at v5.12 41 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * Linux Socket Filter Data Structures 4 */ 5#ifndef __LINUX_FILTER_H__ 6#define __LINUX_FILTER_H__ 7 8#include <stdarg.h> 9 10#include <linux/atomic.h> 11#include <linux/refcount.h> 12#include <linux/compat.h> 13#include <linux/skbuff.h> 14#include <linux/linkage.h> 15#include <linux/printk.h> 16#include <linux/workqueue.h> 17#include <linux/sched.h> 18#include <linux/capability.h> 19#include <linux/set_memory.h> 20#include <linux/kallsyms.h> 21#include <linux/if_vlan.h> 22#include <linux/vmalloc.h> 23#include <linux/sockptr.h> 24#include <crypto/sha1.h> 25#include <linux/u64_stats_sync.h> 26 27#include <net/sch_generic.h> 28 29#include <asm/byteorder.h> 30#include <uapi/linux/filter.h> 31#include <uapi/linux/bpf.h> 32 33struct sk_buff; 34struct sock; 35struct seccomp_data; 36struct bpf_prog_aux; 37struct xdp_rxq_info; 38struct xdp_buff; 39struct sock_reuseport; 40struct ctl_table; 41struct ctl_table_header; 42 43/* ArgX, context and stack frame pointer register positions. Note, 44 * Arg1, Arg2, Arg3, etc are used as argument mappings of function 45 * calls in BPF_CALL instruction. 46 */ 47#define BPF_REG_ARG1 BPF_REG_1 48#define BPF_REG_ARG2 BPF_REG_2 49#define BPF_REG_ARG3 BPF_REG_3 50#define BPF_REG_ARG4 BPF_REG_4 51#define BPF_REG_ARG5 BPF_REG_5 52#define BPF_REG_CTX BPF_REG_6 53#define BPF_REG_FP BPF_REG_10 54 55/* Additional register mappings for converted user programs. */ 56#define BPF_REG_A BPF_REG_0 57#define BPF_REG_X BPF_REG_7 58#define BPF_REG_TMP BPF_REG_2 /* scratch reg */ 59#define BPF_REG_D BPF_REG_8 /* data, callee-saved */ 60#define BPF_REG_H BPF_REG_9 /* hlen, callee-saved */ 61 62/* Kernel hidden auxiliary/helper register. */ 63#define BPF_REG_AX MAX_BPF_REG 64#define MAX_BPF_EXT_REG (MAX_BPF_REG + 1) 65#define MAX_BPF_JIT_REG MAX_BPF_EXT_REG 66 67/* unused opcode to mark special call to bpf_tail_call() helper */ 68#define BPF_TAIL_CALL 0xf0 69 70/* unused opcode to mark special load instruction. Same as BPF_ABS */ 71#define BPF_PROBE_MEM 0x20 72 73/* unused opcode to mark call to interpreter with arguments */ 74#define BPF_CALL_ARGS 0xe0 75 76/* As per nm, we expose JITed images as text (code) section for 77 * kallsyms. That way, tools like perf can find it to match 78 * addresses. 79 */ 80#define BPF_SYM_ELF_TYPE 't' 81 82/* BPF program can access up to 512 bytes of stack space. */ 83#define MAX_BPF_STACK 512 84 85/* Helper macros for filter block array initializers. */ 86 87/* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */ 88 89#define BPF_ALU64_REG(OP, DST, SRC) \ 90 ((struct bpf_insn) { \ 91 .code = BPF_ALU64 | BPF_OP(OP) | BPF_X, \ 92 .dst_reg = DST, \ 93 .src_reg = SRC, \ 94 .off = 0, \ 95 .imm = 0 }) 96 97#define BPF_ALU32_REG(OP, DST, SRC) \ 98 ((struct bpf_insn) { \ 99 .code = BPF_ALU | BPF_OP(OP) | BPF_X, \ 100 .dst_reg = DST, \ 101 .src_reg = SRC, \ 102 .off = 0, \ 103 .imm = 0 }) 104 105/* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */ 106 107#define BPF_ALU64_IMM(OP, DST, IMM) \ 108 ((struct bpf_insn) { \ 109 .code = BPF_ALU64 | BPF_OP(OP) | BPF_K, \ 110 .dst_reg = DST, \ 111 .src_reg = 0, \ 112 .off = 0, \ 113 .imm = IMM }) 114 115#define BPF_ALU32_IMM(OP, DST, IMM) \ 116 ((struct bpf_insn) { \ 117 .code = BPF_ALU | BPF_OP(OP) | BPF_K, \ 118 .dst_reg = DST, \ 119 .src_reg = 0, \ 120 .off = 0, \ 121 .imm = IMM }) 122 123/* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */ 124 125#define BPF_ENDIAN(TYPE, DST, LEN) \ 126 ((struct bpf_insn) { \ 127 .code = BPF_ALU | BPF_END | BPF_SRC(TYPE), \ 128 .dst_reg = DST, \ 129 .src_reg = 0, \ 130 .off = 0, \ 131 .imm = LEN }) 132 133/* Short form of mov, dst_reg = src_reg */ 134 135#define BPF_MOV64_REG(DST, SRC) \ 136 ((struct bpf_insn) { \ 137 .code = BPF_ALU64 | BPF_MOV | BPF_X, \ 138 .dst_reg = DST, \ 139 .src_reg = SRC, \ 140 .off = 0, \ 141 .imm = 0 }) 142 143#define BPF_MOV32_REG(DST, SRC) \ 144 ((struct bpf_insn) { \ 145 .code = BPF_ALU | BPF_MOV | BPF_X, \ 146 .dst_reg = DST, \ 147 .src_reg = SRC, \ 148 .off = 0, \ 149 .imm = 0 }) 150 151/* Short form of mov, dst_reg = imm32 */ 152 153#define BPF_MOV64_IMM(DST, IMM) \ 154 ((struct bpf_insn) { \ 155 .code = BPF_ALU64 | BPF_MOV | BPF_K, \ 156 .dst_reg = DST, \ 157 .src_reg = 0, \ 158 .off = 0, \ 159 .imm = IMM }) 160 161#define BPF_MOV32_IMM(DST, IMM) \ 162 ((struct bpf_insn) { \ 163 .code = BPF_ALU | BPF_MOV | BPF_K, \ 164 .dst_reg = DST, \ 165 .src_reg = 0, \ 166 .off = 0, \ 167 .imm = IMM }) 168 169/* Special form of mov32, used for doing explicit zero extension on dst. */ 170#define BPF_ZEXT_REG(DST) \ 171 ((struct bpf_insn) { \ 172 .code = BPF_ALU | BPF_MOV | BPF_X, \ 173 .dst_reg = DST, \ 174 .src_reg = DST, \ 175 .off = 0, \ 176 .imm = 1 }) 177 178static inline bool insn_is_zext(const struct bpf_insn *insn) 179{ 180 return insn->code == (BPF_ALU | BPF_MOV | BPF_X) && insn->imm == 1; 181} 182 183/* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */ 184#define BPF_LD_IMM64(DST, IMM) \ 185 BPF_LD_IMM64_RAW(DST, 0, IMM) 186 187#define BPF_LD_IMM64_RAW(DST, SRC, IMM) \ 188 ((struct bpf_insn) { \ 189 .code = BPF_LD | BPF_DW | BPF_IMM, \ 190 .dst_reg = DST, \ 191 .src_reg = SRC, \ 192 .off = 0, \ 193 .imm = (__u32) (IMM) }), \ 194 ((struct bpf_insn) { \ 195 .code = 0, /* zero is reserved opcode */ \ 196 .dst_reg = 0, \ 197 .src_reg = 0, \ 198 .off = 0, \ 199 .imm = ((__u64) (IMM)) >> 32 }) 200 201/* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */ 202#define BPF_LD_MAP_FD(DST, MAP_FD) \ 203 BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD) 204 205/* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */ 206 207#define BPF_MOV64_RAW(TYPE, DST, SRC, IMM) \ 208 ((struct bpf_insn) { \ 209 .code = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE), \ 210 .dst_reg = DST, \ 211 .src_reg = SRC, \ 212 .off = 0, \ 213 .imm = IMM }) 214 215#define BPF_MOV32_RAW(TYPE, DST, SRC, IMM) \ 216 ((struct bpf_insn) { \ 217 .code = BPF_ALU | BPF_MOV | BPF_SRC(TYPE), \ 218 .dst_reg = DST, \ 219 .src_reg = SRC, \ 220 .off = 0, \ 221 .imm = IMM }) 222 223/* Direct packet access, R0 = *(uint *) (skb->data + imm32) */ 224 225#define BPF_LD_ABS(SIZE, IMM) \ 226 ((struct bpf_insn) { \ 227 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS, \ 228 .dst_reg = 0, \ 229 .src_reg = 0, \ 230 .off = 0, \ 231 .imm = IMM }) 232 233/* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */ 234 235#define BPF_LD_IND(SIZE, SRC, IMM) \ 236 ((struct bpf_insn) { \ 237 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_IND, \ 238 .dst_reg = 0, \ 239 .src_reg = SRC, \ 240 .off = 0, \ 241 .imm = IMM }) 242 243/* Memory load, dst_reg = *(uint *) (src_reg + off16) */ 244 245#define BPF_LDX_MEM(SIZE, DST, SRC, OFF) \ 246 ((struct bpf_insn) { \ 247 .code = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM, \ 248 .dst_reg = DST, \ 249 .src_reg = SRC, \ 250 .off = OFF, \ 251 .imm = 0 }) 252 253/* Memory store, *(uint *) (dst_reg + off16) = src_reg */ 254 255#define BPF_STX_MEM(SIZE, DST, SRC, OFF) \ 256 ((struct bpf_insn) { \ 257 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM, \ 258 .dst_reg = DST, \ 259 .src_reg = SRC, \ 260 .off = OFF, \ 261 .imm = 0 }) 262 263 264/* 265 * Atomic operations: 266 * 267 * BPF_ADD *(uint *) (dst_reg + off16) += src_reg 268 * BPF_AND *(uint *) (dst_reg + off16) &= src_reg 269 * BPF_OR *(uint *) (dst_reg + off16) |= src_reg 270 * BPF_XOR *(uint *) (dst_reg + off16) ^= src_reg 271 * BPF_ADD | BPF_FETCH src_reg = atomic_fetch_add(dst_reg + off16, src_reg); 272 * BPF_AND | BPF_FETCH src_reg = atomic_fetch_and(dst_reg + off16, src_reg); 273 * BPF_OR | BPF_FETCH src_reg = atomic_fetch_or(dst_reg + off16, src_reg); 274 * BPF_XOR | BPF_FETCH src_reg = atomic_fetch_xor(dst_reg + off16, src_reg); 275 * BPF_XCHG src_reg = atomic_xchg(dst_reg + off16, src_reg) 276 * BPF_CMPXCHG r0 = atomic_cmpxchg(dst_reg + off16, r0, src_reg) 277 */ 278 279#define BPF_ATOMIC_OP(SIZE, OP, DST, SRC, OFF) \ 280 ((struct bpf_insn) { \ 281 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_ATOMIC, \ 282 .dst_reg = DST, \ 283 .src_reg = SRC, \ 284 .off = OFF, \ 285 .imm = OP }) 286 287/* Legacy alias */ 288#define BPF_STX_XADD(SIZE, DST, SRC, OFF) BPF_ATOMIC_OP(SIZE, BPF_ADD, DST, SRC, OFF) 289 290/* Memory store, *(uint *) (dst_reg + off16) = imm32 */ 291 292#define BPF_ST_MEM(SIZE, DST, OFF, IMM) \ 293 ((struct bpf_insn) { \ 294 .code = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM, \ 295 .dst_reg = DST, \ 296 .src_reg = 0, \ 297 .off = OFF, \ 298 .imm = IMM }) 299 300/* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */ 301 302#define BPF_JMP_REG(OP, DST, SRC, OFF) \ 303 ((struct bpf_insn) { \ 304 .code = BPF_JMP | BPF_OP(OP) | BPF_X, \ 305 .dst_reg = DST, \ 306 .src_reg = SRC, \ 307 .off = OFF, \ 308 .imm = 0 }) 309 310/* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */ 311 312#define BPF_JMP_IMM(OP, DST, IMM, OFF) \ 313 ((struct bpf_insn) { \ 314 .code = BPF_JMP | BPF_OP(OP) | BPF_K, \ 315 .dst_reg = DST, \ 316 .src_reg = 0, \ 317 .off = OFF, \ 318 .imm = IMM }) 319 320/* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */ 321 322#define BPF_JMP32_REG(OP, DST, SRC, OFF) \ 323 ((struct bpf_insn) { \ 324 .code = BPF_JMP32 | BPF_OP(OP) | BPF_X, \ 325 .dst_reg = DST, \ 326 .src_reg = SRC, \ 327 .off = OFF, \ 328 .imm = 0 }) 329 330/* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */ 331 332#define BPF_JMP32_IMM(OP, DST, IMM, OFF) \ 333 ((struct bpf_insn) { \ 334 .code = BPF_JMP32 | BPF_OP(OP) | BPF_K, \ 335 .dst_reg = DST, \ 336 .src_reg = 0, \ 337 .off = OFF, \ 338 .imm = IMM }) 339 340/* Unconditional jumps, goto pc + off16 */ 341 342#define BPF_JMP_A(OFF) \ 343 ((struct bpf_insn) { \ 344 .code = BPF_JMP | BPF_JA, \ 345 .dst_reg = 0, \ 346 .src_reg = 0, \ 347 .off = OFF, \ 348 .imm = 0 }) 349 350/* Relative call */ 351 352#define BPF_CALL_REL(TGT) \ 353 ((struct bpf_insn) { \ 354 .code = BPF_JMP | BPF_CALL, \ 355 .dst_reg = 0, \ 356 .src_reg = BPF_PSEUDO_CALL, \ 357 .off = 0, \ 358 .imm = TGT }) 359 360/* Function call */ 361 362#define BPF_CAST_CALL(x) \ 363 ((u64 (*)(u64, u64, u64, u64, u64))(x)) 364 365#define BPF_EMIT_CALL(FUNC) \ 366 ((struct bpf_insn) { \ 367 .code = BPF_JMP | BPF_CALL, \ 368 .dst_reg = 0, \ 369 .src_reg = 0, \ 370 .off = 0, \ 371 .imm = ((FUNC) - __bpf_call_base) }) 372 373/* Raw code statement block */ 374 375#define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM) \ 376 ((struct bpf_insn) { \ 377 .code = CODE, \ 378 .dst_reg = DST, \ 379 .src_reg = SRC, \ 380 .off = OFF, \ 381 .imm = IMM }) 382 383/* Program exit */ 384 385#define BPF_EXIT_INSN() \ 386 ((struct bpf_insn) { \ 387 .code = BPF_JMP | BPF_EXIT, \ 388 .dst_reg = 0, \ 389 .src_reg = 0, \ 390 .off = 0, \ 391 .imm = 0 }) 392 393/* Internal classic blocks for direct assignment */ 394 395#define __BPF_STMT(CODE, K) \ 396 ((struct sock_filter) BPF_STMT(CODE, K)) 397 398#define __BPF_JUMP(CODE, K, JT, JF) \ 399 ((struct sock_filter) BPF_JUMP(CODE, K, JT, JF)) 400 401#define bytes_to_bpf_size(bytes) \ 402({ \ 403 int bpf_size = -EINVAL; \ 404 \ 405 if (bytes == sizeof(u8)) \ 406 bpf_size = BPF_B; \ 407 else if (bytes == sizeof(u16)) \ 408 bpf_size = BPF_H; \ 409 else if (bytes == sizeof(u32)) \ 410 bpf_size = BPF_W; \ 411 else if (bytes == sizeof(u64)) \ 412 bpf_size = BPF_DW; \ 413 \ 414 bpf_size; \ 415}) 416 417#define bpf_size_to_bytes(bpf_size) \ 418({ \ 419 int bytes = -EINVAL; \ 420 \ 421 if (bpf_size == BPF_B) \ 422 bytes = sizeof(u8); \ 423 else if (bpf_size == BPF_H) \ 424 bytes = sizeof(u16); \ 425 else if (bpf_size == BPF_W) \ 426 bytes = sizeof(u32); \ 427 else if (bpf_size == BPF_DW) \ 428 bytes = sizeof(u64); \ 429 \ 430 bytes; \ 431}) 432 433#define BPF_SIZEOF(type) \ 434 ({ \ 435 const int __size = bytes_to_bpf_size(sizeof(type)); \ 436 BUILD_BUG_ON(__size < 0); \ 437 __size; \ 438 }) 439 440#define BPF_FIELD_SIZEOF(type, field) \ 441 ({ \ 442 const int __size = bytes_to_bpf_size(sizeof_field(type, field)); \ 443 BUILD_BUG_ON(__size < 0); \ 444 __size; \ 445 }) 446 447#define BPF_LDST_BYTES(insn) \ 448 ({ \ 449 const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \ 450 WARN_ON(__size < 0); \ 451 __size; \ 452 }) 453 454#define __BPF_MAP_0(m, v, ...) v 455#define __BPF_MAP_1(m, v, t, a, ...) m(t, a) 456#define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__) 457#define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__) 458#define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__) 459#define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__) 460 461#define __BPF_REG_0(...) __BPF_PAD(5) 462#define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4) 463#define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3) 464#define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2) 465#define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1) 466#define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__) 467 468#define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__) 469#define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__) 470 471#define __BPF_CAST(t, a) \ 472 (__force t) \ 473 (__force \ 474 typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long), \ 475 (unsigned long)0, (t)0))) a 476#define __BPF_V void 477#define __BPF_N 478 479#define __BPF_DECL_ARGS(t, a) t a 480#define __BPF_DECL_REGS(t, a) u64 a 481 482#define __BPF_PAD(n) \ 483 __BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2, \ 484 u64, __ur_3, u64, __ur_4, u64, __ur_5) 485 486#define BPF_CALL_x(x, name, ...) \ 487 static __always_inline \ 488 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \ 489 typedef u64 (*btf_##name)(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \ 490 u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)); \ 491 u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)) \ 492 { \ 493 return ((btf_##name)____##name)(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\ 494 } \ 495 static __always_inline \ 496 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)) 497 498#define BPF_CALL_0(name, ...) BPF_CALL_x(0, name, __VA_ARGS__) 499#define BPF_CALL_1(name, ...) BPF_CALL_x(1, name, __VA_ARGS__) 500#define BPF_CALL_2(name, ...) BPF_CALL_x(2, name, __VA_ARGS__) 501#define BPF_CALL_3(name, ...) BPF_CALL_x(3, name, __VA_ARGS__) 502#define BPF_CALL_4(name, ...) BPF_CALL_x(4, name, __VA_ARGS__) 503#define BPF_CALL_5(name, ...) BPF_CALL_x(5, name, __VA_ARGS__) 504 505#define bpf_ctx_range(TYPE, MEMBER) \ 506 offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1 507#define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2) \ 508 offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1 509#if BITS_PER_LONG == 64 510# define bpf_ctx_range_ptr(TYPE, MEMBER) \ 511 offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1 512#else 513# define bpf_ctx_range_ptr(TYPE, MEMBER) \ 514 offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1 515#endif /* BITS_PER_LONG == 64 */ 516 517#define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE) \ 518 ({ \ 519 BUILD_BUG_ON(sizeof_field(TYPE, MEMBER) != (SIZE)); \ 520 *(PTR_SIZE) = (SIZE); \ 521 offsetof(TYPE, MEMBER); \ 522 }) 523 524/* A struct sock_filter is architecture independent. */ 525struct compat_sock_fprog { 526 u16 len; 527 compat_uptr_t filter; /* struct sock_filter * */ 528}; 529 530struct sock_fprog_kern { 531 u16 len; 532 struct sock_filter *filter; 533}; 534 535/* Some arches need doubleword alignment for their instructions and/or data */ 536#define BPF_IMAGE_ALIGNMENT 8 537 538struct bpf_binary_header { 539 u32 pages; 540 u8 image[] __aligned(BPF_IMAGE_ALIGNMENT); 541}; 542 543struct bpf_prog_stats { 544 u64 cnt; 545 u64 nsecs; 546 u64 misses; 547 struct u64_stats_sync syncp; 548} __aligned(2 * sizeof(u64)); 549 550struct bpf_prog { 551 u16 pages; /* Number of allocated pages */ 552 u16 jited:1, /* Is our filter JIT'ed? */ 553 jit_requested:1,/* archs need to JIT the prog */ 554 gpl_compatible:1, /* Is filter GPL compatible? */ 555 cb_access:1, /* Is control block accessed? */ 556 dst_needed:1, /* Do we need dst entry? */ 557 blinded:1, /* Was blinded */ 558 is_func:1, /* program is a bpf function */ 559 kprobe_override:1, /* Do we override a kprobe? */ 560 has_callchain_buf:1, /* callchain buffer allocated? */ 561 enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */ 562 call_get_stack:1; /* Do we call bpf_get_stack() or bpf_get_stackid() */ 563 enum bpf_prog_type type; /* Type of BPF program */ 564 enum bpf_attach_type expected_attach_type; /* For some prog types */ 565 u32 len; /* Number of filter blocks */ 566 u32 jited_len; /* Size of jited insns in bytes */ 567 u8 tag[BPF_TAG_SIZE]; 568 struct bpf_prog_stats __percpu *stats; 569 int __percpu *active; 570 unsigned int (*bpf_func)(const void *ctx, 571 const struct bpf_insn *insn); 572 struct bpf_prog_aux *aux; /* Auxiliary fields */ 573 struct sock_fprog_kern *orig_prog; /* Original BPF program */ 574 /* Instructions for interpreter */ 575 struct sock_filter insns[0]; 576 struct bpf_insn insnsi[]; 577}; 578 579struct sk_filter { 580 refcount_t refcnt; 581 struct rcu_head rcu; 582 struct bpf_prog *prog; 583}; 584 585DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key); 586 587#define __BPF_PROG_RUN(prog, ctx, dfunc) ({ \ 588 u32 __ret; \ 589 cant_migrate(); \ 590 if (static_branch_unlikely(&bpf_stats_enabled_key)) { \ 591 struct bpf_prog_stats *__stats; \ 592 u64 __start = sched_clock(); \ 593 __ret = dfunc(ctx, (prog)->insnsi, (prog)->bpf_func); \ 594 __stats = this_cpu_ptr(prog->stats); \ 595 u64_stats_update_begin(&__stats->syncp); \ 596 __stats->cnt++; \ 597 __stats->nsecs += sched_clock() - __start; \ 598 u64_stats_update_end(&__stats->syncp); \ 599 } else { \ 600 __ret = dfunc(ctx, (prog)->insnsi, (prog)->bpf_func); \ 601 } \ 602 __ret; }) 603 604#define BPF_PROG_RUN(prog, ctx) \ 605 __BPF_PROG_RUN(prog, ctx, bpf_dispatcher_nop_func) 606 607/* 608 * Use in preemptible and therefore migratable context to make sure that 609 * the execution of the BPF program runs on one CPU. 610 * 611 * This uses migrate_disable/enable() explicitly to document that the 612 * invocation of a BPF program does not require reentrancy protection 613 * against a BPF program which is invoked from a preempting task. 614 * 615 * For non RT enabled kernels migrate_disable/enable() maps to 616 * preempt_disable/enable(), i.e. it disables also preemption. 617 */ 618static inline u32 bpf_prog_run_pin_on_cpu(const struct bpf_prog *prog, 619 const void *ctx) 620{ 621 u32 ret; 622 623 migrate_disable(); 624 ret = __BPF_PROG_RUN(prog, ctx, bpf_dispatcher_nop_func); 625 migrate_enable(); 626 return ret; 627} 628 629#define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN 630 631struct bpf_skb_data_end { 632 struct qdisc_skb_cb qdisc_cb; 633 void *data_meta; 634 void *data_end; 635}; 636 637struct bpf_nh_params { 638 u32 nh_family; 639 union { 640 u32 ipv4_nh; 641 struct in6_addr ipv6_nh; 642 }; 643}; 644 645struct bpf_redirect_info { 646 u32 flags; 647 u32 tgt_index; 648 void *tgt_value; 649 struct bpf_map *map; 650 u32 kern_flags; 651 struct bpf_nh_params nh; 652}; 653 654DECLARE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info); 655 656/* flags for bpf_redirect_info kern_flags */ 657#define BPF_RI_F_RF_NO_DIRECT BIT(0) /* no napi_direct on return_frame */ 658 659/* Compute the linear packet data range [data, data_end) which 660 * will be accessed by various program types (cls_bpf, act_bpf, 661 * lwt, ...). Subsystems allowing direct data access must (!) 662 * ensure that cb[] area can be written to when BPF program is 663 * invoked (otherwise cb[] save/restore is necessary). 664 */ 665static inline void bpf_compute_data_pointers(struct sk_buff *skb) 666{ 667 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; 668 669 BUILD_BUG_ON(sizeof(*cb) > sizeof_field(struct sk_buff, cb)); 670 cb->data_meta = skb->data - skb_metadata_len(skb); 671 cb->data_end = skb->data + skb_headlen(skb); 672} 673 674/* Similar to bpf_compute_data_pointers(), except that save orginal 675 * data in cb->data and cb->meta_data for restore. 676 */ 677static inline void bpf_compute_and_save_data_end( 678 struct sk_buff *skb, void **saved_data_end) 679{ 680 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; 681 682 *saved_data_end = cb->data_end; 683 cb->data_end = skb->data + skb_headlen(skb); 684} 685 686/* Restore data saved by bpf_compute_data_pointers(). */ 687static inline void bpf_restore_data_end( 688 struct sk_buff *skb, void *saved_data_end) 689{ 690 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; 691 692 cb->data_end = saved_data_end; 693} 694 695static inline u8 *bpf_skb_cb(struct sk_buff *skb) 696{ 697 /* eBPF programs may read/write skb->cb[] area to transfer meta 698 * data between tail calls. Since this also needs to work with 699 * tc, that scratch memory is mapped to qdisc_skb_cb's data area. 700 * 701 * In some socket filter cases, the cb unfortunately needs to be 702 * saved/restored so that protocol specific skb->cb[] data won't 703 * be lost. In any case, due to unpriviledged eBPF programs 704 * attached to sockets, we need to clear the bpf_skb_cb() area 705 * to not leak previous contents to user space. 706 */ 707 BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != BPF_SKB_CB_LEN); 708 BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != 709 sizeof_field(struct qdisc_skb_cb, data)); 710 711 return qdisc_skb_cb(skb)->data; 712} 713 714/* Must be invoked with migration disabled */ 715static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog, 716 struct sk_buff *skb) 717{ 718 u8 *cb_data = bpf_skb_cb(skb); 719 u8 cb_saved[BPF_SKB_CB_LEN]; 720 u32 res; 721 722 if (unlikely(prog->cb_access)) { 723 memcpy(cb_saved, cb_data, sizeof(cb_saved)); 724 memset(cb_data, 0, sizeof(cb_saved)); 725 } 726 727 res = BPF_PROG_RUN(prog, skb); 728 729 if (unlikely(prog->cb_access)) 730 memcpy(cb_data, cb_saved, sizeof(cb_saved)); 731 732 return res; 733} 734 735static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog, 736 struct sk_buff *skb) 737{ 738 u32 res; 739 740 migrate_disable(); 741 res = __bpf_prog_run_save_cb(prog, skb); 742 migrate_enable(); 743 return res; 744} 745 746static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog, 747 struct sk_buff *skb) 748{ 749 u8 *cb_data = bpf_skb_cb(skb); 750 u32 res; 751 752 if (unlikely(prog->cb_access)) 753 memset(cb_data, 0, BPF_SKB_CB_LEN); 754 755 res = bpf_prog_run_pin_on_cpu(prog, skb); 756 return res; 757} 758 759DECLARE_BPF_DISPATCHER(xdp) 760 761static __always_inline u32 bpf_prog_run_xdp(const struct bpf_prog *prog, 762 struct xdp_buff *xdp) 763{ 764 /* Caller needs to hold rcu_read_lock() (!), otherwise program 765 * can be released while still running, or map elements could be 766 * freed early while still having concurrent users. XDP fastpath 767 * already takes rcu_read_lock() when fetching the program, so 768 * it's not necessary here anymore. 769 */ 770 return __BPF_PROG_RUN(prog, xdp, BPF_DISPATCHER_FUNC(xdp)); 771} 772 773void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog); 774 775static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog) 776{ 777 return prog->len * sizeof(struct bpf_insn); 778} 779 780static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog) 781{ 782 return round_up(bpf_prog_insn_size(prog) + 783 sizeof(__be64) + 1, SHA1_BLOCK_SIZE); 784} 785 786static inline unsigned int bpf_prog_size(unsigned int proglen) 787{ 788 return max(sizeof(struct bpf_prog), 789 offsetof(struct bpf_prog, insns[proglen])); 790} 791 792static inline bool bpf_prog_was_classic(const struct bpf_prog *prog) 793{ 794 /* When classic BPF programs have been loaded and the arch 795 * does not have a classic BPF JIT (anymore), they have been 796 * converted via bpf_migrate_filter() to eBPF and thus always 797 * have an unspec program type. 798 */ 799 return prog->type == BPF_PROG_TYPE_UNSPEC; 800} 801 802static inline u32 bpf_ctx_off_adjust_machine(u32 size) 803{ 804 const u32 size_machine = sizeof(unsigned long); 805 806 if (size > size_machine && size % size_machine == 0) 807 size = size_machine; 808 809 return size; 810} 811 812static inline bool 813bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default) 814{ 815 return size <= size_default && (size & (size - 1)) == 0; 816} 817 818static inline u8 819bpf_ctx_narrow_access_offset(u32 off, u32 size, u32 size_default) 820{ 821 u8 access_off = off & (size_default - 1); 822 823#ifdef __LITTLE_ENDIAN 824 return access_off; 825#else 826 return size_default - (access_off + size); 827#endif 828} 829 830#define bpf_ctx_wide_access_ok(off, size, type, field) \ 831 (size == sizeof(__u64) && \ 832 off >= offsetof(type, field) && \ 833 off + sizeof(__u64) <= offsetofend(type, field) && \ 834 off % sizeof(__u64) == 0) 835 836#define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0])) 837 838static inline void bpf_prog_lock_ro(struct bpf_prog *fp) 839{ 840#ifndef CONFIG_BPF_JIT_ALWAYS_ON 841 if (!fp->jited) { 842 set_vm_flush_reset_perms(fp); 843 set_memory_ro((unsigned long)fp, fp->pages); 844 } 845#endif 846} 847 848static inline void bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr) 849{ 850 set_vm_flush_reset_perms(hdr); 851 set_memory_ro((unsigned long)hdr, hdr->pages); 852 set_memory_x((unsigned long)hdr, hdr->pages); 853} 854 855static inline struct bpf_binary_header * 856bpf_jit_binary_hdr(const struct bpf_prog *fp) 857{ 858 unsigned long real_start = (unsigned long)fp->bpf_func; 859 unsigned long addr = real_start & PAGE_MASK; 860 861 return (void *)addr; 862} 863 864int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap); 865static inline int sk_filter(struct sock *sk, struct sk_buff *skb) 866{ 867 return sk_filter_trim_cap(sk, skb, 1); 868} 869 870struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err); 871void bpf_prog_free(struct bpf_prog *fp); 872 873bool bpf_opcode_in_insntable(u8 code); 874 875void bpf_prog_free_linfo(struct bpf_prog *prog); 876void bpf_prog_fill_jited_linfo(struct bpf_prog *prog, 877 const u32 *insn_to_jit_off); 878int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog); 879void bpf_prog_free_jited_linfo(struct bpf_prog *prog); 880void bpf_prog_free_unused_jited_linfo(struct bpf_prog *prog); 881 882struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags); 883struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags); 884struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size, 885 gfp_t gfp_extra_flags); 886void __bpf_prog_free(struct bpf_prog *fp); 887 888static inline void bpf_prog_unlock_free(struct bpf_prog *fp) 889{ 890 __bpf_prog_free(fp); 891} 892 893typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter, 894 unsigned int flen); 895 896int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog); 897int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog, 898 bpf_aux_classic_check_t trans, bool save_orig); 899void bpf_prog_destroy(struct bpf_prog *fp); 900 901int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk); 902int sk_attach_bpf(u32 ufd, struct sock *sk); 903int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk); 904int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk); 905void sk_reuseport_prog_free(struct bpf_prog *prog); 906int sk_detach_filter(struct sock *sk); 907int sk_get_filter(struct sock *sk, struct sock_filter __user *filter, 908 unsigned int len); 909 910bool sk_filter_charge(struct sock *sk, struct sk_filter *fp); 911void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp); 912 913u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 914#define __bpf_call_base_args \ 915 ((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \ 916 (void *)__bpf_call_base) 917 918struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog); 919void bpf_jit_compile(struct bpf_prog *prog); 920bool bpf_jit_needs_zext(void); 921bool bpf_helper_changes_pkt_data(void *func); 922 923static inline bool bpf_dump_raw_ok(const struct cred *cred) 924{ 925 /* Reconstruction of call-sites is dependent on kallsyms, 926 * thus make dump the same restriction. 927 */ 928 return kallsyms_show_value(cred); 929} 930 931struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off, 932 const struct bpf_insn *patch, u32 len); 933int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt); 934 935void bpf_clear_redirect_map(struct bpf_map *map); 936 937static inline bool xdp_return_frame_no_direct(void) 938{ 939 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); 940 941 return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT; 942} 943 944static inline void xdp_set_return_frame_no_direct(void) 945{ 946 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); 947 948 ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT; 949} 950 951static inline void xdp_clear_return_frame_no_direct(void) 952{ 953 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); 954 955 ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT; 956} 957 958static inline int xdp_ok_fwd_dev(const struct net_device *fwd, 959 unsigned int pktlen) 960{ 961 unsigned int len; 962 963 if (unlikely(!(fwd->flags & IFF_UP))) 964 return -ENETDOWN; 965 966 len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN; 967 if (pktlen > len) 968 return -EMSGSIZE; 969 970 return 0; 971} 972 973/* The pair of xdp_do_redirect and xdp_do_flush MUST be called in the 974 * same cpu context. Further for best results no more than a single map 975 * for the do_redirect/do_flush pair should be used. This limitation is 976 * because we only track one map and force a flush when the map changes. 977 * This does not appear to be a real limitation for existing software. 978 */ 979int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb, 980 struct xdp_buff *xdp, struct bpf_prog *prog); 981int xdp_do_redirect(struct net_device *dev, 982 struct xdp_buff *xdp, 983 struct bpf_prog *prog); 984void xdp_do_flush(void); 985 986/* The xdp_do_flush_map() helper has been renamed to drop the _map suffix, as 987 * it is no longer only flushing maps. Keep this define for compatibility 988 * until all drivers are updated - do not use xdp_do_flush_map() in new code! 989 */ 990#define xdp_do_flush_map xdp_do_flush 991 992void bpf_warn_invalid_xdp_action(u32 act); 993 994#ifdef CONFIG_INET 995struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk, 996 struct bpf_prog *prog, struct sk_buff *skb, 997 u32 hash); 998#else 999static inline struct sock * 1000bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk, 1001 struct bpf_prog *prog, struct sk_buff *skb, 1002 u32 hash) 1003{ 1004 return NULL; 1005} 1006#endif 1007 1008#ifdef CONFIG_BPF_JIT 1009extern int bpf_jit_enable; 1010extern int bpf_jit_harden; 1011extern int bpf_jit_kallsyms; 1012extern long bpf_jit_limit; 1013 1014typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size); 1015 1016struct bpf_binary_header * 1017bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr, 1018 unsigned int alignment, 1019 bpf_jit_fill_hole_t bpf_fill_ill_insns); 1020void bpf_jit_binary_free(struct bpf_binary_header *hdr); 1021u64 bpf_jit_alloc_exec_limit(void); 1022void *bpf_jit_alloc_exec(unsigned long size); 1023void bpf_jit_free_exec(void *addr); 1024void bpf_jit_free(struct bpf_prog *fp); 1025 1026int bpf_jit_add_poke_descriptor(struct bpf_prog *prog, 1027 struct bpf_jit_poke_descriptor *poke); 1028 1029int bpf_jit_get_func_addr(const struct bpf_prog *prog, 1030 const struct bpf_insn *insn, bool extra_pass, 1031 u64 *func_addr, bool *func_addr_fixed); 1032 1033struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp); 1034void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other); 1035 1036static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen, 1037 u32 pass, void *image) 1038{ 1039 pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen, 1040 proglen, pass, image, current->comm, task_pid_nr(current)); 1041 1042 if (image) 1043 print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET, 1044 16, 1, image, proglen, false); 1045} 1046 1047static inline bool bpf_jit_is_ebpf(void) 1048{ 1049# ifdef CONFIG_HAVE_EBPF_JIT 1050 return true; 1051# else 1052 return false; 1053# endif 1054} 1055 1056static inline bool ebpf_jit_enabled(void) 1057{ 1058 return bpf_jit_enable && bpf_jit_is_ebpf(); 1059} 1060 1061static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp) 1062{ 1063 return fp->jited && bpf_jit_is_ebpf(); 1064} 1065 1066static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog) 1067{ 1068 /* These are the prerequisites, should someone ever have the 1069 * idea to call blinding outside of them, we make sure to 1070 * bail out. 1071 */ 1072 if (!bpf_jit_is_ebpf()) 1073 return false; 1074 if (!prog->jit_requested) 1075 return false; 1076 if (!bpf_jit_harden) 1077 return false; 1078 if (bpf_jit_harden == 1 && capable(CAP_SYS_ADMIN)) 1079 return false; 1080 1081 return true; 1082} 1083 1084static inline bool bpf_jit_kallsyms_enabled(void) 1085{ 1086 /* There are a couple of corner cases where kallsyms should 1087 * not be enabled f.e. on hardening. 1088 */ 1089 if (bpf_jit_harden) 1090 return false; 1091 if (!bpf_jit_kallsyms) 1092 return false; 1093 if (bpf_jit_kallsyms == 1) 1094 return true; 1095 1096 return false; 1097} 1098 1099const char *__bpf_address_lookup(unsigned long addr, unsigned long *size, 1100 unsigned long *off, char *sym); 1101bool is_bpf_text_address(unsigned long addr); 1102int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type, 1103 char *sym); 1104 1105static inline const char * 1106bpf_address_lookup(unsigned long addr, unsigned long *size, 1107 unsigned long *off, char **modname, char *sym) 1108{ 1109 const char *ret = __bpf_address_lookup(addr, size, off, sym); 1110 1111 if (ret && modname) 1112 *modname = NULL; 1113 return ret; 1114} 1115 1116void bpf_prog_kallsyms_add(struct bpf_prog *fp); 1117void bpf_prog_kallsyms_del(struct bpf_prog *fp); 1118 1119#else /* CONFIG_BPF_JIT */ 1120 1121static inline bool ebpf_jit_enabled(void) 1122{ 1123 return false; 1124} 1125 1126static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog) 1127{ 1128 return false; 1129} 1130 1131static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp) 1132{ 1133 return false; 1134} 1135 1136static inline int 1137bpf_jit_add_poke_descriptor(struct bpf_prog *prog, 1138 struct bpf_jit_poke_descriptor *poke) 1139{ 1140 return -ENOTSUPP; 1141} 1142 1143static inline void bpf_jit_free(struct bpf_prog *fp) 1144{ 1145 bpf_prog_unlock_free(fp); 1146} 1147 1148static inline bool bpf_jit_kallsyms_enabled(void) 1149{ 1150 return false; 1151} 1152 1153static inline const char * 1154__bpf_address_lookup(unsigned long addr, unsigned long *size, 1155 unsigned long *off, char *sym) 1156{ 1157 return NULL; 1158} 1159 1160static inline bool is_bpf_text_address(unsigned long addr) 1161{ 1162 return false; 1163} 1164 1165static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value, 1166 char *type, char *sym) 1167{ 1168 return -ERANGE; 1169} 1170 1171static inline const char * 1172bpf_address_lookup(unsigned long addr, unsigned long *size, 1173 unsigned long *off, char **modname, char *sym) 1174{ 1175 return NULL; 1176} 1177 1178static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp) 1179{ 1180} 1181 1182static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp) 1183{ 1184} 1185 1186#endif /* CONFIG_BPF_JIT */ 1187 1188void bpf_prog_kallsyms_del_all(struct bpf_prog *fp); 1189 1190#define BPF_ANC BIT(15) 1191 1192static inline bool bpf_needs_clear_a(const struct sock_filter *first) 1193{ 1194 switch (first->code) { 1195 case BPF_RET | BPF_K: 1196 case BPF_LD | BPF_W | BPF_LEN: 1197 return false; 1198 1199 case BPF_LD | BPF_W | BPF_ABS: 1200 case BPF_LD | BPF_H | BPF_ABS: 1201 case BPF_LD | BPF_B | BPF_ABS: 1202 if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X) 1203 return true; 1204 return false; 1205 1206 default: 1207 return true; 1208 } 1209} 1210 1211static inline u16 bpf_anc_helper(const struct sock_filter *ftest) 1212{ 1213 BUG_ON(ftest->code & BPF_ANC); 1214 1215 switch (ftest->code) { 1216 case BPF_LD | BPF_W | BPF_ABS: 1217 case BPF_LD | BPF_H | BPF_ABS: 1218 case BPF_LD | BPF_B | BPF_ABS: 1219#define BPF_ANCILLARY(CODE) case SKF_AD_OFF + SKF_AD_##CODE: \ 1220 return BPF_ANC | SKF_AD_##CODE 1221 switch (ftest->k) { 1222 BPF_ANCILLARY(PROTOCOL); 1223 BPF_ANCILLARY(PKTTYPE); 1224 BPF_ANCILLARY(IFINDEX); 1225 BPF_ANCILLARY(NLATTR); 1226 BPF_ANCILLARY(NLATTR_NEST); 1227 BPF_ANCILLARY(MARK); 1228 BPF_ANCILLARY(QUEUE); 1229 BPF_ANCILLARY(HATYPE); 1230 BPF_ANCILLARY(RXHASH); 1231 BPF_ANCILLARY(CPU); 1232 BPF_ANCILLARY(ALU_XOR_X); 1233 BPF_ANCILLARY(VLAN_TAG); 1234 BPF_ANCILLARY(VLAN_TAG_PRESENT); 1235 BPF_ANCILLARY(PAY_OFFSET); 1236 BPF_ANCILLARY(RANDOM); 1237 BPF_ANCILLARY(VLAN_TPID); 1238 } 1239 fallthrough; 1240 default: 1241 return ftest->code; 1242 } 1243} 1244 1245void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, 1246 int k, unsigned int size); 1247 1248static inline void *bpf_load_pointer(const struct sk_buff *skb, int k, 1249 unsigned int size, void *buffer) 1250{ 1251 if (k >= 0) 1252 return skb_header_pointer(skb, k, size, buffer); 1253 1254 return bpf_internal_load_pointer_neg_helper(skb, k, size); 1255} 1256 1257static inline int bpf_tell_extensions(void) 1258{ 1259 return SKF_AD_MAX; 1260} 1261 1262struct bpf_sock_addr_kern { 1263 struct sock *sk; 1264 struct sockaddr *uaddr; 1265 /* Temporary "register" to make indirect stores to nested structures 1266 * defined above. We need three registers to make such a store, but 1267 * only two (src and dst) are available at convert_ctx_access time 1268 */ 1269 u64 tmp_reg; 1270 void *t_ctx; /* Attach type specific context. */ 1271}; 1272 1273struct bpf_sock_ops_kern { 1274 struct sock *sk; 1275 union { 1276 u32 args[4]; 1277 u32 reply; 1278 u32 replylong[4]; 1279 }; 1280 struct sk_buff *syn_skb; 1281 struct sk_buff *skb; 1282 void *skb_data_end; 1283 u8 op; 1284 u8 is_fullsock; 1285 u8 remaining_opt_len; 1286 u64 temp; /* temp and everything after is not 1287 * initialized to 0 before calling 1288 * the BPF program. New fields that 1289 * should be initialized to 0 should 1290 * be inserted before temp. 1291 * temp is scratch storage used by 1292 * sock_ops_convert_ctx_access 1293 * as temporary storage of a register. 1294 */ 1295}; 1296 1297struct bpf_sysctl_kern { 1298 struct ctl_table_header *head; 1299 struct ctl_table *table; 1300 void *cur_val; 1301 size_t cur_len; 1302 void *new_val; 1303 size_t new_len; 1304 int new_updated; 1305 int write; 1306 loff_t *ppos; 1307 /* Temporary "register" for indirect stores to ppos. */ 1308 u64 tmp_reg; 1309}; 1310 1311#define BPF_SOCKOPT_KERN_BUF_SIZE 32 1312struct bpf_sockopt_buf { 1313 u8 data[BPF_SOCKOPT_KERN_BUF_SIZE]; 1314}; 1315 1316struct bpf_sockopt_kern { 1317 struct sock *sk; 1318 u8 *optval; 1319 u8 *optval_end; 1320 s32 level; 1321 s32 optname; 1322 s32 optlen; 1323 s32 retval; 1324}; 1325 1326int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len); 1327 1328struct bpf_sk_lookup_kern { 1329 u16 family; 1330 u16 protocol; 1331 __be16 sport; 1332 u16 dport; 1333 struct { 1334 __be32 saddr; 1335 __be32 daddr; 1336 } v4; 1337 struct { 1338 const struct in6_addr *saddr; 1339 const struct in6_addr *daddr; 1340 } v6; 1341 struct sock *selected_sk; 1342 bool no_reuseport; 1343}; 1344 1345extern struct static_key_false bpf_sk_lookup_enabled; 1346 1347/* Runners for BPF_SK_LOOKUP programs to invoke on socket lookup. 1348 * 1349 * Allowed return values for a BPF SK_LOOKUP program are SK_PASS and 1350 * SK_DROP. Their meaning is as follows: 1351 * 1352 * SK_PASS && ctx.selected_sk != NULL: use selected_sk as lookup result 1353 * SK_PASS && ctx.selected_sk == NULL: continue to htable-based socket lookup 1354 * SK_DROP : terminate lookup with -ECONNREFUSED 1355 * 1356 * This macro aggregates return values and selected sockets from 1357 * multiple BPF programs according to following rules in order: 1358 * 1359 * 1. If any program returned SK_PASS and a non-NULL ctx.selected_sk, 1360 * macro result is SK_PASS and last ctx.selected_sk is used. 1361 * 2. If any program returned SK_DROP return value, 1362 * macro result is SK_DROP. 1363 * 3. Otherwise result is SK_PASS and ctx.selected_sk is NULL. 1364 * 1365 * Caller must ensure that the prog array is non-NULL, and that the 1366 * array as well as the programs it contains remain valid. 1367 */ 1368#define BPF_PROG_SK_LOOKUP_RUN_ARRAY(array, ctx, func) \ 1369 ({ \ 1370 struct bpf_sk_lookup_kern *_ctx = &(ctx); \ 1371 struct bpf_prog_array_item *_item; \ 1372 struct sock *_selected_sk = NULL; \ 1373 bool _no_reuseport = false; \ 1374 struct bpf_prog *_prog; \ 1375 bool _all_pass = true; \ 1376 u32 _ret; \ 1377 \ 1378 migrate_disable(); \ 1379 _item = &(array)->items[0]; \ 1380 while ((_prog = READ_ONCE(_item->prog))) { \ 1381 /* restore most recent selection */ \ 1382 _ctx->selected_sk = _selected_sk; \ 1383 _ctx->no_reuseport = _no_reuseport; \ 1384 \ 1385 _ret = func(_prog, _ctx); \ 1386 if (_ret == SK_PASS && _ctx->selected_sk) { \ 1387 /* remember last non-NULL socket */ \ 1388 _selected_sk = _ctx->selected_sk; \ 1389 _no_reuseport = _ctx->no_reuseport; \ 1390 } else if (_ret == SK_DROP && _all_pass) { \ 1391 _all_pass = false; \ 1392 } \ 1393 _item++; \ 1394 } \ 1395 _ctx->selected_sk = _selected_sk; \ 1396 _ctx->no_reuseport = _no_reuseport; \ 1397 migrate_enable(); \ 1398 _all_pass || _selected_sk ? SK_PASS : SK_DROP; \ 1399 }) 1400 1401static inline bool bpf_sk_lookup_run_v4(struct net *net, int protocol, 1402 const __be32 saddr, const __be16 sport, 1403 const __be32 daddr, const u16 dport, 1404 struct sock **psk) 1405{ 1406 struct bpf_prog_array *run_array; 1407 struct sock *selected_sk = NULL; 1408 bool no_reuseport = false; 1409 1410 rcu_read_lock(); 1411 run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]); 1412 if (run_array) { 1413 struct bpf_sk_lookup_kern ctx = { 1414 .family = AF_INET, 1415 .protocol = protocol, 1416 .v4.saddr = saddr, 1417 .v4.daddr = daddr, 1418 .sport = sport, 1419 .dport = dport, 1420 }; 1421 u32 act; 1422 1423 act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, BPF_PROG_RUN); 1424 if (act == SK_PASS) { 1425 selected_sk = ctx.selected_sk; 1426 no_reuseport = ctx.no_reuseport; 1427 } else { 1428 selected_sk = ERR_PTR(-ECONNREFUSED); 1429 } 1430 } 1431 rcu_read_unlock(); 1432 *psk = selected_sk; 1433 return no_reuseport; 1434} 1435 1436#if IS_ENABLED(CONFIG_IPV6) 1437static inline bool bpf_sk_lookup_run_v6(struct net *net, int protocol, 1438 const struct in6_addr *saddr, 1439 const __be16 sport, 1440 const struct in6_addr *daddr, 1441 const u16 dport, 1442 struct sock **psk) 1443{ 1444 struct bpf_prog_array *run_array; 1445 struct sock *selected_sk = NULL; 1446 bool no_reuseport = false; 1447 1448 rcu_read_lock(); 1449 run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]); 1450 if (run_array) { 1451 struct bpf_sk_lookup_kern ctx = { 1452 .family = AF_INET6, 1453 .protocol = protocol, 1454 .v6.saddr = saddr, 1455 .v6.daddr = daddr, 1456 .sport = sport, 1457 .dport = dport, 1458 }; 1459 u32 act; 1460 1461 act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, BPF_PROG_RUN); 1462 if (act == SK_PASS) { 1463 selected_sk = ctx.selected_sk; 1464 no_reuseport = ctx.no_reuseport; 1465 } else { 1466 selected_sk = ERR_PTR(-ECONNREFUSED); 1467 } 1468 } 1469 rcu_read_unlock(); 1470 *psk = selected_sk; 1471 return no_reuseport; 1472} 1473#endif /* IS_ENABLED(CONFIG_IPV6) */ 1474 1475#endif /* __LINUX_FILTER_H__ */