Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2/*
3 * VFIO API definition
4 *
5 * Copyright (C) 2012 Red Hat, Inc. All rights reserved.
6 * Author: Alex Williamson <alex.williamson@redhat.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12#ifndef _UAPIVFIO_H
13#define _UAPIVFIO_H
14
15#include <linux/types.h>
16#include <linux/ioctl.h>
17
18#define VFIO_API_VERSION 0
19
20
21/* Kernel & User level defines for VFIO IOCTLs. */
22
23/* Extensions */
24
25#define VFIO_TYPE1_IOMMU 1
26#define VFIO_SPAPR_TCE_IOMMU 2
27#define VFIO_TYPE1v2_IOMMU 3
28/*
29 * IOMMU enforces DMA cache coherence (ex. PCIe NoSnoop stripping). This
30 * capability is subject to change as groups are added or removed.
31 */
32#define VFIO_DMA_CC_IOMMU 4
33
34/* Check if EEH is supported */
35#define VFIO_EEH 5
36
37/* Two-stage IOMMU */
38#define VFIO_TYPE1_NESTING_IOMMU 6 /* Implies v2 */
39
40#define VFIO_SPAPR_TCE_v2_IOMMU 7
41
42/*
43 * The No-IOMMU IOMMU offers no translation or isolation for devices and
44 * supports no ioctls outside of VFIO_CHECK_EXTENSION. Use of VFIO's No-IOMMU
45 * code will taint the host kernel and should be used with extreme caution.
46 */
47#define VFIO_NOIOMMU_IOMMU 8
48
49/* Supports VFIO_DMA_UNMAP_FLAG_ALL */
50#define VFIO_UNMAP_ALL 9
51
52/* Supports the vaddr flag for DMA map and unmap */
53#define VFIO_UPDATE_VADDR 10
54
55/*
56 * The IOCTL interface is designed for extensibility by embedding the
57 * structure length (argsz) and flags into structures passed between
58 * kernel and userspace. We therefore use the _IO() macro for these
59 * defines to avoid implicitly embedding a size into the ioctl request.
60 * As structure fields are added, argsz will increase to match and flag
61 * bits will be defined to indicate additional fields with valid data.
62 * It's *always* the caller's responsibility to indicate the size of
63 * the structure passed by setting argsz appropriately.
64 */
65
66#define VFIO_TYPE (';')
67#define VFIO_BASE 100
68
69/*
70 * For extension of INFO ioctls, VFIO makes use of a capability chain
71 * designed after PCI/e capabilities. A flag bit indicates whether
72 * this capability chain is supported and a field defined in the fixed
73 * structure defines the offset of the first capability in the chain.
74 * This field is only valid when the corresponding bit in the flags
75 * bitmap is set. This offset field is relative to the start of the
76 * INFO buffer, as is the next field within each capability header.
77 * The id within the header is a shared address space per INFO ioctl,
78 * while the version field is specific to the capability id. The
79 * contents following the header are specific to the capability id.
80 */
81struct vfio_info_cap_header {
82 __u16 id; /* Identifies capability */
83 __u16 version; /* Version specific to the capability ID */
84 __u32 next; /* Offset of next capability */
85};
86
87/*
88 * Callers of INFO ioctls passing insufficiently sized buffers will see
89 * the capability chain flag bit set, a zero value for the first capability
90 * offset (if available within the provided argsz), and argsz will be
91 * updated to report the necessary buffer size. For compatibility, the
92 * INFO ioctl will not report error in this case, but the capability chain
93 * will not be available.
94 */
95
96/* -------- IOCTLs for VFIO file descriptor (/dev/vfio/vfio) -------- */
97
98/**
99 * VFIO_GET_API_VERSION - _IO(VFIO_TYPE, VFIO_BASE + 0)
100 *
101 * Report the version of the VFIO API. This allows us to bump the entire
102 * API version should we later need to add or change features in incompatible
103 * ways.
104 * Return: VFIO_API_VERSION
105 * Availability: Always
106 */
107#define VFIO_GET_API_VERSION _IO(VFIO_TYPE, VFIO_BASE + 0)
108
109/**
110 * VFIO_CHECK_EXTENSION - _IOW(VFIO_TYPE, VFIO_BASE + 1, __u32)
111 *
112 * Check whether an extension is supported.
113 * Return: 0 if not supported, 1 (or some other positive integer) if supported.
114 * Availability: Always
115 */
116#define VFIO_CHECK_EXTENSION _IO(VFIO_TYPE, VFIO_BASE + 1)
117
118/**
119 * VFIO_SET_IOMMU - _IOW(VFIO_TYPE, VFIO_BASE + 2, __s32)
120 *
121 * Set the iommu to the given type. The type must be supported by an
122 * iommu driver as verified by calling CHECK_EXTENSION using the same
123 * type. A group must be set to this file descriptor before this
124 * ioctl is available. The IOMMU interfaces enabled by this call are
125 * specific to the value set.
126 * Return: 0 on success, -errno on failure
127 * Availability: When VFIO group attached
128 */
129#define VFIO_SET_IOMMU _IO(VFIO_TYPE, VFIO_BASE + 2)
130
131/* -------- IOCTLs for GROUP file descriptors (/dev/vfio/$GROUP) -------- */
132
133/**
134 * VFIO_GROUP_GET_STATUS - _IOR(VFIO_TYPE, VFIO_BASE + 3,
135 * struct vfio_group_status)
136 *
137 * Retrieve information about the group. Fills in provided
138 * struct vfio_group_info. Caller sets argsz.
139 * Return: 0 on succes, -errno on failure.
140 * Availability: Always
141 */
142struct vfio_group_status {
143 __u32 argsz;
144 __u32 flags;
145#define VFIO_GROUP_FLAGS_VIABLE (1 << 0)
146#define VFIO_GROUP_FLAGS_CONTAINER_SET (1 << 1)
147};
148#define VFIO_GROUP_GET_STATUS _IO(VFIO_TYPE, VFIO_BASE + 3)
149
150/**
151 * VFIO_GROUP_SET_CONTAINER - _IOW(VFIO_TYPE, VFIO_BASE + 4, __s32)
152 *
153 * Set the container for the VFIO group to the open VFIO file
154 * descriptor provided. Groups may only belong to a single
155 * container. Containers may, at their discretion, support multiple
156 * groups. Only when a container is set are all of the interfaces
157 * of the VFIO file descriptor and the VFIO group file descriptor
158 * available to the user.
159 * Return: 0 on success, -errno on failure.
160 * Availability: Always
161 */
162#define VFIO_GROUP_SET_CONTAINER _IO(VFIO_TYPE, VFIO_BASE + 4)
163
164/**
165 * VFIO_GROUP_UNSET_CONTAINER - _IO(VFIO_TYPE, VFIO_BASE + 5)
166 *
167 * Remove the group from the attached container. This is the
168 * opposite of the SET_CONTAINER call and returns the group to
169 * an initial state. All device file descriptors must be released
170 * prior to calling this interface. When removing the last group
171 * from a container, the IOMMU will be disabled and all state lost,
172 * effectively also returning the VFIO file descriptor to an initial
173 * state.
174 * Return: 0 on success, -errno on failure.
175 * Availability: When attached to container
176 */
177#define VFIO_GROUP_UNSET_CONTAINER _IO(VFIO_TYPE, VFIO_BASE + 5)
178
179/**
180 * VFIO_GROUP_GET_DEVICE_FD - _IOW(VFIO_TYPE, VFIO_BASE + 6, char)
181 *
182 * Return a new file descriptor for the device object described by
183 * the provided string. The string should match a device listed in
184 * the devices subdirectory of the IOMMU group sysfs entry. The
185 * group containing the device must already be added to this context.
186 * Return: new file descriptor on success, -errno on failure.
187 * Availability: When attached to container
188 */
189#define VFIO_GROUP_GET_DEVICE_FD _IO(VFIO_TYPE, VFIO_BASE + 6)
190
191/* --------------- IOCTLs for DEVICE file descriptors --------------- */
192
193/**
194 * VFIO_DEVICE_GET_INFO - _IOR(VFIO_TYPE, VFIO_BASE + 7,
195 * struct vfio_device_info)
196 *
197 * Retrieve information about the device. Fills in provided
198 * struct vfio_device_info. Caller sets argsz.
199 * Return: 0 on success, -errno on failure.
200 */
201struct vfio_device_info {
202 __u32 argsz;
203 __u32 flags;
204#define VFIO_DEVICE_FLAGS_RESET (1 << 0) /* Device supports reset */
205#define VFIO_DEVICE_FLAGS_PCI (1 << 1) /* vfio-pci device */
206#define VFIO_DEVICE_FLAGS_PLATFORM (1 << 2) /* vfio-platform device */
207#define VFIO_DEVICE_FLAGS_AMBA (1 << 3) /* vfio-amba device */
208#define VFIO_DEVICE_FLAGS_CCW (1 << 4) /* vfio-ccw device */
209#define VFIO_DEVICE_FLAGS_AP (1 << 5) /* vfio-ap device */
210#define VFIO_DEVICE_FLAGS_FSL_MC (1 << 6) /* vfio-fsl-mc device */
211#define VFIO_DEVICE_FLAGS_CAPS (1 << 7) /* Info supports caps */
212 __u32 num_regions; /* Max region index + 1 */
213 __u32 num_irqs; /* Max IRQ index + 1 */
214 __u32 cap_offset; /* Offset within info struct of first cap */
215};
216#define VFIO_DEVICE_GET_INFO _IO(VFIO_TYPE, VFIO_BASE + 7)
217
218/*
219 * Vendor driver using Mediated device framework should provide device_api
220 * attribute in supported type attribute groups. Device API string should be one
221 * of the following corresponding to device flags in vfio_device_info structure.
222 */
223
224#define VFIO_DEVICE_API_PCI_STRING "vfio-pci"
225#define VFIO_DEVICE_API_PLATFORM_STRING "vfio-platform"
226#define VFIO_DEVICE_API_AMBA_STRING "vfio-amba"
227#define VFIO_DEVICE_API_CCW_STRING "vfio-ccw"
228#define VFIO_DEVICE_API_AP_STRING "vfio-ap"
229
230/*
231 * The following capabilities are unique to s390 zPCI devices. Their contents
232 * are further-defined in vfio_zdev.h
233 */
234#define VFIO_DEVICE_INFO_CAP_ZPCI_BASE 1
235#define VFIO_DEVICE_INFO_CAP_ZPCI_GROUP 2
236#define VFIO_DEVICE_INFO_CAP_ZPCI_UTIL 3
237#define VFIO_DEVICE_INFO_CAP_ZPCI_PFIP 4
238
239/**
240 * VFIO_DEVICE_GET_REGION_INFO - _IOWR(VFIO_TYPE, VFIO_BASE + 8,
241 * struct vfio_region_info)
242 *
243 * Retrieve information about a device region. Caller provides
244 * struct vfio_region_info with index value set. Caller sets argsz.
245 * Implementation of region mapping is bus driver specific. This is
246 * intended to describe MMIO, I/O port, as well as bus specific
247 * regions (ex. PCI config space). Zero sized regions may be used
248 * to describe unimplemented regions (ex. unimplemented PCI BARs).
249 * Return: 0 on success, -errno on failure.
250 */
251struct vfio_region_info {
252 __u32 argsz;
253 __u32 flags;
254#define VFIO_REGION_INFO_FLAG_READ (1 << 0) /* Region supports read */
255#define VFIO_REGION_INFO_FLAG_WRITE (1 << 1) /* Region supports write */
256#define VFIO_REGION_INFO_FLAG_MMAP (1 << 2) /* Region supports mmap */
257#define VFIO_REGION_INFO_FLAG_CAPS (1 << 3) /* Info supports caps */
258 __u32 index; /* Region index */
259 __u32 cap_offset; /* Offset within info struct of first cap */
260 __u64 size; /* Region size (bytes) */
261 __u64 offset; /* Region offset from start of device fd */
262};
263#define VFIO_DEVICE_GET_REGION_INFO _IO(VFIO_TYPE, VFIO_BASE + 8)
264
265/*
266 * The sparse mmap capability allows finer granularity of specifying areas
267 * within a region with mmap support. When specified, the user should only
268 * mmap the offset ranges specified by the areas array. mmaps outside of the
269 * areas specified may fail (such as the range covering a PCI MSI-X table) or
270 * may result in improper device behavior.
271 *
272 * The structures below define version 1 of this capability.
273 */
274#define VFIO_REGION_INFO_CAP_SPARSE_MMAP 1
275
276struct vfio_region_sparse_mmap_area {
277 __u64 offset; /* Offset of mmap'able area within region */
278 __u64 size; /* Size of mmap'able area */
279};
280
281struct vfio_region_info_cap_sparse_mmap {
282 struct vfio_info_cap_header header;
283 __u32 nr_areas;
284 __u32 reserved;
285 struct vfio_region_sparse_mmap_area areas[];
286};
287
288/*
289 * The device specific type capability allows regions unique to a specific
290 * device or class of devices to be exposed. This helps solve the problem for
291 * vfio bus drivers of defining which region indexes correspond to which region
292 * on the device, without needing to resort to static indexes, as done by
293 * vfio-pci. For instance, if we were to go back in time, we might remove
294 * VFIO_PCI_VGA_REGION_INDEX and let vfio-pci simply define that all indexes
295 * greater than or equal to VFIO_PCI_NUM_REGIONS are device specific and we'd
296 * make a "VGA" device specific type to describe the VGA access space. This
297 * means that non-VGA devices wouldn't need to waste this index, and thus the
298 * address space associated with it due to implementation of device file
299 * descriptor offsets in vfio-pci.
300 *
301 * The current implementation is now part of the user ABI, so we can't use this
302 * for VGA, but there are other upcoming use cases, such as opregions for Intel
303 * IGD devices and framebuffers for vGPU devices. We missed VGA, but we'll
304 * use this for future additions.
305 *
306 * The structure below defines version 1 of this capability.
307 */
308#define VFIO_REGION_INFO_CAP_TYPE 2
309
310struct vfio_region_info_cap_type {
311 struct vfio_info_cap_header header;
312 __u32 type; /* global per bus driver */
313 __u32 subtype; /* type specific */
314};
315
316/*
317 * List of region types, global per bus driver.
318 * If you introduce a new type, please add it here.
319 */
320
321/* PCI region type containing a PCI vendor part */
322#define VFIO_REGION_TYPE_PCI_VENDOR_TYPE (1 << 31)
323#define VFIO_REGION_TYPE_PCI_VENDOR_MASK (0xffff)
324#define VFIO_REGION_TYPE_GFX (1)
325#define VFIO_REGION_TYPE_CCW (2)
326#define VFIO_REGION_TYPE_MIGRATION (3)
327
328/* sub-types for VFIO_REGION_TYPE_PCI_* */
329
330/* 8086 vendor PCI sub-types */
331#define VFIO_REGION_SUBTYPE_INTEL_IGD_OPREGION (1)
332#define VFIO_REGION_SUBTYPE_INTEL_IGD_HOST_CFG (2)
333#define VFIO_REGION_SUBTYPE_INTEL_IGD_LPC_CFG (3)
334
335/* 10de vendor PCI sub-types */
336/*
337 * NVIDIA GPU NVlink2 RAM is coherent RAM mapped onto the host address space.
338 */
339#define VFIO_REGION_SUBTYPE_NVIDIA_NVLINK2_RAM (1)
340
341/* 1014 vendor PCI sub-types */
342/*
343 * IBM NPU NVlink2 ATSD (Address Translation Shootdown) register of NPU
344 * to do TLB invalidation on a GPU.
345 */
346#define VFIO_REGION_SUBTYPE_IBM_NVLINK2_ATSD (1)
347
348/* sub-types for VFIO_REGION_TYPE_GFX */
349#define VFIO_REGION_SUBTYPE_GFX_EDID (1)
350
351/**
352 * struct vfio_region_gfx_edid - EDID region layout.
353 *
354 * Set display link state and EDID blob.
355 *
356 * The EDID blob has monitor information such as brand, name, serial
357 * number, physical size, supported video modes and more.
358 *
359 * This special region allows userspace (typically qemu) set a virtual
360 * EDID for the virtual monitor, which allows a flexible display
361 * configuration.
362 *
363 * For the edid blob spec look here:
364 * https://en.wikipedia.org/wiki/Extended_Display_Identification_Data
365 *
366 * On linux systems you can find the EDID blob in sysfs:
367 * /sys/class/drm/${card}/${connector}/edid
368 *
369 * You can use the edid-decode ulility (comes with xorg-x11-utils) to
370 * decode the EDID blob.
371 *
372 * @edid_offset: location of the edid blob, relative to the
373 * start of the region (readonly).
374 * @edid_max_size: max size of the edid blob (readonly).
375 * @edid_size: actual edid size (read/write).
376 * @link_state: display link state (read/write).
377 * VFIO_DEVICE_GFX_LINK_STATE_UP: Monitor is turned on.
378 * VFIO_DEVICE_GFX_LINK_STATE_DOWN: Monitor is turned off.
379 * @max_xres: max display width (0 == no limitation, readonly).
380 * @max_yres: max display height (0 == no limitation, readonly).
381 *
382 * EDID update protocol:
383 * (1) set link-state to down.
384 * (2) update edid blob and size.
385 * (3) set link-state to up.
386 */
387struct vfio_region_gfx_edid {
388 __u32 edid_offset;
389 __u32 edid_max_size;
390 __u32 edid_size;
391 __u32 max_xres;
392 __u32 max_yres;
393 __u32 link_state;
394#define VFIO_DEVICE_GFX_LINK_STATE_UP 1
395#define VFIO_DEVICE_GFX_LINK_STATE_DOWN 2
396};
397
398/* sub-types for VFIO_REGION_TYPE_CCW */
399#define VFIO_REGION_SUBTYPE_CCW_ASYNC_CMD (1)
400#define VFIO_REGION_SUBTYPE_CCW_SCHIB (2)
401#define VFIO_REGION_SUBTYPE_CCW_CRW (3)
402
403/* sub-types for VFIO_REGION_TYPE_MIGRATION */
404#define VFIO_REGION_SUBTYPE_MIGRATION (1)
405
406/*
407 * The structure vfio_device_migration_info is placed at the 0th offset of
408 * the VFIO_REGION_SUBTYPE_MIGRATION region to get and set VFIO device related
409 * migration information. Field accesses from this structure are only supported
410 * at their native width and alignment. Otherwise, the result is undefined and
411 * vendor drivers should return an error.
412 *
413 * device_state: (read/write)
414 * - The user application writes to this field to inform the vendor driver
415 * about the device state to be transitioned to.
416 * - The vendor driver should take the necessary actions to change the
417 * device state. After successful transition to a given state, the
418 * vendor driver should return success on write(device_state, state)
419 * system call. If the device state transition fails, the vendor driver
420 * should return an appropriate -errno for the fault condition.
421 * - On the user application side, if the device state transition fails,
422 * that is, if write(device_state, state) returns an error, read
423 * device_state again to determine the current state of the device from
424 * the vendor driver.
425 * - The vendor driver should return previous state of the device unless
426 * the vendor driver has encountered an internal error, in which case
427 * the vendor driver may report the device_state VFIO_DEVICE_STATE_ERROR.
428 * - The user application must use the device reset ioctl to recover the
429 * device from VFIO_DEVICE_STATE_ERROR state. If the device is
430 * indicated to be in a valid device state by reading device_state, the
431 * user application may attempt to transition the device to any valid
432 * state reachable from the current state or terminate itself.
433 *
434 * device_state consists of 3 bits:
435 * - If bit 0 is set, it indicates the _RUNNING state. If bit 0 is clear,
436 * it indicates the _STOP state. When the device state is changed to
437 * _STOP, driver should stop the device before write() returns.
438 * - If bit 1 is set, it indicates the _SAVING state, which means that the
439 * driver should start gathering device state information that will be
440 * provided to the VFIO user application to save the device's state.
441 * - If bit 2 is set, it indicates the _RESUMING state, which means that
442 * the driver should prepare to resume the device. Data provided through
443 * the migration region should be used to resume the device.
444 * Bits 3 - 31 are reserved for future use. To preserve them, the user
445 * application should perform a read-modify-write operation on this
446 * field when modifying the specified bits.
447 *
448 * +------- _RESUMING
449 * |+------ _SAVING
450 * ||+----- _RUNNING
451 * |||
452 * 000b => Device Stopped, not saving or resuming
453 * 001b => Device running, which is the default state
454 * 010b => Stop the device & save the device state, stop-and-copy state
455 * 011b => Device running and save the device state, pre-copy state
456 * 100b => Device stopped and the device state is resuming
457 * 101b => Invalid state
458 * 110b => Error state
459 * 111b => Invalid state
460 *
461 * State transitions:
462 *
463 * _RESUMING _RUNNING Pre-copy Stop-and-copy _STOP
464 * (100b) (001b) (011b) (010b) (000b)
465 * 0. Running or default state
466 * |
467 *
468 * 1. Normal Shutdown (optional)
469 * |------------------------------------->|
470 *
471 * 2. Save the state or suspend
472 * |------------------------->|---------->|
473 *
474 * 3. Save the state during live migration
475 * |----------->|------------>|---------->|
476 *
477 * 4. Resuming
478 * |<---------|
479 *
480 * 5. Resumed
481 * |--------->|
482 *
483 * 0. Default state of VFIO device is _RUNNING when the user application starts.
484 * 1. During normal shutdown of the user application, the user application may
485 * optionally change the VFIO device state from _RUNNING to _STOP. This
486 * transition is optional. The vendor driver must support this transition but
487 * must not require it.
488 * 2. When the user application saves state or suspends the application, the
489 * device state transitions from _RUNNING to stop-and-copy and then to _STOP.
490 * On state transition from _RUNNING to stop-and-copy, driver must stop the
491 * device, save the device state and send it to the application through the
492 * migration region. The sequence to be followed for such transition is given
493 * below.
494 * 3. In live migration of user application, the state transitions from _RUNNING
495 * to pre-copy, to stop-and-copy, and to _STOP.
496 * On state transition from _RUNNING to pre-copy, the driver should start
497 * gathering the device state while the application is still running and send
498 * the device state data to application through the migration region.
499 * On state transition from pre-copy to stop-and-copy, the driver must stop
500 * the device, save the device state and send it to the user application
501 * through the migration region.
502 * Vendor drivers must support the pre-copy state even for implementations
503 * where no data is provided to the user before the stop-and-copy state. The
504 * user must not be required to consume all migration data before the device
505 * transitions to a new state, including the stop-and-copy state.
506 * The sequence to be followed for above two transitions is given below.
507 * 4. To start the resuming phase, the device state should be transitioned from
508 * the _RUNNING to the _RESUMING state.
509 * In the _RESUMING state, the driver should use the device state data
510 * received through the migration region to resume the device.
511 * 5. After providing saved device data to the driver, the application should
512 * change the state from _RESUMING to _RUNNING.
513 *
514 * reserved:
515 * Reads on this field return zero and writes are ignored.
516 *
517 * pending_bytes: (read only)
518 * The number of pending bytes still to be migrated from the vendor driver.
519 *
520 * data_offset: (read only)
521 * The user application should read data_offset field from the migration
522 * region. The user application should read the device data from this
523 * offset within the migration region during the _SAVING state or write
524 * the device data during the _RESUMING state. See below for details of
525 * sequence to be followed.
526 *
527 * data_size: (read/write)
528 * The user application should read data_size to get the size in bytes of
529 * the data copied in the migration region during the _SAVING state and
530 * write the size in bytes of the data copied in the migration region
531 * during the _RESUMING state.
532 *
533 * The format of the migration region is as follows:
534 * ------------------------------------------------------------------
535 * |vfio_device_migration_info| data section |
536 * | | /////////////////////////////// |
537 * ------------------------------------------------------------------
538 * ^ ^
539 * offset 0-trapped part data_offset
540 *
541 * The structure vfio_device_migration_info is always followed by the data
542 * section in the region, so data_offset will always be nonzero. The offset
543 * from where the data is copied is decided by the kernel driver. The data
544 * section can be trapped, mmapped, or partitioned, depending on how the kernel
545 * driver defines the data section. The data section partition can be defined
546 * as mapped by the sparse mmap capability. If mmapped, data_offset must be
547 * page aligned, whereas initial section which contains the
548 * vfio_device_migration_info structure, might not end at the offset, which is
549 * page aligned. The user is not required to access through mmap regardless
550 * of the capabilities of the region mmap.
551 * The vendor driver should determine whether and how to partition the data
552 * section. The vendor driver should return data_offset accordingly.
553 *
554 * The sequence to be followed while in pre-copy state and stop-and-copy state
555 * is as follows:
556 * a. Read pending_bytes, indicating the start of a new iteration to get device
557 * data. Repeated read on pending_bytes at this stage should have no side
558 * effects.
559 * If pending_bytes == 0, the user application should not iterate to get data
560 * for that device.
561 * If pending_bytes > 0, perform the following steps.
562 * b. Read data_offset, indicating that the vendor driver should make data
563 * available through the data section. The vendor driver should return this
564 * read operation only after data is available from (region + data_offset)
565 * to (region + data_offset + data_size).
566 * c. Read data_size, which is the amount of data in bytes available through
567 * the migration region.
568 * Read on data_offset and data_size should return the offset and size of
569 * the current buffer if the user application reads data_offset and
570 * data_size more than once here.
571 * d. Read data_size bytes of data from (region + data_offset) from the
572 * migration region.
573 * e. Process the data.
574 * f. Read pending_bytes, which indicates that the data from the previous
575 * iteration has been read. If pending_bytes > 0, go to step b.
576 *
577 * The user application can transition from the _SAVING|_RUNNING
578 * (pre-copy state) to the _SAVING (stop-and-copy) state regardless of the
579 * number of pending bytes. The user application should iterate in _SAVING
580 * (stop-and-copy) until pending_bytes is 0.
581 *
582 * The sequence to be followed while _RESUMING device state is as follows:
583 * While data for this device is available, repeat the following steps:
584 * a. Read data_offset from where the user application should write data.
585 * b. Write migration data starting at the migration region + data_offset for
586 * the length determined by data_size from the migration source.
587 * c. Write data_size, which indicates to the vendor driver that data is
588 * written in the migration region. Vendor driver must return this write
589 * operations on consuming data. Vendor driver should apply the
590 * user-provided migration region data to the device resume state.
591 *
592 * If an error occurs during the above sequences, the vendor driver can return
593 * an error code for next read() or write() operation, which will terminate the
594 * loop. The user application should then take the next necessary action, for
595 * example, failing migration or terminating the user application.
596 *
597 * For the user application, data is opaque. The user application should write
598 * data in the same order as the data is received and the data should be of
599 * same transaction size at the source.
600 */
601
602struct vfio_device_migration_info {
603 __u32 device_state; /* VFIO device state */
604#define VFIO_DEVICE_STATE_STOP (0)
605#define VFIO_DEVICE_STATE_RUNNING (1 << 0)
606#define VFIO_DEVICE_STATE_SAVING (1 << 1)
607#define VFIO_DEVICE_STATE_RESUMING (1 << 2)
608#define VFIO_DEVICE_STATE_MASK (VFIO_DEVICE_STATE_RUNNING | \
609 VFIO_DEVICE_STATE_SAVING | \
610 VFIO_DEVICE_STATE_RESUMING)
611
612#define VFIO_DEVICE_STATE_VALID(state) \
613 (state & VFIO_DEVICE_STATE_RESUMING ? \
614 (state & VFIO_DEVICE_STATE_MASK) == VFIO_DEVICE_STATE_RESUMING : 1)
615
616#define VFIO_DEVICE_STATE_IS_ERROR(state) \
617 ((state & VFIO_DEVICE_STATE_MASK) == (VFIO_DEVICE_STATE_SAVING | \
618 VFIO_DEVICE_STATE_RESUMING))
619
620#define VFIO_DEVICE_STATE_SET_ERROR(state) \
621 ((state & ~VFIO_DEVICE_STATE_MASK) | VFIO_DEVICE_SATE_SAVING | \
622 VFIO_DEVICE_STATE_RESUMING)
623
624 __u32 reserved;
625 __u64 pending_bytes;
626 __u64 data_offset;
627 __u64 data_size;
628};
629
630/*
631 * The MSIX mappable capability informs that MSIX data of a BAR can be mmapped
632 * which allows direct access to non-MSIX registers which happened to be within
633 * the same system page.
634 *
635 * Even though the userspace gets direct access to the MSIX data, the existing
636 * VFIO_DEVICE_SET_IRQS interface must still be used for MSIX configuration.
637 */
638#define VFIO_REGION_INFO_CAP_MSIX_MAPPABLE 3
639
640/*
641 * Capability with compressed real address (aka SSA - small system address)
642 * where GPU RAM is mapped on a system bus. Used by a GPU for DMA routing
643 * and by the userspace to associate a NVLink bridge with a GPU.
644 */
645#define VFIO_REGION_INFO_CAP_NVLINK2_SSATGT 4
646
647struct vfio_region_info_cap_nvlink2_ssatgt {
648 struct vfio_info_cap_header header;
649 __u64 tgt;
650};
651
652/*
653 * Capability with an NVLink link speed. The value is read by
654 * the NVlink2 bridge driver from the bridge's "ibm,nvlink-speed"
655 * property in the device tree. The value is fixed in the hardware
656 * and failing to provide the correct value results in the link
657 * not working with no indication from the driver why.
658 */
659#define VFIO_REGION_INFO_CAP_NVLINK2_LNKSPD 5
660
661struct vfio_region_info_cap_nvlink2_lnkspd {
662 struct vfio_info_cap_header header;
663 __u32 link_speed;
664 __u32 __pad;
665};
666
667/**
668 * VFIO_DEVICE_GET_IRQ_INFO - _IOWR(VFIO_TYPE, VFIO_BASE + 9,
669 * struct vfio_irq_info)
670 *
671 * Retrieve information about a device IRQ. Caller provides
672 * struct vfio_irq_info with index value set. Caller sets argsz.
673 * Implementation of IRQ mapping is bus driver specific. Indexes
674 * using multiple IRQs are primarily intended to support MSI-like
675 * interrupt blocks. Zero count irq blocks may be used to describe
676 * unimplemented interrupt types.
677 *
678 * The EVENTFD flag indicates the interrupt index supports eventfd based
679 * signaling.
680 *
681 * The MASKABLE flags indicates the index supports MASK and UNMASK
682 * actions described below.
683 *
684 * AUTOMASKED indicates that after signaling, the interrupt line is
685 * automatically masked by VFIO and the user needs to unmask the line
686 * to receive new interrupts. This is primarily intended to distinguish
687 * level triggered interrupts.
688 *
689 * The NORESIZE flag indicates that the interrupt lines within the index
690 * are setup as a set and new subindexes cannot be enabled without first
691 * disabling the entire index. This is used for interrupts like PCI MSI
692 * and MSI-X where the driver may only use a subset of the available
693 * indexes, but VFIO needs to enable a specific number of vectors
694 * upfront. In the case of MSI-X, where the user can enable MSI-X and
695 * then add and unmask vectors, it's up to userspace to make the decision
696 * whether to allocate the maximum supported number of vectors or tear
697 * down setup and incrementally increase the vectors as each is enabled.
698 */
699struct vfio_irq_info {
700 __u32 argsz;
701 __u32 flags;
702#define VFIO_IRQ_INFO_EVENTFD (1 << 0)
703#define VFIO_IRQ_INFO_MASKABLE (1 << 1)
704#define VFIO_IRQ_INFO_AUTOMASKED (1 << 2)
705#define VFIO_IRQ_INFO_NORESIZE (1 << 3)
706 __u32 index; /* IRQ index */
707 __u32 count; /* Number of IRQs within this index */
708};
709#define VFIO_DEVICE_GET_IRQ_INFO _IO(VFIO_TYPE, VFIO_BASE + 9)
710
711/**
712 * VFIO_DEVICE_SET_IRQS - _IOW(VFIO_TYPE, VFIO_BASE + 10, struct vfio_irq_set)
713 *
714 * Set signaling, masking, and unmasking of interrupts. Caller provides
715 * struct vfio_irq_set with all fields set. 'start' and 'count' indicate
716 * the range of subindexes being specified.
717 *
718 * The DATA flags specify the type of data provided. If DATA_NONE, the
719 * operation performs the specified action immediately on the specified
720 * interrupt(s). For example, to unmask AUTOMASKED interrupt [0,0]:
721 * flags = (DATA_NONE|ACTION_UNMASK), index = 0, start = 0, count = 1.
722 *
723 * DATA_BOOL allows sparse support for the same on arrays of interrupts.
724 * For example, to mask interrupts [0,1] and [0,3] (but not [0,2]):
725 * flags = (DATA_BOOL|ACTION_MASK), index = 0, start = 1, count = 3,
726 * data = {1,0,1}
727 *
728 * DATA_EVENTFD binds the specified ACTION to the provided __s32 eventfd.
729 * A value of -1 can be used to either de-assign interrupts if already
730 * assigned or skip un-assigned interrupts. For example, to set an eventfd
731 * to be trigger for interrupts [0,0] and [0,2]:
732 * flags = (DATA_EVENTFD|ACTION_TRIGGER), index = 0, start = 0, count = 3,
733 * data = {fd1, -1, fd2}
734 * If index [0,1] is previously set, two count = 1 ioctls calls would be
735 * required to set [0,0] and [0,2] without changing [0,1].
736 *
737 * Once a signaling mechanism is set, DATA_BOOL or DATA_NONE can be used
738 * with ACTION_TRIGGER to perform kernel level interrupt loopback testing
739 * from userspace (ie. simulate hardware triggering).
740 *
741 * Setting of an event triggering mechanism to userspace for ACTION_TRIGGER
742 * enables the interrupt index for the device. Individual subindex interrupts
743 * can be disabled using the -1 value for DATA_EVENTFD or the index can be
744 * disabled as a whole with: flags = (DATA_NONE|ACTION_TRIGGER), count = 0.
745 *
746 * Note that ACTION_[UN]MASK specify user->kernel signaling (irqfds) while
747 * ACTION_TRIGGER specifies kernel->user signaling.
748 */
749struct vfio_irq_set {
750 __u32 argsz;
751 __u32 flags;
752#define VFIO_IRQ_SET_DATA_NONE (1 << 0) /* Data not present */
753#define VFIO_IRQ_SET_DATA_BOOL (1 << 1) /* Data is bool (u8) */
754#define VFIO_IRQ_SET_DATA_EVENTFD (1 << 2) /* Data is eventfd (s32) */
755#define VFIO_IRQ_SET_ACTION_MASK (1 << 3) /* Mask interrupt */
756#define VFIO_IRQ_SET_ACTION_UNMASK (1 << 4) /* Unmask interrupt */
757#define VFIO_IRQ_SET_ACTION_TRIGGER (1 << 5) /* Trigger interrupt */
758 __u32 index;
759 __u32 start;
760 __u32 count;
761 __u8 data[];
762};
763#define VFIO_DEVICE_SET_IRQS _IO(VFIO_TYPE, VFIO_BASE + 10)
764
765#define VFIO_IRQ_SET_DATA_TYPE_MASK (VFIO_IRQ_SET_DATA_NONE | \
766 VFIO_IRQ_SET_DATA_BOOL | \
767 VFIO_IRQ_SET_DATA_EVENTFD)
768#define VFIO_IRQ_SET_ACTION_TYPE_MASK (VFIO_IRQ_SET_ACTION_MASK | \
769 VFIO_IRQ_SET_ACTION_UNMASK | \
770 VFIO_IRQ_SET_ACTION_TRIGGER)
771/**
772 * VFIO_DEVICE_RESET - _IO(VFIO_TYPE, VFIO_BASE + 11)
773 *
774 * Reset a device.
775 */
776#define VFIO_DEVICE_RESET _IO(VFIO_TYPE, VFIO_BASE + 11)
777
778/*
779 * The VFIO-PCI bus driver makes use of the following fixed region and
780 * IRQ index mapping. Unimplemented regions return a size of zero.
781 * Unimplemented IRQ types return a count of zero.
782 */
783
784enum {
785 VFIO_PCI_BAR0_REGION_INDEX,
786 VFIO_PCI_BAR1_REGION_INDEX,
787 VFIO_PCI_BAR2_REGION_INDEX,
788 VFIO_PCI_BAR3_REGION_INDEX,
789 VFIO_PCI_BAR4_REGION_INDEX,
790 VFIO_PCI_BAR5_REGION_INDEX,
791 VFIO_PCI_ROM_REGION_INDEX,
792 VFIO_PCI_CONFIG_REGION_INDEX,
793 /*
794 * Expose VGA regions defined for PCI base class 03, subclass 00.
795 * This includes I/O port ranges 0x3b0 to 0x3bb and 0x3c0 to 0x3df
796 * as well as the MMIO range 0xa0000 to 0xbffff. Each implemented
797 * range is found at it's identity mapped offset from the region
798 * offset, for example 0x3b0 is region_info.offset + 0x3b0. Areas
799 * between described ranges are unimplemented.
800 */
801 VFIO_PCI_VGA_REGION_INDEX,
802 VFIO_PCI_NUM_REGIONS = 9 /* Fixed user ABI, region indexes >=9 use */
803 /* device specific cap to define content. */
804};
805
806enum {
807 VFIO_PCI_INTX_IRQ_INDEX,
808 VFIO_PCI_MSI_IRQ_INDEX,
809 VFIO_PCI_MSIX_IRQ_INDEX,
810 VFIO_PCI_ERR_IRQ_INDEX,
811 VFIO_PCI_REQ_IRQ_INDEX,
812 VFIO_PCI_NUM_IRQS
813};
814
815/*
816 * The vfio-ccw bus driver makes use of the following fixed region and
817 * IRQ index mapping. Unimplemented regions return a size of zero.
818 * Unimplemented IRQ types return a count of zero.
819 */
820
821enum {
822 VFIO_CCW_CONFIG_REGION_INDEX,
823 VFIO_CCW_NUM_REGIONS
824};
825
826enum {
827 VFIO_CCW_IO_IRQ_INDEX,
828 VFIO_CCW_CRW_IRQ_INDEX,
829 VFIO_CCW_REQ_IRQ_INDEX,
830 VFIO_CCW_NUM_IRQS
831};
832
833/**
834 * VFIO_DEVICE_GET_PCI_HOT_RESET_INFO - _IORW(VFIO_TYPE, VFIO_BASE + 12,
835 * struct vfio_pci_hot_reset_info)
836 *
837 * Return: 0 on success, -errno on failure:
838 * -enospc = insufficient buffer, -enodev = unsupported for device.
839 */
840struct vfio_pci_dependent_device {
841 __u32 group_id;
842 __u16 segment;
843 __u8 bus;
844 __u8 devfn; /* Use PCI_SLOT/PCI_FUNC */
845};
846
847struct vfio_pci_hot_reset_info {
848 __u32 argsz;
849 __u32 flags;
850 __u32 count;
851 struct vfio_pci_dependent_device devices[];
852};
853
854#define VFIO_DEVICE_GET_PCI_HOT_RESET_INFO _IO(VFIO_TYPE, VFIO_BASE + 12)
855
856/**
857 * VFIO_DEVICE_PCI_HOT_RESET - _IOW(VFIO_TYPE, VFIO_BASE + 13,
858 * struct vfio_pci_hot_reset)
859 *
860 * Return: 0 on success, -errno on failure.
861 */
862struct vfio_pci_hot_reset {
863 __u32 argsz;
864 __u32 flags;
865 __u32 count;
866 __s32 group_fds[];
867};
868
869#define VFIO_DEVICE_PCI_HOT_RESET _IO(VFIO_TYPE, VFIO_BASE + 13)
870
871/**
872 * VFIO_DEVICE_QUERY_GFX_PLANE - _IOW(VFIO_TYPE, VFIO_BASE + 14,
873 * struct vfio_device_query_gfx_plane)
874 *
875 * Set the drm_plane_type and flags, then retrieve the gfx plane info.
876 *
877 * flags supported:
878 * - VFIO_GFX_PLANE_TYPE_PROBE and VFIO_GFX_PLANE_TYPE_DMABUF are set
879 * to ask if the mdev supports dma-buf. 0 on support, -EINVAL on no
880 * support for dma-buf.
881 * - VFIO_GFX_PLANE_TYPE_PROBE and VFIO_GFX_PLANE_TYPE_REGION are set
882 * to ask if the mdev supports region. 0 on support, -EINVAL on no
883 * support for region.
884 * - VFIO_GFX_PLANE_TYPE_DMABUF or VFIO_GFX_PLANE_TYPE_REGION is set
885 * with each call to query the plane info.
886 * - Others are invalid and return -EINVAL.
887 *
888 * Note:
889 * 1. Plane could be disabled by guest. In that case, success will be
890 * returned with zero-initialized drm_format, size, width and height
891 * fields.
892 * 2. x_hot/y_hot is set to 0xFFFFFFFF if no hotspot information available
893 *
894 * Return: 0 on success, -errno on other failure.
895 */
896struct vfio_device_gfx_plane_info {
897 __u32 argsz;
898 __u32 flags;
899#define VFIO_GFX_PLANE_TYPE_PROBE (1 << 0)
900#define VFIO_GFX_PLANE_TYPE_DMABUF (1 << 1)
901#define VFIO_GFX_PLANE_TYPE_REGION (1 << 2)
902 /* in */
903 __u32 drm_plane_type; /* type of plane: DRM_PLANE_TYPE_* */
904 /* out */
905 __u32 drm_format; /* drm format of plane */
906 __u64 drm_format_mod; /* tiled mode */
907 __u32 width; /* width of plane */
908 __u32 height; /* height of plane */
909 __u32 stride; /* stride of plane */
910 __u32 size; /* size of plane in bytes, align on page*/
911 __u32 x_pos; /* horizontal position of cursor plane */
912 __u32 y_pos; /* vertical position of cursor plane*/
913 __u32 x_hot; /* horizontal position of cursor hotspot */
914 __u32 y_hot; /* vertical position of cursor hotspot */
915 union {
916 __u32 region_index; /* region index */
917 __u32 dmabuf_id; /* dma-buf id */
918 };
919};
920
921#define VFIO_DEVICE_QUERY_GFX_PLANE _IO(VFIO_TYPE, VFIO_BASE + 14)
922
923/**
924 * VFIO_DEVICE_GET_GFX_DMABUF - _IOW(VFIO_TYPE, VFIO_BASE + 15, __u32)
925 *
926 * Return a new dma-buf file descriptor for an exposed guest framebuffer
927 * described by the provided dmabuf_id. The dmabuf_id is returned from VFIO_
928 * DEVICE_QUERY_GFX_PLANE as a token of the exposed guest framebuffer.
929 */
930
931#define VFIO_DEVICE_GET_GFX_DMABUF _IO(VFIO_TYPE, VFIO_BASE + 15)
932
933/**
934 * VFIO_DEVICE_IOEVENTFD - _IOW(VFIO_TYPE, VFIO_BASE + 16,
935 * struct vfio_device_ioeventfd)
936 *
937 * Perform a write to the device at the specified device fd offset, with
938 * the specified data and width when the provided eventfd is triggered.
939 * vfio bus drivers may not support this for all regions, for all widths,
940 * or at all. vfio-pci currently only enables support for BAR regions,
941 * excluding the MSI-X vector table.
942 *
943 * Return: 0 on success, -errno on failure.
944 */
945struct vfio_device_ioeventfd {
946 __u32 argsz;
947 __u32 flags;
948#define VFIO_DEVICE_IOEVENTFD_8 (1 << 0) /* 1-byte write */
949#define VFIO_DEVICE_IOEVENTFD_16 (1 << 1) /* 2-byte write */
950#define VFIO_DEVICE_IOEVENTFD_32 (1 << 2) /* 4-byte write */
951#define VFIO_DEVICE_IOEVENTFD_64 (1 << 3) /* 8-byte write */
952#define VFIO_DEVICE_IOEVENTFD_SIZE_MASK (0xf)
953 __u64 offset; /* device fd offset of write */
954 __u64 data; /* data to be written */
955 __s32 fd; /* -1 for de-assignment */
956};
957
958#define VFIO_DEVICE_IOEVENTFD _IO(VFIO_TYPE, VFIO_BASE + 16)
959
960/**
961 * VFIO_DEVICE_FEATURE - _IORW(VFIO_TYPE, VFIO_BASE + 17,
962 * struct vfio_device_feature)
963 *
964 * Get, set, or probe feature data of the device. The feature is selected
965 * using the FEATURE_MASK portion of the flags field. Support for a feature
966 * can be probed by setting both the FEATURE_MASK and PROBE bits. A probe
967 * may optionally include the GET and/or SET bits to determine read vs write
968 * access of the feature respectively. Probing a feature will return success
969 * if the feature is supported and all of the optionally indicated GET/SET
970 * methods are supported. The format of the data portion of the structure is
971 * specific to the given feature. The data portion is not required for
972 * probing. GET and SET are mutually exclusive, except for use with PROBE.
973 *
974 * Return 0 on success, -errno on failure.
975 */
976struct vfio_device_feature {
977 __u32 argsz;
978 __u32 flags;
979#define VFIO_DEVICE_FEATURE_MASK (0xffff) /* 16-bit feature index */
980#define VFIO_DEVICE_FEATURE_GET (1 << 16) /* Get feature into data[] */
981#define VFIO_DEVICE_FEATURE_SET (1 << 17) /* Set feature from data[] */
982#define VFIO_DEVICE_FEATURE_PROBE (1 << 18) /* Probe feature support */
983 __u8 data[];
984};
985
986#define VFIO_DEVICE_FEATURE _IO(VFIO_TYPE, VFIO_BASE + 17)
987
988/*
989 * Provide support for setting a PCI VF Token, which is used as a shared
990 * secret between PF and VF drivers. This feature may only be set on a
991 * PCI SR-IOV PF when SR-IOV is enabled on the PF and there are no existing
992 * open VFs. Data provided when setting this feature is a 16-byte array
993 * (__u8 b[16]), representing a UUID.
994 */
995#define VFIO_DEVICE_FEATURE_PCI_VF_TOKEN (0)
996
997/* -------- API for Type1 VFIO IOMMU -------- */
998
999/**
1000 * VFIO_IOMMU_GET_INFO - _IOR(VFIO_TYPE, VFIO_BASE + 12, struct vfio_iommu_info)
1001 *
1002 * Retrieve information about the IOMMU object. Fills in provided
1003 * struct vfio_iommu_info. Caller sets argsz.
1004 *
1005 * XXX Should we do these by CHECK_EXTENSION too?
1006 */
1007struct vfio_iommu_type1_info {
1008 __u32 argsz;
1009 __u32 flags;
1010#define VFIO_IOMMU_INFO_PGSIZES (1 << 0) /* supported page sizes info */
1011#define VFIO_IOMMU_INFO_CAPS (1 << 1) /* Info supports caps */
1012 __u64 iova_pgsizes; /* Bitmap of supported page sizes */
1013 __u32 cap_offset; /* Offset within info struct of first cap */
1014};
1015
1016/*
1017 * The IOVA capability allows to report the valid IOVA range(s)
1018 * excluding any non-relaxable reserved regions exposed by
1019 * devices attached to the container. Any DMA map attempt
1020 * outside the valid iova range will return error.
1021 *
1022 * The structures below define version 1 of this capability.
1023 */
1024#define VFIO_IOMMU_TYPE1_INFO_CAP_IOVA_RANGE 1
1025
1026struct vfio_iova_range {
1027 __u64 start;
1028 __u64 end;
1029};
1030
1031struct vfio_iommu_type1_info_cap_iova_range {
1032 struct vfio_info_cap_header header;
1033 __u32 nr_iovas;
1034 __u32 reserved;
1035 struct vfio_iova_range iova_ranges[];
1036};
1037
1038/*
1039 * The migration capability allows to report supported features for migration.
1040 *
1041 * The structures below define version 1 of this capability.
1042 *
1043 * The existence of this capability indicates that IOMMU kernel driver supports
1044 * dirty page logging.
1045 *
1046 * pgsize_bitmap: Kernel driver returns bitmap of supported page sizes for dirty
1047 * page logging.
1048 * max_dirty_bitmap_size: Kernel driver returns maximum supported dirty bitmap
1049 * size in bytes that can be used by user applications when getting the dirty
1050 * bitmap.
1051 */
1052#define VFIO_IOMMU_TYPE1_INFO_CAP_MIGRATION 2
1053
1054struct vfio_iommu_type1_info_cap_migration {
1055 struct vfio_info_cap_header header;
1056 __u32 flags;
1057 __u64 pgsize_bitmap;
1058 __u64 max_dirty_bitmap_size; /* in bytes */
1059};
1060
1061/*
1062 * The DMA available capability allows to report the current number of
1063 * simultaneously outstanding DMA mappings that are allowed.
1064 *
1065 * The structure below defines version 1 of this capability.
1066 *
1067 * avail: specifies the current number of outstanding DMA mappings allowed.
1068 */
1069#define VFIO_IOMMU_TYPE1_INFO_DMA_AVAIL 3
1070
1071struct vfio_iommu_type1_info_dma_avail {
1072 struct vfio_info_cap_header header;
1073 __u32 avail;
1074};
1075
1076#define VFIO_IOMMU_GET_INFO _IO(VFIO_TYPE, VFIO_BASE + 12)
1077
1078/**
1079 * VFIO_IOMMU_MAP_DMA - _IOW(VFIO_TYPE, VFIO_BASE + 13, struct vfio_dma_map)
1080 *
1081 * Map process virtual addresses to IO virtual addresses using the
1082 * provided struct vfio_dma_map. Caller sets argsz. READ &/ WRITE required.
1083 *
1084 * If flags & VFIO_DMA_MAP_FLAG_VADDR, update the base vaddr for iova, and
1085 * unblock translation of host virtual addresses in the iova range. The vaddr
1086 * must have previously been invalidated with VFIO_DMA_UNMAP_FLAG_VADDR. To
1087 * maintain memory consistency within the user application, the updated vaddr
1088 * must address the same memory object as originally mapped. Failure to do so
1089 * will result in user memory corruption and/or device misbehavior. iova and
1090 * size must match those in the original MAP_DMA call. Protection is not
1091 * changed, and the READ & WRITE flags must be 0.
1092 */
1093struct vfio_iommu_type1_dma_map {
1094 __u32 argsz;
1095 __u32 flags;
1096#define VFIO_DMA_MAP_FLAG_READ (1 << 0) /* readable from device */
1097#define VFIO_DMA_MAP_FLAG_WRITE (1 << 1) /* writable from device */
1098#define VFIO_DMA_MAP_FLAG_VADDR (1 << 2)
1099 __u64 vaddr; /* Process virtual address */
1100 __u64 iova; /* IO virtual address */
1101 __u64 size; /* Size of mapping (bytes) */
1102};
1103
1104#define VFIO_IOMMU_MAP_DMA _IO(VFIO_TYPE, VFIO_BASE + 13)
1105
1106struct vfio_bitmap {
1107 __u64 pgsize; /* page size for bitmap in bytes */
1108 __u64 size; /* in bytes */
1109 __u64 __user *data; /* one bit per page */
1110};
1111
1112/**
1113 * VFIO_IOMMU_UNMAP_DMA - _IOWR(VFIO_TYPE, VFIO_BASE + 14,
1114 * struct vfio_dma_unmap)
1115 *
1116 * Unmap IO virtual addresses using the provided struct vfio_dma_unmap.
1117 * Caller sets argsz. The actual unmapped size is returned in the size
1118 * field. No guarantee is made to the user that arbitrary unmaps of iova
1119 * or size different from those used in the original mapping call will
1120 * succeed.
1121 *
1122 * VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP should be set to get the dirty bitmap
1123 * before unmapping IO virtual addresses. When this flag is set, the user must
1124 * provide a struct vfio_bitmap in data[]. User must provide zero-allocated
1125 * memory via vfio_bitmap.data and its size in the vfio_bitmap.size field.
1126 * A bit in the bitmap represents one page, of user provided page size in
1127 * vfio_bitmap.pgsize field, consecutively starting from iova offset. Bit set
1128 * indicates that the page at that offset from iova is dirty. A Bitmap of the
1129 * pages in the range of unmapped size is returned in the user-provided
1130 * vfio_bitmap.data.
1131 *
1132 * If flags & VFIO_DMA_UNMAP_FLAG_ALL, unmap all addresses. iova and size
1133 * must be 0. This cannot be combined with the get-dirty-bitmap flag.
1134 *
1135 * If flags & VFIO_DMA_UNMAP_FLAG_VADDR, do not unmap, but invalidate host
1136 * virtual addresses in the iova range. Tasks that attempt to translate an
1137 * iova's vaddr will block. DMA to already-mapped pages continues. This
1138 * cannot be combined with the get-dirty-bitmap flag.
1139 */
1140struct vfio_iommu_type1_dma_unmap {
1141 __u32 argsz;
1142 __u32 flags;
1143#define VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP (1 << 0)
1144#define VFIO_DMA_UNMAP_FLAG_ALL (1 << 1)
1145#define VFIO_DMA_UNMAP_FLAG_VADDR (1 << 2)
1146 __u64 iova; /* IO virtual address */
1147 __u64 size; /* Size of mapping (bytes) */
1148 __u8 data[];
1149};
1150
1151#define VFIO_IOMMU_UNMAP_DMA _IO(VFIO_TYPE, VFIO_BASE + 14)
1152
1153/*
1154 * IOCTLs to enable/disable IOMMU container usage.
1155 * No parameters are supported.
1156 */
1157#define VFIO_IOMMU_ENABLE _IO(VFIO_TYPE, VFIO_BASE + 15)
1158#define VFIO_IOMMU_DISABLE _IO(VFIO_TYPE, VFIO_BASE + 16)
1159
1160/**
1161 * VFIO_IOMMU_DIRTY_PAGES - _IOWR(VFIO_TYPE, VFIO_BASE + 17,
1162 * struct vfio_iommu_type1_dirty_bitmap)
1163 * IOCTL is used for dirty pages logging.
1164 * Caller should set flag depending on which operation to perform, details as
1165 * below:
1166 *
1167 * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_START flag set, instructs
1168 * the IOMMU driver to log pages that are dirtied or potentially dirtied by
1169 * the device; designed to be used when a migration is in progress. Dirty pages
1170 * are logged until logging is disabled by user application by calling the IOCTL
1171 * with VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP flag.
1172 *
1173 * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP flag set, instructs
1174 * the IOMMU driver to stop logging dirtied pages.
1175 *
1176 * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP flag set
1177 * returns the dirty pages bitmap for IOMMU container for a given IOVA range.
1178 * The user must specify the IOVA range and the pgsize through the structure
1179 * vfio_iommu_type1_dirty_bitmap_get in the data[] portion. This interface
1180 * supports getting a bitmap of the smallest supported pgsize only and can be
1181 * modified in future to get a bitmap of any specified supported pgsize. The
1182 * user must provide a zeroed memory area for the bitmap memory and specify its
1183 * size in bitmap.size. One bit is used to represent one page consecutively
1184 * starting from iova offset. The user should provide page size in bitmap.pgsize
1185 * field. A bit set in the bitmap indicates that the page at that offset from
1186 * iova is dirty. The caller must set argsz to a value including the size of
1187 * structure vfio_iommu_type1_dirty_bitmap_get, but excluding the size of the
1188 * actual bitmap. If dirty pages logging is not enabled, an error will be
1189 * returned.
1190 *
1191 * Only one of the flags _START, _STOP and _GET may be specified at a time.
1192 *
1193 */
1194struct vfio_iommu_type1_dirty_bitmap {
1195 __u32 argsz;
1196 __u32 flags;
1197#define VFIO_IOMMU_DIRTY_PAGES_FLAG_START (1 << 0)
1198#define VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP (1 << 1)
1199#define VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP (1 << 2)
1200 __u8 data[];
1201};
1202
1203struct vfio_iommu_type1_dirty_bitmap_get {
1204 __u64 iova; /* IO virtual address */
1205 __u64 size; /* Size of iova range */
1206 struct vfio_bitmap bitmap;
1207};
1208
1209#define VFIO_IOMMU_DIRTY_PAGES _IO(VFIO_TYPE, VFIO_BASE + 17)
1210
1211/* -------- Additional API for SPAPR TCE (Server POWERPC) IOMMU -------- */
1212
1213/*
1214 * The SPAPR TCE DDW info struct provides the information about
1215 * the details of Dynamic DMA window capability.
1216 *
1217 * @pgsizes contains a page size bitmask, 4K/64K/16M are supported.
1218 * @max_dynamic_windows_supported tells the maximum number of windows
1219 * which the platform can create.
1220 * @levels tells the maximum number of levels in multi-level IOMMU tables;
1221 * this allows splitting a table into smaller chunks which reduces
1222 * the amount of physically contiguous memory required for the table.
1223 */
1224struct vfio_iommu_spapr_tce_ddw_info {
1225 __u64 pgsizes; /* Bitmap of supported page sizes */
1226 __u32 max_dynamic_windows_supported;
1227 __u32 levels;
1228};
1229
1230/*
1231 * The SPAPR TCE info struct provides the information about the PCI bus
1232 * address ranges available for DMA, these values are programmed into
1233 * the hardware so the guest has to know that information.
1234 *
1235 * The DMA 32 bit window start is an absolute PCI bus address.
1236 * The IOVA address passed via map/unmap ioctls are absolute PCI bus
1237 * addresses too so the window works as a filter rather than an offset
1238 * for IOVA addresses.
1239 *
1240 * Flags supported:
1241 * - VFIO_IOMMU_SPAPR_INFO_DDW: informs the userspace that dynamic DMA windows
1242 * (DDW) support is present. @ddw is only supported when DDW is present.
1243 */
1244struct vfio_iommu_spapr_tce_info {
1245 __u32 argsz;
1246 __u32 flags;
1247#define VFIO_IOMMU_SPAPR_INFO_DDW (1 << 0) /* DDW supported */
1248 __u32 dma32_window_start; /* 32 bit window start (bytes) */
1249 __u32 dma32_window_size; /* 32 bit window size (bytes) */
1250 struct vfio_iommu_spapr_tce_ddw_info ddw;
1251};
1252
1253#define VFIO_IOMMU_SPAPR_TCE_GET_INFO _IO(VFIO_TYPE, VFIO_BASE + 12)
1254
1255/*
1256 * EEH PE operation struct provides ways to:
1257 * - enable/disable EEH functionality;
1258 * - unfreeze IO/DMA for frozen PE;
1259 * - read PE state;
1260 * - reset PE;
1261 * - configure PE;
1262 * - inject EEH error.
1263 */
1264struct vfio_eeh_pe_err {
1265 __u32 type;
1266 __u32 func;
1267 __u64 addr;
1268 __u64 mask;
1269};
1270
1271struct vfio_eeh_pe_op {
1272 __u32 argsz;
1273 __u32 flags;
1274 __u32 op;
1275 union {
1276 struct vfio_eeh_pe_err err;
1277 };
1278};
1279
1280#define VFIO_EEH_PE_DISABLE 0 /* Disable EEH functionality */
1281#define VFIO_EEH_PE_ENABLE 1 /* Enable EEH functionality */
1282#define VFIO_EEH_PE_UNFREEZE_IO 2 /* Enable IO for frozen PE */
1283#define VFIO_EEH_PE_UNFREEZE_DMA 3 /* Enable DMA for frozen PE */
1284#define VFIO_EEH_PE_GET_STATE 4 /* PE state retrieval */
1285#define VFIO_EEH_PE_STATE_NORMAL 0 /* PE in functional state */
1286#define VFIO_EEH_PE_STATE_RESET 1 /* PE reset in progress */
1287#define VFIO_EEH_PE_STATE_STOPPED 2 /* Stopped DMA and IO */
1288#define VFIO_EEH_PE_STATE_STOPPED_DMA 4 /* Stopped DMA only */
1289#define VFIO_EEH_PE_STATE_UNAVAIL 5 /* State unavailable */
1290#define VFIO_EEH_PE_RESET_DEACTIVATE 5 /* Deassert PE reset */
1291#define VFIO_EEH_PE_RESET_HOT 6 /* Assert hot reset */
1292#define VFIO_EEH_PE_RESET_FUNDAMENTAL 7 /* Assert fundamental reset */
1293#define VFIO_EEH_PE_CONFIGURE 8 /* PE configuration */
1294#define VFIO_EEH_PE_INJECT_ERR 9 /* Inject EEH error */
1295
1296#define VFIO_EEH_PE_OP _IO(VFIO_TYPE, VFIO_BASE + 21)
1297
1298/**
1299 * VFIO_IOMMU_SPAPR_REGISTER_MEMORY - _IOW(VFIO_TYPE, VFIO_BASE + 17, struct vfio_iommu_spapr_register_memory)
1300 *
1301 * Registers user space memory where DMA is allowed. It pins
1302 * user pages and does the locked memory accounting so
1303 * subsequent VFIO_IOMMU_MAP_DMA/VFIO_IOMMU_UNMAP_DMA calls
1304 * get faster.
1305 */
1306struct vfio_iommu_spapr_register_memory {
1307 __u32 argsz;
1308 __u32 flags;
1309 __u64 vaddr; /* Process virtual address */
1310 __u64 size; /* Size of mapping (bytes) */
1311};
1312#define VFIO_IOMMU_SPAPR_REGISTER_MEMORY _IO(VFIO_TYPE, VFIO_BASE + 17)
1313
1314/**
1315 * VFIO_IOMMU_SPAPR_UNREGISTER_MEMORY - _IOW(VFIO_TYPE, VFIO_BASE + 18, struct vfio_iommu_spapr_register_memory)
1316 *
1317 * Unregisters user space memory registered with
1318 * VFIO_IOMMU_SPAPR_REGISTER_MEMORY.
1319 * Uses vfio_iommu_spapr_register_memory for parameters.
1320 */
1321#define VFIO_IOMMU_SPAPR_UNREGISTER_MEMORY _IO(VFIO_TYPE, VFIO_BASE + 18)
1322
1323/**
1324 * VFIO_IOMMU_SPAPR_TCE_CREATE - _IOWR(VFIO_TYPE, VFIO_BASE + 19, struct vfio_iommu_spapr_tce_create)
1325 *
1326 * Creates an additional TCE table and programs it (sets a new DMA window)
1327 * to every IOMMU group in the container. It receives page shift, window
1328 * size and number of levels in the TCE table being created.
1329 *
1330 * It allocates and returns an offset on a PCI bus of the new DMA window.
1331 */
1332struct vfio_iommu_spapr_tce_create {
1333 __u32 argsz;
1334 __u32 flags;
1335 /* in */
1336 __u32 page_shift;
1337 __u32 __resv1;
1338 __u64 window_size;
1339 __u32 levels;
1340 __u32 __resv2;
1341 /* out */
1342 __u64 start_addr;
1343};
1344#define VFIO_IOMMU_SPAPR_TCE_CREATE _IO(VFIO_TYPE, VFIO_BASE + 19)
1345
1346/**
1347 * VFIO_IOMMU_SPAPR_TCE_REMOVE - _IOW(VFIO_TYPE, VFIO_BASE + 20, struct vfio_iommu_spapr_tce_remove)
1348 *
1349 * Unprograms a TCE table from all groups in the container and destroys it.
1350 * It receives a PCI bus offset as a window id.
1351 */
1352struct vfio_iommu_spapr_tce_remove {
1353 __u32 argsz;
1354 __u32 flags;
1355 /* in */
1356 __u64 start_addr;
1357};
1358#define VFIO_IOMMU_SPAPR_TCE_REMOVE _IO(VFIO_TYPE, VFIO_BASE + 20)
1359
1360/* ***************************************************************** */
1361
1362#endif /* _UAPIVFIO_H */