at v5.12 47 kB view raw
1/* 2 * Performance events: 3 * 4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra 7 * 8 * Data type definitions, declarations, prototypes. 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14#ifndef _LINUX_PERF_EVENT_H 15#define _LINUX_PERF_EVENT_H 16 17#include <uapi/linux/perf_event.h> 18#include <uapi/linux/bpf_perf_event.h> 19 20/* 21 * Kernel-internal data types and definitions: 22 */ 23 24#ifdef CONFIG_PERF_EVENTS 25# include <asm/perf_event.h> 26# include <asm/local64.h> 27#endif 28 29struct perf_guest_info_callbacks { 30 int (*is_in_guest)(void); 31 int (*is_user_mode)(void); 32 unsigned long (*get_guest_ip)(void); 33 void (*handle_intel_pt_intr)(void); 34}; 35 36#ifdef CONFIG_HAVE_HW_BREAKPOINT 37#include <asm/hw_breakpoint.h> 38#endif 39 40#include <linux/list.h> 41#include <linux/mutex.h> 42#include <linux/rculist.h> 43#include <linux/rcupdate.h> 44#include <linux/spinlock.h> 45#include <linux/hrtimer.h> 46#include <linux/fs.h> 47#include <linux/pid_namespace.h> 48#include <linux/workqueue.h> 49#include <linux/ftrace.h> 50#include <linux/cpu.h> 51#include <linux/irq_work.h> 52#include <linux/static_key.h> 53#include <linux/jump_label_ratelimit.h> 54#include <linux/atomic.h> 55#include <linux/sysfs.h> 56#include <linux/perf_regs.h> 57#include <linux/cgroup.h> 58#include <linux/refcount.h> 59#include <linux/security.h> 60#include <asm/local.h> 61 62struct perf_callchain_entry { 63 __u64 nr; 64 __u64 ip[]; /* /proc/sys/kernel/perf_event_max_stack */ 65}; 66 67struct perf_callchain_entry_ctx { 68 struct perf_callchain_entry *entry; 69 u32 max_stack; 70 u32 nr; 71 short contexts; 72 bool contexts_maxed; 73}; 74 75typedef unsigned long (*perf_copy_f)(void *dst, const void *src, 76 unsigned long off, unsigned long len); 77 78struct perf_raw_frag { 79 union { 80 struct perf_raw_frag *next; 81 unsigned long pad; 82 }; 83 perf_copy_f copy; 84 void *data; 85 u32 size; 86} __packed; 87 88struct perf_raw_record { 89 struct perf_raw_frag frag; 90 u32 size; 91}; 92 93/* 94 * branch stack layout: 95 * nr: number of taken branches stored in entries[] 96 * hw_idx: The low level index of raw branch records 97 * for the most recent branch. 98 * -1ULL means invalid/unknown. 99 * 100 * Note that nr can vary from sample to sample 101 * branches (to, from) are stored from most recent 102 * to least recent, i.e., entries[0] contains the most 103 * recent branch. 104 * The entries[] is an abstraction of raw branch records, 105 * which may not be stored in age order in HW, e.g. Intel LBR. 106 * The hw_idx is to expose the low level index of raw 107 * branch record for the most recent branch aka entries[0]. 108 * The hw_idx index is between -1 (unknown) and max depth, 109 * which can be retrieved in /sys/devices/cpu/caps/branches. 110 * For the architectures whose raw branch records are 111 * already stored in age order, the hw_idx should be 0. 112 */ 113struct perf_branch_stack { 114 __u64 nr; 115 __u64 hw_idx; 116 struct perf_branch_entry entries[]; 117}; 118 119struct task_struct; 120 121/* 122 * extra PMU register associated with an event 123 */ 124struct hw_perf_event_extra { 125 u64 config; /* register value */ 126 unsigned int reg; /* register address or index */ 127 int alloc; /* extra register already allocated */ 128 int idx; /* index in shared_regs->regs[] */ 129}; 130 131/** 132 * struct hw_perf_event - performance event hardware details: 133 */ 134struct hw_perf_event { 135#ifdef CONFIG_PERF_EVENTS 136 union { 137 struct { /* hardware */ 138 u64 config; 139 u64 last_tag; 140 unsigned long config_base; 141 unsigned long event_base; 142 int event_base_rdpmc; 143 int idx; 144 int last_cpu; 145 int flags; 146 147 struct hw_perf_event_extra extra_reg; 148 struct hw_perf_event_extra branch_reg; 149 }; 150 struct { /* software */ 151 struct hrtimer hrtimer; 152 }; 153 struct { /* tracepoint */ 154 /* for tp_event->class */ 155 struct list_head tp_list; 156 }; 157 struct { /* amd_power */ 158 u64 pwr_acc; 159 u64 ptsc; 160 }; 161#ifdef CONFIG_HAVE_HW_BREAKPOINT 162 struct { /* breakpoint */ 163 /* 164 * Crufty hack to avoid the chicken and egg 165 * problem hw_breakpoint has with context 166 * creation and event initalization. 167 */ 168 struct arch_hw_breakpoint info; 169 struct list_head bp_list; 170 }; 171#endif 172 struct { /* amd_iommu */ 173 u8 iommu_bank; 174 u8 iommu_cntr; 175 u16 padding; 176 u64 conf; 177 u64 conf1; 178 }; 179 }; 180 /* 181 * If the event is a per task event, this will point to the task in 182 * question. See the comment in perf_event_alloc(). 183 */ 184 struct task_struct *target; 185 186 /* 187 * PMU would store hardware filter configuration 188 * here. 189 */ 190 void *addr_filters; 191 192 /* Last sync'ed generation of filters */ 193 unsigned long addr_filters_gen; 194 195/* 196 * hw_perf_event::state flags; used to track the PERF_EF_* state. 197 */ 198#define PERF_HES_STOPPED 0x01 /* the counter is stopped */ 199#define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */ 200#define PERF_HES_ARCH 0x04 201 202 int state; 203 204 /* 205 * The last observed hardware counter value, updated with a 206 * local64_cmpxchg() such that pmu::read() can be called nested. 207 */ 208 local64_t prev_count; 209 210 /* 211 * The period to start the next sample with. 212 */ 213 u64 sample_period; 214 215 union { 216 struct { /* Sampling */ 217 /* 218 * The period we started this sample with. 219 */ 220 u64 last_period; 221 222 /* 223 * However much is left of the current period; 224 * note that this is a full 64bit value and 225 * allows for generation of periods longer 226 * than hardware might allow. 227 */ 228 local64_t period_left; 229 }; 230 struct { /* Topdown events counting for context switch */ 231 u64 saved_metric; 232 u64 saved_slots; 233 }; 234 }; 235 236 /* 237 * State for throttling the event, see __perf_event_overflow() and 238 * perf_adjust_freq_unthr_context(). 239 */ 240 u64 interrupts_seq; 241 u64 interrupts; 242 243 /* 244 * State for freq target events, see __perf_event_overflow() and 245 * perf_adjust_freq_unthr_context(). 246 */ 247 u64 freq_time_stamp; 248 u64 freq_count_stamp; 249#endif 250}; 251 252struct perf_event; 253 254/* 255 * Common implementation detail of pmu::{start,commit,cancel}_txn 256 */ 257#define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */ 258#define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */ 259 260/** 261 * pmu::capabilities flags 262 */ 263#define PERF_PMU_CAP_NO_INTERRUPT 0x01 264#define PERF_PMU_CAP_NO_NMI 0x02 265#define PERF_PMU_CAP_AUX_NO_SG 0x04 266#define PERF_PMU_CAP_EXTENDED_REGS 0x08 267#define PERF_PMU_CAP_EXCLUSIVE 0x10 268#define PERF_PMU_CAP_ITRACE 0x20 269#define PERF_PMU_CAP_HETEROGENEOUS_CPUS 0x40 270#define PERF_PMU_CAP_NO_EXCLUDE 0x80 271#define PERF_PMU_CAP_AUX_OUTPUT 0x100 272 273struct perf_output_handle; 274 275/** 276 * struct pmu - generic performance monitoring unit 277 */ 278struct pmu { 279 struct list_head entry; 280 281 struct module *module; 282 struct device *dev; 283 const struct attribute_group **attr_groups; 284 const struct attribute_group **attr_update; 285 const char *name; 286 int type; 287 288 /* 289 * various common per-pmu feature flags 290 */ 291 int capabilities; 292 293 int __percpu *pmu_disable_count; 294 struct perf_cpu_context __percpu *pmu_cpu_context; 295 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */ 296 int task_ctx_nr; 297 int hrtimer_interval_ms; 298 299 /* number of address filters this PMU can do */ 300 unsigned int nr_addr_filters; 301 302 /* 303 * Fully disable/enable this PMU, can be used to protect from the PMI 304 * as well as for lazy/batch writing of the MSRs. 305 */ 306 void (*pmu_enable) (struct pmu *pmu); /* optional */ 307 void (*pmu_disable) (struct pmu *pmu); /* optional */ 308 309 /* 310 * Try and initialize the event for this PMU. 311 * 312 * Returns: 313 * -ENOENT -- @event is not for this PMU 314 * 315 * -ENODEV -- @event is for this PMU but PMU not present 316 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable 317 * -EINVAL -- @event is for this PMU but @event is not valid 318 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported 319 * -EACCES -- @event is for this PMU, @event is valid, but no privileges 320 * 321 * 0 -- @event is for this PMU and valid 322 * 323 * Other error return values are allowed. 324 */ 325 int (*event_init) (struct perf_event *event); 326 327 /* 328 * Notification that the event was mapped or unmapped. Called 329 * in the context of the mapping task. 330 */ 331 void (*event_mapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ 332 void (*event_unmapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ 333 334 /* 335 * Flags for ->add()/->del()/ ->start()/->stop(). There are 336 * matching hw_perf_event::state flags. 337 */ 338#define PERF_EF_START 0x01 /* start the counter when adding */ 339#define PERF_EF_RELOAD 0x02 /* reload the counter when starting */ 340#define PERF_EF_UPDATE 0x04 /* update the counter when stopping */ 341 342 /* 343 * Adds/Removes a counter to/from the PMU, can be done inside a 344 * transaction, see the ->*_txn() methods. 345 * 346 * The add/del callbacks will reserve all hardware resources required 347 * to service the event, this includes any counter constraint 348 * scheduling etc. 349 * 350 * Called with IRQs disabled and the PMU disabled on the CPU the event 351 * is on. 352 * 353 * ->add() called without PERF_EF_START should result in the same state 354 * as ->add() followed by ->stop(). 355 * 356 * ->del() must always PERF_EF_UPDATE stop an event. If it calls 357 * ->stop() that must deal with already being stopped without 358 * PERF_EF_UPDATE. 359 */ 360 int (*add) (struct perf_event *event, int flags); 361 void (*del) (struct perf_event *event, int flags); 362 363 /* 364 * Starts/Stops a counter present on the PMU. 365 * 366 * The PMI handler should stop the counter when perf_event_overflow() 367 * returns !0. ->start() will be used to continue. 368 * 369 * Also used to change the sample period. 370 * 371 * Called with IRQs disabled and the PMU disabled on the CPU the event 372 * is on -- will be called from NMI context with the PMU generates 373 * NMIs. 374 * 375 * ->stop() with PERF_EF_UPDATE will read the counter and update 376 * period/count values like ->read() would. 377 * 378 * ->start() with PERF_EF_RELOAD will reprogram the counter 379 * value, must be preceded by a ->stop() with PERF_EF_UPDATE. 380 */ 381 void (*start) (struct perf_event *event, int flags); 382 void (*stop) (struct perf_event *event, int flags); 383 384 /* 385 * Updates the counter value of the event. 386 * 387 * For sampling capable PMUs this will also update the software period 388 * hw_perf_event::period_left field. 389 */ 390 void (*read) (struct perf_event *event); 391 392 /* 393 * Group events scheduling is treated as a transaction, add 394 * group events as a whole and perform one schedulability test. 395 * If the test fails, roll back the whole group 396 * 397 * Start the transaction, after this ->add() doesn't need to 398 * do schedulability tests. 399 * 400 * Optional. 401 */ 402 void (*start_txn) (struct pmu *pmu, unsigned int txn_flags); 403 /* 404 * If ->start_txn() disabled the ->add() schedulability test 405 * then ->commit_txn() is required to perform one. On success 406 * the transaction is closed. On error the transaction is kept 407 * open until ->cancel_txn() is called. 408 * 409 * Optional. 410 */ 411 int (*commit_txn) (struct pmu *pmu); 412 /* 413 * Will cancel the transaction, assumes ->del() is called 414 * for each successful ->add() during the transaction. 415 * 416 * Optional. 417 */ 418 void (*cancel_txn) (struct pmu *pmu); 419 420 /* 421 * Will return the value for perf_event_mmap_page::index for this event, 422 * if no implementation is provided it will default to: event->hw.idx + 1. 423 */ 424 int (*event_idx) (struct perf_event *event); /*optional */ 425 426 /* 427 * context-switches callback 428 */ 429 void (*sched_task) (struct perf_event_context *ctx, 430 bool sched_in); 431 432 /* 433 * Kmem cache of PMU specific data 434 */ 435 struct kmem_cache *task_ctx_cache; 436 437 /* 438 * PMU specific parts of task perf event context (i.e. ctx->task_ctx_data) 439 * can be synchronized using this function. See Intel LBR callstack support 440 * implementation and Perf core context switch handling callbacks for usage 441 * examples. 442 */ 443 void (*swap_task_ctx) (struct perf_event_context *prev, 444 struct perf_event_context *next); 445 /* optional */ 446 447 /* 448 * Set up pmu-private data structures for an AUX area 449 */ 450 void *(*setup_aux) (struct perf_event *event, void **pages, 451 int nr_pages, bool overwrite); 452 /* optional */ 453 454 /* 455 * Free pmu-private AUX data structures 456 */ 457 void (*free_aux) (void *aux); /* optional */ 458 459 /* 460 * Take a snapshot of the AUX buffer without touching the event 461 * state, so that preempting ->start()/->stop() callbacks does 462 * not interfere with their logic. Called in PMI context. 463 * 464 * Returns the size of AUX data copied to the output handle. 465 * 466 * Optional. 467 */ 468 long (*snapshot_aux) (struct perf_event *event, 469 struct perf_output_handle *handle, 470 unsigned long size); 471 472 /* 473 * Validate address range filters: make sure the HW supports the 474 * requested configuration and number of filters; return 0 if the 475 * supplied filters are valid, -errno otherwise. 476 * 477 * Runs in the context of the ioctl()ing process and is not serialized 478 * with the rest of the PMU callbacks. 479 */ 480 int (*addr_filters_validate) (struct list_head *filters); 481 /* optional */ 482 483 /* 484 * Synchronize address range filter configuration: 485 * translate hw-agnostic filters into hardware configuration in 486 * event::hw::addr_filters. 487 * 488 * Runs as a part of filter sync sequence that is done in ->start() 489 * callback by calling perf_event_addr_filters_sync(). 490 * 491 * May (and should) traverse event::addr_filters::list, for which its 492 * caller provides necessary serialization. 493 */ 494 void (*addr_filters_sync) (struct perf_event *event); 495 /* optional */ 496 497 /* 498 * Check if event can be used for aux_output purposes for 499 * events of this PMU. 500 * 501 * Runs from perf_event_open(). Should return 0 for "no match" 502 * or non-zero for "match". 503 */ 504 int (*aux_output_match) (struct perf_event *event); 505 /* optional */ 506 507 /* 508 * Filter events for PMU-specific reasons. 509 */ 510 int (*filter_match) (struct perf_event *event); /* optional */ 511 512 /* 513 * Check period value for PERF_EVENT_IOC_PERIOD ioctl. 514 */ 515 int (*check_period) (struct perf_event *event, u64 value); /* optional */ 516}; 517 518enum perf_addr_filter_action_t { 519 PERF_ADDR_FILTER_ACTION_STOP = 0, 520 PERF_ADDR_FILTER_ACTION_START, 521 PERF_ADDR_FILTER_ACTION_FILTER, 522}; 523 524/** 525 * struct perf_addr_filter - address range filter definition 526 * @entry: event's filter list linkage 527 * @path: object file's path for file-based filters 528 * @offset: filter range offset 529 * @size: filter range size (size==0 means single address trigger) 530 * @action: filter/start/stop 531 * 532 * This is a hardware-agnostic filter configuration as specified by the user. 533 */ 534struct perf_addr_filter { 535 struct list_head entry; 536 struct path path; 537 unsigned long offset; 538 unsigned long size; 539 enum perf_addr_filter_action_t action; 540}; 541 542/** 543 * struct perf_addr_filters_head - container for address range filters 544 * @list: list of filters for this event 545 * @lock: spinlock that serializes accesses to the @list and event's 546 * (and its children's) filter generations. 547 * @nr_file_filters: number of file-based filters 548 * 549 * A child event will use parent's @list (and therefore @lock), so they are 550 * bundled together; see perf_event_addr_filters(). 551 */ 552struct perf_addr_filters_head { 553 struct list_head list; 554 raw_spinlock_t lock; 555 unsigned int nr_file_filters; 556}; 557 558struct perf_addr_filter_range { 559 unsigned long start; 560 unsigned long size; 561}; 562 563/** 564 * enum perf_event_state - the states of an event: 565 */ 566enum perf_event_state { 567 PERF_EVENT_STATE_DEAD = -4, 568 PERF_EVENT_STATE_EXIT = -3, 569 PERF_EVENT_STATE_ERROR = -2, 570 PERF_EVENT_STATE_OFF = -1, 571 PERF_EVENT_STATE_INACTIVE = 0, 572 PERF_EVENT_STATE_ACTIVE = 1, 573}; 574 575struct file; 576struct perf_sample_data; 577 578typedef void (*perf_overflow_handler_t)(struct perf_event *, 579 struct perf_sample_data *, 580 struct pt_regs *regs); 581 582/* 583 * Event capabilities. For event_caps and groups caps. 584 * 585 * PERF_EV_CAP_SOFTWARE: Is a software event. 586 * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read 587 * from any CPU in the package where it is active. 588 * PERF_EV_CAP_SIBLING: An event with this flag must be a group sibling and 589 * cannot be a group leader. If an event with this flag is detached from the 590 * group it is scheduled out and moved into an unrecoverable ERROR state. 591 */ 592#define PERF_EV_CAP_SOFTWARE BIT(0) 593#define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1) 594#define PERF_EV_CAP_SIBLING BIT(2) 595 596#define SWEVENT_HLIST_BITS 8 597#define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS) 598 599struct swevent_hlist { 600 struct hlist_head heads[SWEVENT_HLIST_SIZE]; 601 struct rcu_head rcu_head; 602}; 603 604#define PERF_ATTACH_CONTEXT 0x01 605#define PERF_ATTACH_GROUP 0x02 606#define PERF_ATTACH_TASK 0x04 607#define PERF_ATTACH_TASK_DATA 0x08 608#define PERF_ATTACH_ITRACE 0x10 609#define PERF_ATTACH_SCHED_CB 0x20 610 611struct perf_cgroup; 612struct perf_buffer; 613 614struct pmu_event_list { 615 raw_spinlock_t lock; 616 struct list_head list; 617}; 618 619#define for_each_sibling_event(sibling, event) \ 620 if ((event)->group_leader == (event)) \ 621 list_for_each_entry((sibling), &(event)->sibling_list, sibling_list) 622 623/** 624 * struct perf_event - performance event kernel representation: 625 */ 626struct perf_event { 627#ifdef CONFIG_PERF_EVENTS 628 /* 629 * entry onto perf_event_context::event_list; 630 * modifications require ctx->lock 631 * RCU safe iterations. 632 */ 633 struct list_head event_entry; 634 635 /* 636 * Locked for modification by both ctx->mutex and ctx->lock; holding 637 * either sufficies for read. 638 */ 639 struct list_head sibling_list; 640 struct list_head active_list; 641 /* 642 * Node on the pinned or flexible tree located at the event context; 643 */ 644 struct rb_node group_node; 645 u64 group_index; 646 /* 647 * We need storage to track the entries in perf_pmu_migrate_context; we 648 * cannot use the event_entry because of RCU and we want to keep the 649 * group in tact which avoids us using the other two entries. 650 */ 651 struct list_head migrate_entry; 652 653 struct hlist_node hlist_entry; 654 struct list_head active_entry; 655 int nr_siblings; 656 657 /* Not serialized. Only written during event initialization. */ 658 int event_caps; 659 /* The cumulative AND of all event_caps for events in this group. */ 660 int group_caps; 661 662 struct perf_event *group_leader; 663 struct pmu *pmu; 664 void *pmu_private; 665 666 enum perf_event_state state; 667 unsigned int attach_state; 668 local64_t count; 669 atomic64_t child_count; 670 671 /* 672 * These are the total time in nanoseconds that the event 673 * has been enabled (i.e. eligible to run, and the task has 674 * been scheduled in, if this is a per-task event) 675 * and running (scheduled onto the CPU), respectively. 676 */ 677 u64 total_time_enabled; 678 u64 total_time_running; 679 u64 tstamp; 680 681 /* 682 * timestamp shadows the actual context timing but it can 683 * be safely used in NMI interrupt context. It reflects the 684 * context time as it was when the event was last scheduled in. 685 * 686 * ctx_time already accounts for ctx->timestamp. Therefore to 687 * compute ctx_time for a sample, simply add perf_clock(). 688 */ 689 u64 shadow_ctx_time; 690 691 struct perf_event_attr attr; 692 u16 header_size; 693 u16 id_header_size; 694 u16 read_size; 695 struct hw_perf_event hw; 696 697 struct perf_event_context *ctx; 698 atomic_long_t refcount; 699 700 /* 701 * These accumulate total time (in nanoseconds) that children 702 * events have been enabled and running, respectively. 703 */ 704 atomic64_t child_total_time_enabled; 705 atomic64_t child_total_time_running; 706 707 /* 708 * Protect attach/detach and child_list: 709 */ 710 struct mutex child_mutex; 711 struct list_head child_list; 712 struct perf_event *parent; 713 714 int oncpu; 715 int cpu; 716 717 struct list_head owner_entry; 718 struct task_struct *owner; 719 720 /* mmap bits */ 721 struct mutex mmap_mutex; 722 atomic_t mmap_count; 723 724 struct perf_buffer *rb; 725 struct list_head rb_entry; 726 unsigned long rcu_batches; 727 int rcu_pending; 728 729 /* poll related */ 730 wait_queue_head_t waitq; 731 struct fasync_struct *fasync; 732 733 /* delayed work for NMIs and such */ 734 int pending_wakeup; 735 int pending_kill; 736 int pending_disable; 737 struct irq_work pending; 738 739 atomic_t event_limit; 740 741 /* address range filters */ 742 struct perf_addr_filters_head addr_filters; 743 /* vma address array for file-based filders */ 744 struct perf_addr_filter_range *addr_filter_ranges; 745 unsigned long addr_filters_gen; 746 747 /* for aux_output events */ 748 struct perf_event *aux_event; 749 750 void (*destroy)(struct perf_event *); 751 struct rcu_head rcu_head; 752 753 struct pid_namespace *ns; 754 u64 id; 755 756 u64 (*clock)(void); 757 perf_overflow_handler_t overflow_handler; 758 void *overflow_handler_context; 759#ifdef CONFIG_BPF_SYSCALL 760 perf_overflow_handler_t orig_overflow_handler; 761 struct bpf_prog *prog; 762#endif 763 764#ifdef CONFIG_EVENT_TRACING 765 struct trace_event_call *tp_event; 766 struct event_filter *filter; 767#ifdef CONFIG_FUNCTION_TRACER 768 struct ftrace_ops ftrace_ops; 769#endif 770#endif 771 772#ifdef CONFIG_CGROUP_PERF 773 struct perf_cgroup *cgrp; /* cgroup event is attach to */ 774#endif 775 776#ifdef CONFIG_SECURITY 777 void *security; 778#endif 779 struct list_head sb_list; 780#endif /* CONFIG_PERF_EVENTS */ 781}; 782 783 784struct perf_event_groups { 785 struct rb_root tree; 786 u64 index; 787}; 788 789/** 790 * struct perf_event_context - event context structure 791 * 792 * Used as a container for task events and CPU events as well: 793 */ 794struct perf_event_context { 795 struct pmu *pmu; 796 /* 797 * Protect the states of the events in the list, 798 * nr_active, and the list: 799 */ 800 raw_spinlock_t lock; 801 /* 802 * Protect the list of events. Locking either mutex or lock 803 * is sufficient to ensure the list doesn't change; to change 804 * the list you need to lock both the mutex and the spinlock. 805 */ 806 struct mutex mutex; 807 808 struct list_head active_ctx_list; 809 struct perf_event_groups pinned_groups; 810 struct perf_event_groups flexible_groups; 811 struct list_head event_list; 812 813 struct list_head pinned_active; 814 struct list_head flexible_active; 815 816 int nr_events; 817 int nr_active; 818 int is_active; 819 int nr_stat; 820 int nr_freq; 821 int rotate_disable; 822 /* 823 * Set when nr_events != nr_active, except tolerant to events not 824 * necessary to be active due to scheduling constraints, such as cgroups. 825 */ 826 int rotate_necessary; 827 refcount_t refcount; 828 struct task_struct *task; 829 830 /* 831 * Context clock, runs when context enabled. 832 */ 833 u64 time; 834 u64 timestamp; 835 836 /* 837 * These fields let us detect when two contexts have both 838 * been cloned (inherited) from a common ancestor. 839 */ 840 struct perf_event_context *parent_ctx; 841 u64 parent_gen; 842 u64 generation; 843 int pin_count; 844#ifdef CONFIG_CGROUP_PERF 845 int nr_cgroups; /* cgroup evts */ 846#endif 847 void *task_ctx_data; /* pmu specific data */ 848 struct rcu_head rcu_head; 849}; 850 851/* 852 * Number of contexts where an event can trigger: 853 * task, softirq, hardirq, nmi. 854 */ 855#define PERF_NR_CONTEXTS 4 856 857/** 858 * struct perf_event_cpu_context - per cpu event context structure 859 */ 860struct perf_cpu_context { 861 struct perf_event_context ctx; 862 struct perf_event_context *task_ctx; 863 int active_oncpu; 864 int exclusive; 865 866 raw_spinlock_t hrtimer_lock; 867 struct hrtimer hrtimer; 868 ktime_t hrtimer_interval; 869 unsigned int hrtimer_active; 870 871#ifdef CONFIG_CGROUP_PERF 872 struct perf_cgroup *cgrp; 873 struct list_head cgrp_cpuctx_entry; 874#endif 875 876 struct list_head sched_cb_entry; 877 int sched_cb_usage; 878 879 int online; 880 /* 881 * Per-CPU storage for iterators used in visit_groups_merge. The default 882 * storage is of size 2 to hold the CPU and any CPU event iterators. 883 */ 884 int heap_size; 885 struct perf_event **heap; 886 struct perf_event *heap_default[2]; 887}; 888 889struct perf_output_handle { 890 struct perf_event *event; 891 struct perf_buffer *rb; 892 unsigned long wakeup; 893 unsigned long size; 894 u64 aux_flags; 895 union { 896 void *addr; 897 unsigned long head; 898 }; 899 int page; 900}; 901 902struct bpf_perf_event_data_kern { 903 bpf_user_pt_regs_t *regs; 904 struct perf_sample_data *data; 905 struct perf_event *event; 906}; 907 908#ifdef CONFIG_CGROUP_PERF 909 910/* 911 * perf_cgroup_info keeps track of time_enabled for a cgroup. 912 * This is a per-cpu dynamically allocated data structure. 913 */ 914struct perf_cgroup_info { 915 u64 time; 916 u64 timestamp; 917}; 918 919struct perf_cgroup { 920 struct cgroup_subsys_state css; 921 struct perf_cgroup_info __percpu *info; 922}; 923 924/* 925 * Must ensure cgroup is pinned (css_get) before calling 926 * this function. In other words, we cannot call this function 927 * if there is no cgroup event for the current CPU context. 928 */ 929static inline struct perf_cgroup * 930perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx) 931{ 932 return container_of(task_css_check(task, perf_event_cgrp_id, 933 ctx ? lockdep_is_held(&ctx->lock) 934 : true), 935 struct perf_cgroup, css); 936} 937#endif /* CONFIG_CGROUP_PERF */ 938 939#ifdef CONFIG_PERF_EVENTS 940 941extern void *perf_aux_output_begin(struct perf_output_handle *handle, 942 struct perf_event *event); 943extern void perf_aux_output_end(struct perf_output_handle *handle, 944 unsigned long size); 945extern int perf_aux_output_skip(struct perf_output_handle *handle, 946 unsigned long size); 947extern void *perf_get_aux(struct perf_output_handle *handle); 948extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags); 949extern void perf_event_itrace_started(struct perf_event *event); 950 951extern int perf_pmu_register(struct pmu *pmu, const char *name, int type); 952extern void perf_pmu_unregister(struct pmu *pmu); 953 954extern int perf_num_counters(void); 955extern const char *perf_pmu_name(void); 956extern void __perf_event_task_sched_in(struct task_struct *prev, 957 struct task_struct *task); 958extern void __perf_event_task_sched_out(struct task_struct *prev, 959 struct task_struct *next); 960extern int perf_event_init_task(struct task_struct *child); 961extern void perf_event_exit_task(struct task_struct *child); 962extern void perf_event_free_task(struct task_struct *task); 963extern void perf_event_delayed_put(struct task_struct *task); 964extern struct file *perf_event_get(unsigned int fd); 965extern const struct perf_event *perf_get_event(struct file *file); 966extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event); 967extern void perf_event_print_debug(void); 968extern void perf_pmu_disable(struct pmu *pmu); 969extern void perf_pmu_enable(struct pmu *pmu); 970extern void perf_sched_cb_dec(struct pmu *pmu); 971extern void perf_sched_cb_inc(struct pmu *pmu); 972extern int perf_event_task_disable(void); 973extern int perf_event_task_enable(void); 974 975extern void perf_pmu_resched(struct pmu *pmu); 976 977extern int perf_event_refresh(struct perf_event *event, int refresh); 978extern void perf_event_update_userpage(struct perf_event *event); 979extern int perf_event_release_kernel(struct perf_event *event); 980extern struct perf_event * 981perf_event_create_kernel_counter(struct perf_event_attr *attr, 982 int cpu, 983 struct task_struct *task, 984 perf_overflow_handler_t callback, 985 void *context); 986extern void perf_pmu_migrate_context(struct pmu *pmu, 987 int src_cpu, int dst_cpu); 988int perf_event_read_local(struct perf_event *event, u64 *value, 989 u64 *enabled, u64 *running); 990extern u64 perf_event_read_value(struct perf_event *event, 991 u64 *enabled, u64 *running); 992 993 994struct perf_sample_data { 995 /* 996 * Fields set by perf_sample_data_init(), group so as to 997 * minimize the cachelines touched. 998 */ 999 u64 addr; 1000 struct perf_raw_record *raw; 1001 struct perf_branch_stack *br_stack; 1002 u64 period; 1003 union perf_sample_weight weight; 1004 u64 txn; 1005 union perf_mem_data_src data_src; 1006 1007 /* 1008 * The other fields, optionally {set,used} by 1009 * perf_{prepare,output}_sample(). 1010 */ 1011 u64 type; 1012 u64 ip; 1013 struct { 1014 u32 pid; 1015 u32 tid; 1016 } tid_entry; 1017 u64 time; 1018 u64 id; 1019 u64 stream_id; 1020 struct { 1021 u32 cpu; 1022 u32 reserved; 1023 } cpu_entry; 1024 struct perf_callchain_entry *callchain; 1025 u64 aux_size; 1026 1027 struct perf_regs regs_user; 1028 struct perf_regs regs_intr; 1029 u64 stack_user_size; 1030 1031 u64 phys_addr; 1032 u64 cgroup; 1033 u64 data_page_size; 1034 u64 code_page_size; 1035} ____cacheline_aligned; 1036 1037/* default value for data source */ 1038#define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\ 1039 PERF_MEM_S(LVL, NA) |\ 1040 PERF_MEM_S(SNOOP, NA) |\ 1041 PERF_MEM_S(LOCK, NA) |\ 1042 PERF_MEM_S(TLB, NA)) 1043 1044static inline void perf_sample_data_init(struct perf_sample_data *data, 1045 u64 addr, u64 period) 1046{ 1047 /* remaining struct members initialized in perf_prepare_sample() */ 1048 data->addr = addr; 1049 data->raw = NULL; 1050 data->br_stack = NULL; 1051 data->period = period; 1052 data->weight.full = 0; 1053 data->data_src.val = PERF_MEM_NA; 1054 data->txn = 0; 1055} 1056 1057extern void perf_output_sample(struct perf_output_handle *handle, 1058 struct perf_event_header *header, 1059 struct perf_sample_data *data, 1060 struct perf_event *event); 1061extern void perf_prepare_sample(struct perf_event_header *header, 1062 struct perf_sample_data *data, 1063 struct perf_event *event, 1064 struct pt_regs *regs); 1065 1066extern int perf_event_overflow(struct perf_event *event, 1067 struct perf_sample_data *data, 1068 struct pt_regs *regs); 1069 1070extern void perf_event_output_forward(struct perf_event *event, 1071 struct perf_sample_data *data, 1072 struct pt_regs *regs); 1073extern void perf_event_output_backward(struct perf_event *event, 1074 struct perf_sample_data *data, 1075 struct pt_regs *regs); 1076extern int perf_event_output(struct perf_event *event, 1077 struct perf_sample_data *data, 1078 struct pt_regs *regs); 1079 1080static inline bool 1081is_default_overflow_handler(struct perf_event *event) 1082{ 1083 if (likely(event->overflow_handler == perf_event_output_forward)) 1084 return true; 1085 if (unlikely(event->overflow_handler == perf_event_output_backward)) 1086 return true; 1087 return false; 1088} 1089 1090extern void 1091perf_event_header__init_id(struct perf_event_header *header, 1092 struct perf_sample_data *data, 1093 struct perf_event *event); 1094extern void 1095perf_event__output_id_sample(struct perf_event *event, 1096 struct perf_output_handle *handle, 1097 struct perf_sample_data *sample); 1098 1099extern void 1100perf_log_lost_samples(struct perf_event *event, u64 lost); 1101 1102static inline bool event_has_any_exclude_flag(struct perf_event *event) 1103{ 1104 struct perf_event_attr *attr = &event->attr; 1105 1106 return attr->exclude_idle || attr->exclude_user || 1107 attr->exclude_kernel || attr->exclude_hv || 1108 attr->exclude_guest || attr->exclude_host; 1109} 1110 1111static inline bool is_sampling_event(struct perf_event *event) 1112{ 1113 return event->attr.sample_period != 0; 1114} 1115 1116/* 1117 * Return 1 for a software event, 0 for a hardware event 1118 */ 1119static inline int is_software_event(struct perf_event *event) 1120{ 1121 return event->event_caps & PERF_EV_CAP_SOFTWARE; 1122} 1123 1124/* 1125 * Return 1 for event in sw context, 0 for event in hw context 1126 */ 1127static inline int in_software_context(struct perf_event *event) 1128{ 1129 return event->ctx->pmu->task_ctx_nr == perf_sw_context; 1130} 1131 1132static inline int is_exclusive_pmu(struct pmu *pmu) 1133{ 1134 return pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE; 1135} 1136 1137extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 1138 1139extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64); 1140extern void __perf_sw_event(u32, u64, struct pt_regs *, u64); 1141 1142#ifndef perf_arch_fetch_caller_regs 1143static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { } 1144#endif 1145 1146/* 1147 * When generating a perf sample in-line, instead of from an interrupt / 1148 * exception, we lack a pt_regs. This is typically used from software events 1149 * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints. 1150 * 1151 * We typically don't need a full set, but (for x86) do require: 1152 * - ip for PERF_SAMPLE_IP 1153 * - cs for user_mode() tests 1154 * - sp for PERF_SAMPLE_CALLCHAIN 1155 * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs()) 1156 * 1157 * NOTE: assumes @regs is otherwise already 0 filled; this is important for 1158 * things like PERF_SAMPLE_REGS_INTR. 1159 */ 1160static inline void perf_fetch_caller_regs(struct pt_regs *regs) 1161{ 1162 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0); 1163} 1164 1165static __always_inline void 1166perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 1167{ 1168 if (static_key_false(&perf_swevent_enabled[event_id])) 1169 __perf_sw_event(event_id, nr, regs, addr); 1170} 1171 1172DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]); 1173 1174/* 1175 * 'Special' version for the scheduler, it hard assumes no recursion, 1176 * which is guaranteed by us not actually scheduling inside other swevents 1177 * because those disable preemption. 1178 */ 1179static __always_inline void 1180perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) 1181{ 1182 if (static_key_false(&perf_swevent_enabled[event_id])) { 1183 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); 1184 1185 perf_fetch_caller_regs(regs); 1186 ___perf_sw_event(event_id, nr, regs, addr); 1187 } 1188} 1189 1190extern struct static_key_false perf_sched_events; 1191 1192static __always_inline bool 1193perf_sw_migrate_enabled(void) 1194{ 1195 if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS])) 1196 return true; 1197 return false; 1198} 1199 1200static inline void perf_event_task_migrate(struct task_struct *task) 1201{ 1202 if (perf_sw_migrate_enabled()) 1203 task->sched_migrated = 1; 1204} 1205 1206static inline void perf_event_task_sched_in(struct task_struct *prev, 1207 struct task_struct *task) 1208{ 1209 if (static_branch_unlikely(&perf_sched_events)) 1210 __perf_event_task_sched_in(prev, task); 1211 1212 if (perf_sw_migrate_enabled() && task->sched_migrated) { 1213 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); 1214 1215 perf_fetch_caller_regs(regs); 1216 ___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0); 1217 task->sched_migrated = 0; 1218 } 1219} 1220 1221static inline void perf_event_task_sched_out(struct task_struct *prev, 1222 struct task_struct *next) 1223{ 1224 perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0); 1225 1226 if (static_branch_unlikely(&perf_sched_events)) 1227 __perf_event_task_sched_out(prev, next); 1228} 1229 1230extern void perf_event_mmap(struct vm_area_struct *vma); 1231 1232extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, 1233 bool unregister, const char *sym); 1234extern void perf_event_bpf_event(struct bpf_prog *prog, 1235 enum perf_bpf_event_type type, 1236 u16 flags); 1237 1238extern struct perf_guest_info_callbacks *perf_guest_cbs; 1239extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1240extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1241 1242extern void perf_event_exec(void); 1243extern void perf_event_comm(struct task_struct *tsk, bool exec); 1244extern void perf_event_namespaces(struct task_struct *tsk); 1245extern void perf_event_fork(struct task_struct *tsk); 1246extern void perf_event_text_poke(const void *addr, 1247 const void *old_bytes, size_t old_len, 1248 const void *new_bytes, size_t new_len); 1249 1250/* Callchains */ 1251DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry); 1252 1253extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1254extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1255extern struct perf_callchain_entry * 1256get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user, 1257 u32 max_stack, bool crosstask, bool add_mark); 1258extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs); 1259extern int get_callchain_buffers(int max_stack); 1260extern void put_callchain_buffers(void); 1261extern struct perf_callchain_entry *get_callchain_entry(int *rctx); 1262extern void put_callchain_entry(int rctx); 1263 1264extern int sysctl_perf_event_max_stack; 1265extern int sysctl_perf_event_max_contexts_per_stack; 1266 1267static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip) 1268{ 1269 if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) { 1270 struct perf_callchain_entry *entry = ctx->entry; 1271 entry->ip[entry->nr++] = ip; 1272 ++ctx->contexts; 1273 return 0; 1274 } else { 1275 ctx->contexts_maxed = true; 1276 return -1; /* no more room, stop walking the stack */ 1277 } 1278} 1279 1280static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip) 1281{ 1282 if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) { 1283 struct perf_callchain_entry *entry = ctx->entry; 1284 entry->ip[entry->nr++] = ip; 1285 ++ctx->nr; 1286 return 0; 1287 } else { 1288 return -1; /* no more room, stop walking the stack */ 1289 } 1290} 1291 1292extern int sysctl_perf_event_paranoid; 1293extern int sysctl_perf_event_mlock; 1294extern int sysctl_perf_event_sample_rate; 1295extern int sysctl_perf_cpu_time_max_percent; 1296 1297extern void perf_sample_event_took(u64 sample_len_ns); 1298 1299int perf_proc_update_handler(struct ctl_table *table, int write, 1300 void *buffer, size_t *lenp, loff_t *ppos); 1301int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 1302 void *buffer, size_t *lenp, loff_t *ppos); 1303int perf_event_max_stack_handler(struct ctl_table *table, int write, 1304 void *buffer, size_t *lenp, loff_t *ppos); 1305 1306/* Access to perf_event_open(2) syscall. */ 1307#define PERF_SECURITY_OPEN 0 1308 1309/* Finer grained perf_event_open(2) access control. */ 1310#define PERF_SECURITY_CPU 1 1311#define PERF_SECURITY_KERNEL 2 1312#define PERF_SECURITY_TRACEPOINT 3 1313 1314static inline int perf_is_paranoid(void) 1315{ 1316 return sysctl_perf_event_paranoid > -1; 1317} 1318 1319static inline int perf_allow_kernel(struct perf_event_attr *attr) 1320{ 1321 if (sysctl_perf_event_paranoid > 1 && !perfmon_capable()) 1322 return -EACCES; 1323 1324 return security_perf_event_open(attr, PERF_SECURITY_KERNEL); 1325} 1326 1327static inline int perf_allow_cpu(struct perf_event_attr *attr) 1328{ 1329 if (sysctl_perf_event_paranoid > 0 && !perfmon_capable()) 1330 return -EACCES; 1331 1332 return security_perf_event_open(attr, PERF_SECURITY_CPU); 1333} 1334 1335static inline int perf_allow_tracepoint(struct perf_event_attr *attr) 1336{ 1337 if (sysctl_perf_event_paranoid > -1 && !perfmon_capable()) 1338 return -EPERM; 1339 1340 return security_perf_event_open(attr, PERF_SECURITY_TRACEPOINT); 1341} 1342 1343extern void perf_event_init(void); 1344extern void perf_tp_event(u16 event_type, u64 count, void *record, 1345 int entry_size, struct pt_regs *regs, 1346 struct hlist_head *head, int rctx, 1347 struct task_struct *task); 1348extern void perf_bp_event(struct perf_event *event, void *data); 1349 1350#ifndef perf_misc_flags 1351# define perf_misc_flags(regs) \ 1352 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL) 1353# define perf_instruction_pointer(regs) instruction_pointer(regs) 1354#endif 1355#ifndef perf_arch_bpf_user_pt_regs 1356# define perf_arch_bpf_user_pt_regs(regs) regs 1357#endif 1358 1359static inline bool has_branch_stack(struct perf_event *event) 1360{ 1361 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK; 1362} 1363 1364static inline bool needs_branch_stack(struct perf_event *event) 1365{ 1366 return event->attr.branch_sample_type != 0; 1367} 1368 1369static inline bool has_aux(struct perf_event *event) 1370{ 1371 return event->pmu->setup_aux; 1372} 1373 1374static inline bool is_write_backward(struct perf_event *event) 1375{ 1376 return !!event->attr.write_backward; 1377} 1378 1379static inline bool has_addr_filter(struct perf_event *event) 1380{ 1381 return event->pmu->nr_addr_filters; 1382} 1383 1384/* 1385 * An inherited event uses parent's filters 1386 */ 1387static inline struct perf_addr_filters_head * 1388perf_event_addr_filters(struct perf_event *event) 1389{ 1390 struct perf_addr_filters_head *ifh = &event->addr_filters; 1391 1392 if (event->parent) 1393 ifh = &event->parent->addr_filters; 1394 1395 return ifh; 1396} 1397 1398extern void perf_event_addr_filters_sync(struct perf_event *event); 1399 1400extern int perf_output_begin(struct perf_output_handle *handle, 1401 struct perf_sample_data *data, 1402 struct perf_event *event, unsigned int size); 1403extern int perf_output_begin_forward(struct perf_output_handle *handle, 1404 struct perf_sample_data *data, 1405 struct perf_event *event, 1406 unsigned int size); 1407extern int perf_output_begin_backward(struct perf_output_handle *handle, 1408 struct perf_sample_data *data, 1409 struct perf_event *event, 1410 unsigned int size); 1411 1412extern void perf_output_end(struct perf_output_handle *handle); 1413extern unsigned int perf_output_copy(struct perf_output_handle *handle, 1414 const void *buf, unsigned int len); 1415extern unsigned int perf_output_skip(struct perf_output_handle *handle, 1416 unsigned int len); 1417extern long perf_output_copy_aux(struct perf_output_handle *aux_handle, 1418 struct perf_output_handle *handle, 1419 unsigned long from, unsigned long to); 1420extern int perf_swevent_get_recursion_context(void); 1421extern void perf_swevent_put_recursion_context(int rctx); 1422extern u64 perf_swevent_set_period(struct perf_event *event); 1423extern void perf_event_enable(struct perf_event *event); 1424extern void perf_event_disable(struct perf_event *event); 1425extern void perf_event_disable_local(struct perf_event *event); 1426extern void perf_event_disable_inatomic(struct perf_event *event); 1427extern void perf_event_task_tick(void); 1428extern int perf_event_account_interrupt(struct perf_event *event); 1429extern int perf_event_period(struct perf_event *event, u64 value); 1430extern u64 perf_event_pause(struct perf_event *event, bool reset); 1431#else /* !CONFIG_PERF_EVENTS: */ 1432static inline void * 1433perf_aux_output_begin(struct perf_output_handle *handle, 1434 struct perf_event *event) { return NULL; } 1435static inline void 1436perf_aux_output_end(struct perf_output_handle *handle, unsigned long size) 1437 { } 1438static inline int 1439perf_aux_output_skip(struct perf_output_handle *handle, 1440 unsigned long size) { return -EINVAL; } 1441static inline void * 1442perf_get_aux(struct perf_output_handle *handle) { return NULL; } 1443static inline void 1444perf_event_task_migrate(struct task_struct *task) { } 1445static inline void 1446perf_event_task_sched_in(struct task_struct *prev, 1447 struct task_struct *task) { } 1448static inline void 1449perf_event_task_sched_out(struct task_struct *prev, 1450 struct task_struct *next) { } 1451static inline int perf_event_init_task(struct task_struct *child) { return 0; } 1452static inline void perf_event_exit_task(struct task_struct *child) { } 1453static inline void perf_event_free_task(struct task_struct *task) { } 1454static inline void perf_event_delayed_put(struct task_struct *task) { } 1455static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); } 1456static inline const struct perf_event *perf_get_event(struct file *file) 1457{ 1458 return ERR_PTR(-EINVAL); 1459} 1460static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 1461{ 1462 return ERR_PTR(-EINVAL); 1463} 1464static inline int perf_event_read_local(struct perf_event *event, u64 *value, 1465 u64 *enabled, u64 *running) 1466{ 1467 return -EINVAL; 1468} 1469static inline void perf_event_print_debug(void) { } 1470static inline int perf_event_task_disable(void) { return -EINVAL; } 1471static inline int perf_event_task_enable(void) { return -EINVAL; } 1472static inline int perf_event_refresh(struct perf_event *event, int refresh) 1473{ 1474 return -EINVAL; 1475} 1476 1477static inline void 1478perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { } 1479static inline void 1480perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) { } 1481static inline void 1482perf_bp_event(struct perf_event *event, void *data) { } 1483 1484static inline int perf_register_guest_info_callbacks 1485(struct perf_guest_info_callbacks *callbacks) { return 0; } 1486static inline int perf_unregister_guest_info_callbacks 1487(struct perf_guest_info_callbacks *callbacks) { return 0; } 1488 1489static inline void perf_event_mmap(struct vm_area_struct *vma) { } 1490 1491typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data); 1492static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, 1493 bool unregister, const char *sym) { } 1494static inline void perf_event_bpf_event(struct bpf_prog *prog, 1495 enum perf_bpf_event_type type, 1496 u16 flags) { } 1497static inline void perf_event_exec(void) { } 1498static inline void perf_event_comm(struct task_struct *tsk, bool exec) { } 1499static inline void perf_event_namespaces(struct task_struct *tsk) { } 1500static inline void perf_event_fork(struct task_struct *tsk) { } 1501static inline void perf_event_text_poke(const void *addr, 1502 const void *old_bytes, 1503 size_t old_len, 1504 const void *new_bytes, 1505 size_t new_len) { } 1506static inline void perf_event_init(void) { } 1507static inline int perf_swevent_get_recursion_context(void) { return -1; } 1508static inline void perf_swevent_put_recursion_context(int rctx) { } 1509static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; } 1510static inline void perf_event_enable(struct perf_event *event) { } 1511static inline void perf_event_disable(struct perf_event *event) { } 1512static inline int __perf_event_disable(void *info) { return -1; } 1513static inline void perf_event_task_tick(void) { } 1514static inline int perf_event_release_kernel(struct perf_event *event) { return 0; } 1515static inline int perf_event_period(struct perf_event *event, u64 value) 1516{ 1517 return -EINVAL; 1518} 1519static inline u64 perf_event_pause(struct perf_event *event, bool reset) 1520{ 1521 return 0; 1522} 1523#endif 1524 1525#if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL) 1526extern void perf_restore_debug_store(void); 1527#else 1528static inline void perf_restore_debug_store(void) { } 1529#endif 1530 1531static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag) 1532{ 1533 return frag->pad < sizeof(u64); 1534} 1535 1536#define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x)) 1537 1538struct perf_pmu_events_attr { 1539 struct device_attribute attr; 1540 u64 id; 1541 const char *event_str; 1542}; 1543 1544struct perf_pmu_events_ht_attr { 1545 struct device_attribute attr; 1546 u64 id; 1547 const char *event_str_ht; 1548 const char *event_str_noht; 1549}; 1550 1551ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 1552 char *page); 1553 1554#define PMU_EVENT_ATTR(_name, _var, _id, _show) \ 1555static struct perf_pmu_events_attr _var = { \ 1556 .attr = __ATTR(_name, 0444, _show, NULL), \ 1557 .id = _id, \ 1558}; 1559 1560#define PMU_EVENT_ATTR_STRING(_name, _var, _str) \ 1561static struct perf_pmu_events_attr _var = { \ 1562 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \ 1563 .id = 0, \ 1564 .event_str = _str, \ 1565}; 1566 1567#define PMU_FORMAT_ATTR(_name, _format) \ 1568static ssize_t \ 1569_name##_show(struct device *dev, \ 1570 struct device_attribute *attr, \ 1571 char *page) \ 1572{ \ 1573 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \ 1574 return sprintf(page, _format "\n"); \ 1575} \ 1576 \ 1577static struct device_attribute format_attr_##_name = __ATTR_RO(_name) 1578 1579/* Performance counter hotplug functions */ 1580#ifdef CONFIG_PERF_EVENTS 1581int perf_event_init_cpu(unsigned int cpu); 1582int perf_event_exit_cpu(unsigned int cpu); 1583#else 1584#define perf_event_init_cpu NULL 1585#define perf_event_exit_cpu NULL 1586#endif 1587 1588extern void __weak arch_perf_update_userpage(struct perf_event *event, 1589 struct perf_event_mmap_page *userpg, 1590 u64 now); 1591 1592#ifdef CONFIG_MMU 1593extern __weak u64 arch_perf_get_page_size(struct mm_struct *mm, unsigned long addr); 1594#endif 1595 1596#endif /* _LINUX_PERF_EVENT_H */