at v5.12 45 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-only */ 2#ifndef __KVM_HOST_H 3#define __KVM_HOST_H 4 5 6#include <linux/types.h> 7#include <linux/hardirq.h> 8#include <linux/list.h> 9#include <linux/mutex.h> 10#include <linux/spinlock.h> 11#include <linux/signal.h> 12#include <linux/sched.h> 13#include <linux/bug.h> 14#include <linux/minmax.h> 15#include <linux/mm.h> 16#include <linux/mmu_notifier.h> 17#include <linux/preempt.h> 18#include <linux/msi.h> 19#include <linux/slab.h> 20#include <linux/vmalloc.h> 21#include <linux/rcupdate.h> 22#include <linux/ratelimit.h> 23#include <linux/err.h> 24#include <linux/irqflags.h> 25#include <linux/context_tracking.h> 26#include <linux/irqbypass.h> 27#include <linux/rcuwait.h> 28#include <linux/refcount.h> 29#include <linux/nospec.h> 30#include <asm/signal.h> 31 32#include <linux/kvm.h> 33#include <linux/kvm_para.h> 34 35#include <linux/kvm_types.h> 36 37#include <asm/kvm_host.h> 38#include <linux/kvm_dirty_ring.h> 39 40#ifndef KVM_MAX_VCPU_ID 41#define KVM_MAX_VCPU_ID KVM_MAX_VCPUS 42#endif 43 44/* 45 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used 46 * in kvm, other bits are visible for userspace which are defined in 47 * include/linux/kvm_h. 48 */ 49#define KVM_MEMSLOT_INVALID (1UL << 16) 50 51/* 52 * Bit 63 of the memslot generation number is an "update in-progress flag", 53 * e.g. is temporarily set for the duration of install_new_memslots(). 54 * This flag effectively creates a unique generation number that is used to 55 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale, 56 * i.e. may (or may not) have come from the previous memslots generation. 57 * 58 * This is necessary because the actual memslots update is not atomic with 59 * respect to the generation number update. Updating the generation number 60 * first would allow a vCPU to cache a spte from the old memslots using the 61 * new generation number, and updating the generation number after switching 62 * to the new memslots would allow cache hits using the old generation number 63 * to reference the defunct memslots. 64 * 65 * This mechanism is used to prevent getting hits in KVM's caches while a 66 * memslot update is in-progress, and to prevent cache hits *after* updating 67 * the actual generation number against accesses that were inserted into the 68 * cache *before* the memslots were updated. 69 */ 70#define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63) 71 72/* Two fragments for cross MMIO pages. */ 73#define KVM_MAX_MMIO_FRAGMENTS 2 74 75#ifndef KVM_ADDRESS_SPACE_NUM 76#define KVM_ADDRESS_SPACE_NUM 1 77#endif 78 79/* 80 * For the normal pfn, the highest 12 bits should be zero, 81 * so we can mask bit 62 ~ bit 52 to indicate the error pfn, 82 * mask bit 63 to indicate the noslot pfn. 83 */ 84#define KVM_PFN_ERR_MASK (0x7ffULL << 52) 85#define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52) 86#define KVM_PFN_NOSLOT (0x1ULL << 63) 87 88#define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK) 89#define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1) 90#define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2) 91 92/* 93 * error pfns indicate that the gfn is in slot but faild to 94 * translate it to pfn on host. 95 */ 96static inline bool is_error_pfn(kvm_pfn_t pfn) 97{ 98 return !!(pfn & KVM_PFN_ERR_MASK); 99} 100 101/* 102 * error_noslot pfns indicate that the gfn can not be 103 * translated to pfn - it is not in slot or failed to 104 * translate it to pfn. 105 */ 106static inline bool is_error_noslot_pfn(kvm_pfn_t pfn) 107{ 108 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK); 109} 110 111/* noslot pfn indicates that the gfn is not in slot. */ 112static inline bool is_noslot_pfn(kvm_pfn_t pfn) 113{ 114 return pfn == KVM_PFN_NOSLOT; 115} 116 117/* 118 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390) 119 * provide own defines and kvm_is_error_hva 120 */ 121#ifndef KVM_HVA_ERR_BAD 122 123#define KVM_HVA_ERR_BAD (PAGE_OFFSET) 124#define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE) 125 126static inline bool kvm_is_error_hva(unsigned long addr) 127{ 128 return addr >= PAGE_OFFSET; 129} 130 131#endif 132 133#define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT)) 134 135static inline bool is_error_page(struct page *page) 136{ 137 return IS_ERR(page); 138} 139 140#define KVM_REQUEST_MASK GENMASK(7,0) 141#define KVM_REQUEST_NO_WAKEUP BIT(8) 142#define KVM_REQUEST_WAIT BIT(9) 143/* 144 * Architecture-independent vcpu->requests bit members 145 * Bits 4-7 are reserved for more arch-independent bits. 146 */ 147#define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 148#define KVM_REQ_MMU_RELOAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 149#define KVM_REQ_PENDING_TIMER 2 150#define KVM_REQ_UNHALT 3 151#define KVM_REQUEST_ARCH_BASE 8 152 153#define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \ 154 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \ 155 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \ 156}) 157#define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0) 158 159#define KVM_USERSPACE_IRQ_SOURCE_ID 0 160#define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1 161 162extern struct mutex kvm_lock; 163extern struct list_head vm_list; 164 165struct kvm_io_range { 166 gpa_t addr; 167 int len; 168 struct kvm_io_device *dev; 169}; 170 171#define NR_IOBUS_DEVS 1000 172 173struct kvm_io_bus { 174 int dev_count; 175 int ioeventfd_count; 176 struct kvm_io_range range[]; 177}; 178 179enum kvm_bus { 180 KVM_MMIO_BUS, 181 KVM_PIO_BUS, 182 KVM_VIRTIO_CCW_NOTIFY_BUS, 183 KVM_FAST_MMIO_BUS, 184 KVM_NR_BUSES 185}; 186 187int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 188 int len, const void *val); 189int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 190 gpa_t addr, int len, const void *val, long cookie); 191int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 192 int len, void *val); 193int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 194 int len, struct kvm_io_device *dev); 195void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 196 struct kvm_io_device *dev); 197struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 198 gpa_t addr); 199 200#ifdef CONFIG_KVM_ASYNC_PF 201struct kvm_async_pf { 202 struct work_struct work; 203 struct list_head link; 204 struct list_head queue; 205 struct kvm_vcpu *vcpu; 206 struct mm_struct *mm; 207 gpa_t cr2_or_gpa; 208 unsigned long addr; 209 struct kvm_arch_async_pf arch; 210 bool wakeup_all; 211 bool notpresent_injected; 212}; 213 214void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu); 215void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu); 216bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 217 unsigned long hva, struct kvm_arch_async_pf *arch); 218int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu); 219#endif 220 221enum { 222 OUTSIDE_GUEST_MODE, 223 IN_GUEST_MODE, 224 EXITING_GUEST_MODE, 225 READING_SHADOW_PAGE_TABLES, 226}; 227 228#define KVM_UNMAPPED_PAGE ((void *) 0x500 + POISON_POINTER_DELTA) 229 230struct kvm_host_map { 231 /* 232 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is 233 * a 'struct page' for it. When using mem= kernel parameter some memory 234 * can be used as guest memory but they are not managed by host 235 * kernel). 236 * If 'pfn' is not managed by the host kernel, this field is 237 * initialized to KVM_UNMAPPED_PAGE. 238 */ 239 struct page *page; 240 void *hva; 241 kvm_pfn_t pfn; 242 kvm_pfn_t gfn; 243}; 244 245/* 246 * Used to check if the mapping is valid or not. Never use 'kvm_host_map' 247 * directly to check for that. 248 */ 249static inline bool kvm_vcpu_mapped(struct kvm_host_map *map) 250{ 251 return !!map->hva; 252} 253 254/* 255 * Sometimes a large or cross-page mmio needs to be broken up into separate 256 * exits for userspace servicing. 257 */ 258struct kvm_mmio_fragment { 259 gpa_t gpa; 260 void *data; 261 unsigned len; 262}; 263 264struct kvm_vcpu { 265 struct kvm *kvm; 266#ifdef CONFIG_PREEMPT_NOTIFIERS 267 struct preempt_notifier preempt_notifier; 268#endif 269 int cpu; 270 int vcpu_id; /* id given by userspace at creation */ 271 int vcpu_idx; /* index in kvm->vcpus array */ 272 int srcu_idx; 273 int mode; 274 u64 requests; 275 unsigned long guest_debug; 276 277 int pre_pcpu; 278 struct list_head blocked_vcpu_list; 279 280 struct mutex mutex; 281 struct kvm_run *run; 282 283 struct rcuwait wait; 284 struct pid __rcu *pid; 285 int sigset_active; 286 sigset_t sigset; 287 struct kvm_vcpu_stat stat; 288 unsigned int halt_poll_ns; 289 bool valid_wakeup; 290 291#ifdef CONFIG_HAS_IOMEM 292 int mmio_needed; 293 int mmio_read_completed; 294 int mmio_is_write; 295 int mmio_cur_fragment; 296 int mmio_nr_fragments; 297 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS]; 298#endif 299 300#ifdef CONFIG_KVM_ASYNC_PF 301 struct { 302 u32 queued; 303 struct list_head queue; 304 struct list_head done; 305 spinlock_t lock; 306 } async_pf; 307#endif 308 309#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 310 /* 311 * Cpu relax intercept or pause loop exit optimization 312 * in_spin_loop: set when a vcpu does a pause loop exit 313 * or cpu relax intercepted. 314 * dy_eligible: indicates whether vcpu is eligible for directed yield. 315 */ 316 struct { 317 bool in_spin_loop; 318 bool dy_eligible; 319 } spin_loop; 320#endif 321 bool preempted; 322 bool ready; 323 struct kvm_vcpu_arch arch; 324 struct kvm_dirty_ring dirty_ring; 325}; 326 327static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu) 328{ 329 /* 330 * The memory barrier ensures a previous write to vcpu->requests cannot 331 * be reordered with the read of vcpu->mode. It pairs with the general 332 * memory barrier following the write of vcpu->mode in VCPU RUN. 333 */ 334 smp_mb__before_atomic(); 335 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE); 336} 337 338/* 339 * Some of the bitops functions do not support too long bitmaps. 340 * This number must be determined not to exceed such limits. 341 */ 342#define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1) 343 344struct kvm_memory_slot { 345 gfn_t base_gfn; 346 unsigned long npages; 347 unsigned long *dirty_bitmap; 348 struct kvm_arch_memory_slot arch; 349 unsigned long userspace_addr; 350 u32 flags; 351 short id; 352 u16 as_id; 353}; 354 355static inline bool kvm_slot_dirty_track_enabled(struct kvm_memory_slot *slot) 356{ 357 return slot->flags & KVM_MEM_LOG_DIRTY_PAGES; 358} 359 360static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot) 361{ 362 return ALIGN(memslot->npages, BITS_PER_LONG) / 8; 363} 364 365static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot) 366{ 367 unsigned long len = kvm_dirty_bitmap_bytes(memslot); 368 369 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap); 370} 371 372#ifndef KVM_DIRTY_LOG_MANUAL_CAPS 373#define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE 374#endif 375 376struct kvm_s390_adapter_int { 377 u64 ind_addr; 378 u64 summary_addr; 379 u64 ind_offset; 380 u32 summary_offset; 381 u32 adapter_id; 382}; 383 384struct kvm_hv_sint { 385 u32 vcpu; 386 u32 sint; 387}; 388 389struct kvm_kernel_irq_routing_entry { 390 u32 gsi; 391 u32 type; 392 int (*set)(struct kvm_kernel_irq_routing_entry *e, 393 struct kvm *kvm, int irq_source_id, int level, 394 bool line_status); 395 union { 396 struct { 397 unsigned irqchip; 398 unsigned pin; 399 } irqchip; 400 struct { 401 u32 address_lo; 402 u32 address_hi; 403 u32 data; 404 u32 flags; 405 u32 devid; 406 } msi; 407 struct kvm_s390_adapter_int adapter; 408 struct kvm_hv_sint hv_sint; 409 }; 410 struct hlist_node link; 411}; 412 413#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 414struct kvm_irq_routing_table { 415 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS]; 416 u32 nr_rt_entries; 417 /* 418 * Array indexed by gsi. Each entry contains list of irq chips 419 * the gsi is connected to. 420 */ 421 struct hlist_head map[]; 422}; 423#endif 424 425#ifndef KVM_PRIVATE_MEM_SLOTS 426#define KVM_PRIVATE_MEM_SLOTS 0 427#endif 428 429#define KVM_MEM_SLOTS_NUM SHRT_MAX 430#define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_PRIVATE_MEM_SLOTS) 431 432#ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE 433static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu) 434{ 435 return 0; 436} 437#endif 438 439/* 440 * Note: 441 * memslots are not sorted by id anymore, please use id_to_memslot() 442 * to get the memslot by its id. 443 */ 444struct kvm_memslots { 445 u64 generation; 446 /* The mapping table from slot id to the index in memslots[]. */ 447 short id_to_index[KVM_MEM_SLOTS_NUM]; 448 atomic_t lru_slot; 449 int used_slots; 450 struct kvm_memory_slot memslots[]; 451}; 452 453struct kvm { 454#ifdef KVM_HAVE_MMU_RWLOCK 455 rwlock_t mmu_lock; 456#else 457 spinlock_t mmu_lock; 458#endif /* KVM_HAVE_MMU_RWLOCK */ 459 460 struct mutex slots_lock; 461 struct mm_struct *mm; /* userspace tied to this vm */ 462 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM]; 463 struct kvm_vcpu *vcpus[KVM_MAX_VCPUS]; 464 465 /* 466 * created_vcpus is protected by kvm->lock, and is incremented 467 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only 468 * incremented after storing the kvm_vcpu pointer in vcpus, 469 * and is accessed atomically. 470 */ 471 atomic_t online_vcpus; 472 int created_vcpus; 473 int last_boosted_vcpu; 474 struct list_head vm_list; 475 struct mutex lock; 476 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES]; 477#ifdef CONFIG_HAVE_KVM_EVENTFD 478 struct { 479 spinlock_t lock; 480 struct list_head items; 481 struct list_head resampler_list; 482 struct mutex resampler_lock; 483 } irqfds; 484 struct list_head ioeventfds; 485#endif 486 struct kvm_vm_stat stat; 487 struct kvm_arch arch; 488 refcount_t users_count; 489#ifdef CONFIG_KVM_MMIO 490 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 491 spinlock_t ring_lock; 492 struct list_head coalesced_zones; 493#endif 494 495 struct mutex irq_lock; 496#ifdef CONFIG_HAVE_KVM_IRQCHIP 497 /* 498 * Update side is protected by irq_lock. 499 */ 500 struct kvm_irq_routing_table __rcu *irq_routing; 501#endif 502#ifdef CONFIG_HAVE_KVM_IRQFD 503 struct hlist_head irq_ack_notifier_list; 504#endif 505 506#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 507 struct mmu_notifier mmu_notifier; 508 unsigned long mmu_notifier_seq; 509 long mmu_notifier_count; 510 unsigned long mmu_notifier_range_start; 511 unsigned long mmu_notifier_range_end; 512#endif 513 long tlbs_dirty; 514 struct list_head devices; 515 u64 manual_dirty_log_protect; 516 struct dentry *debugfs_dentry; 517 struct kvm_stat_data **debugfs_stat_data; 518 struct srcu_struct srcu; 519 struct srcu_struct irq_srcu; 520 pid_t userspace_pid; 521 unsigned int max_halt_poll_ns; 522 u32 dirty_ring_size; 523}; 524 525#define kvm_err(fmt, ...) \ 526 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 527#define kvm_info(fmt, ...) \ 528 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 529#define kvm_debug(fmt, ...) \ 530 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 531#define kvm_debug_ratelimited(fmt, ...) \ 532 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \ 533 ## __VA_ARGS__) 534#define kvm_pr_unimpl(fmt, ...) \ 535 pr_err_ratelimited("kvm [%i]: " fmt, \ 536 task_tgid_nr(current), ## __VA_ARGS__) 537 538/* The guest did something we don't support. */ 539#define vcpu_unimpl(vcpu, fmt, ...) \ 540 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \ 541 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__) 542 543#define vcpu_debug(vcpu, fmt, ...) \ 544 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 545#define vcpu_debug_ratelimited(vcpu, fmt, ...) \ 546 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \ 547 ## __VA_ARGS__) 548#define vcpu_err(vcpu, fmt, ...) \ 549 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 550 551static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm) 552{ 553 return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET); 554} 555 556static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx) 557{ 558 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu, 559 lockdep_is_held(&kvm->slots_lock) || 560 !refcount_read(&kvm->users_count)); 561} 562 563static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i) 564{ 565 int num_vcpus = atomic_read(&kvm->online_vcpus); 566 i = array_index_nospec(i, num_vcpus); 567 568 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */ 569 smp_rmb(); 570 return kvm->vcpus[i]; 571} 572 573#define kvm_for_each_vcpu(idx, vcpup, kvm) \ 574 for (idx = 0; \ 575 idx < atomic_read(&kvm->online_vcpus) && \ 576 (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \ 577 idx++) 578 579static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id) 580{ 581 struct kvm_vcpu *vcpu = NULL; 582 int i; 583 584 if (id < 0) 585 return NULL; 586 if (id < KVM_MAX_VCPUS) 587 vcpu = kvm_get_vcpu(kvm, id); 588 if (vcpu && vcpu->vcpu_id == id) 589 return vcpu; 590 kvm_for_each_vcpu(i, vcpu, kvm) 591 if (vcpu->vcpu_id == id) 592 return vcpu; 593 return NULL; 594} 595 596static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu) 597{ 598 return vcpu->vcpu_idx; 599} 600 601#define kvm_for_each_memslot(memslot, slots) \ 602 for (memslot = &slots->memslots[0]; \ 603 memslot < slots->memslots + slots->used_slots; memslot++) \ 604 if (WARN_ON_ONCE(!memslot->npages)) { \ 605 } else 606 607void kvm_vcpu_destroy(struct kvm_vcpu *vcpu); 608 609void vcpu_load(struct kvm_vcpu *vcpu); 610void vcpu_put(struct kvm_vcpu *vcpu); 611 612#ifdef __KVM_HAVE_IOAPIC 613void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm); 614void kvm_arch_post_irq_routing_update(struct kvm *kvm); 615#else 616static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm) 617{ 618} 619static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm) 620{ 621} 622#endif 623 624#ifdef CONFIG_HAVE_KVM_IRQFD 625int kvm_irqfd_init(void); 626void kvm_irqfd_exit(void); 627#else 628static inline int kvm_irqfd_init(void) 629{ 630 return 0; 631} 632 633static inline void kvm_irqfd_exit(void) 634{ 635} 636#endif 637int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 638 struct module *module); 639void kvm_exit(void); 640 641void kvm_get_kvm(struct kvm *kvm); 642void kvm_put_kvm(struct kvm *kvm); 643void kvm_put_kvm_no_destroy(struct kvm *kvm); 644 645static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id) 646{ 647 as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM); 648 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu, 649 lockdep_is_held(&kvm->slots_lock) || 650 !refcount_read(&kvm->users_count)); 651} 652 653static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm) 654{ 655 return __kvm_memslots(kvm, 0); 656} 657 658static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu) 659{ 660 int as_id = kvm_arch_vcpu_memslots_id(vcpu); 661 662 return __kvm_memslots(vcpu->kvm, as_id); 663} 664 665static inline 666struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id) 667{ 668 int index = slots->id_to_index[id]; 669 struct kvm_memory_slot *slot; 670 671 if (index < 0) 672 return NULL; 673 674 slot = &slots->memslots[index]; 675 676 WARN_ON(slot->id != id); 677 return slot; 678} 679 680/* 681 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations: 682 * - create a new memory slot 683 * - delete an existing memory slot 684 * - modify an existing memory slot 685 * -- move it in the guest physical memory space 686 * -- just change its flags 687 * 688 * Since flags can be changed by some of these operations, the following 689 * differentiation is the best we can do for __kvm_set_memory_region(): 690 */ 691enum kvm_mr_change { 692 KVM_MR_CREATE, 693 KVM_MR_DELETE, 694 KVM_MR_MOVE, 695 KVM_MR_FLAGS_ONLY, 696}; 697 698int kvm_set_memory_region(struct kvm *kvm, 699 const struct kvm_userspace_memory_region *mem); 700int __kvm_set_memory_region(struct kvm *kvm, 701 const struct kvm_userspace_memory_region *mem); 702void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot); 703void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen); 704int kvm_arch_prepare_memory_region(struct kvm *kvm, 705 struct kvm_memory_slot *memslot, 706 const struct kvm_userspace_memory_region *mem, 707 enum kvm_mr_change change); 708void kvm_arch_commit_memory_region(struct kvm *kvm, 709 const struct kvm_userspace_memory_region *mem, 710 struct kvm_memory_slot *old, 711 const struct kvm_memory_slot *new, 712 enum kvm_mr_change change); 713/* flush all memory translations */ 714void kvm_arch_flush_shadow_all(struct kvm *kvm); 715/* flush memory translations pointing to 'slot' */ 716void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 717 struct kvm_memory_slot *slot); 718 719int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 720 struct page **pages, int nr_pages); 721 722struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn); 723unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn); 724unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable); 725unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 726unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn, 727 bool *writable); 728void kvm_release_page_clean(struct page *page); 729void kvm_release_page_dirty(struct page *page); 730void kvm_set_page_accessed(struct page *page); 731 732kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn); 733kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 734 bool *writable); 735kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 736kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn); 737kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 738 bool atomic, bool *async, bool write_fault, 739 bool *writable, hva_t *hva); 740 741void kvm_release_pfn_clean(kvm_pfn_t pfn); 742void kvm_release_pfn_dirty(kvm_pfn_t pfn); 743void kvm_set_pfn_dirty(kvm_pfn_t pfn); 744void kvm_set_pfn_accessed(kvm_pfn_t pfn); 745void kvm_get_pfn(kvm_pfn_t pfn); 746 747void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache); 748int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 749 int len); 750int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len); 751int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 752 void *data, unsigned long len); 753int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 754 void *data, unsigned int offset, 755 unsigned long len); 756int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 757 int offset, int len); 758int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 759 unsigned long len); 760int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 761 void *data, unsigned long len); 762int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 763 void *data, unsigned int offset, 764 unsigned long len); 765int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 766 gpa_t gpa, unsigned long len); 767 768#define __kvm_get_guest(kvm, gfn, offset, v) \ 769({ \ 770 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 771 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 772 int __ret = -EFAULT; \ 773 \ 774 if (!kvm_is_error_hva(__addr)) \ 775 __ret = get_user(v, __uaddr); \ 776 __ret; \ 777}) 778 779#define kvm_get_guest(kvm, gpa, v) \ 780({ \ 781 gpa_t __gpa = gpa; \ 782 struct kvm *__kvm = kvm; \ 783 \ 784 __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT, \ 785 offset_in_page(__gpa), v); \ 786}) 787 788#define __kvm_put_guest(kvm, gfn, offset, v) \ 789({ \ 790 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 791 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 792 int __ret = -EFAULT; \ 793 \ 794 if (!kvm_is_error_hva(__addr)) \ 795 __ret = put_user(v, __uaddr); \ 796 if (!__ret) \ 797 mark_page_dirty(kvm, gfn); \ 798 __ret; \ 799}) 800 801#define kvm_put_guest(kvm, gpa, v) \ 802({ \ 803 gpa_t __gpa = gpa; \ 804 struct kvm *__kvm = kvm; \ 805 \ 806 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \ 807 offset_in_page(__gpa), v); \ 808}) 809 810int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len); 811struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn); 812bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn); 813bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn); 814unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn); 815void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot, gfn_t gfn); 816void mark_page_dirty(struct kvm *kvm, gfn_t gfn); 817 818struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu); 819struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn); 820kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn); 821kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn); 822int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map); 823int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map, 824 struct gfn_to_pfn_cache *cache, bool atomic); 825struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn); 826void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty); 827int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map, 828 struct gfn_to_pfn_cache *cache, bool dirty, bool atomic); 829unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn); 830unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable); 831int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset, 832 int len); 833int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 834 unsigned long len); 835int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 836 unsigned long len); 837int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data, 838 int offset, int len); 839int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 840 unsigned long len); 841void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn); 842 843void kvm_sigset_activate(struct kvm_vcpu *vcpu); 844void kvm_sigset_deactivate(struct kvm_vcpu *vcpu); 845 846void kvm_vcpu_block(struct kvm_vcpu *vcpu); 847void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu); 848void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu); 849bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu); 850void kvm_vcpu_kick(struct kvm_vcpu *vcpu); 851int kvm_vcpu_yield_to(struct kvm_vcpu *target); 852void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible); 853 854void kvm_flush_remote_tlbs(struct kvm *kvm); 855void kvm_reload_remote_mmus(struct kvm *kvm); 856 857#ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 858int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min); 859int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc); 860void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc); 861void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc); 862#endif 863 864bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 865 struct kvm_vcpu *except, 866 unsigned long *vcpu_bitmap, cpumask_var_t tmp); 867bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req); 868bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req, 869 struct kvm_vcpu *except); 870bool kvm_make_cpus_request_mask(struct kvm *kvm, unsigned int req, 871 unsigned long *vcpu_bitmap); 872 873long kvm_arch_dev_ioctl(struct file *filp, 874 unsigned int ioctl, unsigned long arg); 875long kvm_arch_vcpu_ioctl(struct file *filp, 876 unsigned int ioctl, unsigned long arg); 877vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf); 878 879int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext); 880 881void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 882 struct kvm_memory_slot *slot, 883 gfn_t gfn_offset, 884 unsigned long mask); 885void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot); 886 887#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 888void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm, 889 struct kvm_memory_slot *memslot); 890#else /* !CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 891int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log); 892int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 893 int *is_dirty, struct kvm_memory_slot **memslot); 894#endif 895 896int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 897 bool line_status); 898int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 899 struct kvm_enable_cap *cap); 900long kvm_arch_vm_ioctl(struct file *filp, 901 unsigned int ioctl, unsigned long arg); 902 903int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 904int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 905 906int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 907 struct kvm_translation *tr); 908 909int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 910int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 911int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 912 struct kvm_sregs *sregs); 913int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 914 struct kvm_sregs *sregs); 915int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 916 struct kvm_mp_state *mp_state); 917int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 918 struct kvm_mp_state *mp_state); 919int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 920 struct kvm_guest_debug *dbg); 921int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu); 922 923int kvm_arch_init(void *opaque); 924void kvm_arch_exit(void); 925 926void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu); 927 928void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu); 929void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu); 930int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id); 931int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu); 932void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu); 933void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu); 934 935#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 936void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry); 937#endif 938 939int kvm_arch_hardware_enable(void); 940void kvm_arch_hardware_disable(void); 941int kvm_arch_hardware_setup(void *opaque); 942void kvm_arch_hardware_unsetup(void); 943int kvm_arch_check_processor_compat(void *opaque); 944int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu); 945bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu); 946int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu); 947bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu); 948int kvm_arch_post_init_vm(struct kvm *kvm); 949void kvm_arch_pre_destroy_vm(struct kvm *kvm); 950 951#ifndef __KVM_HAVE_ARCH_VM_ALLOC 952/* 953 * All architectures that want to use vzalloc currently also 954 * need their own kvm_arch_alloc_vm implementation. 955 */ 956static inline struct kvm *kvm_arch_alloc_vm(void) 957{ 958 return kzalloc(sizeof(struct kvm), GFP_KERNEL); 959} 960 961static inline void kvm_arch_free_vm(struct kvm *kvm) 962{ 963 kfree(kvm); 964} 965#endif 966 967#ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB 968static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm) 969{ 970 return -ENOTSUPP; 971} 972#endif 973 974#ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA 975void kvm_arch_register_noncoherent_dma(struct kvm *kvm); 976void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm); 977bool kvm_arch_has_noncoherent_dma(struct kvm *kvm); 978#else 979static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 980{ 981} 982 983static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 984{ 985} 986 987static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 988{ 989 return false; 990} 991#endif 992#ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE 993void kvm_arch_start_assignment(struct kvm *kvm); 994void kvm_arch_end_assignment(struct kvm *kvm); 995bool kvm_arch_has_assigned_device(struct kvm *kvm); 996#else 997static inline void kvm_arch_start_assignment(struct kvm *kvm) 998{ 999} 1000 1001static inline void kvm_arch_end_assignment(struct kvm *kvm) 1002{ 1003} 1004 1005static inline bool kvm_arch_has_assigned_device(struct kvm *kvm) 1006{ 1007 return false; 1008} 1009#endif 1010 1011static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu) 1012{ 1013#ifdef __KVM_HAVE_ARCH_WQP 1014 return vcpu->arch.waitp; 1015#else 1016 return &vcpu->wait; 1017#endif 1018} 1019 1020#ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED 1021/* 1022 * returns true if the virtual interrupt controller is initialized and 1023 * ready to accept virtual IRQ. On some architectures the virtual interrupt 1024 * controller is dynamically instantiated and this is not always true. 1025 */ 1026bool kvm_arch_intc_initialized(struct kvm *kvm); 1027#else 1028static inline bool kvm_arch_intc_initialized(struct kvm *kvm) 1029{ 1030 return true; 1031} 1032#endif 1033 1034int kvm_arch_init_vm(struct kvm *kvm, unsigned long type); 1035void kvm_arch_destroy_vm(struct kvm *kvm); 1036void kvm_arch_sync_events(struct kvm *kvm); 1037 1038int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu); 1039 1040bool kvm_is_reserved_pfn(kvm_pfn_t pfn); 1041bool kvm_is_zone_device_pfn(kvm_pfn_t pfn); 1042bool kvm_is_transparent_hugepage(kvm_pfn_t pfn); 1043 1044struct kvm_irq_ack_notifier { 1045 struct hlist_node link; 1046 unsigned gsi; 1047 void (*irq_acked)(struct kvm_irq_ack_notifier *kian); 1048}; 1049 1050int kvm_irq_map_gsi(struct kvm *kvm, 1051 struct kvm_kernel_irq_routing_entry *entries, int gsi); 1052int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin); 1053 1054int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, 1055 bool line_status); 1056int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm, 1057 int irq_source_id, int level, bool line_status); 1058int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e, 1059 struct kvm *kvm, int irq_source_id, 1060 int level, bool line_status); 1061bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin); 1062void kvm_notify_acked_gsi(struct kvm *kvm, int gsi); 1063void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin); 1064void kvm_register_irq_ack_notifier(struct kvm *kvm, 1065 struct kvm_irq_ack_notifier *kian); 1066void kvm_unregister_irq_ack_notifier(struct kvm *kvm, 1067 struct kvm_irq_ack_notifier *kian); 1068int kvm_request_irq_source_id(struct kvm *kvm); 1069void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id); 1070bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args); 1071 1072/* 1073 * search_memslots() and __gfn_to_memslot() are here because they are 1074 * used in non-modular code in arch/powerpc/kvm/book3s_hv_rm_mmu.c. 1075 * gfn_to_memslot() itself isn't here as an inline because that would 1076 * bloat other code too much. 1077 * 1078 * IMPORTANT: Slots are sorted from highest GFN to lowest GFN! 1079 */ 1080static inline struct kvm_memory_slot * 1081search_memslots(struct kvm_memslots *slots, gfn_t gfn) 1082{ 1083 int start = 0, end = slots->used_slots; 1084 int slot = atomic_read(&slots->lru_slot); 1085 struct kvm_memory_slot *memslots = slots->memslots; 1086 1087 if (unlikely(!slots->used_slots)) 1088 return NULL; 1089 1090 if (gfn >= memslots[slot].base_gfn && 1091 gfn < memslots[slot].base_gfn + memslots[slot].npages) 1092 return &memslots[slot]; 1093 1094 while (start < end) { 1095 slot = start + (end - start) / 2; 1096 1097 if (gfn >= memslots[slot].base_gfn) 1098 end = slot; 1099 else 1100 start = slot + 1; 1101 } 1102 1103 if (start < slots->used_slots && gfn >= memslots[start].base_gfn && 1104 gfn < memslots[start].base_gfn + memslots[start].npages) { 1105 atomic_set(&slots->lru_slot, start); 1106 return &memslots[start]; 1107 } 1108 1109 return NULL; 1110} 1111 1112static inline struct kvm_memory_slot * 1113__gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn) 1114{ 1115 return search_memslots(slots, gfn); 1116} 1117 1118static inline unsigned long 1119__gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1120{ 1121 return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE; 1122} 1123 1124static inline int memslot_id(struct kvm *kvm, gfn_t gfn) 1125{ 1126 return gfn_to_memslot(kvm, gfn)->id; 1127} 1128 1129static inline gfn_t 1130hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot) 1131{ 1132 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT; 1133 1134 return slot->base_gfn + gfn_offset; 1135} 1136 1137static inline gpa_t gfn_to_gpa(gfn_t gfn) 1138{ 1139 return (gpa_t)gfn << PAGE_SHIFT; 1140} 1141 1142static inline gfn_t gpa_to_gfn(gpa_t gpa) 1143{ 1144 return (gfn_t)(gpa >> PAGE_SHIFT); 1145} 1146 1147static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn) 1148{ 1149 return (hpa_t)pfn << PAGE_SHIFT; 1150} 1151 1152static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu, 1153 gpa_t gpa) 1154{ 1155 return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa)); 1156} 1157 1158static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa) 1159{ 1160 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa)); 1161 1162 return kvm_is_error_hva(hva); 1163} 1164 1165enum kvm_stat_kind { 1166 KVM_STAT_VM, 1167 KVM_STAT_VCPU, 1168}; 1169 1170struct kvm_stat_data { 1171 struct kvm *kvm; 1172 struct kvm_stats_debugfs_item *dbgfs_item; 1173}; 1174 1175struct kvm_stats_debugfs_item { 1176 const char *name; 1177 int offset; 1178 enum kvm_stat_kind kind; 1179 int mode; 1180}; 1181 1182#define KVM_DBGFS_GET_MODE(dbgfs_item) \ 1183 ((dbgfs_item)->mode ? (dbgfs_item)->mode : 0644) 1184 1185#define VM_STAT(n, x, ...) \ 1186 { n, offsetof(struct kvm, stat.x), KVM_STAT_VM, ## __VA_ARGS__ } 1187#define VCPU_STAT(n, x, ...) \ 1188 { n, offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU, ## __VA_ARGS__ } 1189 1190extern struct kvm_stats_debugfs_item debugfs_entries[]; 1191extern struct dentry *kvm_debugfs_dir; 1192 1193#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1194static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq) 1195{ 1196 if (unlikely(kvm->mmu_notifier_count)) 1197 return 1; 1198 /* 1199 * Ensure the read of mmu_notifier_count happens before the read 1200 * of mmu_notifier_seq. This interacts with the smp_wmb() in 1201 * mmu_notifier_invalidate_range_end to make sure that the caller 1202 * either sees the old (non-zero) value of mmu_notifier_count or 1203 * the new (incremented) value of mmu_notifier_seq. 1204 * PowerPC Book3s HV KVM calls this under a per-page lock 1205 * rather than under kvm->mmu_lock, for scalability, so 1206 * can't rely on kvm->mmu_lock to keep things ordered. 1207 */ 1208 smp_rmb(); 1209 if (kvm->mmu_notifier_seq != mmu_seq) 1210 return 1; 1211 return 0; 1212} 1213 1214static inline int mmu_notifier_retry_hva(struct kvm *kvm, 1215 unsigned long mmu_seq, 1216 unsigned long hva) 1217{ 1218 lockdep_assert_held(&kvm->mmu_lock); 1219 /* 1220 * If mmu_notifier_count is non-zero, then the range maintained by 1221 * kvm_mmu_notifier_invalidate_range_start contains all addresses that 1222 * might be being invalidated. Note that it may include some false 1223 * positives, due to shortcuts when handing concurrent invalidations. 1224 */ 1225 if (unlikely(kvm->mmu_notifier_count) && 1226 hva >= kvm->mmu_notifier_range_start && 1227 hva < kvm->mmu_notifier_range_end) 1228 return 1; 1229 if (kvm->mmu_notifier_seq != mmu_seq) 1230 return 1; 1231 return 0; 1232} 1233#endif 1234 1235#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 1236 1237#define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */ 1238 1239bool kvm_arch_can_set_irq_routing(struct kvm *kvm); 1240int kvm_set_irq_routing(struct kvm *kvm, 1241 const struct kvm_irq_routing_entry *entries, 1242 unsigned nr, 1243 unsigned flags); 1244int kvm_set_routing_entry(struct kvm *kvm, 1245 struct kvm_kernel_irq_routing_entry *e, 1246 const struct kvm_irq_routing_entry *ue); 1247void kvm_free_irq_routing(struct kvm *kvm); 1248 1249#else 1250 1251static inline void kvm_free_irq_routing(struct kvm *kvm) {} 1252 1253#endif 1254 1255int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi); 1256 1257#ifdef CONFIG_HAVE_KVM_EVENTFD 1258 1259void kvm_eventfd_init(struct kvm *kvm); 1260int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args); 1261 1262#ifdef CONFIG_HAVE_KVM_IRQFD 1263int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args); 1264void kvm_irqfd_release(struct kvm *kvm); 1265void kvm_irq_routing_update(struct kvm *); 1266#else 1267static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1268{ 1269 return -EINVAL; 1270} 1271 1272static inline void kvm_irqfd_release(struct kvm *kvm) {} 1273#endif 1274 1275#else 1276 1277static inline void kvm_eventfd_init(struct kvm *kvm) {} 1278 1279static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1280{ 1281 return -EINVAL; 1282} 1283 1284static inline void kvm_irqfd_release(struct kvm *kvm) {} 1285 1286#ifdef CONFIG_HAVE_KVM_IRQCHIP 1287static inline void kvm_irq_routing_update(struct kvm *kvm) 1288{ 1289} 1290#endif 1291 1292static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args) 1293{ 1294 return -ENOSYS; 1295} 1296 1297#endif /* CONFIG_HAVE_KVM_EVENTFD */ 1298 1299void kvm_arch_irq_routing_update(struct kvm *kvm); 1300 1301static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu) 1302{ 1303 /* 1304 * Ensure the rest of the request is published to kvm_check_request's 1305 * caller. Paired with the smp_mb__after_atomic in kvm_check_request. 1306 */ 1307 smp_wmb(); 1308 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1309} 1310 1311static inline bool kvm_request_pending(struct kvm_vcpu *vcpu) 1312{ 1313 return READ_ONCE(vcpu->requests); 1314} 1315 1316static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu) 1317{ 1318 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1319} 1320 1321static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu) 1322{ 1323 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1324} 1325 1326static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu) 1327{ 1328 if (kvm_test_request(req, vcpu)) { 1329 kvm_clear_request(req, vcpu); 1330 1331 /* 1332 * Ensure the rest of the request is visible to kvm_check_request's 1333 * caller. Paired with the smp_wmb in kvm_make_request. 1334 */ 1335 smp_mb__after_atomic(); 1336 return true; 1337 } else { 1338 return false; 1339 } 1340} 1341 1342extern bool kvm_rebooting; 1343 1344extern unsigned int halt_poll_ns; 1345extern unsigned int halt_poll_ns_grow; 1346extern unsigned int halt_poll_ns_grow_start; 1347extern unsigned int halt_poll_ns_shrink; 1348 1349struct kvm_device { 1350 const struct kvm_device_ops *ops; 1351 struct kvm *kvm; 1352 void *private; 1353 struct list_head vm_node; 1354}; 1355 1356/* create, destroy, and name are mandatory */ 1357struct kvm_device_ops { 1358 const char *name; 1359 1360 /* 1361 * create is called holding kvm->lock and any operations not suitable 1362 * to do while holding the lock should be deferred to init (see 1363 * below). 1364 */ 1365 int (*create)(struct kvm_device *dev, u32 type); 1366 1367 /* 1368 * init is called after create if create is successful and is called 1369 * outside of holding kvm->lock. 1370 */ 1371 void (*init)(struct kvm_device *dev); 1372 1373 /* 1374 * Destroy is responsible for freeing dev. 1375 * 1376 * Destroy may be called before or after destructors are called 1377 * on emulated I/O regions, depending on whether a reference is 1378 * held by a vcpu or other kvm component that gets destroyed 1379 * after the emulated I/O. 1380 */ 1381 void (*destroy)(struct kvm_device *dev); 1382 1383 /* 1384 * Release is an alternative method to free the device. It is 1385 * called when the device file descriptor is closed. Once 1386 * release is called, the destroy method will not be called 1387 * anymore as the device is removed from the device list of 1388 * the VM. kvm->lock is held. 1389 */ 1390 void (*release)(struct kvm_device *dev); 1391 1392 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1393 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1394 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1395 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl, 1396 unsigned long arg); 1397 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma); 1398}; 1399 1400void kvm_device_get(struct kvm_device *dev); 1401void kvm_device_put(struct kvm_device *dev); 1402struct kvm_device *kvm_device_from_filp(struct file *filp); 1403int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type); 1404void kvm_unregister_device_ops(u32 type); 1405 1406extern struct kvm_device_ops kvm_mpic_ops; 1407extern struct kvm_device_ops kvm_arm_vgic_v2_ops; 1408extern struct kvm_device_ops kvm_arm_vgic_v3_ops; 1409 1410#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 1411 1412static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 1413{ 1414 vcpu->spin_loop.in_spin_loop = val; 1415} 1416static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 1417{ 1418 vcpu->spin_loop.dy_eligible = val; 1419} 1420 1421#else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 1422 1423static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 1424{ 1425} 1426 1427static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 1428{ 1429} 1430#endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 1431 1432static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot) 1433{ 1434 return (memslot && memslot->id < KVM_USER_MEM_SLOTS && 1435 !(memslot->flags & KVM_MEMSLOT_INVALID)); 1436} 1437 1438struct kvm_vcpu *kvm_get_running_vcpu(void); 1439struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void); 1440 1441#ifdef CONFIG_HAVE_KVM_IRQ_BYPASS 1442bool kvm_arch_has_irq_bypass(void); 1443int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *, 1444 struct irq_bypass_producer *); 1445void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *, 1446 struct irq_bypass_producer *); 1447void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *); 1448void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *); 1449int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 1450 uint32_t guest_irq, bool set); 1451#endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */ 1452 1453#ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS 1454/* If we wakeup during the poll time, was it a sucessful poll? */ 1455static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 1456{ 1457 return vcpu->valid_wakeup; 1458} 1459 1460#else 1461static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 1462{ 1463 return true; 1464} 1465#endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */ 1466 1467#ifdef CONFIG_HAVE_KVM_NO_POLL 1468/* Callback that tells if we must not poll */ 1469bool kvm_arch_no_poll(struct kvm_vcpu *vcpu); 1470#else 1471static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 1472{ 1473 return false; 1474} 1475#endif /* CONFIG_HAVE_KVM_NO_POLL */ 1476 1477#ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL 1478long kvm_arch_vcpu_async_ioctl(struct file *filp, 1479 unsigned int ioctl, unsigned long arg); 1480#else 1481static inline long kvm_arch_vcpu_async_ioctl(struct file *filp, 1482 unsigned int ioctl, 1483 unsigned long arg) 1484{ 1485 return -ENOIOCTLCMD; 1486} 1487#endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */ 1488 1489void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 1490 unsigned long start, unsigned long end); 1491 1492#ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE 1493int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu); 1494#else 1495static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) 1496{ 1497 return 0; 1498} 1499#endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */ 1500 1501typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data); 1502 1503int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 1504 uintptr_t data, const char *name, 1505 struct task_struct **thread_ptr); 1506 1507#ifdef CONFIG_KVM_XFER_TO_GUEST_WORK 1508static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu) 1509{ 1510 vcpu->run->exit_reason = KVM_EXIT_INTR; 1511 vcpu->stat.signal_exits++; 1512} 1513#endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */ 1514 1515/* 1516 * This defines how many reserved entries we want to keep before we 1517 * kick the vcpu to the userspace to avoid dirty ring full. This 1518 * value can be tuned to higher if e.g. PML is enabled on the host. 1519 */ 1520#define KVM_DIRTY_RING_RSVD_ENTRIES 64 1521 1522/* Max number of entries allowed for each kvm dirty ring */ 1523#define KVM_DIRTY_RING_MAX_ENTRIES 65536 1524 1525#endif