Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_SCHED_H
3#define _LINUX_SCHED_H
4
5/*
6 * Define 'struct task_struct' and provide the main scheduler
7 * APIs (schedule(), wakeup variants, etc.)
8 */
9
10#include <uapi/linux/sched.h>
11
12#include <asm/current.h>
13
14#include <linux/pid.h>
15#include <linux/sem.h>
16#include <linux/shm.h>
17#include <linux/kcov.h>
18#include <linux/mutex.h>
19#include <linux/plist.h>
20#include <linux/hrtimer.h>
21#include <linux/irqflags.h>
22#include <linux/seccomp.h>
23#include <linux/nodemask.h>
24#include <linux/rcupdate.h>
25#include <linux/refcount.h>
26#include <linux/resource.h>
27#include <linux/latencytop.h>
28#include <linux/sched/prio.h>
29#include <linux/sched/types.h>
30#include <linux/signal_types.h>
31#include <linux/syscall_user_dispatch.h>
32#include <linux/mm_types_task.h>
33#include <linux/task_io_accounting.h>
34#include <linux/posix-timers.h>
35#include <linux/rseq.h>
36#include <linux/seqlock.h>
37#include <linux/kcsan.h>
38#include <asm/kmap_size.h>
39
40/* task_struct member predeclarations (sorted alphabetically): */
41struct audit_context;
42struct backing_dev_info;
43struct bio_list;
44struct blk_plug;
45struct capture_control;
46struct cfs_rq;
47struct fs_struct;
48struct futex_pi_state;
49struct io_context;
50struct io_uring_task;
51struct mempolicy;
52struct nameidata;
53struct nsproxy;
54struct perf_event_context;
55struct pid_namespace;
56struct pipe_inode_info;
57struct rcu_node;
58struct reclaim_state;
59struct robust_list_head;
60struct root_domain;
61struct rq;
62struct sched_attr;
63struct sched_param;
64struct seq_file;
65struct sighand_struct;
66struct signal_struct;
67struct task_delay_info;
68struct task_group;
69
70/*
71 * Task state bitmask. NOTE! These bits are also
72 * encoded in fs/proc/array.c: get_task_state().
73 *
74 * We have two separate sets of flags: task->state
75 * is about runnability, while task->exit_state are
76 * about the task exiting. Confusing, but this way
77 * modifying one set can't modify the other one by
78 * mistake.
79 */
80
81/* Used in tsk->state: */
82#define TASK_RUNNING 0x0000
83#define TASK_INTERRUPTIBLE 0x0001
84#define TASK_UNINTERRUPTIBLE 0x0002
85#define __TASK_STOPPED 0x0004
86#define __TASK_TRACED 0x0008
87/* Used in tsk->exit_state: */
88#define EXIT_DEAD 0x0010
89#define EXIT_ZOMBIE 0x0020
90#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
91/* Used in tsk->state again: */
92#define TASK_PARKED 0x0040
93#define TASK_DEAD 0x0080
94#define TASK_WAKEKILL 0x0100
95#define TASK_WAKING 0x0200
96#define TASK_NOLOAD 0x0400
97#define TASK_NEW 0x0800
98#define TASK_STATE_MAX 0x1000
99
100/* Convenience macros for the sake of set_current_state: */
101#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
102#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
103#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
104
105#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
106
107/* Convenience macros for the sake of wake_up(): */
108#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
109
110/* get_task_state(): */
111#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
112 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
113 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
114 TASK_PARKED)
115
116#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
117
118#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
119
120#define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
121
122#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
123
124/*
125 * Special states are those that do not use the normal wait-loop pattern. See
126 * the comment with set_special_state().
127 */
128#define is_special_task_state(state) \
129 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
130
131#define __set_current_state(state_value) \
132 do { \
133 WARN_ON_ONCE(is_special_task_state(state_value));\
134 current->task_state_change = _THIS_IP_; \
135 current->state = (state_value); \
136 } while (0)
137
138#define set_current_state(state_value) \
139 do { \
140 WARN_ON_ONCE(is_special_task_state(state_value));\
141 current->task_state_change = _THIS_IP_; \
142 smp_store_mb(current->state, (state_value)); \
143 } while (0)
144
145#define set_special_state(state_value) \
146 do { \
147 unsigned long flags; /* may shadow */ \
148 WARN_ON_ONCE(!is_special_task_state(state_value)); \
149 raw_spin_lock_irqsave(¤t->pi_lock, flags); \
150 current->task_state_change = _THIS_IP_; \
151 current->state = (state_value); \
152 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \
153 } while (0)
154#else
155/*
156 * set_current_state() includes a barrier so that the write of current->state
157 * is correctly serialised wrt the caller's subsequent test of whether to
158 * actually sleep:
159 *
160 * for (;;) {
161 * set_current_state(TASK_UNINTERRUPTIBLE);
162 * if (CONDITION)
163 * break;
164 *
165 * schedule();
166 * }
167 * __set_current_state(TASK_RUNNING);
168 *
169 * If the caller does not need such serialisation (because, for instance, the
170 * CONDITION test and condition change and wakeup are under the same lock) then
171 * use __set_current_state().
172 *
173 * The above is typically ordered against the wakeup, which does:
174 *
175 * CONDITION = 1;
176 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
177 *
178 * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
179 * accessing p->state.
180 *
181 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
182 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
183 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
184 *
185 * However, with slightly different timing the wakeup TASK_RUNNING store can
186 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
187 * a problem either because that will result in one extra go around the loop
188 * and our @cond test will save the day.
189 *
190 * Also see the comments of try_to_wake_up().
191 */
192#define __set_current_state(state_value) \
193 current->state = (state_value)
194
195#define set_current_state(state_value) \
196 smp_store_mb(current->state, (state_value))
197
198/*
199 * set_special_state() should be used for those states when the blocking task
200 * can not use the regular condition based wait-loop. In that case we must
201 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
202 * will not collide with our state change.
203 */
204#define set_special_state(state_value) \
205 do { \
206 unsigned long flags; /* may shadow */ \
207 raw_spin_lock_irqsave(¤t->pi_lock, flags); \
208 current->state = (state_value); \
209 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \
210 } while (0)
211
212#endif
213
214/* Task command name length: */
215#define TASK_COMM_LEN 16
216
217extern void scheduler_tick(void);
218
219#define MAX_SCHEDULE_TIMEOUT LONG_MAX
220
221extern long schedule_timeout(long timeout);
222extern long schedule_timeout_interruptible(long timeout);
223extern long schedule_timeout_killable(long timeout);
224extern long schedule_timeout_uninterruptible(long timeout);
225extern long schedule_timeout_idle(long timeout);
226asmlinkage void schedule(void);
227extern void schedule_preempt_disabled(void);
228asmlinkage void preempt_schedule_irq(void);
229
230extern int __must_check io_schedule_prepare(void);
231extern void io_schedule_finish(int token);
232extern long io_schedule_timeout(long timeout);
233extern void io_schedule(void);
234
235/**
236 * struct prev_cputime - snapshot of system and user cputime
237 * @utime: time spent in user mode
238 * @stime: time spent in system mode
239 * @lock: protects the above two fields
240 *
241 * Stores previous user/system time values such that we can guarantee
242 * monotonicity.
243 */
244struct prev_cputime {
245#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
246 u64 utime;
247 u64 stime;
248 raw_spinlock_t lock;
249#endif
250};
251
252enum vtime_state {
253 /* Task is sleeping or running in a CPU with VTIME inactive: */
254 VTIME_INACTIVE = 0,
255 /* Task is idle */
256 VTIME_IDLE,
257 /* Task runs in kernelspace in a CPU with VTIME active: */
258 VTIME_SYS,
259 /* Task runs in userspace in a CPU with VTIME active: */
260 VTIME_USER,
261 /* Task runs as guests in a CPU with VTIME active: */
262 VTIME_GUEST,
263};
264
265struct vtime {
266 seqcount_t seqcount;
267 unsigned long long starttime;
268 enum vtime_state state;
269 unsigned int cpu;
270 u64 utime;
271 u64 stime;
272 u64 gtime;
273};
274
275/*
276 * Utilization clamp constraints.
277 * @UCLAMP_MIN: Minimum utilization
278 * @UCLAMP_MAX: Maximum utilization
279 * @UCLAMP_CNT: Utilization clamp constraints count
280 */
281enum uclamp_id {
282 UCLAMP_MIN = 0,
283 UCLAMP_MAX,
284 UCLAMP_CNT
285};
286
287#ifdef CONFIG_SMP
288extern struct root_domain def_root_domain;
289extern struct mutex sched_domains_mutex;
290#endif
291
292struct sched_info {
293#ifdef CONFIG_SCHED_INFO
294 /* Cumulative counters: */
295
296 /* # of times we have run on this CPU: */
297 unsigned long pcount;
298
299 /* Time spent waiting on a runqueue: */
300 unsigned long long run_delay;
301
302 /* Timestamps: */
303
304 /* When did we last run on a CPU? */
305 unsigned long long last_arrival;
306
307 /* When were we last queued to run? */
308 unsigned long long last_queued;
309
310#endif /* CONFIG_SCHED_INFO */
311};
312
313/*
314 * Integer metrics need fixed point arithmetic, e.g., sched/fair
315 * has a few: load, load_avg, util_avg, freq, and capacity.
316 *
317 * We define a basic fixed point arithmetic range, and then formalize
318 * all these metrics based on that basic range.
319 */
320# define SCHED_FIXEDPOINT_SHIFT 10
321# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
322
323/* Increase resolution of cpu_capacity calculations */
324# define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
325# define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
326
327struct load_weight {
328 unsigned long weight;
329 u32 inv_weight;
330};
331
332/**
333 * struct util_est - Estimation utilization of FAIR tasks
334 * @enqueued: instantaneous estimated utilization of a task/cpu
335 * @ewma: the Exponential Weighted Moving Average (EWMA)
336 * utilization of a task
337 *
338 * Support data structure to track an Exponential Weighted Moving Average
339 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
340 * average each time a task completes an activation. Sample's weight is chosen
341 * so that the EWMA will be relatively insensitive to transient changes to the
342 * task's workload.
343 *
344 * The enqueued attribute has a slightly different meaning for tasks and cpus:
345 * - task: the task's util_avg at last task dequeue time
346 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
347 * Thus, the util_est.enqueued of a task represents the contribution on the
348 * estimated utilization of the CPU where that task is currently enqueued.
349 *
350 * Only for tasks we track a moving average of the past instantaneous
351 * estimated utilization. This allows to absorb sporadic drops in utilization
352 * of an otherwise almost periodic task.
353 */
354struct util_est {
355 unsigned int enqueued;
356 unsigned int ewma;
357#define UTIL_EST_WEIGHT_SHIFT 2
358} __attribute__((__aligned__(sizeof(u64))));
359
360/*
361 * The load/runnable/util_avg accumulates an infinite geometric series
362 * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
363 *
364 * [load_avg definition]
365 *
366 * load_avg = runnable% * scale_load_down(load)
367 *
368 * [runnable_avg definition]
369 *
370 * runnable_avg = runnable% * SCHED_CAPACITY_SCALE
371 *
372 * [util_avg definition]
373 *
374 * util_avg = running% * SCHED_CAPACITY_SCALE
375 *
376 * where runnable% is the time ratio that a sched_entity is runnable and
377 * running% the time ratio that a sched_entity is running.
378 *
379 * For cfs_rq, they are the aggregated values of all runnable and blocked
380 * sched_entities.
381 *
382 * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
383 * capacity scaling. The scaling is done through the rq_clock_pelt that is used
384 * for computing those signals (see update_rq_clock_pelt())
385 *
386 * N.B., the above ratios (runnable% and running%) themselves are in the
387 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
388 * to as large a range as necessary. This is for example reflected by
389 * util_avg's SCHED_CAPACITY_SCALE.
390 *
391 * [Overflow issue]
392 *
393 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
394 * with the highest load (=88761), always runnable on a single cfs_rq,
395 * and should not overflow as the number already hits PID_MAX_LIMIT.
396 *
397 * For all other cases (including 32-bit kernels), struct load_weight's
398 * weight will overflow first before we do, because:
399 *
400 * Max(load_avg) <= Max(load.weight)
401 *
402 * Then it is the load_weight's responsibility to consider overflow
403 * issues.
404 */
405struct sched_avg {
406 u64 last_update_time;
407 u64 load_sum;
408 u64 runnable_sum;
409 u32 util_sum;
410 u32 period_contrib;
411 unsigned long load_avg;
412 unsigned long runnable_avg;
413 unsigned long util_avg;
414 struct util_est util_est;
415} ____cacheline_aligned;
416
417struct sched_statistics {
418#ifdef CONFIG_SCHEDSTATS
419 u64 wait_start;
420 u64 wait_max;
421 u64 wait_count;
422 u64 wait_sum;
423 u64 iowait_count;
424 u64 iowait_sum;
425
426 u64 sleep_start;
427 u64 sleep_max;
428 s64 sum_sleep_runtime;
429
430 u64 block_start;
431 u64 block_max;
432 u64 exec_max;
433 u64 slice_max;
434
435 u64 nr_migrations_cold;
436 u64 nr_failed_migrations_affine;
437 u64 nr_failed_migrations_running;
438 u64 nr_failed_migrations_hot;
439 u64 nr_forced_migrations;
440
441 u64 nr_wakeups;
442 u64 nr_wakeups_sync;
443 u64 nr_wakeups_migrate;
444 u64 nr_wakeups_local;
445 u64 nr_wakeups_remote;
446 u64 nr_wakeups_affine;
447 u64 nr_wakeups_affine_attempts;
448 u64 nr_wakeups_passive;
449 u64 nr_wakeups_idle;
450#endif
451};
452
453struct sched_entity {
454 /* For load-balancing: */
455 struct load_weight load;
456 struct rb_node run_node;
457 struct list_head group_node;
458 unsigned int on_rq;
459
460 u64 exec_start;
461 u64 sum_exec_runtime;
462 u64 vruntime;
463 u64 prev_sum_exec_runtime;
464
465 u64 nr_migrations;
466
467 struct sched_statistics statistics;
468
469#ifdef CONFIG_FAIR_GROUP_SCHED
470 int depth;
471 struct sched_entity *parent;
472 /* rq on which this entity is (to be) queued: */
473 struct cfs_rq *cfs_rq;
474 /* rq "owned" by this entity/group: */
475 struct cfs_rq *my_q;
476 /* cached value of my_q->h_nr_running */
477 unsigned long runnable_weight;
478#endif
479
480#ifdef CONFIG_SMP
481 /*
482 * Per entity load average tracking.
483 *
484 * Put into separate cache line so it does not
485 * collide with read-mostly values above.
486 */
487 struct sched_avg avg;
488#endif
489};
490
491struct sched_rt_entity {
492 struct list_head run_list;
493 unsigned long timeout;
494 unsigned long watchdog_stamp;
495 unsigned int time_slice;
496 unsigned short on_rq;
497 unsigned short on_list;
498
499 struct sched_rt_entity *back;
500#ifdef CONFIG_RT_GROUP_SCHED
501 struct sched_rt_entity *parent;
502 /* rq on which this entity is (to be) queued: */
503 struct rt_rq *rt_rq;
504 /* rq "owned" by this entity/group: */
505 struct rt_rq *my_q;
506#endif
507} __randomize_layout;
508
509struct sched_dl_entity {
510 struct rb_node rb_node;
511
512 /*
513 * Original scheduling parameters. Copied here from sched_attr
514 * during sched_setattr(), they will remain the same until
515 * the next sched_setattr().
516 */
517 u64 dl_runtime; /* Maximum runtime for each instance */
518 u64 dl_deadline; /* Relative deadline of each instance */
519 u64 dl_period; /* Separation of two instances (period) */
520 u64 dl_bw; /* dl_runtime / dl_period */
521 u64 dl_density; /* dl_runtime / dl_deadline */
522
523 /*
524 * Actual scheduling parameters. Initialized with the values above,
525 * they are continuously updated during task execution. Note that
526 * the remaining runtime could be < 0 in case we are in overrun.
527 */
528 s64 runtime; /* Remaining runtime for this instance */
529 u64 deadline; /* Absolute deadline for this instance */
530 unsigned int flags; /* Specifying the scheduler behaviour */
531
532 /*
533 * Some bool flags:
534 *
535 * @dl_throttled tells if we exhausted the runtime. If so, the
536 * task has to wait for a replenishment to be performed at the
537 * next firing of dl_timer.
538 *
539 * @dl_boosted tells if we are boosted due to DI. If so we are
540 * outside bandwidth enforcement mechanism (but only until we
541 * exit the critical section);
542 *
543 * @dl_yielded tells if task gave up the CPU before consuming
544 * all its available runtime during the last job.
545 *
546 * @dl_non_contending tells if the task is inactive while still
547 * contributing to the active utilization. In other words, it
548 * indicates if the inactive timer has been armed and its handler
549 * has not been executed yet. This flag is useful to avoid race
550 * conditions between the inactive timer handler and the wakeup
551 * code.
552 *
553 * @dl_overrun tells if the task asked to be informed about runtime
554 * overruns.
555 */
556 unsigned int dl_throttled : 1;
557 unsigned int dl_yielded : 1;
558 unsigned int dl_non_contending : 1;
559 unsigned int dl_overrun : 1;
560
561 /*
562 * Bandwidth enforcement timer. Each -deadline task has its
563 * own bandwidth to be enforced, thus we need one timer per task.
564 */
565 struct hrtimer dl_timer;
566
567 /*
568 * Inactive timer, responsible for decreasing the active utilization
569 * at the "0-lag time". When a -deadline task blocks, it contributes
570 * to GRUB's active utilization until the "0-lag time", hence a
571 * timer is needed to decrease the active utilization at the correct
572 * time.
573 */
574 struct hrtimer inactive_timer;
575
576#ifdef CONFIG_RT_MUTEXES
577 /*
578 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
579 * pi_se points to the donor, otherwise points to the dl_se it belongs
580 * to (the original one/itself).
581 */
582 struct sched_dl_entity *pi_se;
583#endif
584};
585
586#ifdef CONFIG_UCLAMP_TASK
587/* Number of utilization clamp buckets (shorter alias) */
588#define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
589
590/*
591 * Utilization clamp for a scheduling entity
592 * @value: clamp value "assigned" to a se
593 * @bucket_id: bucket index corresponding to the "assigned" value
594 * @active: the se is currently refcounted in a rq's bucket
595 * @user_defined: the requested clamp value comes from user-space
596 *
597 * The bucket_id is the index of the clamp bucket matching the clamp value
598 * which is pre-computed and stored to avoid expensive integer divisions from
599 * the fast path.
600 *
601 * The active bit is set whenever a task has got an "effective" value assigned,
602 * which can be different from the clamp value "requested" from user-space.
603 * This allows to know a task is refcounted in the rq's bucket corresponding
604 * to the "effective" bucket_id.
605 *
606 * The user_defined bit is set whenever a task has got a task-specific clamp
607 * value requested from userspace, i.e. the system defaults apply to this task
608 * just as a restriction. This allows to relax default clamps when a less
609 * restrictive task-specific value has been requested, thus allowing to
610 * implement a "nice" semantic. For example, a task running with a 20%
611 * default boost can still drop its own boosting to 0%.
612 */
613struct uclamp_se {
614 unsigned int value : bits_per(SCHED_CAPACITY_SCALE);
615 unsigned int bucket_id : bits_per(UCLAMP_BUCKETS);
616 unsigned int active : 1;
617 unsigned int user_defined : 1;
618};
619#endif /* CONFIG_UCLAMP_TASK */
620
621union rcu_special {
622 struct {
623 u8 blocked;
624 u8 need_qs;
625 u8 exp_hint; /* Hint for performance. */
626 u8 need_mb; /* Readers need smp_mb(). */
627 } b; /* Bits. */
628 u32 s; /* Set of bits. */
629};
630
631enum perf_event_task_context {
632 perf_invalid_context = -1,
633 perf_hw_context = 0,
634 perf_sw_context,
635 perf_nr_task_contexts,
636};
637
638struct wake_q_node {
639 struct wake_q_node *next;
640};
641
642struct kmap_ctrl {
643#ifdef CONFIG_KMAP_LOCAL
644 int idx;
645 pte_t pteval[KM_MAX_IDX];
646#endif
647};
648
649struct task_struct {
650#ifdef CONFIG_THREAD_INFO_IN_TASK
651 /*
652 * For reasons of header soup (see current_thread_info()), this
653 * must be the first element of task_struct.
654 */
655 struct thread_info thread_info;
656#endif
657 /* -1 unrunnable, 0 runnable, >0 stopped: */
658 volatile long state;
659
660 /*
661 * This begins the randomizable portion of task_struct. Only
662 * scheduling-critical items should be added above here.
663 */
664 randomized_struct_fields_start
665
666 void *stack;
667 refcount_t usage;
668 /* Per task flags (PF_*), defined further below: */
669 unsigned int flags;
670 unsigned int ptrace;
671
672#ifdef CONFIG_SMP
673 int on_cpu;
674 struct __call_single_node wake_entry;
675#ifdef CONFIG_THREAD_INFO_IN_TASK
676 /* Current CPU: */
677 unsigned int cpu;
678#endif
679 unsigned int wakee_flips;
680 unsigned long wakee_flip_decay_ts;
681 struct task_struct *last_wakee;
682
683 /*
684 * recent_used_cpu is initially set as the last CPU used by a task
685 * that wakes affine another task. Waker/wakee relationships can
686 * push tasks around a CPU where each wakeup moves to the next one.
687 * Tracking a recently used CPU allows a quick search for a recently
688 * used CPU that may be idle.
689 */
690 int recent_used_cpu;
691 int wake_cpu;
692#endif
693 int on_rq;
694
695 int prio;
696 int static_prio;
697 int normal_prio;
698 unsigned int rt_priority;
699
700 const struct sched_class *sched_class;
701 struct sched_entity se;
702 struct sched_rt_entity rt;
703#ifdef CONFIG_CGROUP_SCHED
704 struct task_group *sched_task_group;
705#endif
706 struct sched_dl_entity dl;
707
708#ifdef CONFIG_UCLAMP_TASK
709 /*
710 * Clamp values requested for a scheduling entity.
711 * Must be updated with task_rq_lock() held.
712 */
713 struct uclamp_se uclamp_req[UCLAMP_CNT];
714 /*
715 * Effective clamp values used for a scheduling entity.
716 * Must be updated with task_rq_lock() held.
717 */
718 struct uclamp_se uclamp[UCLAMP_CNT];
719#endif
720
721#ifdef CONFIG_PREEMPT_NOTIFIERS
722 /* List of struct preempt_notifier: */
723 struct hlist_head preempt_notifiers;
724#endif
725
726#ifdef CONFIG_BLK_DEV_IO_TRACE
727 unsigned int btrace_seq;
728#endif
729
730 unsigned int policy;
731 int nr_cpus_allowed;
732 const cpumask_t *cpus_ptr;
733 cpumask_t cpus_mask;
734 void *migration_pending;
735#ifdef CONFIG_SMP
736 unsigned short migration_disabled;
737#endif
738 unsigned short migration_flags;
739
740#ifdef CONFIG_PREEMPT_RCU
741 int rcu_read_lock_nesting;
742 union rcu_special rcu_read_unlock_special;
743 struct list_head rcu_node_entry;
744 struct rcu_node *rcu_blocked_node;
745#endif /* #ifdef CONFIG_PREEMPT_RCU */
746
747#ifdef CONFIG_TASKS_RCU
748 unsigned long rcu_tasks_nvcsw;
749 u8 rcu_tasks_holdout;
750 u8 rcu_tasks_idx;
751 int rcu_tasks_idle_cpu;
752 struct list_head rcu_tasks_holdout_list;
753#endif /* #ifdef CONFIG_TASKS_RCU */
754
755#ifdef CONFIG_TASKS_TRACE_RCU
756 int trc_reader_nesting;
757 int trc_ipi_to_cpu;
758 union rcu_special trc_reader_special;
759 bool trc_reader_checked;
760 struct list_head trc_holdout_list;
761#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
762
763 struct sched_info sched_info;
764
765 struct list_head tasks;
766#ifdef CONFIG_SMP
767 struct plist_node pushable_tasks;
768 struct rb_node pushable_dl_tasks;
769#endif
770
771 struct mm_struct *mm;
772 struct mm_struct *active_mm;
773
774 /* Per-thread vma caching: */
775 struct vmacache vmacache;
776
777#ifdef SPLIT_RSS_COUNTING
778 struct task_rss_stat rss_stat;
779#endif
780 int exit_state;
781 int exit_code;
782 int exit_signal;
783 /* The signal sent when the parent dies: */
784 int pdeath_signal;
785 /* JOBCTL_*, siglock protected: */
786 unsigned long jobctl;
787
788 /* Used for emulating ABI behavior of previous Linux versions: */
789 unsigned int personality;
790
791 /* Scheduler bits, serialized by scheduler locks: */
792 unsigned sched_reset_on_fork:1;
793 unsigned sched_contributes_to_load:1;
794 unsigned sched_migrated:1;
795#ifdef CONFIG_PSI
796 unsigned sched_psi_wake_requeue:1;
797#endif
798
799 /* Force alignment to the next boundary: */
800 unsigned :0;
801
802 /* Unserialized, strictly 'current' */
803
804 /*
805 * This field must not be in the scheduler word above due to wakelist
806 * queueing no longer being serialized by p->on_cpu. However:
807 *
808 * p->XXX = X; ttwu()
809 * schedule() if (p->on_rq && ..) // false
810 * smp_mb__after_spinlock(); if (smp_load_acquire(&p->on_cpu) && //true
811 * deactivate_task() ttwu_queue_wakelist())
812 * p->on_rq = 0; p->sched_remote_wakeup = Y;
813 *
814 * guarantees all stores of 'current' are visible before
815 * ->sched_remote_wakeup gets used, so it can be in this word.
816 */
817 unsigned sched_remote_wakeup:1;
818
819 /* Bit to tell LSMs we're in execve(): */
820 unsigned in_execve:1;
821 unsigned in_iowait:1;
822#ifndef TIF_RESTORE_SIGMASK
823 unsigned restore_sigmask:1;
824#endif
825#ifdef CONFIG_MEMCG
826 unsigned in_user_fault:1;
827#endif
828#ifdef CONFIG_COMPAT_BRK
829 unsigned brk_randomized:1;
830#endif
831#ifdef CONFIG_CGROUPS
832 /* disallow userland-initiated cgroup migration */
833 unsigned no_cgroup_migration:1;
834 /* task is frozen/stopped (used by the cgroup freezer) */
835 unsigned frozen:1;
836#endif
837#ifdef CONFIG_BLK_CGROUP
838 unsigned use_memdelay:1;
839#endif
840#ifdef CONFIG_PSI
841 /* Stalled due to lack of memory */
842 unsigned in_memstall:1;
843#endif
844
845 unsigned long atomic_flags; /* Flags requiring atomic access. */
846
847 struct restart_block restart_block;
848
849 pid_t pid;
850 pid_t tgid;
851
852#ifdef CONFIG_STACKPROTECTOR
853 /* Canary value for the -fstack-protector GCC feature: */
854 unsigned long stack_canary;
855#endif
856 /*
857 * Pointers to the (original) parent process, youngest child, younger sibling,
858 * older sibling, respectively. (p->father can be replaced with
859 * p->real_parent->pid)
860 */
861
862 /* Real parent process: */
863 struct task_struct __rcu *real_parent;
864
865 /* Recipient of SIGCHLD, wait4() reports: */
866 struct task_struct __rcu *parent;
867
868 /*
869 * Children/sibling form the list of natural children:
870 */
871 struct list_head children;
872 struct list_head sibling;
873 struct task_struct *group_leader;
874
875 /*
876 * 'ptraced' is the list of tasks this task is using ptrace() on.
877 *
878 * This includes both natural children and PTRACE_ATTACH targets.
879 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
880 */
881 struct list_head ptraced;
882 struct list_head ptrace_entry;
883
884 /* PID/PID hash table linkage. */
885 struct pid *thread_pid;
886 struct hlist_node pid_links[PIDTYPE_MAX];
887 struct list_head thread_group;
888 struct list_head thread_node;
889
890 struct completion *vfork_done;
891
892 /* CLONE_CHILD_SETTID: */
893 int __user *set_child_tid;
894
895 /* CLONE_CHILD_CLEARTID: */
896 int __user *clear_child_tid;
897
898 /* PF_IO_WORKER */
899 void *pf_io_worker;
900
901 u64 utime;
902 u64 stime;
903#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
904 u64 utimescaled;
905 u64 stimescaled;
906#endif
907 u64 gtime;
908 struct prev_cputime prev_cputime;
909#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
910 struct vtime vtime;
911#endif
912
913#ifdef CONFIG_NO_HZ_FULL
914 atomic_t tick_dep_mask;
915#endif
916 /* Context switch counts: */
917 unsigned long nvcsw;
918 unsigned long nivcsw;
919
920 /* Monotonic time in nsecs: */
921 u64 start_time;
922
923 /* Boot based time in nsecs: */
924 u64 start_boottime;
925
926 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
927 unsigned long min_flt;
928 unsigned long maj_flt;
929
930 /* Empty if CONFIG_POSIX_CPUTIMERS=n */
931 struct posix_cputimers posix_cputimers;
932
933#ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
934 struct posix_cputimers_work posix_cputimers_work;
935#endif
936
937 /* Process credentials: */
938
939 /* Tracer's credentials at attach: */
940 const struct cred __rcu *ptracer_cred;
941
942 /* Objective and real subjective task credentials (COW): */
943 const struct cred __rcu *real_cred;
944
945 /* Effective (overridable) subjective task credentials (COW): */
946 const struct cred __rcu *cred;
947
948#ifdef CONFIG_KEYS
949 /* Cached requested key. */
950 struct key *cached_requested_key;
951#endif
952
953 /*
954 * executable name, excluding path.
955 *
956 * - normally initialized setup_new_exec()
957 * - access it with [gs]et_task_comm()
958 * - lock it with task_lock()
959 */
960 char comm[TASK_COMM_LEN];
961
962 struct nameidata *nameidata;
963
964#ifdef CONFIG_SYSVIPC
965 struct sysv_sem sysvsem;
966 struct sysv_shm sysvshm;
967#endif
968#ifdef CONFIG_DETECT_HUNG_TASK
969 unsigned long last_switch_count;
970 unsigned long last_switch_time;
971#endif
972 /* Filesystem information: */
973 struct fs_struct *fs;
974
975 /* Open file information: */
976 struct files_struct *files;
977
978#ifdef CONFIG_IO_URING
979 struct io_uring_task *io_uring;
980#endif
981
982 /* Namespaces: */
983 struct nsproxy *nsproxy;
984
985 /* Signal handlers: */
986 struct signal_struct *signal;
987 struct sighand_struct __rcu *sighand;
988 sigset_t blocked;
989 sigset_t real_blocked;
990 /* Restored if set_restore_sigmask() was used: */
991 sigset_t saved_sigmask;
992 struct sigpending pending;
993 unsigned long sas_ss_sp;
994 size_t sas_ss_size;
995 unsigned int sas_ss_flags;
996
997 struct callback_head *task_works;
998
999#ifdef CONFIG_AUDIT
1000#ifdef CONFIG_AUDITSYSCALL
1001 struct audit_context *audit_context;
1002#endif
1003 kuid_t loginuid;
1004 unsigned int sessionid;
1005#endif
1006 struct seccomp seccomp;
1007 struct syscall_user_dispatch syscall_dispatch;
1008
1009 /* Thread group tracking: */
1010 u64 parent_exec_id;
1011 u64 self_exec_id;
1012
1013 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1014 spinlock_t alloc_lock;
1015
1016 /* Protection of the PI data structures: */
1017 raw_spinlock_t pi_lock;
1018
1019 struct wake_q_node wake_q;
1020
1021#ifdef CONFIG_RT_MUTEXES
1022 /* PI waiters blocked on a rt_mutex held by this task: */
1023 struct rb_root_cached pi_waiters;
1024 /* Updated under owner's pi_lock and rq lock */
1025 struct task_struct *pi_top_task;
1026 /* Deadlock detection and priority inheritance handling: */
1027 struct rt_mutex_waiter *pi_blocked_on;
1028#endif
1029
1030#ifdef CONFIG_DEBUG_MUTEXES
1031 /* Mutex deadlock detection: */
1032 struct mutex_waiter *blocked_on;
1033#endif
1034
1035#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1036 int non_block_count;
1037#endif
1038
1039#ifdef CONFIG_TRACE_IRQFLAGS
1040 struct irqtrace_events irqtrace;
1041 unsigned int hardirq_threaded;
1042 u64 hardirq_chain_key;
1043 int softirqs_enabled;
1044 int softirq_context;
1045 int irq_config;
1046#endif
1047
1048#ifdef CONFIG_LOCKDEP
1049# define MAX_LOCK_DEPTH 48UL
1050 u64 curr_chain_key;
1051 int lockdep_depth;
1052 unsigned int lockdep_recursion;
1053 struct held_lock held_locks[MAX_LOCK_DEPTH];
1054#endif
1055
1056#if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1057 unsigned int in_ubsan;
1058#endif
1059
1060 /* Journalling filesystem info: */
1061 void *journal_info;
1062
1063 /* Stacked block device info: */
1064 struct bio_list *bio_list;
1065
1066#ifdef CONFIG_BLOCK
1067 /* Stack plugging: */
1068 struct blk_plug *plug;
1069#endif
1070
1071 /* VM state: */
1072 struct reclaim_state *reclaim_state;
1073
1074 struct backing_dev_info *backing_dev_info;
1075
1076 struct io_context *io_context;
1077
1078#ifdef CONFIG_COMPACTION
1079 struct capture_control *capture_control;
1080#endif
1081 /* Ptrace state: */
1082 unsigned long ptrace_message;
1083 kernel_siginfo_t *last_siginfo;
1084
1085 struct task_io_accounting ioac;
1086#ifdef CONFIG_PSI
1087 /* Pressure stall state */
1088 unsigned int psi_flags;
1089#endif
1090#ifdef CONFIG_TASK_XACCT
1091 /* Accumulated RSS usage: */
1092 u64 acct_rss_mem1;
1093 /* Accumulated virtual memory usage: */
1094 u64 acct_vm_mem1;
1095 /* stime + utime since last update: */
1096 u64 acct_timexpd;
1097#endif
1098#ifdef CONFIG_CPUSETS
1099 /* Protected by ->alloc_lock: */
1100 nodemask_t mems_allowed;
1101 /* Seqence number to catch updates: */
1102 seqcount_spinlock_t mems_allowed_seq;
1103 int cpuset_mem_spread_rotor;
1104 int cpuset_slab_spread_rotor;
1105#endif
1106#ifdef CONFIG_CGROUPS
1107 /* Control Group info protected by css_set_lock: */
1108 struct css_set __rcu *cgroups;
1109 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
1110 struct list_head cg_list;
1111#endif
1112#ifdef CONFIG_X86_CPU_RESCTRL
1113 u32 closid;
1114 u32 rmid;
1115#endif
1116#ifdef CONFIG_FUTEX
1117 struct robust_list_head __user *robust_list;
1118#ifdef CONFIG_COMPAT
1119 struct compat_robust_list_head __user *compat_robust_list;
1120#endif
1121 struct list_head pi_state_list;
1122 struct futex_pi_state *pi_state_cache;
1123 struct mutex futex_exit_mutex;
1124 unsigned int futex_state;
1125#endif
1126#ifdef CONFIG_PERF_EVENTS
1127 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1128 struct mutex perf_event_mutex;
1129 struct list_head perf_event_list;
1130#endif
1131#ifdef CONFIG_DEBUG_PREEMPT
1132 unsigned long preempt_disable_ip;
1133#endif
1134#ifdef CONFIG_NUMA
1135 /* Protected by alloc_lock: */
1136 struct mempolicy *mempolicy;
1137 short il_prev;
1138 short pref_node_fork;
1139#endif
1140#ifdef CONFIG_NUMA_BALANCING
1141 int numa_scan_seq;
1142 unsigned int numa_scan_period;
1143 unsigned int numa_scan_period_max;
1144 int numa_preferred_nid;
1145 unsigned long numa_migrate_retry;
1146 /* Migration stamp: */
1147 u64 node_stamp;
1148 u64 last_task_numa_placement;
1149 u64 last_sum_exec_runtime;
1150 struct callback_head numa_work;
1151
1152 /*
1153 * This pointer is only modified for current in syscall and
1154 * pagefault context (and for tasks being destroyed), so it can be read
1155 * from any of the following contexts:
1156 * - RCU read-side critical section
1157 * - current->numa_group from everywhere
1158 * - task's runqueue locked, task not running
1159 */
1160 struct numa_group __rcu *numa_group;
1161
1162 /*
1163 * numa_faults is an array split into four regions:
1164 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1165 * in this precise order.
1166 *
1167 * faults_memory: Exponential decaying average of faults on a per-node
1168 * basis. Scheduling placement decisions are made based on these
1169 * counts. The values remain static for the duration of a PTE scan.
1170 * faults_cpu: Track the nodes the process was running on when a NUMA
1171 * hinting fault was incurred.
1172 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1173 * during the current scan window. When the scan completes, the counts
1174 * in faults_memory and faults_cpu decay and these values are copied.
1175 */
1176 unsigned long *numa_faults;
1177 unsigned long total_numa_faults;
1178
1179 /*
1180 * numa_faults_locality tracks if faults recorded during the last
1181 * scan window were remote/local or failed to migrate. The task scan
1182 * period is adapted based on the locality of the faults with different
1183 * weights depending on whether they were shared or private faults
1184 */
1185 unsigned long numa_faults_locality[3];
1186
1187 unsigned long numa_pages_migrated;
1188#endif /* CONFIG_NUMA_BALANCING */
1189
1190#ifdef CONFIG_RSEQ
1191 struct rseq __user *rseq;
1192 u32 rseq_sig;
1193 /*
1194 * RmW on rseq_event_mask must be performed atomically
1195 * with respect to preemption.
1196 */
1197 unsigned long rseq_event_mask;
1198#endif
1199
1200 struct tlbflush_unmap_batch tlb_ubc;
1201
1202 union {
1203 refcount_t rcu_users;
1204 struct rcu_head rcu;
1205 };
1206
1207 /* Cache last used pipe for splice(): */
1208 struct pipe_inode_info *splice_pipe;
1209
1210 struct page_frag task_frag;
1211
1212#ifdef CONFIG_TASK_DELAY_ACCT
1213 struct task_delay_info *delays;
1214#endif
1215
1216#ifdef CONFIG_FAULT_INJECTION
1217 int make_it_fail;
1218 unsigned int fail_nth;
1219#endif
1220 /*
1221 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1222 * balance_dirty_pages() for a dirty throttling pause:
1223 */
1224 int nr_dirtied;
1225 int nr_dirtied_pause;
1226 /* Start of a write-and-pause period: */
1227 unsigned long dirty_paused_when;
1228
1229#ifdef CONFIG_LATENCYTOP
1230 int latency_record_count;
1231 struct latency_record latency_record[LT_SAVECOUNT];
1232#endif
1233 /*
1234 * Time slack values; these are used to round up poll() and
1235 * select() etc timeout values. These are in nanoseconds.
1236 */
1237 u64 timer_slack_ns;
1238 u64 default_timer_slack_ns;
1239
1240#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
1241 unsigned int kasan_depth;
1242#endif
1243
1244#ifdef CONFIG_KCSAN
1245 struct kcsan_ctx kcsan_ctx;
1246#ifdef CONFIG_TRACE_IRQFLAGS
1247 struct irqtrace_events kcsan_save_irqtrace;
1248#endif
1249#endif
1250
1251#if IS_ENABLED(CONFIG_KUNIT)
1252 struct kunit *kunit_test;
1253#endif
1254
1255#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1256 /* Index of current stored address in ret_stack: */
1257 int curr_ret_stack;
1258 int curr_ret_depth;
1259
1260 /* Stack of return addresses for return function tracing: */
1261 struct ftrace_ret_stack *ret_stack;
1262
1263 /* Timestamp for last schedule: */
1264 unsigned long long ftrace_timestamp;
1265
1266 /*
1267 * Number of functions that haven't been traced
1268 * because of depth overrun:
1269 */
1270 atomic_t trace_overrun;
1271
1272 /* Pause tracing: */
1273 atomic_t tracing_graph_pause;
1274#endif
1275
1276#ifdef CONFIG_TRACING
1277 /* State flags for use by tracers: */
1278 unsigned long trace;
1279
1280 /* Bitmask and counter of trace recursion: */
1281 unsigned long trace_recursion;
1282#endif /* CONFIG_TRACING */
1283
1284#ifdef CONFIG_KCOV
1285 /* See kernel/kcov.c for more details. */
1286
1287 /* Coverage collection mode enabled for this task (0 if disabled): */
1288 unsigned int kcov_mode;
1289
1290 /* Size of the kcov_area: */
1291 unsigned int kcov_size;
1292
1293 /* Buffer for coverage collection: */
1294 void *kcov_area;
1295
1296 /* KCOV descriptor wired with this task or NULL: */
1297 struct kcov *kcov;
1298
1299 /* KCOV common handle for remote coverage collection: */
1300 u64 kcov_handle;
1301
1302 /* KCOV sequence number: */
1303 int kcov_sequence;
1304
1305 /* Collect coverage from softirq context: */
1306 unsigned int kcov_softirq;
1307#endif
1308
1309#ifdef CONFIG_MEMCG
1310 struct mem_cgroup *memcg_in_oom;
1311 gfp_t memcg_oom_gfp_mask;
1312 int memcg_oom_order;
1313
1314 /* Number of pages to reclaim on returning to userland: */
1315 unsigned int memcg_nr_pages_over_high;
1316
1317 /* Used by memcontrol for targeted memcg charge: */
1318 struct mem_cgroup *active_memcg;
1319#endif
1320
1321#ifdef CONFIG_BLK_CGROUP
1322 struct request_queue *throttle_queue;
1323#endif
1324
1325#ifdef CONFIG_UPROBES
1326 struct uprobe_task *utask;
1327#endif
1328#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1329 unsigned int sequential_io;
1330 unsigned int sequential_io_avg;
1331#endif
1332 struct kmap_ctrl kmap_ctrl;
1333#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1334 unsigned long task_state_change;
1335#endif
1336 int pagefault_disabled;
1337#ifdef CONFIG_MMU
1338 struct task_struct *oom_reaper_list;
1339#endif
1340#ifdef CONFIG_VMAP_STACK
1341 struct vm_struct *stack_vm_area;
1342#endif
1343#ifdef CONFIG_THREAD_INFO_IN_TASK
1344 /* A live task holds one reference: */
1345 refcount_t stack_refcount;
1346#endif
1347#ifdef CONFIG_LIVEPATCH
1348 int patch_state;
1349#endif
1350#ifdef CONFIG_SECURITY
1351 /* Used by LSM modules for access restriction: */
1352 void *security;
1353#endif
1354
1355#ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1356 unsigned long lowest_stack;
1357 unsigned long prev_lowest_stack;
1358#endif
1359
1360#ifdef CONFIG_X86_MCE
1361 void __user *mce_vaddr;
1362 __u64 mce_kflags;
1363 u64 mce_addr;
1364 __u64 mce_ripv : 1,
1365 mce_whole_page : 1,
1366 __mce_reserved : 62;
1367 struct callback_head mce_kill_me;
1368#endif
1369
1370#ifdef CONFIG_KRETPROBES
1371 struct llist_head kretprobe_instances;
1372#endif
1373
1374 /*
1375 * New fields for task_struct should be added above here, so that
1376 * they are included in the randomized portion of task_struct.
1377 */
1378 randomized_struct_fields_end
1379
1380 /* CPU-specific state of this task: */
1381 struct thread_struct thread;
1382
1383 /*
1384 * WARNING: on x86, 'thread_struct' contains a variable-sized
1385 * structure. It *MUST* be at the end of 'task_struct'.
1386 *
1387 * Do not put anything below here!
1388 */
1389};
1390
1391static inline struct pid *task_pid(struct task_struct *task)
1392{
1393 return task->thread_pid;
1394}
1395
1396/*
1397 * the helpers to get the task's different pids as they are seen
1398 * from various namespaces
1399 *
1400 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1401 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1402 * current.
1403 * task_xid_nr_ns() : id seen from the ns specified;
1404 *
1405 * see also pid_nr() etc in include/linux/pid.h
1406 */
1407pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1408
1409static inline pid_t task_pid_nr(struct task_struct *tsk)
1410{
1411 return tsk->pid;
1412}
1413
1414static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1415{
1416 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1417}
1418
1419static inline pid_t task_pid_vnr(struct task_struct *tsk)
1420{
1421 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1422}
1423
1424
1425static inline pid_t task_tgid_nr(struct task_struct *tsk)
1426{
1427 return tsk->tgid;
1428}
1429
1430/**
1431 * pid_alive - check that a task structure is not stale
1432 * @p: Task structure to be checked.
1433 *
1434 * Test if a process is not yet dead (at most zombie state)
1435 * If pid_alive fails, then pointers within the task structure
1436 * can be stale and must not be dereferenced.
1437 *
1438 * Return: 1 if the process is alive. 0 otherwise.
1439 */
1440static inline int pid_alive(const struct task_struct *p)
1441{
1442 return p->thread_pid != NULL;
1443}
1444
1445static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1446{
1447 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1448}
1449
1450static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1451{
1452 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1453}
1454
1455
1456static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1457{
1458 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1459}
1460
1461static inline pid_t task_session_vnr(struct task_struct *tsk)
1462{
1463 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1464}
1465
1466static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1467{
1468 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1469}
1470
1471static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1472{
1473 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1474}
1475
1476static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1477{
1478 pid_t pid = 0;
1479
1480 rcu_read_lock();
1481 if (pid_alive(tsk))
1482 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1483 rcu_read_unlock();
1484
1485 return pid;
1486}
1487
1488static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1489{
1490 return task_ppid_nr_ns(tsk, &init_pid_ns);
1491}
1492
1493/* Obsolete, do not use: */
1494static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1495{
1496 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1497}
1498
1499#define TASK_REPORT_IDLE (TASK_REPORT + 1)
1500#define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1501
1502static inline unsigned int task_state_index(struct task_struct *tsk)
1503{
1504 unsigned int tsk_state = READ_ONCE(tsk->state);
1505 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1506
1507 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1508
1509 if (tsk_state == TASK_IDLE)
1510 state = TASK_REPORT_IDLE;
1511
1512 return fls(state);
1513}
1514
1515static inline char task_index_to_char(unsigned int state)
1516{
1517 static const char state_char[] = "RSDTtXZPI";
1518
1519 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1520
1521 return state_char[state];
1522}
1523
1524static inline char task_state_to_char(struct task_struct *tsk)
1525{
1526 return task_index_to_char(task_state_index(tsk));
1527}
1528
1529/**
1530 * is_global_init - check if a task structure is init. Since init
1531 * is free to have sub-threads we need to check tgid.
1532 * @tsk: Task structure to be checked.
1533 *
1534 * Check if a task structure is the first user space task the kernel created.
1535 *
1536 * Return: 1 if the task structure is init. 0 otherwise.
1537 */
1538static inline int is_global_init(struct task_struct *tsk)
1539{
1540 return task_tgid_nr(tsk) == 1;
1541}
1542
1543extern struct pid *cad_pid;
1544
1545/*
1546 * Per process flags
1547 */
1548#define PF_VCPU 0x00000001 /* I'm a virtual CPU */
1549#define PF_IDLE 0x00000002 /* I am an IDLE thread */
1550#define PF_EXITING 0x00000004 /* Getting shut down */
1551#define PF_IO_WORKER 0x00000010 /* Task is an IO worker */
1552#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1553#define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1554#define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1555#define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1556#define PF_DUMPCORE 0x00000200 /* Dumped core */
1557#define PF_SIGNALED 0x00000400 /* Killed by a signal */
1558#define PF_MEMALLOC 0x00000800 /* Allocating memory */
1559#define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1560#define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1561#define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */
1562#define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1563#define PF_FROZEN 0x00010000 /* Frozen for system suspend */
1564#define PF_KSWAPD 0x00020000 /* I am kswapd */
1565#define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1566#define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
1567#define PF_LOCAL_THROTTLE 0x00100000 /* Throttle writes only against the bdi I write to,
1568 * I am cleaning dirty pages from some other bdi. */
1569#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1570#define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1571#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1572#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */
1573#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1574#define PF_MEMALLOC_NOCMA 0x10000000 /* All allocation request will have _GFP_MOVABLE cleared */
1575#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1576#define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1577
1578/*
1579 * Only the _current_ task can read/write to tsk->flags, but other
1580 * tasks can access tsk->flags in readonly mode for example
1581 * with tsk_used_math (like during threaded core dumping).
1582 * There is however an exception to this rule during ptrace
1583 * or during fork: the ptracer task is allowed to write to the
1584 * child->flags of its traced child (same goes for fork, the parent
1585 * can write to the child->flags), because we're guaranteed the
1586 * child is not running and in turn not changing child->flags
1587 * at the same time the parent does it.
1588 */
1589#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1590#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1591#define clear_used_math() clear_stopped_child_used_math(current)
1592#define set_used_math() set_stopped_child_used_math(current)
1593
1594#define conditional_stopped_child_used_math(condition, child) \
1595 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1596
1597#define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1598
1599#define copy_to_stopped_child_used_math(child) \
1600 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1601
1602/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1603#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1604#define used_math() tsk_used_math(current)
1605
1606static inline bool is_percpu_thread(void)
1607{
1608#ifdef CONFIG_SMP
1609 return (current->flags & PF_NO_SETAFFINITY) &&
1610 (current->nr_cpus_allowed == 1);
1611#else
1612 return true;
1613#endif
1614}
1615
1616/* Per-process atomic flags. */
1617#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1618#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1619#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
1620#define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
1621#define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
1622#define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */
1623#define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */
1624#define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */
1625
1626#define TASK_PFA_TEST(name, func) \
1627 static inline bool task_##func(struct task_struct *p) \
1628 { return test_bit(PFA_##name, &p->atomic_flags); }
1629
1630#define TASK_PFA_SET(name, func) \
1631 static inline void task_set_##func(struct task_struct *p) \
1632 { set_bit(PFA_##name, &p->atomic_flags); }
1633
1634#define TASK_PFA_CLEAR(name, func) \
1635 static inline void task_clear_##func(struct task_struct *p) \
1636 { clear_bit(PFA_##name, &p->atomic_flags); }
1637
1638TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1639TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1640
1641TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1642TASK_PFA_SET(SPREAD_PAGE, spread_page)
1643TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1644
1645TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1646TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1647TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1648
1649TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1650TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1651TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1652
1653TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1654TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1655TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1656
1657TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1658TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1659
1660TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1661TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1662TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1663
1664TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1665TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1666
1667static inline void
1668current_restore_flags(unsigned long orig_flags, unsigned long flags)
1669{
1670 current->flags &= ~flags;
1671 current->flags |= orig_flags & flags;
1672}
1673
1674extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1675extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1676#ifdef CONFIG_SMP
1677extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1678extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1679#else
1680static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1681{
1682}
1683static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1684{
1685 if (!cpumask_test_cpu(0, new_mask))
1686 return -EINVAL;
1687 return 0;
1688}
1689#endif
1690
1691extern int yield_to(struct task_struct *p, bool preempt);
1692extern void set_user_nice(struct task_struct *p, long nice);
1693extern int task_prio(const struct task_struct *p);
1694
1695/**
1696 * task_nice - return the nice value of a given task.
1697 * @p: the task in question.
1698 *
1699 * Return: The nice value [ -20 ... 0 ... 19 ].
1700 */
1701static inline int task_nice(const struct task_struct *p)
1702{
1703 return PRIO_TO_NICE((p)->static_prio);
1704}
1705
1706extern int can_nice(const struct task_struct *p, const int nice);
1707extern int task_curr(const struct task_struct *p);
1708extern int idle_cpu(int cpu);
1709extern int available_idle_cpu(int cpu);
1710extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1711extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1712extern void sched_set_fifo(struct task_struct *p);
1713extern void sched_set_fifo_low(struct task_struct *p);
1714extern void sched_set_normal(struct task_struct *p, int nice);
1715extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1716extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1717extern struct task_struct *idle_task(int cpu);
1718
1719/**
1720 * is_idle_task - is the specified task an idle task?
1721 * @p: the task in question.
1722 *
1723 * Return: 1 if @p is an idle task. 0 otherwise.
1724 */
1725static __always_inline bool is_idle_task(const struct task_struct *p)
1726{
1727 return !!(p->flags & PF_IDLE);
1728}
1729
1730extern struct task_struct *curr_task(int cpu);
1731extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1732
1733void yield(void);
1734
1735union thread_union {
1736#ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1737 struct task_struct task;
1738#endif
1739#ifndef CONFIG_THREAD_INFO_IN_TASK
1740 struct thread_info thread_info;
1741#endif
1742 unsigned long stack[THREAD_SIZE/sizeof(long)];
1743};
1744
1745#ifndef CONFIG_THREAD_INFO_IN_TASK
1746extern struct thread_info init_thread_info;
1747#endif
1748
1749extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1750
1751#ifdef CONFIG_THREAD_INFO_IN_TASK
1752static inline struct thread_info *task_thread_info(struct task_struct *task)
1753{
1754 return &task->thread_info;
1755}
1756#elif !defined(__HAVE_THREAD_FUNCTIONS)
1757# define task_thread_info(task) ((struct thread_info *)(task)->stack)
1758#endif
1759
1760/*
1761 * find a task by one of its numerical ids
1762 *
1763 * find_task_by_pid_ns():
1764 * finds a task by its pid in the specified namespace
1765 * find_task_by_vpid():
1766 * finds a task by its virtual pid
1767 *
1768 * see also find_vpid() etc in include/linux/pid.h
1769 */
1770
1771extern struct task_struct *find_task_by_vpid(pid_t nr);
1772extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1773
1774/*
1775 * find a task by its virtual pid and get the task struct
1776 */
1777extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1778
1779extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1780extern int wake_up_process(struct task_struct *tsk);
1781extern void wake_up_new_task(struct task_struct *tsk);
1782
1783#ifdef CONFIG_SMP
1784extern void kick_process(struct task_struct *tsk);
1785#else
1786static inline void kick_process(struct task_struct *tsk) { }
1787#endif
1788
1789extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1790
1791static inline void set_task_comm(struct task_struct *tsk, const char *from)
1792{
1793 __set_task_comm(tsk, from, false);
1794}
1795
1796extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1797#define get_task_comm(buf, tsk) ({ \
1798 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
1799 __get_task_comm(buf, sizeof(buf), tsk); \
1800})
1801
1802#ifdef CONFIG_SMP
1803static __always_inline void scheduler_ipi(void)
1804{
1805 /*
1806 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1807 * TIF_NEED_RESCHED remotely (for the first time) will also send
1808 * this IPI.
1809 */
1810 preempt_fold_need_resched();
1811}
1812extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1813#else
1814static inline void scheduler_ipi(void) { }
1815static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1816{
1817 return 1;
1818}
1819#endif
1820
1821/*
1822 * Set thread flags in other task's structures.
1823 * See asm/thread_info.h for TIF_xxxx flags available:
1824 */
1825static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1826{
1827 set_ti_thread_flag(task_thread_info(tsk), flag);
1828}
1829
1830static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1831{
1832 clear_ti_thread_flag(task_thread_info(tsk), flag);
1833}
1834
1835static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1836 bool value)
1837{
1838 update_ti_thread_flag(task_thread_info(tsk), flag, value);
1839}
1840
1841static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1842{
1843 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1844}
1845
1846static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1847{
1848 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1849}
1850
1851static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1852{
1853 return test_ti_thread_flag(task_thread_info(tsk), flag);
1854}
1855
1856static inline void set_tsk_need_resched(struct task_struct *tsk)
1857{
1858 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1859}
1860
1861static inline void clear_tsk_need_resched(struct task_struct *tsk)
1862{
1863 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1864}
1865
1866static inline int test_tsk_need_resched(struct task_struct *tsk)
1867{
1868 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1869}
1870
1871/*
1872 * cond_resched() and cond_resched_lock(): latency reduction via
1873 * explicit rescheduling in places that are safe. The return
1874 * value indicates whether a reschedule was done in fact.
1875 * cond_resched_lock() will drop the spinlock before scheduling,
1876 */
1877#if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
1878extern int __cond_resched(void);
1879
1880#ifdef CONFIG_PREEMPT_DYNAMIC
1881
1882DECLARE_STATIC_CALL(cond_resched, __cond_resched);
1883
1884static __always_inline int _cond_resched(void)
1885{
1886 return static_call_mod(cond_resched)();
1887}
1888
1889#else
1890
1891static inline int _cond_resched(void)
1892{
1893 return __cond_resched();
1894}
1895
1896#endif /* CONFIG_PREEMPT_DYNAMIC */
1897
1898#else
1899
1900static inline int _cond_resched(void) { return 0; }
1901
1902#endif /* !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) */
1903
1904#define cond_resched() ({ \
1905 ___might_sleep(__FILE__, __LINE__, 0); \
1906 _cond_resched(); \
1907})
1908
1909extern int __cond_resched_lock(spinlock_t *lock);
1910extern int __cond_resched_rwlock_read(rwlock_t *lock);
1911extern int __cond_resched_rwlock_write(rwlock_t *lock);
1912
1913#define cond_resched_lock(lock) ({ \
1914 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
1915 __cond_resched_lock(lock); \
1916})
1917
1918#define cond_resched_rwlock_read(lock) ({ \
1919 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
1920 __cond_resched_rwlock_read(lock); \
1921})
1922
1923#define cond_resched_rwlock_write(lock) ({ \
1924 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
1925 __cond_resched_rwlock_write(lock); \
1926})
1927
1928static inline void cond_resched_rcu(void)
1929{
1930#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1931 rcu_read_unlock();
1932 cond_resched();
1933 rcu_read_lock();
1934#endif
1935}
1936
1937/*
1938 * Does a critical section need to be broken due to another
1939 * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
1940 * but a general need for low latency)
1941 */
1942static inline int spin_needbreak(spinlock_t *lock)
1943{
1944#ifdef CONFIG_PREEMPTION
1945 return spin_is_contended(lock);
1946#else
1947 return 0;
1948#endif
1949}
1950
1951/*
1952 * Check if a rwlock is contended.
1953 * Returns non-zero if there is another task waiting on the rwlock.
1954 * Returns zero if the lock is not contended or the system / underlying
1955 * rwlock implementation does not support contention detection.
1956 * Technically does not depend on CONFIG_PREEMPTION, but a general need
1957 * for low latency.
1958 */
1959static inline int rwlock_needbreak(rwlock_t *lock)
1960{
1961#ifdef CONFIG_PREEMPTION
1962 return rwlock_is_contended(lock);
1963#else
1964 return 0;
1965#endif
1966}
1967
1968static __always_inline bool need_resched(void)
1969{
1970 return unlikely(tif_need_resched());
1971}
1972
1973/*
1974 * Wrappers for p->thread_info->cpu access. No-op on UP.
1975 */
1976#ifdef CONFIG_SMP
1977
1978static inline unsigned int task_cpu(const struct task_struct *p)
1979{
1980#ifdef CONFIG_THREAD_INFO_IN_TASK
1981 return READ_ONCE(p->cpu);
1982#else
1983 return READ_ONCE(task_thread_info(p)->cpu);
1984#endif
1985}
1986
1987extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1988
1989#else
1990
1991static inline unsigned int task_cpu(const struct task_struct *p)
1992{
1993 return 0;
1994}
1995
1996static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1997{
1998}
1999
2000#endif /* CONFIG_SMP */
2001
2002/*
2003 * In order to reduce various lock holder preemption latencies provide an
2004 * interface to see if a vCPU is currently running or not.
2005 *
2006 * This allows us to terminate optimistic spin loops and block, analogous to
2007 * the native optimistic spin heuristic of testing if the lock owner task is
2008 * running or not.
2009 */
2010#ifndef vcpu_is_preempted
2011static inline bool vcpu_is_preempted(int cpu)
2012{
2013 return false;
2014}
2015#endif
2016
2017extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2018extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2019
2020#ifndef TASK_SIZE_OF
2021#define TASK_SIZE_OF(tsk) TASK_SIZE
2022#endif
2023
2024#ifdef CONFIG_SMP
2025/* Returns effective CPU energy utilization, as seen by the scheduler */
2026unsigned long sched_cpu_util(int cpu, unsigned long max);
2027#endif /* CONFIG_SMP */
2028
2029#ifdef CONFIG_RSEQ
2030
2031/*
2032 * Map the event mask on the user-space ABI enum rseq_cs_flags
2033 * for direct mask checks.
2034 */
2035enum rseq_event_mask_bits {
2036 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
2037 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
2038 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
2039};
2040
2041enum rseq_event_mask {
2042 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT),
2043 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT),
2044 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT),
2045};
2046
2047static inline void rseq_set_notify_resume(struct task_struct *t)
2048{
2049 if (t->rseq)
2050 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
2051}
2052
2053void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
2054
2055static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2056 struct pt_regs *regs)
2057{
2058 if (current->rseq)
2059 __rseq_handle_notify_resume(ksig, regs);
2060}
2061
2062static inline void rseq_signal_deliver(struct ksignal *ksig,
2063 struct pt_regs *regs)
2064{
2065 preempt_disable();
2066 __set_bit(RSEQ_EVENT_SIGNAL_BIT, ¤t->rseq_event_mask);
2067 preempt_enable();
2068 rseq_handle_notify_resume(ksig, regs);
2069}
2070
2071/* rseq_preempt() requires preemption to be disabled. */
2072static inline void rseq_preempt(struct task_struct *t)
2073{
2074 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
2075 rseq_set_notify_resume(t);
2076}
2077
2078/* rseq_migrate() requires preemption to be disabled. */
2079static inline void rseq_migrate(struct task_struct *t)
2080{
2081 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
2082 rseq_set_notify_resume(t);
2083}
2084
2085/*
2086 * If parent process has a registered restartable sequences area, the
2087 * child inherits. Unregister rseq for a clone with CLONE_VM set.
2088 */
2089static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2090{
2091 if (clone_flags & CLONE_VM) {
2092 t->rseq = NULL;
2093 t->rseq_sig = 0;
2094 t->rseq_event_mask = 0;
2095 } else {
2096 t->rseq = current->rseq;
2097 t->rseq_sig = current->rseq_sig;
2098 t->rseq_event_mask = current->rseq_event_mask;
2099 }
2100}
2101
2102static inline void rseq_execve(struct task_struct *t)
2103{
2104 t->rseq = NULL;
2105 t->rseq_sig = 0;
2106 t->rseq_event_mask = 0;
2107}
2108
2109#else
2110
2111static inline void rseq_set_notify_resume(struct task_struct *t)
2112{
2113}
2114static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2115 struct pt_regs *regs)
2116{
2117}
2118static inline void rseq_signal_deliver(struct ksignal *ksig,
2119 struct pt_regs *regs)
2120{
2121}
2122static inline void rseq_preempt(struct task_struct *t)
2123{
2124}
2125static inline void rseq_migrate(struct task_struct *t)
2126{
2127}
2128static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2129{
2130}
2131static inline void rseq_execve(struct task_struct *t)
2132{
2133}
2134
2135#endif
2136
2137#ifdef CONFIG_DEBUG_RSEQ
2138
2139void rseq_syscall(struct pt_regs *regs);
2140
2141#else
2142
2143static inline void rseq_syscall(struct pt_regs *regs)
2144{
2145}
2146
2147#endif
2148
2149const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq);
2150char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len);
2151int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq);
2152
2153const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq);
2154const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq);
2155const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq);
2156
2157int sched_trace_rq_cpu(struct rq *rq);
2158int sched_trace_rq_cpu_capacity(struct rq *rq);
2159int sched_trace_rq_nr_running(struct rq *rq);
2160
2161const struct cpumask *sched_trace_rd_span(struct root_domain *rd);
2162
2163#endif