Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/memory_hotplug.c
4 *
5 * Copyright (C)
6 */
7
8#include <linux/stddef.h>
9#include <linux/mm.h>
10#include <linux/sched/signal.h>
11#include <linux/swap.h>
12#include <linux/interrupt.h>
13#include <linux/pagemap.h>
14#include <linux/compiler.h>
15#include <linux/export.h>
16#include <linux/pagevec.h>
17#include <linux/writeback.h>
18#include <linux/slab.h>
19#include <linux/sysctl.h>
20#include <linux/cpu.h>
21#include <linux/memory.h>
22#include <linux/memremap.h>
23#include <linux/memory_hotplug.h>
24#include <linux/highmem.h>
25#include <linux/vmalloc.h>
26#include <linux/ioport.h>
27#include <linux/delay.h>
28#include <linux/migrate.h>
29#include <linux/page-isolation.h>
30#include <linux/pfn.h>
31#include <linux/suspend.h>
32#include <linux/mm_inline.h>
33#include <linux/firmware-map.h>
34#include <linux/stop_machine.h>
35#include <linux/hugetlb.h>
36#include <linux/memblock.h>
37#include <linux/compaction.h>
38#include <linux/rmap.h>
39
40#include <asm/tlbflush.h>
41
42#include "internal.h"
43#include "shuffle.h"
44
45/*
46 * online_page_callback contains pointer to current page onlining function.
47 * Initially it is generic_online_page(). If it is required it could be
48 * changed by calling set_online_page_callback() for callback registration
49 * and restore_online_page_callback() for generic callback restore.
50 */
51
52static online_page_callback_t online_page_callback = generic_online_page;
53static DEFINE_MUTEX(online_page_callback_lock);
54
55DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
56
57void get_online_mems(void)
58{
59 percpu_down_read(&mem_hotplug_lock);
60}
61
62void put_online_mems(void)
63{
64 percpu_up_read(&mem_hotplug_lock);
65}
66
67bool movable_node_enabled = false;
68
69#ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
70int mhp_default_online_type = MMOP_OFFLINE;
71#else
72int mhp_default_online_type = MMOP_ONLINE;
73#endif
74
75static int __init setup_memhp_default_state(char *str)
76{
77 const int online_type = mhp_online_type_from_str(str);
78
79 if (online_type >= 0)
80 mhp_default_online_type = online_type;
81
82 return 1;
83}
84__setup("memhp_default_state=", setup_memhp_default_state);
85
86void mem_hotplug_begin(void)
87{
88 cpus_read_lock();
89 percpu_down_write(&mem_hotplug_lock);
90}
91
92void mem_hotplug_done(void)
93{
94 percpu_up_write(&mem_hotplug_lock);
95 cpus_read_unlock();
96}
97
98u64 max_mem_size = U64_MAX;
99
100/* add this memory to iomem resource */
101static struct resource *register_memory_resource(u64 start, u64 size,
102 const char *resource_name)
103{
104 struct resource *res;
105 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
106
107 if (strcmp(resource_name, "System RAM"))
108 flags |= IORESOURCE_SYSRAM_DRIVER_MANAGED;
109
110 if (!mhp_range_allowed(start, size, true))
111 return ERR_PTR(-E2BIG);
112
113 /*
114 * Make sure value parsed from 'mem=' only restricts memory adding
115 * while booting, so that memory hotplug won't be impacted. Please
116 * refer to document of 'mem=' in kernel-parameters.txt for more
117 * details.
118 */
119 if (start + size > max_mem_size && system_state < SYSTEM_RUNNING)
120 return ERR_PTR(-E2BIG);
121
122 /*
123 * Request ownership of the new memory range. This might be
124 * a child of an existing resource that was present but
125 * not marked as busy.
126 */
127 res = __request_region(&iomem_resource, start, size,
128 resource_name, flags);
129
130 if (!res) {
131 pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
132 start, start + size);
133 return ERR_PTR(-EEXIST);
134 }
135 return res;
136}
137
138static void release_memory_resource(struct resource *res)
139{
140 if (!res)
141 return;
142 release_resource(res);
143 kfree(res);
144}
145
146#ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
147void get_page_bootmem(unsigned long info, struct page *page,
148 unsigned long type)
149{
150 page->freelist = (void *)type;
151 SetPagePrivate(page);
152 set_page_private(page, info);
153 page_ref_inc(page);
154}
155
156void put_page_bootmem(struct page *page)
157{
158 unsigned long type;
159
160 type = (unsigned long) page->freelist;
161 BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
162 type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
163
164 if (page_ref_dec_return(page) == 1) {
165 page->freelist = NULL;
166 ClearPagePrivate(page);
167 set_page_private(page, 0);
168 INIT_LIST_HEAD(&page->lru);
169 free_reserved_page(page);
170 }
171}
172
173#ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
174#ifndef CONFIG_SPARSEMEM_VMEMMAP
175static void register_page_bootmem_info_section(unsigned long start_pfn)
176{
177 unsigned long mapsize, section_nr, i;
178 struct mem_section *ms;
179 struct page *page, *memmap;
180 struct mem_section_usage *usage;
181
182 section_nr = pfn_to_section_nr(start_pfn);
183 ms = __nr_to_section(section_nr);
184
185 /* Get section's memmap address */
186 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
187
188 /*
189 * Get page for the memmap's phys address
190 * XXX: need more consideration for sparse_vmemmap...
191 */
192 page = virt_to_page(memmap);
193 mapsize = sizeof(struct page) * PAGES_PER_SECTION;
194 mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
195
196 /* remember memmap's page */
197 for (i = 0; i < mapsize; i++, page++)
198 get_page_bootmem(section_nr, page, SECTION_INFO);
199
200 usage = ms->usage;
201 page = virt_to_page(usage);
202
203 mapsize = PAGE_ALIGN(mem_section_usage_size()) >> PAGE_SHIFT;
204
205 for (i = 0; i < mapsize; i++, page++)
206 get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
207
208}
209#else /* CONFIG_SPARSEMEM_VMEMMAP */
210static void register_page_bootmem_info_section(unsigned long start_pfn)
211{
212 unsigned long mapsize, section_nr, i;
213 struct mem_section *ms;
214 struct page *page, *memmap;
215 struct mem_section_usage *usage;
216
217 section_nr = pfn_to_section_nr(start_pfn);
218 ms = __nr_to_section(section_nr);
219
220 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
221
222 register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
223
224 usage = ms->usage;
225 page = virt_to_page(usage);
226
227 mapsize = PAGE_ALIGN(mem_section_usage_size()) >> PAGE_SHIFT;
228
229 for (i = 0; i < mapsize; i++, page++)
230 get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
231}
232#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
233
234void __init register_page_bootmem_info_node(struct pglist_data *pgdat)
235{
236 unsigned long i, pfn, end_pfn, nr_pages;
237 int node = pgdat->node_id;
238 struct page *page;
239
240 nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
241 page = virt_to_page(pgdat);
242
243 for (i = 0; i < nr_pages; i++, page++)
244 get_page_bootmem(node, page, NODE_INFO);
245
246 pfn = pgdat->node_start_pfn;
247 end_pfn = pgdat_end_pfn(pgdat);
248
249 /* register section info */
250 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
251 /*
252 * Some platforms can assign the same pfn to multiple nodes - on
253 * node0 as well as nodeN. To avoid registering a pfn against
254 * multiple nodes we check that this pfn does not already
255 * reside in some other nodes.
256 */
257 if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node))
258 register_page_bootmem_info_section(pfn);
259 }
260}
261#endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
262
263static int check_pfn_span(unsigned long pfn, unsigned long nr_pages,
264 const char *reason)
265{
266 /*
267 * Disallow all operations smaller than a sub-section and only
268 * allow operations smaller than a section for
269 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range()
270 * enforces a larger memory_block_size_bytes() granularity for
271 * memory that will be marked online, so this check should only
272 * fire for direct arch_{add,remove}_memory() users outside of
273 * add_memory_resource().
274 */
275 unsigned long min_align;
276
277 if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
278 min_align = PAGES_PER_SUBSECTION;
279 else
280 min_align = PAGES_PER_SECTION;
281 if (!IS_ALIGNED(pfn, min_align)
282 || !IS_ALIGNED(nr_pages, min_align)) {
283 WARN(1, "Misaligned __%s_pages start: %#lx end: #%lx\n",
284 reason, pfn, pfn + nr_pages - 1);
285 return -EINVAL;
286 }
287 return 0;
288}
289
290/*
291 * Return page for the valid pfn only if the page is online. All pfn
292 * walkers which rely on the fully initialized page->flags and others
293 * should use this rather than pfn_valid && pfn_to_page
294 */
295struct page *pfn_to_online_page(unsigned long pfn)
296{
297 unsigned long nr = pfn_to_section_nr(pfn);
298 struct dev_pagemap *pgmap;
299 struct mem_section *ms;
300
301 if (nr >= NR_MEM_SECTIONS)
302 return NULL;
303
304 ms = __nr_to_section(nr);
305 if (!online_section(ms))
306 return NULL;
307
308 /*
309 * Save some code text when online_section() +
310 * pfn_section_valid() are sufficient.
311 */
312 if (IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) && !pfn_valid(pfn))
313 return NULL;
314
315 if (!pfn_section_valid(ms, pfn))
316 return NULL;
317
318 if (!online_device_section(ms))
319 return pfn_to_page(pfn);
320
321 /*
322 * Slowpath: when ZONE_DEVICE collides with
323 * ZONE_{NORMAL,MOVABLE} within the same section some pfns in
324 * the section may be 'offline' but 'valid'. Only
325 * get_dev_pagemap() can determine sub-section online status.
326 */
327 pgmap = get_dev_pagemap(pfn, NULL);
328 put_dev_pagemap(pgmap);
329
330 /* The presence of a pgmap indicates ZONE_DEVICE offline pfn */
331 if (pgmap)
332 return NULL;
333
334 return pfn_to_page(pfn);
335}
336EXPORT_SYMBOL_GPL(pfn_to_online_page);
337
338/*
339 * Reasonably generic function for adding memory. It is
340 * expected that archs that support memory hotplug will
341 * call this function after deciding the zone to which to
342 * add the new pages.
343 */
344int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages,
345 struct mhp_params *params)
346{
347 const unsigned long end_pfn = pfn + nr_pages;
348 unsigned long cur_nr_pages;
349 int err;
350 struct vmem_altmap *altmap = params->altmap;
351
352 if (WARN_ON_ONCE(!params->pgprot.pgprot))
353 return -EINVAL;
354
355 VM_BUG_ON(!mhp_range_allowed(PFN_PHYS(pfn), nr_pages * PAGE_SIZE, false));
356
357 if (altmap) {
358 /*
359 * Validate altmap is within bounds of the total request
360 */
361 if (altmap->base_pfn != pfn
362 || vmem_altmap_offset(altmap) > nr_pages) {
363 pr_warn_once("memory add fail, invalid altmap\n");
364 return -EINVAL;
365 }
366 altmap->alloc = 0;
367 }
368
369 err = check_pfn_span(pfn, nr_pages, "add");
370 if (err)
371 return err;
372
373 for (; pfn < end_pfn; pfn += cur_nr_pages) {
374 /* Select all remaining pages up to the next section boundary */
375 cur_nr_pages = min(end_pfn - pfn,
376 SECTION_ALIGN_UP(pfn + 1) - pfn);
377 err = sparse_add_section(nid, pfn, cur_nr_pages, altmap);
378 if (err)
379 break;
380 cond_resched();
381 }
382 vmemmap_populate_print_last();
383 return err;
384}
385
386/* find the smallest valid pfn in the range [start_pfn, end_pfn) */
387static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
388 unsigned long start_pfn,
389 unsigned long end_pfn)
390{
391 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) {
392 if (unlikely(!pfn_to_online_page(start_pfn)))
393 continue;
394
395 if (unlikely(pfn_to_nid(start_pfn) != nid))
396 continue;
397
398 if (zone != page_zone(pfn_to_page(start_pfn)))
399 continue;
400
401 return start_pfn;
402 }
403
404 return 0;
405}
406
407/* find the biggest valid pfn in the range [start_pfn, end_pfn). */
408static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
409 unsigned long start_pfn,
410 unsigned long end_pfn)
411{
412 unsigned long pfn;
413
414 /* pfn is the end pfn of a memory section. */
415 pfn = end_pfn - 1;
416 for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) {
417 if (unlikely(!pfn_to_online_page(pfn)))
418 continue;
419
420 if (unlikely(pfn_to_nid(pfn) != nid))
421 continue;
422
423 if (zone != page_zone(pfn_to_page(pfn)))
424 continue;
425
426 return pfn;
427 }
428
429 return 0;
430}
431
432static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
433 unsigned long end_pfn)
434{
435 unsigned long pfn;
436 int nid = zone_to_nid(zone);
437
438 zone_span_writelock(zone);
439 if (zone->zone_start_pfn == start_pfn) {
440 /*
441 * If the section is smallest section in the zone, it need
442 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
443 * In this case, we find second smallest valid mem_section
444 * for shrinking zone.
445 */
446 pfn = find_smallest_section_pfn(nid, zone, end_pfn,
447 zone_end_pfn(zone));
448 if (pfn) {
449 zone->spanned_pages = zone_end_pfn(zone) - pfn;
450 zone->zone_start_pfn = pfn;
451 } else {
452 zone->zone_start_pfn = 0;
453 zone->spanned_pages = 0;
454 }
455 } else if (zone_end_pfn(zone) == end_pfn) {
456 /*
457 * If the section is biggest section in the zone, it need
458 * shrink zone->spanned_pages.
459 * In this case, we find second biggest valid mem_section for
460 * shrinking zone.
461 */
462 pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn,
463 start_pfn);
464 if (pfn)
465 zone->spanned_pages = pfn - zone->zone_start_pfn + 1;
466 else {
467 zone->zone_start_pfn = 0;
468 zone->spanned_pages = 0;
469 }
470 }
471 zone_span_writeunlock(zone);
472}
473
474static void update_pgdat_span(struct pglist_data *pgdat)
475{
476 unsigned long node_start_pfn = 0, node_end_pfn = 0;
477 struct zone *zone;
478
479 for (zone = pgdat->node_zones;
480 zone < pgdat->node_zones + MAX_NR_ZONES; zone++) {
481 unsigned long end_pfn = zone_end_pfn(zone);
482
483 /* No need to lock the zones, they can't change. */
484 if (!zone->spanned_pages)
485 continue;
486 if (!node_end_pfn) {
487 node_start_pfn = zone->zone_start_pfn;
488 node_end_pfn = end_pfn;
489 continue;
490 }
491
492 if (end_pfn > node_end_pfn)
493 node_end_pfn = end_pfn;
494 if (zone->zone_start_pfn < node_start_pfn)
495 node_start_pfn = zone->zone_start_pfn;
496 }
497
498 pgdat->node_start_pfn = node_start_pfn;
499 pgdat->node_spanned_pages = node_end_pfn - node_start_pfn;
500}
501
502void __ref remove_pfn_range_from_zone(struct zone *zone,
503 unsigned long start_pfn,
504 unsigned long nr_pages)
505{
506 const unsigned long end_pfn = start_pfn + nr_pages;
507 struct pglist_data *pgdat = zone->zone_pgdat;
508 unsigned long pfn, cur_nr_pages, flags;
509
510 /* Poison struct pages because they are now uninitialized again. */
511 for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) {
512 cond_resched();
513
514 /* Select all remaining pages up to the next section boundary */
515 cur_nr_pages =
516 min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn);
517 page_init_poison(pfn_to_page(pfn),
518 sizeof(struct page) * cur_nr_pages);
519 }
520
521#ifdef CONFIG_ZONE_DEVICE
522 /*
523 * Zone shrinking code cannot properly deal with ZONE_DEVICE. So
524 * we will not try to shrink the zones - which is okay as
525 * set_zone_contiguous() cannot deal with ZONE_DEVICE either way.
526 */
527 if (zone_idx(zone) == ZONE_DEVICE)
528 return;
529#endif
530
531 clear_zone_contiguous(zone);
532
533 pgdat_resize_lock(zone->zone_pgdat, &flags);
534 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
535 update_pgdat_span(pgdat);
536 pgdat_resize_unlock(zone->zone_pgdat, &flags);
537
538 set_zone_contiguous(zone);
539}
540
541static void __remove_section(unsigned long pfn, unsigned long nr_pages,
542 unsigned long map_offset,
543 struct vmem_altmap *altmap)
544{
545 struct mem_section *ms = __pfn_to_section(pfn);
546
547 if (WARN_ON_ONCE(!valid_section(ms)))
548 return;
549
550 sparse_remove_section(ms, pfn, nr_pages, map_offset, altmap);
551}
552
553/**
554 * __remove_pages() - remove sections of pages
555 * @pfn: starting pageframe (must be aligned to start of a section)
556 * @nr_pages: number of pages to remove (must be multiple of section size)
557 * @altmap: alternative device page map or %NULL if default memmap is used
558 *
559 * Generic helper function to remove section mappings and sysfs entries
560 * for the section of the memory we are removing. Caller needs to make
561 * sure that pages are marked reserved and zones are adjust properly by
562 * calling offline_pages().
563 */
564void __remove_pages(unsigned long pfn, unsigned long nr_pages,
565 struct vmem_altmap *altmap)
566{
567 const unsigned long end_pfn = pfn + nr_pages;
568 unsigned long cur_nr_pages;
569 unsigned long map_offset = 0;
570
571 map_offset = vmem_altmap_offset(altmap);
572
573 if (check_pfn_span(pfn, nr_pages, "remove"))
574 return;
575
576 for (; pfn < end_pfn; pfn += cur_nr_pages) {
577 cond_resched();
578 /* Select all remaining pages up to the next section boundary */
579 cur_nr_pages = min(end_pfn - pfn,
580 SECTION_ALIGN_UP(pfn + 1) - pfn);
581 __remove_section(pfn, cur_nr_pages, map_offset, altmap);
582 map_offset = 0;
583 }
584}
585
586int set_online_page_callback(online_page_callback_t callback)
587{
588 int rc = -EINVAL;
589
590 get_online_mems();
591 mutex_lock(&online_page_callback_lock);
592
593 if (online_page_callback == generic_online_page) {
594 online_page_callback = callback;
595 rc = 0;
596 }
597
598 mutex_unlock(&online_page_callback_lock);
599 put_online_mems();
600
601 return rc;
602}
603EXPORT_SYMBOL_GPL(set_online_page_callback);
604
605int restore_online_page_callback(online_page_callback_t callback)
606{
607 int rc = -EINVAL;
608
609 get_online_mems();
610 mutex_lock(&online_page_callback_lock);
611
612 if (online_page_callback == callback) {
613 online_page_callback = generic_online_page;
614 rc = 0;
615 }
616
617 mutex_unlock(&online_page_callback_lock);
618 put_online_mems();
619
620 return rc;
621}
622EXPORT_SYMBOL_GPL(restore_online_page_callback);
623
624void generic_online_page(struct page *page, unsigned int order)
625{
626 /*
627 * Freeing the page with debug_pagealloc enabled will try to unmap it,
628 * so we should map it first. This is better than introducing a special
629 * case in page freeing fast path.
630 */
631 debug_pagealloc_map_pages(page, 1 << order);
632 __free_pages_core(page, order);
633 totalram_pages_add(1UL << order);
634#ifdef CONFIG_HIGHMEM
635 if (PageHighMem(page))
636 totalhigh_pages_add(1UL << order);
637#endif
638}
639EXPORT_SYMBOL_GPL(generic_online_page);
640
641static void online_pages_range(unsigned long start_pfn, unsigned long nr_pages)
642{
643 const unsigned long end_pfn = start_pfn + nr_pages;
644 unsigned long pfn;
645
646 /*
647 * Online the pages in MAX_ORDER - 1 aligned chunks. The callback might
648 * decide to not expose all pages to the buddy (e.g., expose them
649 * later). We account all pages as being online and belonging to this
650 * zone ("present").
651 */
652 for (pfn = start_pfn; pfn < end_pfn; pfn += MAX_ORDER_NR_PAGES)
653 (*online_page_callback)(pfn_to_page(pfn), MAX_ORDER - 1);
654
655 /* mark all involved sections as online */
656 online_mem_sections(start_pfn, end_pfn);
657}
658
659/* check which state of node_states will be changed when online memory */
660static void node_states_check_changes_online(unsigned long nr_pages,
661 struct zone *zone, struct memory_notify *arg)
662{
663 int nid = zone_to_nid(zone);
664
665 arg->status_change_nid = NUMA_NO_NODE;
666 arg->status_change_nid_normal = NUMA_NO_NODE;
667 arg->status_change_nid_high = NUMA_NO_NODE;
668
669 if (!node_state(nid, N_MEMORY))
670 arg->status_change_nid = nid;
671 if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
672 arg->status_change_nid_normal = nid;
673#ifdef CONFIG_HIGHMEM
674 if (zone_idx(zone) <= ZONE_HIGHMEM && !node_state(nid, N_HIGH_MEMORY))
675 arg->status_change_nid_high = nid;
676#endif
677}
678
679static void node_states_set_node(int node, struct memory_notify *arg)
680{
681 if (arg->status_change_nid_normal >= 0)
682 node_set_state(node, N_NORMAL_MEMORY);
683
684 if (arg->status_change_nid_high >= 0)
685 node_set_state(node, N_HIGH_MEMORY);
686
687 if (arg->status_change_nid >= 0)
688 node_set_state(node, N_MEMORY);
689}
690
691static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
692 unsigned long nr_pages)
693{
694 unsigned long old_end_pfn = zone_end_pfn(zone);
695
696 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
697 zone->zone_start_pfn = start_pfn;
698
699 zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
700}
701
702static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
703 unsigned long nr_pages)
704{
705 unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
706
707 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
708 pgdat->node_start_pfn = start_pfn;
709
710 pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
711
712}
713
714static void section_taint_zone_device(unsigned long pfn)
715{
716 struct mem_section *ms = __pfn_to_section(pfn);
717
718 ms->section_mem_map |= SECTION_TAINT_ZONE_DEVICE;
719}
720
721/*
722 * Associate the pfn range with the given zone, initializing the memmaps
723 * and resizing the pgdat/zone data to span the added pages. After this
724 * call, all affected pages are PG_reserved.
725 *
726 * All aligned pageblocks are initialized to the specified migratetype
727 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
728 * zone stats (e.g., nr_isolate_pageblock) are touched.
729 */
730void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
731 unsigned long nr_pages,
732 struct vmem_altmap *altmap, int migratetype)
733{
734 struct pglist_data *pgdat = zone->zone_pgdat;
735 int nid = pgdat->node_id;
736 unsigned long flags;
737
738 clear_zone_contiguous(zone);
739
740 /* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */
741 pgdat_resize_lock(pgdat, &flags);
742 zone_span_writelock(zone);
743 if (zone_is_empty(zone))
744 init_currently_empty_zone(zone, start_pfn, nr_pages);
745 resize_zone_range(zone, start_pfn, nr_pages);
746 zone_span_writeunlock(zone);
747 resize_pgdat_range(pgdat, start_pfn, nr_pages);
748 pgdat_resize_unlock(pgdat, &flags);
749
750 /*
751 * Subsection population requires care in pfn_to_online_page().
752 * Set the taint to enable the slow path detection of
753 * ZONE_DEVICE pages in an otherwise ZONE_{NORMAL,MOVABLE}
754 * section.
755 */
756 if (zone_is_zone_device(zone)) {
757 if (!IS_ALIGNED(start_pfn, PAGES_PER_SECTION))
758 section_taint_zone_device(start_pfn);
759 if (!IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION))
760 section_taint_zone_device(start_pfn + nr_pages);
761 }
762
763 /*
764 * TODO now we have a visible range of pages which are not associated
765 * with their zone properly. Not nice but set_pfnblock_flags_mask
766 * expects the zone spans the pfn range. All the pages in the range
767 * are reserved so nobody should be touching them so we should be safe
768 */
769 memmap_init_range(nr_pages, nid, zone_idx(zone), start_pfn, 0,
770 MEMINIT_HOTPLUG, altmap, migratetype);
771
772 set_zone_contiguous(zone);
773}
774
775/*
776 * Returns a default kernel memory zone for the given pfn range.
777 * If no kernel zone covers this pfn range it will automatically go
778 * to the ZONE_NORMAL.
779 */
780static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
781 unsigned long nr_pages)
782{
783 struct pglist_data *pgdat = NODE_DATA(nid);
784 int zid;
785
786 for (zid = 0; zid <= ZONE_NORMAL; zid++) {
787 struct zone *zone = &pgdat->node_zones[zid];
788
789 if (zone_intersects(zone, start_pfn, nr_pages))
790 return zone;
791 }
792
793 return &pgdat->node_zones[ZONE_NORMAL];
794}
795
796static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
797 unsigned long nr_pages)
798{
799 struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
800 nr_pages);
801 struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
802 bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
803 bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
804
805 /*
806 * We inherit the existing zone in a simple case where zones do not
807 * overlap in the given range
808 */
809 if (in_kernel ^ in_movable)
810 return (in_kernel) ? kernel_zone : movable_zone;
811
812 /*
813 * If the range doesn't belong to any zone or two zones overlap in the
814 * given range then we use movable zone only if movable_node is
815 * enabled because we always online to a kernel zone by default.
816 */
817 return movable_node_enabled ? movable_zone : kernel_zone;
818}
819
820struct zone * zone_for_pfn_range(int online_type, int nid, unsigned start_pfn,
821 unsigned long nr_pages)
822{
823 if (online_type == MMOP_ONLINE_KERNEL)
824 return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
825
826 if (online_type == MMOP_ONLINE_MOVABLE)
827 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
828
829 return default_zone_for_pfn(nid, start_pfn, nr_pages);
830}
831
832int __ref online_pages(unsigned long pfn, unsigned long nr_pages,
833 int online_type, int nid)
834{
835 unsigned long flags;
836 struct zone *zone;
837 int need_zonelists_rebuild = 0;
838 int ret;
839 struct memory_notify arg;
840
841 /* We can only online full sections (e.g., SECTION_IS_ONLINE) */
842 if (WARN_ON_ONCE(!nr_pages ||
843 !IS_ALIGNED(pfn | nr_pages, PAGES_PER_SECTION)))
844 return -EINVAL;
845
846 mem_hotplug_begin();
847
848 /* associate pfn range with the zone */
849 zone = zone_for_pfn_range(online_type, nid, pfn, nr_pages);
850 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_ISOLATE);
851
852 arg.start_pfn = pfn;
853 arg.nr_pages = nr_pages;
854 node_states_check_changes_online(nr_pages, zone, &arg);
855
856 ret = memory_notify(MEM_GOING_ONLINE, &arg);
857 ret = notifier_to_errno(ret);
858 if (ret)
859 goto failed_addition;
860
861 /*
862 * Fixup the number of isolated pageblocks before marking the sections
863 * onlining, such that undo_isolate_page_range() works correctly.
864 */
865 spin_lock_irqsave(&zone->lock, flags);
866 zone->nr_isolate_pageblock += nr_pages / pageblock_nr_pages;
867 spin_unlock_irqrestore(&zone->lock, flags);
868
869 /*
870 * If this zone is not populated, then it is not in zonelist.
871 * This means the page allocator ignores this zone.
872 * So, zonelist must be updated after online.
873 */
874 if (!populated_zone(zone)) {
875 need_zonelists_rebuild = 1;
876 setup_zone_pageset(zone);
877 }
878
879 online_pages_range(pfn, nr_pages);
880 zone->present_pages += nr_pages;
881
882 pgdat_resize_lock(zone->zone_pgdat, &flags);
883 zone->zone_pgdat->node_present_pages += nr_pages;
884 pgdat_resize_unlock(zone->zone_pgdat, &flags);
885
886 node_states_set_node(nid, &arg);
887 if (need_zonelists_rebuild)
888 build_all_zonelists(NULL);
889 zone_pcp_update(zone);
890
891 /* Basic onlining is complete, allow allocation of onlined pages. */
892 undo_isolate_page_range(pfn, pfn + nr_pages, MIGRATE_MOVABLE);
893
894 /*
895 * Freshly onlined pages aren't shuffled (e.g., all pages are placed to
896 * the tail of the freelist when undoing isolation). Shuffle the whole
897 * zone to make sure the just onlined pages are properly distributed
898 * across the whole freelist - to create an initial shuffle.
899 */
900 shuffle_zone(zone);
901
902 init_per_zone_wmark_min();
903
904 kswapd_run(nid);
905 kcompactd_run(nid);
906
907 writeback_set_ratelimit();
908
909 memory_notify(MEM_ONLINE, &arg);
910 mem_hotplug_done();
911 return 0;
912
913failed_addition:
914 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
915 (unsigned long long) pfn << PAGE_SHIFT,
916 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
917 memory_notify(MEM_CANCEL_ONLINE, &arg);
918 remove_pfn_range_from_zone(zone, pfn, nr_pages);
919 mem_hotplug_done();
920 return ret;
921}
922#endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
923
924static void reset_node_present_pages(pg_data_t *pgdat)
925{
926 struct zone *z;
927
928 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
929 z->present_pages = 0;
930
931 pgdat->node_present_pages = 0;
932}
933
934/* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
935static pg_data_t __ref *hotadd_new_pgdat(int nid)
936{
937 struct pglist_data *pgdat;
938
939 pgdat = NODE_DATA(nid);
940 if (!pgdat) {
941 pgdat = arch_alloc_nodedata(nid);
942 if (!pgdat)
943 return NULL;
944
945 pgdat->per_cpu_nodestats =
946 alloc_percpu(struct per_cpu_nodestat);
947 arch_refresh_nodedata(nid, pgdat);
948 } else {
949 int cpu;
950 /*
951 * Reset the nr_zones, order and highest_zoneidx before reuse.
952 * Note that kswapd will init kswapd_highest_zoneidx properly
953 * when it starts in the near future.
954 */
955 pgdat->nr_zones = 0;
956 pgdat->kswapd_order = 0;
957 pgdat->kswapd_highest_zoneidx = 0;
958 for_each_online_cpu(cpu) {
959 struct per_cpu_nodestat *p;
960
961 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
962 memset(p, 0, sizeof(*p));
963 }
964 }
965
966 /* we can use NODE_DATA(nid) from here */
967 pgdat->node_id = nid;
968 pgdat->node_start_pfn = 0;
969
970 /* init node's zones as empty zones, we don't have any present pages.*/
971 free_area_init_core_hotplug(nid);
972
973 /*
974 * The node we allocated has no zone fallback lists. For avoiding
975 * to access not-initialized zonelist, build here.
976 */
977 build_all_zonelists(pgdat);
978
979 /*
980 * When memory is hot-added, all the memory is in offline state. So
981 * clear all zones' present_pages because they will be updated in
982 * online_pages() and offline_pages().
983 */
984 reset_node_managed_pages(pgdat);
985 reset_node_present_pages(pgdat);
986
987 return pgdat;
988}
989
990static void rollback_node_hotadd(int nid)
991{
992 pg_data_t *pgdat = NODE_DATA(nid);
993
994 arch_refresh_nodedata(nid, NULL);
995 free_percpu(pgdat->per_cpu_nodestats);
996 arch_free_nodedata(pgdat);
997}
998
999
1000/**
1001 * try_online_node - online a node if offlined
1002 * @nid: the node ID
1003 * @set_node_online: Whether we want to online the node
1004 * called by cpu_up() to online a node without onlined memory.
1005 *
1006 * Returns:
1007 * 1 -> a new node has been allocated
1008 * 0 -> the node is already online
1009 * -ENOMEM -> the node could not be allocated
1010 */
1011static int __try_online_node(int nid, bool set_node_online)
1012{
1013 pg_data_t *pgdat;
1014 int ret = 1;
1015
1016 if (node_online(nid))
1017 return 0;
1018
1019 pgdat = hotadd_new_pgdat(nid);
1020 if (!pgdat) {
1021 pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1022 ret = -ENOMEM;
1023 goto out;
1024 }
1025
1026 if (set_node_online) {
1027 node_set_online(nid);
1028 ret = register_one_node(nid);
1029 BUG_ON(ret);
1030 }
1031out:
1032 return ret;
1033}
1034
1035/*
1036 * Users of this function always want to online/register the node
1037 */
1038int try_online_node(int nid)
1039{
1040 int ret;
1041
1042 mem_hotplug_begin();
1043 ret = __try_online_node(nid, true);
1044 mem_hotplug_done();
1045 return ret;
1046}
1047
1048static int check_hotplug_memory_range(u64 start, u64 size)
1049{
1050 /* memory range must be block size aligned */
1051 if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) ||
1052 !IS_ALIGNED(size, memory_block_size_bytes())) {
1053 pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1054 memory_block_size_bytes(), start, size);
1055 return -EINVAL;
1056 }
1057
1058 return 0;
1059}
1060
1061static int online_memory_block(struct memory_block *mem, void *arg)
1062{
1063 mem->online_type = mhp_default_online_type;
1064 return device_online(&mem->dev);
1065}
1066
1067/*
1068 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1069 * and online/offline operations (triggered e.g. by sysfs).
1070 *
1071 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1072 */
1073int __ref add_memory_resource(int nid, struct resource *res, mhp_t mhp_flags)
1074{
1075 struct mhp_params params = { .pgprot = pgprot_mhp(PAGE_KERNEL) };
1076 u64 start, size;
1077 bool new_node = false;
1078 int ret;
1079
1080 start = res->start;
1081 size = resource_size(res);
1082
1083 ret = check_hotplug_memory_range(start, size);
1084 if (ret)
1085 return ret;
1086
1087 if (!node_possible(nid)) {
1088 WARN(1, "node %d was absent from the node_possible_map\n", nid);
1089 return -EINVAL;
1090 }
1091
1092 mem_hotplug_begin();
1093
1094 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1095 memblock_add_node(start, size, nid);
1096
1097 ret = __try_online_node(nid, false);
1098 if (ret < 0)
1099 goto error;
1100 new_node = ret;
1101
1102 /* call arch's memory hotadd */
1103 ret = arch_add_memory(nid, start, size, ¶ms);
1104 if (ret < 0)
1105 goto error;
1106
1107 /* create memory block devices after memory was added */
1108 ret = create_memory_block_devices(start, size);
1109 if (ret) {
1110 arch_remove_memory(nid, start, size, NULL);
1111 goto error;
1112 }
1113
1114 if (new_node) {
1115 /* If sysfs file of new node can't be created, cpu on the node
1116 * can't be hot-added. There is no rollback way now.
1117 * So, check by BUG_ON() to catch it reluctantly..
1118 * We online node here. We can't roll back from here.
1119 */
1120 node_set_online(nid);
1121 ret = __register_one_node(nid);
1122 BUG_ON(ret);
1123 }
1124
1125 /* link memory sections under this node.*/
1126 link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1),
1127 MEMINIT_HOTPLUG);
1128
1129 /* create new memmap entry */
1130 if (!strcmp(res->name, "System RAM"))
1131 firmware_map_add_hotplug(start, start + size, "System RAM");
1132
1133 /* device_online() will take the lock when calling online_pages() */
1134 mem_hotplug_done();
1135
1136 /*
1137 * In case we're allowed to merge the resource, flag it and trigger
1138 * merging now that adding succeeded.
1139 */
1140 if (mhp_flags & MHP_MERGE_RESOURCE)
1141 merge_system_ram_resource(res);
1142
1143 /* online pages if requested */
1144 if (mhp_default_online_type != MMOP_OFFLINE)
1145 walk_memory_blocks(start, size, NULL, online_memory_block);
1146
1147 return ret;
1148error:
1149 /* rollback pgdat allocation and others */
1150 if (new_node)
1151 rollback_node_hotadd(nid);
1152 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1153 memblock_remove(start, size);
1154 mem_hotplug_done();
1155 return ret;
1156}
1157
1158/* requires device_hotplug_lock, see add_memory_resource() */
1159int __ref __add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1160{
1161 struct resource *res;
1162 int ret;
1163
1164 res = register_memory_resource(start, size, "System RAM");
1165 if (IS_ERR(res))
1166 return PTR_ERR(res);
1167
1168 ret = add_memory_resource(nid, res, mhp_flags);
1169 if (ret < 0)
1170 release_memory_resource(res);
1171 return ret;
1172}
1173
1174int add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1175{
1176 int rc;
1177
1178 lock_device_hotplug();
1179 rc = __add_memory(nid, start, size, mhp_flags);
1180 unlock_device_hotplug();
1181
1182 return rc;
1183}
1184EXPORT_SYMBOL_GPL(add_memory);
1185
1186/*
1187 * Add special, driver-managed memory to the system as system RAM. Such
1188 * memory is not exposed via the raw firmware-provided memmap as system
1189 * RAM, instead, it is detected and added by a driver - during cold boot,
1190 * after a reboot, and after kexec.
1191 *
1192 * Reasons why this memory should not be used for the initial memmap of a
1193 * kexec kernel or for placing kexec images:
1194 * - The booting kernel is in charge of determining how this memory will be
1195 * used (e.g., use persistent memory as system RAM)
1196 * - Coordination with a hypervisor is required before this memory
1197 * can be used (e.g., inaccessible parts).
1198 *
1199 * For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided
1200 * memory map") are created. Also, the created memory resource is flagged
1201 * with IORESOURCE_SYSRAM_DRIVER_MANAGED, so in-kernel users can special-case
1202 * this memory as well (esp., not place kexec images onto it).
1203 *
1204 * The resource_name (visible via /proc/iomem) has to have the format
1205 * "System RAM ($DRIVER)".
1206 */
1207int add_memory_driver_managed(int nid, u64 start, u64 size,
1208 const char *resource_name, mhp_t mhp_flags)
1209{
1210 struct resource *res;
1211 int rc;
1212
1213 if (!resource_name ||
1214 strstr(resource_name, "System RAM (") != resource_name ||
1215 resource_name[strlen(resource_name) - 1] != ')')
1216 return -EINVAL;
1217
1218 lock_device_hotplug();
1219
1220 res = register_memory_resource(start, size, resource_name);
1221 if (IS_ERR(res)) {
1222 rc = PTR_ERR(res);
1223 goto out_unlock;
1224 }
1225
1226 rc = add_memory_resource(nid, res, mhp_flags);
1227 if (rc < 0)
1228 release_memory_resource(res);
1229
1230out_unlock:
1231 unlock_device_hotplug();
1232 return rc;
1233}
1234EXPORT_SYMBOL_GPL(add_memory_driver_managed);
1235
1236/*
1237 * Platforms should define arch_get_mappable_range() that provides
1238 * maximum possible addressable physical memory range for which the
1239 * linear mapping could be created. The platform returned address
1240 * range must adhere to these following semantics.
1241 *
1242 * - range.start <= range.end
1243 * - Range includes both end points [range.start..range.end]
1244 *
1245 * There is also a fallback definition provided here, allowing the
1246 * entire possible physical address range in case any platform does
1247 * not define arch_get_mappable_range().
1248 */
1249struct range __weak arch_get_mappable_range(void)
1250{
1251 struct range mhp_range = {
1252 .start = 0UL,
1253 .end = -1ULL,
1254 };
1255 return mhp_range;
1256}
1257
1258struct range mhp_get_pluggable_range(bool need_mapping)
1259{
1260 const u64 max_phys = (1ULL << MAX_PHYSMEM_BITS) - 1;
1261 struct range mhp_range;
1262
1263 if (need_mapping) {
1264 mhp_range = arch_get_mappable_range();
1265 if (mhp_range.start > max_phys) {
1266 mhp_range.start = 0;
1267 mhp_range.end = 0;
1268 }
1269 mhp_range.end = min_t(u64, mhp_range.end, max_phys);
1270 } else {
1271 mhp_range.start = 0;
1272 mhp_range.end = max_phys;
1273 }
1274 return mhp_range;
1275}
1276EXPORT_SYMBOL_GPL(mhp_get_pluggable_range);
1277
1278bool mhp_range_allowed(u64 start, u64 size, bool need_mapping)
1279{
1280 struct range mhp_range = mhp_get_pluggable_range(need_mapping);
1281 u64 end = start + size;
1282
1283 if (start < end && start >= mhp_range.start && (end - 1) <= mhp_range.end)
1284 return true;
1285
1286 pr_warn("Hotplug memory [%#llx-%#llx] exceeds maximum addressable range [%#llx-%#llx]\n",
1287 start, end, mhp_range.start, mhp_range.end);
1288 return false;
1289}
1290
1291#ifdef CONFIG_MEMORY_HOTREMOVE
1292/*
1293 * Confirm all pages in a range [start, end) belong to the same zone (skipping
1294 * memory holes). When true, return the zone.
1295 */
1296struct zone *test_pages_in_a_zone(unsigned long start_pfn,
1297 unsigned long end_pfn)
1298{
1299 unsigned long pfn, sec_end_pfn;
1300 struct zone *zone = NULL;
1301 struct page *page;
1302 int i;
1303 for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
1304 pfn < end_pfn;
1305 pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) {
1306 /* Make sure the memory section is present first */
1307 if (!present_section_nr(pfn_to_section_nr(pfn)))
1308 continue;
1309 for (; pfn < sec_end_pfn && pfn < end_pfn;
1310 pfn += MAX_ORDER_NR_PAGES) {
1311 i = 0;
1312 /* This is just a CONFIG_HOLES_IN_ZONE check.*/
1313 while ((i < MAX_ORDER_NR_PAGES) &&
1314 !pfn_valid_within(pfn + i))
1315 i++;
1316 if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn)
1317 continue;
1318 /* Check if we got outside of the zone */
1319 if (zone && !zone_spans_pfn(zone, pfn + i))
1320 return NULL;
1321 page = pfn_to_page(pfn + i);
1322 if (zone && page_zone(page) != zone)
1323 return NULL;
1324 zone = page_zone(page);
1325 }
1326 }
1327
1328 return zone;
1329}
1330
1331/*
1332 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1333 * non-lru movable pages and hugepages). Will skip over most unmovable
1334 * pages (esp., pages that can be skipped when offlining), but bail out on
1335 * definitely unmovable pages.
1336 *
1337 * Returns:
1338 * 0 in case a movable page is found and movable_pfn was updated.
1339 * -ENOENT in case no movable page was found.
1340 * -EBUSY in case a definitely unmovable page was found.
1341 */
1342static int scan_movable_pages(unsigned long start, unsigned long end,
1343 unsigned long *movable_pfn)
1344{
1345 unsigned long pfn;
1346
1347 for (pfn = start; pfn < end; pfn++) {
1348 struct page *page, *head;
1349 unsigned long skip;
1350
1351 if (!pfn_valid(pfn))
1352 continue;
1353 page = pfn_to_page(pfn);
1354 if (PageLRU(page))
1355 goto found;
1356 if (__PageMovable(page))
1357 goto found;
1358
1359 /*
1360 * PageOffline() pages that are not marked __PageMovable() and
1361 * have a reference count > 0 (after MEM_GOING_OFFLINE) are
1362 * definitely unmovable. If their reference count would be 0,
1363 * they could at least be skipped when offlining memory.
1364 */
1365 if (PageOffline(page) && page_count(page))
1366 return -EBUSY;
1367
1368 if (!PageHuge(page))
1369 continue;
1370 head = compound_head(page);
1371 /*
1372 * This test is racy as we hold no reference or lock. The
1373 * hugetlb page could have been free'ed and head is no longer
1374 * a hugetlb page before the following check. In such unlikely
1375 * cases false positives and negatives are possible. Calling
1376 * code must deal with these scenarios.
1377 */
1378 if (HPageMigratable(head))
1379 goto found;
1380 skip = compound_nr(head) - (page - head);
1381 pfn += skip - 1;
1382 }
1383 return -ENOENT;
1384found:
1385 *movable_pfn = pfn;
1386 return 0;
1387}
1388
1389static int
1390do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1391{
1392 unsigned long pfn;
1393 struct page *page, *head;
1394 int ret = 0;
1395 LIST_HEAD(source);
1396
1397 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1398 if (!pfn_valid(pfn))
1399 continue;
1400 page = pfn_to_page(pfn);
1401 head = compound_head(page);
1402
1403 if (PageHuge(page)) {
1404 pfn = page_to_pfn(head) + compound_nr(head) - 1;
1405 isolate_huge_page(head, &source);
1406 continue;
1407 } else if (PageTransHuge(page))
1408 pfn = page_to_pfn(head) + thp_nr_pages(page) - 1;
1409
1410 /*
1411 * HWPoison pages have elevated reference counts so the migration would
1412 * fail on them. It also doesn't make any sense to migrate them in the
1413 * first place. Still try to unmap such a page in case it is still mapped
1414 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1415 * the unmap as the catch all safety net).
1416 */
1417 if (PageHWPoison(page)) {
1418 if (WARN_ON(PageLRU(page)))
1419 isolate_lru_page(page);
1420 if (page_mapped(page))
1421 try_to_unmap(page, TTU_IGNORE_MLOCK);
1422 continue;
1423 }
1424
1425 if (!get_page_unless_zero(page))
1426 continue;
1427 /*
1428 * We can skip free pages. And we can deal with pages on
1429 * LRU and non-lru movable pages.
1430 */
1431 if (PageLRU(page))
1432 ret = isolate_lru_page(page);
1433 else
1434 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1435 if (!ret) { /* Success */
1436 list_add_tail(&page->lru, &source);
1437 if (!__PageMovable(page))
1438 inc_node_page_state(page, NR_ISOLATED_ANON +
1439 page_is_file_lru(page));
1440
1441 } else {
1442 pr_warn("failed to isolate pfn %lx\n", pfn);
1443 dump_page(page, "isolation failed");
1444 }
1445 put_page(page);
1446 }
1447 if (!list_empty(&source)) {
1448 nodemask_t nmask = node_states[N_MEMORY];
1449 struct migration_target_control mtc = {
1450 .nmask = &nmask,
1451 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
1452 };
1453
1454 /*
1455 * We have checked that migration range is on a single zone so
1456 * we can use the nid of the first page to all the others.
1457 */
1458 mtc.nid = page_to_nid(list_first_entry(&source, struct page, lru));
1459
1460 /*
1461 * try to allocate from a different node but reuse this node
1462 * if there are no other online nodes to be used (e.g. we are
1463 * offlining a part of the only existing node)
1464 */
1465 node_clear(mtc.nid, nmask);
1466 if (nodes_empty(nmask))
1467 node_set(mtc.nid, nmask);
1468 ret = migrate_pages(&source, alloc_migration_target, NULL,
1469 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1470 if (ret) {
1471 list_for_each_entry(page, &source, lru) {
1472 pr_warn("migrating pfn %lx failed ret:%d ",
1473 page_to_pfn(page), ret);
1474 dump_page(page, "migration failure");
1475 }
1476 putback_movable_pages(&source);
1477 }
1478 }
1479
1480 return ret;
1481}
1482
1483static int __init cmdline_parse_movable_node(char *p)
1484{
1485 movable_node_enabled = true;
1486 return 0;
1487}
1488early_param("movable_node", cmdline_parse_movable_node);
1489
1490/* check which state of node_states will be changed when offline memory */
1491static void node_states_check_changes_offline(unsigned long nr_pages,
1492 struct zone *zone, struct memory_notify *arg)
1493{
1494 struct pglist_data *pgdat = zone->zone_pgdat;
1495 unsigned long present_pages = 0;
1496 enum zone_type zt;
1497
1498 arg->status_change_nid = NUMA_NO_NODE;
1499 arg->status_change_nid_normal = NUMA_NO_NODE;
1500 arg->status_change_nid_high = NUMA_NO_NODE;
1501
1502 /*
1503 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1504 * If the memory to be offline is within the range
1505 * [0..ZONE_NORMAL], and it is the last present memory there,
1506 * the zones in that range will become empty after the offlining,
1507 * thus we can determine that we need to clear the node from
1508 * node_states[N_NORMAL_MEMORY].
1509 */
1510 for (zt = 0; zt <= ZONE_NORMAL; zt++)
1511 present_pages += pgdat->node_zones[zt].present_pages;
1512 if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1513 arg->status_change_nid_normal = zone_to_nid(zone);
1514
1515#ifdef CONFIG_HIGHMEM
1516 /*
1517 * node_states[N_HIGH_MEMORY] contains nodes which
1518 * have normal memory or high memory.
1519 * Here we add the present_pages belonging to ZONE_HIGHMEM.
1520 * If the zone is within the range of [0..ZONE_HIGHMEM), and
1521 * we determine that the zones in that range become empty,
1522 * we need to clear the node for N_HIGH_MEMORY.
1523 */
1524 present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1525 if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages)
1526 arg->status_change_nid_high = zone_to_nid(zone);
1527#endif
1528
1529 /*
1530 * We have accounted the pages from [0..ZONE_NORMAL), and
1531 * in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM
1532 * as well.
1533 * Here we count the possible pages from ZONE_MOVABLE.
1534 * If after having accounted all the pages, we see that the nr_pages
1535 * to be offlined is over or equal to the accounted pages,
1536 * we know that the node will become empty, and so, we can clear
1537 * it for N_MEMORY as well.
1538 */
1539 present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1540
1541 if (nr_pages >= present_pages)
1542 arg->status_change_nid = zone_to_nid(zone);
1543}
1544
1545static void node_states_clear_node(int node, struct memory_notify *arg)
1546{
1547 if (arg->status_change_nid_normal >= 0)
1548 node_clear_state(node, N_NORMAL_MEMORY);
1549
1550 if (arg->status_change_nid_high >= 0)
1551 node_clear_state(node, N_HIGH_MEMORY);
1552
1553 if (arg->status_change_nid >= 0)
1554 node_clear_state(node, N_MEMORY);
1555}
1556
1557static int count_system_ram_pages_cb(unsigned long start_pfn,
1558 unsigned long nr_pages, void *data)
1559{
1560 unsigned long *nr_system_ram_pages = data;
1561
1562 *nr_system_ram_pages += nr_pages;
1563 return 0;
1564}
1565
1566int __ref offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1567{
1568 const unsigned long end_pfn = start_pfn + nr_pages;
1569 unsigned long pfn, system_ram_pages = 0;
1570 unsigned long flags;
1571 struct zone *zone;
1572 struct memory_notify arg;
1573 int ret, node;
1574 char *reason;
1575
1576 /* We can only offline full sections (e.g., SECTION_IS_ONLINE) */
1577 if (WARN_ON_ONCE(!nr_pages ||
1578 !IS_ALIGNED(start_pfn | nr_pages, PAGES_PER_SECTION)))
1579 return -EINVAL;
1580
1581 mem_hotplug_begin();
1582
1583 /*
1584 * Don't allow to offline memory blocks that contain holes.
1585 * Consequently, memory blocks with holes can never get onlined
1586 * via the hotplug path - online_pages() - as hotplugged memory has
1587 * no holes. This way, we e.g., don't have to worry about marking
1588 * memory holes PG_reserved, don't need pfn_valid() checks, and can
1589 * avoid using walk_system_ram_range() later.
1590 */
1591 walk_system_ram_range(start_pfn, nr_pages, &system_ram_pages,
1592 count_system_ram_pages_cb);
1593 if (system_ram_pages != nr_pages) {
1594 ret = -EINVAL;
1595 reason = "memory holes";
1596 goto failed_removal;
1597 }
1598
1599 /* This makes hotplug much easier...and readable.
1600 we assume this for now. .*/
1601 zone = test_pages_in_a_zone(start_pfn, end_pfn);
1602 if (!zone) {
1603 ret = -EINVAL;
1604 reason = "multizone range";
1605 goto failed_removal;
1606 }
1607 node = zone_to_nid(zone);
1608
1609 /*
1610 * Disable pcplists so that page isolation cannot race with freeing
1611 * in a way that pages from isolated pageblock are left on pcplists.
1612 */
1613 zone_pcp_disable(zone);
1614
1615 /* set above range as isolated */
1616 ret = start_isolate_page_range(start_pfn, end_pfn,
1617 MIGRATE_MOVABLE,
1618 MEMORY_OFFLINE | REPORT_FAILURE);
1619 if (ret) {
1620 reason = "failure to isolate range";
1621 goto failed_removal_pcplists_disabled;
1622 }
1623
1624 arg.start_pfn = start_pfn;
1625 arg.nr_pages = nr_pages;
1626 node_states_check_changes_offline(nr_pages, zone, &arg);
1627
1628 ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1629 ret = notifier_to_errno(ret);
1630 if (ret) {
1631 reason = "notifier failure";
1632 goto failed_removal_isolated;
1633 }
1634
1635 do {
1636 pfn = start_pfn;
1637 do {
1638 if (signal_pending(current)) {
1639 ret = -EINTR;
1640 reason = "signal backoff";
1641 goto failed_removal_isolated;
1642 }
1643
1644 cond_resched();
1645 lru_add_drain_all();
1646
1647 ret = scan_movable_pages(pfn, end_pfn, &pfn);
1648 if (!ret) {
1649 /*
1650 * TODO: fatal migration failures should bail
1651 * out
1652 */
1653 do_migrate_range(pfn, end_pfn);
1654 }
1655 } while (!ret);
1656
1657 if (ret != -ENOENT) {
1658 reason = "unmovable page";
1659 goto failed_removal_isolated;
1660 }
1661
1662 /*
1663 * Dissolve free hugepages in the memory block before doing
1664 * offlining actually in order to make hugetlbfs's object
1665 * counting consistent.
1666 */
1667 ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1668 if (ret) {
1669 reason = "failure to dissolve huge pages";
1670 goto failed_removal_isolated;
1671 }
1672
1673 ret = test_pages_isolated(start_pfn, end_pfn, MEMORY_OFFLINE);
1674
1675 } while (ret);
1676
1677 /* Mark all sections offline and remove free pages from the buddy. */
1678 __offline_isolated_pages(start_pfn, end_pfn);
1679 pr_debug("Offlined Pages %ld\n", nr_pages);
1680
1681 /*
1682 * The memory sections are marked offline, and the pageblock flags
1683 * effectively stale; nobody should be touching them. Fixup the number
1684 * of isolated pageblocks, memory onlining will properly revert this.
1685 */
1686 spin_lock_irqsave(&zone->lock, flags);
1687 zone->nr_isolate_pageblock -= nr_pages / pageblock_nr_pages;
1688 spin_unlock_irqrestore(&zone->lock, flags);
1689
1690 zone_pcp_enable(zone);
1691
1692 /* removal success */
1693 adjust_managed_page_count(pfn_to_page(start_pfn), -nr_pages);
1694 zone->present_pages -= nr_pages;
1695
1696 pgdat_resize_lock(zone->zone_pgdat, &flags);
1697 zone->zone_pgdat->node_present_pages -= nr_pages;
1698 pgdat_resize_unlock(zone->zone_pgdat, &flags);
1699
1700 init_per_zone_wmark_min();
1701
1702 if (!populated_zone(zone)) {
1703 zone_pcp_reset(zone);
1704 build_all_zonelists(NULL);
1705 } else
1706 zone_pcp_update(zone);
1707
1708 node_states_clear_node(node, &arg);
1709 if (arg.status_change_nid >= 0) {
1710 kswapd_stop(node);
1711 kcompactd_stop(node);
1712 }
1713
1714 writeback_set_ratelimit();
1715
1716 memory_notify(MEM_OFFLINE, &arg);
1717 remove_pfn_range_from_zone(zone, start_pfn, nr_pages);
1718 mem_hotplug_done();
1719 return 0;
1720
1721failed_removal_isolated:
1722 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1723 memory_notify(MEM_CANCEL_OFFLINE, &arg);
1724failed_removal_pcplists_disabled:
1725 zone_pcp_enable(zone);
1726failed_removal:
1727 pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
1728 (unsigned long long) start_pfn << PAGE_SHIFT,
1729 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
1730 reason);
1731 /* pushback to free area */
1732 mem_hotplug_done();
1733 return ret;
1734}
1735
1736static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1737{
1738 int ret = !is_memblock_offlined(mem);
1739
1740 if (unlikely(ret)) {
1741 phys_addr_t beginpa, endpa;
1742
1743 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1744 endpa = beginpa + memory_block_size_bytes() - 1;
1745 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1746 &beginpa, &endpa);
1747
1748 return -EBUSY;
1749 }
1750 return 0;
1751}
1752
1753static int check_cpu_on_node(pg_data_t *pgdat)
1754{
1755 int cpu;
1756
1757 for_each_present_cpu(cpu) {
1758 if (cpu_to_node(cpu) == pgdat->node_id)
1759 /*
1760 * the cpu on this node isn't removed, and we can't
1761 * offline this node.
1762 */
1763 return -EBUSY;
1764 }
1765
1766 return 0;
1767}
1768
1769static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg)
1770{
1771 int nid = *(int *)arg;
1772
1773 /*
1774 * If a memory block belongs to multiple nodes, the stored nid is not
1775 * reliable. However, such blocks are always online (e.g., cannot get
1776 * offlined) and, therefore, are still spanned by the node.
1777 */
1778 return mem->nid == nid ? -EEXIST : 0;
1779}
1780
1781/**
1782 * try_offline_node
1783 * @nid: the node ID
1784 *
1785 * Offline a node if all memory sections and cpus of the node are removed.
1786 *
1787 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1788 * and online/offline operations before this call.
1789 */
1790void try_offline_node(int nid)
1791{
1792 pg_data_t *pgdat = NODE_DATA(nid);
1793 int rc;
1794
1795 /*
1796 * If the node still spans pages (especially ZONE_DEVICE), don't
1797 * offline it. A node spans memory after move_pfn_range_to_zone(),
1798 * e.g., after the memory block was onlined.
1799 */
1800 if (pgdat->node_spanned_pages)
1801 return;
1802
1803 /*
1804 * Especially offline memory blocks might not be spanned by the
1805 * node. They will get spanned by the node once they get onlined.
1806 * However, they link to the node in sysfs and can get onlined later.
1807 */
1808 rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb);
1809 if (rc)
1810 return;
1811
1812 if (check_cpu_on_node(pgdat))
1813 return;
1814
1815 /*
1816 * all memory/cpu of this node are removed, we can offline this
1817 * node now.
1818 */
1819 node_set_offline(nid);
1820 unregister_one_node(nid);
1821}
1822EXPORT_SYMBOL(try_offline_node);
1823
1824static int __ref try_remove_memory(int nid, u64 start, u64 size)
1825{
1826 int rc = 0;
1827
1828 BUG_ON(check_hotplug_memory_range(start, size));
1829
1830 /*
1831 * All memory blocks must be offlined before removing memory. Check
1832 * whether all memory blocks in question are offline and return error
1833 * if this is not the case.
1834 */
1835 rc = walk_memory_blocks(start, size, NULL, check_memblock_offlined_cb);
1836 if (rc)
1837 return rc;
1838
1839 /* remove memmap entry */
1840 firmware_map_remove(start, start + size, "System RAM");
1841
1842 /*
1843 * Memory block device removal under the device_hotplug_lock is
1844 * a barrier against racing online attempts.
1845 */
1846 remove_memory_block_devices(start, size);
1847
1848 mem_hotplug_begin();
1849
1850 arch_remove_memory(nid, start, size, NULL);
1851
1852 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
1853 memblock_free(start, size);
1854 memblock_remove(start, size);
1855 }
1856
1857 release_mem_region_adjustable(start, size);
1858
1859 try_offline_node(nid);
1860
1861 mem_hotplug_done();
1862 return 0;
1863}
1864
1865/**
1866 * remove_memory
1867 * @nid: the node ID
1868 * @start: physical address of the region to remove
1869 * @size: size of the region to remove
1870 *
1871 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1872 * and online/offline operations before this call, as required by
1873 * try_offline_node().
1874 */
1875void __remove_memory(int nid, u64 start, u64 size)
1876{
1877
1878 /*
1879 * trigger BUG() if some memory is not offlined prior to calling this
1880 * function
1881 */
1882 if (try_remove_memory(nid, start, size))
1883 BUG();
1884}
1885
1886/*
1887 * Remove memory if every memory block is offline, otherwise return -EBUSY is
1888 * some memory is not offline
1889 */
1890int remove_memory(int nid, u64 start, u64 size)
1891{
1892 int rc;
1893
1894 lock_device_hotplug();
1895 rc = try_remove_memory(nid, start, size);
1896 unlock_device_hotplug();
1897
1898 return rc;
1899}
1900EXPORT_SYMBOL_GPL(remove_memory);
1901
1902static int try_offline_memory_block(struct memory_block *mem, void *arg)
1903{
1904 uint8_t online_type = MMOP_ONLINE_KERNEL;
1905 uint8_t **online_types = arg;
1906 struct page *page;
1907 int rc;
1908
1909 /*
1910 * Sense the online_type via the zone of the memory block. Offlining
1911 * with multiple zones within one memory block will be rejected
1912 * by offlining code ... so we don't care about that.
1913 */
1914 page = pfn_to_online_page(section_nr_to_pfn(mem->start_section_nr));
1915 if (page && zone_idx(page_zone(page)) == ZONE_MOVABLE)
1916 online_type = MMOP_ONLINE_MOVABLE;
1917
1918 rc = device_offline(&mem->dev);
1919 /*
1920 * Default is MMOP_OFFLINE - change it only if offlining succeeded,
1921 * so try_reonline_memory_block() can do the right thing.
1922 */
1923 if (!rc)
1924 **online_types = online_type;
1925
1926 (*online_types)++;
1927 /* Ignore if already offline. */
1928 return rc < 0 ? rc : 0;
1929}
1930
1931static int try_reonline_memory_block(struct memory_block *mem, void *arg)
1932{
1933 uint8_t **online_types = arg;
1934 int rc;
1935
1936 if (**online_types != MMOP_OFFLINE) {
1937 mem->online_type = **online_types;
1938 rc = device_online(&mem->dev);
1939 if (rc < 0)
1940 pr_warn("%s: Failed to re-online memory: %d",
1941 __func__, rc);
1942 }
1943
1944 /* Continue processing all remaining memory blocks. */
1945 (*online_types)++;
1946 return 0;
1947}
1948
1949/*
1950 * Try to offline and remove memory. Might take a long time to finish in case
1951 * memory is still in use. Primarily useful for memory devices that logically
1952 * unplugged all memory (so it's no longer in use) and want to offline + remove
1953 * that memory.
1954 */
1955int offline_and_remove_memory(int nid, u64 start, u64 size)
1956{
1957 const unsigned long mb_count = size / memory_block_size_bytes();
1958 uint8_t *online_types, *tmp;
1959 int rc;
1960
1961 if (!IS_ALIGNED(start, memory_block_size_bytes()) ||
1962 !IS_ALIGNED(size, memory_block_size_bytes()) || !size)
1963 return -EINVAL;
1964
1965 /*
1966 * We'll remember the old online type of each memory block, so we can
1967 * try to revert whatever we did when offlining one memory block fails
1968 * after offlining some others succeeded.
1969 */
1970 online_types = kmalloc_array(mb_count, sizeof(*online_types),
1971 GFP_KERNEL);
1972 if (!online_types)
1973 return -ENOMEM;
1974 /*
1975 * Initialize all states to MMOP_OFFLINE, so when we abort processing in
1976 * try_offline_memory_block(), we'll skip all unprocessed blocks in
1977 * try_reonline_memory_block().
1978 */
1979 memset(online_types, MMOP_OFFLINE, mb_count);
1980
1981 lock_device_hotplug();
1982
1983 tmp = online_types;
1984 rc = walk_memory_blocks(start, size, &tmp, try_offline_memory_block);
1985
1986 /*
1987 * In case we succeeded to offline all memory, remove it.
1988 * This cannot fail as it cannot get onlined in the meantime.
1989 */
1990 if (!rc) {
1991 rc = try_remove_memory(nid, start, size);
1992 if (rc)
1993 pr_err("%s: Failed to remove memory: %d", __func__, rc);
1994 }
1995
1996 /*
1997 * Rollback what we did. While memory onlining might theoretically fail
1998 * (nacked by a notifier), it barely ever happens.
1999 */
2000 if (rc) {
2001 tmp = online_types;
2002 walk_memory_blocks(start, size, &tmp,
2003 try_reonline_memory_block);
2004 }
2005 unlock_device_hotplug();
2006
2007 kfree(online_types);
2008 return rc;
2009}
2010EXPORT_SYMBOL_GPL(offline_and_remove_memory);
2011#endif /* CONFIG_MEMORY_HOTREMOVE */