Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-only */
2#ifndef __KVM_HOST_H
3#define __KVM_HOST_H
4
5
6#include <linux/types.h>
7#include <linux/hardirq.h>
8#include <linux/list.h>
9#include <linux/mutex.h>
10#include <linux/spinlock.h>
11#include <linux/signal.h>
12#include <linux/sched.h>
13#include <linux/bug.h>
14#include <linux/minmax.h>
15#include <linux/mm.h>
16#include <linux/mmu_notifier.h>
17#include <linux/preempt.h>
18#include <linux/msi.h>
19#include <linux/slab.h>
20#include <linux/vmalloc.h>
21#include <linux/rcupdate.h>
22#include <linux/ratelimit.h>
23#include <linux/err.h>
24#include <linux/irqflags.h>
25#include <linux/context_tracking.h>
26#include <linux/irqbypass.h>
27#include <linux/rcuwait.h>
28#include <linux/refcount.h>
29#include <linux/nospec.h>
30#include <asm/signal.h>
31
32#include <linux/kvm.h>
33#include <linux/kvm_para.h>
34
35#include <linux/kvm_types.h>
36
37#include <asm/kvm_host.h>
38#include <linux/kvm_dirty_ring.h>
39
40#ifndef KVM_MAX_VCPU_ID
41#define KVM_MAX_VCPU_ID KVM_MAX_VCPUS
42#endif
43
44/*
45 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used
46 * in kvm, other bits are visible for userspace which are defined in
47 * include/linux/kvm_h.
48 */
49#define KVM_MEMSLOT_INVALID (1UL << 16)
50
51/*
52 * Bit 63 of the memslot generation number is an "update in-progress flag",
53 * e.g. is temporarily set for the duration of install_new_memslots().
54 * This flag effectively creates a unique generation number that is used to
55 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
56 * i.e. may (or may not) have come from the previous memslots generation.
57 *
58 * This is necessary because the actual memslots update is not atomic with
59 * respect to the generation number update. Updating the generation number
60 * first would allow a vCPU to cache a spte from the old memslots using the
61 * new generation number, and updating the generation number after switching
62 * to the new memslots would allow cache hits using the old generation number
63 * to reference the defunct memslots.
64 *
65 * This mechanism is used to prevent getting hits in KVM's caches while a
66 * memslot update is in-progress, and to prevent cache hits *after* updating
67 * the actual generation number against accesses that were inserted into the
68 * cache *before* the memslots were updated.
69 */
70#define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63)
71
72/* Two fragments for cross MMIO pages. */
73#define KVM_MAX_MMIO_FRAGMENTS 2
74
75#ifndef KVM_ADDRESS_SPACE_NUM
76#define KVM_ADDRESS_SPACE_NUM 1
77#endif
78
79/*
80 * For the normal pfn, the highest 12 bits should be zero,
81 * so we can mask bit 62 ~ bit 52 to indicate the error pfn,
82 * mask bit 63 to indicate the noslot pfn.
83 */
84#define KVM_PFN_ERR_MASK (0x7ffULL << 52)
85#define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52)
86#define KVM_PFN_NOSLOT (0x1ULL << 63)
87
88#define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK)
89#define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1)
90#define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2)
91
92/*
93 * error pfns indicate that the gfn is in slot but faild to
94 * translate it to pfn on host.
95 */
96static inline bool is_error_pfn(kvm_pfn_t pfn)
97{
98 return !!(pfn & KVM_PFN_ERR_MASK);
99}
100
101/*
102 * error_noslot pfns indicate that the gfn can not be
103 * translated to pfn - it is not in slot or failed to
104 * translate it to pfn.
105 */
106static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
107{
108 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
109}
110
111/* noslot pfn indicates that the gfn is not in slot. */
112static inline bool is_noslot_pfn(kvm_pfn_t pfn)
113{
114 return pfn == KVM_PFN_NOSLOT;
115}
116
117/*
118 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
119 * provide own defines and kvm_is_error_hva
120 */
121#ifndef KVM_HVA_ERR_BAD
122
123#define KVM_HVA_ERR_BAD (PAGE_OFFSET)
124#define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE)
125
126static inline bool kvm_is_error_hva(unsigned long addr)
127{
128 return addr >= PAGE_OFFSET;
129}
130
131#endif
132
133#define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT))
134
135static inline bool is_error_page(struct page *page)
136{
137 return IS_ERR(page);
138}
139
140#define KVM_REQUEST_MASK GENMASK(7,0)
141#define KVM_REQUEST_NO_WAKEUP BIT(8)
142#define KVM_REQUEST_WAIT BIT(9)
143/*
144 * Architecture-independent vcpu->requests bit members
145 * Bits 4-7 are reserved for more arch-independent bits.
146 */
147#define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
148#define KVM_REQ_MMU_RELOAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
149#define KVM_REQ_PENDING_TIMER 2
150#define KVM_REQ_UNHALT 3
151#define KVM_REQUEST_ARCH_BASE 8
152
153#define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
154 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
155 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
156})
157#define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0)
158
159#define KVM_USERSPACE_IRQ_SOURCE_ID 0
160#define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1
161
162extern struct mutex kvm_lock;
163extern struct list_head vm_list;
164
165struct kvm_io_range {
166 gpa_t addr;
167 int len;
168 struct kvm_io_device *dev;
169};
170
171#define NR_IOBUS_DEVS 1000
172
173struct kvm_io_bus {
174 int dev_count;
175 int ioeventfd_count;
176 struct kvm_io_range range[];
177};
178
179enum kvm_bus {
180 KVM_MMIO_BUS,
181 KVM_PIO_BUS,
182 KVM_VIRTIO_CCW_NOTIFY_BUS,
183 KVM_FAST_MMIO_BUS,
184 KVM_NR_BUSES
185};
186
187int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
188 int len, const void *val);
189int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
190 gpa_t addr, int len, const void *val, long cookie);
191int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
192 int len, void *val);
193int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
194 int len, struct kvm_io_device *dev);
195void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
196 struct kvm_io_device *dev);
197struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
198 gpa_t addr);
199
200#ifdef CONFIG_KVM_ASYNC_PF
201struct kvm_async_pf {
202 struct work_struct work;
203 struct list_head link;
204 struct list_head queue;
205 struct kvm_vcpu *vcpu;
206 struct mm_struct *mm;
207 gpa_t cr2_or_gpa;
208 unsigned long addr;
209 struct kvm_arch_async_pf arch;
210 bool wakeup_all;
211 bool notpresent_injected;
212};
213
214void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
215void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
216bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
217 unsigned long hva, struct kvm_arch_async_pf *arch);
218int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
219#endif
220
221enum {
222 OUTSIDE_GUEST_MODE,
223 IN_GUEST_MODE,
224 EXITING_GUEST_MODE,
225 READING_SHADOW_PAGE_TABLES,
226};
227
228#define KVM_UNMAPPED_PAGE ((void *) 0x500 + POISON_POINTER_DELTA)
229
230struct kvm_host_map {
231 /*
232 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
233 * a 'struct page' for it. When using mem= kernel parameter some memory
234 * can be used as guest memory but they are not managed by host
235 * kernel).
236 * If 'pfn' is not managed by the host kernel, this field is
237 * initialized to KVM_UNMAPPED_PAGE.
238 */
239 struct page *page;
240 void *hva;
241 kvm_pfn_t pfn;
242 kvm_pfn_t gfn;
243};
244
245/*
246 * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
247 * directly to check for that.
248 */
249static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
250{
251 return !!map->hva;
252}
253
254/*
255 * Sometimes a large or cross-page mmio needs to be broken up into separate
256 * exits for userspace servicing.
257 */
258struct kvm_mmio_fragment {
259 gpa_t gpa;
260 void *data;
261 unsigned len;
262};
263
264struct kvm_vcpu {
265 struct kvm *kvm;
266#ifdef CONFIG_PREEMPT_NOTIFIERS
267 struct preempt_notifier preempt_notifier;
268#endif
269 int cpu;
270 int vcpu_id; /* id given by userspace at creation */
271 int vcpu_idx; /* index in kvm->vcpus array */
272 int srcu_idx;
273 int mode;
274 u64 requests;
275 unsigned long guest_debug;
276
277 int pre_pcpu;
278 struct list_head blocked_vcpu_list;
279
280 struct mutex mutex;
281 struct kvm_run *run;
282
283 struct rcuwait wait;
284 struct pid __rcu *pid;
285 int sigset_active;
286 sigset_t sigset;
287 struct kvm_vcpu_stat stat;
288 unsigned int halt_poll_ns;
289 bool valid_wakeup;
290
291#ifdef CONFIG_HAS_IOMEM
292 int mmio_needed;
293 int mmio_read_completed;
294 int mmio_is_write;
295 int mmio_cur_fragment;
296 int mmio_nr_fragments;
297 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
298#endif
299
300#ifdef CONFIG_KVM_ASYNC_PF
301 struct {
302 u32 queued;
303 struct list_head queue;
304 struct list_head done;
305 spinlock_t lock;
306 } async_pf;
307#endif
308
309#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
310 /*
311 * Cpu relax intercept or pause loop exit optimization
312 * in_spin_loop: set when a vcpu does a pause loop exit
313 * or cpu relax intercepted.
314 * dy_eligible: indicates whether vcpu is eligible for directed yield.
315 */
316 struct {
317 bool in_spin_loop;
318 bool dy_eligible;
319 } spin_loop;
320#endif
321 bool preempted;
322 bool ready;
323 struct kvm_vcpu_arch arch;
324 struct kvm_dirty_ring dirty_ring;
325};
326
327static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
328{
329 /*
330 * The memory barrier ensures a previous write to vcpu->requests cannot
331 * be reordered with the read of vcpu->mode. It pairs with the general
332 * memory barrier following the write of vcpu->mode in VCPU RUN.
333 */
334 smp_mb__before_atomic();
335 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
336}
337
338/*
339 * Some of the bitops functions do not support too long bitmaps.
340 * This number must be determined not to exceed such limits.
341 */
342#define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
343
344struct kvm_memory_slot {
345 gfn_t base_gfn;
346 unsigned long npages;
347 unsigned long *dirty_bitmap;
348 struct kvm_arch_memory_slot arch;
349 unsigned long userspace_addr;
350 u32 flags;
351 short id;
352 u16 as_id;
353};
354
355static inline bool kvm_slot_dirty_track_enabled(struct kvm_memory_slot *slot)
356{
357 return slot->flags & KVM_MEM_LOG_DIRTY_PAGES;
358}
359
360static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
361{
362 return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
363}
364
365static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
366{
367 unsigned long len = kvm_dirty_bitmap_bytes(memslot);
368
369 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
370}
371
372#ifndef KVM_DIRTY_LOG_MANUAL_CAPS
373#define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
374#endif
375
376struct kvm_s390_adapter_int {
377 u64 ind_addr;
378 u64 summary_addr;
379 u64 ind_offset;
380 u32 summary_offset;
381 u32 adapter_id;
382};
383
384struct kvm_hv_sint {
385 u32 vcpu;
386 u32 sint;
387};
388
389struct kvm_kernel_irq_routing_entry {
390 u32 gsi;
391 u32 type;
392 int (*set)(struct kvm_kernel_irq_routing_entry *e,
393 struct kvm *kvm, int irq_source_id, int level,
394 bool line_status);
395 union {
396 struct {
397 unsigned irqchip;
398 unsigned pin;
399 } irqchip;
400 struct {
401 u32 address_lo;
402 u32 address_hi;
403 u32 data;
404 u32 flags;
405 u32 devid;
406 } msi;
407 struct kvm_s390_adapter_int adapter;
408 struct kvm_hv_sint hv_sint;
409 };
410 struct hlist_node link;
411};
412
413#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
414struct kvm_irq_routing_table {
415 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
416 u32 nr_rt_entries;
417 /*
418 * Array indexed by gsi. Each entry contains list of irq chips
419 * the gsi is connected to.
420 */
421 struct hlist_head map[];
422};
423#endif
424
425#ifndef KVM_PRIVATE_MEM_SLOTS
426#define KVM_PRIVATE_MEM_SLOTS 0
427#endif
428
429#define KVM_MEM_SLOTS_NUM SHRT_MAX
430#define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_PRIVATE_MEM_SLOTS)
431
432#ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
433static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
434{
435 return 0;
436}
437#endif
438
439/*
440 * Note:
441 * memslots are not sorted by id anymore, please use id_to_memslot()
442 * to get the memslot by its id.
443 */
444struct kvm_memslots {
445 u64 generation;
446 /* The mapping table from slot id to the index in memslots[]. */
447 short id_to_index[KVM_MEM_SLOTS_NUM];
448 atomic_t lru_slot;
449 int used_slots;
450 struct kvm_memory_slot memslots[];
451};
452
453struct kvm {
454#ifdef KVM_HAVE_MMU_RWLOCK
455 rwlock_t mmu_lock;
456#else
457 spinlock_t mmu_lock;
458#endif /* KVM_HAVE_MMU_RWLOCK */
459
460 struct mutex slots_lock;
461 struct mm_struct *mm; /* userspace tied to this vm */
462 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM];
463 struct kvm_vcpu *vcpus[KVM_MAX_VCPUS];
464
465 /*
466 * created_vcpus is protected by kvm->lock, and is incremented
467 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only
468 * incremented after storing the kvm_vcpu pointer in vcpus,
469 * and is accessed atomically.
470 */
471 atomic_t online_vcpus;
472 int created_vcpus;
473 int last_boosted_vcpu;
474 struct list_head vm_list;
475 struct mutex lock;
476 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
477#ifdef CONFIG_HAVE_KVM_EVENTFD
478 struct {
479 spinlock_t lock;
480 struct list_head items;
481 struct list_head resampler_list;
482 struct mutex resampler_lock;
483 } irqfds;
484 struct list_head ioeventfds;
485#endif
486 struct kvm_vm_stat stat;
487 struct kvm_arch arch;
488 refcount_t users_count;
489#ifdef CONFIG_KVM_MMIO
490 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
491 spinlock_t ring_lock;
492 struct list_head coalesced_zones;
493#endif
494
495 struct mutex irq_lock;
496#ifdef CONFIG_HAVE_KVM_IRQCHIP
497 /*
498 * Update side is protected by irq_lock.
499 */
500 struct kvm_irq_routing_table __rcu *irq_routing;
501#endif
502#ifdef CONFIG_HAVE_KVM_IRQFD
503 struct hlist_head irq_ack_notifier_list;
504#endif
505
506#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
507 struct mmu_notifier mmu_notifier;
508 unsigned long mmu_notifier_seq;
509 long mmu_notifier_count;
510 unsigned long mmu_notifier_range_start;
511 unsigned long mmu_notifier_range_end;
512#endif
513 long tlbs_dirty;
514 struct list_head devices;
515 u64 manual_dirty_log_protect;
516 struct dentry *debugfs_dentry;
517 struct kvm_stat_data **debugfs_stat_data;
518 struct srcu_struct srcu;
519 struct srcu_struct irq_srcu;
520 pid_t userspace_pid;
521 unsigned int max_halt_poll_ns;
522 u32 dirty_ring_size;
523};
524
525#define kvm_err(fmt, ...) \
526 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
527#define kvm_info(fmt, ...) \
528 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
529#define kvm_debug(fmt, ...) \
530 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
531#define kvm_debug_ratelimited(fmt, ...) \
532 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
533 ## __VA_ARGS__)
534#define kvm_pr_unimpl(fmt, ...) \
535 pr_err_ratelimited("kvm [%i]: " fmt, \
536 task_tgid_nr(current), ## __VA_ARGS__)
537
538/* The guest did something we don't support. */
539#define vcpu_unimpl(vcpu, fmt, ...) \
540 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \
541 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
542
543#define vcpu_debug(vcpu, fmt, ...) \
544 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
545#define vcpu_debug_ratelimited(vcpu, fmt, ...) \
546 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \
547 ## __VA_ARGS__)
548#define vcpu_err(vcpu, fmt, ...) \
549 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
550
551static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
552{
553 return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
554}
555
556static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
557{
558 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
559 lockdep_is_held(&kvm->slots_lock) ||
560 !refcount_read(&kvm->users_count));
561}
562
563static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
564{
565 int num_vcpus = atomic_read(&kvm->online_vcpus);
566 i = array_index_nospec(i, num_vcpus);
567
568 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */
569 smp_rmb();
570 return kvm->vcpus[i];
571}
572
573#define kvm_for_each_vcpu(idx, vcpup, kvm) \
574 for (idx = 0; \
575 idx < atomic_read(&kvm->online_vcpus) && \
576 (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \
577 idx++)
578
579static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
580{
581 struct kvm_vcpu *vcpu = NULL;
582 int i;
583
584 if (id < 0)
585 return NULL;
586 if (id < KVM_MAX_VCPUS)
587 vcpu = kvm_get_vcpu(kvm, id);
588 if (vcpu && vcpu->vcpu_id == id)
589 return vcpu;
590 kvm_for_each_vcpu(i, vcpu, kvm)
591 if (vcpu->vcpu_id == id)
592 return vcpu;
593 return NULL;
594}
595
596static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu)
597{
598 return vcpu->vcpu_idx;
599}
600
601#define kvm_for_each_memslot(memslot, slots) \
602 for (memslot = &slots->memslots[0]; \
603 memslot < slots->memslots + slots->used_slots; memslot++) \
604 if (WARN_ON_ONCE(!memslot->npages)) { \
605 } else
606
607void kvm_vcpu_destroy(struct kvm_vcpu *vcpu);
608
609void vcpu_load(struct kvm_vcpu *vcpu);
610void vcpu_put(struct kvm_vcpu *vcpu);
611
612#ifdef __KVM_HAVE_IOAPIC
613void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
614void kvm_arch_post_irq_routing_update(struct kvm *kvm);
615#else
616static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
617{
618}
619static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
620{
621}
622#endif
623
624#ifdef CONFIG_HAVE_KVM_IRQFD
625int kvm_irqfd_init(void);
626void kvm_irqfd_exit(void);
627#else
628static inline int kvm_irqfd_init(void)
629{
630 return 0;
631}
632
633static inline void kvm_irqfd_exit(void)
634{
635}
636#endif
637int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
638 struct module *module);
639void kvm_exit(void);
640
641void kvm_get_kvm(struct kvm *kvm);
642void kvm_put_kvm(struct kvm *kvm);
643void kvm_put_kvm_no_destroy(struct kvm *kvm);
644
645static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
646{
647 as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM);
648 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
649 lockdep_is_held(&kvm->slots_lock) ||
650 !refcount_read(&kvm->users_count));
651}
652
653static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
654{
655 return __kvm_memslots(kvm, 0);
656}
657
658static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
659{
660 int as_id = kvm_arch_vcpu_memslots_id(vcpu);
661
662 return __kvm_memslots(vcpu->kvm, as_id);
663}
664
665static inline
666struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
667{
668 int index = slots->id_to_index[id];
669 struct kvm_memory_slot *slot;
670
671 if (index < 0)
672 return NULL;
673
674 slot = &slots->memslots[index];
675
676 WARN_ON(slot->id != id);
677 return slot;
678}
679
680/*
681 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
682 * - create a new memory slot
683 * - delete an existing memory slot
684 * - modify an existing memory slot
685 * -- move it in the guest physical memory space
686 * -- just change its flags
687 *
688 * Since flags can be changed by some of these operations, the following
689 * differentiation is the best we can do for __kvm_set_memory_region():
690 */
691enum kvm_mr_change {
692 KVM_MR_CREATE,
693 KVM_MR_DELETE,
694 KVM_MR_MOVE,
695 KVM_MR_FLAGS_ONLY,
696};
697
698int kvm_set_memory_region(struct kvm *kvm,
699 const struct kvm_userspace_memory_region *mem);
700int __kvm_set_memory_region(struct kvm *kvm,
701 const struct kvm_userspace_memory_region *mem);
702void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
703void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
704int kvm_arch_prepare_memory_region(struct kvm *kvm,
705 struct kvm_memory_slot *memslot,
706 const struct kvm_userspace_memory_region *mem,
707 enum kvm_mr_change change);
708void kvm_arch_commit_memory_region(struct kvm *kvm,
709 const struct kvm_userspace_memory_region *mem,
710 struct kvm_memory_slot *old,
711 const struct kvm_memory_slot *new,
712 enum kvm_mr_change change);
713/* flush all memory translations */
714void kvm_arch_flush_shadow_all(struct kvm *kvm);
715/* flush memory translations pointing to 'slot' */
716void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
717 struct kvm_memory_slot *slot);
718
719int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
720 struct page **pages, int nr_pages);
721
722struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
723unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
724unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
725unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
726unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
727 bool *writable);
728void kvm_release_page_clean(struct page *page);
729void kvm_release_page_dirty(struct page *page);
730void kvm_set_page_accessed(struct page *page);
731
732kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
733kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
734 bool *writable);
735kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
736kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn);
737kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
738 bool atomic, bool *async, bool write_fault,
739 bool *writable, hva_t *hva);
740
741void kvm_release_pfn_clean(kvm_pfn_t pfn);
742void kvm_release_pfn_dirty(kvm_pfn_t pfn);
743void kvm_set_pfn_dirty(kvm_pfn_t pfn);
744void kvm_set_pfn_accessed(kvm_pfn_t pfn);
745void kvm_get_pfn(kvm_pfn_t pfn);
746
747void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache);
748int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
749 int len);
750int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
751int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
752 void *data, unsigned long len);
753int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
754 void *data, unsigned int offset,
755 unsigned long len);
756int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
757 int offset, int len);
758int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
759 unsigned long len);
760int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
761 void *data, unsigned long len);
762int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
763 void *data, unsigned int offset,
764 unsigned long len);
765int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
766 gpa_t gpa, unsigned long len);
767
768#define __kvm_get_guest(kvm, gfn, offset, v) \
769({ \
770 unsigned long __addr = gfn_to_hva(kvm, gfn); \
771 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
772 int __ret = -EFAULT; \
773 \
774 if (!kvm_is_error_hva(__addr)) \
775 __ret = get_user(v, __uaddr); \
776 __ret; \
777})
778
779#define kvm_get_guest(kvm, gpa, v) \
780({ \
781 gpa_t __gpa = gpa; \
782 struct kvm *__kvm = kvm; \
783 \
784 __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT, \
785 offset_in_page(__gpa), v); \
786})
787
788#define __kvm_put_guest(kvm, gfn, offset, v) \
789({ \
790 unsigned long __addr = gfn_to_hva(kvm, gfn); \
791 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
792 int __ret = -EFAULT; \
793 \
794 if (!kvm_is_error_hva(__addr)) \
795 __ret = put_user(v, __uaddr); \
796 if (!__ret) \
797 mark_page_dirty(kvm, gfn); \
798 __ret; \
799})
800
801#define kvm_put_guest(kvm, gpa, v) \
802({ \
803 gpa_t __gpa = gpa; \
804 struct kvm *__kvm = kvm; \
805 \
806 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \
807 offset_in_page(__gpa), v); \
808})
809
810int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
811struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
812bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
813bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
814unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
815void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot, gfn_t gfn);
816void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
817
818struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
819struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
820kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn);
821kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
822int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map);
823int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
824 struct gfn_to_pfn_cache *cache, bool atomic);
825struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn);
826void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty);
827int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
828 struct gfn_to_pfn_cache *cache, bool dirty, bool atomic);
829unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
830unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
831int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
832 int len);
833int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
834 unsigned long len);
835int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
836 unsigned long len);
837int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
838 int offset, int len);
839int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
840 unsigned long len);
841void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
842
843void kvm_sigset_activate(struct kvm_vcpu *vcpu);
844void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
845
846void kvm_vcpu_block(struct kvm_vcpu *vcpu);
847void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
848void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
849bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
850void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
851int kvm_vcpu_yield_to(struct kvm_vcpu *target);
852void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible);
853
854void kvm_flush_remote_tlbs(struct kvm *kvm);
855void kvm_reload_remote_mmus(struct kvm *kvm);
856
857#ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
858int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min);
859int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc);
860void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc);
861void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
862#endif
863
864bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
865 struct kvm_vcpu *except,
866 unsigned long *vcpu_bitmap, cpumask_var_t tmp);
867bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
868bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
869 struct kvm_vcpu *except);
870bool kvm_make_cpus_request_mask(struct kvm *kvm, unsigned int req,
871 unsigned long *vcpu_bitmap);
872
873long kvm_arch_dev_ioctl(struct file *filp,
874 unsigned int ioctl, unsigned long arg);
875long kvm_arch_vcpu_ioctl(struct file *filp,
876 unsigned int ioctl, unsigned long arg);
877vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
878
879int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
880
881void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
882 struct kvm_memory_slot *slot,
883 gfn_t gfn_offset,
884 unsigned long mask);
885void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
886
887#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
888void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
889 struct kvm_memory_slot *memslot);
890#else /* !CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
891int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
892int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
893 int *is_dirty, struct kvm_memory_slot **memslot);
894#endif
895
896int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
897 bool line_status);
898int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
899 struct kvm_enable_cap *cap);
900long kvm_arch_vm_ioctl(struct file *filp,
901 unsigned int ioctl, unsigned long arg);
902
903int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
904int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
905
906int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
907 struct kvm_translation *tr);
908
909int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
910int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
911int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
912 struct kvm_sregs *sregs);
913int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
914 struct kvm_sregs *sregs);
915int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
916 struct kvm_mp_state *mp_state);
917int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
918 struct kvm_mp_state *mp_state);
919int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
920 struct kvm_guest_debug *dbg);
921int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);
922
923int kvm_arch_init(void *opaque);
924void kvm_arch_exit(void);
925
926void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu);
927
928void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
929void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
930int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
931int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
932void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
933void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
934
935#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
936void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
937#endif
938
939int kvm_arch_hardware_enable(void);
940void kvm_arch_hardware_disable(void);
941int kvm_arch_hardware_setup(void *opaque);
942void kvm_arch_hardware_unsetup(void);
943int kvm_arch_check_processor_compat(void *opaque);
944int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
945bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
946int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
947bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
948int kvm_arch_post_init_vm(struct kvm *kvm);
949void kvm_arch_pre_destroy_vm(struct kvm *kvm);
950
951#ifndef __KVM_HAVE_ARCH_VM_ALLOC
952/*
953 * All architectures that want to use vzalloc currently also
954 * need their own kvm_arch_alloc_vm implementation.
955 */
956static inline struct kvm *kvm_arch_alloc_vm(void)
957{
958 return kzalloc(sizeof(struct kvm), GFP_KERNEL);
959}
960
961static inline void kvm_arch_free_vm(struct kvm *kvm)
962{
963 kfree(kvm);
964}
965#endif
966
967#ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
968static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
969{
970 return -ENOTSUPP;
971}
972#endif
973
974#ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
975void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
976void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
977bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
978#else
979static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
980{
981}
982
983static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
984{
985}
986
987static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
988{
989 return false;
990}
991#endif
992#ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
993void kvm_arch_start_assignment(struct kvm *kvm);
994void kvm_arch_end_assignment(struct kvm *kvm);
995bool kvm_arch_has_assigned_device(struct kvm *kvm);
996#else
997static inline void kvm_arch_start_assignment(struct kvm *kvm)
998{
999}
1000
1001static inline void kvm_arch_end_assignment(struct kvm *kvm)
1002{
1003}
1004
1005static inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
1006{
1007 return false;
1008}
1009#endif
1010
1011static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
1012{
1013#ifdef __KVM_HAVE_ARCH_WQP
1014 return vcpu->arch.waitp;
1015#else
1016 return &vcpu->wait;
1017#endif
1018}
1019
1020#ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
1021/*
1022 * returns true if the virtual interrupt controller is initialized and
1023 * ready to accept virtual IRQ. On some architectures the virtual interrupt
1024 * controller is dynamically instantiated and this is not always true.
1025 */
1026bool kvm_arch_intc_initialized(struct kvm *kvm);
1027#else
1028static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
1029{
1030 return true;
1031}
1032#endif
1033
1034int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
1035void kvm_arch_destroy_vm(struct kvm *kvm);
1036void kvm_arch_sync_events(struct kvm *kvm);
1037
1038int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
1039
1040bool kvm_is_reserved_pfn(kvm_pfn_t pfn);
1041bool kvm_is_zone_device_pfn(kvm_pfn_t pfn);
1042bool kvm_is_transparent_hugepage(kvm_pfn_t pfn);
1043
1044struct kvm_irq_ack_notifier {
1045 struct hlist_node link;
1046 unsigned gsi;
1047 void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
1048};
1049
1050int kvm_irq_map_gsi(struct kvm *kvm,
1051 struct kvm_kernel_irq_routing_entry *entries, int gsi);
1052int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
1053
1054int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1055 bool line_status);
1056int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1057 int irq_source_id, int level, bool line_status);
1058int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1059 struct kvm *kvm, int irq_source_id,
1060 int level, bool line_status);
1061bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1062void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1063void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1064void kvm_register_irq_ack_notifier(struct kvm *kvm,
1065 struct kvm_irq_ack_notifier *kian);
1066void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1067 struct kvm_irq_ack_notifier *kian);
1068int kvm_request_irq_source_id(struct kvm *kvm);
1069void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
1070bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1071
1072/*
1073 * search_memslots() and __gfn_to_memslot() are here because they are
1074 * used in non-modular code in arch/powerpc/kvm/book3s_hv_rm_mmu.c.
1075 * gfn_to_memslot() itself isn't here as an inline because that would
1076 * bloat other code too much.
1077 *
1078 * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!
1079 */
1080static inline struct kvm_memory_slot *
1081search_memslots(struct kvm_memslots *slots, gfn_t gfn)
1082{
1083 int start = 0, end = slots->used_slots;
1084 int slot = atomic_read(&slots->lru_slot);
1085 struct kvm_memory_slot *memslots = slots->memslots;
1086
1087 if (unlikely(!slots->used_slots))
1088 return NULL;
1089
1090 if (gfn >= memslots[slot].base_gfn &&
1091 gfn < memslots[slot].base_gfn + memslots[slot].npages)
1092 return &memslots[slot];
1093
1094 while (start < end) {
1095 slot = start + (end - start) / 2;
1096
1097 if (gfn >= memslots[slot].base_gfn)
1098 end = slot;
1099 else
1100 start = slot + 1;
1101 }
1102
1103 if (start < slots->used_slots && gfn >= memslots[start].base_gfn &&
1104 gfn < memslots[start].base_gfn + memslots[start].npages) {
1105 atomic_set(&slots->lru_slot, start);
1106 return &memslots[start];
1107 }
1108
1109 return NULL;
1110}
1111
1112static inline struct kvm_memory_slot *
1113__gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1114{
1115 return search_memslots(slots, gfn);
1116}
1117
1118static inline unsigned long
1119__gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1120{
1121 return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE;
1122}
1123
1124static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1125{
1126 return gfn_to_memslot(kvm, gfn)->id;
1127}
1128
1129static inline gfn_t
1130hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1131{
1132 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1133
1134 return slot->base_gfn + gfn_offset;
1135}
1136
1137static inline gpa_t gfn_to_gpa(gfn_t gfn)
1138{
1139 return (gpa_t)gfn << PAGE_SHIFT;
1140}
1141
1142static inline gfn_t gpa_to_gfn(gpa_t gpa)
1143{
1144 return (gfn_t)(gpa >> PAGE_SHIFT);
1145}
1146
1147static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1148{
1149 return (hpa_t)pfn << PAGE_SHIFT;
1150}
1151
1152static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu,
1153 gpa_t gpa)
1154{
1155 return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa));
1156}
1157
1158static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa)
1159{
1160 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1161
1162 return kvm_is_error_hva(hva);
1163}
1164
1165enum kvm_stat_kind {
1166 KVM_STAT_VM,
1167 KVM_STAT_VCPU,
1168};
1169
1170struct kvm_stat_data {
1171 struct kvm *kvm;
1172 struct kvm_stats_debugfs_item *dbgfs_item;
1173};
1174
1175struct kvm_stats_debugfs_item {
1176 const char *name;
1177 int offset;
1178 enum kvm_stat_kind kind;
1179 int mode;
1180};
1181
1182#define KVM_DBGFS_GET_MODE(dbgfs_item) \
1183 ((dbgfs_item)->mode ? (dbgfs_item)->mode : 0644)
1184
1185#define VM_STAT(n, x, ...) \
1186 { n, offsetof(struct kvm, stat.x), KVM_STAT_VM, ## __VA_ARGS__ }
1187#define VCPU_STAT(n, x, ...) \
1188 { n, offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU, ## __VA_ARGS__ }
1189
1190extern struct kvm_stats_debugfs_item debugfs_entries[];
1191extern struct dentry *kvm_debugfs_dir;
1192
1193#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1194static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq)
1195{
1196 if (unlikely(kvm->mmu_notifier_count))
1197 return 1;
1198 /*
1199 * Ensure the read of mmu_notifier_count happens before the read
1200 * of mmu_notifier_seq. This interacts with the smp_wmb() in
1201 * mmu_notifier_invalidate_range_end to make sure that the caller
1202 * either sees the old (non-zero) value of mmu_notifier_count or
1203 * the new (incremented) value of mmu_notifier_seq.
1204 * PowerPC Book3s HV KVM calls this under a per-page lock
1205 * rather than under kvm->mmu_lock, for scalability, so
1206 * can't rely on kvm->mmu_lock to keep things ordered.
1207 */
1208 smp_rmb();
1209 if (kvm->mmu_notifier_seq != mmu_seq)
1210 return 1;
1211 return 0;
1212}
1213
1214static inline int mmu_notifier_retry_hva(struct kvm *kvm,
1215 unsigned long mmu_seq,
1216 unsigned long hva)
1217{
1218 lockdep_assert_held(&kvm->mmu_lock);
1219 /*
1220 * If mmu_notifier_count is non-zero, then the range maintained by
1221 * kvm_mmu_notifier_invalidate_range_start contains all addresses that
1222 * might be being invalidated. Note that it may include some false
1223 * positives, due to shortcuts when handing concurrent invalidations.
1224 */
1225 if (unlikely(kvm->mmu_notifier_count) &&
1226 hva >= kvm->mmu_notifier_range_start &&
1227 hva < kvm->mmu_notifier_range_end)
1228 return 1;
1229 if (kvm->mmu_notifier_seq != mmu_seq)
1230 return 1;
1231 return 0;
1232}
1233#endif
1234
1235#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
1236
1237#define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
1238
1239bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
1240int kvm_set_irq_routing(struct kvm *kvm,
1241 const struct kvm_irq_routing_entry *entries,
1242 unsigned nr,
1243 unsigned flags);
1244int kvm_set_routing_entry(struct kvm *kvm,
1245 struct kvm_kernel_irq_routing_entry *e,
1246 const struct kvm_irq_routing_entry *ue);
1247void kvm_free_irq_routing(struct kvm *kvm);
1248
1249#else
1250
1251static inline void kvm_free_irq_routing(struct kvm *kvm) {}
1252
1253#endif
1254
1255int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
1256
1257#ifdef CONFIG_HAVE_KVM_EVENTFD
1258
1259void kvm_eventfd_init(struct kvm *kvm);
1260int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
1261
1262#ifdef CONFIG_HAVE_KVM_IRQFD
1263int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
1264void kvm_irqfd_release(struct kvm *kvm);
1265void kvm_irq_routing_update(struct kvm *);
1266#else
1267static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1268{
1269 return -EINVAL;
1270}
1271
1272static inline void kvm_irqfd_release(struct kvm *kvm) {}
1273#endif
1274
1275#else
1276
1277static inline void kvm_eventfd_init(struct kvm *kvm) {}
1278
1279static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1280{
1281 return -EINVAL;
1282}
1283
1284static inline void kvm_irqfd_release(struct kvm *kvm) {}
1285
1286#ifdef CONFIG_HAVE_KVM_IRQCHIP
1287static inline void kvm_irq_routing_update(struct kvm *kvm)
1288{
1289}
1290#endif
1291
1292static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args)
1293{
1294 return -ENOSYS;
1295}
1296
1297#endif /* CONFIG_HAVE_KVM_EVENTFD */
1298
1299void kvm_arch_irq_routing_update(struct kvm *kvm);
1300
1301static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
1302{
1303 /*
1304 * Ensure the rest of the request is published to kvm_check_request's
1305 * caller. Paired with the smp_mb__after_atomic in kvm_check_request.
1306 */
1307 smp_wmb();
1308 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1309}
1310
1311static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
1312{
1313 return READ_ONCE(vcpu->requests);
1314}
1315
1316static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
1317{
1318 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1319}
1320
1321static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
1322{
1323 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1324}
1325
1326static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
1327{
1328 if (kvm_test_request(req, vcpu)) {
1329 kvm_clear_request(req, vcpu);
1330
1331 /*
1332 * Ensure the rest of the request is visible to kvm_check_request's
1333 * caller. Paired with the smp_wmb in kvm_make_request.
1334 */
1335 smp_mb__after_atomic();
1336 return true;
1337 } else {
1338 return false;
1339 }
1340}
1341
1342extern bool kvm_rebooting;
1343
1344extern unsigned int halt_poll_ns;
1345extern unsigned int halt_poll_ns_grow;
1346extern unsigned int halt_poll_ns_grow_start;
1347extern unsigned int halt_poll_ns_shrink;
1348
1349struct kvm_device {
1350 const struct kvm_device_ops *ops;
1351 struct kvm *kvm;
1352 void *private;
1353 struct list_head vm_node;
1354};
1355
1356/* create, destroy, and name are mandatory */
1357struct kvm_device_ops {
1358 const char *name;
1359
1360 /*
1361 * create is called holding kvm->lock and any operations not suitable
1362 * to do while holding the lock should be deferred to init (see
1363 * below).
1364 */
1365 int (*create)(struct kvm_device *dev, u32 type);
1366
1367 /*
1368 * init is called after create if create is successful and is called
1369 * outside of holding kvm->lock.
1370 */
1371 void (*init)(struct kvm_device *dev);
1372
1373 /*
1374 * Destroy is responsible for freeing dev.
1375 *
1376 * Destroy may be called before or after destructors are called
1377 * on emulated I/O regions, depending on whether a reference is
1378 * held by a vcpu or other kvm component that gets destroyed
1379 * after the emulated I/O.
1380 */
1381 void (*destroy)(struct kvm_device *dev);
1382
1383 /*
1384 * Release is an alternative method to free the device. It is
1385 * called when the device file descriptor is closed. Once
1386 * release is called, the destroy method will not be called
1387 * anymore as the device is removed from the device list of
1388 * the VM. kvm->lock is held.
1389 */
1390 void (*release)(struct kvm_device *dev);
1391
1392 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1393 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1394 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1395 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
1396 unsigned long arg);
1397 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
1398};
1399
1400void kvm_device_get(struct kvm_device *dev);
1401void kvm_device_put(struct kvm_device *dev);
1402struct kvm_device *kvm_device_from_filp(struct file *filp);
1403int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
1404void kvm_unregister_device_ops(u32 type);
1405
1406extern struct kvm_device_ops kvm_mpic_ops;
1407extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
1408extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
1409
1410#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1411
1412static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1413{
1414 vcpu->spin_loop.in_spin_loop = val;
1415}
1416static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1417{
1418 vcpu->spin_loop.dy_eligible = val;
1419}
1420
1421#else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1422
1423static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1424{
1425}
1426
1427static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1428{
1429}
1430#endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1431
1432static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
1433{
1434 return (memslot && memslot->id < KVM_USER_MEM_SLOTS &&
1435 !(memslot->flags & KVM_MEMSLOT_INVALID));
1436}
1437
1438struct kvm_vcpu *kvm_get_running_vcpu(void);
1439struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
1440
1441#ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
1442bool kvm_arch_has_irq_bypass(void);
1443int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
1444 struct irq_bypass_producer *);
1445void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
1446 struct irq_bypass_producer *);
1447void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
1448void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
1449int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
1450 uint32_t guest_irq, bool set);
1451#endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
1452
1453#ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
1454/* If we wakeup during the poll time, was it a sucessful poll? */
1455static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1456{
1457 return vcpu->valid_wakeup;
1458}
1459
1460#else
1461static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1462{
1463 return true;
1464}
1465#endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
1466
1467#ifdef CONFIG_HAVE_KVM_NO_POLL
1468/* Callback that tells if we must not poll */
1469bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
1470#else
1471static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
1472{
1473 return false;
1474}
1475#endif /* CONFIG_HAVE_KVM_NO_POLL */
1476
1477#ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
1478long kvm_arch_vcpu_async_ioctl(struct file *filp,
1479 unsigned int ioctl, unsigned long arg);
1480#else
1481static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
1482 unsigned int ioctl,
1483 unsigned long arg)
1484{
1485 return -ENOIOCTLCMD;
1486}
1487#endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
1488
1489void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
1490 unsigned long start, unsigned long end);
1491
1492#ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
1493int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
1494#else
1495static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
1496{
1497 return 0;
1498}
1499#endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
1500
1501typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data);
1502
1503int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
1504 uintptr_t data, const char *name,
1505 struct task_struct **thread_ptr);
1506
1507#ifdef CONFIG_KVM_XFER_TO_GUEST_WORK
1508static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu)
1509{
1510 vcpu->run->exit_reason = KVM_EXIT_INTR;
1511 vcpu->stat.signal_exits++;
1512}
1513#endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */
1514
1515/*
1516 * This defines how many reserved entries we want to keep before we
1517 * kick the vcpu to the userspace to avoid dirty ring full. This
1518 * value can be tuned to higher if e.g. PML is enabled on the host.
1519 */
1520#define KVM_DIRTY_RING_RSVD_ENTRIES 64
1521
1522/* Max number of entries allowed for each kvm dirty ring */
1523#define KVM_DIRTY_RING_MAX_ENTRIES 65536
1524
1525#endif