at v5.12 42 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-or-later */ 2/* memcontrol.h - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 */ 10 11#ifndef _LINUX_MEMCONTROL_H 12#define _LINUX_MEMCONTROL_H 13#include <linux/cgroup.h> 14#include <linux/vm_event_item.h> 15#include <linux/hardirq.h> 16#include <linux/jump_label.h> 17#include <linux/page_counter.h> 18#include <linux/vmpressure.h> 19#include <linux/eventfd.h> 20#include <linux/mm.h> 21#include <linux/vmstat.h> 22#include <linux/writeback.h> 23#include <linux/page-flags.h> 24 25struct mem_cgroup; 26struct obj_cgroup; 27struct page; 28struct mm_struct; 29struct kmem_cache; 30 31/* Cgroup-specific page state, on top of universal node page state */ 32enum memcg_stat_item { 33 MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS, 34 MEMCG_SOCK, 35 MEMCG_PERCPU_B, 36 MEMCG_NR_STAT, 37}; 38 39enum memcg_memory_event { 40 MEMCG_LOW, 41 MEMCG_HIGH, 42 MEMCG_MAX, 43 MEMCG_OOM, 44 MEMCG_OOM_KILL, 45 MEMCG_SWAP_HIGH, 46 MEMCG_SWAP_MAX, 47 MEMCG_SWAP_FAIL, 48 MEMCG_NR_MEMORY_EVENTS, 49}; 50 51struct mem_cgroup_reclaim_cookie { 52 pg_data_t *pgdat; 53 unsigned int generation; 54}; 55 56#ifdef CONFIG_MEMCG 57 58#define MEM_CGROUP_ID_SHIFT 16 59#define MEM_CGROUP_ID_MAX USHRT_MAX 60 61struct mem_cgroup_id { 62 int id; 63 refcount_t ref; 64}; 65 66/* 67 * Per memcg event counter is incremented at every pagein/pageout. With THP, 68 * it will be incremented by the number of pages. This counter is used 69 * to trigger some periodic events. This is straightforward and better 70 * than using jiffies etc. to handle periodic memcg event. 71 */ 72enum mem_cgroup_events_target { 73 MEM_CGROUP_TARGET_THRESH, 74 MEM_CGROUP_TARGET_SOFTLIMIT, 75 MEM_CGROUP_NTARGETS, 76}; 77 78struct memcg_vmstats_percpu { 79 long stat[MEMCG_NR_STAT]; 80 unsigned long events[NR_VM_EVENT_ITEMS]; 81 unsigned long nr_page_events; 82 unsigned long targets[MEM_CGROUP_NTARGETS]; 83}; 84 85struct mem_cgroup_reclaim_iter { 86 struct mem_cgroup *position; 87 /* scan generation, increased every round-trip */ 88 unsigned int generation; 89}; 90 91struct lruvec_stat { 92 long count[NR_VM_NODE_STAT_ITEMS]; 93}; 94 95struct batched_lruvec_stat { 96 s32 count[NR_VM_NODE_STAT_ITEMS]; 97}; 98 99/* 100 * Bitmap of shrinker::id corresponding to memcg-aware shrinkers, 101 * which have elements charged to this memcg. 102 */ 103struct memcg_shrinker_map { 104 struct rcu_head rcu; 105 unsigned long map[]; 106}; 107 108/* 109 * per-node information in memory controller. 110 */ 111struct mem_cgroup_per_node { 112 struct lruvec lruvec; 113 114 /* 115 * Legacy local VM stats. This should be struct lruvec_stat and 116 * cannot be optimized to struct batched_lruvec_stat. Because 117 * the threshold of the lruvec_stat_cpu can be as big as 118 * MEMCG_CHARGE_BATCH * PAGE_SIZE. It can fit into s32. But this 119 * filed has no upper limit. 120 */ 121 struct lruvec_stat __percpu *lruvec_stat_local; 122 123 /* Subtree VM stats (batched updates) */ 124 struct batched_lruvec_stat __percpu *lruvec_stat_cpu; 125 atomic_long_t lruvec_stat[NR_VM_NODE_STAT_ITEMS]; 126 127 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS]; 128 129 struct mem_cgroup_reclaim_iter iter; 130 131 struct memcg_shrinker_map __rcu *shrinker_map; 132 133 struct rb_node tree_node; /* RB tree node */ 134 unsigned long usage_in_excess;/* Set to the value by which */ 135 /* the soft limit is exceeded*/ 136 bool on_tree; 137 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 138 /* use container_of */ 139}; 140 141struct mem_cgroup_threshold { 142 struct eventfd_ctx *eventfd; 143 unsigned long threshold; 144}; 145 146/* For threshold */ 147struct mem_cgroup_threshold_ary { 148 /* An array index points to threshold just below or equal to usage. */ 149 int current_threshold; 150 /* Size of entries[] */ 151 unsigned int size; 152 /* Array of thresholds */ 153 struct mem_cgroup_threshold entries[]; 154}; 155 156struct mem_cgroup_thresholds { 157 /* Primary thresholds array */ 158 struct mem_cgroup_threshold_ary *primary; 159 /* 160 * Spare threshold array. 161 * This is needed to make mem_cgroup_unregister_event() "never fail". 162 * It must be able to store at least primary->size - 1 entries. 163 */ 164 struct mem_cgroup_threshold_ary *spare; 165}; 166 167enum memcg_kmem_state { 168 KMEM_NONE, 169 KMEM_ALLOCATED, 170 KMEM_ONLINE, 171}; 172 173#if defined(CONFIG_SMP) 174struct memcg_padding { 175 char x[0]; 176} ____cacheline_internodealigned_in_smp; 177#define MEMCG_PADDING(name) struct memcg_padding name; 178#else 179#define MEMCG_PADDING(name) 180#endif 181 182/* 183 * Remember four most recent foreign writebacks with dirty pages in this 184 * cgroup. Inode sharing is expected to be uncommon and, even if we miss 185 * one in a given round, we're likely to catch it later if it keeps 186 * foreign-dirtying, so a fairly low count should be enough. 187 * 188 * See mem_cgroup_track_foreign_dirty_slowpath() for details. 189 */ 190#define MEMCG_CGWB_FRN_CNT 4 191 192struct memcg_cgwb_frn { 193 u64 bdi_id; /* bdi->id of the foreign inode */ 194 int memcg_id; /* memcg->css.id of foreign inode */ 195 u64 at; /* jiffies_64 at the time of dirtying */ 196 struct wb_completion done; /* tracks in-flight foreign writebacks */ 197}; 198 199/* 200 * Bucket for arbitrarily byte-sized objects charged to a memory 201 * cgroup. The bucket can be reparented in one piece when the cgroup 202 * is destroyed, without having to round up the individual references 203 * of all live memory objects in the wild. 204 */ 205struct obj_cgroup { 206 struct percpu_ref refcnt; 207 struct mem_cgroup *memcg; 208 atomic_t nr_charged_bytes; 209 union { 210 struct list_head list; 211 struct rcu_head rcu; 212 }; 213}; 214 215/* 216 * The memory controller data structure. The memory controller controls both 217 * page cache and RSS per cgroup. We would eventually like to provide 218 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 219 * to help the administrator determine what knobs to tune. 220 */ 221struct mem_cgroup { 222 struct cgroup_subsys_state css; 223 224 /* Private memcg ID. Used to ID objects that outlive the cgroup */ 225 struct mem_cgroup_id id; 226 227 /* Accounted resources */ 228 struct page_counter memory; /* Both v1 & v2 */ 229 230 union { 231 struct page_counter swap; /* v2 only */ 232 struct page_counter memsw; /* v1 only */ 233 }; 234 235 /* Legacy consumer-oriented counters */ 236 struct page_counter kmem; /* v1 only */ 237 struct page_counter tcpmem; /* v1 only */ 238 239 /* Range enforcement for interrupt charges */ 240 struct work_struct high_work; 241 242 unsigned long soft_limit; 243 244 /* vmpressure notifications */ 245 struct vmpressure vmpressure; 246 247 /* 248 * Should the OOM killer kill all belonging tasks, had it kill one? 249 */ 250 bool oom_group; 251 252 /* protected by memcg_oom_lock */ 253 bool oom_lock; 254 int under_oom; 255 256 int swappiness; 257 /* OOM-Killer disable */ 258 int oom_kill_disable; 259 260 /* memory.events and memory.events.local */ 261 struct cgroup_file events_file; 262 struct cgroup_file events_local_file; 263 264 /* handle for "memory.swap.events" */ 265 struct cgroup_file swap_events_file; 266 267 /* protect arrays of thresholds */ 268 struct mutex thresholds_lock; 269 270 /* thresholds for memory usage. RCU-protected */ 271 struct mem_cgroup_thresholds thresholds; 272 273 /* thresholds for mem+swap usage. RCU-protected */ 274 struct mem_cgroup_thresholds memsw_thresholds; 275 276 /* For oom notifier event fd */ 277 struct list_head oom_notify; 278 279 /* 280 * Should we move charges of a task when a task is moved into this 281 * mem_cgroup ? And what type of charges should we move ? 282 */ 283 unsigned long move_charge_at_immigrate; 284 /* taken only while moving_account > 0 */ 285 spinlock_t move_lock; 286 unsigned long move_lock_flags; 287 288 MEMCG_PADDING(_pad1_); 289 290 atomic_long_t vmstats[MEMCG_NR_STAT]; 291 atomic_long_t vmevents[NR_VM_EVENT_ITEMS]; 292 293 /* memory.events */ 294 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS]; 295 atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS]; 296 297 unsigned long socket_pressure; 298 299 /* Legacy tcp memory accounting */ 300 bool tcpmem_active; 301 int tcpmem_pressure; 302 303#ifdef CONFIG_MEMCG_KMEM 304 int kmemcg_id; 305 enum memcg_kmem_state kmem_state; 306 struct obj_cgroup __rcu *objcg; 307 struct list_head objcg_list; /* list of inherited objcgs */ 308#endif 309 310 MEMCG_PADDING(_pad2_); 311 312 /* 313 * set > 0 if pages under this cgroup are moving to other cgroup. 314 */ 315 atomic_t moving_account; 316 struct task_struct *move_lock_task; 317 318 /* Legacy local VM stats and events */ 319 struct memcg_vmstats_percpu __percpu *vmstats_local; 320 321 /* Subtree VM stats and events (batched updates) */ 322 struct memcg_vmstats_percpu __percpu *vmstats_percpu; 323 324#ifdef CONFIG_CGROUP_WRITEBACK 325 struct list_head cgwb_list; 326 struct wb_domain cgwb_domain; 327 struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT]; 328#endif 329 330 /* List of events which userspace want to receive */ 331 struct list_head event_list; 332 spinlock_t event_list_lock; 333 334#ifdef CONFIG_TRANSPARENT_HUGEPAGE 335 struct deferred_split deferred_split_queue; 336#endif 337 338 struct mem_cgroup_per_node *nodeinfo[0]; 339 /* WARNING: nodeinfo must be the last member here */ 340}; 341 342/* 343 * size of first charge trial. "32" comes from vmscan.c's magic value. 344 * TODO: maybe necessary to use big numbers in big irons. 345 */ 346#define MEMCG_CHARGE_BATCH 32U 347 348extern struct mem_cgroup *root_mem_cgroup; 349 350enum page_memcg_data_flags { 351 /* page->memcg_data is a pointer to an objcgs vector */ 352 MEMCG_DATA_OBJCGS = (1UL << 0), 353 /* page has been accounted as a non-slab kernel page */ 354 MEMCG_DATA_KMEM = (1UL << 1), 355 /* the next bit after the last actual flag */ 356 __NR_MEMCG_DATA_FLAGS = (1UL << 2), 357}; 358 359#define MEMCG_DATA_FLAGS_MASK (__NR_MEMCG_DATA_FLAGS - 1) 360 361/* 362 * page_memcg - get the memory cgroup associated with a page 363 * @page: a pointer to the page struct 364 * 365 * Returns a pointer to the memory cgroup associated with the page, 366 * or NULL. This function assumes that the page is known to have a 367 * proper memory cgroup pointer. It's not safe to call this function 368 * against some type of pages, e.g. slab pages or ex-slab pages. 369 * 370 * Any of the following ensures page and memcg binding stability: 371 * - the page lock 372 * - LRU isolation 373 * - lock_page_memcg() 374 * - exclusive reference 375 */ 376static inline struct mem_cgroup *page_memcg(struct page *page) 377{ 378 unsigned long memcg_data = page->memcg_data; 379 380 VM_BUG_ON_PAGE(PageSlab(page), page); 381 VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_OBJCGS, page); 382 383 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 384} 385 386/* 387 * page_memcg_rcu - locklessly get the memory cgroup associated with a page 388 * @page: a pointer to the page struct 389 * 390 * Returns a pointer to the memory cgroup associated with the page, 391 * or NULL. This function assumes that the page is known to have a 392 * proper memory cgroup pointer. It's not safe to call this function 393 * against some type of pages, e.g. slab pages or ex-slab pages. 394 */ 395static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 396{ 397 VM_BUG_ON_PAGE(PageSlab(page), page); 398 WARN_ON_ONCE(!rcu_read_lock_held()); 399 400 return (struct mem_cgroup *)(READ_ONCE(page->memcg_data) & 401 ~MEMCG_DATA_FLAGS_MASK); 402} 403 404/* 405 * page_memcg_check - get the memory cgroup associated with a page 406 * @page: a pointer to the page struct 407 * 408 * Returns a pointer to the memory cgroup associated with the page, 409 * or NULL. This function unlike page_memcg() can take any page 410 * as an argument. It has to be used in cases when it's not known if a page 411 * has an associated memory cgroup pointer or an object cgroups vector. 412 * 413 * Any of the following ensures page and memcg binding stability: 414 * - the page lock 415 * - LRU isolation 416 * - lock_page_memcg() 417 * - exclusive reference 418 */ 419static inline struct mem_cgroup *page_memcg_check(struct page *page) 420{ 421 /* 422 * Because page->memcg_data might be changed asynchronously 423 * for slab pages, READ_ONCE() should be used here. 424 */ 425 unsigned long memcg_data = READ_ONCE(page->memcg_data); 426 427 if (memcg_data & MEMCG_DATA_OBJCGS) 428 return NULL; 429 430 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 431} 432 433/* 434 * PageMemcgKmem - check if the page has MemcgKmem flag set 435 * @page: a pointer to the page struct 436 * 437 * Checks if the page has MemcgKmem flag set. The caller must ensure that 438 * the page has an associated memory cgroup. It's not safe to call this function 439 * against some types of pages, e.g. slab pages. 440 */ 441static inline bool PageMemcgKmem(struct page *page) 442{ 443 VM_BUG_ON_PAGE(page->memcg_data & MEMCG_DATA_OBJCGS, page); 444 return page->memcg_data & MEMCG_DATA_KMEM; 445} 446 447#ifdef CONFIG_MEMCG_KMEM 448/* 449 * page_objcgs - get the object cgroups vector associated with a page 450 * @page: a pointer to the page struct 451 * 452 * Returns a pointer to the object cgroups vector associated with the page, 453 * or NULL. This function assumes that the page is known to have an 454 * associated object cgroups vector. It's not safe to call this function 455 * against pages, which might have an associated memory cgroup: e.g. 456 * kernel stack pages. 457 */ 458static inline struct obj_cgroup **page_objcgs(struct page *page) 459{ 460 unsigned long memcg_data = READ_ONCE(page->memcg_data); 461 462 VM_BUG_ON_PAGE(memcg_data && !(memcg_data & MEMCG_DATA_OBJCGS), page); 463 VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page); 464 465 return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 466} 467 468/* 469 * page_objcgs_check - get the object cgroups vector associated with a page 470 * @page: a pointer to the page struct 471 * 472 * Returns a pointer to the object cgroups vector associated with the page, 473 * or NULL. This function is safe to use if the page can be directly associated 474 * with a memory cgroup. 475 */ 476static inline struct obj_cgroup **page_objcgs_check(struct page *page) 477{ 478 unsigned long memcg_data = READ_ONCE(page->memcg_data); 479 480 if (!memcg_data || !(memcg_data & MEMCG_DATA_OBJCGS)) 481 return NULL; 482 483 VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page); 484 485 return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 486} 487 488#else 489static inline struct obj_cgroup **page_objcgs(struct page *page) 490{ 491 return NULL; 492} 493 494static inline struct obj_cgroup **page_objcgs_check(struct page *page) 495{ 496 return NULL; 497} 498#endif 499 500static __always_inline bool memcg_stat_item_in_bytes(int idx) 501{ 502 if (idx == MEMCG_PERCPU_B) 503 return true; 504 return vmstat_item_in_bytes(idx); 505} 506 507static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 508{ 509 return (memcg == root_mem_cgroup); 510} 511 512static inline bool mem_cgroup_disabled(void) 513{ 514 return !cgroup_subsys_enabled(memory_cgrp_subsys); 515} 516 517static inline unsigned long mem_cgroup_protection(struct mem_cgroup *root, 518 struct mem_cgroup *memcg, 519 bool in_low_reclaim) 520{ 521 if (mem_cgroup_disabled()) 522 return 0; 523 524 /* 525 * There is no reclaim protection applied to a targeted reclaim. 526 * We are special casing this specific case here because 527 * mem_cgroup_protected calculation is not robust enough to keep 528 * the protection invariant for calculated effective values for 529 * parallel reclaimers with different reclaim target. This is 530 * especially a problem for tail memcgs (as they have pages on LRU) 531 * which would want to have effective values 0 for targeted reclaim 532 * but a different value for external reclaim. 533 * 534 * Example 535 * Let's have global and A's reclaim in parallel: 536 * | 537 * A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G) 538 * |\ 539 * | C (low = 1G, usage = 2.5G) 540 * B (low = 1G, usage = 0.5G) 541 * 542 * For the global reclaim 543 * A.elow = A.low 544 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow 545 * C.elow = min(C.usage, C.low) 546 * 547 * With the effective values resetting we have A reclaim 548 * A.elow = 0 549 * B.elow = B.low 550 * C.elow = C.low 551 * 552 * If the global reclaim races with A's reclaim then 553 * B.elow = C.elow = 0 because children_low_usage > A.elow) 554 * is possible and reclaiming B would be violating the protection. 555 * 556 */ 557 if (root == memcg) 558 return 0; 559 560 if (in_low_reclaim) 561 return READ_ONCE(memcg->memory.emin); 562 563 return max(READ_ONCE(memcg->memory.emin), 564 READ_ONCE(memcg->memory.elow)); 565} 566 567void mem_cgroup_calculate_protection(struct mem_cgroup *root, 568 struct mem_cgroup *memcg); 569 570static inline bool mem_cgroup_supports_protection(struct mem_cgroup *memcg) 571{ 572 /* 573 * The root memcg doesn't account charges, and doesn't support 574 * protection. 575 */ 576 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg); 577 578} 579 580static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg) 581{ 582 if (!mem_cgroup_supports_protection(memcg)) 583 return false; 584 585 return READ_ONCE(memcg->memory.elow) >= 586 page_counter_read(&memcg->memory); 587} 588 589static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg) 590{ 591 if (!mem_cgroup_supports_protection(memcg)) 592 return false; 593 594 return READ_ONCE(memcg->memory.emin) >= 595 page_counter_read(&memcg->memory); 596} 597 598int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask); 599 600void mem_cgroup_uncharge(struct page *page); 601void mem_cgroup_uncharge_list(struct list_head *page_list); 602 603void mem_cgroup_migrate(struct page *oldpage, struct page *newpage); 604 605static struct mem_cgroup_per_node * 606mem_cgroup_nodeinfo(struct mem_cgroup *memcg, int nid) 607{ 608 return memcg->nodeinfo[nid]; 609} 610 611/** 612 * mem_cgroup_lruvec - get the lru list vector for a memcg & node 613 * @memcg: memcg of the wanted lruvec 614 * @pgdat: pglist_data 615 * 616 * Returns the lru list vector holding pages for a given @memcg & 617 * @pgdat combination. This can be the node lruvec, if the memory 618 * controller is disabled. 619 */ 620static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, 621 struct pglist_data *pgdat) 622{ 623 struct mem_cgroup_per_node *mz; 624 struct lruvec *lruvec; 625 626 if (mem_cgroup_disabled()) { 627 lruvec = &pgdat->__lruvec; 628 goto out; 629 } 630 631 if (!memcg) 632 memcg = root_mem_cgroup; 633 634 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 635 lruvec = &mz->lruvec; 636out: 637 /* 638 * Since a node can be onlined after the mem_cgroup was created, 639 * we have to be prepared to initialize lruvec->pgdat here; 640 * and if offlined then reonlined, we need to reinitialize it. 641 */ 642 if (unlikely(lruvec->pgdat != pgdat)) 643 lruvec->pgdat = pgdat; 644 return lruvec; 645} 646 647/** 648 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page 649 * @page: the page 650 * @pgdat: pgdat of the page 651 * 652 * This function relies on page->mem_cgroup being stable. 653 */ 654static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page, 655 struct pglist_data *pgdat) 656{ 657 struct mem_cgroup *memcg = page_memcg(page); 658 659 VM_WARN_ON_ONCE_PAGE(!memcg && !mem_cgroup_disabled(), page); 660 return mem_cgroup_lruvec(memcg, pgdat); 661} 662 663static inline bool lruvec_holds_page_lru_lock(struct page *page, 664 struct lruvec *lruvec) 665{ 666 pg_data_t *pgdat = page_pgdat(page); 667 const struct mem_cgroup *memcg; 668 struct mem_cgroup_per_node *mz; 669 670 if (mem_cgroup_disabled()) 671 return lruvec == &pgdat->__lruvec; 672 673 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 674 memcg = page_memcg(page) ? : root_mem_cgroup; 675 676 return lruvec->pgdat == pgdat && mz->memcg == memcg; 677} 678 679struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p); 680 681struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm); 682 683struct lruvec *lock_page_lruvec(struct page *page); 684struct lruvec *lock_page_lruvec_irq(struct page *page); 685struct lruvec *lock_page_lruvec_irqsave(struct page *page, 686 unsigned long *flags); 687 688#ifdef CONFIG_DEBUG_VM 689void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page); 690#else 691static inline void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page) 692{ 693} 694#endif 695 696static inline 697struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){ 698 return css ? container_of(css, struct mem_cgroup, css) : NULL; 699} 700 701static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg) 702{ 703 return percpu_ref_tryget(&objcg->refcnt); 704} 705 706static inline void obj_cgroup_get(struct obj_cgroup *objcg) 707{ 708 percpu_ref_get(&objcg->refcnt); 709} 710 711static inline void obj_cgroup_put(struct obj_cgroup *objcg) 712{ 713 percpu_ref_put(&objcg->refcnt); 714} 715 716/* 717 * After the initialization objcg->memcg is always pointing at 718 * a valid memcg, but can be atomically swapped to the parent memcg. 719 * 720 * The caller must ensure that the returned memcg won't be released: 721 * e.g. acquire the rcu_read_lock or css_set_lock. 722 */ 723static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg) 724{ 725 return READ_ONCE(objcg->memcg); 726} 727 728static inline void mem_cgroup_put(struct mem_cgroup *memcg) 729{ 730 if (memcg) 731 css_put(&memcg->css); 732} 733 734#define mem_cgroup_from_counter(counter, member) \ 735 container_of(counter, struct mem_cgroup, member) 736 737struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *, 738 struct mem_cgroup *, 739 struct mem_cgroup_reclaim_cookie *); 740void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *); 741int mem_cgroup_scan_tasks(struct mem_cgroup *, 742 int (*)(struct task_struct *, void *), void *); 743 744static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 745{ 746 if (mem_cgroup_disabled()) 747 return 0; 748 749 return memcg->id.id; 750} 751struct mem_cgroup *mem_cgroup_from_id(unsigned short id); 752 753static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 754{ 755 return mem_cgroup_from_css(seq_css(m)); 756} 757 758static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 759{ 760 struct mem_cgroup_per_node *mz; 761 762 if (mem_cgroup_disabled()) 763 return NULL; 764 765 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 766 return mz->memcg; 767} 768 769/** 770 * parent_mem_cgroup - find the accounting parent of a memcg 771 * @memcg: memcg whose parent to find 772 * 773 * Returns the parent memcg, or NULL if this is the root or the memory 774 * controller is in legacy no-hierarchy mode. 775 */ 776static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 777{ 778 if (!memcg->memory.parent) 779 return NULL; 780 return mem_cgroup_from_counter(memcg->memory.parent, memory); 781} 782 783static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, 784 struct mem_cgroup *root) 785{ 786 if (root == memcg) 787 return true; 788 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup); 789} 790 791static inline bool mm_match_cgroup(struct mm_struct *mm, 792 struct mem_cgroup *memcg) 793{ 794 struct mem_cgroup *task_memcg; 795 bool match = false; 796 797 rcu_read_lock(); 798 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 799 if (task_memcg) 800 match = mem_cgroup_is_descendant(task_memcg, memcg); 801 rcu_read_unlock(); 802 return match; 803} 804 805struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page); 806ino_t page_cgroup_ino(struct page *page); 807 808static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 809{ 810 if (mem_cgroup_disabled()) 811 return true; 812 return !!(memcg->css.flags & CSS_ONLINE); 813} 814 815/* 816 * For memory reclaim. 817 */ 818int mem_cgroup_select_victim_node(struct mem_cgroup *memcg); 819 820void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 821 int zid, int nr_pages); 822 823static inline 824unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 825 enum lru_list lru, int zone_idx) 826{ 827 struct mem_cgroup_per_node *mz; 828 829 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 830 return READ_ONCE(mz->lru_zone_size[zone_idx][lru]); 831} 832 833void mem_cgroup_handle_over_high(void); 834 835unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg); 836 837unsigned long mem_cgroup_size(struct mem_cgroup *memcg); 838 839void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, 840 struct task_struct *p); 841 842void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg); 843 844static inline void mem_cgroup_enter_user_fault(void) 845{ 846 WARN_ON(current->in_user_fault); 847 current->in_user_fault = 1; 848} 849 850static inline void mem_cgroup_exit_user_fault(void) 851{ 852 WARN_ON(!current->in_user_fault); 853 current->in_user_fault = 0; 854} 855 856static inline bool task_in_memcg_oom(struct task_struct *p) 857{ 858 return p->memcg_in_oom; 859} 860 861bool mem_cgroup_oom_synchronize(bool wait); 862struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 863 struct mem_cgroup *oom_domain); 864void mem_cgroup_print_oom_group(struct mem_cgroup *memcg); 865 866#ifdef CONFIG_MEMCG_SWAP 867extern bool cgroup_memory_noswap; 868#endif 869 870struct mem_cgroup *lock_page_memcg(struct page *page); 871void __unlock_page_memcg(struct mem_cgroup *memcg); 872void unlock_page_memcg(struct page *page); 873 874/* 875 * idx can be of type enum memcg_stat_item or node_stat_item. 876 * Keep in sync with memcg_exact_page_state(). 877 */ 878static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 879{ 880 long x = atomic_long_read(&memcg->vmstats[idx]); 881#ifdef CONFIG_SMP 882 if (x < 0) 883 x = 0; 884#endif 885 return x; 886} 887 888/* 889 * idx can be of type enum memcg_stat_item or node_stat_item. 890 * Keep in sync with memcg_exact_page_state(). 891 */ 892static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg, 893 int idx) 894{ 895 long x = 0; 896 int cpu; 897 898 for_each_possible_cpu(cpu) 899 x += per_cpu(memcg->vmstats_local->stat[idx], cpu); 900#ifdef CONFIG_SMP 901 if (x < 0) 902 x = 0; 903#endif 904 return x; 905} 906 907void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val); 908 909/* idx can be of type enum memcg_stat_item or node_stat_item */ 910static inline void mod_memcg_state(struct mem_cgroup *memcg, 911 int idx, int val) 912{ 913 unsigned long flags; 914 915 local_irq_save(flags); 916 __mod_memcg_state(memcg, idx, val); 917 local_irq_restore(flags); 918} 919 920static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 921 enum node_stat_item idx) 922{ 923 struct mem_cgroup_per_node *pn; 924 long x; 925 926 if (mem_cgroup_disabled()) 927 return node_page_state(lruvec_pgdat(lruvec), idx); 928 929 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 930 x = atomic_long_read(&pn->lruvec_stat[idx]); 931#ifdef CONFIG_SMP 932 if (x < 0) 933 x = 0; 934#endif 935 return x; 936} 937 938static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, 939 enum node_stat_item idx) 940{ 941 struct mem_cgroup_per_node *pn; 942 long x = 0; 943 int cpu; 944 945 if (mem_cgroup_disabled()) 946 return node_page_state(lruvec_pgdat(lruvec), idx); 947 948 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 949 for_each_possible_cpu(cpu) 950 x += per_cpu(pn->lruvec_stat_local->count[idx], cpu); 951#ifdef CONFIG_SMP 952 if (x < 0) 953 x = 0; 954#endif 955 return x; 956} 957 958void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 959 int val); 960void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val); 961 962static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx, 963 int val) 964{ 965 unsigned long flags; 966 967 local_irq_save(flags); 968 __mod_lruvec_kmem_state(p, idx, val); 969 local_irq_restore(flags); 970} 971 972static inline void mod_memcg_lruvec_state(struct lruvec *lruvec, 973 enum node_stat_item idx, int val) 974{ 975 unsigned long flags; 976 977 local_irq_save(flags); 978 __mod_memcg_lruvec_state(lruvec, idx, val); 979 local_irq_restore(flags); 980} 981 982unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 983 gfp_t gfp_mask, 984 unsigned long *total_scanned); 985 986void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 987 unsigned long count); 988 989static inline void count_memcg_events(struct mem_cgroup *memcg, 990 enum vm_event_item idx, 991 unsigned long count) 992{ 993 unsigned long flags; 994 995 local_irq_save(flags); 996 __count_memcg_events(memcg, idx, count); 997 local_irq_restore(flags); 998} 999 1000static inline void count_memcg_page_event(struct page *page, 1001 enum vm_event_item idx) 1002{ 1003 struct mem_cgroup *memcg = page_memcg(page); 1004 1005 if (memcg) 1006 count_memcg_events(memcg, idx, 1); 1007} 1008 1009static inline void count_memcg_event_mm(struct mm_struct *mm, 1010 enum vm_event_item idx) 1011{ 1012 struct mem_cgroup *memcg; 1013 1014 if (mem_cgroup_disabled()) 1015 return; 1016 1017 rcu_read_lock(); 1018 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1019 if (likely(memcg)) 1020 count_memcg_events(memcg, idx, 1); 1021 rcu_read_unlock(); 1022} 1023 1024static inline void memcg_memory_event(struct mem_cgroup *memcg, 1025 enum memcg_memory_event event) 1026{ 1027 bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX || 1028 event == MEMCG_SWAP_FAIL; 1029 1030 atomic_long_inc(&memcg->memory_events_local[event]); 1031 if (!swap_event) 1032 cgroup_file_notify(&memcg->events_local_file); 1033 1034 do { 1035 atomic_long_inc(&memcg->memory_events[event]); 1036 if (swap_event) 1037 cgroup_file_notify(&memcg->swap_events_file); 1038 else 1039 cgroup_file_notify(&memcg->events_file); 1040 1041 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1042 break; 1043 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1044 break; 1045 } while ((memcg = parent_mem_cgroup(memcg)) && 1046 !mem_cgroup_is_root(memcg)); 1047} 1048 1049static inline void memcg_memory_event_mm(struct mm_struct *mm, 1050 enum memcg_memory_event event) 1051{ 1052 struct mem_cgroup *memcg; 1053 1054 if (mem_cgroup_disabled()) 1055 return; 1056 1057 rcu_read_lock(); 1058 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1059 if (likely(memcg)) 1060 memcg_memory_event(memcg, event); 1061 rcu_read_unlock(); 1062} 1063 1064void split_page_memcg(struct page *head, unsigned int nr); 1065 1066#else /* CONFIG_MEMCG */ 1067 1068#define MEM_CGROUP_ID_SHIFT 0 1069#define MEM_CGROUP_ID_MAX 0 1070 1071struct mem_cgroup; 1072 1073static inline struct mem_cgroup *page_memcg(struct page *page) 1074{ 1075 return NULL; 1076} 1077 1078static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1079{ 1080 WARN_ON_ONCE(!rcu_read_lock_held()); 1081 return NULL; 1082} 1083 1084static inline struct mem_cgroup *page_memcg_check(struct page *page) 1085{ 1086 return NULL; 1087} 1088 1089static inline bool PageMemcgKmem(struct page *page) 1090{ 1091 return false; 1092} 1093 1094static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 1095{ 1096 return true; 1097} 1098 1099static inline bool mem_cgroup_disabled(void) 1100{ 1101 return true; 1102} 1103 1104static inline void memcg_memory_event(struct mem_cgroup *memcg, 1105 enum memcg_memory_event event) 1106{ 1107} 1108 1109static inline void memcg_memory_event_mm(struct mm_struct *mm, 1110 enum memcg_memory_event event) 1111{ 1112} 1113 1114static inline unsigned long mem_cgroup_protection(struct mem_cgroup *root, 1115 struct mem_cgroup *memcg, 1116 bool in_low_reclaim) 1117{ 1118 return 0; 1119} 1120 1121static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root, 1122 struct mem_cgroup *memcg) 1123{ 1124} 1125 1126static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg) 1127{ 1128 return false; 1129} 1130 1131static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg) 1132{ 1133 return false; 1134} 1135 1136static inline int mem_cgroup_charge(struct page *page, struct mm_struct *mm, 1137 gfp_t gfp_mask) 1138{ 1139 return 0; 1140} 1141 1142static inline void mem_cgroup_uncharge(struct page *page) 1143{ 1144} 1145 1146static inline void mem_cgroup_uncharge_list(struct list_head *page_list) 1147{ 1148} 1149 1150static inline void mem_cgroup_migrate(struct page *old, struct page *new) 1151{ 1152} 1153 1154static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, 1155 struct pglist_data *pgdat) 1156{ 1157 return &pgdat->__lruvec; 1158} 1159 1160static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page, 1161 struct pglist_data *pgdat) 1162{ 1163 return &pgdat->__lruvec; 1164} 1165 1166static inline bool lruvec_holds_page_lru_lock(struct page *page, 1167 struct lruvec *lruvec) 1168{ 1169 pg_data_t *pgdat = page_pgdat(page); 1170 1171 return lruvec == &pgdat->__lruvec; 1172} 1173 1174static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 1175{ 1176 return NULL; 1177} 1178 1179static inline bool mm_match_cgroup(struct mm_struct *mm, 1180 struct mem_cgroup *memcg) 1181{ 1182 return true; 1183} 1184 1185static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 1186{ 1187 return NULL; 1188} 1189 1190static inline void mem_cgroup_put(struct mem_cgroup *memcg) 1191{ 1192} 1193 1194static inline struct lruvec *lock_page_lruvec(struct page *page) 1195{ 1196 struct pglist_data *pgdat = page_pgdat(page); 1197 1198 spin_lock(&pgdat->__lruvec.lru_lock); 1199 return &pgdat->__lruvec; 1200} 1201 1202static inline struct lruvec *lock_page_lruvec_irq(struct page *page) 1203{ 1204 struct pglist_data *pgdat = page_pgdat(page); 1205 1206 spin_lock_irq(&pgdat->__lruvec.lru_lock); 1207 return &pgdat->__lruvec; 1208} 1209 1210static inline struct lruvec *lock_page_lruvec_irqsave(struct page *page, 1211 unsigned long *flagsp) 1212{ 1213 struct pglist_data *pgdat = page_pgdat(page); 1214 1215 spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp); 1216 return &pgdat->__lruvec; 1217} 1218 1219static inline struct mem_cgroup * 1220mem_cgroup_iter(struct mem_cgroup *root, 1221 struct mem_cgroup *prev, 1222 struct mem_cgroup_reclaim_cookie *reclaim) 1223{ 1224 return NULL; 1225} 1226 1227static inline void mem_cgroup_iter_break(struct mem_cgroup *root, 1228 struct mem_cgroup *prev) 1229{ 1230} 1231 1232static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1233 int (*fn)(struct task_struct *, void *), void *arg) 1234{ 1235 return 0; 1236} 1237 1238static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 1239{ 1240 return 0; 1241} 1242 1243static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 1244{ 1245 WARN_ON_ONCE(id); 1246 /* XXX: This should always return root_mem_cgroup */ 1247 return NULL; 1248} 1249 1250static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 1251{ 1252 return NULL; 1253} 1254 1255static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 1256{ 1257 return NULL; 1258} 1259 1260static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 1261{ 1262 return true; 1263} 1264 1265static inline 1266unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 1267 enum lru_list lru, int zone_idx) 1268{ 1269 return 0; 1270} 1271 1272static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1273{ 1274 return 0; 1275} 1276 1277static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1278{ 1279 return 0; 1280} 1281 1282static inline void 1283mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1284{ 1285} 1286 1287static inline void 1288mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1289{ 1290} 1291 1292static inline struct mem_cgroup *lock_page_memcg(struct page *page) 1293{ 1294 return NULL; 1295} 1296 1297static inline void __unlock_page_memcg(struct mem_cgroup *memcg) 1298{ 1299} 1300 1301static inline void unlock_page_memcg(struct page *page) 1302{ 1303} 1304 1305static inline void mem_cgroup_handle_over_high(void) 1306{ 1307} 1308 1309static inline void mem_cgroup_enter_user_fault(void) 1310{ 1311} 1312 1313static inline void mem_cgroup_exit_user_fault(void) 1314{ 1315} 1316 1317static inline bool task_in_memcg_oom(struct task_struct *p) 1318{ 1319 return false; 1320} 1321 1322static inline bool mem_cgroup_oom_synchronize(bool wait) 1323{ 1324 return false; 1325} 1326 1327static inline struct mem_cgroup *mem_cgroup_get_oom_group( 1328 struct task_struct *victim, struct mem_cgroup *oom_domain) 1329{ 1330 return NULL; 1331} 1332 1333static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1334{ 1335} 1336 1337static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 1338{ 1339 return 0; 1340} 1341 1342static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg, 1343 int idx) 1344{ 1345 return 0; 1346} 1347 1348static inline void __mod_memcg_state(struct mem_cgroup *memcg, 1349 int idx, 1350 int nr) 1351{ 1352} 1353 1354static inline void mod_memcg_state(struct mem_cgroup *memcg, 1355 int idx, 1356 int nr) 1357{ 1358} 1359 1360static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 1361 enum node_stat_item idx) 1362{ 1363 return node_page_state(lruvec_pgdat(lruvec), idx); 1364} 1365 1366static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, 1367 enum node_stat_item idx) 1368{ 1369 return node_page_state(lruvec_pgdat(lruvec), idx); 1370} 1371 1372static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec, 1373 enum node_stat_item idx, int val) 1374{ 1375} 1376 1377static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, 1378 int val) 1379{ 1380 struct page *page = virt_to_head_page(p); 1381 1382 __mod_node_page_state(page_pgdat(page), idx, val); 1383} 1384 1385static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx, 1386 int val) 1387{ 1388 struct page *page = virt_to_head_page(p); 1389 1390 mod_node_page_state(page_pgdat(page), idx, val); 1391} 1392 1393static inline 1394unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 1395 gfp_t gfp_mask, 1396 unsigned long *total_scanned) 1397{ 1398 return 0; 1399} 1400 1401static inline void split_page_memcg(struct page *head, unsigned int nr) 1402{ 1403} 1404 1405static inline void count_memcg_events(struct mem_cgroup *memcg, 1406 enum vm_event_item idx, 1407 unsigned long count) 1408{ 1409} 1410 1411static inline void __count_memcg_events(struct mem_cgroup *memcg, 1412 enum vm_event_item idx, 1413 unsigned long count) 1414{ 1415} 1416 1417static inline void count_memcg_page_event(struct page *page, 1418 int idx) 1419{ 1420} 1421 1422static inline 1423void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx) 1424{ 1425} 1426 1427static inline void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page) 1428{ 1429} 1430#endif /* CONFIG_MEMCG */ 1431 1432static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx) 1433{ 1434 __mod_lruvec_kmem_state(p, idx, 1); 1435} 1436 1437static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx) 1438{ 1439 __mod_lruvec_kmem_state(p, idx, -1); 1440} 1441 1442static inline struct lruvec *parent_lruvec(struct lruvec *lruvec) 1443{ 1444 struct mem_cgroup *memcg; 1445 1446 memcg = lruvec_memcg(lruvec); 1447 if (!memcg) 1448 return NULL; 1449 memcg = parent_mem_cgroup(memcg); 1450 if (!memcg) 1451 return NULL; 1452 return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec)); 1453} 1454 1455static inline void unlock_page_lruvec(struct lruvec *lruvec) 1456{ 1457 spin_unlock(&lruvec->lru_lock); 1458} 1459 1460static inline void unlock_page_lruvec_irq(struct lruvec *lruvec) 1461{ 1462 spin_unlock_irq(&lruvec->lru_lock); 1463} 1464 1465static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec, 1466 unsigned long flags) 1467{ 1468 spin_unlock_irqrestore(&lruvec->lru_lock, flags); 1469} 1470 1471/* Don't lock again iff page's lruvec locked */ 1472static inline struct lruvec *relock_page_lruvec_irq(struct page *page, 1473 struct lruvec *locked_lruvec) 1474{ 1475 if (locked_lruvec) { 1476 if (lruvec_holds_page_lru_lock(page, locked_lruvec)) 1477 return locked_lruvec; 1478 1479 unlock_page_lruvec_irq(locked_lruvec); 1480 } 1481 1482 return lock_page_lruvec_irq(page); 1483} 1484 1485/* Don't lock again iff page's lruvec locked */ 1486static inline struct lruvec *relock_page_lruvec_irqsave(struct page *page, 1487 struct lruvec *locked_lruvec, unsigned long *flags) 1488{ 1489 if (locked_lruvec) { 1490 if (lruvec_holds_page_lru_lock(page, locked_lruvec)) 1491 return locked_lruvec; 1492 1493 unlock_page_lruvec_irqrestore(locked_lruvec, *flags); 1494 } 1495 1496 return lock_page_lruvec_irqsave(page, flags); 1497} 1498 1499#ifdef CONFIG_CGROUP_WRITEBACK 1500 1501struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb); 1502void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 1503 unsigned long *pheadroom, unsigned long *pdirty, 1504 unsigned long *pwriteback); 1505 1506void mem_cgroup_track_foreign_dirty_slowpath(struct page *page, 1507 struct bdi_writeback *wb); 1508 1509static inline void mem_cgroup_track_foreign_dirty(struct page *page, 1510 struct bdi_writeback *wb) 1511{ 1512 if (mem_cgroup_disabled()) 1513 return; 1514 1515 if (unlikely(&page_memcg(page)->css != wb->memcg_css)) 1516 mem_cgroup_track_foreign_dirty_slowpath(page, wb); 1517} 1518 1519void mem_cgroup_flush_foreign(struct bdi_writeback *wb); 1520 1521#else /* CONFIG_CGROUP_WRITEBACK */ 1522 1523static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 1524{ 1525 return NULL; 1526} 1527 1528static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb, 1529 unsigned long *pfilepages, 1530 unsigned long *pheadroom, 1531 unsigned long *pdirty, 1532 unsigned long *pwriteback) 1533{ 1534} 1535 1536static inline void mem_cgroup_track_foreign_dirty(struct page *page, 1537 struct bdi_writeback *wb) 1538{ 1539} 1540 1541static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 1542{ 1543} 1544 1545#endif /* CONFIG_CGROUP_WRITEBACK */ 1546 1547struct sock; 1548bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 1549void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 1550#ifdef CONFIG_MEMCG 1551extern struct static_key_false memcg_sockets_enabled_key; 1552#define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key) 1553void mem_cgroup_sk_alloc(struct sock *sk); 1554void mem_cgroup_sk_free(struct sock *sk); 1555static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1556{ 1557 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure) 1558 return true; 1559 do { 1560 if (time_before(jiffies, memcg->socket_pressure)) 1561 return true; 1562 } while ((memcg = parent_mem_cgroup(memcg))); 1563 return false; 1564} 1565 1566extern int memcg_expand_shrinker_maps(int new_id); 1567 1568extern void memcg_set_shrinker_bit(struct mem_cgroup *memcg, 1569 int nid, int shrinker_id); 1570#else 1571#define mem_cgroup_sockets_enabled 0 1572static inline void mem_cgroup_sk_alloc(struct sock *sk) { }; 1573static inline void mem_cgroup_sk_free(struct sock *sk) { }; 1574static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1575{ 1576 return false; 1577} 1578 1579static inline void memcg_set_shrinker_bit(struct mem_cgroup *memcg, 1580 int nid, int shrinker_id) 1581{ 1582} 1583#endif 1584 1585#ifdef CONFIG_MEMCG_KMEM 1586int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order); 1587void __memcg_kmem_uncharge_page(struct page *page, int order); 1588 1589struct obj_cgroup *get_obj_cgroup_from_current(void); 1590 1591int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size); 1592void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size); 1593 1594extern struct static_key_false memcg_kmem_enabled_key; 1595 1596extern int memcg_nr_cache_ids; 1597void memcg_get_cache_ids(void); 1598void memcg_put_cache_ids(void); 1599 1600/* 1601 * Helper macro to loop through all memcg-specific caches. Callers must still 1602 * check if the cache is valid (it is either valid or NULL). 1603 * the slab_mutex must be held when looping through those caches 1604 */ 1605#define for_each_memcg_cache_index(_idx) \ 1606 for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++) 1607 1608static inline bool memcg_kmem_enabled(void) 1609{ 1610 return static_branch_likely(&memcg_kmem_enabled_key); 1611} 1612 1613static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1614 int order) 1615{ 1616 if (memcg_kmem_enabled()) 1617 return __memcg_kmem_charge_page(page, gfp, order); 1618 return 0; 1619} 1620 1621static inline void memcg_kmem_uncharge_page(struct page *page, int order) 1622{ 1623 if (memcg_kmem_enabled()) 1624 __memcg_kmem_uncharge_page(page, order); 1625} 1626 1627/* 1628 * A helper for accessing memcg's kmem_id, used for getting 1629 * corresponding LRU lists. 1630 */ 1631static inline int memcg_cache_id(struct mem_cgroup *memcg) 1632{ 1633 return memcg ? memcg->kmemcg_id : -1; 1634} 1635 1636struct mem_cgroup *mem_cgroup_from_obj(void *p); 1637 1638#else 1639 1640static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1641 int order) 1642{ 1643 return 0; 1644} 1645 1646static inline void memcg_kmem_uncharge_page(struct page *page, int order) 1647{ 1648} 1649 1650static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1651 int order) 1652{ 1653 return 0; 1654} 1655 1656static inline void __memcg_kmem_uncharge_page(struct page *page, int order) 1657{ 1658} 1659 1660#define for_each_memcg_cache_index(_idx) \ 1661 for (; NULL; ) 1662 1663static inline bool memcg_kmem_enabled(void) 1664{ 1665 return false; 1666} 1667 1668static inline int memcg_cache_id(struct mem_cgroup *memcg) 1669{ 1670 return -1; 1671} 1672 1673static inline void memcg_get_cache_ids(void) 1674{ 1675} 1676 1677static inline void memcg_put_cache_ids(void) 1678{ 1679} 1680 1681static inline struct mem_cgroup *mem_cgroup_from_obj(void *p) 1682{ 1683 return NULL; 1684} 1685 1686#endif /* CONFIG_MEMCG_KMEM */ 1687 1688#endif /* _LINUX_MEMCONTROL_H */