Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * Performance events:
3 *
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7 *
8 * Data type definitions, declarations, prototypes.
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14#ifndef _LINUX_PERF_EVENT_H
15#define _LINUX_PERF_EVENT_H
16
17#include <uapi/linux/perf_event.h>
18#include <uapi/linux/bpf_perf_event.h>
19
20/*
21 * Kernel-internal data types and definitions:
22 */
23
24#ifdef CONFIG_PERF_EVENTS
25# include <asm/perf_event.h>
26# include <asm/local64.h>
27#endif
28
29struct perf_guest_info_callbacks {
30 int (*is_in_guest)(void);
31 int (*is_user_mode)(void);
32 unsigned long (*get_guest_ip)(void);
33 void (*handle_intel_pt_intr)(void);
34};
35
36#ifdef CONFIG_HAVE_HW_BREAKPOINT
37#include <asm/hw_breakpoint.h>
38#endif
39
40#include <linux/list.h>
41#include <linux/mutex.h>
42#include <linux/rculist.h>
43#include <linux/rcupdate.h>
44#include <linux/spinlock.h>
45#include <linux/hrtimer.h>
46#include <linux/fs.h>
47#include <linux/pid_namespace.h>
48#include <linux/workqueue.h>
49#include <linux/ftrace.h>
50#include <linux/cpu.h>
51#include <linux/irq_work.h>
52#include <linux/static_key.h>
53#include <linux/jump_label_ratelimit.h>
54#include <linux/atomic.h>
55#include <linux/sysfs.h>
56#include <linux/perf_regs.h>
57#include <linux/cgroup.h>
58#include <linux/refcount.h>
59#include <linux/security.h>
60#include <asm/local.h>
61
62struct perf_callchain_entry {
63 __u64 nr;
64 __u64 ip[]; /* /proc/sys/kernel/perf_event_max_stack */
65};
66
67struct perf_callchain_entry_ctx {
68 struct perf_callchain_entry *entry;
69 u32 max_stack;
70 u32 nr;
71 short contexts;
72 bool contexts_maxed;
73};
74
75typedef unsigned long (*perf_copy_f)(void *dst, const void *src,
76 unsigned long off, unsigned long len);
77
78struct perf_raw_frag {
79 union {
80 struct perf_raw_frag *next;
81 unsigned long pad;
82 };
83 perf_copy_f copy;
84 void *data;
85 u32 size;
86} __packed;
87
88struct perf_raw_record {
89 struct perf_raw_frag frag;
90 u32 size;
91};
92
93/*
94 * branch stack layout:
95 * nr: number of taken branches stored in entries[]
96 * hw_idx: The low level index of raw branch records
97 * for the most recent branch.
98 * -1ULL means invalid/unknown.
99 *
100 * Note that nr can vary from sample to sample
101 * branches (to, from) are stored from most recent
102 * to least recent, i.e., entries[0] contains the most
103 * recent branch.
104 * The entries[] is an abstraction of raw branch records,
105 * which may not be stored in age order in HW, e.g. Intel LBR.
106 * The hw_idx is to expose the low level index of raw
107 * branch record for the most recent branch aka entries[0].
108 * The hw_idx index is between -1 (unknown) and max depth,
109 * which can be retrieved in /sys/devices/cpu/caps/branches.
110 * For the architectures whose raw branch records are
111 * already stored in age order, the hw_idx should be 0.
112 */
113struct perf_branch_stack {
114 __u64 nr;
115 __u64 hw_idx;
116 struct perf_branch_entry entries[];
117};
118
119struct task_struct;
120
121/*
122 * extra PMU register associated with an event
123 */
124struct hw_perf_event_extra {
125 u64 config; /* register value */
126 unsigned int reg; /* register address or index */
127 int alloc; /* extra register already allocated */
128 int idx; /* index in shared_regs->regs[] */
129};
130
131/**
132 * struct hw_perf_event - performance event hardware details:
133 */
134struct hw_perf_event {
135#ifdef CONFIG_PERF_EVENTS
136 union {
137 struct { /* hardware */
138 u64 config;
139 u64 last_tag;
140 unsigned long config_base;
141 unsigned long event_base;
142 int event_base_rdpmc;
143 int idx;
144 int last_cpu;
145 int flags;
146
147 struct hw_perf_event_extra extra_reg;
148 struct hw_perf_event_extra branch_reg;
149 };
150 struct { /* software */
151 struct hrtimer hrtimer;
152 };
153 struct { /* tracepoint */
154 /* for tp_event->class */
155 struct list_head tp_list;
156 };
157 struct { /* amd_power */
158 u64 pwr_acc;
159 u64 ptsc;
160 };
161#ifdef CONFIG_HAVE_HW_BREAKPOINT
162 struct { /* breakpoint */
163 /*
164 * Crufty hack to avoid the chicken and egg
165 * problem hw_breakpoint has with context
166 * creation and event initalization.
167 */
168 struct arch_hw_breakpoint info;
169 struct list_head bp_list;
170 };
171#endif
172 struct { /* amd_iommu */
173 u8 iommu_bank;
174 u8 iommu_cntr;
175 u16 padding;
176 u64 conf;
177 u64 conf1;
178 };
179 };
180 /*
181 * If the event is a per task event, this will point to the task in
182 * question. See the comment in perf_event_alloc().
183 */
184 struct task_struct *target;
185
186 /*
187 * PMU would store hardware filter configuration
188 * here.
189 */
190 void *addr_filters;
191
192 /* Last sync'ed generation of filters */
193 unsigned long addr_filters_gen;
194
195/*
196 * hw_perf_event::state flags; used to track the PERF_EF_* state.
197 */
198#define PERF_HES_STOPPED 0x01 /* the counter is stopped */
199#define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
200#define PERF_HES_ARCH 0x04
201
202 int state;
203
204 /*
205 * The last observed hardware counter value, updated with a
206 * local64_cmpxchg() such that pmu::read() can be called nested.
207 */
208 local64_t prev_count;
209
210 /*
211 * The period to start the next sample with.
212 */
213 u64 sample_period;
214
215 union {
216 struct { /* Sampling */
217 /*
218 * The period we started this sample with.
219 */
220 u64 last_period;
221
222 /*
223 * However much is left of the current period;
224 * note that this is a full 64bit value and
225 * allows for generation of periods longer
226 * than hardware might allow.
227 */
228 local64_t period_left;
229 };
230 struct { /* Topdown events counting for context switch */
231 u64 saved_metric;
232 u64 saved_slots;
233 };
234 };
235
236 /*
237 * State for throttling the event, see __perf_event_overflow() and
238 * perf_adjust_freq_unthr_context().
239 */
240 u64 interrupts_seq;
241 u64 interrupts;
242
243 /*
244 * State for freq target events, see __perf_event_overflow() and
245 * perf_adjust_freq_unthr_context().
246 */
247 u64 freq_time_stamp;
248 u64 freq_count_stamp;
249#endif
250};
251
252struct perf_event;
253
254/*
255 * Common implementation detail of pmu::{start,commit,cancel}_txn
256 */
257#define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */
258#define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */
259
260/**
261 * pmu::capabilities flags
262 */
263#define PERF_PMU_CAP_NO_INTERRUPT 0x01
264#define PERF_PMU_CAP_NO_NMI 0x02
265#define PERF_PMU_CAP_AUX_NO_SG 0x04
266#define PERF_PMU_CAP_EXTENDED_REGS 0x08
267#define PERF_PMU_CAP_EXCLUSIVE 0x10
268#define PERF_PMU_CAP_ITRACE 0x20
269#define PERF_PMU_CAP_HETEROGENEOUS_CPUS 0x40
270#define PERF_PMU_CAP_NO_EXCLUDE 0x80
271#define PERF_PMU_CAP_AUX_OUTPUT 0x100
272
273struct perf_output_handle;
274
275/**
276 * struct pmu - generic performance monitoring unit
277 */
278struct pmu {
279 struct list_head entry;
280
281 struct module *module;
282 struct device *dev;
283 const struct attribute_group **attr_groups;
284 const struct attribute_group **attr_update;
285 const char *name;
286 int type;
287
288 /*
289 * various common per-pmu feature flags
290 */
291 int capabilities;
292
293 int __percpu *pmu_disable_count;
294 struct perf_cpu_context __percpu *pmu_cpu_context;
295 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */
296 int task_ctx_nr;
297 int hrtimer_interval_ms;
298
299 /* number of address filters this PMU can do */
300 unsigned int nr_addr_filters;
301
302 /*
303 * Fully disable/enable this PMU, can be used to protect from the PMI
304 * as well as for lazy/batch writing of the MSRs.
305 */
306 void (*pmu_enable) (struct pmu *pmu); /* optional */
307 void (*pmu_disable) (struct pmu *pmu); /* optional */
308
309 /*
310 * Try and initialize the event for this PMU.
311 *
312 * Returns:
313 * -ENOENT -- @event is not for this PMU
314 *
315 * -ENODEV -- @event is for this PMU but PMU not present
316 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable
317 * -EINVAL -- @event is for this PMU but @event is not valid
318 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
319 * -EACCES -- @event is for this PMU, @event is valid, but no privileges
320 *
321 * 0 -- @event is for this PMU and valid
322 *
323 * Other error return values are allowed.
324 */
325 int (*event_init) (struct perf_event *event);
326
327 /*
328 * Notification that the event was mapped or unmapped. Called
329 * in the context of the mapping task.
330 */
331 void (*event_mapped) (struct perf_event *event, struct mm_struct *mm); /* optional */
332 void (*event_unmapped) (struct perf_event *event, struct mm_struct *mm); /* optional */
333
334 /*
335 * Flags for ->add()/->del()/ ->start()/->stop(). There are
336 * matching hw_perf_event::state flags.
337 */
338#define PERF_EF_START 0x01 /* start the counter when adding */
339#define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
340#define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
341
342 /*
343 * Adds/Removes a counter to/from the PMU, can be done inside a
344 * transaction, see the ->*_txn() methods.
345 *
346 * The add/del callbacks will reserve all hardware resources required
347 * to service the event, this includes any counter constraint
348 * scheduling etc.
349 *
350 * Called with IRQs disabled and the PMU disabled on the CPU the event
351 * is on.
352 *
353 * ->add() called without PERF_EF_START should result in the same state
354 * as ->add() followed by ->stop().
355 *
356 * ->del() must always PERF_EF_UPDATE stop an event. If it calls
357 * ->stop() that must deal with already being stopped without
358 * PERF_EF_UPDATE.
359 */
360 int (*add) (struct perf_event *event, int flags);
361 void (*del) (struct perf_event *event, int flags);
362
363 /*
364 * Starts/Stops a counter present on the PMU.
365 *
366 * The PMI handler should stop the counter when perf_event_overflow()
367 * returns !0. ->start() will be used to continue.
368 *
369 * Also used to change the sample period.
370 *
371 * Called with IRQs disabled and the PMU disabled on the CPU the event
372 * is on -- will be called from NMI context with the PMU generates
373 * NMIs.
374 *
375 * ->stop() with PERF_EF_UPDATE will read the counter and update
376 * period/count values like ->read() would.
377 *
378 * ->start() with PERF_EF_RELOAD will reprogram the counter
379 * value, must be preceded by a ->stop() with PERF_EF_UPDATE.
380 */
381 void (*start) (struct perf_event *event, int flags);
382 void (*stop) (struct perf_event *event, int flags);
383
384 /*
385 * Updates the counter value of the event.
386 *
387 * For sampling capable PMUs this will also update the software period
388 * hw_perf_event::period_left field.
389 */
390 void (*read) (struct perf_event *event);
391
392 /*
393 * Group events scheduling is treated as a transaction, add
394 * group events as a whole and perform one schedulability test.
395 * If the test fails, roll back the whole group
396 *
397 * Start the transaction, after this ->add() doesn't need to
398 * do schedulability tests.
399 *
400 * Optional.
401 */
402 void (*start_txn) (struct pmu *pmu, unsigned int txn_flags);
403 /*
404 * If ->start_txn() disabled the ->add() schedulability test
405 * then ->commit_txn() is required to perform one. On success
406 * the transaction is closed. On error the transaction is kept
407 * open until ->cancel_txn() is called.
408 *
409 * Optional.
410 */
411 int (*commit_txn) (struct pmu *pmu);
412 /*
413 * Will cancel the transaction, assumes ->del() is called
414 * for each successful ->add() during the transaction.
415 *
416 * Optional.
417 */
418 void (*cancel_txn) (struct pmu *pmu);
419
420 /*
421 * Will return the value for perf_event_mmap_page::index for this event,
422 * if no implementation is provided it will default to: event->hw.idx + 1.
423 */
424 int (*event_idx) (struct perf_event *event); /*optional */
425
426 /*
427 * context-switches callback
428 */
429 void (*sched_task) (struct perf_event_context *ctx,
430 bool sched_in);
431
432 /*
433 * Kmem cache of PMU specific data
434 */
435 struct kmem_cache *task_ctx_cache;
436
437 /*
438 * PMU specific parts of task perf event context (i.e. ctx->task_ctx_data)
439 * can be synchronized using this function. See Intel LBR callstack support
440 * implementation and Perf core context switch handling callbacks for usage
441 * examples.
442 */
443 void (*swap_task_ctx) (struct perf_event_context *prev,
444 struct perf_event_context *next);
445 /* optional */
446
447 /*
448 * Set up pmu-private data structures for an AUX area
449 */
450 void *(*setup_aux) (struct perf_event *event, void **pages,
451 int nr_pages, bool overwrite);
452 /* optional */
453
454 /*
455 * Free pmu-private AUX data structures
456 */
457 void (*free_aux) (void *aux); /* optional */
458
459 /*
460 * Take a snapshot of the AUX buffer without touching the event
461 * state, so that preempting ->start()/->stop() callbacks does
462 * not interfere with their logic. Called in PMI context.
463 *
464 * Returns the size of AUX data copied to the output handle.
465 *
466 * Optional.
467 */
468 long (*snapshot_aux) (struct perf_event *event,
469 struct perf_output_handle *handle,
470 unsigned long size);
471
472 /*
473 * Validate address range filters: make sure the HW supports the
474 * requested configuration and number of filters; return 0 if the
475 * supplied filters are valid, -errno otherwise.
476 *
477 * Runs in the context of the ioctl()ing process and is not serialized
478 * with the rest of the PMU callbacks.
479 */
480 int (*addr_filters_validate) (struct list_head *filters);
481 /* optional */
482
483 /*
484 * Synchronize address range filter configuration:
485 * translate hw-agnostic filters into hardware configuration in
486 * event::hw::addr_filters.
487 *
488 * Runs as a part of filter sync sequence that is done in ->start()
489 * callback by calling perf_event_addr_filters_sync().
490 *
491 * May (and should) traverse event::addr_filters::list, for which its
492 * caller provides necessary serialization.
493 */
494 void (*addr_filters_sync) (struct perf_event *event);
495 /* optional */
496
497 /*
498 * Check if event can be used for aux_output purposes for
499 * events of this PMU.
500 *
501 * Runs from perf_event_open(). Should return 0 for "no match"
502 * or non-zero for "match".
503 */
504 int (*aux_output_match) (struct perf_event *event);
505 /* optional */
506
507 /*
508 * Filter events for PMU-specific reasons.
509 */
510 int (*filter_match) (struct perf_event *event); /* optional */
511
512 /*
513 * Check period value for PERF_EVENT_IOC_PERIOD ioctl.
514 */
515 int (*check_period) (struct perf_event *event, u64 value); /* optional */
516};
517
518enum perf_addr_filter_action_t {
519 PERF_ADDR_FILTER_ACTION_STOP = 0,
520 PERF_ADDR_FILTER_ACTION_START,
521 PERF_ADDR_FILTER_ACTION_FILTER,
522};
523
524/**
525 * struct perf_addr_filter - address range filter definition
526 * @entry: event's filter list linkage
527 * @path: object file's path for file-based filters
528 * @offset: filter range offset
529 * @size: filter range size (size==0 means single address trigger)
530 * @action: filter/start/stop
531 *
532 * This is a hardware-agnostic filter configuration as specified by the user.
533 */
534struct perf_addr_filter {
535 struct list_head entry;
536 struct path path;
537 unsigned long offset;
538 unsigned long size;
539 enum perf_addr_filter_action_t action;
540};
541
542/**
543 * struct perf_addr_filters_head - container for address range filters
544 * @list: list of filters for this event
545 * @lock: spinlock that serializes accesses to the @list and event's
546 * (and its children's) filter generations.
547 * @nr_file_filters: number of file-based filters
548 *
549 * A child event will use parent's @list (and therefore @lock), so they are
550 * bundled together; see perf_event_addr_filters().
551 */
552struct perf_addr_filters_head {
553 struct list_head list;
554 raw_spinlock_t lock;
555 unsigned int nr_file_filters;
556};
557
558struct perf_addr_filter_range {
559 unsigned long start;
560 unsigned long size;
561};
562
563/**
564 * enum perf_event_state - the states of an event:
565 */
566enum perf_event_state {
567 PERF_EVENT_STATE_DEAD = -4,
568 PERF_EVENT_STATE_EXIT = -3,
569 PERF_EVENT_STATE_ERROR = -2,
570 PERF_EVENT_STATE_OFF = -1,
571 PERF_EVENT_STATE_INACTIVE = 0,
572 PERF_EVENT_STATE_ACTIVE = 1,
573};
574
575struct file;
576struct perf_sample_data;
577
578typedef void (*perf_overflow_handler_t)(struct perf_event *,
579 struct perf_sample_data *,
580 struct pt_regs *regs);
581
582/*
583 * Event capabilities. For event_caps and groups caps.
584 *
585 * PERF_EV_CAP_SOFTWARE: Is a software event.
586 * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read
587 * from any CPU in the package where it is active.
588 * PERF_EV_CAP_SIBLING: An event with this flag must be a group sibling and
589 * cannot be a group leader. If an event with this flag is detached from the
590 * group it is scheduled out and moved into an unrecoverable ERROR state.
591 */
592#define PERF_EV_CAP_SOFTWARE BIT(0)
593#define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1)
594#define PERF_EV_CAP_SIBLING BIT(2)
595
596#define SWEVENT_HLIST_BITS 8
597#define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
598
599struct swevent_hlist {
600 struct hlist_head heads[SWEVENT_HLIST_SIZE];
601 struct rcu_head rcu_head;
602};
603
604#define PERF_ATTACH_CONTEXT 0x01
605#define PERF_ATTACH_GROUP 0x02
606#define PERF_ATTACH_TASK 0x04
607#define PERF_ATTACH_TASK_DATA 0x08
608#define PERF_ATTACH_ITRACE 0x10
609#define PERF_ATTACH_SCHED_CB 0x20
610
611struct perf_cgroup;
612struct perf_buffer;
613
614struct pmu_event_list {
615 raw_spinlock_t lock;
616 struct list_head list;
617};
618
619#define for_each_sibling_event(sibling, event) \
620 if ((event)->group_leader == (event)) \
621 list_for_each_entry((sibling), &(event)->sibling_list, sibling_list)
622
623/**
624 * struct perf_event - performance event kernel representation:
625 */
626struct perf_event {
627#ifdef CONFIG_PERF_EVENTS
628 /*
629 * entry onto perf_event_context::event_list;
630 * modifications require ctx->lock
631 * RCU safe iterations.
632 */
633 struct list_head event_entry;
634
635 /*
636 * Locked for modification by both ctx->mutex and ctx->lock; holding
637 * either sufficies for read.
638 */
639 struct list_head sibling_list;
640 struct list_head active_list;
641 /*
642 * Node on the pinned or flexible tree located at the event context;
643 */
644 struct rb_node group_node;
645 u64 group_index;
646 /*
647 * We need storage to track the entries in perf_pmu_migrate_context; we
648 * cannot use the event_entry because of RCU and we want to keep the
649 * group in tact which avoids us using the other two entries.
650 */
651 struct list_head migrate_entry;
652
653 struct hlist_node hlist_entry;
654 struct list_head active_entry;
655 int nr_siblings;
656
657 /* Not serialized. Only written during event initialization. */
658 int event_caps;
659 /* The cumulative AND of all event_caps for events in this group. */
660 int group_caps;
661
662 struct perf_event *group_leader;
663 struct pmu *pmu;
664 void *pmu_private;
665
666 enum perf_event_state state;
667 unsigned int attach_state;
668 local64_t count;
669 atomic64_t child_count;
670
671 /*
672 * These are the total time in nanoseconds that the event
673 * has been enabled (i.e. eligible to run, and the task has
674 * been scheduled in, if this is a per-task event)
675 * and running (scheduled onto the CPU), respectively.
676 */
677 u64 total_time_enabled;
678 u64 total_time_running;
679 u64 tstamp;
680
681 /*
682 * timestamp shadows the actual context timing but it can
683 * be safely used in NMI interrupt context. It reflects the
684 * context time as it was when the event was last scheduled in.
685 *
686 * ctx_time already accounts for ctx->timestamp. Therefore to
687 * compute ctx_time for a sample, simply add perf_clock().
688 */
689 u64 shadow_ctx_time;
690
691 struct perf_event_attr attr;
692 u16 header_size;
693 u16 id_header_size;
694 u16 read_size;
695 struct hw_perf_event hw;
696
697 struct perf_event_context *ctx;
698 atomic_long_t refcount;
699
700 /*
701 * These accumulate total time (in nanoseconds) that children
702 * events have been enabled and running, respectively.
703 */
704 atomic64_t child_total_time_enabled;
705 atomic64_t child_total_time_running;
706
707 /*
708 * Protect attach/detach and child_list:
709 */
710 struct mutex child_mutex;
711 struct list_head child_list;
712 struct perf_event *parent;
713
714 int oncpu;
715 int cpu;
716
717 struct list_head owner_entry;
718 struct task_struct *owner;
719
720 /* mmap bits */
721 struct mutex mmap_mutex;
722 atomic_t mmap_count;
723
724 struct perf_buffer *rb;
725 struct list_head rb_entry;
726 unsigned long rcu_batches;
727 int rcu_pending;
728
729 /* poll related */
730 wait_queue_head_t waitq;
731 struct fasync_struct *fasync;
732
733 /* delayed work for NMIs and such */
734 int pending_wakeup;
735 int pending_kill;
736 int pending_disable;
737 struct irq_work pending;
738
739 atomic_t event_limit;
740
741 /* address range filters */
742 struct perf_addr_filters_head addr_filters;
743 /* vma address array for file-based filders */
744 struct perf_addr_filter_range *addr_filter_ranges;
745 unsigned long addr_filters_gen;
746
747 /* for aux_output events */
748 struct perf_event *aux_event;
749
750 void (*destroy)(struct perf_event *);
751 struct rcu_head rcu_head;
752
753 struct pid_namespace *ns;
754 u64 id;
755
756 u64 (*clock)(void);
757 perf_overflow_handler_t overflow_handler;
758 void *overflow_handler_context;
759#ifdef CONFIG_BPF_SYSCALL
760 perf_overflow_handler_t orig_overflow_handler;
761 struct bpf_prog *prog;
762#endif
763
764#ifdef CONFIG_EVENT_TRACING
765 struct trace_event_call *tp_event;
766 struct event_filter *filter;
767#ifdef CONFIG_FUNCTION_TRACER
768 struct ftrace_ops ftrace_ops;
769#endif
770#endif
771
772#ifdef CONFIG_CGROUP_PERF
773 struct perf_cgroup *cgrp; /* cgroup event is attach to */
774#endif
775
776#ifdef CONFIG_SECURITY
777 void *security;
778#endif
779 struct list_head sb_list;
780#endif /* CONFIG_PERF_EVENTS */
781};
782
783
784struct perf_event_groups {
785 struct rb_root tree;
786 u64 index;
787};
788
789/**
790 * struct perf_event_context - event context structure
791 *
792 * Used as a container for task events and CPU events as well:
793 */
794struct perf_event_context {
795 struct pmu *pmu;
796 /*
797 * Protect the states of the events in the list,
798 * nr_active, and the list:
799 */
800 raw_spinlock_t lock;
801 /*
802 * Protect the list of events. Locking either mutex or lock
803 * is sufficient to ensure the list doesn't change; to change
804 * the list you need to lock both the mutex and the spinlock.
805 */
806 struct mutex mutex;
807
808 struct list_head active_ctx_list;
809 struct perf_event_groups pinned_groups;
810 struct perf_event_groups flexible_groups;
811 struct list_head event_list;
812
813 struct list_head pinned_active;
814 struct list_head flexible_active;
815
816 int nr_events;
817 int nr_active;
818 int is_active;
819 int nr_stat;
820 int nr_freq;
821 int rotate_disable;
822 /*
823 * Set when nr_events != nr_active, except tolerant to events not
824 * necessary to be active due to scheduling constraints, such as cgroups.
825 */
826 int rotate_necessary;
827 refcount_t refcount;
828 struct task_struct *task;
829
830 /*
831 * Context clock, runs when context enabled.
832 */
833 u64 time;
834 u64 timestamp;
835
836 /*
837 * These fields let us detect when two contexts have both
838 * been cloned (inherited) from a common ancestor.
839 */
840 struct perf_event_context *parent_ctx;
841 u64 parent_gen;
842 u64 generation;
843 int pin_count;
844#ifdef CONFIG_CGROUP_PERF
845 int nr_cgroups; /* cgroup evts */
846#endif
847 void *task_ctx_data; /* pmu specific data */
848 struct rcu_head rcu_head;
849};
850
851/*
852 * Number of contexts where an event can trigger:
853 * task, softirq, hardirq, nmi.
854 */
855#define PERF_NR_CONTEXTS 4
856
857/**
858 * struct perf_event_cpu_context - per cpu event context structure
859 */
860struct perf_cpu_context {
861 struct perf_event_context ctx;
862 struct perf_event_context *task_ctx;
863 int active_oncpu;
864 int exclusive;
865
866 raw_spinlock_t hrtimer_lock;
867 struct hrtimer hrtimer;
868 ktime_t hrtimer_interval;
869 unsigned int hrtimer_active;
870
871#ifdef CONFIG_CGROUP_PERF
872 struct perf_cgroup *cgrp;
873 struct list_head cgrp_cpuctx_entry;
874#endif
875
876 struct list_head sched_cb_entry;
877 int sched_cb_usage;
878
879 int online;
880 /*
881 * Per-CPU storage for iterators used in visit_groups_merge. The default
882 * storage is of size 2 to hold the CPU and any CPU event iterators.
883 */
884 int heap_size;
885 struct perf_event **heap;
886 struct perf_event *heap_default[2];
887};
888
889struct perf_output_handle {
890 struct perf_event *event;
891 struct perf_buffer *rb;
892 unsigned long wakeup;
893 unsigned long size;
894 u64 aux_flags;
895 union {
896 void *addr;
897 unsigned long head;
898 };
899 int page;
900};
901
902struct bpf_perf_event_data_kern {
903 bpf_user_pt_regs_t *regs;
904 struct perf_sample_data *data;
905 struct perf_event *event;
906};
907
908#ifdef CONFIG_CGROUP_PERF
909
910/*
911 * perf_cgroup_info keeps track of time_enabled for a cgroup.
912 * This is a per-cpu dynamically allocated data structure.
913 */
914struct perf_cgroup_info {
915 u64 time;
916 u64 timestamp;
917};
918
919struct perf_cgroup {
920 struct cgroup_subsys_state css;
921 struct perf_cgroup_info __percpu *info;
922};
923
924/*
925 * Must ensure cgroup is pinned (css_get) before calling
926 * this function. In other words, we cannot call this function
927 * if there is no cgroup event for the current CPU context.
928 */
929static inline struct perf_cgroup *
930perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
931{
932 return container_of(task_css_check(task, perf_event_cgrp_id,
933 ctx ? lockdep_is_held(&ctx->lock)
934 : true),
935 struct perf_cgroup, css);
936}
937#endif /* CONFIG_CGROUP_PERF */
938
939#ifdef CONFIG_PERF_EVENTS
940
941extern void *perf_aux_output_begin(struct perf_output_handle *handle,
942 struct perf_event *event);
943extern void perf_aux_output_end(struct perf_output_handle *handle,
944 unsigned long size);
945extern int perf_aux_output_skip(struct perf_output_handle *handle,
946 unsigned long size);
947extern void *perf_get_aux(struct perf_output_handle *handle);
948extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags);
949extern void perf_event_itrace_started(struct perf_event *event);
950
951extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
952extern void perf_pmu_unregister(struct pmu *pmu);
953
954extern int perf_num_counters(void);
955extern const char *perf_pmu_name(void);
956extern void __perf_event_task_sched_in(struct task_struct *prev,
957 struct task_struct *task);
958extern void __perf_event_task_sched_out(struct task_struct *prev,
959 struct task_struct *next);
960extern int perf_event_init_task(struct task_struct *child);
961extern void perf_event_exit_task(struct task_struct *child);
962extern void perf_event_free_task(struct task_struct *task);
963extern void perf_event_delayed_put(struct task_struct *task);
964extern struct file *perf_event_get(unsigned int fd);
965extern const struct perf_event *perf_get_event(struct file *file);
966extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
967extern void perf_event_print_debug(void);
968extern void perf_pmu_disable(struct pmu *pmu);
969extern void perf_pmu_enable(struct pmu *pmu);
970extern void perf_sched_cb_dec(struct pmu *pmu);
971extern void perf_sched_cb_inc(struct pmu *pmu);
972extern int perf_event_task_disable(void);
973extern int perf_event_task_enable(void);
974
975extern void perf_pmu_resched(struct pmu *pmu);
976
977extern int perf_event_refresh(struct perf_event *event, int refresh);
978extern void perf_event_update_userpage(struct perf_event *event);
979extern int perf_event_release_kernel(struct perf_event *event);
980extern struct perf_event *
981perf_event_create_kernel_counter(struct perf_event_attr *attr,
982 int cpu,
983 struct task_struct *task,
984 perf_overflow_handler_t callback,
985 void *context);
986extern void perf_pmu_migrate_context(struct pmu *pmu,
987 int src_cpu, int dst_cpu);
988int perf_event_read_local(struct perf_event *event, u64 *value,
989 u64 *enabled, u64 *running);
990extern u64 perf_event_read_value(struct perf_event *event,
991 u64 *enabled, u64 *running);
992
993
994struct perf_sample_data {
995 /*
996 * Fields set by perf_sample_data_init(), group so as to
997 * minimize the cachelines touched.
998 */
999 u64 addr;
1000 struct perf_raw_record *raw;
1001 struct perf_branch_stack *br_stack;
1002 u64 period;
1003 union perf_sample_weight weight;
1004 u64 txn;
1005 union perf_mem_data_src data_src;
1006
1007 /*
1008 * The other fields, optionally {set,used} by
1009 * perf_{prepare,output}_sample().
1010 */
1011 u64 type;
1012 u64 ip;
1013 struct {
1014 u32 pid;
1015 u32 tid;
1016 } tid_entry;
1017 u64 time;
1018 u64 id;
1019 u64 stream_id;
1020 struct {
1021 u32 cpu;
1022 u32 reserved;
1023 } cpu_entry;
1024 struct perf_callchain_entry *callchain;
1025 u64 aux_size;
1026
1027 struct perf_regs regs_user;
1028 struct perf_regs regs_intr;
1029 u64 stack_user_size;
1030
1031 u64 phys_addr;
1032 u64 cgroup;
1033 u64 data_page_size;
1034 u64 code_page_size;
1035} ____cacheline_aligned;
1036
1037/* default value for data source */
1038#define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\
1039 PERF_MEM_S(LVL, NA) |\
1040 PERF_MEM_S(SNOOP, NA) |\
1041 PERF_MEM_S(LOCK, NA) |\
1042 PERF_MEM_S(TLB, NA))
1043
1044static inline void perf_sample_data_init(struct perf_sample_data *data,
1045 u64 addr, u64 period)
1046{
1047 /* remaining struct members initialized in perf_prepare_sample() */
1048 data->addr = addr;
1049 data->raw = NULL;
1050 data->br_stack = NULL;
1051 data->period = period;
1052 data->weight.full = 0;
1053 data->data_src.val = PERF_MEM_NA;
1054 data->txn = 0;
1055}
1056
1057extern void perf_output_sample(struct perf_output_handle *handle,
1058 struct perf_event_header *header,
1059 struct perf_sample_data *data,
1060 struct perf_event *event);
1061extern void perf_prepare_sample(struct perf_event_header *header,
1062 struct perf_sample_data *data,
1063 struct perf_event *event,
1064 struct pt_regs *regs);
1065
1066extern int perf_event_overflow(struct perf_event *event,
1067 struct perf_sample_data *data,
1068 struct pt_regs *regs);
1069
1070extern void perf_event_output_forward(struct perf_event *event,
1071 struct perf_sample_data *data,
1072 struct pt_regs *regs);
1073extern void perf_event_output_backward(struct perf_event *event,
1074 struct perf_sample_data *data,
1075 struct pt_regs *regs);
1076extern int perf_event_output(struct perf_event *event,
1077 struct perf_sample_data *data,
1078 struct pt_regs *regs);
1079
1080static inline bool
1081is_default_overflow_handler(struct perf_event *event)
1082{
1083 if (likely(event->overflow_handler == perf_event_output_forward))
1084 return true;
1085 if (unlikely(event->overflow_handler == perf_event_output_backward))
1086 return true;
1087 return false;
1088}
1089
1090extern void
1091perf_event_header__init_id(struct perf_event_header *header,
1092 struct perf_sample_data *data,
1093 struct perf_event *event);
1094extern void
1095perf_event__output_id_sample(struct perf_event *event,
1096 struct perf_output_handle *handle,
1097 struct perf_sample_data *sample);
1098
1099extern void
1100perf_log_lost_samples(struct perf_event *event, u64 lost);
1101
1102static inline bool event_has_any_exclude_flag(struct perf_event *event)
1103{
1104 struct perf_event_attr *attr = &event->attr;
1105
1106 return attr->exclude_idle || attr->exclude_user ||
1107 attr->exclude_kernel || attr->exclude_hv ||
1108 attr->exclude_guest || attr->exclude_host;
1109}
1110
1111static inline bool is_sampling_event(struct perf_event *event)
1112{
1113 return event->attr.sample_period != 0;
1114}
1115
1116/*
1117 * Return 1 for a software event, 0 for a hardware event
1118 */
1119static inline int is_software_event(struct perf_event *event)
1120{
1121 return event->event_caps & PERF_EV_CAP_SOFTWARE;
1122}
1123
1124/*
1125 * Return 1 for event in sw context, 0 for event in hw context
1126 */
1127static inline int in_software_context(struct perf_event *event)
1128{
1129 return event->ctx->pmu->task_ctx_nr == perf_sw_context;
1130}
1131
1132static inline int is_exclusive_pmu(struct pmu *pmu)
1133{
1134 return pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE;
1135}
1136
1137extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1138
1139extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
1140extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1141
1142#ifndef perf_arch_fetch_caller_regs
1143static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1144#endif
1145
1146/*
1147 * When generating a perf sample in-line, instead of from an interrupt /
1148 * exception, we lack a pt_regs. This is typically used from software events
1149 * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints.
1150 *
1151 * We typically don't need a full set, but (for x86) do require:
1152 * - ip for PERF_SAMPLE_IP
1153 * - cs for user_mode() tests
1154 * - sp for PERF_SAMPLE_CALLCHAIN
1155 * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs())
1156 *
1157 * NOTE: assumes @regs is otherwise already 0 filled; this is important for
1158 * things like PERF_SAMPLE_REGS_INTR.
1159 */
1160static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1161{
1162 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1163}
1164
1165static __always_inline void
1166perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1167{
1168 if (static_key_false(&perf_swevent_enabled[event_id]))
1169 __perf_sw_event(event_id, nr, regs, addr);
1170}
1171
1172DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
1173
1174/*
1175 * 'Special' version for the scheduler, it hard assumes no recursion,
1176 * which is guaranteed by us not actually scheduling inside other swevents
1177 * because those disable preemption.
1178 */
1179static __always_inline void
1180perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
1181{
1182 if (static_key_false(&perf_swevent_enabled[event_id])) {
1183 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1184
1185 perf_fetch_caller_regs(regs);
1186 ___perf_sw_event(event_id, nr, regs, addr);
1187 }
1188}
1189
1190extern struct static_key_false perf_sched_events;
1191
1192static __always_inline bool
1193perf_sw_migrate_enabled(void)
1194{
1195 if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS]))
1196 return true;
1197 return false;
1198}
1199
1200static inline void perf_event_task_migrate(struct task_struct *task)
1201{
1202 if (perf_sw_migrate_enabled())
1203 task->sched_migrated = 1;
1204}
1205
1206static inline void perf_event_task_sched_in(struct task_struct *prev,
1207 struct task_struct *task)
1208{
1209 if (static_branch_unlikely(&perf_sched_events))
1210 __perf_event_task_sched_in(prev, task);
1211
1212 if (perf_sw_migrate_enabled() && task->sched_migrated) {
1213 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1214
1215 perf_fetch_caller_regs(regs);
1216 ___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0);
1217 task->sched_migrated = 0;
1218 }
1219}
1220
1221static inline void perf_event_task_sched_out(struct task_struct *prev,
1222 struct task_struct *next)
1223{
1224 perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
1225
1226 if (static_branch_unlikely(&perf_sched_events))
1227 __perf_event_task_sched_out(prev, next);
1228}
1229
1230extern void perf_event_mmap(struct vm_area_struct *vma);
1231
1232extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1233 bool unregister, const char *sym);
1234extern void perf_event_bpf_event(struct bpf_prog *prog,
1235 enum perf_bpf_event_type type,
1236 u16 flags);
1237
1238extern struct perf_guest_info_callbacks *perf_guest_cbs;
1239extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1240extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1241
1242extern void perf_event_exec(void);
1243extern void perf_event_comm(struct task_struct *tsk, bool exec);
1244extern void perf_event_namespaces(struct task_struct *tsk);
1245extern void perf_event_fork(struct task_struct *tsk);
1246extern void perf_event_text_poke(const void *addr,
1247 const void *old_bytes, size_t old_len,
1248 const void *new_bytes, size_t new_len);
1249
1250/* Callchains */
1251DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1252
1253extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1254extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1255extern struct perf_callchain_entry *
1256get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
1257 u32 max_stack, bool crosstask, bool add_mark);
1258extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs);
1259extern int get_callchain_buffers(int max_stack);
1260extern void put_callchain_buffers(void);
1261extern struct perf_callchain_entry *get_callchain_entry(int *rctx);
1262extern void put_callchain_entry(int rctx);
1263
1264extern int sysctl_perf_event_max_stack;
1265extern int sysctl_perf_event_max_contexts_per_stack;
1266
1267static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip)
1268{
1269 if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) {
1270 struct perf_callchain_entry *entry = ctx->entry;
1271 entry->ip[entry->nr++] = ip;
1272 ++ctx->contexts;
1273 return 0;
1274 } else {
1275 ctx->contexts_maxed = true;
1276 return -1; /* no more room, stop walking the stack */
1277 }
1278}
1279
1280static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip)
1281{
1282 if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) {
1283 struct perf_callchain_entry *entry = ctx->entry;
1284 entry->ip[entry->nr++] = ip;
1285 ++ctx->nr;
1286 return 0;
1287 } else {
1288 return -1; /* no more room, stop walking the stack */
1289 }
1290}
1291
1292extern int sysctl_perf_event_paranoid;
1293extern int sysctl_perf_event_mlock;
1294extern int sysctl_perf_event_sample_rate;
1295extern int sysctl_perf_cpu_time_max_percent;
1296
1297extern void perf_sample_event_took(u64 sample_len_ns);
1298
1299int perf_proc_update_handler(struct ctl_table *table, int write,
1300 void *buffer, size_t *lenp, loff_t *ppos);
1301int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
1302 void *buffer, size_t *lenp, loff_t *ppos);
1303int perf_event_max_stack_handler(struct ctl_table *table, int write,
1304 void *buffer, size_t *lenp, loff_t *ppos);
1305
1306/* Access to perf_event_open(2) syscall. */
1307#define PERF_SECURITY_OPEN 0
1308
1309/* Finer grained perf_event_open(2) access control. */
1310#define PERF_SECURITY_CPU 1
1311#define PERF_SECURITY_KERNEL 2
1312#define PERF_SECURITY_TRACEPOINT 3
1313
1314static inline int perf_is_paranoid(void)
1315{
1316 return sysctl_perf_event_paranoid > -1;
1317}
1318
1319static inline int perf_allow_kernel(struct perf_event_attr *attr)
1320{
1321 if (sysctl_perf_event_paranoid > 1 && !perfmon_capable())
1322 return -EACCES;
1323
1324 return security_perf_event_open(attr, PERF_SECURITY_KERNEL);
1325}
1326
1327static inline int perf_allow_cpu(struct perf_event_attr *attr)
1328{
1329 if (sysctl_perf_event_paranoid > 0 && !perfmon_capable())
1330 return -EACCES;
1331
1332 return security_perf_event_open(attr, PERF_SECURITY_CPU);
1333}
1334
1335static inline int perf_allow_tracepoint(struct perf_event_attr *attr)
1336{
1337 if (sysctl_perf_event_paranoid > -1 && !perfmon_capable())
1338 return -EPERM;
1339
1340 return security_perf_event_open(attr, PERF_SECURITY_TRACEPOINT);
1341}
1342
1343extern void perf_event_init(void);
1344extern void perf_tp_event(u16 event_type, u64 count, void *record,
1345 int entry_size, struct pt_regs *regs,
1346 struct hlist_head *head, int rctx,
1347 struct task_struct *task);
1348extern void perf_bp_event(struct perf_event *event, void *data);
1349
1350#ifndef perf_misc_flags
1351# define perf_misc_flags(regs) \
1352 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1353# define perf_instruction_pointer(regs) instruction_pointer(regs)
1354#endif
1355#ifndef perf_arch_bpf_user_pt_regs
1356# define perf_arch_bpf_user_pt_regs(regs) regs
1357#endif
1358
1359static inline bool has_branch_stack(struct perf_event *event)
1360{
1361 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1362}
1363
1364static inline bool needs_branch_stack(struct perf_event *event)
1365{
1366 return event->attr.branch_sample_type != 0;
1367}
1368
1369static inline bool has_aux(struct perf_event *event)
1370{
1371 return event->pmu->setup_aux;
1372}
1373
1374static inline bool is_write_backward(struct perf_event *event)
1375{
1376 return !!event->attr.write_backward;
1377}
1378
1379static inline bool has_addr_filter(struct perf_event *event)
1380{
1381 return event->pmu->nr_addr_filters;
1382}
1383
1384/*
1385 * An inherited event uses parent's filters
1386 */
1387static inline struct perf_addr_filters_head *
1388perf_event_addr_filters(struct perf_event *event)
1389{
1390 struct perf_addr_filters_head *ifh = &event->addr_filters;
1391
1392 if (event->parent)
1393 ifh = &event->parent->addr_filters;
1394
1395 return ifh;
1396}
1397
1398extern void perf_event_addr_filters_sync(struct perf_event *event);
1399
1400extern int perf_output_begin(struct perf_output_handle *handle,
1401 struct perf_sample_data *data,
1402 struct perf_event *event, unsigned int size);
1403extern int perf_output_begin_forward(struct perf_output_handle *handle,
1404 struct perf_sample_data *data,
1405 struct perf_event *event,
1406 unsigned int size);
1407extern int perf_output_begin_backward(struct perf_output_handle *handle,
1408 struct perf_sample_data *data,
1409 struct perf_event *event,
1410 unsigned int size);
1411
1412extern void perf_output_end(struct perf_output_handle *handle);
1413extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1414 const void *buf, unsigned int len);
1415extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1416 unsigned int len);
1417extern long perf_output_copy_aux(struct perf_output_handle *aux_handle,
1418 struct perf_output_handle *handle,
1419 unsigned long from, unsigned long to);
1420extern int perf_swevent_get_recursion_context(void);
1421extern void perf_swevent_put_recursion_context(int rctx);
1422extern u64 perf_swevent_set_period(struct perf_event *event);
1423extern void perf_event_enable(struct perf_event *event);
1424extern void perf_event_disable(struct perf_event *event);
1425extern void perf_event_disable_local(struct perf_event *event);
1426extern void perf_event_disable_inatomic(struct perf_event *event);
1427extern void perf_event_task_tick(void);
1428extern int perf_event_account_interrupt(struct perf_event *event);
1429extern int perf_event_period(struct perf_event *event, u64 value);
1430extern u64 perf_event_pause(struct perf_event *event, bool reset);
1431#else /* !CONFIG_PERF_EVENTS: */
1432static inline void *
1433perf_aux_output_begin(struct perf_output_handle *handle,
1434 struct perf_event *event) { return NULL; }
1435static inline void
1436perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
1437 { }
1438static inline int
1439perf_aux_output_skip(struct perf_output_handle *handle,
1440 unsigned long size) { return -EINVAL; }
1441static inline void *
1442perf_get_aux(struct perf_output_handle *handle) { return NULL; }
1443static inline void
1444perf_event_task_migrate(struct task_struct *task) { }
1445static inline void
1446perf_event_task_sched_in(struct task_struct *prev,
1447 struct task_struct *task) { }
1448static inline void
1449perf_event_task_sched_out(struct task_struct *prev,
1450 struct task_struct *next) { }
1451static inline int perf_event_init_task(struct task_struct *child) { return 0; }
1452static inline void perf_event_exit_task(struct task_struct *child) { }
1453static inline void perf_event_free_task(struct task_struct *task) { }
1454static inline void perf_event_delayed_put(struct task_struct *task) { }
1455static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); }
1456static inline const struct perf_event *perf_get_event(struct file *file)
1457{
1458 return ERR_PTR(-EINVAL);
1459}
1460static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1461{
1462 return ERR_PTR(-EINVAL);
1463}
1464static inline int perf_event_read_local(struct perf_event *event, u64 *value,
1465 u64 *enabled, u64 *running)
1466{
1467 return -EINVAL;
1468}
1469static inline void perf_event_print_debug(void) { }
1470static inline int perf_event_task_disable(void) { return -EINVAL; }
1471static inline int perf_event_task_enable(void) { return -EINVAL; }
1472static inline int perf_event_refresh(struct perf_event *event, int refresh)
1473{
1474 return -EINVAL;
1475}
1476
1477static inline void
1478perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { }
1479static inline void
1480perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) { }
1481static inline void
1482perf_bp_event(struct perf_event *event, void *data) { }
1483
1484static inline int perf_register_guest_info_callbacks
1485(struct perf_guest_info_callbacks *callbacks) { return 0; }
1486static inline int perf_unregister_guest_info_callbacks
1487(struct perf_guest_info_callbacks *callbacks) { return 0; }
1488
1489static inline void perf_event_mmap(struct vm_area_struct *vma) { }
1490
1491typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data);
1492static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1493 bool unregister, const char *sym) { }
1494static inline void perf_event_bpf_event(struct bpf_prog *prog,
1495 enum perf_bpf_event_type type,
1496 u16 flags) { }
1497static inline void perf_event_exec(void) { }
1498static inline void perf_event_comm(struct task_struct *tsk, bool exec) { }
1499static inline void perf_event_namespaces(struct task_struct *tsk) { }
1500static inline void perf_event_fork(struct task_struct *tsk) { }
1501static inline void perf_event_text_poke(const void *addr,
1502 const void *old_bytes,
1503 size_t old_len,
1504 const void *new_bytes,
1505 size_t new_len) { }
1506static inline void perf_event_init(void) { }
1507static inline int perf_swevent_get_recursion_context(void) { return -1; }
1508static inline void perf_swevent_put_recursion_context(int rctx) { }
1509static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; }
1510static inline void perf_event_enable(struct perf_event *event) { }
1511static inline void perf_event_disable(struct perf_event *event) { }
1512static inline int __perf_event_disable(void *info) { return -1; }
1513static inline void perf_event_task_tick(void) { }
1514static inline int perf_event_release_kernel(struct perf_event *event) { return 0; }
1515static inline int perf_event_period(struct perf_event *event, u64 value)
1516{
1517 return -EINVAL;
1518}
1519static inline u64 perf_event_pause(struct perf_event *event, bool reset)
1520{
1521 return 0;
1522}
1523#endif
1524
1525#if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1526extern void perf_restore_debug_store(void);
1527#else
1528static inline void perf_restore_debug_store(void) { }
1529#endif
1530
1531static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag)
1532{
1533 return frag->pad < sizeof(u64);
1534}
1535
1536#define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1537
1538struct perf_pmu_events_attr {
1539 struct device_attribute attr;
1540 u64 id;
1541 const char *event_str;
1542};
1543
1544struct perf_pmu_events_ht_attr {
1545 struct device_attribute attr;
1546 u64 id;
1547 const char *event_str_ht;
1548 const char *event_str_noht;
1549};
1550
1551ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1552 char *page);
1553
1554#define PMU_EVENT_ATTR(_name, _var, _id, _show) \
1555static struct perf_pmu_events_attr _var = { \
1556 .attr = __ATTR(_name, 0444, _show, NULL), \
1557 .id = _id, \
1558};
1559
1560#define PMU_EVENT_ATTR_STRING(_name, _var, _str) \
1561static struct perf_pmu_events_attr _var = { \
1562 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1563 .id = 0, \
1564 .event_str = _str, \
1565};
1566
1567#define PMU_FORMAT_ATTR(_name, _format) \
1568static ssize_t \
1569_name##_show(struct device *dev, \
1570 struct device_attribute *attr, \
1571 char *page) \
1572{ \
1573 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \
1574 return sprintf(page, _format "\n"); \
1575} \
1576 \
1577static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1578
1579/* Performance counter hotplug functions */
1580#ifdef CONFIG_PERF_EVENTS
1581int perf_event_init_cpu(unsigned int cpu);
1582int perf_event_exit_cpu(unsigned int cpu);
1583#else
1584#define perf_event_init_cpu NULL
1585#define perf_event_exit_cpu NULL
1586#endif
1587
1588extern void __weak arch_perf_update_userpage(struct perf_event *event,
1589 struct perf_event_mmap_page *userpg,
1590 u64 now);
1591
1592#ifdef CONFIG_MMU
1593extern __weak u64 arch_perf_get_page_size(struct mm_struct *mm, unsigned long addr);
1594#endif
1595
1596#endif /* _LINUX_PERF_EVENT_H */