_SYMBOL_GPL(dev_forward_skb);
2278
2279int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2280{
2281 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2282}
2283
2284static inline int deliver_skb(struct sk_buff *skb,
2285 struct packet_type *pt_prev,
2286 struct net_device *orig_dev)
2287{
2288 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2289 return -ENOMEM;
2290 refcount_inc(&skb->users);
2291 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2292}
2293
2294static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2295 struct packet_type **pt,
2296 struct net_device *orig_dev,
2297 __be16 type,
2298 struct list_head *ptype_list)
2299{
2300 struct packet_type *ptype, *pt_prev = *pt;
2301
2302 list_for_each_entry_rcu(ptype, ptype_list, list) {
2303 if (ptype->type != type)
2304 continue;
2305 if (pt_prev)
2306 deliver_skb(skb, pt_prev, orig_dev);
2307 pt_prev = ptype;
2308 }
2309 *pt = pt_prev;
2310}
2311
2312static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2313{
2314 if (!ptype->af_packet_priv || !skb->sk)
2315 return false;
2316
2317 if (ptype->id_match)
2318 return ptype->id_match(ptype, skb->sk);
2319 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2320 return true;
2321
2322 return false;
2323}
2324
2325/**
2326 * dev_nit_active - return true if any network interface taps are in use
2327 *
2328 * @dev: network device to check for the presence of taps
2329 */
2330bool dev_nit_active(struct net_device *dev)
2331{
2332 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2333}
2334EXPORT_SYMBOL_GPL(dev_nit_active);
2335
2336/*
2337 * Support routine. Sends outgoing frames to any network
2338 * taps currently in use.
2339 */
2340
2341void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2342{
2343 struct packet_type *ptype;
2344 struct sk_buff *skb2 = NULL;
2345 struct packet_type *pt_prev = NULL;
2346 struct list_head *ptype_list = &ptype_all;
2347
2348 rcu_read_lock();
2349again:
2350 list_for_each_entry_rcu(ptype, ptype_list, list) {
2351 if (ptype->ignore_outgoing)
2352 continue;
2353
2354 /* Never send packets back to the socket
2355 * they originated from - MvS (miquels@drinkel.ow.org)
2356 */
2357 if (skb_loop_sk(ptype, skb))
2358 continue;
2359
2360 if (pt_prev) {
2361 deliver_skb(skb2, pt_prev, skb->dev);
2362 pt_prev = ptype;
2363 continue;
2364 }
2365
2366 /* need to clone skb, done only once */
2367 skb2 = skb_clone(skb, GFP_ATOMIC);
2368 if (!skb2)
2369 goto out_unlock;
2370
2371 net_timestamp_set(skb2);
2372
2373 /* skb->nh should be correctly
2374 * set by sender, so that the second statement is
2375 * just protection against buggy protocols.
2376 */
2377 skb_reset_mac_header(skb2);
2378
2379 if (skb_network_header(skb2) < skb2->data ||
2380 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2381 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2382 ntohs(skb2->protocol),
2383 dev->name);
2384 skb_reset_network_header(skb2);
2385 }
2386
2387 skb2->transport_header = skb2->network_header;
2388 skb2->pkt_type = PACKET_OUTGOING;
2389 pt_prev = ptype;
2390 }
2391
2392 if (ptype_list == &ptype_all) {
2393 ptype_list = &dev->ptype_all;
2394 goto again;
2395 }
2396out_unlock:
2397 if (pt_prev) {
2398 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2399 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2400 else
2401 kfree_skb(skb2);
2402 }
2403 rcu_read_unlock();
2404}
2405EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2406
2407/**
2408 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2409 * @dev: Network device
2410 * @txq: number of queues available
2411 *
2412 * If real_num_tx_queues is changed the tc mappings may no longer be
2413 * valid. To resolve this verify the tc mapping remains valid and if
2414 * not NULL the mapping. With no priorities mapping to this
2415 * offset/count pair it will no longer be used. In the worst case TC0
2416 * is invalid nothing can be done so disable priority mappings. If is
2417 * expected that drivers will fix this mapping if they can before
2418 * calling netif_set_real_num_tx_queues.
2419 */
2420static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2421{
2422 int i;
2423 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2424
2425 /* If TC0 is invalidated disable TC mapping */
2426 if (tc->offset + tc->count > txq) {
2427 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2428 dev->num_tc = 0;
2429 return;
2430 }
2431
2432 /* Invalidated prio to tc mappings set to TC0 */
2433 for (i = 1; i < TC_BITMASK + 1; i++) {
2434 int q = netdev_get_prio_tc_map(dev, i);
2435
2436 tc = &dev->tc_to_txq[q];
2437 if (tc->offset + tc->count > txq) {
2438 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2439 i, q);
2440 netdev_set_prio_tc_map(dev, i, 0);
2441 }
2442 }
2443}
2444
2445int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2446{
2447 if (dev->num_tc) {
2448 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2449 int i;
2450
2451 /* walk through the TCs and see if it falls into any of them */
2452 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2453 if ((txq - tc->offset) < tc->count)
2454 return i;
2455 }
2456
2457 /* didn't find it, just return -1 to indicate no match */
2458 return -1;
2459 }
2460
2461 return 0;
2462}
2463EXPORT_SYMBOL(netdev_txq_to_tc);
2464
2465#ifdef CONFIG_XPS
2466struct static_key xps_needed __read_mostly;
2467EXPORT_SYMBOL(xps_needed);
2468struct static_key xps_rxqs_needed __read_mostly;
2469EXPORT_SYMBOL(xps_rxqs_needed);
2470static DEFINE_MUTEX(xps_map_mutex);
2471#define xmap_dereference(P) \
2472 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2473
2474static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2475 int tci, u16 index)
2476{
2477 struct xps_map *map = NULL;
2478 int pos;
2479
2480 if (dev_maps)
2481 map = xmap_dereference(dev_maps->attr_map[tci]);
2482 if (!map)
2483 return false;
2484
2485 for (pos = map->len; pos--;) {
2486 if (map->queues[pos] != index)
2487 continue;
2488
2489 if (map->len > 1) {
2490 map->queues[pos] = map->queues[--map->len];
2491 break;
2492 }
2493
2494 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2495 kfree_rcu(map, rcu);
2496 return false;
2497 }
2498
2499 return true;
2500}
2501
2502static bool remove_xps_queue_cpu(struct net_device *dev,
2503 struct xps_dev_maps *dev_maps,
2504 int cpu, u16 offset, u16 count)
2505{
2506 int num_tc = dev->num_tc ? : 1;
2507 bool active = false;
2508 int tci;
2509
2510 for (tci = cpu * num_tc; num_tc--; tci++) {
2511 int i, j;
2512
2513 for (i = count, j = offset; i--; j++) {
2514 if (!remove_xps_queue(dev_maps, tci, j))
2515 break;
2516 }
2517
2518 active |= i < 0;
2519 }
2520
2521 return active;
2522}
2523
2524static void reset_xps_maps(struct net_device *dev,
2525 struct xps_dev_maps *dev_maps,
2526 bool is_rxqs_map)
2527{
2528 if (is_rxqs_map) {
2529 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2530 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2531 } else {
2532 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2533 }
2534 static_key_slow_dec_cpuslocked(&xps_needed);
2535 kfree_rcu(dev_maps, rcu);
2536}
2537
2538static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2539 struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2540 u16 offset, u16 count, bool is_rxqs_map)
2541{
2542 bool active = false;
2543 int i, j;
2544
2545 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2546 j < nr_ids;)
2547 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2548 count);
2549 if (!active)
2550 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2551
2552 if (!is_rxqs_map) {
2553 for (i = offset + (count - 1); count--; i--) {
2554 netdev_queue_numa_node_write(
2555 netdev_get_tx_queue(dev, i),
2556 NUMA_NO_NODE);
2557 }
2558 }
2559}
2560
2561static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2562 u16 count)
2563{
2564 const unsigned long *possible_mask = NULL;
2565 struct xps_dev_maps *dev_maps;
2566 unsigned int nr_ids;
2567
2568 if (!static_key_false(&xps_needed))
2569 return;
2570
2571 cpus_read_lock();
2572 mutex_lock(&xps_map_mutex);
2573
2574 if (static_key_false(&xps_rxqs_needed)) {
2575 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2576 if (dev_maps) {
2577 nr_ids = dev->num_rx_queues;
2578 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2579 offset, count, true);
2580 }
2581 }
2582
2583 dev_maps = xmap_dereference(dev->xps_cpus_map);
2584 if (!dev_maps)
2585 goto out_no_maps;
2586
2587 if (num_possible_cpus() > 1)
2588 possible_mask = cpumask_bits(cpu_possible_mask);
2589 nr_ids = nr_cpu_ids;
2590 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2591 false);
2592
2593out_no_maps:
2594 mutex_unlock(&xps_map_mutex);
2595 cpus_read_unlock();
2596}
2597
2598static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2599{
2600 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2601}
2602
2603static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2604 u16 index, bool is_rxqs_map)
2605{
2606 struct xps_map *new_map;
2607 int alloc_len = XPS_MIN_MAP_ALLOC;
2608 int i, pos;
2609
2610 for (pos = 0; map && pos < map->len; pos++) {
2611 if (map->queues[pos] != index)
2612 continue;
2613 return map;
2614 }
2615
2616 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2617 if (map) {
2618 if (pos < map->alloc_len)
2619 return map;
2620
2621 alloc_len = map->alloc_len * 2;
2622 }
2623
2624 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2625 * map
2626 */
2627 if (is_rxqs_map)
2628 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2629 else
2630 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2631 cpu_to_node(attr_index));
2632 if (!new_map)
2633 return NULL;
2634
2635 for (i = 0; i < pos; i++)
2636 new_map->queues[i] = map->queues[i];
2637 new_map->alloc_len = alloc_len;
2638 new_map->len = pos;
2639
2640 return new_map;
2641}
2642
2643/* Must be called under cpus_read_lock */
2644int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2645 u16 index, bool is_rxqs_map)
2646{
2647 const unsigned long *online_mask = NULL, *possible_mask = NULL;
2648 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2649 int i, j, tci, numa_node_id = -2;
2650 int maps_sz, num_tc = 1, tc = 0;
2651 struct xps_map *map, *new_map;
2652 bool active = false;
2653 unsigned int nr_ids;
2654
2655 if (dev->num_tc) {
2656 /* Do not allow XPS on subordinate device directly */
2657 num_tc = dev->num_tc;
2658 if (num_tc < 0)
2659 return -EINVAL;
2660
2661 /* If queue belongs to subordinate dev use its map */
2662 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2663
2664 tc = netdev_txq_to_tc(dev, index);
2665 if (tc < 0)
2666 return -EINVAL;
2667 }
2668
2669 mutex_lock(&xps_map_mutex);
2670 if (is_rxqs_map) {
2671 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2672 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2673 nr_ids = dev->num_rx_queues;
2674 } else {
2675 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2676 if (num_possible_cpus() > 1) {
2677 online_mask = cpumask_bits(cpu_online_mask);
2678 possible_mask = cpumask_bits(cpu_possible_mask);
2679 }
2680 dev_maps = xmap_dereference(dev->xps_cpus_map);
2681 nr_ids = nr_cpu_ids;
2682 }
2683
2684 if (maps_sz < L1_CACHE_BYTES)
2685 maps_sz = L1_CACHE_BYTES;
2686
2687 /* allocate memory for queue storage */
2688 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2689 j < nr_ids;) {
2690 if (!new_dev_maps)
2691 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2692 if (!new_dev_maps) {
2693 mutex_unlock(&xps_map_mutex);
2694 return -ENOMEM;
2695 }
2696
2697 tci = j * num_tc + tc;
2698 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2699 NULL;
2700
2701 map = expand_xps_map(map, j, index, is_rxqs_map);
2702 if (!map)
2703 goto error;
2704
2705 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2706 }
2707
2708 if (!new_dev_maps)
2709 goto out_no_new_maps;
2710
2711 if (!dev_maps) {
2712 /* Increment static keys at most once per type */
2713 static_key_slow_inc_cpuslocked(&xps_needed);
2714 if (is_rxqs_map)
2715 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2716 }
2717
2718 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2719 j < nr_ids;) {
2720 /* copy maps belonging to foreign traffic classes */
2721 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2722 /* fill in the new device map from the old device map */
2723 map = xmap_dereference(dev_maps->attr_map[tci]);
2724 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2725 }
2726
2727 /* We need to explicitly update tci as prevous loop
2728 * could break out early if dev_maps is NULL.
2729 */
2730 tci = j * num_tc + tc;
2731
2732 if (netif_attr_test_mask(j, mask, nr_ids) &&
2733 netif_attr_test_online(j, online_mask, nr_ids)) {
2734 /* add tx-queue to CPU/rx-queue maps */
2735 int pos = 0;
2736
2737 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2738 while ((pos < map->len) && (map->queues[pos] != index))
2739 pos++;
2740
2741 if (pos == map->len)
2742 map->queues[map->len++] = index;
2743#ifdef CONFIG_NUMA
2744 if (!is_rxqs_map) {
2745 if (numa_node_id == -2)
2746 numa_node_id = cpu_to_node(j);
2747 else if (numa_node_id != cpu_to_node(j))
2748 numa_node_id = -1;
2749 }
2750#endif
2751 } else if (dev_maps) {
2752 /* fill in the new device map from the old device map */
2753 map = xmap_dereference(dev_maps->attr_map[tci]);
2754 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2755 }
2756
2757 /* copy maps belonging to foreign traffic classes */
2758 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2759 /* fill in the new device map from the old device map */
2760 map = xmap_dereference(dev_maps->attr_map[tci]);
2761 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2762 }
2763 }
2764
2765 if (is_rxqs_map)
2766 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2767 else
2768 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2769
2770 /* Cleanup old maps */
2771 if (!dev_maps)
2772 goto out_no_old_maps;
2773
2774 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2775 j < nr_ids;) {
2776 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2777 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2778 map = xmap_dereference(dev_maps->attr_map[tci]);
2779 if (map && map != new_map)
2780 kfree_rcu(map, rcu);
2781 }
2782 }
2783
2784 kfree_rcu(dev_maps, rcu);
2785
2786out_no_old_maps:
2787 dev_maps = new_dev_maps;
2788 active = true;
2789
2790out_no_new_maps:
2791 if (!is_rxqs_map) {
2792 /* update Tx queue numa node */
2793 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2794 (numa_node_id >= 0) ?
2795 numa_node_id : NUMA_NO_NODE);
2796 }
2797
2798 if (!dev_maps)
2799 goto out_no_maps;
2800
2801 /* removes tx-queue from unused CPUs/rx-queues */
2802 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2803 j < nr_ids;) {
2804 for (i = tc, tci = j * num_tc; i--; tci++)
2805 active |= remove_xps_queue(dev_maps, tci, index);
2806 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2807 !netif_attr_test_online(j, online_mask, nr_ids))
2808 active |= remove_xps_queue(dev_maps, tci, index);
2809 for (i = num_tc - tc, tci++; --i; tci++)
2810 active |= remove_xps_queue(dev_maps, tci, index);
2811 }
2812
2813 /* free map if not active */
2814 if (!active)
2815 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2816
2817out_no_maps:
2818 mutex_unlock(&xps_map_mutex);
2819
2820 return 0;
2821error:
2822 /* remove any maps that we added */
2823 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2824 j < nr_ids;) {
2825 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2826 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2827 map = dev_maps ?
2828 xmap_dereference(dev_maps->attr_map[tci]) :
2829 NULL;
2830 if (new_map && new_map != map)
2831 kfree(new_map);
2832 }
2833 }
2834
2835 mutex_unlock(&xps_map_mutex);
2836
2837 kfree(new_dev_maps);
2838 return -ENOMEM;
2839}
2840EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2841
2842int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2843 u16 index)
2844{
2845 int ret;
2846
2847 cpus_read_lock();
2848 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2849 cpus_read_unlock();
2850
2851 return ret;
2852}
2853EXPORT_SYMBOL(netif_set_xps_queue);
2854
2855#endif
2856static void netdev_unbind_all_sb_channels(struct net_device *dev)
2857{
2858 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2859
2860 /* Unbind any subordinate channels */
2861 while (txq-- != &dev->_tx[0]) {
2862 if (txq->sb_dev)
2863 netdev_unbind_sb_channel(dev, txq->sb_dev);
2864 }
2865}
2866
2867void netdev_reset_tc(struct net_device *dev)
2868{
2869#ifdef CONFIG_XPS
2870 netif_reset_xps_queues_gt(dev, 0);
2871#endif
2872 netdev_unbind_all_sb_channels(dev);
2873
2874 /* Reset TC configuration of device */
2875 dev->num_tc = 0;
2876 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2877 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2878}
2879EXPORT_SYMBOL(netdev_reset_tc);
2880
2881int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2882{
2883 if (tc >= dev->num_tc)
2884 return -EINVAL;
2885
2886#ifdef CONFIG_XPS
2887 netif_reset_xps_queues(dev, offset, count);
2888#endif
2889 dev->tc_to_txq[tc].count = count;
2890 dev->tc_to_txq[tc].offset = offset;
2891 return 0;
2892}
2893EXPORT_SYMBOL(netdev_set_tc_queue);
2894
2895int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2896{
2897 if (num_tc > TC_MAX_QUEUE)
2898 return -EINVAL;
2899
2900#ifdef CONFIG_XPS
2901 netif_reset_xps_queues_gt(dev, 0);
2902#endif
2903 netdev_unbind_all_sb_channels(dev);
2904
2905 dev->num_tc = num_tc;
2906 return 0;
2907}
2908EXPORT_SYMBOL(netdev_set_num_tc);
2909
2910void netdev_unbind_sb_channel(struct net_device *dev,
2911 struct net_device *sb_dev)
2912{
2913 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2914
2915#ifdef CONFIG_XPS
2916 netif_reset_xps_queues_gt(sb_dev, 0);
2917#endif
2918 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2919 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2920
2921 while (txq-- != &dev->_tx[0]) {
2922 if (txq->sb_dev == sb_dev)
2923 txq->sb_dev = NULL;
2924 }
2925}
2926EXPORT_SYMBOL(netdev_unbind_sb_channel);
2927
2928int netdev_bind_sb_channel_queue(struct net_device *dev,
2929 struct net_device *sb_dev,
2930 u8 tc, u16 count, u16 offset)
2931{
2932 /* Make certain the sb_dev and dev are already configured */
2933 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2934 return -EINVAL;
2935
2936 /* We cannot hand out queues we don't have */
2937 if ((offset + count) > dev->real_num_tx_queues)
2938 return -EINVAL;
2939
2940 /* Record the mapping */
2941 sb_dev->tc_to_txq[tc].count = count;
2942 sb_dev->tc_to_txq[tc].offset = offset;
2943
2944 /* Provide a way for Tx queue to find the tc_to_txq map or
2945 * XPS map for itself.
2946 */
2947 while (count--)
2948 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2949
2950 return 0;
2951}
2952EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2953
2954int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2955{
2956 /* Do not use a multiqueue device to represent a subordinate channel */
2957 if (netif_is_multiqueue(dev))
2958 return -ENODEV;
2959
2960 /* We allow channels 1 - 32767 to be used for subordinate channels.
2961 * Channel 0 is meant to be "native" mode and used only to represent
2962 * the main root device. We allow writing 0 to reset the device back
2963 * to normal mode after being used as a subordinate channel.
2964 */
2965 if (channel > S16_MAX)
2966 return -EINVAL;
2967
2968 dev->num_tc = -channel;
2969
2970 return 0;
2971}
2972EXPORT_SYMBOL(netdev_set_sb_channel);
2973
2974/*
2975 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2976 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2977 */
2978int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2979{
2980 bool disabling;
2981 int rc;
2982
2983 disabling = txq < dev->real_num_tx_queues;
2984
2985 if (txq < 1 || txq > dev->num_tx_queues)
2986 return -EINVAL;
2987
2988 if (dev->reg_state == NETREG_REGISTERED ||
2989 dev->reg_state == NETREG_UNREGISTERING) {
2990 ASSERT_RTNL();
2991
2992 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2993 txq);
2994 if (rc)
2995 return rc;
2996
2997 if (dev->num_tc)
2998 netif_setup_tc(dev, txq);
2999
3000 dev->real_num_tx_queues = txq;
3001
3002 if (disabling) {
3003 synchronize_net();
3004 qdisc_reset_all_tx_gt(dev, txq);
3005#ifdef CONFIG_XPS
3006 netif_reset_xps_queues_gt(dev, txq);
3007#endif
3008 }
3009 } else {
3010 dev->real_num_tx_queues = txq;
3011 }
3012
3013 return 0;
3014}
3015EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3016
3017#ifdef CONFIG_SYSFS
3018/**
3019 * netif_set_real_num_rx_queues - set actual number of RX queues used
3020 * @dev: Network device
3021 * @rxq: Actual number of RX queues
3022 *
3023 * This must be called either with the rtnl_lock held or before
3024 * registration of the net device. Returns 0 on success, or a
3025 * negative error code. If called before registration, it always
3026 * succeeds.
3027 */
3028int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3029{
3030 int rc;
3031
3032 if (rxq < 1 || rxq > dev->num_rx_queues)
3033 return -EINVAL;
3034
3035 if (dev->reg_state == NETREG_REGISTERED) {
3036 ASSERT_RTNL();
3037
3038 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3039 rxq);
3040 if (rc)
3041 return rc;
3042 }
3043
3044 dev->real_num_rx_queues = rxq;
3045 return 0;
3046}
3047EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3048#endif
3049
3050/**
3051 * netif_get_num_default_rss_queues - default number of RSS queues
3052 *
3053 * This routine should set an upper limit on the number of RSS queues
3054 * used by default by multiqueue devices.
3055 */
3056int netif_get_num_default_rss_queues(void)
3057{
3058 return is_kdump_kernel() ?
3059 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3060}
3061EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3062
3063static void __netif_reschedule(struct Qdisc *q)
3064{
3065 struct softnet_data *sd;
3066 unsigned long flags;
3067
3068 local_irq_save(flags);
3069 sd = this_cpu_ptr(&softnet_data);
3070 q->next_sched = NULL;
3071 *sd->output_queue_tailp = q;
3072 sd->output_queue_tailp = &q->next_sched;
3073 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3074 local_irq_restore(flags);
3075}
3076
3077void __netif_schedule(struct Qdisc *q)
3078{
3079 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3080 __netif_reschedule(q);
3081}
3082EXPORT_SYMBOL(__netif_schedule);
3083
3084struct dev_kfree_skb_cb {
3085 enum skb_free_reason reason;
3086};
3087
3088static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3089{
3090 return (struct dev_kfree_skb_cb *)skb->cb;
3091}
3092
3093void netif_schedule_queue(struct netdev_queue *txq)
3094{
3095 rcu_read_lock();
3096 if (!netif_xmit_stopped(txq)) {
3097 struct Qdisc *q = rcu_dereference(txq->qdisc);
3098
3099 __netif_schedule(q);
3100 }
3101 rcu_read_unlock();
3102}
3103EXPORT_SYMBOL(netif_schedule_queue);
3104
3105void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3106{
3107 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3108 struct Qdisc *q;
3109
3110 rcu_read_lock();
3111 q = rcu_dereference(dev_queue->qdisc);
3112 __netif_schedule(q);
3113 rcu_read_unlock();
3114 }
3115}
3116EXPORT_SYMBOL(netif_tx_wake_queue);
3117
3118void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3119{
3120 unsigned long flags;
3121
3122 if (unlikely(!skb))
3123 return;
3124
3125 if (likely(refcount_read(&skb->users) == 1)) {
3126 smp_rmb();
3127 refcount_set(&skb->users, 0);
3128 } else if (likely(!refcount_dec_and_test(&skb->users))) {
3129 return;
3130 }
3131 get_kfree_skb_cb(skb)->reason = reason;
3132 local_irq_save(flags);
3133 skb->next = __this_cpu_read(softnet_data.completion_queue);
3134 __this_cpu_write(softnet_data.completion_queue, skb);
3135 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3136 local_irq_restore(flags);
3137}
3138EXPORT_SYMBOL(__dev_kfree_skb_irq);
3139
3140void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3141{
3142 if (in_irq() || irqs_disabled())
3143 __dev_kfree_skb_irq(skb, reason);
3144 else
3145 dev_kfree_skb(skb);
3146}
3147EXPORT_SYMBOL(__dev_kfree_skb_any);
3148
3149
3150/**
3151 * netif_device_detach - mark device as removed
3152 * @dev: network device
3153 *
3154 * Mark device as removed from system and therefore no longer available.
3155 */
3156void netif_device_detach(struct net_device *dev)
3157{
3158 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3159 netif_running(dev)) {
3160 netif_tx_stop_all_queues(dev);
3161 }
3162}
3163EXPORT_SYMBOL(netif_device_detach);
3164
3165/**
3166 * netif_device_attach - mark device as attached
3167 * @dev: network device
3168 *
3169 * Mark device as attached from system and restart if needed.
3170 */
3171void netif_device_attach(struct net_device *dev)
3172{
3173 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3174 netif_running(dev)) {
3175 netif_tx_wake_all_queues(dev);
3176 __netdev_watchdog_up(dev);
3177 }
3178}
3179EXPORT_SYMBOL(netif_device_attach);
3180
3181/*
3182 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3183 * to be used as a distribution range.
3184 */
3185static u16 skb_tx_hash(const struct net_device *dev,
3186 const struct net_device *sb_dev,
3187 struct sk_buff *skb)
3188{
3189 u32 hash;
3190 u16 qoffset = 0;
3191 u16 qcount = dev->real_num_tx_queues;
3192
3193 if (dev->num_tc) {
3194 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3195
3196 qoffset = sb_dev->tc_to_txq[tc].offset;
3197 qcount = sb_dev->tc_to_txq[tc].count;
3198 }
3199
3200 if (skb_rx_queue_recorded(skb)) {
3201 hash = skb_get_rx_queue(skb);
3202 if (hash >= qoffset)
3203 hash -= qoffset;
3204 while (unlikely(hash >= qcount))
3205 hash -= qcount;
3206 return hash + qoffset;
3207 }
3208
3209 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3210}
3211
3212static void skb_warn_bad_offload(const struct sk_buff *skb)
3213{
3214 static const netdev_features_t null_features;
3215 struct net_device *dev = skb->dev;
3216 const char *name = "";
3217
3218 if (!net_ratelimit())
3219 return;
3220
3221 if (dev) {
3222 if (dev->dev.parent)
3223 name = dev_driver_string(dev->dev.parent);
3224 else
3225 name = netdev_name(dev);
3226 }
3227 skb_dump(KERN_WARNING, skb, false);
3228 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3229 name, dev ? &dev->features : &null_features,
3230 skb->sk ? &skb->sk->sk_route_caps : &null_features);
3231}
3232
3233/*
3234 * Invalidate hardware checksum when packet is to be mangled, and
3235 * complete checksum manually on outgoing path.
3236 */
3237int skb_checksum_help(struct sk_buff *skb)
3238{
3239 __wsum csum;
3240 int ret = 0, offset;
3241
3242 if (skb->ip_summed == CHECKSUM_COMPLETE)
3243 goto out_set_summed;
3244
3245 if (unlikely(skb_is_gso(skb))) {
3246 skb_warn_bad_offload(skb);
3247 return -EINVAL;
3248 }
3249
3250 /* Before computing a checksum, we should make sure no frag could
3251 * be modified by an external entity : checksum could be wrong.
3252 */
3253 if (skb_has_shared_frag(skb)) {
3254 ret = __skb_linearize(skb);
3255 if (ret)
3256 goto out;
3257 }
3258
3259 offset = skb_checksum_start_offset(skb);
3260 BUG_ON(offset >= skb_headlen(skb));
3261 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3262
3263 offset += skb->csum_offset;
3264 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3265
3266 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3267 if (ret)
3268 goto out;
3269
3270 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3271out_set_summed:
3272 skb->ip_summed = CHECKSUM_NONE;
3273out:
3274 return ret;
3275}
3276EXPORT_SYMBOL(skb_checksum_help);
3277
3278int skb_crc32c_csum_help(struct sk_buff *skb)
3279{
3280 __le32 crc32c_csum;
3281 int ret = 0, offset, start;
3282
3283 if (skb->ip_summed != CHECKSUM_PARTIAL)
3284 goto out;
3285
3286 if (unlikely(skb_is_gso(skb)))
3287 goto out;
3288
3289 /* Before computing a checksum, we should make sure no frag could
3290 * be modified by an external entity : checksum could be wrong.
3291 */
3292 if (unlikely(skb_has_shared_frag(skb))) {
3293 ret = __skb_linearize(skb);
3294 if (ret)
3295 goto out;
3296 }
3297 start = skb_checksum_start_offset(skb);
3298 offset = start + offsetof(struct sctphdr, checksum);
3299 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3300 ret = -EINVAL;
3301 goto out;
3302 }
3303
3304 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3305 if (ret)
3306 goto out;
3307
3308 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3309 skb->len - start, ~(__u32)0,
3310 crc32c_csum_stub));
3311 *(__le32 *)(skb->data + offset) = crc32c_csum;
3312 skb->ip_summed = CHECKSUM_NONE;
3313 skb->csum_not_inet = 0;
3314out:
3315 return ret;
3316}
3317
3318__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3319{
3320 __be16 type = skb->protocol;
3321
3322 /* Tunnel gso handlers can set protocol to ethernet. */
3323 if (type == htons(ETH_P_TEB)) {
3324 struct ethhdr *eth;
3325
3326 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3327 return 0;
3328
3329 eth = (struct ethhdr *)skb->data;
3330 type = eth->h_proto;
3331 }
3332
3333 return __vlan_get_protocol(skb, type, depth);
3334}
3335
3336/**
3337 * skb_mac_gso_segment - mac layer segmentation handler.
3338 * @skb: buffer to segment
3339 * @features: features for the output path (see dev->features)
3340 */
3341struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3342 netdev_features_t features)
3343{
3344 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3345 struct packet_offload *ptype;
3346 int vlan_depth = skb->mac_len;
3347 __be16 type = skb_network_protocol(skb, &vlan_depth);
3348
3349 if (unlikely(!type))
3350 return ERR_PTR(-EINVAL);
3351
3352 __skb_pull(skb, vlan_depth);
3353
3354 rcu_read_lock();
3355 list_for_each_entry_rcu(ptype, &offload_base, list) {
3356 if (ptype->type == type && ptype->callbacks.gso_segment) {
3357 segs = ptype->callbacks.gso_segment(skb, features);
3358 break;
3359 }
3360 }
3361 rcu_read_unlock();
3362
3363 __skb_push(skb, skb->data - skb_mac_header(skb));
3364
3365 return segs;
3366}
3367EXPORT_SYMBOL(skb_mac_gso_segment);
3368
3369
3370/* openvswitch calls this on rx path, so we need a different check.
3371 */
3372static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3373{
3374 if (tx_path)
3375 return skb->ip_summed != CHECKSUM_PARTIAL &&
3376 skb->ip_summed != CHECKSUM_UNNECESSARY;
3377
3378 return skb->ip_summed == CHECKSUM_NONE;
3379}
3380
3381/**
3382 * __skb_gso_segment - Perform segmentation on skb.
3383 * @skb: buffer to segment
3384 * @features: features for the output path (see dev->features)
3385 * @tx_path: whether it is called in TX path
3386 *
3387 * This function segments the given skb and returns a list of segments.
3388 *
3389 * It may return NULL if the skb requires no segmentation. This is
3390 * only possible when GSO is used for verifying header integrity.
3391 *
3392 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3393 */
3394struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3395 netdev_features_t features, bool tx_path)
3396{
3397 struct sk_buff *segs;
3398
3399 if (unlikely(skb_needs_check(skb, tx_path))) {
3400 int err;
3401
3402 /* We're going to init ->check field in TCP or UDP header */
3403 err = skb_cow_head(skb, 0);
3404 if (err < 0)
3405 return ERR_PTR(err);
3406 }
3407
3408 /* Only report GSO partial support if it will enable us to
3409 * support segmentation on this frame without needing additional
3410 * work.
3411 */
3412 if (features & NETIF_F_GSO_PARTIAL) {
3413 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3414 struct net_device *dev = skb->dev;
3415
3416 partial_features |= dev->features & dev->gso_partial_features;
3417 if (!skb_gso_ok(skb, features | partial_features))
3418 features &= ~NETIF_F_GSO_PARTIAL;
3419 }
3420
3421 BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3422 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3423
3424 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3425 SKB_GSO_CB(skb)->encap_level = 0;
3426
3427 skb_reset_mac_header(skb);
3428 skb_reset_mac_len(skb);
3429
3430 segs = skb_mac_gso_segment(skb, features);
3431
3432 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3433 skb_warn_bad_offload(skb);
3434
3435 return segs;
3436}
3437EXPORT_SYMBOL(__skb_gso_segment);
3438
3439/* Take action when hardware reception checksum errors are detected. */
3440#ifdef CONFIG_BUG
3441void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3442{
3443 if (net_ratelimit()) {
3444 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3445 skb_dump(KERN_ERR, skb, true);
3446 dump_stack();
3447 }
3448}
3449EXPORT_SYMBOL(netdev_rx_csum_fault);
3450#endif
3451
3452/* XXX: check that highmem exists at all on the given machine. */
3453static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3454{
3455#ifdef CONFIG_HIGHMEM
3456 int i;
3457
3458 if (!(dev->features & NETIF_F_HIGHDMA)) {
3459 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3460 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3461
3462 if (PageHighMem(skb_frag_page(frag)))
3463 return 1;
3464 }
3465 }
3466#endif
3467 return 0;
3468}
3469
3470/* If MPLS offload request, verify we are testing hardware MPLS features
3471 * instead of standard features for the netdev.
3472 */
3473#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3474static netdev_features_t net_mpls_features(struct sk_buff *skb,
3475 netdev_features_t features,
3476 __be16 type)
3477{
3478 if (eth_p_mpls(type))
3479 features &= skb->dev->mpls_features;
3480
3481 return features;
3482}
3483#else
3484static netdev_features_t net_mpls_features(struct sk_buff *skb,
3485 netdev_features_t features,
3486 __be16 type)
3487{
3488 return features;
3489}
3490#endif
3491
3492static netdev_features_t harmonize_features(struct sk_buff *skb,
3493 netdev_features_t features)
3494{
3495 __be16 type;
3496
3497 type = skb_network_protocol(skb, NULL);
3498 features = net_mpls_features(skb, features, type);
3499
3500 if (skb->ip_summed != CHECKSUM_NONE &&
3501 !can_checksum_protocol(features, type)) {
3502 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3503 }
3504 if (illegal_highdma(skb->dev, skb))
3505 features &= ~NETIF_F_SG;
3506
3507 return features;
3508}
3509
3510netdev_features_t passthru_features_check(struct sk_buff *skb,
3511 struct net_device *dev,
3512 netdev_features_t features)
3513{
3514 return features;
3515}
3516EXPORT_SYMBOL(passthru_features_check);
3517
3518static netdev_features_t dflt_features_check(struct sk_buff *skb,
3519 struct net_device *dev,
3520 netdev_features_t features)
3521{
3522 return vlan_features_check(skb, features);
3523}
3524
3525static netdev_features_t gso_features_check(const struct sk_buff *skb,
3526 struct net_device *dev,
3527 netdev_features_t features)
3528{
3529 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3530
3531 if (gso_segs > dev->gso_max_segs)
3532 return features & ~NETIF_F_GSO_MASK;
3533
3534 if (!skb_shinfo(skb)->gso_type) {
3535 skb_warn_bad_offload(skb);
3536 return features & ~NETIF_F_GSO_MASK;
3537 }
3538
3539 /* Support for GSO partial features requires software
3540 * intervention before we can actually process the packets
3541 * so we need to strip support for any partial features now
3542 * and we can pull them back in after we have partially
3543 * segmented the frame.
3544 */
3545 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3546 features &= ~dev->gso_partial_features;
3547
3548 /* Make sure to clear the IPv4 ID mangling feature if the
3549 * IPv4 header has the potential to be fragmented.
3550 */
3551 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3552 struct iphdr *iph = skb->encapsulation ?
3553 inner_ip_hdr(skb) : ip_hdr(skb);
3554
3555 if (!(iph->frag_off & htons(IP_DF)))
3556 features &= ~NETIF_F_TSO_MANGLEID;
3557 }
3558
3559 return features;
3560}
3561
3562netdev_features_t netif_skb_features(struct sk_buff *skb)
3563{
3564 struct net_device *dev = skb->dev;
3565 netdev_features_t features = dev->features;
3566
3567 if (skb_is_gso(skb))
3568 features = gso_features_check(skb, dev, features);
3569
3570 /* If encapsulation offload request, verify we are testing
3571 * hardware encapsulation features instead of standard
3572 * features for the netdev
3573 */
3574 if (skb->encapsulation)
3575 features &= dev->hw_enc_features;
3576
3577 if (skb_vlan_tagged(skb))
3578 features = netdev_intersect_features(features,
3579 dev->vlan_features |
3580 NETIF_F_HW_VLAN_CTAG_TX |
3581 NETIF_F_HW_VLAN_STAG_TX);
3582
3583 if (dev->netdev_ops->ndo_features_check)
3584 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3585 features);
3586 else
3587 features &= dflt_features_check(skb, dev, features);
3588
3589 return harmonize_features(skb, features);
3590}
3591EXPORT_SYMBOL(netif_skb_features);
3592
3593static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3594 struct netdev_queue *txq, bool more)
3595{
3596 unsigned int len;
3597 int rc;
3598
3599 if (dev_nit_active(dev))
3600 dev_queue_xmit_nit(skb, dev);
3601
3602 len = skb->len;
3603 PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3604 trace_net_dev_start_xmit(skb, dev);
3605 rc = netdev_start_xmit(skb, dev, txq, more);
3606 trace_net_dev_xmit(skb, rc, dev, len);
3607
3608 return rc;
3609}
3610
3611struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3612 struct netdev_queue *txq, int *ret)
3613{
3614 struct sk_buff *skb = first;
3615 int rc = NETDEV_TX_OK;
3616
3617 while (skb) {
3618 struct sk_buff *next = skb->next;
3619
3620 skb_mark_not_on_list(skb);
3621 rc = xmit_one(skb, dev, txq, next != NULL);
3622 if (unlikely(!dev_xmit_complete(rc))) {
3623 skb->next = next;
3624 goto out;
3625 }
3626
3627 skb = next;
3628 if (netif_tx_queue_stopped(txq) && skb) {
3629 rc = NETDEV_TX_BUSY;
3630 break;
3631 }
3632 }
3633
3634out:
3635 *ret = rc;
3636 return skb;
3637}
3638
3639static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3640 netdev_features_t features)
3641{
3642 if (skb_vlan_tag_present(skb) &&
3643 !vlan_hw_offload_capable(features, skb->vlan_proto))
3644 skb = __vlan_hwaccel_push_inside(skb);
3645 return skb;
3646}
3647
3648int skb_csum_hwoffload_help(struct sk_buff *skb,
3649 const netdev_features_t features)
3650{
3651 if (unlikely(skb_csum_is_sctp(skb)))
3652 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3653 skb_crc32c_csum_help(skb);
3654
3655 if (features & NETIF_F_HW_CSUM)
3656 return 0;
3657
3658 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3659 switch (skb->csum_offset) {
3660 case offsetof(struct tcphdr, check):
3661 case offsetof(struct udphdr, check):
3662 return 0;
3663 }
3664 }
3665
3666 return skb_checksum_help(skb);
3667}
3668EXPORT_SYMBOL(skb_csum_hwoffload_help);
3669
3670static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3671{
3672 netdev_features_t features;
3673
3674 features = netif_skb_features(skb);
3675 skb = validate_xmit_vlan(skb, features);
3676 if (unlikely(!skb))
3677 goto out_null;
3678
3679 skb = sk_validate_xmit_skb(skb, dev);
3680 if (unlikely(!skb))
3681 goto out_null;
3682
3683 if (netif_needs_gso(skb, features)) {
3684 struct sk_buff *segs;
3685
3686 segs = skb_gso_segment(skb, features);
3687 if (IS_ERR(segs)) {
3688 goto out_kfree_skb;
3689 } else if (segs) {
3690 consume_skb(skb);
3691 skb = segs;
3692 }
3693 } else {
3694 if (skb_needs_linearize(skb, features) &&
3695 __skb_linearize(skb))
3696 goto out_kfree_skb;
3697
3698 /* If packet is not checksummed and device does not
3699 * support checksumming for this protocol, complete
3700 * checksumming here.
3701 */
3702 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3703 if (skb->encapsulation)
3704 skb_set_inner_transport_header(skb,
3705 skb_checksum_start_offset(skb));
3706 else
3707 skb_set_transport_header(skb,
3708 skb_checksum_start_offset(skb));
3709 if (skb_csum_hwoffload_help(skb, features))
3710 goto out_kfree_skb;
3711 }
3712 }
3713
3714 skb = validate_xmit_xfrm(skb, features, again);
3715
3716 return skb;
3717
3718out_kfree_skb:
3719 kfree_skb(skb);
3720out_null:
3721 atomic_long_inc(&dev->tx_dropped);
3722 return NULL;
3723}
3724
3725struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3726{
3727 struct sk_buff *next, *head = NULL, *tail;
3728
3729 for (; skb != NULL; skb = next) {
3730 next = skb->next;
3731 skb_mark_not_on_list(skb);
3732
3733 /* in case skb wont be segmented, point to itself */
3734 skb->prev = skb;
3735
3736 skb = validate_xmit_skb(skb, dev, again);
3737 if (!skb)
3738 continue;
3739
3740 if (!head)
3741 head = skb;
3742 else
3743 tail->next = skb;
3744 /* If skb was segmented, skb->prev points to
3745 * the last segment. If not, it still contains skb.
3746 */
3747 tail = skb->prev;
3748 }
3749 return head;
3750}
3751EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3752
3753static void qdisc_pkt_len_init(struct sk_buff *skb)
3754{
3755 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3756
3757 qdisc_skb_cb(skb)->pkt_len = skb->len;
3758
3759 /* To get more precise estimation of bytes sent on wire,
3760 * we add to pkt_len the headers size of all segments
3761 */
3762 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3763 unsigned int hdr_len;
3764 u16 gso_segs = shinfo->gso_segs;
3765
3766 /* mac layer + network layer */
3767 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3768
3769 /* + transport layer */
3770 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3771 const struct tcphdr *th;
3772 struct tcphdr _tcphdr;
3773
3774 th = skb_header_pointer(skb, skb_transport_offset(skb),
3775 sizeof(_tcphdr), &_tcphdr);
3776 if (likely(th))
3777 hdr_len += __tcp_hdrlen(th);
3778 } else {
3779 struct udphdr _udphdr;
3780
3781 if (skb_header_pointer(skb, skb_transport_offset(skb),
3782 sizeof(_udphdr), &_udphdr))
3783 hdr_len += sizeof(struct udphdr);
3784 }
3785
3786 if (shinfo->gso_type & SKB_GSO_DODGY)
3787 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3788 shinfo->gso_size);
3789
3790 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3791 }
3792}
3793
3794static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3795 struct net_device *dev,
3796 struct netdev_queue *txq)
3797{
3798 spinlock_t *root_lock = qdisc_lock(q);
3799 struct sk_buff *to_free = NULL;
3800 bool contended;
3801 int rc;
3802
3803 qdisc_calculate_pkt_len(skb, q);
3804
3805 if (q->flags & TCQ_F_NOLOCK) {
3806 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3807 qdisc_run(q);
3808
3809 if (unlikely(to_free))
3810 kfree_skb_list(to_free);
3811 return rc;
3812 }
3813
3814 /*
3815 * Heuristic to force contended enqueues to serialize on a
3816 * separate lock before trying to get qdisc main lock.
3817 * This permits qdisc->running owner to get the lock more
3818 * often and dequeue packets faster.
3819 */
3820 contended = qdisc_is_running(q);
3821 if (unlikely(contended))
3822 spin_lock(&q->busylock);
3823
3824 spin_lock(root_lock);
3825 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3826 __qdisc_drop(skb, &to_free);
3827 rc = NET_XMIT_DROP;
3828 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3829 qdisc_run_begin(q)) {
3830 /*
3831 * This is a work-conserving queue; there are no old skbs
3832 * waiting to be sent out; and the qdisc is not running -
3833 * xmit the skb directly.
3834 */
3835
3836 qdisc_bstats_update(q, skb);
3837
3838 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3839 if (unlikely(contended)) {
3840 spin_unlock(&q->busylock);
3841 contended = false;
3842 }
3843 __qdisc_run(q);
3844 }
3845
3846 qdisc_run_end(q);
3847 rc = NET_XMIT_SUCCESS;
3848 } else {
3849 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3850 if (qdisc_run_begin(q)) {
3851 if (unlikely(contended)) {
3852 spin_unlock(&q->busylock);
3853 contended = false;
3854 }
3855 __qdisc_run(q);
3856 qdisc_run_end(q);
3857 }
3858 }
3859 spin_unlock(root_lock);
3860 if (unlikely(to_free))
3861 kfree_skb_list(to_free);
3862 if (unlikely(contended))
3863 spin_unlock(&q->busylock);
3864 return rc;
3865}
3866
3867#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3868static void skb_update_prio(struct sk_buff *skb)
3869{
3870 const struct netprio_map *map;
3871 const struct sock *sk;
3872 unsigned int prioidx;
3873
3874 if (skb->priority)
3875 return;
3876 map = rcu_dereference_bh(skb->dev->priomap);
3877 if (!map)
3878 return;
3879 sk = skb_to_full_sk(skb);
3880 if (!sk)
3881 return;
3882
3883 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3884
3885 if (prioidx < map->priomap_len)
3886 skb->priority = map->priomap[prioidx];
3887}
3888#else
3889#define skb_update_prio(skb)
3890#endif
3891
3892/**
3893 * dev_loopback_xmit - loop back @skb
3894 * @net: network namespace this loopback is happening in
3895 * @sk: sk needed to be a netfilter okfn
3896 * @skb: buffer to transmit
3897 */
3898int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3899{
3900 skb_reset_mac_header(skb);
3901 __skb_pull(skb, skb_network_offset(skb));
3902 skb->pkt_type = PACKET_LOOPBACK;
3903 skb->ip_summed = CHECKSUM_UNNECESSARY;
3904 WARN_ON(!skb_dst(skb));
3905 skb_dst_force(skb);
3906 netif_rx_ni(skb);
3907 return 0;
3908}
3909EXPORT_SYMBOL(dev_loopback_xmit);
3910
3911#ifdef CONFIG_NET_EGRESS
3912static struct sk_buff *
3913sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3914{
3915 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3916 struct tcf_result cl_res;
3917
3918 if (!miniq)
3919 return skb;
3920
3921 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3922 qdisc_skb_cb(skb)->mru = 0;
3923 qdisc_skb_cb(skb)->post_ct = false;
3924 mini_qdisc_bstats_cpu_update(miniq, skb);
3925
3926 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3927 case TC_ACT_OK:
3928 case TC_ACT_RECLASSIFY:
3929 skb->tc_index = TC_H_MIN(cl_res.classid);
3930 break;
3931 case TC_ACT_SHOT:
3932 mini_qdisc_qstats_cpu_drop(miniq);
3933 *ret = NET_XMIT_DROP;
3934 kfree_skb(skb);
3935 return NULL;
3936 case TC_ACT_STOLEN:
3937 case TC_ACT_QUEUED:
3938 case TC_ACT_TRAP:
3939 *ret = NET_XMIT_SUCCESS;
3940 consume_skb(skb);
3941 return NULL;
3942 case TC_ACT_REDIRECT:
3943 /* No need to push/pop skb's mac_header here on egress! */
3944 skb_do_redirect(skb);
3945 *ret = NET_XMIT_SUCCESS;
3946 return NULL;
3947 default:
3948 break;
3949 }
3950
3951 return skb;
3952}
3953#endif /* CONFIG_NET_EGRESS */
3954
3955#ifdef CONFIG_XPS
3956static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3957 struct xps_dev_maps *dev_maps, unsigned int tci)
3958{
3959 struct xps_map *map;
3960 int queue_index = -1;
3961
3962 if (dev->num_tc) {
3963 tci *= dev->num_tc;
3964 tci += netdev_get_prio_tc_map(dev, skb->priority);
3965 }
3966
3967 map = rcu_dereference(dev_maps->attr_map[tci]);
3968 if (map) {
3969 if (map->len == 1)
3970 queue_index = map->queues[0];
3971 else
3972 queue_index = map->queues[reciprocal_scale(
3973 skb_get_hash(skb), map->len)];
3974 if (unlikely(queue_index >= dev->real_num_tx_queues))
3975 queue_index = -1;
3976 }
3977 return queue_index;
3978}
3979#endif
3980
3981static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3982 struct sk_buff *skb)
3983{
3984#ifdef CONFIG_XPS
3985 struct xps_dev_maps *dev_maps;
3986 struct sock *sk = skb->sk;
3987 int queue_index = -1;
3988
3989 if (!static_key_false(&xps_needed))
3990 return -1;
3991
3992 rcu_read_lock();
3993 if (!static_key_false(&xps_rxqs_needed))
3994 goto get_cpus_map;
3995
3996 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3997 if (dev_maps) {
3998 int tci = sk_rx_queue_get(sk);
3999
4000 if (tci >= 0 && tci < dev->num_rx_queues)
4001 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4002 tci);
4003 }
4004
4005get_cpus_map:
4006 if (queue_index < 0) {
4007 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
4008 if (dev_maps) {
4009 unsigned int tci = skb->sender_cpu - 1;
4010
4011 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4012 tci);
4013 }
4014 }
4015 rcu_read_unlock();
4016
4017 return queue_index;
4018#else
4019 return -1;
4020#endif
4021}
4022
4023u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4024 struct net_device *sb_dev)
4025{
4026 return 0;
4027}
4028EXPORT_SYMBOL(dev_pick_tx_zero);
4029
4030u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4031 struct net_device *sb_dev)
4032{
4033 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4034}
4035EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4036
4037u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4038 struct net_device *sb_dev)
4039{
4040 struct sock *sk = skb->sk;
4041 int queue_index = sk_tx_queue_get(sk);
4042
4043 sb_dev = sb_dev ? : dev;
4044
4045 if (queue_index < 0 || skb->ooo_okay ||
4046 queue_index >= dev->real_num_tx_queues) {
4047 int new_index = get_xps_queue(dev, sb_dev, skb);
4048
4049 if (new_index < 0)
4050 new_index = skb_tx_hash(dev, sb_dev, skb);
4051
4052 if (queue_index != new_index && sk &&
4053 sk_fullsock(sk) &&
4054 rcu_access_pointer(sk->sk_dst_cache))
4055 sk_tx_queue_set(sk, new_index);
4056
4057 queue_index = new_index;
4058 }
4059
4060 return queue_index;
4061}
4062EXPORT_SYMBOL(netdev_pick_tx);
4063
4064struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4065 struct sk_buff *skb,
4066 struct net_device *sb_dev)
4067{
4068 int queue_index = 0;
4069
4070#ifdef CONFIG_XPS
4071 u32 sender_cpu = skb->sender_cpu - 1;
4072
4073 if (sender_cpu >= (u32)NR_CPUS)
4074 skb->sender_cpu = raw_smp_processor_id() + 1;
4075#endif
4076
4077 if (dev->real_num_tx_queues != 1) {
4078 const struct net_device_ops *ops = dev->netdev_ops;
4079
4080 if (ops->ndo_select_queue)
4081 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4082 else
4083 queue_index = netdev_pick_tx(dev, skb, sb_dev);
4084
4085 queue_index = netdev_cap_txqueue(dev, queue_index);
4086 }
4087
4088 skb_set_queue_mapping(skb, queue_index);
4089 return netdev_get_tx_queue(dev, queue_index);
4090}
4091
4092/**
4093 * __dev_queue_xmit - transmit a buffer
4094 * @skb: buffer to transmit
4095 * @sb_dev: suboordinate device used for L2 forwarding offload
4096 *
4097 * Queue a buffer for transmission to a network device. The caller must
4098 * have set the device and priority and built the buffer before calling
4099 * this function. The function can be called from an interrupt.
4100 *
4101 * A negative errno code is returned on a failure. A success does not
4102 * guarantee the frame will be transmitted as it may be dropped due
4103 * to congestion or traffic shaping.
4104 *
4105 * -----------------------------------------------------------------------------------
4106 * I notice this method can also return errors from the queue disciplines,
4107 * including NET_XMIT_DROP, which is a positive value. So, errors can also
4108 * be positive.
4109 *
4110 * Regardless of the return value, the skb is consumed, so it is currently
4111 * difficult to retry a send to this method. (You can bump the ref count
4112 * before sending to hold a reference for retry if you are careful.)
4113 *
4114 * When calling this method, interrupts MUST be enabled. This is because
4115 * the BH enable code must have IRQs enabled so that it will not deadlock.
4116 * --BLG
4117 */
4118static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4119{
4120 struct net_device *dev = skb->dev;
4121 struct netdev_queue *txq;
4122 struct Qdisc *q;
4123 int rc = -ENOMEM;
4124 bool again = false;
4125
4126 skb_reset_mac_header(skb);
4127
4128 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4129 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4130
4131 /* Disable soft irqs for various locks below. Also
4132 * stops preemption for RCU.
4133 */
4134 rcu_read_lock_bh();
4135
4136 skb_update_prio(skb);
4137
4138 qdisc_pkt_len_init(skb);
4139#ifdef CONFIG_NET_CLS_ACT
4140 skb->tc_at_ingress = 0;
4141# ifdef CONFIG_NET_EGRESS
4142 if (static_branch_unlikely(&egress_needed_key)) {
4143 skb = sch_handle_egress(skb, &rc, dev);
4144 if (!skb)
4145 goto out;
4146 }
4147# endif
4148#endif
4149 /* If device/qdisc don't need skb->dst, release it right now while
4150 * its hot in this cpu cache.
4151 */
4152 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4153 skb_dst_drop(skb);
4154 else
4155 skb_dst_force(skb);
4156
4157 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4158 q = rcu_dereference_bh(txq->qdisc);
4159
4160 trace_net_dev_queue(skb);
4161 if (q->enqueue) {
4162 rc = __dev_xmit_skb(skb, q, dev, txq);
4163 goto out;
4164 }
4165
4166 /* The device has no queue. Common case for software devices:
4167 * loopback, all the sorts of tunnels...
4168
4169 * Really, it is unlikely that netif_tx_lock protection is necessary
4170 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4171 * counters.)
4172 * However, it is possible, that they rely on protection
4173 * made by us here.
4174
4175 * Check this and shot the lock. It is not prone from deadlocks.
4176 *Either shot noqueue qdisc, it is even simpler 8)
4177 */
4178 if (dev->flags & IFF_UP) {
4179 int cpu = smp_processor_id(); /* ok because BHs are off */
4180
4181 if (txq->xmit_lock_owner != cpu) {
4182 if (dev_xmit_recursion())
4183 goto recursion_alert;
4184
4185 skb = validate_xmit_skb(skb, dev, &again);
4186 if (!skb)
4187 goto out;
4188
4189 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4190 HARD_TX_LOCK(dev, txq, cpu);
4191
4192 if (!netif_xmit_stopped(txq)) {
4193 dev_xmit_recursion_inc();
4194 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4195 dev_xmit_recursion_dec();
4196 if (dev_xmit_complete(rc)) {
4197 HARD_TX_UNLOCK(dev, txq);
4198 goto out;
4199 }
4200 }
4201 HARD_TX_UNLOCK(dev, txq);
4202 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4203 dev->name);
4204 } else {
4205 /* Recursion is detected! It is possible,
4206 * unfortunately
4207 */
4208recursion_alert:
4209 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4210 dev->name);
4211 }
4212 }
4213
4214 rc = -ENETDOWN;
4215 rcu_read_unlock_bh();
4216
4217 atomic_long_inc(&dev->tx_dropped);
4218 kfree_skb_list(skb);
4219 return rc;
4220out:
4221 rcu_read_unlock_bh();
4222 return rc;
4223}
4224
4225int dev_queue_xmit(struct sk_buff *skb)
4226{
4227 return __dev_queue_xmit(skb, NULL);
4228}
4229EXPORT_SYMBOL(dev_queue_xmit);
4230
4231int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4232{
4233 return __dev_queue_xmit(skb, sb_dev);
4234}
4235EXPORT_SYMBOL(dev_queue_xmit_accel);
4236
4237int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4238{
4239 struct net_device *dev = skb->dev;
4240 struct sk_buff *orig_skb = skb;
4241 struct netdev_queue *txq;
4242 int ret = NETDEV_TX_BUSY;
4243 bool again = false;
4244
4245 if (unlikely(!netif_running(dev) ||
4246 !netif_carrier_ok(dev)))
4247 goto drop;
4248
4249 skb = validate_xmit_skb_list(skb, dev, &again);
4250 if (skb != orig_skb)
4251 goto drop;
4252
4253 skb_set_queue_mapping(skb, queue_id);
4254 txq = skb_get_tx_queue(dev, skb);
4255 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4256
4257 local_bh_disable();
4258
4259 dev_xmit_recursion_inc();
4260 HARD_TX_LOCK(dev, txq, smp_processor_id());
4261 if (!netif_xmit_frozen_or_drv_stopped(txq))
4262 ret = netdev_start_xmit(skb, dev, txq, false);
4263 HARD_TX_UNLOCK(dev, txq);
4264 dev_xmit_recursion_dec();
4265
4266 local_bh_enable();
4267 return ret;
4268drop:
4269 atomic_long_inc(&dev->tx_dropped);
4270 kfree_skb_list(skb);
4271 return NET_XMIT_DROP;
4272}
4273EXPORT_SYMBOL(__dev_direct_xmit);
4274
4275/*************************************************************************
4276 * Receiver routines
4277 *************************************************************************/
4278
4279int netdev_max_backlog __read_mostly = 1000;
4280EXPORT_SYMBOL(netdev_max_backlog);
4281
4282int netdev_tstamp_prequeue __read_mostly = 1;
4283int netdev_budget __read_mostly = 300;
4284/* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4285unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4286int weight_p __read_mostly = 64; /* old backlog weight */
4287int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4288int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4289int dev_rx_weight __read_mostly = 64;
4290int dev_tx_weight __read_mostly = 64;
4291/* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4292int gro_normal_batch __read_mostly = 8;
4293
4294/* Called with irq disabled */
4295static inline void ____napi_schedule(struct softnet_data *sd,
4296 struct napi_struct *napi)
4297{
4298 struct task_struct *thread;
4299
4300 if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4301 /* Paired with smp_mb__before_atomic() in
4302 * napi_enable()/dev_set_threaded().
4303 * Use READ_ONCE() to guarantee a complete
4304 * read on napi->thread. Only call
4305 * wake_up_process() when it's not NULL.
4306 */
4307 thread = READ_ONCE(napi->thread);
4308 if (thread) {
4309 /* Avoid doing set_bit() if the thread is in
4310 * INTERRUPTIBLE state, cause napi_thread_wait()
4311 * makes sure to proceed with napi polling
4312 * if the thread is explicitly woken from here.
4313 */
4314 if (READ_ONCE(thread->state) != TASK_INTERRUPTIBLE)
4315 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4316 wake_up_process(thread);
4317 return;
4318 }
4319 }
4320
4321 list_add_tail(&napi->poll_list, &sd->poll_list);
4322 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4323}
4324
4325#ifdef CONFIG_RPS
4326
4327/* One global table that all flow-based protocols share. */
4328struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4329EXPORT_SYMBOL(rps_sock_flow_table);
4330u32 rps_cpu_mask __read_mostly;
4331EXPORT_SYMBOL(rps_cpu_mask);
4332
4333struct static_key_false rps_needed __read_mostly;
4334EXPORT_SYMBOL(rps_needed);
4335struct static_key_false rfs_needed __read_mostly;
4336EXPORT_SYMBOL(rfs_needed);
4337
4338static struct rps_dev_flow *
4339set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4340 struct rps_dev_flow *rflow, u16 next_cpu)
4341{
4342 if (next_cpu < nr_cpu_ids) {
4343#ifdef CONFIG_RFS_ACCEL
4344 struct netdev_rx_queue *rxqueue;
4345 struct rps_dev_flow_table *flow_table;
4346 struct rps_dev_flow *old_rflow;
4347 u32 flow_id;
4348 u16 rxq_index;
4349 int rc;
4350
4351 /* Should we steer this flow to a different hardware queue? */
4352 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4353 !(dev->features & NETIF_F_NTUPLE))
4354 goto out;
4355 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4356 if (rxq_index == skb_get_rx_queue(skb))
4357 goto out;
4358
4359 rxqueue = dev->_rx + rxq_index;
4360 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4361 if (!flow_table)
4362 goto out;
4363 flow_id = skb_get_hash(skb) & flow_table->mask;
4364 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4365 rxq_index, flow_id);
4366 if (rc < 0)
4367 goto out;
4368 old_rflow = rflow;
4369 rflow = &flow_table->flows[flow_id];
4370 rflow->filter = rc;
4371 if (old_rflow->filter == rflow->filter)
4372 old_rflow->filter = RPS_NO_FILTER;
4373 out:
4374#endif
4375 rflow->last_qtail =
4376 per_cpu(softnet_data, next_cpu).input_queue_head;
4377 }
4378
4379 rflow->cpu = next_cpu;
4380 return rflow;
4381}
4382
4383/*
4384 * get_rps_cpu is called from netif_receive_skb and returns the target
4385 * CPU from the RPS map of the receiving queue for a given skb.
4386 * rcu_read_lock must be held on entry.
4387 */
4388static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4389 struct rps_dev_flow **rflowp)
4390{
4391 const struct rps_sock_flow_table *sock_flow_table;
4392 struct netdev_rx_queue *rxqueue = dev->_rx;
4393 struct rps_dev_flow_table *flow_table;
4394 struct rps_map *map;
4395 int cpu = -1;
4396 u32 tcpu;
4397 u32 hash;
4398
4399 if (skb_rx_queue_recorded(skb)) {
4400 u16 index = skb_get_rx_queue(skb);
4401
4402 if (unlikely(index >= dev->real_num_rx_queues)) {
4403 WARN_ONCE(dev->real_num_rx_queues > 1,
4404 "%s received packet on queue %u, but number "
4405 "of RX queues is %u\n",
4406 dev->name, index, dev->real_num_rx_queues);
4407 goto done;
4408 }
4409 rxqueue += index;
4410 }
4411
4412 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4413
4414 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4415 map = rcu_dereference(rxqueue->rps_map);
4416 if (!flow_table && !map)
4417 goto done;
4418
4419 skb_reset_network_header(skb);
4420 hash = skb_get_hash(skb);
4421 if (!hash)
4422 goto done;
4423
4424 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4425 if (flow_table && sock_flow_table) {
4426 struct rps_dev_flow *rflow;
4427 u32 next_cpu;
4428 u32 ident;
4429
4430 /* First check into global flow table if there is a match */
4431 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4432 if ((ident ^ hash) & ~rps_cpu_mask)
4433 goto try_rps;
4434
4435 next_cpu = ident & rps_cpu_mask;
4436
4437 /* OK, now we know there is a match,
4438 * we can look at the local (per receive queue) flow table
4439 */
4440 rflow = &flow_table->flows[hash & flow_table->mask];
4441 tcpu = rflow->cpu;
4442
4443 /*
4444 * If the desired CPU (where last recvmsg was done) is
4445 * different from current CPU (one in the rx-queue flow
4446 * table entry), switch if one of the following holds:
4447 * - Current CPU is unset (>= nr_cpu_ids).
4448 * - Current CPU is offline.
4449 * - The current CPU's queue tail has advanced beyond the
4450 * last packet that was enqueued using this table entry.
4451 * This guarantees that all previous packets for the flow
4452 * have been dequeued, thus preserving in order delivery.
4453 */
4454 if (unlikely(tcpu != next_cpu) &&
4455 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4456 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4457 rflow->last_qtail)) >= 0)) {
4458 tcpu = next_cpu;
4459 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4460 }
4461
4462 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4463 *rflowp = rflow;
4464 cpu = tcpu;
4465 goto done;
4466 }
4467 }
4468
4469try_rps:
4470
4471 if (map) {
4472 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4473 if (cpu_online(tcpu)) {
4474 cpu = tcpu;
4475 goto done;
4476 }
4477 }
4478
4479done:
4480 return cpu;
4481}
4482
4483#ifdef CONFIG_RFS_ACCEL
4484
4485/**
4486 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4487 * @dev: Device on which the filter was set
4488 * @rxq_index: RX queue index
4489 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4490 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4491 *
4492 * Drivers that implement ndo_rx_flow_steer() should periodically call
4493 * this function for each installed filter and remove the filters for
4494 * which it returns %true.
4495 */
4496bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4497 u32 flow_id, u16 filter_id)
4498{
4499 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4500 struct rps_dev_flow_table *flow_table;
4501 struct rps_dev_flow *rflow;
4502 bool expire = true;
4503 unsigned int cpu;
4504
4505 rcu_read_lock();
4506 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4507 if (flow_table && flow_id <= flow_table->mask) {
4508 rflow = &flow_table->flows[flow_id];
4509 cpu = READ_ONCE(rflow->cpu);
4510 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4511 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4512 rflow->last_qtail) <
4513 (int)(10 * flow_table->mask)))
4514 expire = false;
4515 }
4516 rcu_read_unlock();
4517 return expire;
4518}
4519EXPORT_SYMBOL(rps_may_expire_flow);
4520
4521#endif /* CONFIG_RFS_ACCEL */
4522
4523/* Called from hardirq (IPI) context */
4524static void rps_trigger_softirq(void *data)
4525{
4526 struct softnet_data *sd = data;
4527
4528 ____napi_schedule(sd, &sd->backlog);
4529 sd->received_rps++;
4530}
4531
4532#endif /* CONFIG_RPS */
4533
4534/*
4535 * Check if this softnet_data structure is another cpu one
4536 * If yes, queue it to our IPI list and return 1
4537 * If no, return 0
4538 */
4539static int rps_ipi_queued(struct softnet_data *sd)
4540{
4541#ifdef CONFIG_RPS
4542 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4543
4544 if (sd != mysd) {
4545 sd->rps_ipi_next = mysd->rps_ipi_list;
4546 mysd->rps_ipi_list = sd;
4547
4548 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4549 return 1;
4550 }
4551#endif /* CONFIG_RPS */
4552 return 0;
4553}
4554
4555#ifdef CONFIG_NET_FLOW_LIMIT
4556int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4557#endif
4558
4559static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4560{
4561#ifdef CONFIG_NET_FLOW_LIMIT
4562 struct sd_flow_limit *fl;
4563 struct softnet_data *sd;
4564 unsigned int old_flow, new_flow;
4565
4566 if (qlen < (netdev_max_backlog >> 1))
4567 return false;
4568
4569 sd = this_cpu_ptr(&softnet_data);
4570
4571 rcu_read_lock();
4572 fl = rcu_dereference(sd->flow_limit);
4573 if (fl) {
4574 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4575 old_flow = fl->history[fl->history_head];
4576 fl->history[fl->history_head] = new_flow;
4577
4578 fl->history_head++;
4579 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4580
4581 if (likely(fl->buckets[old_flow]))
4582 fl->buckets[old_flow]--;
4583
4584 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4585 fl->count++;
4586 rcu_read_unlock();
4587 return true;
4588 }
4589 }
4590 rcu_read_unlock();
4591#endif
4592 return false;
4593}
4594
4595/*
4596 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4597 * queue (may be a remote CPU queue).
4598 */
4599static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4600 unsigned int *qtail)
4601{
4602 struct softnet_data *sd;
4603 unsigned long flags;
4604 unsigned int qlen;
4605
4606 sd = &per_cpu(softnet_data, cpu);
4607
4608 local_irq_save(flags);
4609
4610 rps_lock(sd);
4611 if (!netif_running(skb->dev))
4612 goto drop;
4613 qlen = skb_queue_len(&sd->input_pkt_queue);
4614 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4615 if (qlen) {
4616enqueue:
4617 __skb_queue_tail(&sd->input_pkt_queue, skb);
4618 input_queue_tail_incr_save(sd, qtail);
4619 rps_unlock(sd);
4620 local_irq_restore(flags);
4621 return NET_RX_SUCCESS;
4622 }
4623
4624 /* Schedule NAPI for backlog device
4625 * We can use non atomic operation since we own the queue lock
4626 */
4627 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4628 if (!rps_ipi_queued(sd))
4629 ____napi_schedule(sd, &sd->backlog);
4630 }
4631 goto enqueue;
4632 }
4633
4634drop:
4635 sd->dropped++;
4636 rps_unlock(sd);
4637
4638 local_irq_restore(flags);
4639
4640 atomic_long_inc(&skb->dev->rx_dropped);
4641 kfree_skb(skb);
4642 return NET_RX_DROP;
4643}
4644
4645static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4646{
4647 struct net_device *dev = skb->dev;
4648 struct netdev_rx_queue *rxqueue;
4649
4650 rxqueue = dev->_rx;
4651
4652 if (skb_rx_queue_recorded(skb)) {
4653 u16 index = skb_get_rx_queue(skb);
4654
4655 if (unlikely(index >= dev->real_num_rx_queues)) {
4656 WARN_ONCE(dev->real_num_rx_queues > 1,
4657 "%s received packet on queue %u, but number "
4658 "of RX queues is %u\n",
4659 dev->name, index, dev->real_num_rx_queues);
4660
4661 return rxqueue; /* Return first rxqueue */
4662 }
4663 rxqueue += index;
4664 }
4665 return rxqueue;
4666}
4667
4668static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4669 struct xdp_buff *xdp,
4670 struct bpf_prog *xdp_prog)
4671{
4672 void *orig_data, *orig_data_end, *hard_start;
4673 struct netdev_rx_queue *rxqueue;
4674 u32 metalen, act = XDP_DROP;
4675 u32 mac_len, frame_sz;
4676 __be16 orig_eth_type;
4677 struct ethhdr *eth;
4678 bool orig_bcast;
4679 int off;
4680
4681 /* Reinjected packets coming from act_mirred or similar should
4682 * not get XDP generic processing.
4683 */
4684 if (skb_is_redirected(skb))
4685 return XDP_PASS;
4686
4687 /* XDP packets must be linear and must have sufficient headroom
4688 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4689 * native XDP provides, thus we need to do it here as well.
4690 */
4691 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4692 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4693 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4694 int troom = skb->tail + skb->data_len - skb->end;
4695
4696 /* In case we have to go down the path and also linearize,
4697 * then lets do the pskb_expand_head() work just once here.
4698 */
4699 if (pskb_expand_head(skb,
4700 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4701 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4702 goto do_drop;
4703 if (skb_linearize(skb))
4704 goto do_drop;
4705 }
4706
4707 /* The XDP program wants to see the packet starting at the MAC
4708 * header.
4709 */
4710 mac_len = skb->data - skb_mac_header(skb);
4711 hard_start = skb->data - skb_headroom(skb);
4712
4713 /* SKB "head" area always have tailroom for skb_shared_info */
4714 frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4715 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4716
4717 rxqueue = netif_get_rxqueue(skb);
4718 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4719 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4720 skb_headlen(skb) + mac_len, true);
4721
4722 orig_data_end = xdp->data_end;
4723 orig_data = xdp->data;
4724 eth = (struct ethhdr *)xdp->data;
4725 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4726 orig_eth_type = eth->h_proto;
4727
4728 act = bpf_prog_run_xdp(xdp_prog, xdp);
4729
4730 /* check if bpf_xdp_adjust_head was used */
4731 off = xdp->data - orig_data;
4732 if (off) {
4733 if (off > 0)
4734 __skb_pull(skb, off);
4735 else if (off < 0)
4736 __skb_push(skb, -off);
4737
4738 skb->mac_header += off;
4739 skb_reset_network_header(skb);
4740 }
4741
4742 /* check if bpf_xdp_adjust_tail was used */
4743 off = xdp->data_end - orig_data_end;
4744 if (off != 0) {
4745 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4746 skb->len += off; /* positive on grow, negative on shrink */
4747 }
4748
4749 /* check if XDP changed eth hdr such SKB needs update */
4750 eth = (struct ethhdr *)xdp->data;
4751 if ((orig_eth_type != eth->h_proto) ||
4752 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4753 __skb_push(skb, ETH_HLEN);
4754 skb->protocol = eth_type_trans(skb, skb->dev);
4755 }
4756
4757 switch (act) {
4758 case XDP_REDIRECT:
4759 case XDP_TX:
4760 __skb_push(skb, mac_len);
4761 break;
4762 case XDP_PASS:
4763 metalen = xdp->data - xdp->data_meta;
4764 if (metalen)
4765 skb_metadata_set(skb, metalen);
4766 break;
4767 default:
4768 bpf_warn_invalid_xdp_action(act);
4769 fallthrough;
4770 case XDP_ABORTED:
4771 trace_xdp_exception(skb->dev, xdp_prog, act);
4772 fallthrough;
4773 case XDP_DROP:
4774 do_drop:
4775 kfree_skb(skb);
4776 break;
4777 }
4778
4779 return act;
4780}
4781
4782/* When doing generic XDP we have to bypass the qdisc layer and the
4783 * network taps in order to match in-driver-XDP behavior.
4784 */
4785void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4786{
4787 struct net_device *dev = skb->dev;
4788 struct netdev_queue *txq;
4789 bool free_skb = true;
4790 int cpu, rc;
4791
4792 txq = netdev_core_pick_tx(dev, skb, NULL);
4793 cpu = smp_processor_id();
4794 HARD_TX_LOCK(dev, txq, cpu);
4795 if (!netif_xmit_stopped(txq)) {
4796 rc = netdev_start_xmit(skb, dev, txq, 0);
4797 if (dev_xmit_complete(rc))
4798 free_skb = false;
4799 }
4800 HARD_TX_UNLOCK(dev, txq);
4801 if (free_skb) {
4802 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4803 kfree_skb(skb);
4804 }
4805}
4806
4807static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4808
4809int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4810{
4811 if (xdp_prog) {
4812 struct xdp_buff xdp;
4813 u32 act;
4814 int err;
4815
4816 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4817 if (act != XDP_PASS) {
4818 switch (act) {
4819 case XDP_REDIRECT:
4820 err = xdp_do_generic_redirect(skb->dev, skb,
4821 &xdp, xdp_prog);
4822 if (err)
4823 goto out_redir;
4824 break;
4825 case XDP_TX:
4826 generic_xdp_tx(skb, xdp_prog);
4827 break;
4828 }
4829 return XDP_DROP;
4830 }
4831 }
4832 return XDP_PASS;
4833out_redir:
4834 kfree_skb(skb);
4835 return XDP_DROP;
4836}
4837EXPORT_SYMBOL_GPL(do_xdp_generic);
4838
4839static int netif_rx_internal(struct sk_buff *skb)
4840{
4841 int ret;
4842
4843 net_timestamp_check(netdev_tstamp_prequeue, skb);
4844
4845 trace_netif_rx(skb);
4846
4847#ifdef CONFIG_RPS
4848 if (static_branch_unlikely(&rps_needed)) {
4849 struct rps_dev_flow voidflow, *rflow = &voidflow;
4850 int cpu;
4851
4852 preempt_disable();
4853 rcu_read_lock();
4854
4855 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4856 if (cpu < 0)
4857 cpu = smp_processor_id();
4858
4859 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4860
4861 rcu_read_unlock();
4862 preempt_enable();
4863 } else
4864#endif
4865 {
4866 unsigned int qtail;
4867
4868 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4869 put_cpu();
4870 }
4871 return ret;
4872}
4873
4874/**
4875 * netif_rx - post buffer to the network code
4876 * @skb: buffer to post
4877 *
4878 * This function receives a packet from a device driver and queues it for
4879 * the upper (protocol) levels to process. It always succeeds. The buffer
4880 * may be dropped during processing for congestion control or by the
4881 * protocol layers.
4882 *
4883 * return values:
4884 * NET_RX_SUCCESS (no congestion)
4885 * NET_RX_DROP (packet was dropped)
4886 *
4887 */
4888
4889int netif_rx(struct sk_buff *skb)
4890{
4891 int ret;
4892
4893 trace_netif_rx_entry(skb);
4894
4895 ret = netif_rx_internal(skb);
4896 trace_netif_rx_exit(ret);
4897
4898 return ret;
4899}
4900EXPORT_SYMBOL(netif_rx);
4901
4902int netif_rx_ni(struct sk_buff *skb)
4903{
4904 int err;
4905
4906 trace_netif_rx_ni_entry(skb);
4907
4908 preempt_disable();
4909 err = netif_rx_internal(skb);
4910 if (local_softirq_pending())
4911 do_softirq();
4912 preempt_enable();
4913 trace_netif_rx_ni_exit(err);
4914
4915 return err;
4916}
4917EXPORT_SYMBOL(netif_rx_ni);
4918
4919int netif_rx_any_context(struct sk_buff *skb)
4920{
4921 /*
4922 * If invoked from contexts which do not invoke bottom half
4923 * processing either at return from interrupt or when softrqs are
4924 * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4925 * directly.
4926 */
4927 if (in_interrupt())
4928 return netif_rx(skb);
4929 else
4930 return netif_rx_ni(skb);
4931}
4932EXPORT_SYMBOL(netif_rx_any_context);
4933
4934static __latent_entropy void net_tx_action(struct softirq_action *h)
4935{
4936 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4937
4938 if (sd->completion_queue) {
4939 struct sk_buff *clist;
4940
4941 local_irq_disable();
4942 clist = sd->completion_queue;
4943 sd->completion_queue = NULL;
4944 local_irq_enable();
4945
4946 while (clist) {
4947 struct sk_buff *skb = clist;
4948
4949 clist = clist->next;
4950
4951 WARN_ON(refcount_read(&skb->users));
4952 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4953 trace_consume_skb(skb);
4954 else
4955 trace_kfree_skb(skb, net_tx_action);
4956
4957 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4958 __kfree_skb(skb);
4959 else
4960 __kfree_skb_defer(skb);
4961 }
4962 }
4963
4964 if (sd->output_queue) {
4965 struct Qdisc *head;
4966
4967 local_irq_disable();
4968 head = sd->output_queue;
4969 sd->output_queue = NULL;
4970 sd->output_queue_tailp = &sd->output_queue;
4971 local_irq_enable();
4972
4973 while (head) {
4974 struct Qdisc *q = head;
4975 spinlock_t *root_lock = NULL;
4976
4977 head = head->next_sched;
4978
4979 if (!(q->flags & TCQ_F_NOLOCK)) {
4980 root_lock = qdisc_lock(q);
4981 spin_lock(root_lock);
4982 }
4983 /* We need to make sure head->next_sched is read
4984 * before clearing __QDISC_STATE_SCHED
4985 */
4986 smp_mb__before_atomic();
4987 clear_bit(__QDISC_STATE_SCHED, &q->state);
4988 qdisc_run(q);
4989 if (root_lock)
4990 spin_unlock(root_lock);
4991 }
4992 }
4993
4994 xfrm_dev_backlog(sd);
4995}
4996
4997#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4998/* This hook is defined here for ATM LANE */
4999int (*br_fdb_test_addr_hook)(struct net_device *dev,
5000 unsigned char *addr) __read_mostly;
5001EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5002#endif
5003
5004static inline struct sk_buff *
5005sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5006 struct net_device *orig_dev, bool *another)
5007{
5008#ifdef CONFIG_NET_CLS_ACT
5009 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5010 struct tcf_result cl_res;
5011
5012 /* If there's at least one ingress present somewhere (so
5013 * we get here via enabled static key), remaining devices
5014 * that are not configured with an ingress qdisc will bail
5015 * out here.
5016 */
5017 if (!miniq)
5018 return skb;
5019
5020 if (*pt_prev) {
5021 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5022 *pt_prev = NULL;
5023 }
5024
5025 qdisc_skb_cb(skb)->pkt_len = skb->len;
5026 qdisc_skb_cb(skb)->mru = 0;
5027 qdisc_skb_cb(skb)->post_ct = false;
5028 skb->tc_at_ingress = 1;
5029 mini_qdisc_bstats_cpu_update(miniq, skb);
5030
5031 switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
5032 &cl_res, false)) {
5033 case TC_ACT_OK:
5034 case TC_ACT_RECLASSIFY:
5035 skb->tc_index = TC_H_MIN(cl_res.classid);
5036 break;
5037 case TC_ACT_SHOT:
5038 mini_qdisc_qstats_cpu_drop(miniq);
5039 kfree_skb(skb);
5040 return NULL;
5041 case TC_ACT_STOLEN:
5042 case TC_ACT_QUEUED:
5043 case TC_ACT_TRAP:
5044 consume_skb(skb);
5045 return NULL;
5046 case TC_ACT_REDIRECT:
5047 /* skb_mac_header check was done by cls/act_bpf, so
5048 * we can safely push the L2 header back before
5049 * redirecting to another netdev
5050 */
5051 __skb_push(skb, skb->mac_len);
5052 if (skb_do_redirect(skb) == -EAGAIN) {
5053 __skb_pull(skb, skb->mac_len);
5054 *another = true;
5055 break;
5056 }
5057 return NULL;
5058 case TC_ACT_CONSUMED:
5059 return NULL;
5060 default:
5061 break;
5062 }
5063#endif /* CONFIG_NET_CLS_ACT */
5064 return skb;
5065}
5066
5067/**
5068 * netdev_is_rx_handler_busy - check if receive handler is registered
5069 * @dev: device to check
5070 *
5071 * Check if a receive handler is already registered for a given device.
5072 * Return true if there one.
5073 *
5074 * The caller must hold the rtnl_mutex.
5075 */
5076bool netdev_is_rx_handler_busy(struct net_device *dev)
5077{
5078 ASSERT_RTNL();
5079 return dev && rtnl_dereference(dev->rx_handler);
5080}
5081EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5082
5083/**
5084 * netdev_rx_handler_register - register receive handler
5085 * @dev: device to register a handler for
5086 * @rx_handler: receive handler to register
5087 * @rx_handler_data: data pointer that is used by rx handler
5088 *
5089 * Register a receive handler for a device. This handler will then be
5090 * called from __netif_receive_skb. A negative errno code is returned
5091 * on a failure.
5092 *
5093 * The caller must hold the rtnl_mutex.
5094 *
5095 * For a general description of rx_handler, see enum rx_handler_result.
5096 */
5097int netdev_rx_handler_register(struct net_device *dev,
5098 rx_handler_func_t *rx_handler,
5099 void *rx_handler_data)
5100{
5101 if (netdev_is_rx_handler_busy(dev))
5102 return -EBUSY;
5103
5104 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5105 return -EINVAL;
5106
5107 /* Note: rx_handler_data must be set before rx_handler */
5108 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5109 rcu_assign_pointer(dev->rx_handler, rx_handler);
5110
5111 return 0;
5112}
5113EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5114
5115/**
5116 * netdev_rx_handler_unregister - unregister receive handler
5117 * @dev: device to unregister a handler from
5118 *
5119 * Unregister a receive handler from a device.
5120 *
5121 * The caller must hold the rtnl_mutex.
5122 */
5123void netdev_rx_handler_unregister(struct net_device *dev)
5124{
5125
5126 ASSERT_RTNL();
5127 RCU_INIT_POINTER(dev->rx_handler, NULL);
5128 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5129 * section has a guarantee to see a non NULL rx_handler_data
5130 * as well.
5131 */
5132 synchronize_net();
5133 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5134}
5135EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5136
5137/*
5138 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5139 * the special handling of PFMEMALLOC skbs.
5140 */
5141static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5142{
5143 switch (skb->protocol) {
5144 case htons(ETH_P_ARP):
5145 case htons(ETH_P_IP):
5146 case htons(ETH_P_IPV6):
5147 case htons(ETH_P_8021Q):
5148 case htons(ETH_P_8021AD):
5149 return true;
5150 default:
5151 return false;
5152 }
5153}
5154
5155static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5156 int *ret, struct net_device *orig_dev)
5157{
5158 if (nf_hook_ingress_active(skb)) {
5159 int ingress_retval;
5160
5161 if (*pt_prev) {
5162 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5163 *pt_prev = NULL;
5164 }
5165
5166 rcu_read_lock();
5167 ingress_retval = nf_hook_ingress(skb);
5168 rcu_read_unlock();
5169 return ingress_retval;
5170 }
5171 return 0;
5172}
5173
5174static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5175 struct packet_type **ppt_prev)
5176{
5177 struct packet_type *ptype, *pt_prev;
5178 rx_handler_func_t *rx_handler;
5179 struct sk_buff *skb = *pskb;
5180 struct net_device *orig_dev;
5181 bool deliver_exact = false;
5182 int ret = NET_RX_DROP;
5183 __be16 type;
5184
5185 net_timestamp_check(!netdev_tstamp_prequeue, skb);
5186
5187 trace_netif_receive_skb(skb);
5188
5189 orig_dev = skb->dev;
5190
5191 skb_reset_network_header(skb);
5192 if (!skb_transport_header_was_set(skb))
5193 skb_reset_transport_header(skb);
5194 skb_reset_mac_len(skb);
5195
5196 pt_prev = NULL;
5197
5198another_round:
5199 skb->skb_iif = skb->dev->ifindex;
5200
5201 __this_cpu_inc(softnet_data.processed);
5202
5203 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5204 int ret2;
5205
5206 preempt_disable();
5207 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5208 preempt_enable();
5209
5210 if (ret2 != XDP_PASS) {
5211 ret = NET_RX_DROP;
5212 goto out;
5213 }
5214 skb_reset_mac_len(skb);
5215 }
5216
5217 if (eth_type_vlan(skb->protocol)) {
5218 skb = skb_vlan_untag(skb);
5219 if (unlikely(!skb))
5220 goto out;
5221 }
5222
5223 if (skb_skip_tc_classify(skb))
5224 goto skip_classify;
5225
5226 if (pfmemalloc)
5227 goto skip_taps;
5228
5229 list_for_each_entry_rcu(ptype, &ptype_all, list) {
5230 if (pt_prev)
5231 ret = deliver_skb(skb, pt_prev, orig_dev);
5232 pt_prev = ptype;
5233 }
5234
5235 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5236 if (pt_prev)
5237 ret = deliver_skb(skb, pt_prev, orig_dev);
5238 pt_prev = ptype;
5239 }
5240
5241skip_taps:
5242#ifdef CONFIG_NET_INGRESS
5243 if (static_branch_unlikely(&ingress_needed_key)) {
5244 bool another = false;
5245
5246 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5247 &another);
5248 if (another)
5249 goto another_round;
5250 if (!skb)
5251 goto out;
5252
5253 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5254 goto out;
5255 }
5256#endif
5257 skb_reset_redirect(skb);
5258skip_classify:
5259 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5260 goto drop;
5261
5262 if (skb_vlan_tag_present(skb)) {
5263 if (pt_prev) {
5264 ret = deliver_skb(skb, pt_prev, orig_dev);
5265 pt_prev = NULL;
5266 }
5267 if (vlan_do_receive(&skb))
5268 goto another_round;
5269 else if (unlikely(!skb))
5270 goto out;
5271 }
5272
5273 rx_handler = rcu_dereference(skb->dev->rx_handler);
5274 if (rx_handler) {
5275 if (pt_prev) {
5276 ret = deliver_skb(skb, pt_prev, orig_dev);
5277 pt_prev = NULL;
5278 }
5279 switch (rx_handler(&skb)) {
5280 case RX_HANDLER_CONSUMED:
5281 ret = NET_RX_SUCCESS;
5282 goto out;
5283 case RX_HANDLER_ANOTHER:
5284 goto another_round;
5285 case RX_HANDLER_EXACT:
5286 deliver_exact = true;
5287 case RX_HANDLER_PASS:
5288 break;
5289 default:
5290 BUG();
5291 }
5292 }
5293
5294 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5295check_vlan_id:
5296 if (skb_vlan_tag_get_id(skb)) {
5297 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5298 * find vlan device.
5299 */
5300 skb->pkt_type = PACKET_OTHERHOST;
5301 } else if (eth_type_vlan(skb->protocol)) {
5302 /* Outer header is 802.1P with vlan 0, inner header is
5303 * 802.1Q or 802.1AD and vlan_do_receive() above could
5304 * not find vlan dev for vlan id 0.
5305 */
5306 __vlan_hwaccel_clear_tag(skb);
5307 skb = skb_vlan_untag(skb);
5308 if (unlikely(!skb))
5309 goto out;
5310 if (vlan_do_receive(&skb))
5311 /* After stripping off 802.1P header with vlan 0
5312 * vlan dev is found for inner header.
5313 */
5314 goto another_round;
5315 else if (unlikely(!skb))
5316 goto out;
5317 else
5318 /* We have stripped outer 802.1P vlan 0 header.
5319 * But could not find vlan dev.
5320 * check again for vlan id to set OTHERHOST.
5321 */
5322 goto check_vlan_id;
5323 }
5324 /* Note: we might in the future use prio bits
5325 * and set skb->priority like in vlan_do_receive()
5326 * For the time being, just ignore Priority Code Point
5327 */
5328 __vlan_hwaccel_clear_tag(skb);
5329 }
5330
5331 type = skb->protocol;
5332
5333 /* deliver only exact match when indicated */
5334 if (likely(!deliver_exact)) {
5335 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5336 &ptype_base[ntohs(type) &
5337 PTYPE_HASH_MASK]);
5338 }
5339
5340 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5341 &orig_dev->ptype_specific);
5342
5343 if (unlikely(skb->dev != orig_dev)) {
5344 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5345 &skb->dev->ptype_specific);
5346 }
5347
5348 if (pt_prev) {
5349 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5350 goto drop;
5351 *ppt_prev = pt_prev;
5352 } else {
5353drop:
5354 if (!deliver_exact)
5355 atomic_long_inc(&skb->dev->rx_dropped);
5356 else
5357 atomic_long_inc(&skb->dev->rx_nohandler);
5358 kfree_skb(skb);
5359 /* Jamal, now you will not able to escape explaining
5360 * me how you were going to use this. :-)
5361 */
5362 ret = NET_RX_DROP;
5363 }
5364
5365out:
5366 /* The invariant here is that if *ppt_prev is not NULL
5367 * then skb should also be non-NULL.
5368 *
5369 * Apparently *ppt_prev assignment above holds this invariant due to
5370 * skb dereferencing near it.
5371 */
5372 *pskb = skb;
5373 return ret;
5374}
5375
5376static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5377{
5378 struct net_device *orig_dev = skb->dev;
5379 struct packet_type *pt_prev = NULL;
5380 int ret;
5381
5382 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5383 if (pt_prev)
5384 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5385 skb->dev, pt_prev, orig_dev);
5386 return ret;
5387}
5388
5389/**
5390 * netif_receive_skb_core - special purpose version of netif_receive_skb
5391 * @skb: buffer to process
5392 *
5393 * More direct receive version of netif_receive_skb(). It should
5394 * only be used by callers that have a need to skip RPS and Generic XDP.
5395 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5396 *
5397 * This function may only be called from softirq context and interrupts
5398 * should be enabled.
5399 *
5400 * Return values (usually ignored):
5401 * NET_RX_SUCCESS: no congestion
5402 * NET_RX_DROP: packet was dropped
5403 */
5404int netif_receive_skb_core(struct sk_buff *skb)
5405{
5406 int ret;
5407
5408 rcu_read_lock();
5409 ret = __netif_receive_skb_one_core(skb, false);
5410 rcu_read_unlock();
5411
5412 return ret;
5413}
5414EXPORT_SYMBOL(netif_receive_skb_core);
5415
5416static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5417 struct packet_type *pt_prev,
5418 struct net_device *orig_dev)
5419{
5420 struct sk_buff *skb, *next;
5421
5422 if (!pt_prev)
5423 return;
5424 if (list_empty(head))
5425 return;
5426 if (pt_prev->list_func != NULL)
5427 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5428 ip_list_rcv, head, pt_prev, orig_dev);
5429 else
5430 list_for_each_entry_safe(skb, next, head, list) {
5431 skb_list_del_init(skb);
5432 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5433 }
5434}
5435
5436static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5437{
5438 /* Fast-path assumptions:
5439 * - There is no RX handler.
5440 * - Only one packet_type matches.
5441 * If either of these fails, we will end up doing some per-packet
5442 * processing in-line, then handling the 'last ptype' for the whole
5443 * sublist. This can't cause out-of-order delivery to any single ptype,
5444 * because the 'last ptype' must be constant across the sublist, and all
5445 * other ptypes are handled per-packet.
5446 */
5447 /* Current (common) ptype of sublist */
5448 struct packet_type *pt_curr = NULL;
5449 /* Current (common) orig_dev of sublist */
5450 struct net_device *od_curr = NULL;
5451 struct list_head sublist;
5452 struct sk_buff *skb, *next;
5453
5454 INIT_LIST_HEAD(&sublist);
5455 list_for_each_entry_safe(skb, next, head, list) {
5456 struct net_device *orig_dev = skb->dev;
5457 struct packet_type *pt_prev = NULL;
5458
5459 skb_list_del_init(skb);
5460 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5461 if (!pt_prev)
5462 continue;
5463 if (pt_curr != pt_prev || od_curr != orig_dev) {
5464 /* dispatch old sublist */
5465 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5466 /* start new sublist */
5467 INIT_LIST_HEAD(&sublist);
5468 pt_curr = pt_prev;
5469 od_curr = orig_dev;
5470 }
5471 list_add_tail(&skb->list, &sublist);
5472 }
5473
5474 /* dispatch final sublist */
5475 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5476}
5477
5478static int __netif_receive_skb(struct sk_buff *skb)
5479{
5480 int ret;
5481
5482 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5483 unsigned int noreclaim_flag;
5484
5485 /*
5486 * PFMEMALLOC skbs are special, they should
5487 * - be delivered to SOCK_MEMALLOC sockets only
5488 * - stay away from userspace
5489 * - have bounded memory usage
5490 *
5491 * Use PF_MEMALLOC as this saves us from propagating the allocation
5492 * context down to all allocation sites.
5493 */
5494 noreclaim_flag = memalloc_noreclaim_save();
5495 ret = __netif_receive_skb_one_core(skb, true);
5496 memalloc_noreclaim_restore(noreclaim_flag);
5497 } else
5498 ret = __netif_receive_skb_one_core(skb, false);
5499
5500 return ret;
5501}
5502
5503static void __netif_receive_skb_list(struct list_head *head)
5504{
5505 unsigned long noreclaim_flag = 0;
5506 struct sk_buff *skb, *next;
5507 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5508
5509 list_for_each_entry_safe(skb, next, head, list) {
5510 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5511 struct list_head sublist;
5512
5513 /* Handle the previous sublist */
5514 list_cut_before(&sublist, head, &skb->list);
5515 if (!list_empty(&sublist))
5516 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5517 pfmemalloc = !pfmemalloc;
5518 /* See comments in __netif_receive_skb */
5519 if (pfmemalloc)
5520 noreclaim_flag = memalloc_noreclaim_save();
5521 else
5522 memalloc_noreclaim_restore(noreclaim_flag);
5523 }
5524 }
5525 /* Handle the remaining sublist */
5526 if (!list_empty(head))
5527 __netif_receive_skb_list_core(head, pfmemalloc);
5528 /* Restore pflags */
5529 if (pfmemalloc)
5530 memalloc_noreclaim_restore(noreclaim_flag);
5531}
5532
5533static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5534{
5535 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5536 struct bpf_prog *new = xdp->prog;
5537 int ret = 0;
5538
5539 if (new) {
5540 u32 i;
5541
5542 mutex_lock(&new->aux->used_maps_mutex);
5543
5544 /* generic XDP does not work with DEVMAPs that can
5545 * have a bpf_prog installed on an entry
5546 */
5547 for (i = 0; i < new->aux->used_map_cnt; i++) {
5548 if (dev_map_can_have_prog(new->aux->used_maps[i]) ||
5549 cpu_map_prog_allowed(new->aux->used_maps[i])) {
5550 mutex_unlock(&new->aux->used_maps_mutex);
5551 return -EINVAL;
5552 }
5553 }
5554
5555 mutex_unlock(&new->aux->used_maps_mutex);
5556 }
5557
5558 switch (xdp->command) {
5559 case XDP_SETUP_PROG:
5560 rcu_assign_pointer(dev->xdp_prog, new);
5561 if (old)
5562 bpf_prog_put(old);
5563
5564 if (old && !new) {
5565 static_branch_dec(&generic_xdp_needed_key);
5566 } else if (new && !old) {
5567 static_branch_inc(&generic_xdp_needed_key);
5568 dev_disable_lro(dev);
5569 dev_disable_gro_hw(dev);
5570 }
5571 break;
5572
5573 default:
5574 ret = -EINVAL;
5575 break;
5576 }
5577
5578 return ret;
5579}
5580
5581static int netif_receive_skb_internal(struct sk_buff *skb)
5582{
5583 int ret;
5584
5585 net_timestamp_check(netdev_tstamp_prequeue, skb);
5586
5587 if (skb_defer_rx_timestamp(skb))
5588 return NET_RX_SUCCESS;
5589
5590 rcu_read_lock();
5591#ifdef CONFIG_RPS
5592 if (static_branch_unlikely(&rps_needed)) {
5593 struct rps_dev_flow voidflow, *rflow = &voidflow;
5594 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5595
5596 if (cpu >= 0) {
5597 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5598 rcu_read_unlock();
5599 return ret;
5600 }
5601 }
5602#endif
5603 ret = __netif_receive_skb(skb);
5604 rcu_read_unlock();
5605 return ret;
5606}
5607
5608static void netif_receive_skb_list_internal(struct list_head *head)
5609{
5610 struct sk_buff *skb, *next;
5611 struct list_head sublist;
5612
5613 INIT_LIST_HEAD(&sublist);
5614 list_for_each_entry_safe(skb, next, head, list) {
5615 net_timestamp_check(netdev_tstamp_prequeue, skb);
5616 skb_list_del_init(skb);
5617 if (!skb_defer_rx_timestamp(skb))
5618 list_add_tail(&skb->list, &sublist);
5619 }
5620 list_splice_init(&sublist, head);
5621
5622 rcu_read_lock();
5623#ifdef CONFIG_RPS
5624 if (static_branch_unlikely(&rps_needed)) {
5625 list_for_each_entry_safe(skb, next, head, list) {
5626 struct rps_dev_flow voidflow, *rflow = &voidflow;
5627 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5628
5629 if (cpu >= 0) {
5630 /* Will be handled, remove from list */
5631 skb_list_del_init(skb);
5632 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5633 }
5634 }
5635 }
5636#endif
5637 __netif_receive_skb_list(head);
5638 rcu_read_unlock();
5639}
5640
5641/**
5642 * netif_receive_skb - process receive buffer from network
5643 * @skb: buffer to process
5644 *
5645 * netif_receive_skb() is the main receive data processing function.
5646 * It always succeeds. The buffer may be dropped during processing
5647 * for congestion control or by the protocol layers.
5648 *
5649 * This function may only be called from softirq context and interrupts
5650 * should be enabled.
5651 *
5652 * Return values (usually ignored):
5653 * NET_RX_SUCCESS: no congestion
5654 * NET_RX_DROP: packet was dropped
5655 */
5656int netif_receive_skb(struct sk_buff *skb)
5657{
5658 int ret;
5659
5660 trace_netif_receive_skb_entry(skb);
5661
5662 ret = netif_receive_skb_internal(skb);
5663 trace_netif_receive_skb_exit(ret);
5664
5665 return ret;
5666}
5667EXPORT_SYMBOL(netif_receive_skb);
5668
5669/**
5670 * netif_receive_skb_list - process many receive buffers from network
5671 * @head: list of skbs to process.
5672 *
5673 * Since return value of netif_receive_skb() is normally ignored, and
5674 * wouldn't be meaningful for a list, this function returns void.
5675 *
5676 * This function may only be called from softirq context and interrupts
5677 * should be enabled.
5678 */
5679void netif_receive_skb_list(struct list_head *head)
5680{
5681 struct sk_buff *skb;
5682
5683 if (list_empty(head))
5684 return;
5685 if (trace_netif_receive_skb_list_entry_enabled()) {
5686 list_for_each_entry(skb, head, list)
5687 trace_netif_receive_skb_list_entry(skb);
5688 }
5689 netif_receive_skb_list_internal(head);
5690 trace_netif_receive_skb_list_exit(0);
5691}
5692EXPORT_SYMBOL(netif_receive_skb_list);
5693
5694static DEFINE_PER_CPU(struct work_struct, flush_works);
5695
5696/* Network device is going away, flush any packets still pending */
5697static void flush_backlog(struct work_struct *work)
5698{
5699 struct sk_buff *skb, *tmp;
5700 struct softnet_data *sd;
5701
5702 local_bh_disable();
5703 sd = this_cpu_ptr(&softnet_data);
5704
5705 local_irq_disable();
5706 rps_lock(sd);
5707 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5708 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5709 __skb_unlink(skb, &sd->input_pkt_queue);
5710 dev_kfree_skb_irq(skb);
5711 input_queue_head_incr(sd);
5712 }
5713 }
5714 rps_unlock(sd);
5715 local_irq_enable();
5716
5717 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5718 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5719 __skb_unlink(skb, &sd->process_queue);
5720 kfree_skb(skb);
5721 input_queue_head_incr(sd);
5722 }
5723 }
5724 local_bh_enable();
5725}
5726
5727static bool flush_required(int cpu)
5728{
5729#if IS_ENABLED(CONFIG_RPS)
5730 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5731 bool do_flush;
5732
5733 local_irq_disable();
5734 rps_lock(sd);
5735
5736 /* as insertion into process_queue happens with the rps lock held,
5737 * process_queue access may race only with dequeue
5738 */
5739 do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5740 !skb_queue_empty_lockless(&sd->process_queue);
5741 rps_unlock(sd);
5742 local_irq_enable();
5743
5744 return do_flush;
5745#endif
5746 /* without RPS we can't safely check input_pkt_queue: during a
5747 * concurrent remote skb_queue_splice() we can detect as empty both
5748 * input_pkt_queue and process_queue even if the latter could end-up
5749 * containing a lot of packets.
5750 */
5751 return true;
5752}
5753
5754static void flush_all_backlogs(void)
5755{
5756 static cpumask_t flush_cpus;
5757 unsigned int cpu;
5758
5759 /* since we are under rtnl lock protection we can use static data
5760 * for the cpumask and avoid allocating on stack the possibly
5761 * large mask
5762 */
5763 ASSERT_RTNL();
5764
5765 get_online_cpus();
5766
5767 cpumask_clear(&flush_cpus);
5768 for_each_online_cpu(cpu) {
5769 if (flush_required(cpu)) {
5770 queue_work_on(cpu, system_highpri_wq,
5771 per_cpu_ptr(&flush_works, cpu));
5772 cpumask_set_cpu(cpu, &flush_cpus);
5773 }
5774 }
5775
5776 /* we can have in flight packet[s] on the cpus we are not flushing,
5777 * synchronize_net() in unregister_netdevice_many() will take care of
5778 * them
5779 */
5780 for_each_cpu(cpu, &flush_cpus)
5781 flush_work(per_cpu_ptr(&flush_works, cpu));
5782
5783 put_online_cpus();
5784}
5785
5786/* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5787static void gro_normal_list(struct napi_struct *napi)
5788{
5789 if (!napi->rx_count)
5790 return;
5791 netif_receive_skb_list_internal(&napi->rx_list);
5792 INIT_LIST_HEAD(&napi->rx_list);
5793 napi->rx_count = 0;
5794}
5795
5796/* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5797 * pass the whole batch up to the stack.
5798 */
5799static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs)
5800{
5801 list_add_tail(&skb->list, &napi->rx_list);
5802 napi->rx_count += segs;
5803 if (napi->rx_count >= gro_normal_batch)
5804 gro_normal_list(napi);
5805}
5806
5807static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5808{
5809 struct packet_offload *ptype;
5810 __be16 type = skb->protocol;
5811 struct list_head *head = &offload_base;
5812 int err = -ENOENT;
5813
5814 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5815
5816 if (NAPI_GRO_CB(skb)->count == 1) {
5817 skb_shinfo(skb)->gso_size = 0;
5818 goto out;
5819 }
5820
5821 rcu_read_lock();
5822 list_for_each_entry_rcu(ptype, head, list) {
5823 if (ptype->type != type || !ptype->callbacks.gro_complete)
5824 continue;
5825
5826 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5827 ipv6_gro_complete, inet_gro_complete,
5828 skb, 0);
5829 break;
5830 }
5831 rcu_read_unlock();
5832
5833 if (err) {
5834 WARN_ON(&ptype->list == head);
5835 kfree_skb(skb);
5836 return NET_RX_SUCCESS;
5837 }
5838
5839out:
5840 gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count);
5841 return NET_RX_SUCCESS;
5842}
5843
5844static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5845 bool flush_old)
5846{
5847 struct list_head *head = &napi->gro_hash[index].list;
5848 struct sk_buff *skb, *p;
5849
5850 list_for_each_entry_safe_reverse(skb, p, head, list) {
5851 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5852 return;
5853 skb_list_del_init(skb);
5854 napi_gro_complete(napi, skb);
5855 napi->gro_hash[index].count--;
5856 }
5857
5858 if (!napi->gro_hash[index].count)
5859 __clear_bit(index, &napi->gro_bitmask);
5860}
5861
5862/* napi->gro_hash[].list contains packets ordered by age.
5863 * youngest packets at the head of it.
5864 * Complete skbs in reverse order to reduce latencies.
5865 */
5866void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5867{
5868 unsigned long bitmask = napi->gro_bitmask;
5869 unsigned int i, base = ~0U;
5870
5871 while ((i = ffs(bitmask)) != 0) {
5872 bitmask >>= i;
5873 base += i;
5874 __napi_gro_flush_chain(napi, base, flush_old);
5875 }
5876}
5877EXPORT_SYMBOL(napi_gro_flush);
5878
5879static struct list_head *gro_list_prepare(struct napi_struct *napi,
5880 struct sk_buff *skb)
5881{
5882 unsigned int maclen = skb->dev->hard_header_len;
5883 u32 hash = skb_get_hash_raw(skb);
5884 struct list_head *head;
5885 struct sk_buff *p;
5886
5887 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5888 list_for_each_entry(p, head, list) {
5889 unsigned long diffs;
5890
5891 NAPI_GRO_CB(p)->flush = 0;
5892
5893 if (hash != skb_get_hash_raw(p)) {
5894 NAPI_GRO_CB(p)->same_flow = 0;
5895 continue;
5896 }
5897
5898 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5899 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5900 if (skb_vlan_tag_present(p))
5901 diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5902 diffs |= skb_metadata_dst_cmp(p, skb);
5903 diffs |= skb_metadata_differs(p, skb);
5904 if (maclen == ETH_HLEN)
5905 diffs |= compare_ether_header(skb_mac_header(p),
5906 skb_mac_header(skb));
5907 else if (!diffs)
5908 diffs = memcmp(skb_mac_header(p),
5909 skb_mac_header(skb),
5910 maclen);
5911 NAPI_GRO_CB(p)->same_flow = !diffs;
5912 }
5913
5914 return head;
5915}
5916
5917static void skb_gro_reset_offset(struct sk_buff *skb)
5918{
5919 const struct skb_shared_info *pinfo = skb_shinfo(skb);
5920 const skb_frag_t *frag0 = &pinfo->frags[0];
5921
5922 NAPI_GRO_CB(skb)->data_offset = 0;
5923 NAPI_GRO_CB(skb)->frag0 = NULL;
5924 NAPI_GRO_CB(skb)->frag0_len = 0;
5925
5926 if (!skb_headlen(skb) && pinfo->nr_frags &&
5927 !PageHighMem(skb_frag_page(frag0)) &&
5928 (!NET_IP_ALIGN || !(skb_frag_off(frag0) & 3))) {
5929 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5930 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5931 skb_frag_size(frag0),
5932 skb->end - skb->tail);
5933 }
5934}
5935
5936static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5937{
5938 struct skb_shared_info *pinfo = skb_shinfo(skb);
5939
5940 BUG_ON(skb->end - skb->tail < grow);
5941
5942 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5943
5944 skb->data_len -= grow;
5945 skb->tail += grow;
5946
5947 skb_frag_off_add(&pinfo->frags[0], grow);
5948 skb_frag_size_sub(&pinfo->frags[0], grow);
5949
5950 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5951 skb_frag_unref(skb, 0);
5952 memmove(pinfo->frags, pinfo->frags + 1,
5953 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5954 }
5955}
5956
5957static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
5958{
5959 struct sk_buff *oldest;
5960
5961 oldest = list_last_entry(head, struct sk_buff, list);
5962
5963 /* We are called with head length >= MAX_GRO_SKBS, so this is
5964 * impossible.
5965 */
5966 if (WARN_ON_ONCE(!oldest))
5967 return;
5968
5969 /* Do not adjust napi->gro_hash[].count, caller is adding a new
5970 * SKB to the chain.
5971 */
5972 skb_list_del_init(oldest);
5973 napi_gro_complete(napi, oldest);
5974}
5975
5976static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5977{
5978 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5979 struct list_head *head = &offload_base;
5980 struct packet_offload *ptype;
5981 __be16 type = skb->protocol;
5982 struct list_head *gro_head;
5983 struct sk_buff *pp = NULL;
5984 enum gro_result ret;
5985 int same_flow;
5986 int grow;
5987
5988 if (netif_elide_gro(skb->dev))
5989 goto normal;
5990
5991 gro_head = gro_list_prepare(napi, skb);
5992
5993 rcu_read_lock();
5994 list_for_each_entry_rcu(ptype, head, list) {
5995 if (ptype->type != type || !ptype->callbacks.gro_receive)
5996 continue;
5997
5998 skb_set_network_header(skb, skb_gro_offset(skb));
5999 skb_reset_mac_len(skb);
6000 NAPI_GRO_CB(skb)->same_flow = 0;
6001 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
6002 NAPI_GRO_CB(skb)->free = 0;
6003 NAPI_GRO_CB(skb)->encap_mark = 0;
6004 NAPI_GRO_CB(skb)->recursion_counter = 0;
6005 NAPI_GRO_CB(skb)->is_fou = 0;
6006 NAPI_GRO_CB(skb)->is_atomic = 1;
6007 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
6008
6009 /* Setup for GRO checksum validation */
6010 switch (skb->ip_summed) {
6011 case CHECKSUM_COMPLETE:
6012 NAPI_GRO_CB(skb)->csum = skb->csum;
6013 NAPI_GRO_CB(skb)->csum_valid = 1;
6014 NAPI_GRO_CB(skb)->csum_cnt = 0;
6015 break;
6016 case CHECKSUM_UNNECESSARY:
6017 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
6018 NAPI_GRO_CB(skb)->csum_valid = 0;
6019 break;
6020 default:
6021 NAPI_GRO_CB(skb)->csum_cnt = 0;
6022 NAPI_GRO_CB(skb)->csum_valid = 0;
6023 }
6024
6025 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
6026 ipv6_gro_receive, inet_gro_receive,
6027 gro_head, skb);
6028 break;
6029 }
6030 rcu_read_unlock();
6031
6032 if (&ptype->list == head)
6033 goto normal;
6034
6035 if (PTR_ERR(pp) == -EINPROGRESS) {
6036 ret = GRO_CONSUMED;
6037 goto ok;
6038 }
6039
6040 same_flow = NAPI_GRO_CB(skb)->same_flow;
6041 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
6042
6043 if (pp) {
6044 skb_list_del_init(pp);
6045 napi_gro_complete(napi, pp);
6046 napi->gro_hash[hash].count--;
6047 }
6048
6049 if (same_flow)
6050 goto ok;
6051
6052 if (NAPI_GRO_CB(skb)->flush)
6053 goto normal;
6054
6055 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
6056 gro_flush_oldest(napi, gro_head);
6057 } else {
6058 napi->gro_hash[hash].count++;
6059 }
6060 NAPI_GRO_CB(skb)->count = 1;
6061 NAPI_GRO_CB(skb)->age = jiffies;
6062 NAPI_GRO_CB(skb)->last = skb;
6063 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
6064 list_add(&skb->list, gro_head);
6065 ret = GRO_HELD;
6066
6067pull:
6068 grow = skb_gro_offset(skb) - skb_headlen(skb);
6069 if (grow > 0)
6070 gro_pull_from_frag0(skb, grow);
6071ok:
6072 if (napi->gro_hash[hash].count) {
6073 if (!test_bit(hash, &napi->gro_bitmask))
6074 __set_bit(hash, &napi->gro_bitmask);
6075 } else if (test_bit(hash, &napi->gro_bitmask)) {
6076 __clear_bit(hash, &napi->gro_bitmask);
6077 }
6078
6079 return ret;
6080
6081normal:
6082 ret = GRO_NORMAL;
6083 goto pull;
6084}
6085
6086struct packet_offload *gro_find_receive_by_type(__be16 type)
6087{
6088 struct list_head *offload_head = &offload_base;
6089 struct packet_offload *ptype;
6090
6091 list_for_each_entry_rcu(ptype, offload_head, list) {
6092 if (ptype->type != type || !ptype->callbacks.gro_receive)
6093 continue;
6094 return ptype;
6095 }
6096 return NULL;
6097}
6098EXPORT_SYMBOL(gro_find_receive_by_type);
6099
6100struct packet_offload *gro_find_complete_by_type(__be16 type)
6101{
6102 struct list_head *offload_head = &offload_base;
6103 struct packet_offload *ptype;
6104
6105 list_for_each_entry_rcu(ptype, offload_head, list) {
6106 if (ptype->type != type || !ptype->callbacks.gro_complete)
6107 continue;
6108 return ptype;
6109 }
6110 return NULL;
6111}
6112EXPORT_SYMBOL(gro_find_complete_by_type);
6113
6114static gro_result_t napi_skb_finish(struct napi_struct *napi,
6115 struct sk_buff *skb,
6116 gro_result_t ret)
6117{
6118 switch (ret) {
6119 case GRO_NORMAL:
6120 gro_normal_one(napi, skb, 1);
6121 break;
6122
6123 case GRO_MERGED_FREE:
6124 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6125 napi_skb_free_stolen_head(skb);
6126 else
6127 __kfree_skb_defer(skb);
6128 break;
6129
6130 case GRO_HELD:
6131 case GRO_MERGED:
6132 case GRO_CONSUMED:
6133 break;
6134 }
6135
6136 return ret;
6137}
6138
6139gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6140{
6141 gro_result_t ret;
6142
6143 skb_mark_napi_id(skb, napi);
6144 trace_napi_gro_receive_entry(skb);
6145
6146 skb_gro_reset_offset(skb);
6147
6148 ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6149 trace_napi_gro_receive_exit(ret);
6150
6151 return ret;
6152}
6153EXPORT_SYMBOL(napi_gro_receive);
6154
6155static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6156{
6157 if (unlikely(skb->pfmemalloc)) {
6158 consume_skb(skb);
6159 return;
6160 }
6161 __skb_pull(skb, skb_headlen(skb));
6162 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
6163 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6164 __vlan_hwaccel_clear_tag(skb);
6165 skb->dev = napi->dev;
6166 skb->skb_iif = 0;
6167
6168 /* eth_type_trans() assumes pkt_type is PACKET_HOST */
6169 skb->pkt_type = PACKET_HOST;
6170
6171 skb->encapsulation = 0;
6172 skb_shinfo(skb)->gso_type = 0;
6173 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6174 skb_ext_reset(skb);
6175
6176 napi->skb = skb;
6177}
6178
6179struct sk_buff *napi_get_frags(struct napi_struct *napi)
6180{
6181 struct sk_buff *skb = napi->skb;
6182
6183 if (!skb) {
6184 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6185 if (skb) {
6186 napi->skb = skb;
6187 skb_mark_napi_id(skb, napi);
6188 }
6189 }
6190 return skb;
6191}
6192EXPORT_SYMBOL(napi_get_frags);
6193
6194static gro_result_t napi_frags_finish(struct napi_struct *napi,
6195 struct sk_buff *skb,
6196 gro_result_t ret)
6197{
6198 switch (ret) {
6199 case GRO_NORMAL:
6200 case GRO_HELD:
6201 __skb_push(skb, ETH_HLEN);
6202 skb->protocol = eth_type_trans(skb, skb->dev);
6203 if (ret == GRO_NORMAL)
6204 gro_normal_one(napi, skb, 1);
6205 break;
6206
6207 case GRO_MERGED_FREE:
6208 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6209 napi_skb_free_stolen_head(skb);
6210 else
6211 napi_reuse_skb(napi, skb);
6212 break;
6213
6214 case GRO_MERGED:
6215 case GRO_CONSUMED:
6216 break;
6217 }
6218
6219 return ret;
6220}
6221
6222/* Upper GRO stack assumes network header starts at gro_offset=0
6223 * Drivers could call both napi_gro_frags() and napi_gro_receive()
6224 * We copy ethernet header into skb->data to have a common layout.
6225 */
6226static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6227{
6228 struct sk_buff *skb = napi->skb;
6229 const struct ethhdr *eth;
6230 unsigned int hlen = sizeof(*eth);
6231
6232 napi->skb = NULL;
6233
6234 skb_reset_mac_header(skb);
6235 skb_gro_reset_offset(skb);
6236
6237 if (unlikely(skb_gro_header_hard(skb, hlen))) {
6238 eth = skb_gro_header_slow(skb, hlen, 0);
6239 if (unlikely(!eth)) {
6240 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6241 __func__, napi->dev->name);
6242 napi_reuse_skb(napi, skb);
6243 return NULL;
6244 }
6245 } else {
6246 eth = (const struct ethhdr *)skb->data;
6247 gro_pull_from_frag0(skb, hlen);
6248 NAPI_GRO_CB(skb)->frag0 += hlen;
6249 NAPI_GRO_CB(skb)->frag0_len -= hlen;
6250 }
6251 __skb_pull(skb, hlen);
6252
6253 /*
6254 * This works because the only protocols we care about don't require
6255 * special handling.
6256 * We'll fix it up properly in napi_frags_finish()
6257 */
6258 skb->protocol = eth->h_proto;
6259
6260 return skb;
6261}
6262
6263gro_result_t napi_gro_frags(struct napi_struct *napi)
6264{
6265 gro_result_t ret;
6266 struct sk_buff *skb = napi_frags_skb(napi);
6267
6268 trace_napi_gro_frags_entry(skb);
6269
6270 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6271 trace_napi_gro_frags_exit(ret);
6272
6273 return ret;
6274}
6275EXPORT_SYMBOL(napi_gro_frags);
6276
6277/* Compute the checksum from gro_offset and return the folded value
6278 * after adding in any pseudo checksum.
6279 */
6280__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6281{
6282 __wsum wsum;
6283 __sum16 sum;
6284
6285 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6286
6287 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6288 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6289 /* See comments in __skb_checksum_complete(). */
6290 if (likely(!sum)) {
6291 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6292 !skb->csum_complete_sw)
6293 netdev_rx_csum_fault(skb->dev, skb);
6294 }
6295
6296 NAPI_GRO_CB(skb)->csum = wsum;
6297 NAPI_GRO_CB(skb)->csum_valid = 1;
6298
6299 return sum;
6300}
6301EXPORT_SYMBOL(__skb_gro_checksum_complete);
6302
6303static void net_rps_send_ipi(struct softnet_data *remsd)
6304{
6305#ifdef CONFIG_RPS
6306 while (remsd) {
6307 struct softnet_data *next = remsd->rps_ipi_next;
6308
6309 if (cpu_online(remsd->cpu))
6310 smp_call_function_single_async(remsd->cpu, &remsd->csd);
6311 remsd = next;
6312 }
6313#endif
6314}
6315
6316/*
6317 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6318 * Note: called with local irq disabled, but exits with local irq enabled.
6319 */
6320static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6321{
6322#ifdef CONFIG_RPS
6323 struct softnet_data *remsd = sd->rps_ipi_list;
6324
6325 if (remsd) {
6326 sd->rps_ipi_list = NULL;
6327
6328 local_irq_enable();
6329
6330 /* Send pending IPI's to kick RPS processing on remote cpus. */
6331 net_rps_send_ipi(remsd);
6332 } else
6333#endif
6334 local_irq_enable();
6335}
6336
6337static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6338{
6339#ifdef CONFIG_RPS
6340 return sd->rps_ipi_list != NULL;
6341#else
6342 return false;
6343#endif
6344}
6345
6346static int process_backlog(struct napi_struct *napi, int quota)
6347{
6348 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6349 bool again = true;
6350 int work = 0;
6351
6352 /* Check if we have pending ipi, its better to send them now,
6353 * not waiting net_rx_action() end.
6354 */
6355 if (sd_has_rps_ipi_waiting(sd)) {
6356 local_irq_disable();
6357 net_rps_action_and_irq_enable(sd);
6358 }
6359
6360 napi->weight = dev_rx_weight;
6361 while (again) {
6362 struct sk_buff *skb;
6363
6364 while ((skb = __skb_dequeue(&sd->process_queue))) {
6365 rcu_read_lock();
6366 __netif_receive_skb(skb);
6367 rcu_read_unlock();
6368 input_queue_head_incr(sd);
6369 if (++work >= quota)
6370 return work;
6371
6372 }
6373
6374 local_irq_disable();
6375 rps_lock(sd);
6376 if (skb_queue_empty(&sd->input_pkt_queue)) {
6377 /*
6378 * Inline a custom version of __napi_complete().
6379 * only current cpu owns and manipulates this napi,
6380 * and NAPI_STATE_SCHED is the only possible flag set
6381 * on backlog.
6382 * We can use a plain write instead of clear_bit(),
6383 * and we dont need an smp_mb() memory barrier.
6384 */
6385 napi->state = 0;
6386 again = false;
6387 } else {
6388 skb_queue_splice_tail_init(&sd->input_pkt_queue,
6389 &sd->process_queue);
6390 }
6391 rps_unlock(sd);
6392 local_irq_enable();
6393 }
6394
6395 return work;
6396}
6397
6398/**
6399 * __napi_schedule - schedule for receive
6400 * @n: entry to schedule
6401 *
6402 * The entry's receive function will be scheduled to run.
6403 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6404 */
6405void __napi_schedule(struct napi_struct *n)
6406{
6407 unsigned long flags;
6408
6409 local_irq_save(flags);
6410 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6411 local_irq_restore(flags);
6412}
6413EXPORT_SYMBOL(__napi_schedule);
6414
6415/**
6416 * napi_schedule_prep - check if napi can be scheduled
6417 * @n: napi context
6418 *
6419 * Test if NAPI routine is already running, and if not mark
6420 * it as running. This is used as a condition variable to
6421 * insure only one NAPI poll instance runs. We also make
6422 * sure there is no pending NAPI disable.
6423 */
6424bool napi_schedule_prep(struct napi_struct *n)
6425{
6426 unsigned long val, new;
6427
6428 do {
6429 val = READ_ONCE(n->state);
6430 if (unlikely(val & NAPIF_STATE_DISABLE))
6431 return false;
6432 new = val | NAPIF_STATE_SCHED;
6433
6434 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6435 * This was suggested by Alexander Duyck, as compiler
6436 * emits better code than :
6437 * if (val & NAPIF_STATE_SCHED)
6438 * new |= NAPIF_STATE_MISSED;
6439 */
6440 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6441 NAPIF_STATE_MISSED;
6442 } while (cmpxchg(&n->state, val, new) != val);
6443
6444 return !(val & NAPIF_STATE_SCHED);
6445}
6446EXPORT_SYMBOL(napi_schedule_prep);
6447
6448/**
6449 * __napi_schedule_irqoff - schedule for receive
6450 * @n: entry to schedule
6451 *
6452 * Variant of __napi_schedule() assuming hard irqs are masked
6453 */
6454void __napi_schedule_irqoff(struct napi_struct *n)
6455{
6456 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6457}
6458EXPORT_SYMBOL(__napi_schedule_irqoff);
6459
6460bool napi_complete_done(struct napi_struct *n, int work_done)
6461{
6462 unsigned long flags, val, new, timeout = 0;
6463 bool ret = true;
6464
6465 /*
6466 * 1) Don't let napi dequeue from the cpu poll list
6467 * just in case its running on a different cpu.
6468 * 2) If we are busy polling, do nothing here, we have
6469 * the guarantee we will be called later.
6470 */
6471 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6472 NAPIF_STATE_IN_BUSY_POLL)))
6473 return false;
6474
6475 if (work_done) {
6476 if (n->gro_bitmask)
6477 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6478 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6479 }
6480 if (n->defer_hard_irqs_count > 0) {
6481 n->defer_hard_irqs_count--;
6482 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6483 if (timeout)
6484 ret = false;
6485 }
6486 if (n->gro_bitmask) {
6487 /* When the NAPI instance uses a timeout and keeps postponing
6488 * it, we need to bound somehow the time packets are kept in
6489 * the GRO layer
6490 */
6491 napi_gro_flush(n, !!timeout);
6492 }
6493
6494 gro_normal_list(n);
6495
6496 if (unlikely(!list_empty(&n->poll_list))) {
6497 /* If n->poll_list is not empty, we need to mask irqs */
6498 local_irq_save(flags);
6499 list_del_init(&n->poll_list);
6500 local_irq_restore(flags);
6501 }
6502
6503 do {
6504 val = READ_ONCE(n->state);
6505
6506 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6507
6508 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6509 NAPIF_STATE_SCHED_THREADED |
6510 NAPIF_STATE_PREFER_BUSY_POLL);
6511
6512 /* If STATE_MISSED was set, leave STATE_SCHED set,
6513 * because we will call napi->poll() one more time.
6514 * This C code was suggested by Alexander Duyck to help gcc.
6515 */
6516 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6517 NAPIF_STATE_SCHED;
6518 } while (cmpxchg(&n->state, val, new) != val);
6519
6520 if (unlikely(val & NAPIF_STATE_MISSED)) {
6521 __napi_schedule(n);
6522 return false;
6523 }
6524
6525 if (timeout)
6526 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6527 HRTIMER_MODE_REL_PINNED);
6528 return ret;
6529}
6530EXPORT_SYMBOL(napi_complete_done);
6531
6532/* must be called under rcu_read_lock(), as we dont take a reference */
6533static struct napi_struct *napi_by_id(unsigned int napi_id)
6534{
6535 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6536 struct napi_struct *napi;
6537
6538 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6539 if (napi->napi_id == napi_id)
6540 return napi;
6541
6542 return NULL;
6543}
6544
6545#if defined(CONFIG_NET_RX_BUSY_POLL)
6546
6547static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6548{
6549 if (!skip_schedule) {
6550 gro_normal_list(napi);
6551 __napi_schedule(napi);
6552 return;
6553 }
6554
6555 if (napi->gro_bitmask) {
6556 /* flush too old packets
6557 * If HZ < 1000, flush all packets.
6558 */
6559 napi_gro_flush(napi, HZ >= 1000);
6560 }
6561
6562 gro_normal_list(napi);
6563 clear_bit(NAPI_STATE_SCHED, &napi->state);
6564}
6565
6566static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6567 u16 budget)
6568{
6569 bool skip_schedule = false;
6570 unsigned long timeout;
6571 int rc;
6572
6573 /* Busy polling means there is a high chance device driver hard irq
6574 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6575 * set in napi_schedule_prep().
6576 * Since we are about to call napi->poll() once more, we can safely
6577 * clear NAPI_STATE_MISSED.
6578 *
6579 * Note: x86 could use a single "lock and ..." instruction
6580 * to perform these two clear_bit()
6581 */
6582 clear_bit(NAPI_STATE_MISSED, &napi->state);
6583 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6584
6585 local_bh_disable();
6586
6587 if (prefer_busy_poll) {
6588 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6589 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6590 if (napi->defer_hard_irqs_count && timeout) {
6591 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6592 skip_schedule = true;
6593 }
6594 }
6595
6596 /* All we really want here is to re-enable device interrupts.
6597 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6598 */
6599 rc = napi->poll(napi, budget);
6600 /* We can't gro_normal_list() here, because napi->poll() might have
6601 * rearmed the napi (napi_complete_done()) in which case it could
6602 * already be running on another CPU.
6603 */
6604 trace_napi_poll(napi, rc, budget);
6605 netpoll_poll_unlock(have_poll_lock);
6606 if (rc == budget)
6607 __busy_poll_stop(napi, skip_schedule);
6608 local_bh_enable();
6609}
6610
6611void napi_busy_loop(unsigned int napi_id,
6612 bool (*loop_end)(void *, unsigned long),
6613 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6614{
6615 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6616 int (*napi_poll)(struct napi_struct *napi, int budget);
6617 void *have_poll_lock = NULL;
6618 struct napi_struct *napi;
6619
6620restart:
6621 napi_poll = NULL;
6622
6623 rcu_read_lock();
6624
6625 napi = napi_by_id(napi_id);
6626 if (!napi)
6627 goto out;
6628
6629 preempt_disable();
6630 for (;;) {
6631 int work = 0;
6632
6633 local_bh_disable();
6634 if (!napi_poll) {
6635 unsigned long val = READ_ONCE(napi->state);
6636
6637 /* If multiple threads are competing for this napi,
6638 * we avoid dirtying napi->state as much as we can.
6639 */
6640 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6641 NAPIF_STATE_IN_BUSY_POLL)) {
6642 if (prefer_busy_poll)
6643 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6644 goto count;
6645 }
6646 if (cmpxchg(&napi->state, val,
6647 val | NAPIF_STATE_IN_BUSY_POLL |
6648 NAPIF_STATE_SCHED) != val) {
6649 if (prefer_busy_poll)
6650 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6651 goto count;
6652 }
6653 have_poll_lock = netpoll_poll_lock(napi);
6654 napi_poll = napi->poll;
6655 }
6656 work = napi_poll(napi, budget);
6657 trace_napi_poll(napi, work, budget);
6658 gro_normal_list(napi);
6659count:
6660 if (work > 0)
6661 __NET_ADD_STATS(dev_net(napi->dev),
6662 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6663 local_bh_enable();
6664
6665 if (!loop_end || loop_end(loop_end_arg, start_time))
6666 break;
6667
6668 if (unlikely(need_resched())) {
6669 if (napi_poll)
6670 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6671 preempt_enable();
6672 rcu_read_unlock();
6673 cond_resched();
6674 if (loop_end(loop_end_arg, start_time))
6675 return;
6676 goto restart;
6677 }
6678 cpu_relax();
6679 }
6680 if (napi_poll)
6681 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6682 preempt_enable();
6683out:
6684 rcu_read_unlock();
6685}
6686EXPORT_SYMBOL(napi_busy_loop);
6687
6688#endif /* CONFIG_NET_RX_BUSY_POLL */
6689
6690static void napi_hash_add(struct napi_struct *napi)
6691{
6692 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6693 return;
6694
6695 spin_lock(&napi_hash_lock);
6696
6697 /* 0..NR_CPUS range is reserved for sender_cpu use */
6698 do {
6699 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6700 napi_gen_id = MIN_NAPI_ID;
6701 } while (napi_by_id(napi_gen_id));
6702 napi->napi_id = napi_gen_id;
6703
6704 hlist_add_head_rcu(&napi->napi_hash_node,
6705 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6706
6707 spin_unlock(&napi_hash_lock);
6708}
6709
6710/* Warning : caller is responsible to make sure rcu grace period
6711 * is respected before freeing memory containing @napi
6712 */
6713static void napi_hash_del(struct napi_struct *napi)
6714{
6715 spin_lock(&napi_hash_lock);
6716
6717 hlist_del_init_rcu(&napi->napi_hash_node);
6718
6719 spin_unlock(&napi_hash_lock);
6720}
6721
6722static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6723{
6724 struct napi_struct *napi;
6725
6726 napi = container_of(timer, struct napi_struct, timer);
6727
6728 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6729 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6730 */
6731 if (!napi_disable_pending(napi) &&
6732 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6733 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6734 __napi_schedule_irqoff(napi);
6735 }
6736
6737 return HRTIMER_NORESTART;
6738}
6739
6740static void init_gro_hash(struct napi_struct *napi)
6741{
6742 int i;
6743
6744 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6745 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6746 napi->gro_hash[i].count = 0;
6747 }
6748 napi->gro_bitmask = 0;
6749}
6750
6751int dev_set_threaded(struct net_device *dev, bool threaded)
6752{
6753 struct napi_struct *napi;
6754 int err = 0;
6755
6756 if (dev->threaded == threaded)
6757 return 0;
6758
6759 if (threaded) {
6760 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6761 if (!napi->thread) {
6762 err = napi_kthread_create(napi);
6763 if (err) {
6764 threaded = false;
6765 break;
6766 }
6767 }
6768 }
6769 }
6770
6771 dev->threaded = threaded;
6772
6773 /* Make sure kthread is created before THREADED bit
6774 * is set.
6775 */
6776 smp_mb__before_atomic();
6777
6778 /* Setting/unsetting threaded mode on a napi might not immediately
6779 * take effect, if the current napi instance is actively being
6780 * polled. In this case, the switch between threaded mode and
6781 * softirq mode will happen in the next round of napi_schedule().
6782 * This should not cause hiccups/stalls to the live traffic.
6783 */
6784 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6785 if (threaded)
6786 set_bit(NAPI_STATE_THREADED, &napi->state);
6787 else
6788 clear_bit(NAPI_STATE_THREADED, &napi->state);
6789 }
6790
6791 return err;
6792}
6793
6794void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6795 int (*poll)(struct napi_struct *, int), int weight)
6796{
6797 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6798 return;
6799
6800 INIT_LIST_HEAD(&napi->poll_list);
6801 INIT_HLIST_NODE(&napi->napi_hash_node);
6802 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6803 napi->timer.function = napi_watchdog;
6804 init_gro_hash(napi);
6805 napi->skb = NULL;
6806 INIT_LIST_HEAD(&napi->rx_list);
6807 napi->rx_count = 0;
6808 napi->poll = poll;
6809 if (weight > NAPI_POLL_WEIGHT)
6810 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6811 weight);
6812 napi->weight = weight;
6813 napi->dev = dev;
6814#ifdef CONFIG_NETPOLL
6815 napi->poll_owner = -1;
6816#endif
6817 set_bit(NAPI_STATE_SCHED, &napi->state);
6818 set_bit(NAPI_STATE_NPSVC, &napi->state);
6819 list_add_rcu(&napi->dev_list, &dev->napi_list);
6820 napi_hash_add(napi);
6821 /* Create kthread for this napi if dev->threaded is set.
6822 * Clear dev->threaded if kthread creation failed so that
6823 * threaded mode will not be enabled in napi_enable().
6824 */
6825 if (dev->threaded && napi_kthread_create(napi))
6826 dev->threaded = 0;
6827}
6828EXPORT_SYMBOL(netif_napi_add);
6829
6830void napi_disable(struct napi_struct *n)
6831{
6832 might_sleep();
6833 set_bit(NAPI_STATE_DISABLE, &n->state);
6834
6835 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6836 msleep(1);
6837 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6838 msleep(1);
6839
6840 hrtimer_cancel(&n->timer);
6841
6842 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
6843 clear_bit(NAPI_STATE_DISABLE, &n->state);
6844 clear_bit(NAPI_STATE_THREADED, &n->state);
6845}
6846EXPORT_SYMBOL(napi_disable);
6847
6848/**
6849 * napi_enable - enable NAPI scheduling
6850 * @n: NAPI context
6851 *
6852 * Resume NAPI from being scheduled on this context.
6853 * Must be paired with napi_disable.
6854 */
6855void napi_enable(struct napi_struct *n)
6856{
6857 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
6858 smp_mb__before_atomic();
6859 clear_bit(NAPI_STATE_SCHED, &n->state);
6860 clear_bit(NAPI_STATE_NPSVC, &n->state);
6861 if (n->dev->threaded && n->thread)
6862 set_bit(NAPI_STATE_THREADED, &n->state);
6863}
6864EXPORT_SYMBOL(napi_enable);
6865
6866static void flush_gro_hash(struct napi_struct *napi)
6867{
6868 int i;
6869
6870 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6871 struct sk_buff *skb, *n;
6872
6873 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6874 kfree_skb(skb);
6875 napi->gro_hash[i].count = 0;
6876 }
6877}
6878
6879/* Must be called in process context */
6880void __netif_napi_del(struct napi_struct *napi)
6881{
6882 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6883 return;
6884
6885 napi_hash_del(napi);
6886 list_del_rcu(&napi->dev_list);
6887 napi_free_frags(napi);
6888
6889 flush_gro_hash(napi);
6890 napi->gro_bitmask = 0;
6891
6892 if (napi->thread) {
6893 kthread_stop(napi->thread);
6894 napi->thread = NULL;
6895 }
6896}
6897EXPORT_SYMBOL(__netif_napi_del);
6898
6899static int __napi_poll(struct napi_struct *n, bool *repoll)
6900{
6901 int work, weight;
6902
6903 weight = n->weight;
6904
6905 /* This NAPI_STATE_SCHED test is for avoiding a race
6906 * with netpoll's poll_napi(). Only the entity which
6907 * obtains the lock and sees NAPI_STATE_SCHED set will
6908 * actually make the ->poll() call. Therefore we avoid
6909 * accidentally calling ->poll() when NAPI is not scheduled.
6910 */
6911 work = 0;
6912 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6913 work = n->poll(n, weight);
6914 trace_napi_poll(n, work, weight);
6915 }
6916
6917 if (unlikely(work > weight))
6918 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6919 n->poll, work, weight);
6920
6921 if (likely(work < weight))
6922 return work;
6923
6924 /* Drivers must not modify the NAPI state if they
6925 * consume the entire weight. In such cases this code
6926 * still "owns" the NAPI instance and therefore can
6927 * move the instance around on the list at-will.
6928 */
6929 if (unlikely(napi_disable_pending(n))) {
6930 napi_complete(n);
6931 return work;
6932 }
6933
6934 /* The NAPI context has more processing work, but busy-polling
6935 * is preferred. Exit early.
6936 */
6937 if (napi_prefer_busy_poll(n)) {
6938 if (napi_complete_done(n, work)) {
6939 /* If timeout is not set, we need to make sure
6940 * that the NAPI is re-scheduled.
6941 */
6942 napi_schedule(n);
6943 }
6944 return work;
6945 }
6946
6947 if (n->gro_bitmask) {
6948 /* flush too old packets
6949 * If HZ < 1000, flush all packets.
6950 */
6951 napi_gro_flush(n, HZ >= 1000);
6952 }
6953
6954 gro_normal_list(n);
6955
6956 /* Some drivers may have called napi_schedule
6957 * prior to exhausting their budget.
6958 */
6959 if (unlikely(!list_empty(&n->poll_list))) {
6960 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6961 n->dev ? n->dev->name : "backlog");
6962 return work;
6963 }
6964
6965 *repoll = true;
6966
6967 return work;
6968}
6969
6970static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6971{
6972 bool do_repoll = false;
6973 void *have;
6974 int work;
6975
6976 list_del_init(&n->poll_list);
6977
6978 have = netpoll_poll_lock(n);
6979
6980 work = __napi_poll(n, &do_repoll);
6981
6982 if (do_repoll)
6983 list_add_tail(&n->poll_list, repoll);
6984
6985 netpoll_poll_unlock(have);
6986
6987 return work;
6988}
6989
6990static int napi_thread_wait(struct napi_struct *napi)
6991{
6992 bool woken = false;
6993
6994 set_current_state(TASK_INTERRUPTIBLE);
6995
6996 while (!kthread_should_stop()) {
6997 /* Testing SCHED_THREADED bit here to make sure the current
6998 * kthread owns this napi and could poll on this napi.
6999 * Testing SCHED bit is not enough because SCHED bit might be
7000 * set by some other busy poll thread or by napi_disable().
7001 */
7002 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
7003 WARN_ON(!list_empty(&napi->poll_list));
7004 __set_current_state(TASK_RUNNING);
7005 return 0;
7006 }
7007
7008 schedule();
7009 /* woken being true indicates this thread owns this napi. */
7010 woken = true;
7011 set_current_state(TASK_INTERRUPTIBLE);
7012 }
7013 __set_current_state(TASK_RUNNING);
7014
7015 return -1;
7016}
7017
7018static int napi_threaded_poll(void *data)
7019{
7020 struct napi_struct *napi = data;
7021 void *have;
7022
7023 while (!napi_thread_wait(napi)) {
7024 for (;;) {
7025 bool repoll = false;
7026
7027 local_bh_disable();
7028
7029 have = netpoll_poll_lock(napi);
7030 __napi_poll(napi, &repoll);
7031 netpoll_poll_unlock(have);
7032
7033 local_bh_enable();
7034
7035 if (!repoll)
7036 break;
7037
7038 cond_resched();
7039 }
7040 }
7041 return 0;
7042}
7043
7044static __latent_entropy void net_rx_action(struct softirq_action *h)
7045{
7046 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7047 unsigned long time_limit = jiffies +
7048 usecs_to_jiffies(netdev_budget_usecs);
7049 int budget = netdev_budget;
7050 LIST_HEAD(list);
7051 LIST_HEAD(repoll);
7052
7053 local_irq_disable();
7054 list_splice_init(&sd->poll_list, &list);
7055 local_irq_enable();
7056
7057 for (;;) {
7058 struct napi_struct *n;
7059
7060 if (list_empty(&list)) {
7061 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
7062 return;
7063 break;
7064 }
7065
7066 n = list_first_entry(&list, struct napi_struct, poll_list);
7067 budget -= napi_poll(n, &repoll);
7068
7069 /* If softirq window is exhausted then punt.
7070 * Allow this to run for 2 jiffies since which will allow
7071 * an average latency of 1.5/HZ.
7072 */
7073 if (unlikely(budget <= 0 ||
7074 time_after_eq(jiffies, time_limit))) {
7075 sd->time_squeeze++;
7076 break;
7077 }
7078 }
7079
7080 local_irq_disable();
7081
7082 list_splice_tail_init(&sd->poll_list, &list);
7083 list_splice_tail(&repoll, &list);
7084 list_splice(&list, &sd->poll_list);
7085 if (!list_empty(&sd->poll_list))
7086 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
7087
7088 net_rps_action_and_irq_enable(sd);
7089}
7090
7091struct netdev_adjacent {
7092 struct net_device *dev;
7093
7094 /* upper master flag, there can only be one master device per list */
7095 bool master;
7096
7097 /* lookup ignore flag */
7098 bool ignore;
7099
7100 /* counter for the number of times this device was added to us */
7101 u16 ref_nr;
7102
7103 /* private field for the users */
7104 void *private;
7105
7106 struct list_head list;
7107 struct rcu_head rcu;
7108};
7109
7110static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7111 struct list_head *adj_list)
7112{
7113 struct netdev_adjacent *adj;
7114
7115 list_for_each_entry(adj, adj_list, list) {
7116 if (adj->dev == adj_dev)
7117 return adj;
7118 }
7119 return NULL;
7120}
7121
7122static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7123 struct netdev_nested_priv *priv)
7124{
7125 struct net_device *dev = (struct net_device *)priv->data;
7126
7127 return upper_dev == dev;
7128}
7129
7130/**
7131 * netdev_has_upper_dev - Check if device is linked to an upper device
7132 * @dev: device
7133 * @upper_dev: upper device to check
7134 *
7135 * Find out if a device is linked to specified upper device and return true
7136 * in case it is. Note that this checks only immediate upper device,
7137 * not through a complete stack of devices. The caller must hold the RTNL lock.
7138 */
7139bool netdev_has_upper_dev(struct net_device *dev,
7140 struct net_device *upper_dev)
7141{
7142 struct netdev_nested_priv priv = {
7143 .data = (void *)upper_dev,
7144 };
7145
7146 ASSERT_RTNL();
7147
7148 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7149 &priv);
7150}
7151EXPORT_SYMBOL(netdev_has_upper_dev);
7152
7153/**
7154 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7155 * @dev: device
7156 * @upper_dev: upper device to check
7157 *
7158 * Find out if a device is linked to specified upper device and return true
7159 * in case it is. Note that this checks the entire upper device chain.
7160 * The caller must hold rcu lock.
7161 */
7162
7163bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7164 struct net_device *upper_dev)
7165{
7166 struct netdev_nested_priv priv = {
7167 .data = (void *)upper_dev,
7168 };
7169
7170 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7171 &priv);
7172}
7173EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7174
7175/**
7176 * netdev_has_any_upper_dev - Check if device is linked to some device
7177 * @dev: device
7178 *
7179 * Find out if a device is linked to an upper device and return true in case
7180 * it is. The caller must hold the RTNL lock.
7181 */
7182bool netdev_has_any_upper_dev(struct net_device *dev)
7183{
7184 ASSERT_RTNL();
7185
7186 return !list_empty(&dev->adj_list.upper);
7187}
7188EXPORT_SYMBOL(netdev_has_any_upper_dev);
7189
7190/**
7191 * netdev_master_upper_dev_get - Get master upper device
7192 * @dev: device
7193 *
7194 * Find a master upper device and return pointer to it or NULL in case
7195 * it's not there. The caller must hold the RTNL lock.
7196 */
7197struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7198{
7199 struct netdev_adjacent *upper;
7200
7201 ASSERT_RTNL();
7202
7203 if (list_empty(&dev->adj_list.upper))
7204 return NULL;
7205
7206 upper = list_first_entry(&dev->adj_list.upper,
7207 struct netdev_adjacent, list);
7208 if (likely(upper->master))
7209 return upper->dev;
7210 return NULL;
7211}
7212EXPORT_SYMBOL(netdev_master_upper_dev_get);
7213
7214static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7215{
7216 struct netdev_adjacent *upper;
7217
7218 ASSERT_RTNL();
7219
7220 if (list_empty(&dev->adj_list.upper))
7221 return NULL;
7222
7223 upper = list_first_entry(&dev->adj_list.upper,
7224 struct netdev_adjacent, list);
7225 if (likely(upper->master) && !upper->ignore)
7226 return upper->dev;
7227 return NULL;
7228}
7229
7230/**
7231 * netdev_has_any_lower_dev - Check if device is linked to some device
7232 * @dev: device
7233 *
7234 * Find out if a device is linked to a lower device and return true in case
7235 * it is. The caller must hold the RTNL lock.
7236 */
7237static bool netdev_has_any_lower_dev(struct net_device *dev)
7238{
7239 ASSERT_RTNL();
7240
7241 return !list_empty(&dev->adj_list.lower);
7242}
7243
7244void *netdev_adjacent_get_private(struct list_head *adj_list)
7245{
7246 struct netdev_adjacent *adj;
7247
7248 adj = list_entry(adj_list, struct netdev_adjacent, list);
7249
7250 return adj->private;
7251}
7252EXPORT_SYMBOL(netdev_adjacent_get_private);
7253
7254/**
7255 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7256 * @dev: device
7257 * @iter: list_head ** of the current position
7258 *
7259 * Gets the next device from the dev's upper list, starting from iter
7260 * position. The caller must hold RCU read lock.
7261 */
7262struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7263 struct list_head **iter)
7264{
7265 struct netdev_adjacent *upper;
7266
7267 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7268
7269 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7270
7271 if (&upper->list == &dev->adj_list.upper)
7272 return NULL;
7273
7274 *iter = &upper->list;
7275
7276 return upper->dev;
7277}
7278EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7279
7280static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7281 struct list_head **iter,
7282 bool *ignore)
7283{
7284 struct netdev_adjacent *upper;
7285
7286 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7287
7288 if (&upper->list == &dev->adj_list.upper)
7289 return NULL;
7290
7291 *iter = &upper->list;
7292 *ignore = upper->ignore;
7293
7294 return upper->dev;
7295}
7296
7297static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7298 struct list_head **iter)
7299{
7300 struct netdev_adjacent *upper;
7301
7302 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7303
7304 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7305
7306 if (&upper->list == &dev->adj_list.upper)
7307 return NULL;
7308
7309 *iter = &upper->list;
7310
7311 return upper->dev;
7312}
7313
7314static int __netdev_walk_all_upper_dev(struct net_device *dev,
7315 int (*fn)(struct net_device *dev,
7316 struct netdev_nested_priv *priv),
7317 struct netdev_nested_priv *priv)
7318{
7319 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7320 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7321 int ret, cur = 0;
7322 bool ignore;
7323
7324 now = dev;
7325 iter = &dev->adj_list.upper;
7326
7327 while (1) {
7328 if (now != dev) {
7329 ret = fn(now, priv);
7330 if (ret)
7331 return ret;
7332 }
7333
7334 next = NULL;
7335 while (1) {
7336 udev = __netdev_next_upper_dev(now, &iter, &ignore);
7337 if (!udev)
7338 break;
7339 if (ignore)
7340 continue;
7341
7342 next = udev;
7343 niter = &udev->adj_list.upper;
7344 dev_stack[cur] = now;
7345 iter_stack[cur++] = iter;
7346 break;
7347 }
7348
7349 if (!next) {
7350 if (!cur)
7351 return 0;
7352 next = dev_stack[--cur];
7353 niter = iter_stack[cur];
7354 }
7355
7356 now = next;
7357 iter = niter;
7358 }
7359
7360 return 0;
7361}
7362
7363int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7364 int (*fn)(struct net_device *dev,
7365 struct netdev_nested_priv *priv),
7366 struct netdev_nested_priv *priv)
7367{
7368 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7369 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7370 int ret, cur = 0;
7371
7372 now = dev;
7373 iter = &dev->adj_list.upper;
7374
7375 while (1) {
7376 if (now != dev) {
7377 ret = fn(now, priv);
7378 if (ret)
7379 return ret;
7380 }
7381
7382 next = NULL;
7383 while (1) {
7384 udev = netdev_next_upper_dev_rcu(now, &iter);
7385 if (!udev)
7386 break;
7387
7388 next = udev;
7389 niter = &udev->adj_list.upper;
7390 dev_stack[cur] = now;
7391 iter_stack[cur++] = iter;
7392 break;
7393 }
7394
7395 if (!next) {
7396 if (!cur)
7397 return 0;
7398 next = dev_stack[--cur];
7399 niter = iter_stack[cur];
7400 }
7401
7402 now = next;
7403 iter = niter;
7404 }
7405
7406 return 0;
7407}
7408EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7409
7410static bool __netdev_has_upper_dev(struct net_device *dev,
7411 struct net_device *upper_dev)
7412{
7413 struct netdev_nested_priv priv = {
7414 .flags = 0,
7415 .data = (void *)upper_dev,
7416 };
7417
7418 ASSERT_RTNL();
7419
7420 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7421 &priv);
7422}
7423
7424/**
7425 * netdev_lower_get_next_private - Get the next ->private from the
7426 * lower neighbour list
7427 * @dev: device
7428 * @iter: list_head ** of the current position
7429 *
7430 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7431 * list, starting from iter position. The caller must hold either hold the
7432 * RTNL lock or its own locking that guarantees that the neighbour lower
7433 * list will remain unchanged.
7434 */
7435void *netdev_lower_get_next_private(struct net_device *dev,
7436 struct list_head **iter)
7437{
7438 struct netdev_adjacent *lower;
7439
7440 lower = list_entry(*iter, struct netdev_adjacent, list);
7441
7442 if (&lower->list == &dev->adj_list.lower)
7443 return NULL;
7444
7445 *iter = lower->list.next;
7446
7447 return lower->private;
7448}
7449EXPORT_SYMBOL(netdev_lower_get_next_private);
7450
7451/**
7452 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7453 * lower neighbour list, RCU
7454 * variant
7455 * @dev: device
7456 * @iter: list_head ** of the current position
7457 *
7458 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7459 * list, starting from iter position. The caller must hold RCU read lock.
7460 */
7461void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7462 struct list_head **iter)
7463{
7464 struct netdev_adjacent *lower;
7465
7466 WARN_ON_ONCE(!rcu_read_lock_held());
7467
7468 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7469
7470 if (&lower->list == &dev->adj_list.lower)
7471 return NULL;
7472
7473 *iter = &lower->list;
7474
7475 return lower->private;
7476}
7477EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7478
7479/**
7480 * netdev_lower_get_next - Get the next device from the lower neighbour
7481 * list
7482 * @dev: device
7483 * @iter: list_head ** of the current position
7484 *
7485 * Gets the next netdev_adjacent from the dev's lower neighbour
7486 * list, starting from iter position. The caller must hold RTNL lock or
7487 * its own locking that guarantees that the neighbour lower
7488 * list will remain unchanged.
7489 */
7490void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7491{
7492 struct netdev_adjacent *lower;
7493
7494 lower = list_entry(*iter, struct netdev_adjacent, list);
7495
7496 if (&lower->list == &dev->adj_list.lower)
7497 return NULL;
7498
7499 *iter = lower->list.next;
7500
7501 return lower->dev;
7502}
7503EXPORT_SYMBOL(netdev_lower_get_next);
7504
7505static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7506 struct list_head **iter)
7507{
7508 struct netdev_adjacent *lower;
7509
7510 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7511
7512 if (&lower->list == &dev->adj_list.lower)
7513 return NULL;
7514
7515 *iter = &lower->list;
7516
7517 return lower->dev;
7518}
7519
7520static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7521 struct list_head **iter,
7522 bool *ignore)
7523{
7524 struct netdev_adjacent *lower;
7525
7526 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7527
7528 if (&lower->list == &dev->adj_list.lower)
7529 return NULL;
7530
7531 *iter = &lower->list;
7532 *ignore = lower->ignore;
7533
7534 return lower->dev;
7535}
7536
7537int netdev_walk_all_lower_dev(struct net_device *dev,
7538 int (*fn)(struct net_device *dev,
7539 struct netdev_nested_priv *priv),
7540 struct netdev_nested_priv *priv)
7541{
7542 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7543 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7544 int ret, cur = 0;
7545
7546 now = dev;
7547 iter = &dev->adj_list.lower;
7548
7549 while (1) {
7550 if (now != dev) {
7551 ret = fn(now, priv);
7552 if (ret)
7553 return ret;
7554 }
7555
7556 next = NULL;
7557 while (1) {
7558 ldev = netdev_next_lower_dev(now, &iter);
7559 if (!ldev)
7560 break;
7561
7562 next = ldev;
7563 niter = &ldev->adj_list.lower;
7564 dev_stack[cur] = now;
7565 iter_stack[cur++] = iter;
7566 break;
7567 }
7568
7569 if (!next) {
7570 if (!cur)
7571 return 0;
7572 next = dev_stack[--cur];
7573 niter = iter_stack[cur];
7574 }
7575
7576 now = next;
7577 iter = niter;
7578 }
7579
7580 return 0;
7581}
7582EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7583
7584static int __netdev_walk_all_lower_dev(struct net_device *dev,
7585 int (*fn)(struct net_device *dev,
7586 struct netdev_nested_priv *priv),
7587 struct netdev_nested_priv *priv)
7588{
7589 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7590 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7591 int ret, cur = 0;
7592 bool ignore;
7593
7594 now = dev;
7595 iter = &dev->adj_list.lower;
7596
7597 while (1) {
7598 if (now != dev) {
7599 ret = fn(now, priv);
7600 if (ret)
7601 return ret;
7602 }
7603
7604 next = NULL;
7605 while (1) {
7606 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7607 if (!ldev)
7608 break;
7609 if (ignore)
7610 continue;
7611
7612 next = ldev;
7613 niter = &ldev->adj_list.lower;
7614 dev_stack[cur] = now;
7615 iter_stack[cur++] = iter;
7616 break;
7617 }
7618
7619 if (!next) {
7620 if (!cur)
7621 return 0;
7622 next = dev_stack[--cur];
7623 niter = iter_stack[cur];
7624 }
7625
7626 now = next;
7627 iter = niter;
7628 }
7629
7630 return 0;
7631}
7632
7633struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7634 struct list_head **iter)
7635{
7636 struct netdev_adjacent *lower;
7637
7638 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7639 if (&lower->list == &dev->adj_list.lower)
7640 return NULL;
7641
7642 *iter = &lower->list;
7643
7644 return lower->dev;
7645}
7646EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7647
7648static u8 __netdev_upper_depth(struct net_device *dev)
7649{
7650 struct net_device *udev;
7651 struct list_head *iter;
7652 u8 max_depth = 0;
7653 bool ignore;
7654
7655 for (iter = &dev->adj_list.upper,
7656 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7657 udev;
7658 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7659 if (ignore)
7660 continue;
7661 if (max_depth < udev->upper_level)
7662 max_depth = udev->upper_level;
7663 }
7664
7665 return max_depth;
7666}
7667
7668static u8 __netdev_lower_depth(struct net_device *dev)
7669{
7670 struct net_device *ldev;
7671 struct list_head *iter;
7672 u8 max_depth = 0;
7673 bool ignore;
7674
7675 for (iter = &dev->adj_list.lower,
7676 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7677 ldev;
7678 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7679 if (ignore)
7680 continue;
7681 if (max_depth < ldev->lower_level)
7682 max_depth = ldev->lower_level;
7683 }
7684
7685 return max_depth;
7686}
7687
7688static int __netdev_update_upper_level(struct net_device *dev,
7689 struct netdev_nested_priv *__unused)
7690{
7691 dev->upper_level = __netdev_upper_depth(dev) + 1;
7692 return 0;
7693}
7694
7695static int __netdev_update_lower_level(struct net_device *dev,
7696 struct netdev_nested_priv *priv)
7697{
7698 dev->lower_level = __netdev_lower_depth(dev) + 1;
7699
7700#ifdef CONFIG_LOCKDEP
7701 if (!priv)
7702 return 0;
7703
7704 if (priv->flags & NESTED_SYNC_IMM)
7705 dev->nested_level = dev->lower_level - 1;
7706 if (priv->flags & NESTED_SYNC_TODO)
7707 net_unlink_todo(dev);
7708#endif
7709 return 0;
7710}
7711
7712int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7713 int (*fn)(struct net_device *dev,
7714 struct netdev_nested_priv *priv),
7715 struct netdev_nested_priv *priv)
7716{
7717 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7718 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7719 int ret, cur = 0;
7720
7721 now = dev;
7722 iter = &dev->adj_list.lower;
7723
7724 while (1) {
7725 if (now != dev) {
7726 ret = fn(now, priv);
7727 if (ret)
7728 return ret;
7729 }
7730
7731 next = NULL;
7732 while (1) {
7733 ldev = netdev_next_lower_dev_rcu(now, &iter);
7734 if (!ldev)
7735 break;
7736
7737 next = ldev;
7738 niter = &ldev->adj_list.lower;
7739 dev_stack[cur] = now;
7740 iter_stack[cur++] = iter;
7741 break;
7742 }
7743
7744 if (!next) {
7745 if (!cur)
7746 return 0;
7747 next = dev_stack[--cur];
7748 niter = iter_stack[cur];
7749 }
7750
7751 now = next;
7752 iter = niter;
7753 }
7754
7755 return 0;
7756}
7757EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7758
7759/**
7760 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7761 * lower neighbour list, RCU
7762 * variant
7763 * @dev: device
7764 *
7765 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7766 * list. The caller must hold RCU read lock.
7767 */
7768void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7769{
7770 struct netdev_adjacent *lower;
7771
7772 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7773 struct netdev_adjacent, list);
7774 if (lower)
7775 return lower->private;
7776 return NULL;
7777}
7778EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7779
7780/**
7781 * netdev_master_upper_dev_get_rcu - Get master upper device
7782 * @dev: device
7783 *
7784 * Find a master upper device and return pointer to it or NULL in case
7785 * it's not there. The caller must hold the RCU read lock.
7786 */
7787struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7788{
7789 struct netdev_adjacent *upper;
7790
7791 upper = list_first_or_null_rcu(&dev->adj_list.upper,
7792 struct netdev_adjacent, list);
7793 if (upper && likely(upper->master))
7794 return upper->dev;
7795 return NULL;
7796}
7797EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7798
7799static int netdev_adjacent_sysfs_add(struct net_device *dev,
7800 struct net_device *adj_dev,
7801 struct list_head *dev_list)
7802{
7803 char linkname[IFNAMSIZ+7];
7804
7805 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7806 "upper_%s" : "lower_%s", adj_dev->name);
7807 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7808 linkname);
7809}
7810static void netdev_adjacent_sysfs_del(struct net_device *dev,
7811 char *name,
7812 struct list_head *dev_list)
7813{
7814 char linkname[IFNAMSIZ+7];
7815
7816 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7817 "upper_%s" : "lower_%s", name);
7818 sysfs_remove_link(&(dev->dev.kobj), linkname);
7819}
7820
7821static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7822 struct net_device *adj_dev,
7823 struct list_head *dev_list)
7824{
7825 return (dev_list == &dev->adj_list.upper ||
7826 dev_list == &dev->adj_list.lower) &&
7827 net_eq(dev_net(dev), dev_net(adj_dev));
7828}
7829
7830static int __netdev_adjacent_dev_insert(struct net_device *dev,
7831 struct net_device *adj_dev,
7832 struct list_head *dev_list,
7833 void *private, bool master)
7834{
7835 struct netdev_adjacent *adj;
7836 int ret;
7837
7838 adj = __netdev_find_adj(adj_dev, dev_list);
7839
7840 if (adj) {
7841 adj->ref_nr += 1;
7842 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7843 dev->name, adj_dev->name, adj->ref_nr);
7844
7845 return 0;
7846 }
7847
7848 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7849 if (!adj)
7850 return -ENOMEM;
7851
7852 adj->dev = adj_dev;
7853 adj->master = master;
7854 adj->ref_nr = 1;
7855 adj->private = private;
7856 adj->ignore = false;
7857 dev_hold(adj_dev);
7858
7859 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7860 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7861
7862 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7863 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7864 if (ret)
7865 goto free_adj;
7866 }
7867
7868 /* Ensure that master link is always the first item in list. */
7869 if (master) {
7870 ret = sysfs_create_link(&(dev->dev.kobj),
7871 &(adj_dev->dev.kobj), "master");
7872 if (ret)
7873 goto remove_symlinks;
7874
7875 list_add_rcu(&adj->list, dev_list);
7876 } else {
7877 list_add_tail_rcu(&adj->list, dev_list);
7878 }
7879
7880 return 0;
7881
7882remove_symlinks:
7883 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7884 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7885free_adj:
7886 kfree(adj);
7887 dev_put(adj_dev);
7888
7889 return ret;
7890}
7891
7892static void __netdev_adjacent_dev_remove(struct net_device *dev,
7893 struct net_device *adj_dev,
7894 u16 ref_nr,
7895 struct list_head *dev_list)
7896{
7897 struct netdev_adjacent *adj;
7898
7899 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7900 dev->name, adj_dev->name, ref_nr);
7901
7902 adj = __netdev_find_adj(adj_dev, dev_list);
7903
7904 if (!adj) {
7905 pr_err("Adjacency does not exist for device %s from %s\n",
7906 dev->name, adj_dev->name);
7907 WARN_ON(1);
7908 return;
7909 }
7910
7911 if (adj->ref_nr > ref_nr) {
7912 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7913 dev->name, adj_dev->name, ref_nr,
7914 adj->ref_nr - ref_nr);
7915 adj->ref_nr -= ref_nr;
7916 return;
7917 }
7918
7919 if (adj->master)
7920 sysfs_remove_link(&(dev->dev.kobj), "master");
7921
7922 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7923 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7924
7925 list_del_rcu(&adj->list);
7926 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7927 adj_dev->name, dev->name, adj_dev->name);
7928 dev_put(adj_dev);
7929 kfree_rcu(adj, rcu);
7930}
7931
7932static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7933 struct net_device *upper_dev,
7934 struct list_head *up_list,
7935 struct list_head *down_list,
7936 void *private, bool master)
7937{
7938 int ret;
7939
7940 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7941 private, master);
7942 if (ret)
7943 return ret;
7944
7945 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7946 private, false);
7947 if (ret) {
7948 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7949 return ret;
7950 }
7951
7952 return 0;
7953}
7954
7955static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7956 struct net_device *upper_dev,
7957 u16 ref_nr,
7958 struct list_head *up_list,
7959 struct list_head *down_list)
7960{
7961 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7962 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7963}
7964
7965static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7966 struct net_device *upper_dev,
7967 void *private, bool master)
7968{
7969 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7970 &dev->adj_list.upper,
7971 &upper_dev->adj_list.lower,
7972 private, master);
7973}
7974
7975static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7976 struct net_device *upper_dev)
7977{
7978 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7979 &dev->adj_list.upper,
7980 &upper_dev->adj_list.lower);
7981}
7982
7983static int __netdev_upper_dev_link(struct net_device *dev,
7984 struct net_device *upper_dev, bool master,
7985 void *upper_priv, void *upper_info,
7986 struct netdev_nested_priv *priv,
7987 struct netlink_ext_ack *extack)
7988{
7989 struct netdev_notifier_changeupper_info changeupper_info = {
7990 .info = {
7991 .dev = dev,
7992 .extack = extack,
7993 },
7994 .upper_dev = upper_dev,
7995 .master = master,
7996 .linking = true,
7997 .upper_info = upper_info,
7998 };
7999 struct net_device *master_dev;
8000 int ret = 0;
8001
8002 ASSERT_RTNL();
8003
8004 if (dev == upper_dev)
8005 return -EBUSY;
8006
8007 /* To prevent loops, check if dev is not upper device to upper_dev. */
8008 if (__netdev_has_upper_dev(upper_dev, dev))
8009 return -EBUSY;
8010
8011 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8012 return -EMLINK;
8013
8014 if (!master) {
8015 if (__netdev_has_upper_dev(dev, upper_dev))
8016 return -EEXIST;
8017 } else {
8018 master_dev = __netdev_master_upper_dev_get(dev);
8019 if (master_dev)
8020 return master_dev == upper_dev ? -EEXIST : -EBUSY;
8021 }
8022
8023 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8024 &changeupper_info.info);
8025 ret = notifier_to_errno(ret);
8026 if (ret)
8027 return ret;
8028
8029 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8030 master);
8031 if (ret)
8032 return ret;
8033
8034 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8035 &changeupper_info.info);
8036 ret = notifier_to_errno(ret);
8037 if (ret)
8038 goto rollback;
8039
8040 __netdev_update_upper_level(dev, NULL);
8041 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8042
8043 __netdev_update_lower_level(upper_dev, priv);
8044 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8045 priv);
8046
8047 return 0;
8048
8049rollback:
8050 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8051
8052 return ret;
8053}
8054
8055/**
8056 * netdev_upper_dev_link - Add a link to the upper device
8057 * @dev: device
8058 * @upper_dev: new upper device
8059 * @extack: netlink extended ack
8060 *
8061 * Adds a link to device which is upper to this one. The caller must hold
8062 * the RTNL lock. On a failure a negative errno code is returned.
8063 * On success the reference counts are adjusted and the function
8064 * returns zero.
8065 */
8066int netdev_upper_dev_link(struct net_device *dev,
8067 struct net_device *upper_dev,
8068 struct netlink_ext_ack *extack)
8069{
8070 struct netdev_nested_priv priv = {
8071 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8072 .data = NULL,
8073 };
8074
8075 return __netdev_upper_dev_link(dev, upper_dev, false,
8076 NULL, NULL, &priv, extack);
8077}
8078EXPORT_SYMBOL(netdev_upper_dev_link);
8079
8080/**
8081 * netdev_master_upper_dev_link - Add a master link to the upper device
8082 * @dev: device
8083 * @upper_dev: new upper device
8084 * @upper_priv: upper device private
8085 * @upper_info: upper info to be passed down via notifier
8086 * @extack: netlink extended ack
8087 *
8088 * Adds a link to device which is upper to this one. In this case, only
8089 * one master upper device can be linked, although other non-master devices
8090 * might be linked as well. The caller must hold the RTNL lock.
8091 * On a failure a negative errno code is returned. On success the reference
8092 * counts are adjusted and the function returns zero.
8093 */
8094int netdev_master_upper_dev_link(struct net_device *dev,
8095 struct net_device *upper_dev,
8096 void *upper_priv, void *upper_info,
8097 struct netlink_ext_ack *extack)
8098{
8099 struct netdev_nested_priv priv = {
8100 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8101 .data = NULL,
8102 };
8103
8104 return __netdev_upper_dev_link(dev, upper_dev, true,
8105 upper_priv, upper_info, &priv, extack);
8106}
8107EXPORT_SYMBOL(netdev_master_upper_dev_link);
8108
8109static void __netdev_upper_dev_unlink(struct net_device *dev,
8110 struct net_device *upper_dev,
8111 struct netdev_nested_priv *priv)
8112{
8113 struct netdev_notifier_changeupper_info changeupper_info = {
8114 .info = {
8115 .dev = dev,
8116 },
8117 .upper_dev = upper_dev,
8118 .linking = false,
8119 };
8120
8121 ASSERT_RTNL();
8122
8123 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8124
8125 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8126 &changeupper_info.info);
8127
8128 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8129
8130 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8131 &changeupper_info.info);
8132
8133 __netdev_update_upper_level(dev, NULL);
8134 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8135
8136 __netdev_update_lower_level(upper_dev, priv);
8137 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8138 priv);
8139}
8140
8141/**
8142 * netdev_upper_dev_unlink - Removes a link to upper device
8143 * @dev: device
8144 * @upper_dev: new upper device
8145 *
8146 * Removes a link to device which is upper to this one. The caller must hold
8147 * the RTNL lock.
8148 */
8149void netdev_upper_dev_unlink(struct net_device *dev,
8150 struct net_device *upper_dev)
8151{
8152 struct netdev_nested_priv priv = {
8153 .flags = NESTED_SYNC_TODO,
8154 .data = NULL,
8155 };
8156
8157 __netdev_upper_dev_unlink(dev, upper_dev, &priv);
8158}
8159EXPORT_SYMBOL(netdev_upper_dev_unlink);
8160
8161static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8162 struct net_device *lower_dev,
8163 bool val)
8164{
8165 struct netdev_adjacent *adj;
8166
8167 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8168 if (adj)
8169 adj->ignore = val;
8170
8171 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8172 if (adj)
8173 adj->ignore = val;
8174}
8175
8176static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8177 struct net_device *lower_dev)
8178{
8179 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8180}
8181
8182static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8183 struct net_device *lower_dev)
8184{
8185 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8186}
8187
8188int netdev_adjacent_change_prepare(struct net_device *old_dev,
8189 struct net_device *new_dev,
8190 struct net_device *dev,
8191 struct netlink_ext_ack *extack)
8192{
8193 struct netdev_nested_priv priv = {
8194 .flags = 0,
8195 .data = NULL,
8196 };
8197 int err;
8198
8199 if (!new_dev)
8200 return 0;
8201
8202 if (old_dev && new_dev != old_dev)
8203 netdev_adjacent_dev_disable(dev, old_dev);
8204 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8205 extack);
8206 if (err) {
8207 if (old_dev && new_dev != old_dev)
8208 netdev_adjacent_dev_enable(dev, old_dev);
8209 return err;
8210 }
8211
8212 return 0;
8213}
8214EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8215
8216void netdev_adjacent_change_commit(struct net_device *old_dev,
8217 struct net_device *new_dev,
8218 struct net_device *dev)
8219{
8220 struct netdev_nested_priv priv = {
8221 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8222 .data = NULL,
8223 };
8224
8225 if (!new_dev || !old_dev)
8226 return;
8227
8228 if (new_dev == old_dev)
8229 return;
8230
8231 netdev_adjacent_dev_enable(dev, old_dev);
8232 __netdev_upper_dev_unlink(old_dev, dev, &priv);
8233}
8234EXPORT_SYMBOL(netdev_adjacent_change_commit);
8235
8236void netdev_adjacent_change_abort(struct net_device *old_dev,
8237 struct net_device *new_dev,
8238 struct net_device *dev)
8239{
8240 struct netdev_nested_priv priv = {
8241 .flags = 0,
8242 .data = NULL,
8243 };
8244
8245 if (!new_dev)
8246 return;
8247
8248 if (old_dev && new_dev != old_dev)
8249 netdev_adjacent_dev_enable(dev, old_dev);
8250
8251 __netdev_upper_dev_unlink(new_dev, dev, &priv);
8252}
8253EXPORT_SYMBOL(netdev_adjacent_change_abort);
8254
8255/**
8256 * netdev_bonding_info_change - Dispatch event about slave change
8257 * @dev: device
8258 * @bonding_info: info to dispatch
8259 *
8260 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8261 * The caller must hold the RTNL lock.
8262 */
8263void netdev_bonding_info_change(struct net_device *dev,
8264 struct netdev_bonding_info *bonding_info)
8265{
8266 struct netdev_notifier_bonding_info info = {
8267 .info.dev = dev,
8268 };
8269
8270 memcpy(&info.bonding_info, bonding_info,
8271 sizeof(struct netdev_bonding_info));
8272 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8273 &info.info);
8274}
8275EXPORT_SYMBOL(netdev_bonding_info_change);
8276
8277/**
8278 * netdev_get_xmit_slave - Get the xmit slave of master device
8279 * @dev: device
8280 * @skb: The packet
8281 * @all_slaves: assume all the slaves are active
8282 *
8283 * The reference counters are not incremented so the caller must be
8284 * careful with locks. The caller must hold RCU lock.
8285 * %NULL is returned if no slave is found.
8286 */
8287
8288struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8289 struct sk_buff *skb,
8290 bool all_slaves)
8291{
8292 const struct net_device_ops *ops = dev->netdev_ops;
8293
8294 if (!ops->ndo_get_xmit_slave)
8295 return NULL;
8296 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8297}
8298EXPORT_SYMBOL(netdev_get_xmit_slave);
8299
8300static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8301 struct sock *sk)
8302{
8303 const struct net_device_ops *ops = dev->netdev_ops;
8304
8305 if (!ops->ndo_sk_get_lower_dev)
8306 return NULL;
8307 return ops->ndo_sk_get_lower_dev(dev, sk);
8308}
8309
8310/**
8311 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8312 * @dev: device
8313 * @sk: the socket
8314 *
8315 * %NULL is returned if no lower device is found.
8316 */
8317
8318struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8319 struct sock *sk)
8320{
8321 struct net_device *lower;
8322
8323 lower = netdev_sk_get_lower_dev(dev, sk);
8324 while (lower) {
8325 dev = lower;
8326 lower = netdev_sk_get_lower_dev(dev, sk);
8327 }
8328
8329 return dev;
8330}
8331EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8332
8333static void netdev_adjacent_add_links(struct net_device *dev)
8334{
8335 struct netdev_adjacent *iter;
8336
8337 struct net *net = dev_net(dev);
8338
8339 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8340 if (!net_eq(net, dev_net(iter->dev)))
8341 continue;
8342 netdev_adjacent_sysfs_add(iter->dev, dev,
8343 &iter->dev->adj_list.lower);
8344 netdev_adjacent_sysfs_add(dev, iter->dev,
8345 &dev->adj_list.upper);
8346 }
8347
8348 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8349 if (!net_eq(net, dev_net(iter->dev)))
8350 continue;
8351 netdev_adjacent_sysfs_add(iter->dev, dev,
8352 &iter->dev->adj_list.upper);
8353 netdev_adjacent_sysfs_add(dev, iter->dev,
8354 &dev->adj_list.lower);
8355 }
8356}
8357
8358static void netdev_adjacent_del_links(struct net_device *dev)
8359{
8360 struct netdev_adjacent *iter;
8361
8362 struct net *net = dev_net(dev);
8363
8364 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8365 if (!net_eq(net, dev_net(iter->dev)))
8366 continue;
8367 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8368 &iter->dev->adj_list.lower);
8369 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8370 &dev->adj_list.upper);
8371 }
8372
8373 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8374 if (!net_eq(net, dev_net(iter->dev)))
8375 continue;
8376 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8377 &iter->dev->adj_list.upper);
8378 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8379 &dev->adj_list.lower);
8380 }
8381}
8382
8383void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8384{
8385 struct netdev_adjacent *iter;
8386
8387 struct net *net = dev_net(dev);
8388
8389 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8390 if (!net_eq(net, dev_net(iter->dev)))
8391 continue;
8392 netdev_adjacent_sysfs_del(iter->dev, oldname,
8393 &iter->dev->adj_list.lower);
8394 netdev_adjacent_sysfs_add(iter->dev, dev,
8395 &iter->dev->adj_list.lower);
8396 }
8397
8398 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8399 if (!net_eq(net, dev_net(iter->dev)))
8400 continue;
8401 netdev_adjacent_sysfs_del(iter->dev, oldname,
8402 &iter->dev->adj_list.upper);
8403 netdev_adjacent_sysfs_add(iter->dev, dev,
8404 &iter->dev->adj_list.upper);
8405 }
8406}
8407
8408void *netdev_lower_dev_get_private(struct net_device *dev,
8409 struct net_device *lower_dev)
8410{
8411 struct netdev_adjacent *lower;
8412
8413 if (!lower_dev)
8414 return NULL;
8415 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8416 if (!lower)
8417 return NULL;
8418
8419 return lower->private;
8420}
8421EXPORT_SYMBOL(netdev_lower_dev_get_private);
8422
8423
8424/**
8425 * netdev_lower_state_changed - Dispatch event about lower device state change
8426 * @lower_dev: device
8427 * @lower_state_info: state to dispatch
8428 *
8429 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8430 * The caller must hold the RTNL lock.
8431 */
8432void netdev_lower_state_changed(struct net_device *lower_dev,
8433 void *lower_state_info)
8434{
8435 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8436 .info.dev = lower_dev,
8437 };
8438
8439 ASSERT_RTNL();
8440 changelowerstate_info.lower_state_info = lower_state_info;
8441 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8442 &changelowerstate_info.info);
8443}
8444EXPORT_SYMBOL(netdev_lower_state_changed);
8445
8446static void dev_change_rx_flags(struct net_device *dev, int flags)
8447{
8448 const struct net_device_ops *ops = dev->netdev_ops;
8449
8450 if (ops->ndo_change_rx_flags)
8451 ops->ndo_change_rx_flags(dev, flags);
8452}
8453
8454static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8455{
8456 unsigned int old_flags = dev->flags;
8457 kuid_t uid;
8458 kgid_t gid;
8459
8460 ASSERT_RTNL();
8461
8462 dev->flags |= IFF_PROMISC;
8463 dev->promiscuity += inc;
8464 if (dev->promiscuity == 0) {
8465 /*
8466 * Avoid overflow.
8467 * If inc causes overflow, untouch promisc and return error.
8468 */
8469 if (inc < 0)
8470 dev->flags &= ~IFF_PROMISC;
8471 else {
8472 dev->promiscuity -= inc;
8473 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8474 dev->name);
8475 return -EOVERFLOW;
8476 }
8477 }
8478 if (dev->flags != old_flags) {
8479 pr_info("device %s %s promiscuous mode\n",
8480 dev->name,
8481 dev->flags & IFF_PROMISC ? "entered" : "left");
8482 if (audit_enabled) {
8483 current_uid_gid(&uid, &gid);
8484 audit_log(audit_context(), GFP_ATOMIC,
8485 AUDIT_ANOM_PROMISCUOUS,
8486 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8487 dev->name, (dev->flags & IFF_PROMISC),
8488 (old_flags & IFF_PROMISC),
8489 from_kuid(&init_user_ns, audit_get_loginuid(current)),
8490 from_kuid(&init_user_ns, uid),
8491 from_kgid(&init_user_ns, gid),
8492 audit_get_sessionid(current));
8493 }
8494
8495 dev_change_rx_flags(dev, IFF_PROMISC);
8496 }
8497 if (notify)
8498 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8499 return 0;
8500}
8501
8502/**
8503 * dev_set_promiscuity - update promiscuity count on a device
8504 * @dev: device
8505 * @inc: modifier
8506 *
8507 * Add or remove promiscuity from a device. While the count in the device
8508 * remains above zero the interface remains promiscuous. Once it hits zero
8509 * the device reverts back to normal filtering operation. A negative inc
8510 * value is used to drop promiscuity on the device.
8511 * Return 0 if successful or a negative errno code on error.
8512 */
8513int dev_set_promiscuity(struct net_device *dev, int inc)
8514{
8515 unsigned int old_flags = dev->flags;
8516 int err;
8517
8518 err = __dev_set_promiscuity(dev, inc, true);
8519 if (err < 0)
8520 return err;
8521 if (dev->flags != old_flags)
8522 dev_set_rx_mode(dev);
8523 return err;
8524}
8525EXPORT_SYMBOL(dev_set_promiscuity);
8526
8527static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8528{
8529 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8530
8531 ASSERT_RTNL();
8532
8533 dev->flags |= IFF_ALLMULTI;
8534 dev->allmulti += inc;
8535 if (dev->allmulti == 0) {
8536 /*
8537 * Avoid overflow.
8538 * If inc causes overflow, untouch allmulti and return error.
8539 */
8540 if (inc < 0)
8541 dev->flags &= ~IFF_ALLMULTI;
8542 else {
8543 dev->allmulti -= inc;
8544 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8545 dev->name);
8546 return -EOVERFLOW;
8547 }
8548 }
8549 if (dev->flags ^ old_flags) {
8550 dev_change_rx_flags(dev, IFF_ALLMULTI);
8551 dev_set_rx_mode(dev);
8552 if (notify)
8553 __dev_notify_flags(dev, old_flags,
8554 dev->gflags ^ old_gflags);
8555 }
8556 return 0;
8557}
8558
8559/**
8560 * dev_set_allmulti - update allmulti count on a device
8561 * @dev: device
8562 * @inc: modifier
8563 *
8564 * Add or remove reception of all multicast frames to a device. While the
8565 * count in the device remains above zero the interface remains listening
8566 * to all interfaces. Once it hits zero the device reverts back to normal
8567 * filtering operation. A negative @inc value is used to drop the counter
8568 * when releasing a resource needing all multicasts.
8569 * Return 0 if successful or a negative errno code on error.
8570 */
8571
8572int dev_set_allmulti(struct net_device *dev, int inc)
8573{
8574 return __dev_set_allmulti(dev, inc, true);
8575}
8576EXPORT_SYMBOL(dev_set_allmulti);
8577
8578/*
8579 * Upload unicast and multicast address lists to device and
8580 * configure RX filtering. When the device doesn't support unicast
8581 * filtering it is put in promiscuous mode while unicast addresses
8582 * are present.
8583 */
8584void __dev_set_rx_mode(struct net_device *dev)
8585{
8586 const struct net_device_ops *ops = dev->netdev_ops;
8587
8588 /* dev_open will call this function so the list will stay sane. */
8589 if (!(dev->flags&IFF_UP))
8590 return;
8591
8592 if (!netif_device_present(dev))
8593 return;
8594
8595 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8596 /* Unicast addresses changes may only happen under the rtnl,
8597 * therefore calling __dev_set_promiscuity here is safe.
8598 */
8599 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8600 __dev_set_promiscuity(dev, 1, false);
8601 dev->uc_promisc = true;
8602 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8603 __dev_set_promiscuity(dev, -1, false);
8604 dev->uc_promisc = false;
8605 }
8606 }
8607
8608 if (ops->ndo_set_rx_mode)
8609 ops->ndo_set_rx_mode(dev);
8610}
8611
8612void dev_set_rx_mode(struct net_device *dev)
8613{
8614 netif_addr_lock_bh(dev);
8615 __dev_set_rx_mode(dev);
8616 netif_addr_unlock_bh(dev);
8617}
8618
8619/**
8620 * dev_get_flags - get flags reported to userspace
8621 * @dev: device
8622 *
8623 * Get the combination of flag bits exported through APIs to userspace.
8624 */
8625unsigned int dev_get_flags(const struct net_device *dev)
8626{
8627 unsigned int flags;
8628
8629 flags = (dev->flags & ~(IFF_PROMISC |
8630 IFF_ALLMULTI |
8631 IFF_RUNNING |
8632 IFF_LOWER_UP |
8633 IFF_DORMANT)) |
8634 (dev->gflags & (IFF_PROMISC |
8635 IFF_ALLMULTI));
8636
8637 if (netif_running(dev)) {
8638 if (netif_oper_up(dev))
8639 flags |= IFF_RUNNING;
8640 if (netif_carrier_ok(dev))
8641 flags |= IFF_LOWER_UP;
8642 if (netif_dormant(dev))
8643 flags |= IFF_DORMANT;
8644 }
8645
8646 return flags;
8647}
8648EXPORT_SYMBOL(dev_get_flags);
8649
8650int __dev_change_flags(struct net_device *dev, unsigned int flags,
8651 struct netlink_ext_ack *extack)
8652{
8653 unsigned int old_flags = dev->flags;
8654 int ret;
8655
8656 ASSERT_RTNL();
8657
8658 /*
8659 * Set the flags on our device.
8660 */
8661
8662 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8663 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8664 IFF_AUTOMEDIA)) |
8665 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8666 IFF_ALLMULTI));
8667
8668 /*
8669 * Load in the correct multicast list now the flags have changed.
8670 */
8671
8672 if ((old_flags ^ flags) & IFF_MULTICAST)
8673 dev_change_rx_flags(dev, IFF_MULTICAST);
8674
8675 dev_set_rx_mode(dev);
8676
8677 /*
8678 * Have we downed the interface. We handle IFF_UP ourselves
8679 * according to user attempts to set it, rather than blindly
8680 * setting it.
8681 */
8682
8683 ret = 0;
8684 if ((old_flags ^ flags) & IFF_UP) {
8685 if (old_flags & IFF_UP)
8686 __dev_close(dev);
8687 else
8688 ret = __dev_open(dev, extack);
8689 }
8690
8691 if ((flags ^ dev->gflags) & IFF_PROMISC) {
8692 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8693 unsigned int old_flags = dev->flags;
8694
8695 dev->gflags ^= IFF_PROMISC;
8696
8697 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8698 if (dev->flags != old_flags)
8699 dev_set_rx_mode(dev);
8700 }
8701
8702 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8703 * is important. Some (broken) drivers set IFF_PROMISC, when
8704 * IFF_ALLMULTI is requested not asking us and not reporting.
8705 */
8706 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8707 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8708
8709 dev->gflags ^= IFF_ALLMULTI;
8710 __dev_set_allmulti(dev, inc, false);
8711 }
8712
8713 return ret;
8714}
8715
8716void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8717 unsigned int gchanges)
8718{
8719 unsigned int changes = dev->flags ^ old_flags;
8720
8721 if (gchanges)
8722 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8723
8724 if (changes & IFF_UP) {
8725 if (dev->flags & IFF_UP)
8726 call_netdevice_notifiers(NETDEV_UP, dev);
8727 else
8728 call_netdevice_notifiers(NETDEV_DOWN, dev);
8729 }
8730
8731 if (dev->flags & IFF_UP &&
8732 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8733 struct netdev_notifier_change_info change_info = {
8734 .info = {
8735 .dev = dev,
8736 },
8737 .flags_changed = changes,
8738 };
8739
8740 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8741 }
8742}
8743
8744/**
8745 * dev_change_flags - change device settings
8746 * @dev: device
8747 * @flags: device state flags
8748 * @extack: netlink extended ack
8749 *
8750 * Change settings on device based state flags. The flags are
8751 * in the userspace exported format.
8752 */
8753int dev_change_flags(struct net_device *dev, unsigned int flags,
8754 struct netlink_ext_ack *extack)
8755{
8756 int ret;
8757 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8758
8759 ret = __dev_change_flags(dev, flags, extack);
8760 if (ret < 0)
8761 return ret;
8762
8763 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8764 __dev_notify_flags(dev, old_flags, changes);
8765 return ret;
8766}
8767EXPORT_SYMBOL(dev_change_flags);
8768
8769int __dev_set_mtu(struct net_device *dev, int new_mtu)
8770{
8771 const struct net_device_ops *ops = dev->netdev_ops;
8772
8773 if (ops->ndo_change_mtu)
8774 return ops->ndo_change_mtu(dev, new_mtu);
8775
8776 /* Pairs with all the lockless reads of dev->mtu in the stack */
8777 WRITE_ONCE(dev->mtu, new_mtu);
8778 return 0;
8779}
8780EXPORT_SYMBOL(__dev_set_mtu);
8781
8782int dev_validate_mtu(struct net_device *dev, int new_mtu,
8783 struct netlink_ext_ack *extack)
8784{
8785 /* MTU must be positive, and in range */
8786 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8787 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8788 return -EINVAL;
8789 }
8790
8791 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8792 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8793 return -EINVAL;
8794 }
8795 return 0;
8796}
8797
8798/**
8799 * dev_set_mtu_ext - Change maximum transfer unit
8800 * @dev: device
8801 * @new_mtu: new transfer unit
8802 * @extack: netlink extended ack
8803 *
8804 * Change the maximum transfer size of the network device.
8805 */
8806int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8807 struct netlink_ext_ack *extack)
8808{
8809 int err, orig_mtu;
8810
8811 if (new_mtu == dev->mtu)
8812 return 0;
8813
8814 err = dev_validate_mtu(dev, new_mtu, extack);
8815 if (err)
8816 return err;
8817
8818 if (!netif_device_present(dev))
8819 return -ENODEV;
8820
8821 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8822 err = notifier_to_errno(err);
8823 if (err)
8824 return err;
8825
8826 orig_mtu = dev->mtu;
8827 err = __dev_set_mtu(dev, new_mtu);
8828
8829 if (!err) {
8830 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8831 orig_mtu);
8832 err = notifier_to_errno(err);
8833 if (err) {
8834 /* setting mtu back and notifying everyone again,
8835 * so that they have a chance to revert changes.
8836 */
8837 __dev_set_mtu(dev, orig_mtu);
8838 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8839 new_mtu);
8840 }
8841 }
8842 return err;
8843}
8844
8845int dev_set_mtu(struct net_device *dev, int new_mtu)
8846{
8847 struct netlink_ext_ack extack;
8848 int err;
8849
8850 memset(&extack, 0, sizeof(extack));
8851 err = dev_set_mtu_ext(dev, new_mtu, &extack);
8852 if (err && extack._msg)
8853 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8854 return err;
8855}
8856EXPORT_SYMBOL(dev_set_mtu);
8857
8858/**
8859 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8860 * @dev: device
8861 * @new_len: new tx queue length
8862 */
8863int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8864{
8865 unsigned int orig_len = dev->tx_queue_len;
8866 int res;
8867
8868 if (new_len != (unsigned int)new_len)
8869 return -ERANGE;
8870
8871 if (new_len != orig_len) {
8872 dev->tx_queue_len = new_len;
8873 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8874 res = notifier_to_errno(res);
8875 if (res)
8876 goto err_rollback;
8877 res = dev_qdisc_change_tx_queue_len(dev);
8878 if (res)
8879 goto err_rollback;
8880 }
8881
8882 return 0;
8883
8884err_rollback:
8885 netdev_err(dev, "refused to change device tx_queue_len\n");
8886 dev->tx_queue_len = orig_len;
8887 return res;
8888}
8889
8890/**
8891 * dev_set_group - Change group this device belongs to
8892 * @dev: device
8893 * @new_group: group this device should belong to
8894 */
8895void dev_set_group(struct net_device *dev, int new_group)
8896{
8897 dev->group = new_group;
8898}
8899EXPORT_SYMBOL(dev_set_group);
8900
8901/**
8902 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8903 * @dev: device
8904 * @addr: new address
8905 * @extack: netlink extended ack
8906 */
8907int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8908 struct netlink_ext_ack *extack)
8909{
8910 struct netdev_notifier_pre_changeaddr_info info = {
8911 .info.dev = dev,
8912 .info.extack = extack,
8913 .dev_addr = addr,
8914 };
8915 int rc;
8916
8917 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8918 return notifier_to_errno(rc);
8919}
8920EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8921
8922/**
8923 * dev_set_mac_address - Change Media Access Control Address
8924 * @dev: device
8925 * @sa: new address
8926 * @extack: netlink extended ack
8927 *
8928 * Change the hardware (MAC) address of the device
8929 */
8930int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8931 struct netlink_ext_ack *extack)
8932{
8933 const struct net_device_ops *ops = dev->netdev_ops;
8934 int err;
8935
8936 if (!ops->ndo_set_mac_address)
8937 return -EOPNOTSUPP;
8938 if (sa->sa_family != dev->type)
8939 return -EINVAL;
8940 if (!netif_device_present(dev))
8941 return -ENODEV;
8942 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8943 if (err)
8944 return err;
8945 err = ops->ndo_set_mac_address(dev, sa);
8946 if (err)
8947 return err;
8948 dev->addr_assign_type = NET_ADDR_SET;
8949 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8950 add_device_randomness(dev->dev_addr, dev->addr_len);
8951 return 0;
8952}
8953EXPORT_SYMBOL(dev_set_mac_address);
8954
8955static DECLARE_RWSEM(dev_addr_sem);
8956
8957int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8958 struct netlink_ext_ack *extack)
8959{
8960 int ret;
8961
8962 down_write(&dev_addr_sem);
8963 ret = dev_set_mac_address(dev, sa, extack);
8964 up_write(&dev_addr_sem);
8965 return ret;
8966}
8967EXPORT_SYMBOL(dev_set_mac_address_user);
8968
8969int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8970{
8971 size_t size = sizeof(sa->sa_data);
8972 struct net_device *dev;
8973 int ret = 0;
8974
8975 down_read(&dev_addr_sem);
8976 rcu_read_lock();
8977
8978 dev = dev_get_by_name_rcu(net, dev_name);
8979 if (!dev) {
8980 ret = -ENODEV;
8981 goto unlock;
8982 }
8983 if (!dev->addr_len)
8984 memset(sa->sa_data, 0, size);
8985 else
8986 memcpy(sa->sa_data, dev->dev_addr,
8987 min_t(size_t, size, dev->addr_len));
8988 sa->sa_family = dev->type;
8989
8990unlock:
8991 rcu_read_unlock();
8992 up_read(&dev_addr_sem);
8993 return ret;
8994}
8995EXPORT_SYMBOL(dev_get_mac_address);
8996
8997/**
8998 * dev_change_carrier - Change device carrier
8999 * @dev: device
9000 * @new_carrier: new value
9001 *
9002 * Change device carrier
9003 */
9004int dev_change_carrier(struct net_device *dev, bool new_carrier)
9005{
9006 const struct net_device_ops *ops = dev->netdev_ops;
9007
9008 if (!ops->ndo_change_carrier)
9009 return -EOPNOTSUPP;
9010 if (!netif_device_present(dev))
9011 return -ENODEV;
9012 return ops->ndo_change_carrier(dev, new_carrier);
9013}
9014EXPORT_SYMBOL(dev_change_carrier);
9015
9016/**
9017 * dev_get_phys_port_id - Get device physical port ID
9018 * @dev: device
9019 * @ppid: port ID
9020 *
9021 * Get device physical port ID
9022 */
9023int dev_get_phys_port_id(struct net_device *dev,
9024 struct netdev_phys_item_id *ppid)
9025{
9026 const struct net_device_ops *ops = dev->netdev_ops;
9027
9028 if (!ops->ndo_get_phys_port_id)
9029 return -EOPNOTSUPP;
9030 return ops->ndo_get_phys_port_id(dev, ppid);
9031}
9032EXPORT_SYMBOL(dev_get_phys_port_id);
9033
9034/**
9035 * dev_get_phys_port_name - Get device physical port name
9036 * @dev: device
9037 * @name: port name
9038 * @len: limit of bytes to copy to name
9039 *
9040 * Get device physical port name
9041 */
9042int dev_get_phys_port_name(struct net_device *dev,
9043 char *name, size_t len)
9044{
9045 const struct net_device_ops *ops = dev->netdev_ops;
9046 int err;
9047
9048 if (ops->ndo_get_phys_port_name) {
9049 err = ops->ndo_get_phys_port_name(dev, name, len);
9050 if (err != -EOPNOTSUPP)
9051 return err;
9052 }
9053 return devlink_compat_phys_port_name_get(dev, name, len);
9054}
9055EXPORT_SYMBOL(dev_get_phys_port_name);
9056
9057/**
9058 * dev_get_port_parent_id - Get the device's port parent identifier
9059 * @dev: network device
9060 * @ppid: pointer to a storage for the port's parent identifier
9061 * @recurse: allow/disallow recursion to lower devices
9062 *
9063 * Get the devices's port parent identifier
9064 */
9065int dev_get_port_parent_id(struct net_device *dev,
9066 struct netdev_phys_item_id *ppid,
9067 bool recurse)
9068{
9069 const struct net_device_ops *ops = dev->netdev_ops;
9070 struct netdev_phys_item_id first = { };
9071 struct net_device *lower_dev;
9072 struct list_head *iter;
9073 int err;
9074
9075 if (ops->ndo_get_port_parent_id) {
9076 err = ops->ndo_get_port_parent_id(dev, ppid);
9077 if (err != -EOPNOTSUPP)
9078 return err;
9079 }
9080
9081 err = devlink_compat_switch_id_get(dev, ppid);
9082 if (!err || err != -EOPNOTSUPP)
9083 return err;
9084
9085 if (!recurse)
9086 return -EOPNOTSUPP;
9087
9088 netdev_for_each_lower_dev(dev, lower_dev, iter) {
9089 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
9090 if (err)
9091 break;
9092 if (!first.id_len)
9093 first = *ppid;
9094 else if (memcmp(&first, ppid, sizeof(*ppid)))
9095 return -EOPNOTSUPP;
9096 }
9097
9098 return err;
9099}
9100EXPORT_SYMBOL(dev_get_port_parent_id);
9101
9102/**
9103 * netdev_port_same_parent_id - Indicate if two network devices have
9104 * the same port parent identifier
9105 * @a: first network device
9106 * @b: second network device
9107 */
9108bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9109{
9110 struct netdev_phys_item_id a_id = { };
9111 struct netdev_phys_item_id b_id = { };
9112
9113 if (dev_get_port_parent_id(a, &a_id, true) ||
9114 dev_get_port_parent_id(b, &b_id, true))
9115 return false;
9116
9117 return netdev_phys_item_id_same(&a_id, &b_id);
9118}
9119EXPORT_SYMBOL(netdev_port_same_parent_id);
9120
9121/**
9122 * dev_change_proto_down - update protocol port state information
9123 * @dev: device
9124 * @proto_down: new value
9125 *
9126 * This info can be used by switch drivers to set the phys state of the
9127 * port.
9128 */
9129int dev_change_proto_down(struct net_device *dev, bool proto_down)
9130{
9131 const struct net_device_ops *ops = dev->netdev_ops;
9132
9133 if (!ops->ndo_change_proto_down)
9134 return -EOPNOTSUPP;
9135 if (!netif_device_present(dev))
9136 return -ENODEV;
9137 return ops->ndo_change_proto_down(dev, proto_down);
9138}
9139EXPORT_SYMBOL(dev_change_proto_down);
9140
9141/**
9142 * dev_change_proto_down_generic - generic implementation for
9143 * ndo_change_proto_down that sets carrier according to
9144 * proto_down.
9145 *
9146 * @dev: device
9147 * @proto_down: new value
9148 */
9149int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
9150{
9151 if (proto_down)
9152 netif_carrier_off(dev);
9153 else
9154 netif_carrier_on(dev);
9155 dev->proto_down = proto_down;
9156 return 0;
9157}
9158EXPORT_SYMBOL(dev_change_proto_down_generic);
9159
9160/**
9161 * dev_change_proto_down_reason - proto down reason
9162 *
9163 * @dev: device
9164 * @mask: proto down mask
9165 * @value: proto down value
9166 */
9167void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9168 u32 value)
9169{
9170 int b;
9171
9172 if (!mask) {
9173 dev->proto_down_reason = value;
9174 } else {
9175 for_each_set_bit(b, &mask, 32) {
9176 if (value & (1 << b))
9177 dev->proto_down_reason |= BIT(b);
9178 else
9179 dev->proto_down_reason &= ~BIT(b);
9180 }
9181 }
9182}
9183EXPORT_SYMBOL(dev_change_proto_down_reason);
9184
9185struct bpf_xdp_link {
9186 struct bpf_link link;
9187 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9188 int flags;
9189};
9190
9191static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9192{
9193 if (flags & XDP_FLAGS_HW_MODE)
9194 return XDP_MODE_HW;
9195 if (flags & XDP_FLAGS_DRV_MODE)
9196 return XDP_MODE_DRV;
9197 if (flags & XDP_FLAGS_SKB_MODE)
9198 return XDP_MODE_SKB;
9199 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9200}
9201
9202static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9203{
9204 switch (mode) {
9205 case XDP_MODE_SKB:
9206 return generic_xdp_install;
9207 case XDP_MODE_DRV:
9208 case XDP_MODE_HW:
9209 return dev->netdev_ops->ndo_bpf;
9210 default:
9211 return NULL;
9212 }
9213}
9214
9215static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9216 enum bpf_xdp_mode mode)
9217{
9218 return dev->xdp_state[mode].link;
9219}
9220
9221static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9222 enum bpf_xdp_mode mode)
9223{
9224 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9225
9226 if (link)
9227 return link->link.prog;
9228 return dev->xdp_state[mode].prog;
9229}
9230
9231static u8 dev_xdp_prog_count(struct net_device *dev)
9232{
9233 u8 count = 0;
9234 int i;
9235
9236 for (i = 0; i < __MAX_XDP_MODE; i++)
9237 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9238 count++;
9239 return count;
9240}
9241
9242u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9243{
9244 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9245
9246 return prog ? prog->aux->id : 0;
9247}
9248
9249static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9250 struct bpf_xdp_link *link)
9251{
9252 dev->xdp_state[mode].link = link;
9253 dev->xdp_state[mode].prog = NULL;
9254}
9255
9256static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9257 struct bpf_prog *prog)
9258{
9259 dev->xdp_state[mode].link = NULL;
9260 dev->xdp_state[mode].prog = prog;
9261}
9262
9263static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9264 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9265 u32 flags, struct bpf_prog *prog)
9266{
9267 struct netdev_bpf xdp;
9268 int err;
9269
9270 memset(&xdp, 0, sizeof(xdp));
9271 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9272 xdp.extack = extack;
9273 xdp.flags = flags;
9274 xdp.prog = prog;
9275
9276 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9277 * "moved" into driver), so they don't increment it on their own, but
9278 * they do decrement refcnt when program is detached or replaced.
9279 * Given net_device also owns link/prog, we need to bump refcnt here
9280 * to prevent drivers from underflowing it.
9281 */
9282 if (prog)
9283 bpf_prog_inc(prog);
9284 err = bpf_op(dev, &xdp);
9285 if (err) {
9286 if (prog)
9287 bpf_prog_put(prog);
9288 return err;
9289 }
9290
9291 if (mode != XDP_MODE_HW)
9292 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9293
9294 return 0;
9295}
9296
9297static void dev_xdp_uninstall(struct net_device *dev)
9298{
9299 struct bpf_xdp_link *link;
9300 struct bpf_prog *prog;
9301 enum bpf_xdp_mode mode;
9302 bpf_op_t bpf_op;
9303
9304 ASSERT_RTNL();
9305
9306 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9307 prog = dev_xdp_prog(dev, mode);
9308 if (!prog)
9309 continue;
9310
9311 bpf_op = dev_xdp_bpf_op(dev, mode);
9312 if (!bpf_op)
9313 continue;
9314
9315 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9316
9317 /* auto-detach link from net device */
9318 link = dev_xdp_link(dev, mode);
9319 if (link)
9320 link->dev = NULL;
9321 else
9322 bpf_prog_put(prog);
9323
9324 dev_xdp_set_link(dev, mode, NULL);
9325 }
9326}
9327
9328static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9329 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9330 struct bpf_prog *old_prog, u32 flags)
9331{
9332 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9333 struct bpf_prog *cur_prog;
9334 enum bpf_xdp_mode mode;
9335 bpf_op_t bpf_op;
9336 int err;
9337
9338 ASSERT_RTNL();
9339
9340 /* either link or prog attachment, never both */
9341 if (link && (new_prog || old_prog))
9342 return -EINVAL;
9343 /* link supports only XDP mode flags */
9344 if (link && (flags & ~XDP_FLAGS_MODES)) {
9345 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9346 return -EINVAL;
9347 }
9348 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9349 if (num_modes > 1) {
9350 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9351 return -EINVAL;
9352 }
9353 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9354 if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9355 NL_SET_ERR_MSG(extack,
9356 "More than one program loaded, unset mode is ambiguous");
9357 return -EINVAL;
9358 }
9359 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9360 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9361 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9362 return -EINVAL;
9363 }
9364
9365 mode = dev_xdp_mode(dev, flags);
9366 /* can't replace attached link */
9367 if (dev_xdp_link(dev, mode)) {
9368 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9369 return -EBUSY;
9370 }
9371
9372 cur_prog = dev_xdp_prog(dev, mode);
9373 /* can't replace attached prog with link */
9374 if (link && cur_prog) {
9375 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9376 return -EBUSY;
9377 }
9378 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9379 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9380 return -EEXIST;
9381 }
9382
9383 /* put effective new program into new_prog */
9384 if (link)
9385 new_prog = link->link.prog;
9386
9387 if (new_prog) {
9388 bool offload = mode == XDP_MODE_HW;
9389 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9390 ? XDP_MODE_DRV : XDP_MODE_SKB;
9391
9392 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9393 NL_SET_ERR_MSG(extack, "XDP program already attached");
9394 return -EBUSY;
9395 }
9396 if (!offload && dev_xdp_prog(dev, other_mode)) {
9397 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9398 return -EEXIST;
9399 }
9400 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9401 NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9402 return -EINVAL;
9403 }
9404 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9405 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9406 return -EINVAL;
9407 }
9408 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9409 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9410 return -EINVAL;
9411 }
9412 }
9413
9414 /* don't call drivers if the effective program didn't change */
9415 if (new_prog != cur_prog) {
9416 bpf_op = dev_xdp_bpf_op(dev, mode);
9417 if (!bpf_op) {
9418 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9419 return -EOPNOTSUPP;
9420 }
9421
9422 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9423 if (err)
9424 return err;
9425 }
9426
9427 if (link)
9428 dev_xdp_set_link(dev, mode, link);
9429 else
9430 dev_xdp_set_prog(dev, mode, new_prog);
9431 if (cur_prog)
9432 bpf_prog_put(cur_prog);
9433
9434 return 0;
9435}
9436
9437static int dev_xdp_attach_link(struct net_device *dev,
9438 struct netlink_ext_ack *extack,
9439 struct bpf_xdp_link *link)
9440{
9441 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9442}
9443
9444static int dev_xdp_detach_link(struct net_device *dev,
9445 struct netlink_ext_ack *extack,
9446 struct bpf_xdp_link *link)
9447{
9448 enum bpf_xdp_mode mode;
9449 bpf_op_t bpf_op;
9450
9451 ASSERT_RTNL();
9452
9453 mode = dev_xdp_mode(dev, link->flags);
9454 if (dev_xdp_link(dev, mode) != link)
9455 return -EINVAL;
9456
9457 bpf_op = dev_xdp_bpf_op(dev, mode);
9458 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9459 dev_xdp_set_link(dev, mode, NULL);
9460 return 0;
9461}
9462
9463static void bpf_xdp_link_release(struct bpf_link *link)
9464{
9465 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9466
9467 rtnl_lock();
9468
9469 /* if racing with net_device's tear down, xdp_link->dev might be
9470 * already NULL, in which case link was already auto-detached
9471 */
9472 if (xdp_link->dev) {
9473 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9474 xdp_link->dev = NULL;
9475 }
9476
9477 rtnl_unlock();
9478}
9479
9480static int bpf_xdp_link_detach(struct bpf_link *link)
9481{
9482 bpf_xdp_link_release(link);
9483 return 0;
9484}
9485
9486static void bpf_xdp_link_dealloc(struct bpf_link *link)
9487{
9488 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9489
9490 kfree(xdp_link);
9491}
9492
9493static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9494 struct seq_file *seq)
9495{
9496 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9497 u32 ifindex = 0;
9498
9499 rtnl_lock();
9500 if (xdp_link->dev)
9501 ifindex = xdp_link->dev->ifindex;
9502 rtnl_unlock();
9503
9504 seq_printf(seq, "ifindex:\t%u\n", ifindex);
9505}
9506
9507static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9508 struct bpf_link_info *info)
9509{
9510 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9511 u32 ifindex = 0;
9512
9513 rtnl_lock();
9514 if (xdp_link->dev)
9515 ifindex = xdp_link->dev->ifindex;
9516 rtnl_unlock();
9517
9518 info->xdp.ifindex = ifindex;
9519 return 0;
9520}
9521
9522static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9523 struct bpf_prog *old_prog)
9524{
9525 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9526 enum bpf_xdp_mode mode;
9527 bpf_op_t bpf_op;
9528 int err = 0;
9529
9530 rtnl_lock();
9531
9532 /* link might have been auto-released already, so fail */
9533 if (!xdp_link->dev) {
9534 err = -ENOLINK;
9535 goto out_unlock;
9536 }
9537
9538 if (old_prog && link->prog != old_prog) {
9539 err = -EPERM;
9540 goto out_unlock;
9541 }
9542 old_prog = link->prog;
9543 if (old_prog == new_prog) {
9544 /* no-op, don't disturb drivers */
9545 bpf_prog_put(new_prog);
9546 goto out_unlock;
9547 }
9548
9549 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9550 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9551 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9552 xdp_link->flags, new_prog);
9553 if (err)
9554 goto out_unlock;
9555
9556 old_prog = xchg(&link->prog, new_prog);
9557 bpf_prog_put(old_prog);
9558
9559out_unlock:
9560 rtnl_unlock();
9561 return err;
9562}
9563
9564static const struct bpf_link_ops bpf_xdp_link_lops = {
9565 .release = bpf_xdp_link_release,
9566 .dealloc = bpf_xdp_link_dealloc,
9567 .detach = bpf_xdp_link_detach,
9568 .show_fdinfo = bpf_xdp_link_show_fdinfo,
9569 .fill_link_info = bpf_xdp_link_fill_link_info,
9570 .update_prog = bpf_xdp_link_update,
9571};
9572
9573int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9574{
9575 struct net *net = current->nsproxy->net_ns;
9576 struct bpf_link_primer link_primer;
9577 struct bpf_xdp_link *link;
9578 struct net_device *dev;
9579 int err, fd;
9580
9581 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9582 if (!dev)
9583 return -EINVAL;
9584
9585 link = kzalloc(sizeof(*link), GFP_USER);
9586 if (!link) {
9587 err = -ENOMEM;
9588 goto out_put_dev;
9589 }
9590
9591 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9592 link->dev = dev;
9593 link->flags = attr->link_create.flags;
9594
9595 err = bpf_link_prime(&link->link, &link_primer);
9596 if (err) {
9597 kfree(link);
9598 goto out_put_dev;
9599 }
9600
9601 rtnl_lock();
9602 err = dev_xdp_attach_link(dev, NULL, link);
9603 rtnl_unlock();
9604
9605 if (err) {
9606 bpf_link_cleanup(&link_primer);
9607 goto out_put_dev;
9608 }
9609
9610 fd = bpf_link_settle(&link_primer);
9611 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9612 dev_put(dev);
9613 return fd;
9614
9615out_put_dev:
9616 dev_put(dev);
9617 return err;
9618}
9619
9620/**
9621 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
9622 * @dev: device
9623 * @extack: netlink extended ack
9624 * @fd: new program fd or negative value to clear
9625 * @expected_fd: old program fd that userspace expects to replace or clear
9626 * @flags: xdp-related flags
9627 *
9628 * Set or clear a bpf program for a device
9629 */
9630int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9631 int fd, int expected_fd, u32 flags)
9632{
9633 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9634 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9635 int err;
9636
9637 ASSERT_RTNL();
9638
9639 if (fd >= 0) {
9640 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9641 mode != XDP_MODE_SKB);
9642 if (IS_ERR(new_prog))
9643 return PTR_ERR(new_prog);
9644 }
9645
9646 if (expected_fd >= 0) {
9647 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9648 mode != XDP_MODE_SKB);
9649 if (IS_ERR(old_prog)) {
9650 err = PTR_ERR(old_prog);
9651 old_prog = NULL;
9652 goto err_out;
9653 }
9654 }
9655
9656 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9657
9658err_out:
9659 if (err && new_prog)
9660 bpf_prog_put(new_prog);
9661 if (old_prog)
9662 bpf_prog_put(old_prog);
9663 return err;
9664}
9665
9666/**
9667 * dev_new_index - allocate an ifindex
9668 * @net: the applicable net namespace
9669 *
9670 * Returns a suitable unique value for a new device interface
9671 * number. The caller must hold the rtnl semaphore or the
9672 * dev_base_lock to be sure it remains unique.
9673 */
9674static int dev_new_index(struct net *net)
9675{
9676 int ifindex = net->ifindex;
9677
9678 for (;;) {
9679 if (++ifindex <= 0)
9680 ifindex = 1;
9681 if (!__dev_get_by_index(net, ifindex))
9682 return net->ifindex = ifindex;
9683 }
9684}
9685
9686/* Delayed registration/unregisteration */
9687static LIST_HEAD(net_todo_list);
9688DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9689
9690static void net_set_todo(struct net_device *dev)
9691{
9692 list_add_tail(&dev->todo_list, &net_todo_list);
9693 dev_net(dev)->dev_unreg_count++;
9694}
9695
9696static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9697 struct net_device *upper, netdev_features_t features)
9698{
9699 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9700 netdev_features_t feature;
9701 int feature_bit;
9702
9703 for_each_netdev_feature(upper_disables, feature_bit) {
9704 feature = __NETIF_F_BIT(feature_bit);
9705 if (!(upper->wanted_features & feature)
9706 && (features & feature)) {
9707 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9708 &feature, upper->name);
9709 features &= ~feature;
9710 }
9711 }
9712
9713 return features;
9714}
9715
9716static void netdev_sync_lower_features(struct net_device *upper,
9717 struct net_device *lower, netdev_features_t features)
9718{
9719 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9720 netdev_features_t feature;
9721 int feature_bit;
9722
9723 for_each_netdev_feature(upper_disables, feature_bit) {
9724 feature = __NETIF_F_BIT(feature_bit);
9725 if (!(features & feature) && (lower->features & feature)) {
9726 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9727 &feature, lower->name);
9728 lower->wanted_features &= ~feature;
9729 __netdev_update_features(lower);
9730
9731 if (unlikely(lower->features & feature))
9732 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9733 &feature, lower->name);
9734 else
9735 netdev_features_change(lower);
9736 }
9737 }
9738}
9739
9740static netdev_features_t netdev_fix_features(struct net_device *dev,
9741 netdev_features_t features)
9742{
9743 /* Fix illegal checksum combinations */
9744 if ((features & NETIF_F_HW_CSUM) &&
9745 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9746 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9747 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9748 }
9749
9750 /* TSO requires that SG is present as well. */
9751 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9752 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9753 features &= ~NETIF_F_ALL_TSO;
9754 }
9755
9756 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9757 !(features & NETIF_F_IP_CSUM)) {
9758 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9759 features &= ~NETIF_F_TSO;
9760 features &= ~NETIF_F_TSO_ECN;
9761 }
9762
9763 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9764 !(features & NETIF_F_IPV6_CSUM)) {
9765 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9766 features &= ~NETIF_F_TSO6;
9767 }
9768
9769 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9770 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9771 features &= ~NETIF_F_TSO_MANGLEID;
9772
9773 /* TSO ECN requires that TSO is present as well. */
9774 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9775 features &= ~NETIF_F_TSO_ECN;
9776
9777 /* Software GSO depends on SG. */
9778 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9779 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9780 features &= ~NETIF_F_GSO;
9781 }
9782
9783 /* GSO partial features require GSO partial be set */
9784 if ((features & dev->gso_partial_features) &&
9785 !(features & NETIF_F_GSO_PARTIAL)) {
9786 netdev_dbg(dev,
9787 "Dropping partially supported GSO features since no GSO partial.\n");
9788 features &= ~dev->gso_partial_features;
9789 }
9790
9791 if (!(features & NETIF_F_RXCSUM)) {
9792 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9793 * successfully merged by hardware must also have the
9794 * checksum verified by hardware. If the user does not
9795 * want to enable RXCSUM, logically, we should disable GRO_HW.
9796 */
9797 if (features & NETIF_F_GRO_HW) {
9798 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9799 features &= ~NETIF_F_GRO_HW;
9800 }
9801 }
9802
9803 /* LRO/HW-GRO features cannot be combined with RX-FCS */
9804 if (features & NETIF_F_RXFCS) {
9805 if (features & NETIF_F_LRO) {
9806 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9807 features &= ~NETIF_F_LRO;
9808 }
9809
9810 if (features & NETIF_F_GRO_HW) {
9811 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9812 features &= ~NETIF_F_GRO_HW;
9813 }
9814 }
9815
9816 if (features & NETIF_F_HW_TLS_TX) {
9817 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9818 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9819 bool hw_csum = features & NETIF_F_HW_CSUM;
9820
9821 if (!ip_csum && !hw_csum) {
9822 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9823 features &= ~NETIF_F_HW_TLS_TX;
9824 }
9825 }
9826
9827 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9828 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9829 features &= ~NETIF_F_HW_TLS_RX;
9830 }
9831
9832 return features;
9833}
9834
9835int __netdev_update_features(struct net_device *dev)
9836{
9837 struct net_device *upper, *lower;
9838 netdev_features_t features;
9839 struct list_head *iter;
9840 int err = -1;
9841
9842 ASSERT_RTNL();
9843
9844 features = netdev_get_wanted_features(dev);
9845
9846 if (dev->netdev_ops->ndo_fix_features)
9847 features = dev->netdev_ops->ndo_fix_features(dev, features);
9848
9849 /* driver might be less strict about feature dependencies */
9850 features = netdev_fix_features(dev, features);
9851
9852 /* some features can't be enabled if they're off on an upper device */
9853 netdev_for_each_upper_dev_rcu(dev, upper, iter)
9854 features = netdev_sync_upper_features(dev, upper, features);
9855
9856 if (dev->features == features)
9857 goto sync_lower;
9858
9859 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9860 &dev->features, &features);
9861
9862 if (dev->netdev_ops->ndo_set_features)
9863 err = dev->netdev_ops->ndo_set_features(dev, features);
9864 else
9865 err = 0;
9866
9867 if (unlikely(err < 0)) {
9868 netdev_err(dev,
9869 "set_features() failed (%d); wanted %pNF, left %pNF\n",
9870 err, &features, &dev->features);
9871 /* return non-0 since some features might have changed and
9872 * it's better to fire a spurious notification than miss it
9873 */
9874 return -1;
9875 }
9876
9877sync_lower:
9878 /* some features must be disabled on lower devices when disabled
9879 * on an upper device (think: bonding master or bridge)
9880 */
9881 netdev_for_each_lower_dev(dev, lower, iter)
9882 netdev_sync_lower_features(dev, lower, features);
9883
9884 if (!err) {
9885 netdev_features_t diff = features ^ dev->features;
9886
9887 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9888 /* udp_tunnel_{get,drop}_rx_info both need
9889 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9890 * device, or they won't do anything.
9891 * Thus we need to update dev->features
9892 * *before* calling udp_tunnel_get_rx_info,
9893 * but *after* calling udp_tunnel_drop_rx_info.
9894 */
9895 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9896 dev->features = features;
9897 udp_tunnel_get_rx_info(dev);
9898 } else {
9899 udp_tunnel_drop_rx_info(dev);
9900 }
9901 }
9902
9903 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9904 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9905 dev->features = features;
9906 err |= vlan_get_rx_ctag_filter_info(dev);
9907 } else {
9908 vlan_drop_rx_ctag_filter_info(dev);
9909 }
9910 }
9911
9912 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9913 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9914 dev->features = features;
9915 err |= vlan_get_rx_stag_filter_info(dev);
9916 } else {
9917 vlan_drop_rx_stag_filter_info(dev);
9918 }
9919 }
9920
9921 dev->features = features;
9922 }
9923
9924 return err < 0 ? 0 : 1;
9925}
9926
9927/**
9928 * netdev_update_features - recalculate device features
9929 * @dev: the device to check
9930 *
9931 * Recalculate dev->features set and send notifications if it
9932 * has changed. Should be called after driver or hardware dependent
9933 * conditions might have changed that influence the features.
9934 */
9935void netdev_update_features(struct net_device *dev)
9936{
9937 if (__netdev_update_features(dev))
9938 netdev_features_change(dev);
9939}
9940EXPORT_SYMBOL(netdev_update_features);
9941
9942/**
9943 * netdev_change_features - recalculate device features
9944 * @dev: the device to check
9945 *
9946 * Recalculate dev->features set and send notifications even
9947 * if they have not changed. Should be called instead of
9948 * netdev_update_features() if also dev->vlan_features might
9949 * have changed to allow the changes to be propagated to stacked
9950 * VLAN devices.
9951 */
9952void netdev_change_features(struct net_device *dev)
9953{
9954 __netdev_update_features(dev);
9955 netdev_features_change(dev);
9956}
9957EXPORT_SYMBOL(netdev_change_features);
9958
9959/**
9960 * netif_stacked_transfer_operstate - transfer operstate
9961 * @rootdev: the root or lower level device to transfer state from
9962 * @dev: the device to transfer operstate to
9963 *
9964 * Transfer operational state from root to device. This is normally
9965 * called when a stacking relationship exists between the root
9966 * device and the device(a leaf device).
9967 */
9968void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9969 struct net_device *dev)
9970{
9971 if (rootdev->operstate == IF_OPER_DORMANT)
9972 netif_dormant_on(dev);
9973 else
9974 netif_dormant_off(dev);
9975
9976 if (rootdev->operstate == IF_OPER_TESTING)
9977 netif_testing_on(dev);
9978 else
9979 netif_testing_off(dev);
9980
9981 if (netif_carrier_ok(rootdev))
9982 netif_carrier_on(dev);
9983 else
9984 netif_carrier_off(dev);
9985}
9986EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9987
9988static int netif_alloc_rx_queues(struct net_device *dev)
9989{
9990 unsigned int i, count = dev->num_rx_queues;
9991 struct netdev_rx_queue *rx;
9992 size_t sz = count * sizeof(*rx);
9993 int err = 0;
9994
9995 BUG_ON(count < 1);
9996
9997 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9998 if (!rx)
9999 return -ENOMEM;
10000
10001 dev->_rx = rx;
10002
10003 for (i = 0; i < count; i++) {
10004 rx[i].dev = dev;
10005
10006 /* XDP RX-queue setup */
10007 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10008 if (err < 0)
10009 goto err_rxq_info;
10010 }
10011 return 0;
10012
10013err_rxq_info:
10014 /* Rollback successful reg's and free other resources */
10015 while (i--)
10016 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10017 kvfree(dev->_rx);
10018 dev->_rx = NULL;
10019 return err;
10020}
10021
10022static void netif_free_rx_queues(struct net_device *dev)
10023{
10024 unsigned int i, count = dev->num_rx_queues;
10025
10026 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10027 if (!dev->_rx)
10028 return;
10029
10030 for (i = 0; i < count; i++)
10031 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10032
10033 kvfree(dev->_rx);
10034}
10035
10036static void netdev_init_one_queue(struct net_device *dev,
10037 struct netdev_queue *queue, void *_unused)
10038{
10039 /* Initialize queue lock */
10040 spin_lock_init(&queue->_xmit_lock);
10041 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10042 queue->xmit_lock_owner = -1;
10043 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10044 queue->dev = dev;
10045#ifdef CONFIG_BQL
10046 dql_init(&queue->dql, HZ);
10047#endif
10048}
10049
10050static void netif_free_tx_queues(struct net_device *dev)
10051{
10052 kvfree(dev->_tx);
10053}
10054
10055static int netif_alloc_netdev_queues(struct net_device *dev)
10056{
10057 unsigned int count = dev->num_tx_queues;
10058 struct netdev_queue *tx;
10059 size_t sz = count * sizeof(*tx);
10060
10061 if (count < 1 || count > 0xffff)
10062 return -EINVAL;
10063
10064 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10065 if (!tx)
10066 return -ENOMEM;
10067
10068 dev->_tx = tx;
10069
10070 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10071 spin_lock_init(&dev->tx_global_lock);
10072
10073 return 0;
10074}
10075
10076void netif_tx_stop_all_queues(struct net_device *dev)
10077{
10078 unsigned int i;
10079
10080 for (i = 0; i < dev->num_tx_queues; i++) {
10081 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10082
10083 netif_tx_stop_queue(txq);
10084 }
10085}
10086EXPORT_SYMBOL(netif_tx_stop_all_queues);
10087
10088/**
10089 * register_netdevice - register a network device
10090 * @dev: device to register
10091 *
10092 * Take a completed network device structure and add it to the kernel
10093 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10094 * chain. 0 is returned on success. A negative errno code is returned
10095 * on a failure to set up the device, or if the name is a duplicate.
10096 *
10097 * Callers must hold the rtnl semaphore. You may want
10098 * register_netdev() instead of this.
10099 *
10100 * BUGS:
10101 * The locking appears insufficient to guarantee two parallel registers
10102 * will not get the same name.
10103 */
10104
10105int register_netdevice(struct net_device *dev)
10106{
10107 int ret;
10108 struct net *net = dev_net(dev);
10109
10110 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10111 NETDEV_FEATURE_COUNT);
10112 BUG_ON(dev_boot_phase);
10113 ASSERT_RTNL();
10114
10115 might_sleep();
10116
10117 /* When net_device's are persistent, this will be fatal. */
10118 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10119 BUG_ON(!net);
10120
10121 ret = ethtool_check_ops(dev->ethtool_ops);
10122 if (ret)
10123 return ret;
10124
10125 spin_lock_init(&dev->addr_list_lock);
10126 netdev_set_addr_lockdep_class(dev);
10127
10128 ret = dev_get_valid_name(net, dev, dev->name);
10129 if (ret < 0)
10130 goto out;
10131
10132 ret = -ENOMEM;
10133 dev->name_node = netdev_name_node_head_alloc(dev);
10134 if (!dev->name_node)
10135 goto out;
10136
10137 /* Init, if this function is available */
10138 if (dev->netdev_ops->ndo_init) {
10139 ret = dev->netdev_ops->ndo_init(dev);
10140 if (ret) {
10141 if (ret > 0)
10142 ret = -EIO;
10143 goto err_free_name;
10144 }
10145 }
10146
10147 if (((dev->hw_features | dev->features) &
10148 NETIF_F_HW_VLAN_CTAG_FILTER) &&
10149 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10150 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10151 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10152 ret = -EINVAL;
10153 goto err_uninit;
10154 }
10155
10156 ret = -EBUSY;
10157 if (!dev->ifindex)
10158 dev->ifindex = dev_new_index(net);
10159 else if (__dev_get_by_index(net, dev->ifindex))
10160 goto err_uninit;
10161
10162 /* Transfer changeable features to wanted_features and enable
10163 * software offloads (GSO and GRO).
10164 */
10165 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10166 dev->features |= NETIF_F_SOFT_FEATURES;
10167
10168 if (dev->udp_tunnel_nic_info) {
10169 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10170 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10171 }
10172
10173 dev->wanted_features = dev->features & dev->hw_features;
10174
10175 if (!(dev->flags & IFF_LOOPBACK))
10176 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10177
10178 /* If IPv4 TCP segmentation offload is supported we should also
10179 * allow the device to enable segmenting the frame with the option
10180 * of ignoring a static IP ID value. This doesn't enable the
10181 * feature itself but allows the user to enable it later.
10182 */
10183 if (dev->hw_features & NETIF_F_TSO)
10184 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10185 if (dev->vlan_features & NETIF_F_TSO)
10186 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10187 if (dev->mpls_features & NETIF_F_TSO)
10188 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10189 if (dev->hw_enc_features & NETIF_F_TSO)
10190 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10191
10192 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10193 */
10194 dev->vlan_features |= NETIF_F_HIGHDMA;
10195
10196 /* Make NETIF_F_SG inheritable to tunnel devices.
10197 */
10198 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10199
10200 /* Make NETIF_F_SG inheritable to MPLS.
10201 */
10202 dev->mpls_features |= NETIF_F_SG;
10203
10204 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10205 ret = notifier_to_errno(ret);
10206 if (ret)
10207 goto err_uninit;
10208
10209 ret = netdev_register_kobject(dev);
10210 if (ret) {
10211 dev->reg_state = NETREG_UNREGISTERED;
10212 goto err_uninit;
10213 }
10214 dev->reg_state = NETREG_REGISTERED;
10215
10216 __netdev_update_features(dev);
10217
10218 /*
10219 * Default initial state at registry is that the
10220 * device is present.
10221 */
10222
10223 set_bit(__LINK_STATE_PRESENT, &dev->state);
10224
10225 linkwatch_init_dev(dev);
10226
10227 dev_init_scheduler(dev);
10228 dev_hold(dev);
10229 list_netdevice(dev);
10230 add_device_randomness(dev->dev_addr, dev->addr_len);
10231
10232 /* If the device has permanent device address, driver should
10233 * set dev_addr and also addr_assign_type should be set to
10234 * NET_ADDR_PERM (default value).
10235 */
10236 if (dev->addr_assign_type == NET_ADDR_PERM)
10237 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10238
10239 /* Notify protocols, that a new device appeared. */
10240 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10241 ret = notifier_to_errno(ret);
10242 if (ret) {
10243 /* Expect explicit free_netdev() on failure */
10244 dev->needs_free_netdev = false;
10245 unregister_netdevice_queue(dev, NULL);
10246 goto out;
10247 }
10248 /*
10249 * Prevent userspace races by waiting until the network
10250 * device is fully setup before sending notifications.
10251 */
10252 if (!dev->rtnl_link_ops ||
10253 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10254 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10255
10256out:
10257 return ret;
10258
10259err_uninit:
10260 if (dev->netdev_ops->ndo_uninit)
10261 dev->netdev_ops->ndo_uninit(dev);
10262 if (dev->priv_destructor)
10263 dev->priv_destructor(dev);
10264err_free_name:
10265 netdev_name_node_free(dev->name_node);
10266 goto out;
10267}
10268EXPORT_SYMBOL(register_netdevice);
10269
10270/**
10271 * init_dummy_netdev - init a dummy network device for NAPI
10272 * @dev: device to init
10273 *
10274 * This takes a network device structure and initialize the minimum
10275 * amount of fields so it can be used to schedule NAPI polls without
10276 * registering a full blown interface. This is to be used by drivers
10277 * that need to tie several hardware interfaces to a single NAPI
10278 * poll scheduler due to HW limitations.
10279 */
10280int init_dummy_netdev(struct net_device *dev)
10281{
10282 /* Clear everything. Note we don't initialize spinlocks
10283 * are they aren't supposed to be taken by any of the
10284 * NAPI code and this dummy netdev is supposed to be
10285 * only ever used for NAPI polls
10286 */
10287 memset(dev, 0, sizeof(struct net_device));
10288
10289 /* make sure we BUG if trying to hit standard
10290 * register/unregister code path
10291 */
10292 dev->reg_state = NETREG_DUMMY;
10293
10294 /* NAPI wants this */
10295 INIT_LIST_HEAD(&dev->napi_list);
10296
10297 /* a dummy interface is started by default */
10298 set_bit(__LINK_STATE_PRESENT, &dev->state);
10299 set_bit(__LINK_STATE_START, &dev->state);
10300
10301 /* napi_busy_loop stats accounting wants this */
10302 dev_net_set(dev, &init_net);
10303
10304 /* Note : We dont allocate pcpu_refcnt for dummy devices,
10305 * because users of this 'device' dont need to change
10306 * its refcount.
10307 */
10308
10309 return 0;
10310}
10311EXPORT_SYMBOL_GPL(init_dummy_netdev);
10312
10313
10314/**
10315 * register_netdev - register a network device
10316 * @dev: device to register
10317 *
10318 * Take a completed network device structure and add it to the kernel
10319 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10320 * chain. 0 is returned on success. A negative errno code is returned
10321 * on a failure to set up the device, or if the name is a duplicate.
10322 *
10323 * This is a wrapper around register_netdevice that takes the rtnl semaphore
10324 * and expands the device name if you passed a format string to
10325 * alloc_netdev.
10326 */
10327int register_netdev(struct net_device *dev)
10328{
10329 int err;
10330
10331 if (rtnl_lock_killable())
10332 return -EINTR;
10333 err = register_netdevice(dev);
10334 rtnl_unlock();
10335 return err;
10336}
10337EXPORT_SYMBOL(register_netdev);
10338
10339int netdev_refcnt_read(const struct net_device *dev)
10340{
10341 int i, refcnt = 0;
10342
10343 for_each_possible_cpu(i)
10344 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10345 return refcnt;
10346}
10347EXPORT_SYMBOL(netdev_refcnt_read);
10348
10349#define WAIT_REFS_MIN_MSECS 1
10350#define WAIT_REFS_MAX_MSECS 250
10351/**
10352 * netdev_wait_allrefs - wait until all references are gone.
10353 * @dev: target net_device
10354 *
10355 * This is called when unregistering network devices.
10356 *
10357 * Any protocol or device that holds a reference should register
10358 * for netdevice notification, and cleanup and put back the
10359 * reference if they receive an UNREGISTER event.
10360 * We can get stuck here if buggy protocols don't correctly
10361 * call dev_put.
10362 */
10363static void netdev_wait_allrefs(struct net_device *dev)
10364{
10365 unsigned long rebroadcast_time, warning_time;
10366 int wait = 0, refcnt;
10367
10368 linkwatch_forget_dev(dev);
10369
10370 rebroadcast_time = warning_time = jiffies;
10371 refcnt = netdev_refcnt_read(dev);
10372
10373 while (refcnt != 0) {
10374 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10375 rtnl_lock();
10376
10377 /* Rebroadcast unregister notification */
10378 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10379
10380 __rtnl_unlock();
10381 rcu_barrier();
10382 rtnl_lock();
10383
10384 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10385 &dev->state)) {
10386 /* We must not have linkwatch events
10387 * pending on unregister. If this
10388 * happens, we simply run the queue
10389 * unscheduled, resulting in a noop
10390 * for this device.
10391 */
10392 linkwatch_run_queue();
10393 }
10394
10395 __rtnl_unlock();
10396
10397 rebroadcast_time = jiffies;
10398 }
10399
10400 if (!wait) {
10401 rcu_barrier();
10402 wait = WAIT_REFS_MIN_MSECS;
10403 } else {
10404 msleep(wait);
10405 wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10406 }
10407
10408 refcnt = netdev_refcnt_read(dev);
10409
10410 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
10411 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10412 dev->name, refcnt);
10413 warning_time = jiffies;
10414 }
10415 }
10416}
10417
10418/* The sequence is:
10419 *
10420 * rtnl_lock();
10421 * ...
10422 * register_netdevice(x1);
10423 * register_netdevice(x2);
10424 * ...
10425 * unregister_netdevice(y1);
10426 * unregister_netdevice(y2);
10427 * ...
10428 * rtnl_unlock();
10429 * free_netdev(y1);
10430 * free_netdev(y2);
10431 *
10432 * We are invoked by rtnl_unlock().
10433 * This allows us to deal with problems:
10434 * 1) We can delete sysfs objects which invoke hotplug
10435 * without deadlocking with linkwatch via keventd.
10436 * 2) Since we run with the RTNL semaphore not held, we can sleep
10437 * safely in order to wait for the netdev refcnt to drop to zero.
10438 *
10439 * We must not return until all unregister events added during
10440 * the interval the lock was held have been completed.
10441 */
10442void netdev_run_todo(void)
10443{
10444 struct list_head list;
10445#ifdef CONFIG_LOCKDEP
10446 struct list_head unlink_list;
10447
10448 list_replace_init(&net_unlink_list, &unlink_list);
10449
10450 while (!list_empty(&unlink_list)) {
10451 struct net_device *dev = list_first_entry(&unlink_list,
10452 struct net_device,
10453 unlink_list);
10454 list_del_init(&dev->unlink_list);
10455 dev->nested_level = dev->lower_level - 1;
10456 }
10457#endif
10458
10459 /* Snapshot list, allow later requests */
10460 list_replace_init(&net_todo_list, &list);
10461
10462 __rtnl_unlock();
10463
10464
10465 /* Wait for rcu callbacks to finish before next phase */
10466 if (!list_empty(&list))
10467 rcu_barrier();
10468
10469 while (!list_empty(&list)) {
10470 struct net_device *dev
10471 = list_first_entry(&list, struct net_device, todo_list);
10472 list_del(&dev->todo_list);
10473
10474 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10475 pr_err("network todo '%s' but state %d\n",
10476 dev->name, dev->reg_state);
10477 dump_stack();
10478 continue;
10479 }
10480
10481 dev->reg_state = NETREG_UNREGISTERED;
10482
10483 netdev_wait_allrefs(dev);
10484
10485 /* paranoia */
10486 BUG_ON(netdev_refcnt_read(dev));
10487 BUG_ON(!list_empty(&dev->ptype_all));
10488 BUG_ON(!list_empty(&dev->ptype_specific));
10489 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10490 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10491#if IS_ENABLED(CONFIG_DECNET)
10492 WARN_ON(dev->dn_ptr);
10493#endif
10494 if (dev->priv_destructor)
10495 dev->priv_destructor(dev);
10496 if (dev->needs_free_netdev)
10497 free_netdev(dev);
10498
10499 /* Report a network device has been unregistered */
10500 rtnl_lock();
10501 dev_net(dev)->dev_unreg_count--;
10502 __rtnl_unlock();
10503 wake_up(&netdev_unregistering_wq);
10504
10505 /* Free network device */
10506 kobject_put(&dev->dev.kobj);
10507 }
10508}
10509
10510/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10511 * all the same fields in the same order as net_device_stats, with only
10512 * the type differing, but rtnl_link_stats64 may have additional fields
10513 * at the end for newer counters.
10514 */
10515void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10516 const struct net_device_stats *netdev_stats)
10517{
10518#if BITS_PER_LONG == 64
10519 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10520 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10521 /* zero out counters that only exist in rtnl_link_stats64 */
10522 memset((char *)stats64 + sizeof(*netdev_stats), 0,
10523 sizeof(*stats64) - sizeof(*netdev_stats));
10524#else
10525 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10526 const unsigned long *src = (const unsigned long *)netdev_stats;
10527 u64 *dst = (u64 *)stats64;
10528
10529 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10530 for (i = 0; i < n; i++)
10531 dst[i] = src[i];
10532 /* zero out counters that only exist in rtnl_link_stats64 */
10533 memset((char *)stats64 + n * sizeof(u64), 0,
10534 sizeof(*stats64) - n * sizeof(u64));
10535#endif
10536}
10537EXPORT_SYMBOL(netdev_stats_to_stats64);
10538
10539/**
10540 * dev_get_stats - get network device statistics
10541 * @dev: device to get statistics from
10542 * @storage: place to store stats
10543 *
10544 * Get network statistics from device. Return @storage.
10545 * The device driver may provide its own method by setting
10546 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10547 * otherwise the internal statistics structure is used.
10548 */
10549struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10550 struct rtnl_link_stats64 *storage)
10551{
10552 const struct net_device_ops *ops = dev->netdev_ops;
10553
10554 if (ops->ndo_get_stats64) {
10555 memset(storage, 0, sizeof(*storage));
10556 ops->ndo_get_stats64(dev, storage);
10557 } else if (ops->ndo_get_stats) {
10558 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10559 } else {
10560 netdev_stats_to_stats64(storage, &dev->stats);
10561 }
10562 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10563 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10564 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10565 return storage;
10566}
10567EXPORT_SYMBOL(dev_get_stats);
10568
10569/**
10570 * dev_fetch_sw_netstats - get per-cpu network device statistics
10571 * @s: place to store stats
10572 * @netstats: per-cpu network stats to read from
10573 *
10574 * Read per-cpu network statistics and populate the related fields in @s.
10575 */
10576void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10577 const struct pcpu_sw_netstats __percpu *netstats)
10578{
10579 int cpu;
10580
10581 for_each_possible_cpu(cpu) {
10582 const struct pcpu_sw_netstats *stats;
10583 struct pcpu_sw_netstats tmp;
10584 unsigned int start;
10585
10586 stats = per_cpu_ptr(netstats, cpu);
10587 do {
10588 start = u64_stats_fetch_begin_irq(&stats->syncp);
10589 tmp.rx_packets = stats->rx_packets;
10590 tmp.rx_bytes = stats->rx_bytes;
10591 tmp.tx_packets = stats->tx_packets;
10592 tmp.tx_bytes = stats->tx_bytes;
10593 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10594
10595 s->rx_packets += tmp.rx_packets;
10596 s->rx_bytes += tmp.rx_bytes;
10597 s->tx_packets += tmp.tx_packets;
10598 s->tx_bytes += tmp.tx_bytes;
10599 }
10600}
10601EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10602
10603/**
10604 * dev_get_tstats64 - ndo_get_stats64 implementation
10605 * @dev: device to get statistics from
10606 * @s: place to store stats
10607 *
10608 * Populate @s from dev->stats and dev->tstats. Can be used as
10609 * ndo_get_stats64() callback.
10610 */
10611void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10612{
10613 netdev_stats_to_stats64(s, &dev->stats);
10614 dev_fetch_sw_netstats(s, dev->tstats);
10615}
10616EXPORT_SYMBOL_GPL(dev_get_tstats64);
10617
10618struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10619{
10620 struct netdev_queue *queue = dev_ingress_queue(dev);
10621
10622#ifdef CONFIG_NET_CLS_ACT
10623 if (queue)
10624 return queue;
10625 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10626 if (!queue)
10627 return NULL;
10628 netdev_init_one_queue(dev, queue, NULL);
10629 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10630 queue->qdisc_sleeping = &noop_qdisc;
10631 rcu_assign_pointer(dev->ingress_queue, queue);
10632#endif
10633 return queue;
10634}
10635
10636static const struct ethtool_ops default_ethtool_ops;
10637
10638void netdev_set_default_ethtool_ops(struct net_device *dev,
10639 const struct ethtool_ops *ops)
10640{
10641 if (dev->ethtool_ops == &default_ethtool_ops)
10642 dev->ethtool_ops = ops;
10643}
10644EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10645
10646void netdev_freemem(struct net_device *dev)
10647{
10648 char *addr = (char *)dev - dev->padded;
10649
10650 kvfree(addr);
10651}
10652
10653/**
10654 * alloc_netdev_mqs - allocate network device
10655 * @sizeof_priv: size of private data to allocate space for
10656 * @name: device name format string
10657 * @name_assign_type: origin of device name
10658 * @setup: callback to initialize device
10659 * @txqs: the number of TX subqueues to allocate
10660 * @rxqs: the number of RX subqueues to allocate
10661 *
10662 * Allocates a struct net_device with private data area for driver use
10663 * and performs basic initialization. Also allocates subqueue structs
10664 * for each queue on the device.
10665 */
10666struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10667 unsigned char name_assign_type,
10668 void (*setup)(struct net_device *),
10669 unsigned int txqs, unsigned int rxqs)
10670{
10671 struct net_device *dev;
10672 unsigned int alloc_size;
10673 struct net_device *p;
10674
10675 BUG_ON(strlen(name) >= sizeof(dev->name));
10676
10677 if (txqs < 1) {
10678 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10679 return NULL;
10680 }
10681
10682 if (rxqs < 1) {
10683 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10684 return NULL;
10685 }
10686
10687 alloc_size = sizeof(struct net_device);
10688 if (sizeof_priv) {
10689 /* ensure 32-byte alignment of private area */
10690 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10691 alloc_size += sizeof_priv;
10692 }
10693 /* ensure 32-byte alignment of whole construct */
10694 alloc_size += NETDEV_ALIGN - 1;
10695
10696 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10697 if (!p)
10698 return NULL;
10699
10700 dev = PTR_ALIGN(p, NETDEV_ALIGN);
10701 dev->padded = (char *)dev - (char *)p;
10702
10703 dev->pcpu_refcnt = alloc_percpu(int);
10704 if (!dev->pcpu_refcnt)
10705 goto free_dev;
10706
10707 if (dev_addr_init(dev))
10708 goto free_pcpu;
10709
10710 dev_mc_init(dev);
10711 dev_uc_init(dev);
10712
10713 dev_net_set(dev, &init_net);
10714
10715 dev->gso_max_size = GSO_MAX_SIZE;
10716 dev->gso_max_segs = GSO_MAX_SEGS;
10717 dev->upper_level = 1;
10718 dev->lower_level = 1;
10719#ifdef CONFIG_LOCKDEP
10720 dev->nested_level = 0;
10721 INIT_LIST_HEAD(&dev->unlink_list);
10722#endif
10723
10724 INIT_LIST_HEAD(&dev->napi_list);
10725 INIT_LIST_HEAD(&dev->unreg_list);
10726 INIT_LIST_HEAD(&dev->close_list);
10727 INIT_LIST_HEAD(&dev->link_watch_list);
10728 INIT_LIST_HEAD(&dev->adj_list.upper);
10729 INIT_LIST_HEAD(&dev->adj_list.lower);
10730 INIT_LIST_HEAD(&dev->ptype_all);
10731 INIT_LIST_HEAD(&dev->ptype_specific);
10732 INIT_LIST_HEAD(&dev->net_notifier_list);
10733#ifdef CONFIG_NET_SCHED
10734 hash_init(dev->qdisc_hash);
10735#endif
10736 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10737 setup(dev);
10738
10739 if (!dev->tx_queue_len) {
10740 dev->priv_flags |= IFF_NO_QUEUE;
10741 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10742 }
10743
10744 dev->num_tx_queues = txqs;
10745 dev->real_num_tx_queues = txqs;
10746 if (netif_alloc_netdev_queues(dev))
10747 goto free_all;
10748
10749 dev->num_rx_queues = rxqs;
10750 dev->real_num_rx_queues = rxqs;
10751 if (netif_alloc_rx_queues(dev))
10752 goto free_all;
10753
10754 strcpy(dev->name, name);
10755 dev->name_assign_type = name_assign_type;
10756 dev->group = INIT_NETDEV_GROUP;
10757 if (!dev->ethtool_ops)
10758 dev->ethtool_ops = &default_ethtool_ops;
10759
10760 nf_hook_ingress_init(dev);
10761
10762 return dev;
10763
10764free_all:
10765 free_netdev(dev);
10766 return NULL;
10767
10768free_pcpu:
10769 free_percpu(dev->pcpu_refcnt);
10770free_dev:
10771 netdev_freemem(dev);
10772 return NULL;
10773}
10774EXPORT_SYMBOL(alloc_netdev_mqs);
10775
10776/**
10777 * free_netdev - free network device
10778 * @dev: device
10779 *
10780 * This function does the last stage of destroying an allocated device
10781 * interface. The reference to the device object is released. If this
10782 * is the last reference then it will be freed.Must be called in process
10783 * context.
10784 */
10785void free_netdev(struct net_device *dev)
10786{
10787 struct napi_struct *p, *n;
10788
10789 might_sleep();
10790
10791 /* When called immediately after register_netdevice() failed the unwind
10792 * handling may still be dismantling the device. Handle that case by
10793 * deferring the free.
10794 */
10795 if (dev->reg_state == NETREG_UNREGISTERING) {
10796 ASSERT_RTNL();
10797 dev->needs_free_netdev = true;
10798 return;
10799 }
10800
10801 netif_free_tx_queues(dev);
10802 netif_free_rx_queues(dev);
10803
10804 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10805
10806 /* Flush device addresses */
10807 dev_addr_flush(dev);
10808
10809 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10810 netif_napi_del(p);
10811
10812 free_percpu(dev->pcpu_refcnt);
10813 dev->pcpu_refcnt = NULL;
10814 free_percpu(dev->xdp_bulkq);
10815 dev->xdp_bulkq = NULL;
10816
10817 /* Compatibility with error handling in drivers */
10818 if (dev->reg_state == NETREG_UNINITIALIZED) {
10819 netdev_freemem(dev);
10820 return;
10821 }
10822
10823 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10824 dev->reg_state = NETREG_RELEASED;
10825
10826 /* will free via device release */
10827 put_device(&dev->dev);
10828}
10829EXPORT_SYMBOL(free_netdev);
10830
10831/**
10832 * synchronize_net - Synchronize with packet receive processing
10833 *
10834 * Wait for packets currently being received to be done.
10835 * Does not block later packets from starting.
10836 */
10837void synchronize_net(void)
10838{
10839 might_sleep();
10840 if (rtnl_is_locked())
10841 synchronize_rcu_expedited();
10842 else
10843 synchronize_rcu();
10844}
10845EXPORT_SYMBOL(synchronize_net);
10846
10847/**
10848 * unregister_netdevice_queue - remove device from the kernel
10849 * @dev: device
10850 * @head: list
10851 *
10852 * This function shuts down a device interface and removes it
10853 * from the kernel tables.
10854 * If head not NULL, device is queued to be unregistered later.
10855 *
10856 * Callers must hold the rtnl semaphore. You may want
10857 * unregister_netdev() instead of this.
10858 */
10859
10860void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10861{
10862 ASSERT_RTNL();
10863
10864 if (head) {
10865 list_move_tail(&dev->unreg_list, head);
10866 } else {
10867 LIST_HEAD(single);
10868
10869 list_add(&dev->unreg_list, &single);
10870 unregister_netdevice_many(&single);
10871 }
10872}
10873EXPORT_SYMBOL(unregister_netdevice_queue);
10874
10875/**
10876 * unregister_netdevice_many - unregister many devices
10877 * @head: list of devices
10878 *
10879 * Note: As most callers use a stack allocated list_head,
10880 * we force a list_del() to make sure stack wont be corrupted later.
10881 */
10882void unregister_netdevice_many(struct list_head *head)
10883{
10884 struct net_device *dev, *tmp;
10885 LIST_HEAD(close_head);
10886
10887 BUG_ON(dev_boot_phase);
10888 ASSERT_RTNL();
10889
10890 if (list_empty(head))
10891 return;
10892
10893 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10894 /* Some devices call without registering
10895 * for initialization unwind. Remove those
10896 * devices and proceed with the remaining.
10897 */
10898 if (dev->reg_state == NETREG_UNINITIALIZED) {
10899 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10900 dev->name, dev);
10901
10902 WARN_ON(1);
10903 list_del(&dev->unreg_list);
10904 continue;
10905 }
10906 dev->dismantle = true;
10907 BUG_ON(dev->reg_state != NETREG_REGISTERED);
10908 }
10909
10910 /* If device is running, close it first. */
10911 list_for_each_entry(dev, head, unreg_list)
10912 list_add_tail(&dev->close_list, &close_head);
10913 dev_close_many(&close_head, true);
10914
10915 list_for_each_entry(dev, head, unreg_list) {
10916 /* And unlink it from device chain. */
10917 unlist_netdevice(dev);
10918
10919 dev->reg_state = NETREG_UNREGISTERING;
10920 }
10921 flush_all_backlogs();
10922
10923 synchronize_net();
10924
10925 list_for_each_entry(dev, head, unreg_list) {
10926 struct sk_buff *skb = NULL;
10927
10928 /* Shutdown queueing discipline. */
10929 dev_shutdown(dev);
10930
10931 dev_xdp_uninstall(dev);
10932
10933 /* Notify protocols, that we are about to destroy
10934 * this device. They should clean all the things.
10935 */
10936 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10937
10938 if (!dev->rtnl_link_ops ||
10939 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10940 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10941 GFP_KERNEL, NULL, 0);
10942
10943 /*
10944 * Flush the unicast and multicast chains
10945 */
10946 dev_uc_flush(dev);
10947 dev_mc_flush(dev);
10948
10949 netdev_name_node_alt_flush(dev);
10950 netdev_name_node_free(dev->name_node);
10951
10952 if (dev->netdev_ops->ndo_uninit)
10953 dev->netdev_ops->ndo_uninit(dev);
10954
10955 if (skb)
10956 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
10957
10958 /* Notifier chain MUST detach us all upper devices. */
10959 WARN_ON(netdev_has_any_upper_dev(dev));
10960 WARN_ON(netdev_has_any_lower_dev(dev));
10961
10962 /* Remove entries from kobject tree */
10963 netdev_unregister_kobject(dev);
10964#ifdef CONFIG_XPS
10965 /* Remove XPS queueing entries */
10966 netif_reset_xps_queues_gt(dev, 0);
10967#endif
10968 }
10969
10970 synchronize_net();
10971
10972 list_for_each_entry(dev, head, unreg_list) {
10973 dev_put(dev);
10974 net_set_todo(dev);
10975 }
10976
10977 list_del(head);
10978}
10979EXPORT_SYMBOL(unregister_netdevice_many);
10980
10981/**
10982 * unregister_netdev - remove device from the kernel
10983 * @dev: device
10984 *
10985 * This function shuts down a device interface and removes it
10986 * from the kernel tables.
10987 *
10988 * This is just a wrapper for unregister_netdevice that takes
10989 * the rtnl semaphore. In general you want to use this and not
10990 * unregister_netdevice.
10991 */
10992void unregister_netdev(struct net_device *dev)
10993{
10994 rtnl_lock();
10995 unregister_netdevice(dev);
10996 rtnl_unlock();
10997}
10998EXPORT_SYMBOL(unregister_netdev);
10999
11000/**
11001 * dev_change_net_namespace - move device to different nethost namespace
11002 * @dev: device
11003 * @net: network namespace
11004 * @pat: If not NULL name pattern to try if the current device name
11005 * is already taken in the destination network namespace.
11006 *
11007 * This function shuts down a device interface and moves it
11008 * to a new network namespace. On success 0 is returned, on
11009 * a failure a netagive errno code is returned.
11010 *
11011 * Callers must hold the rtnl semaphore.
11012 */
11013
11014int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
11015{
11016 struct net *net_old = dev_net(dev);
11017 int err, new_nsid, new_ifindex;
11018
11019 ASSERT_RTNL();
11020
11021 /* Don't allow namespace local devices to be moved. */
11022 err = -EINVAL;
11023 if (dev->features & NETIF_F_NETNS_LOCAL)
11024 goto out;
11025
11026 /* Ensure the device has been registrered */
11027 if (dev->reg_state != NETREG_REGISTERED)
11028 goto out;
11029
11030 /* Get out if there is nothing todo */
11031 err = 0;
11032 if (net_eq(net_old, net))
11033 goto out;
11034
11035 /* Pick the destination device name, and ensure
11036 * we can use it in the destination network namespace.
11037 */
11038 err = -EEXIST;
11039 if (__dev_get_by_name(net, dev->name)) {
11040 /* We get here if we can't use the current device name */
11041 if (!pat)
11042 goto out;
11043 err = dev_get_valid_name(net, dev, pat);
11044 if (err < 0)
11045 goto out;
11046 }
11047
11048 /*
11049 * And now a mini version of register_netdevice unregister_netdevice.
11050 */
11051
11052 /* If device is running close it first. */
11053 dev_close(dev);
11054
11055 /* And unlink it from device chain */
11056 unlist_netdevice(dev);
11057
11058 synchronize_net();
11059
11060 /* Shutdown queueing discipline. */
11061 dev_shutdown(dev);
11062
11063 /* Notify protocols, that we are about to destroy
11064 * this device. They should clean all the things.
11065 *
11066 * Note that dev->reg_state stays at NETREG_REGISTERED.
11067 * This is wanted because this way 8021q and macvlan know
11068 * the device is just moving and can keep their slaves up.
11069 */
11070 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11071 rcu_barrier();
11072
11073 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11074 /* If there is an ifindex conflict assign a new one */
11075 if (__dev_get_by_index(net, dev->ifindex))
11076 new_ifindex = dev_new_index(net);
11077 else
11078 new_ifindex = dev->ifindex;
11079
11080 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11081 new_ifindex);
11082
11083 /*
11084 * Flush the unicast and multicast chains
11085 */
11086 dev_uc_flush(dev);
11087 dev_mc_flush(dev);
11088
11089 /* Send a netdev-removed uevent to the old namespace */
11090 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11091 netdev_adjacent_del_links(dev);
11092
11093 /* Move per-net netdevice notifiers that are following the netdevice */
11094 move_netdevice_notifiers_dev_net(dev, net);
11095
11096 /* Actually switch the network namespace */
11097 dev_net_set(dev, net);
11098 dev->ifindex = new_ifindex;
11099
11100 /* Send a netdev-add uevent to the new namespace */
11101 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11102 netdev_adjacent_add_links(dev);
11103
11104 /* Fixup kobjects */
11105 err = device_rename(&dev->dev, dev->name);
11106 WARN_ON(err);
11107
11108 /* Adapt owner in case owning user namespace of target network
11109 * namespace is different from the original one.
11110 */
11111 err = netdev_change_owner(dev, net_old, net);
11112 WARN_ON(err);
11113
11114 /* Add the device back in the hashes */
11115 list_netdevice(dev);
11116
11117 /* Notify protocols, that a new device appeared. */
11118 call_netdevice_notifiers(NETDEV_REGISTER, dev);
11119
11120 /*
11121 * Prevent userspace races by waiting until the network
11122 * device is fully setup before sending notifications.
11123 */
11124 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
11125
11126 synchronize_net();
11127 err = 0;
11128out:
11129 return err;
11130}
11131EXPORT_SYMBOL_GPL(dev_change_net_namespace);
11132
11133static int dev_cpu_dead(unsigned int oldcpu)
11134{
11135 struct sk_buff **list_skb;
11136 struct sk_buff *skb;
11137 unsigned int cpu;
11138 struct softnet_data *sd, *oldsd, *remsd = NULL;
11139
11140 local_irq_disable();
11141 cpu = smp_processor_id();
11142 sd = &per_cpu(softnet_data, cpu);
11143 oldsd = &per_cpu(softnet_data, oldcpu);
11144
11145 /* Find end of our completion_queue. */
11146 list_skb = &sd->completion_queue;
11147 while (*list_skb)
11148 list_skb = &(*list_skb)->next;
11149 /* Append completion queue from offline CPU. */
11150 *list_skb = oldsd->completion_queue;
11151 oldsd->completion_queue = NULL;
11152
11153 /* Append output queue from offline CPU. */
11154 if (oldsd->output_queue) {
11155 *sd->output_queue_tailp = oldsd->output_queue;
11156 sd->output_queue_tailp = oldsd->output_queue_tailp;
11157 oldsd->output_queue = NULL;
11158 oldsd->output_queue_tailp = &oldsd->output_queue;
11159 }
11160 /* Append NAPI poll list from offline CPU, with one exception :
11161 * process_backlog() must be called by cpu owning percpu backlog.
11162 * We properly handle process_queue & input_pkt_queue later.
11163 */
11164 while (!list_empty(&oldsd->poll_list)) {
11165 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11166 struct napi_struct,
11167 poll_list);
11168
11169 list_del_init(&napi->poll_list);
11170 if (napi->poll == process_backlog)
11171 napi->state = 0;
11172 else
11173 ____napi_schedule(sd, napi);
11174 }
11175
11176 raise_softirq_irqoff(NET_TX_SOFTIRQ);
11177 local_irq_enable();
11178
11179#ifdef CONFIG_RPS
11180 remsd = oldsd->rps_ipi_list;
11181 oldsd->rps_ipi_list = NULL;
11182#endif
11183 /* send out pending IPI's on offline CPU */
11184 net_rps_send_ipi(remsd);
11185
11186 /* Process offline CPU's input_pkt_queue */
11187 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11188 netif_rx_ni(skb);
11189 input_queue_head_incr(oldsd);
11190 }
11191 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11192 netif_rx_ni(skb);
11193 input_queue_head_incr(oldsd);
11194 }
11195
11196 return 0;
11197}
11198
11199/**
11200 * netdev_increment_features - increment feature set by one
11201 * @all: current feature set
11202 * @one: new feature set
11203 * @mask: mask feature set
11204 *
11205 * Computes a new feature set after adding a device with feature set
11206 * @one to the master device with current feature set @all. Will not
11207 * enable anything that is off in @mask. Returns the new feature set.
11208 */
11209netdev_features_t netdev_increment_features(netdev_features_t all,
11210 netdev_features_t one, netdev_features_t mask)
11211{
11212 if (mask & NETIF_F_HW_CSUM)
11213 mask |= NETIF_F_CSUM_MASK;
11214 mask |= NETIF_F_VLAN_CHALLENGED;
11215
11216 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11217 all &= one | ~NETIF_F_ALL_FOR_ALL;
11218
11219 /* If one device supports hw checksumming, set for all. */
11220 if (all & NETIF_F_HW_CSUM)
11221 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11222
11223 return all;
11224}
11225EXPORT_SYMBOL(netdev_increment_features);
11226
11227static struct hlist_head * __net_init netdev_create_hash(void)
11228{
11229 int i;
11230 struct hlist_head *hash;
11231
11232 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11233 if (hash != NULL)
11234 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11235 INIT_HLIST_HEAD(&hash[i]);
11236
11237 return hash;
11238}
11239
11240/* Initialize per network namespace state */
11241static int __net_init netdev_init(struct net *net)
11242{
11243 BUILD_BUG_ON(GRO_HASH_BUCKETS >
11244 8 * sizeof_field(struct napi_struct, gro_bitmask));
11245
11246 if (net != &init_net)
11247 INIT_LIST_HEAD(&net->dev_base_head);
11248
11249 net->dev_name_head = netdev_create_hash();
11250 if (net->dev_name_head == NULL)
11251 goto err_name;
11252
11253 net->dev_index_head = netdev_create_hash();
11254 if (net->dev_index_head == NULL)
11255 goto err_idx;
11256
11257 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11258
11259 return 0;
11260
11261err_idx:
11262 kfree(net->dev_name_head);
11263err_name:
11264 return -ENOMEM;
11265}
11266
11267/**
11268 * netdev_drivername - network driver for the device
11269 * @dev: network device
11270 *
11271 * Determine network driver for device.
11272 */
11273const char *netdev_drivername(const struct net_device *dev)
11274{
11275 const struct device_driver *driver;
11276 const struct device *parent;
11277 const char *empty = "";
11278
11279 parent = dev->dev.parent;
11280 if (!parent)
11281 return empty;
11282
11283 driver = parent->driver;
11284 if (driver && driver->name)
11285 return driver->name;
11286 return empty;
11287}
11288
11289static void __netdev_printk(const char *level, const struct net_device *dev,
11290 struct va_format *vaf)
11291{
11292 if (dev && dev->dev.parent) {
11293 dev_printk_emit(level[1] - '0',
11294 dev->dev.parent,
11295 "%s %s %s%s: %pV",
11296 dev_driver_string(dev->dev.parent),
11297 dev_name(dev->dev.parent),
11298 netdev_name(dev), netdev_reg_state(dev),
11299 vaf);
11300 } else if (dev) {
11301 printk("%s%s%s: %pV",
11302 level, netdev_name(dev), netdev_reg_state(dev), vaf);
11303 } else {
11304 printk("%s(NULL net_device): %pV", level, vaf);
11305 }
11306}
11307
11308void netdev_printk(const char *level, const struct net_device *dev,
11309 const char *format, ...)
11310{
11311 struct va_format vaf;
11312 va_list args;
11313
11314 va_start(args, format);
11315
11316 vaf.fmt = format;
11317 vaf.va = &args;
11318
11319 __netdev_printk(level, dev, &vaf);
11320
11321 va_end(args);
11322}
11323EXPORT_SYMBOL(netdev_printk);
11324
11325#define define_netdev_printk_level(func, level) \
11326void func(const struct net_device *dev, const char *fmt, ...) \
11327{ \
11328 struct va_format vaf; \
11329 va_list args; \
11330 \
11331 va_start(args, fmt); \
11332 \
11333 vaf.fmt = fmt; \
11334 vaf.va = &args; \
11335 \
11336 __netdev_printk(level, dev, &vaf); \
11337 \
11338 va_end(args); \
11339} \
11340EXPORT_SYMBOL(func);
11341
11342define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11343define_netdev_printk_level(netdev_alert, KERN_ALERT);
11344define_netdev_printk_level(netdev_crit, KERN_CRIT);
11345define_netdev_printk_level(netdev_err, KERN_ERR);
11346define_netdev_printk_level(netdev_warn, KERN_WARNING);
11347define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11348define_netdev_printk_level(netdev_info, KERN_INFO);
11349
11350static void __net_exit netdev_exit(struct net *net)
11351{
11352 kfree(net->dev_name_head);
11353 kfree(net->dev_index_head);
11354 if (net != &init_net)
11355 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11356}
11357
11358static struct pernet_operations __net_initdata netdev_net_ops = {
11359 .init = netdev_init,
11360 .exit = netdev_exit,
11361};
11362
11363static void __net_exit default_device_exit(struct net *net)
11364{
11365 struct net_device *dev, *aux;
11366 /*
11367 * Push all migratable network devices back to the
11368 * initial network namespace
11369 */
11370 rtnl_lock();
11371 for_each_netdev_safe(net, dev, aux) {
11372 int err;
11373 char fb_name[IFNAMSIZ];
11374
11375 /* Ignore unmoveable devices (i.e. loopback) */
11376 if (dev->features & NETIF_F_NETNS_LOCAL)
11377 continue;
11378
11379 /* Leave virtual devices for the generic cleanup */
11380 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11381 continue;
11382
11383 /* Push remaining network devices to init_net */
11384 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11385 if (__dev_get_by_name(&init_net, fb_name))
11386 snprintf(fb_name, IFNAMSIZ, "dev%%d");
11387 err = dev_change_net_namespace(dev, &init_net, fb_name);
11388 if (err) {
11389 pr_emerg("%s: failed to move %s to init_net: %d\n",
11390 __func__, dev->name, err);
11391 BUG();
11392 }
11393 }
11394 rtnl_unlock();
11395}
11396
11397static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11398{
11399 /* Return with the rtnl_lock held when there are no network
11400 * devices unregistering in any network namespace in net_list.
11401 */
11402 struct net *net;
11403 bool unregistering;
11404 DEFINE_WAIT_FUNC(wait, woken_wake_function);
11405
11406 add_wait_queue(&netdev_unregistering_wq, &wait);
11407 for (;;) {
11408 unregistering = false;
11409 rtnl_lock();
11410 list_for_each_entry(net, net_list, exit_list) {
11411 if (net->dev_unreg_count > 0) {
11412 unregistering = true;
11413 break;
11414 }
11415 }
11416 if (!unregistering)
11417 break;
11418 __rtnl_unlock();
11419
11420 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11421 }
11422 remove_wait_queue(&netdev_unregistering_wq, &wait);
11423}
11424
11425static void __net_exit default_device_exit_batch(struct list_head *net_list)
11426{
11427 /* At exit all network devices most be removed from a network
11428 * namespace. Do this in the reverse order of registration.
11429 * Do this across as many network namespaces as possible to
11430 * improve batching efficiency.
11431 */
11432 struct net_device *dev;
11433 struct net *net;
11434 LIST_HEAD(dev_kill_list);
11435
11436 /* To prevent network device cleanup code from dereferencing
11437 * loopback devices or network devices that have been freed
11438 * wait here for all pending unregistrations to complete,
11439 * before unregistring the loopback device and allowing the
11440 * network namespace be freed.
11441 *
11442 * The netdev todo list containing all network devices
11443 * unregistrations that happen in default_device_exit_batch
11444 * will run in the rtnl_unlock() at the end of
11445 * default_device_exit_batch.
11446 */
11447 rtnl_lock_unregistering(net_list);
11448 list_for_each_entry(net, net_list, exit_list) {
11449 for_each_netdev_reverse(net, dev) {
11450 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11451 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11452 else
11453 unregister_netdevice_queue(dev, &dev_kill_list);
11454 }
11455 }
11456 unregister_netdevice_many(&dev_kill_list);
11457 rtnl_unlock();
11458}
11459
11460static struct pernet_operations __net_initdata default_device_ops = {
11461 .exit = default_device_exit,
11462 .exit_batch = default_device_exit_batch,
11463};
11464
11465/*
11466 * Initialize the DEV module. At boot time this walks the device list and
11467 * unhooks any devices that fail to initialise (normally hardware not
11468 * present) and leaves us with a valid list of present and active devices.
11469 *
11470 */
11471
11472/*
11473 * This is called single threaded during boot, so no need
11474 * to take the rtnl semaphore.
11475 */
11476static int __init net_dev_init(void)
11477{
11478 int i, rc = -ENOMEM;
11479
11480 BUG_ON(!dev_boot_phase);
11481
11482 if (dev_proc_init())
11483 goto out;
11484
11485 if (netdev_kobject_init())
11486 goto out;
11487
11488 INIT_LIST_HEAD(&ptype_all);
11489 for (i = 0; i < PTYPE_HASH_SIZE; i++)
11490 INIT_LIST_HEAD(&ptype_base[i]);
11491
11492 INIT_LIST_HEAD(&offload_base);
11493
11494 if (register_pernet_subsys(&netdev_net_ops))
11495 goto out;
11496
11497 /*
11498 * Initialise the packet receive queues.
11499 */
11500
11501 for_each_possible_cpu(i) {
11502 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11503 struct softnet_data *sd = &per_cpu(softnet_data, i);
11504
11505 INIT_WORK(flush, flush_backlog);
11506
11507 skb_queue_head_init(&sd->input_pkt_queue);
11508 skb_queue_head_init(&sd->process_queue);
11509#ifdef CONFIG_XFRM_OFFLOAD
11510 skb_queue_head_init(&sd->xfrm_backlog);
11511#endif
11512 INIT_LIST_HEAD(&sd->poll_list);
11513 sd->output_queue_tailp = &sd->output_queue;
11514#ifdef CONFIG_RPS
11515 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11516 sd->cpu = i;
11517#endif
11518
11519 init_gro_hash(&sd->backlog);
11520 sd->backlog.poll = process_backlog;
11521 sd->backlog.weight = weight_p;
11522 }
11523
11524 dev_boot_phase = 0;
11525
11526 /* The loopback device is special if any other network devices
11527 * is present in a network namespace the loopback device must
11528 * be present. Since we now dynamically allocate and free the
11529 * loopback device ensure this invariant is maintained by
11530 * keeping the loopback device as the first device on the
11531 * list of network devices. Ensuring the loopback devices
11532 * is the first device that appears and the last network device
11533 * that disappears.
11534 */
11535 if (register_pernet_device(&loopback_net_ops))
11536 goto out;
11537
11538 if (register_pernet_device(&default_device_ops))
11539 goto out;
11540
11541 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11542 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11543
11544 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11545 NULL, dev_cpu_dead);
11546 WARN_ON(rc < 0);
11547 rc = 0;
11548out:
11549 return rc;
11550}
11551
11552subsys_initcall(net_dev_init);