Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/fs/nfs/dir.c
4 *
5 * Copyright (C) 1992 Rick Sladkey
6 *
7 * nfs directory handling functions
8 *
9 * 10 Apr 1996 Added silly rename for unlink --okir
10 * 28 Sep 1996 Improved directory cache --okir
11 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
12 * Re-implemented silly rename for unlink, newly implemented
13 * silly rename for nfs_rename() following the suggestions
14 * of Olaf Kirch (okir) found in this file.
15 * Following Linus comments on my original hack, this version
16 * depends only on the dcache stuff and doesn't touch the inode
17 * layer (iput() and friends).
18 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
19 */
20
21#include <linux/module.h>
22#include <linux/time.h>
23#include <linux/errno.h>
24#include <linux/stat.h>
25#include <linux/fcntl.h>
26#include <linux/string.h>
27#include <linux/kernel.h>
28#include <linux/slab.h>
29#include <linux/mm.h>
30#include <linux/sunrpc/clnt.h>
31#include <linux/nfs_fs.h>
32#include <linux/nfs_mount.h>
33#include <linux/pagemap.h>
34#include <linux/pagevec.h>
35#include <linux/namei.h>
36#include <linux/mount.h>
37#include <linux/swap.h>
38#include <linux/sched.h>
39#include <linux/kmemleak.h>
40#include <linux/xattr.h>
41
42#include "delegation.h"
43#include "iostat.h"
44#include "internal.h"
45#include "fscache.h"
46
47#include "nfstrace.h"
48
49/* #define NFS_DEBUG_VERBOSE 1 */
50
51static int nfs_opendir(struct inode *, struct file *);
52static int nfs_closedir(struct inode *, struct file *);
53static int nfs_readdir(struct file *, struct dir_context *);
54static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
55static loff_t nfs_llseek_dir(struct file *, loff_t, int);
56static void nfs_readdir_clear_array(struct page*);
57
58const struct file_operations nfs_dir_operations = {
59 .llseek = nfs_llseek_dir,
60 .read = generic_read_dir,
61 .iterate_shared = nfs_readdir,
62 .open = nfs_opendir,
63 .release = nfs_closedir,
64 .fsync = nfs_fsync_dir,
65};
66
67const struct address_space_operations nfs_dir_aops = {
68 .freepage = nfs_readdir_clear_array,
69};
70
71static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir)
72{
73 struct nfs_inode *nfsi = NFS_I(dir);
74 struct nfs_open_dir_context *ctx;
75 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
76 if (ctx != NULL) {
77 ctx->duped = 0;
78 ctx->attr_gencount = nfsi->attr_gencount;
79 ctx->dir_cookie = 0;
80 ctx->dup_cookie = 0;
81 spin_lock(&dir->i_lock);
82 if (list_empty(&nfsi->open_files) &&
83 (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
84 nfs_set_cache_invalid(dir,
85 NFS_INO_INVALID_DATA |
86 NFS_INO_REVAL_FORCED);
87 list_add(&ctx->list, &nfsi->open_files);
88 spin_unlock(&dir->i_lock);
89 return ctx;
90 }
91 return ERR_PTR(-ENOMEM);
92}
93
94static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
95{
96 spin_lock(&dir->i_lock);
97 list_del(&ctx->list);
98 spin_unlock(&dir->i_lock);
99 kfree(ctx);
100}
101
102/*
103 * Open file
104 */
105static int
106nfs_opendir(struct inode *inode, struct file *filp)
107{
108 int res = 0;
109 struct nfs_open_dir_context *ctx;
110
111 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
112
113 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
114
115 ctx = alloc_nfs_open_dir_context(inode);
116 if (IS_ERR(ctx)) {
117 res = PTR_ERR(ctx);
118 goto out;
119 }
120 filp->private_data = ctx;
121out:
122 return res;
123}
124
125static int
126nfs_closedir(struct inode *inode, struct file *filp)
127{
128 put_nfs_open_dir_context(file_inode(filp), filp->private_data);
129 return 0;
130}
131
132struct nfs_cache_array_entry {
133 u64 cookie;
134 u64 ino;
135 const char *name;
136 unsigned int name_len;
137 unsigned char d_type;
138};
139
140struct nfs_cache_array {
141 u64 last_cookie;
142 unsigned int size;
143 unsigned char page_full : 1,
144 page_is_eof : 1,
145 cookies_are_ordered : 1;
146 struct nfs_cache_array_entry array[];
147};
148
149struct nfs_readdir_descriptor {
150 struct file *file;
151 struct page *page;
152 struct dir_context *ctx;
153 pgoff_t page_index;
154 u64 dir_cookie;
155 u64 last_cookie;
156 u64 dup_cookie;
157 loff_t current_index;
158 loff_t prev_index;
159
160 __be32 verf[NFS_DIR_VERIFIER_SIZE];
161 unsigned long dir_verifier;
162 unsigned long timestamp;
163 unsigned long gencount;
164 unsigned long attr_gencount;
165 unsigned int cache_entry_index;
166 signed char duped;
167 bool plus;
168 bool eof;
169};
170
171static void nfs_readdir_array_init(struct nfs_cache_array *array)
172{
173 memset(array, 0, sizeof(struct nfs_cache_array));
174}
175
176static void nfs_readdir_page_init_array(struct page *page, u64 last_cookie)
177{
178 struct nfs_cache_array *array;
179
180 array = kmap_atomic(page);
181 nfs_readdir_array_init(array);
182 array->last_cookie = last_cookie;
183 array->cookies_are_ordered = 1;
184 kunmap_atomic(array);
185}
186
187/*
188 * we are freeing strings created by nfs_add_to_readdir_array()
189 */
190static
191void nfs_readdir_clear_array(struct page *page)
192{
193 struct nfs_cache_array *array;
194 int i;
195
196 array = kmap_atomic(page);
197 for (i = 0; i < array->size; i++)
198 kfree(array->array[i].name);
199 nfs_readdir_array_init(array);
200 kunmap_atomic(array);
201}
202
203static struct page *
204nfs_readdir_page_array_alloc(u64 last_cookie, gfp_t gfp_flags)
205{
206 struct page *page = alloc_page(gfp_flags);
207 if (page)
208 nfs_readdir_page_init_array(page, last_cookie);
209 return page;
210}
211
212static void nfs_readdir_page_array_free(struct page *page)
213{
214 if (page) {
215 nfs_readdir_clear_array(page);
216 put_page(page);
217 }
218}
219
220static void nfs_readdir_array_set_eof(struct nfs_cache_array *array)
221{
222 array->page_is_eof = 1;
223 array->page_full = 1;
224}
225
226static bool nfs_readdir_array_is_full(struct nfs_cache_array *array)
227{
228 return array->page_full;
229}
230
231/*
232 * the caller is responsible for freeing qstr.name
233 * when called by nfs_readdir_add_to_array, the strings will be freed in
234 * nfs_clear_readdir_array()
235 */
236static const char *nfs_readdir_copy_name(const char *name, unsigned int len)
237{
238 const char *ret = kmemdup_nul(name, len, GFP_KERNEL);
239
240 /*
241 * Avoid a kmemleak false positive. The pointer to the name is stored
242 * in a page cache page which kmemleak does not scan.
243 */
244 if (ret != NULL)
245 kmemleak_not_leak(ret);
246 return ret;
247}
248
249/*
250 * Check that the next array entry lies entirely within the page bounds
251 */
252static int nfs_readdir_array_can_expand(struct nfs_cache_array *array)
253{
254 struct nfs_cache_array_entry *cache_entry;
255
256 if (array->page_full)
257 return -ENOSPC;
258 cache_entry = &array->array[array->size + 1];
259 if ((char *)cache_entry - (char *)array > PAGE_SIZE) {
260 array->page_full = 1;
261 return -ENOSPC;
262 }
263 return 0;
264}
265
266static
267int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
268{
269 struct nfs_cache_array *array;
270 struct nfs_cache_array_entry *cache_entry;
271 const char *name;
272 int ret;
273
274 name = nfs_readdir_copy_name(entry->name, entry->len);
275 if (!name)
276 return -ENOMEM;
277
278 array = kmap_atomic(page);
279 ret = nfs_readdir_array_can_expand(array);
280 if (ret) {
281 kfree(name);
282 goto out;
283 }
284
285 cache_entry = &array->array[array->size];
286 cache_entry->cookie = entry->prev_cookie;
287 cache_entry->ino = entry->ino;
288 cache_entry->d_type = entry->d_type;
289 cache_entry->name_len = entry->len;
290 cache_entry->name = name;
291 array->last_cookie = entry->cookie;
292 if (array->last_cookie <= cache_entry->cookie)
293 array->cookies_are_ordered = 0;
294 array->size++;
295 if (entry->eof != 0)
296 nfs_readdir_array_set_eof(array);
297out:
298 kunmap_atomic(array);
299 return ret;
300}
301
302static struct page *nfs_readdir_page_get_locked(struct address_space *mapping,
303 pgoff_t index, u64 last_cookie)
304{
305 struct page *page;
306
307 page = grab_cache_page(mapping, index);
308 if (page && !PageUptodate(page)) {
309 nfs_readdir_page_init_array(page, last_cookie);
310 if (invalidate_inode_pages2_range(mapping, index + 1, -1) < 0)
311 nfs_zap_mapping(mapping->host, mapping);
312 SetPageUptodate(page);
313 }
314
315 return page;
316}
317
318static u64 nfs_readdir_page_last_cookie(struct page *page)
319{
320 struct nfs_cache_array *array;
321 u64 ret;
322
323 array = kmap_atomic(page);
324 ret = array->last_cookie;
325 kunmap_atomic(array);
326 return ret;
327}
328
329static bool nfs_readdir_page_needs_filling(struct page *page)
330{
331 struct nfs_cache_array *array;
332 bool ret;
333
334 array = kmap_atomic(page);
335 ret = !nfs_readdir_array_is_full(array);
336 kunmap_atomic(array);
337 return ret;
338}
339
340static void nfs_readdir_page_set_eof(struct page *page)
341{
342 struct nfs_cache_array *array;
343
344 array = kmap_atomic(page);
345 nfs_readdir_array_set_eof(array);
346 kunmap_atomic(array);
347}
348
349static void nfs_readdir_page_unlock_and_put(struct page *page)
350{
351 unlock_page(page);
352 put_page(page);
353}
354
355static struct page *nfs_readdir_page_get_next(struct address_space *mapping,
356 pgoff_t index, u64 cookie)
357{
358 struct page *page;
359
360 page = nfs_readdir_page_get_locked(mapping, index, cookie);
361 if (page) {
362 if (nfs_readdir_page_last_cookie(page) == cookie)
363 return page;
364 nfs_readdir_page_unlock_and_put(page);
365 }
366 return NULL;
367}
368
369static inline
370int is_32bit_api(void)
371{
372#ifdef CONFIG_COMPAT
373 return in_compat_syscall();
374#else
375 return (BITS_PER_LONG == 32);
376#endif
377}
378
379static
380bool nfs_readdir_use_cookie(const struct file *filp)
381{
382 if ((filp->f_mode & FMODE_32BITHASH) ||
383 (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
384 return false;
385 return true;
386}
387
388static int nfs_readdir_search_for_pos(struct nfs_cache_array *array,
389 struct nfs_readdir_descriptor *desc)
390{
391 loff_t diff = desc->ctx->pos - desc->current_index;
392 unsigned int index;
393
394 if (diff < 0)
395 goto out_eof;
396 if (diff >= array->size) {
397 if (array->page_is_eof)
398 goto out_eof;
399 return -EAGAIN;
400 }
401
402 index = (unsigned int)diff;
403 desc->dir_cookie = array->array[index].cookie;
404 desc->cache_entry_index = index;
405 return 0;
406out_eof:
407 desc->eof = true;
408 return -EBADCOOKIE;
409}
410
411static bool
412nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
413{
414 if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
415 return false;
416 smp_rmb();
417 return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
418}
419
420static bool nfs_readdir_array_cookie_in_range(struct nfs_cache_array *array,
421 u64 cookie)
422{
423 if (!array->cookies_are_ordered)
424 return true;
425 /* Optimisation for monotonically increasing cookies */
426 if (cookie >= array->last_cookie)
427 return false;
428 if (array->size && cookie < array->array[0].cookie)
429 return false;
430 return true;
431}
432
433static int nfs_readdir_search_for_cookie(struct nfs_cache_array *array,
434 struct nfs_readdir_descriptor *desc)
435{
436 int i;
437 loff_t new_pos;
438 int status = -EAGAIN;
439
440 if (!nfs_readdir_array_cookie_in_range(array, desc->dir_cookie))
441 goto check_eof;
442
443 for (i = 0; i < array->size; i++) {
444 if (array->array[i].cookie == desc->dir_cookie) {
445 struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
446
447 new_pos = desc->current_index + i;
448 if (desc->attr_gencount != nfsi->attr_gencount ||
449 !nfs_readdir_inode_mapping_valid(nfsi)) {
450 desc->duped = 0;
451 desc->attr_gencount = nfsi->attr_gencount;
452 } else if (new_pos < desc->prev_index) {
453 if (desc->duped > 0
454 && desc->dup_cookie == desc->dir_cookie) {
455 if (printk_ratelimit()) {
456 pr_notice("NFS: directory %pD2 contains a readdir loop."
457 "Please contact your server vendor. "
458 "The file: %s has duplicate cookie %llu\n",
459 desc->file, array->array[i].name, desc->dir_cookie);
460 }
461 status = -ELOOP;
462 goto out;
463 }
464 desc->dup_cookie = desc->dir_cookie;
465 desc->duped = -1;
466 }
467 if (nfs_readdir_use_cookie(desc->file))
468 desc->ctx->pos = desc->dir_cookie;
469 else
470 desc->ctx->pos = new_pos;
471 desc->prev_index = new_pos;
472 desc->cache_entry_index = i;
473 return 0;
474 }
475 }
476check_eof:
477 if (array->page_is_eof) {
478 status = -EBADCOOKIE;
479 if (desc->dir_cookie == array->last_cookie)
480 desc->eof = true;
481 }
482out:
483 return status;
484}
485
486static int nfs_readdir_search_array(struct nfs_readdir_descriptor *desc)
487{
488 struct nfs_cache_array *array;
489 int status;
490
491 array = kmap_atomic(desc->page);
492
493 if (desc->dir_cookie == 0)
494 status = nfs_readdir_search_for_pos(array, desc);
495 else
496 status = nfs_readdir_search_for_cookie(array, desc);
497
498 if (status == -EAGAIN) {
499 desc->last_cookie = array->last_cookie;
500 desc->current_index += array->size;
501 desc->page_index++;
502 }
503 kunmap_atomic(array);
504 return status;
505}
506
507/* Fill a page with xdr information before transferring to the cache page */
508static int nfs_readdir_xdr_filler(struct nfs_readdir_descriptor *desc,
509 __be32 *verf, u64 cookie,
510 struct page **pages, size_t bufsize,
511 __be32 *verf_res)
512{
513 struct inode *inode = file_inode(desc->file);
514 struct nfs_readdir_arg arg = {
515 .dentry = file_dentry(desc->file),
516 .cred = desc->file->f_cred,
517 .verf = verf,
518 .cookie = cookie,
519 .pages = pages,
520 .page_len = bufsize,
521 .plus = desc->plus,
522 };
523 struct nfs_readdir_res res = {
524 .verf = verf_res,
525 };
526 unsigned long timestamp, gencount;
527 int error;
528
529 again:
530 timestamp = jiffies;
531 gencount = nfs_inc_attr_generation_counter();
532 desc->dir_verifier = nfs_save_change_attribute(inode);
533 error = NFS_PROTO(inode)->readdir(&arg, &res);
534 if (error < 0) {
535 /* We requested READDIRPLUS, but the server doesn't grok it */
536 if (error == -ENOTSUPP && desc->plus) {
537 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
538 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
539 desc->plus = arg.plus = false;
540 goto again;
541 }
542 goto error;
543 }
544 desc->timestamp = timestamp;
545 desc->gencount = gencount;
546error:
547 return error;
548}
549
550static int xdr_decode(struct nfs_readdir_descriptor *desc,
551 struct nfs_entry *entry, struct xdr_stream *xdr)
552{
553 struct inode *inode = file_inode(desc->file);
554 int error;
555
556 error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus);
557 if (error)
558 return error;
559 entry->fattr->time_start = desc->timestamp;
560 entry->fattr->gencount = desc->gencount;
561 return 0;
562}
563
564/* Match file and dirent using either filehandle or fileid
565 * Note: caller is responsible for checking the fsid
566 */
567static
568int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
569{
570 struct inode *inode;
571 struct nfs_inode *nfsi;
572
573 if (d_really_is_negative(dentry))
574 return 0;
575
576 inode = d_inode(dentry);
577 if (is_bad_inode(inode) || NFS_STALE(inode))
578 return 0;
579
580 nfsi = NFS_I(inode);
581 if (entry->fattr->fileid != nfsi->fileid)
582 return 0;
583 if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
584 return 0;
585 return 1;
586}
587
588static
589bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
590{
591 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
592 return false;
593 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
594 return true;
595 if (ctx->pos == 0)
596 return true;
597 return false;
598}
599
600/*
601 * This function is called by the lookup and getattr code to request the
602 * use of readdirplus to accelerate any future lookups in the same
603 * directory.
604 */
605void nfs_advise_use_readdirplus(struct inode *dir)
606{
607 struct nfs_inode *nfsi = NFS_I(dir);
608
609 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
610 !list_empty(&nfsi->open_files))
611 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
612}
613
614/*
615 * This function is mainly for use by nfs_getattr().
616 *
617 * If this is an 'ls -l', we want to force use of readdirplus.
618 * Do this by checking if there is an active file descriptor
619 * and calling nfs_advise_use_readdirplus, then forcing a
620 * cache flush.
621 */
622void nfs_force_use_readdirplus(struct inode *dir)
623{
624 struct nfs_inode *nfsi = NFS_I(dir);
625
626 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
627 !list_empty(&nfsi->open_files)) {
628 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
629 invalidate_mapping_pages(dir->i_mapping,
630 nfsi->page_index + 1, -1);
631 }
632}
633
634static
635void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry,
636 unsigned long dir_verifier)
637{
638 struct qstr filename = QSTR_INIT(entry->name, entry->len);
639 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
640 struct dentry *dentry;
641 struct dentry *alias;
642 struct inode *inode;
643 int status;
644
645 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
646 return;
647 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
648 return;
649 if (filename.len == 0)
650 return;
651 /* Validate that the name doesn't contain any illegal '\0' */
652 if (strnlen(filename.name, filename.len) != filename.len)
653 return;
654 /* ...or '/' */
655 if (strnchr(filename.name, filename.len, '/'))
656 return;
657 if (filename.name[0] == '.') {
658 if (filename.len == 1)
659 return;
660 if (filename.len == 2 && filename.name[1] == '.')
661 return;
662 }
663 filename.hash = full_name_hash(parent, filename.name, filename.len);
664
665 dentry = d_lookup(parent, &filename);
666again:
667 if (!dentry) {
668 dentry = d_alloc_parallel(parent, &filename, &wq);
669 if (IS_ERR(dentry))
670 return;
671 }
672 if (!d_in_lookup(dentry)) {
673 /* Is there a mountpoint here? If so, just exit */
674 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
675 &entry->fattr->fsid))
676 goto out;
677 if (nfs_same_file(dentry, entry)) {
678 if (!entry->fh->size)
679 goto out;
680 nfs_set_verifier(dentry, dir_verifier);
681 status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
682 if (!status)
683 nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
684 goto out;
685 } else {
686 d_invalidate(dentry);
687 dput(dentry);
688 dentry = NULL;
689 goto again;
690 }
691 }
692 if (!entry->fh->size) {
693 d_lookup_done(dentry);
694 goto out;
695 }
696
697 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
698 alias = d_splice_alias(inode, dentry);
699 d_lookup_done(dentry);
700 if (alias) {
701 if (IS_ERR(alias))
702 goto out;
703 dput(dentry);
704 dentry = alias;
705 }
706 nfs_set_verifier(dentry, dir_verifier);
707out:
708 dput(dentry);
709}
710
711/* Perform conversion from xdr to cache array */
712static int nfs_readdir_page_filler(struct nfs_readdir_descriptor *desc,
713 struct nfs_entry *entry,
714 struct page **xdr_pages,
715 unsigned int buflen,
716 struct page **arrays,
717 size_t narrays)
718{
719 struct address_space *mapping = desc->file->f_mapping;
720 struct xdr_stream stream;
721 struct xdr_buf buf;
722 struct page *scratch, *new, *page = *arrays;
723 int status;
724
725 scratch = alloc_page(GFP_KERNEL);
726 if (scratch == NULL)
727 return -ENOMEM;
728
729 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
730 xdr_set_scratch_page(&stream, scratch);
731
732 do {
733 if (entry->label)
734 entry->label->len = NFS4_MAXLABELLEN;
735
736 status = xdr_decode(desc, entry, &stream);
737 if (status != 0)
738 break;
739
740 if (desc->plus)
741 nfs_prime_dcache(file_dentry(desc->file), entry,
742 desc->dir_verifier);
743
744 status = nfs_readdir_add_to_array(entry, page);
745 if (status != -ENOSPC)
746 continue;
747
748 if (page->mapping != mapping) {
749 if (!--narrays)
750 break;
751 new = nfs_readdir_page_array_alloc(entry->prev_cookie,
752 GFP_KERNEL);
753 if (!new)
754 break;
755 arrays++;
756 *arrays = page = new;
757 } else {
758 new = nfs_readdir_page_get_next(mapping,
759 page->index + 1,
760 entry->prev_cookie);
761 if (!new)
762 break;
763 if (page != *arrays)
764 nfs_readdir_page_unlock_and_put(page);
765 page = new;
766 }
767 status = nfs_readdir_add_to_array(entry, page);
768 } while (!status && !entry->eof);
769
770 switch (status) {
771 case -EBADCOOKIE:
772 if (entry->eof) {
773 nfs_readdir_page_set_eof(page);
774 status = 0;
775 }
776 break;
777 case -ENOSPC:
778 case -EAGAIN:
779 status = 0;
780 break;
781 }
782
783 if (page != *arrays)
784 nfs_readdir_page_unlock_and_put(page);
785
786 put_page(scratch);
787 return status;
788}
789
790static void nfs_readdir_free_pages(struct page **pages, size_t npages)
791{
792 while (npages--)
793 put_page(pages[npages]);
794 kfree(pages);
795}
796
797/*
798 * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
799 * to nfs_readdir_free_pages()
800 */
801static struct page **nfs_readdir_alloc_pages(size_t npages)
802{
803 struct page **pages;
804 size_t i;
805
806 pages = kmalloc_array(npages, sizeof(*pages), GFP_KERNEL);
807 if (!pages)
808 return NULL;
809 for (i = 0; i < npages; i++) {
810 struct page *page = alloc_page(GFP_KERNEL);
811 if (page == NULL)
812 goto out_freepages;
813 pages[i] = page;
814 }
815 return pages;
816
817out_freepages:
818 nfs_readdir_free_pages(pages, i);
819 return NULL;
820}
821
822static int nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor *desc,
823 __be32 *verf_arg, __be32 *verf_res,
824 struct page **arrays, size_t narrays)
825{
826 struct page **pages;
827 struct page *page = *arrays;
828 struct nfs_entry *entry;
829 size_t array_size;
830 struct inode *inode = file_inode(desc->file);
831 size_t dtsize = NFS_SERVER(inode)->dtsize;
832 int status = -ENOMEM;
833
834 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
835 if (!entry)
836 return -ENOMEM;
837 entry->cookie = nfs_readdir_page_last_cookie(page);
838 entry->fh = nfs_alloc_fhandle();
839 entry->fattr = nfs_alloc_fattr();
840 entry->server = NFS_SERVER(inode);
841 if (entry->fh == NULL || entry->fattr == NULL)
842 goto out;
843
844 entry->label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
845 if (IS_ERR(entry->label)) {
846 status = PTR_ERR(entry->label);
847 goto out;
848 }
849
850 array_size = (dtsize + PAGE_SIZE - 1) >> PAGE_SHIFT;
851 pages = nfs_readdir_alloc_pages(array_size);
852 if (!pages)
853 goto out_release_label;
854
855 do {
856 unsigned int pglen;
857 status = nfs_readdir_xdr_filler(desc, verf_arg, entry->cookie,
858 pages, dtsize,
859 verf_res);
860 if (status < 0)
861 break;
862
863 pglen = status;
864 if (pglen == 0) {
865 nfs_readdir_page_set_eof(page);
866 break;
867 }
868
869 status = nfs_readdir_page_filler(desc, entry, pages, pglen,
870 arrays, narrays);
871 } while (!status && nfs_readdir_page_needs_filling(page));
872
873 nfs_readdir_free_pages(pages, array_size);
874out_release_label:
875 nfs4_label_free(entry->label);
876out:
877 nfs_free_fattr(entry->fattr);
878 nfs_free_fhandle(entry->fh);
879 kfree(entry);
880 return status;
881}
882
883static void nfs_readdir_page_put(struct nfs_readdir_descriptor *desc)
884{
885 put_page(desc->page);
886 desc->page = NULL;
887}
888
889static void
890nfs_readdir_page_unlock_and_put_cached(struct nfs_readdir_descriptor *desc)
891{
892 unlock_page(desc->page);
893 nfs_readdir_page_put(desc);
894}
895
896static struct page *
897nfs_readdir_page_get_cached(struct nfs_readdir_descriptor *desc)
898{
899 return nfs_readdir_page_get_locked(desc->file->f_mapping,
900 desc->page_index,
901 desc->last_cookie);
902}
903
904/*
905 * Returns 0 if desc->dir_cookie was found on page desc->page_index
906 * and locks the page to prevent removal from the page cache.
907 */
908static int find_and_lock_cache_page(struct nfs_readdir_descriptor *desc)
909{
910 struct inode *inode = file_inode(desc->file);
911 struct nfs_inode *nfsi = NFS_I(inode);
912 __be32 verf[NFS_DIR_VERIFIER_SIZE];
913 int res;
914
915 desc->page = nfs_readdir_page_get_cached(desc);
916 if (!desc->page)
917 return -ENOMEM;
918 if (nfs_readdir_page_needs_filling(desc->page)) {
919 res = nfs_readdir_xdr_to_array(desc, nfsi->cookieverf, verf,
920 &desc->page, 1);
921 if (res < 0) {
922 nfs_readdir_page_unlock_and_put_cached(desc);
923 if (res == -EBADCOOKIE || res == -ENOTSYNC) {
924 invalidate_inode_pages2(desc->file->f_mapping);
925 desc->page_index = 0;
926 return -EAGAIN;
927 }
928 return res;
929 }
930 memcpy(nfsi->cookieverf, verf, sizeof(nfsi->cookieverf));
931 }
932 res = nfs_readdir_search_array(desc);
933 if (res == 0) {
934 nfsi->page_index = desc->page_index;
935 return 0;
936 }
937 nfs_readdir_page_unlock_and_put_cached(desc);
938 return res;
939}
940
941static bool nfs_readdir_dont_search_cache(struct nfs_readdir_descriptor *desc)
942{
943 struct address_space *mapping = desc->file->f_mapping;
944 struct inode *dir = file_inode(desc->file);
945 unsigned int dtsize = NFS_SERVER(dir)->dtsize;
946 loff_t size = i_size_read(dir);
947
948 /*
949 * Default to uncached readdir if the page cache is empty, and
950 * we're looking for a non-zero cookie in a large directory.
951 */
952 return desc->dir_cookie != 0 && mapping->nrpages == 0 && size > dtsize;
953}
954
955/* Search for desc->dir_cookie from the beginning of the page cache */
956static int readdir_search_pagecache(struct nfs_readdir_descriptor *desc)
957{
958 int res;
959
960 if (nfs_readdir_dont_search_cache(desc))
961 return -EBADCOOKIE;
962
963 do {
964 if (desc->page_index == 0) {
965 desc->current_index = 0;
966 desc->prev_index = 0;
967 desc->last_cookie = 0;
968 }
969 res = find_and_lock_cache_page(desc);
970 } while (res == -EAGAIN);
971 return res;
972}
973
974/*
975 * Once we've found the start of the dirent within a page: fill 'er up...
976 */
977static void nfs_do_filldir(struct nfs_readdir_descriptor *desc)
978{
979 struct file *file = desc->file;
980 struct nfs_inode *nfsi = NFS_I(file_inode(file));
981 struct nfs_cache_array *array;
982 unsigned int i = 0;
983
984 array = kmap(desc->page);
985 for (i = desc->cache_entry_index; i < array->size; i++) {
986 struct nfs_cache_array_entry *ent;
987
988 ent = &array->array[i];
989 if (!dir_emit(desc->ctx, ent->name, ent->name_len,
990 nfs_compat_user_ino64(ent->ino), ent->d_type)) {
991 desc->eof = true;
992 break;
993 }
994 memcpy(desc->verf, nfsi->cookieverf, sizeof(desc->verf));
995 if (i < (array->size-1))
996 desc->dir_cookie = array->array[i+1].cookie;
997 else
998 desc->dir_cookie = array->last_cookie;
999 if (nfs_readdir_use_cookie(file))
1000 desc->ctx->pos = desc->dir_cookie;
1001 else
1002 desc->ctx->pos++;
1003 if (desc->duped != 0)
1004 desc->duped = 1;
1005 }
1006 if (array->page_is_eof)
1007 desc->eof = true;
1008
1009 kunmap(desc->page);
1010 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %llu\n",
1011 (unsigned long long)desc->dir_cookie);
1012}
1013
1014/*
1015 * If we cannot find a cookie in our cache, we suspect that this is
1016 * because it points to a deleted file, so we ask the server to return
1017 * whatever it thinks is the next entry. We then feed this to filldir.
1018 * If all goes well, we should then be able to find our way round the
1019 * cache on the next call to readdir_search_pagecache();
1020 *
1021 * NOTE: we cannot add the anonymous page to the pagecache because
1022 * the data it contains might not be page aligned. Besides,
1023 * we should already have a complete representation of the
1024 * directory in the page cache by the time we get here.
1025 */
1026static int uncached_readdir(struct nfs_readdir_descriptor *desc)
1027{
1028 struct page **arrays;
1029 size_t i, sz = 512;
1030 __be32 verf[NFS_DIR_VERIFIER_SIZE];
1031 int status = -ENOMEM;
1032
1033 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %llu\n",
1034 (unsigned long long)desc->dir_cookie);
1035
1036 arrays = kcalloc(sz, sizeof(*arrays), GFP_KERNEL);
1037 if (!arrays)
1038 goto out;
1039 arrays[0] = nfs_readdir_page_array_alloc(desc->dir_cookie, GFP_KERNEL);
1040 if (!arrays[0])
1041 goto out;
1042
1043 desc->page_index = 0;
1044 desc->last_cookie = desc->dir_cookie;
1045 desc->duped = 0;
1046
1047 status = nfs_readdir_xdr_to_array(desc, desc->verf, verf, arrays, sz);
1048
1049 for (i = 0; !desc->eof && i < sz && arrays[i]; i++) {
1050 desc->page = arrays[i];
1051 nfs_do_filldir(desc);
1052 }
1053 desc->page = NULL;
1054
1055
1056 for (i = 0; i < sz && arrays[i]; i++)
1057 nfs_readdir_page_array_free(arrays[i]);
1058out:
1059 kfree(arrays);
1060 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status);
1061 return status;
1062}
1063
1064/* The file offset position represents the dirent entry number. A
1065 last cookie cache takes care of the common case of reading the
1066 whole directory.
1067 */
1068static int nfs_readdir(struct file *file, struct dir_context *ctx)
1069{
1070 struct dentry *dentry = file_dentry(file);
1071 struct inode *inode = d_inode(dentry);
1072 struct nfs_open_dir_context *dir_ctx = file->private_data;
1073 struct nfs_readdir_descriptor *desc;
1074 int res;
1075
1076 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
1077 file, (long long)ctx->pos);
1078 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
1079
1080 /*
1081 * ctx->pos points to the dirent entry number.
1082 * *desc->dir_cookie has the cookie for the next entry. We have
1083 * to either find the entry with the appropriate number or
1084 * revalidate the cookie.
1085 */
1086 if (ctx->pos == 0 || nfs_attribute_cache_expired(inode)) {
1087 res = nfs_revalidate_mapping(inode, file->f_mapping);
1088 if (res < 0)
1089 goto out;
1090 }
1091
1092 res = -ENOMEM;
1093 desc = kzalloc(sizeof(*desc), GFP_KERNEL);
1094 if (!desc)
1095 goto out;
1096 desc->file = file;
1097 desc->ctx = ctx;
1098 desc->plus = nfs_use_readdirplus(inode, ctx);
1099
1100 spin_lock(&file->f_lock);
1101 desc->dir_cookie = dir_ctx->dir_cookie;
1102 desc->dup_cookie = dir_ctx->dup_cookie;
1103 desc->duped = dir_ctx->duped;
1104 desc->attr_gencount = dir_ctx->attr_gencount;
1105 memcpy(desc->verf, dir_ctx->verf, sizeof(desc->verf));
1106 spin_unlock(&file->f_lock);
1107
1108 do {
1109 res = readdir_search_pagecache(desc);
1110
1111 if (res == -EBADCOOKIE) {
1112 res = 0;
1113 /* This means either end of directory */
1114 if (desc->dir_cookie && !desc->eof) {
1115 /* Or that the server has 'lost' a cookie */
1116 res = uncached_readdir(desc);
1117 if (res == 0)
1118 continue;
1119 if (res == -EBADCOOKIE || res == -ENOTSYNC)
1120 res = 0;
1121 }
1122 break;
1123 }
1124 if (res == -ETOOSMALL && desc->plus) {
1125 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
1126 nfs_zap_caches(inode);
1127 desc->page_index = 0;
1128 desc->plus = false;
1129 desc->eof = false;
1130 continue;
1131 }
1132 if (res < 0)
1133 break;
1134
1135 nfs_do_filldir(desc);
1136 nfs_readdir_page_unlock_and_put_cached(desc);
1137 } while (!desc->eof);
1138
1139 spin_lock(&file->f_lock);
1140 dir_ctx->dir_cookie = desc->dir_cookie;
1141 dir_ctx->dup_cookie = desc->dup_cookie;
1142 dir_ctx->duped = desc->duped;
1143 dir_ctx->attr_gencount = desc->attr_gencount;
1144 memcpy(dir_ctx->verf, desc->verf, sizeof(dir_ctx->verf));
1145 spin_unlock(&file->f_lock);
1146
1147 kfree(desc);
1148
1149out:
1150 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
1151 return res;
1152}
1153
1154static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
1155{
1156 struct nfs_open_dir_context *dir_ctx = filp->private_data;
1157
1158 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
1159 filp, offset, whence);
1160
1161 switch (whence) {
1162 default:
1163 return -EINVAL;
1164 case SEEK_SET:
1165 if (offset < 0)
1166 return -EINVAL;
1167 spin_lock(&filp->f_lock);
1168 break;
1169 case SEEK_CUR:
1170 if (offset == 0)
1171 return filp->f_pos;
1172 spin_lock(&filp->f_lock);
1173 offset += filp->f_pos;
1174 if (offset < 0) {
1175 spin_unlock(&filp->f_lock);
1176 return -EINVAL;
1177 }
1178 }
1179 if (offset != filp->f_pos) {
1180 filp->f_pos = offset;
1181 if (nfs_readdir_use_cookie(filp))
1182 dir_ctx->dir_cookie = offset;
1183 else
1184 dir_ctx->dir_cookie = 0;
1185 if (offset == 0)
1186 memset(dir_ctx->verf, 0, sizeof(dir_ctx->verf));
1187 dir_ctx->duped = 0;
1188 }
1189 spin_unlock(&filp->f_lock);
1190 return offset;
1191}
1192
1193/*
1194 * All directory operations under NFS are synchronous, so fsync()
1195 * is a dummy operation.
1196 */
1197static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
1198 int datasync)
1199{
1200 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1201
1202 nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC);
1203 return 0;
1204}
1205
1206/**
1207 * nfs_force_lookup_revalidate - Mark the directory as having changed
1208 * @dir: pointer to directory inode
1209 *
1210 * This forces the revalidation code in nfs_lookup_revalidate() to do a
1211 * full lookup on all child dentries of 'dir' whenever a change occurs
1212 * on the server that might have invalidated our dcache.
1213 *
1214 * Note that we reserve bit '0' as a tag to let us know when a dentry
1215 * was revalidated while holding a delegation on its inode.
1216 *
1217 * The caller should be holding dir->i_lock
1218 */
1219void nfs_force_lookup_revalidate(struct inode *dir)
1220{
1221 NFS_I(dir)->cache_change_attribute += 2;
1222}
1223EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1224
1225/**
1226 * nfs_verify_change_attribute - Detects NFS remote directory changes
1227 * @dir: pointer to parent directory inode
1228 * @verf: previously saved change attribute
1229 *
1230 * Return "false" if the verifiers doesn't match the change attribute.
1231 * This would usually indicate that the directory contents have changed on
1232 * the server, and that any dentries need revalidating.
1233 */
1234static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf)
1235{
1236 return (verf & ~1UL) == nfs_save_change_attribute(dir);
1237}
1238
1239static void nfs_set_verifier_delegated(unsigned long *verf)
1240{
1241 *verf |= 1UL;
1242}
1243
1244#if IS_ENABLED(CONFIG_NFS_V4)
1245static void nfs_unset_verifier_delegated(unsigned long *verf)
1246{
1247 *verf &= ~1UL;
1248}
1249#endif /* IS_ENABLED(CONFIG_NFS_V4) */
1250
1251static bool nfs_test_verifier_delegated(unsigned long verf)
1252{
1253 return verf & 1;
1254}
1255
1256static bool nfs_verifier_is_delegated(struct dentry *dentry)
1257{
1258 return nfs_test_verifier_delegated(dentry->d_time);
1259}
1260
1261static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf)
1262{
1263 struct inode *inode = d_inode(dentry);
1264
1265 if (!nfs_verifier_is_delegated(dentry) &&
1266 !nfs_verify_change_attribute(d_inode(dentry->d_parent), verf))
1267 goto out;
1268 if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
1269 nfs_set_verifier_delegated(&verf);
1270out:
1271 dentry->d_time = verf;
1272}
1273
1274/**
1275 * nfs_set_verifier - save a parent directory verifier in the dentry
1276 * @dentry: pointer to dentry
1277 * @verf: verifier to save
1278 *
1279 * Saves the parent directory verifier in @dentry. If the inode has
1280 * a delegation, we also tag the dentry as having been revalidated
1281 * while holding a delegation so that we know we don't have to
1282 * look it up again after a directory change.
1283 */
1284void nfs_set_verifier(struct dentry *dentry, unsigned long verf)
1285{
1286
1287 spin_lock(&dentry->d_lock);
1288 nfs_set_verifier_locked(dentry, verf);
1289 spin_unlock(&dentry->d_lock);
1290}
1291EXPORT_SYMBOL_GPL(nfs_set_verifier);
1292
1293#if IS_ENABLED(CONFIG_NFS_V4)
1294/**
1295 * nfs_clear_verifier_delegated - clear the dir verifier delegation tag
1296 * @inode: pointer to inode
1297 *
1298 * Iterates through the dentries in the inode alias list and clears
1299 * the tag used to indicate that the dentry has been revalidated
1300 * while holding a delegation.
1301 * This function is intended for use when the delegation is being
1302 * returned or revoked.
1303 */
1304void nfs_clear_verifier_delegated(struct inode *inode)
1305{
1306 struct dentry *alias;
1307
1308 if (!inode)
1309 return;
1310 spin_lock(&inode->i_lock);
1311 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1312 spin_lock(&alias->d_lock);
1313 nfs_unset_verifier_delegated(&alias->d_time);
1314 spin_unlock(&alias->d_lock);
1315 }
1316 spin_unlock(&inode->i_lock);
1317}
1318EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated);
1319#endif /* IS_ENABLED(CONFIG_NFS_V4) */
1320
1321/*
1322 * A check for whether or not the parent directory has changed.
1323 * In the case it has, we assume that the dentries are untrustworthy
1324 * and may need to be looked up again.
1325 * If rcu_walk prevents us from performing a full check, return 0.
1326 */
1327static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1328 int rcu_walk)
1329{
1330 if (IS_ROOT(dentry))
1331 return 1;
1332 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1333 return 0;
1334 if (!nfs_verify_change_attribute(dir, dentry->d_time))
1335 return 0;
1336 /* Revalidate nfsi->cache_change_attribute before we declare a match */
1337 if (nfs_mapping_need_revalidate_inode(dir)) {
1338 if (rcu_walk)
1339 return 0;
1340 if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1341 return 0;
1342 }
1343 if (!nfs_verify_change_attribute(dir, dentry->d_time))
1344 return 0;
1345 return 1;
1346}
1347
1348/*
1349 * Use intent information to check whether or not we're going to do
1350 * an O_EXCL create using this path component.
1351 */
1352static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1353{
1354 if (NFS_PROTO(dir)->version == 2)
1355 return 0;
1356 return flags & LOOKUP_EXCL;
1357}
1358
1359/*
1360 * Inode and filehandle revalidation for lookups.
1361 *
1362 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1363 * or if the intent information indicates that we're about to open this
1364 * particular file and the "nocto" mount flag is not set.
1365 *
1366 */
1367static
1368int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1369{
1370 struct nfs_server *server = NFS_SERVER(inode);
1371 int ret;
1372
1373 if (IS_AUTOMOUNT(inode))
1374 return 0;
1375
1376 if (flags & LOOKUP_OPEN) {
1377 switch (inode->i_mode & S_IFMT) {
1378 case S_IFREG:
1379 /* A NFSv4 OPEN will revalidate later */
1380 if (server->caps & NFS_CAP_ATOMIC_OPEN)
1381 goto out;
1382 fallthrough;
1383 case S_IFDIR:
1384 if (server->flags & NFS_MOUNT_NOCTO)
1385 break;
1386 /* NFS close-to-open cache consistency validation */
1387 goto out_force;
1388 }
1389 }
1390
1391 /* VFS wants an on-the-wire revalidation */
1392 if (flags & LOOKUP_REVAL)
1393 goto out_force;
1394out:
1395 return (inode->i_nlink == 0) ? -ESTALE : 0;
1396out_force:
1397 if (flags & LOOKUP_RCU)
1398 return -ECHILD;
1399 ret = __nfs_revalidate_inode(server, inode);
1400 if (ret != 0)
1401 return ret;
1402 goto out;
1403}
1404
1405static void nfs_mark_dir_for_revalidate(struct inode *inode)
1406{
1407 spin_lock(&inode->i_lock);
1408 nfs_set_cache_invalid(inode, NFS_INO_REVAL_PAGECACHE);
1409 spin_unlock(&inode->i_lock);
1410}
1411
1412/*
1413 * We judge how long we want to trust negative
1414 * dentries by looking at the parent inode mtime.
1415 *
1416 * If parent mtime has changed, we revalidate, else we wait for a
1417 * period corresponding to the parent's attribute cache timeout value.
1418 *
1419 * If LOOKUP_RCU prevents us from performing a full check, return 1
1420 * suggesting a reval is needed.
1421 *
1422 * Note that when creating a new file, or looking up a rename target,
1423 * then it shouldn't be necessary to revalidate a negative dentry.
1424 */
1425static inline
1426int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1427 unsigned int flags)
1428{
1429 if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1430 return 0;
1431 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1432 return 1;
1433 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1434}
1435
1436static int
1437nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1438 struct inode *inode, int error)
1439{
1440 switch (error) {
1441 case 1:
1442 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1443 __func__, dentry);
1444 return 1;
1445 case 0:
1446 /*
1447 * We can't d_drop the root of a disconnected tree:
1448 * its d_hash is on the s_anon list and d_drop() would hide
1449 * it from shrink_dcache_for_unmount(), leading to busy
1450 * inodes on unmount and further oopses.
1451 */
1452 if (inode && IS_ROOT(dentry))
1453 return 1;
1454 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1455 __func__, dentry);
1456 return 0;
1457 }
1458 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1459 __func__, dentry, error);
1460 return error;
1461}
1462
1463static int
1464nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1465 unsigned int flags)
1466{
1467 int ret = 1;
1468 if (nfs_neg_need_reval(dir, dentry, flags)) {
1469 if (flags & LOOKUP_RCU)
1470 return -ECHILD;
1471 ret = 0;
1472 }
1473 return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1474}
1475
1476static int
1477nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1478 struct inode *inode)
1479{
1480 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1481 return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1482}
1483
1484static int
1485nfs_lookup_revalidate_dentry(struct inode *dir, struct dentry *dentry,
1486 struct inode *inode)
1487{
1488 struct nfs_fh *fhandle;
1489 struct nfs_fattr *fattr;
1490 struct nfs4_label *label;
1491 unsigned long dir_verifier;
1492 int ret;
1493
1494 ret = -ENOMEM;
1495 fhandle = nfs_alloc_fhandle();
1496 fattr = nfs_alloc_fattr();
1497 label = nfs4_label_alloc(NFS_SERVER(inode), GFP_KERNEL);
1498 if (fhandle == NULL || fattr == NULL || IS_ERR(label))
1499 goto out;
1500
1501 dir_verifier = nfs_save_change_attribute(dir);
1502 ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label);
1503 if (ret < 0) {
1504 switch (ret) {
1505 case -ESTALE:
1506 case -ENOENT:
1507 ret = 0;
1508 break;
1509 case -ETIMEDOUT:
1510 if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL)
1511 ret = 1;
1512 }
1513 goto out;
1514 }
1515 ret = 0;
1516 if (nfs_compare_fh(NFS_FH(inode), fhandle))
1517 goto out;
1518 if (nfs_refresh_inode(inode, fattr) < 0)
1519 goto out;
1520
1521 nfs_setsecurity(inode, fattr, label);
1522 nfs_set_verifier(dentry, dir_verifier);
1523
1524 /* set a readdirplus hint that we had a cache miss */
1525 nfs_force_use_readdirplus(dir);
1526 ret = 1;
1527out:
1528 nfs_free_fattr(fattr);
1529 nfs_free_fhandle(fhandle);
1530 nfs4_label_free(label);
1531
1532 /*
1533 * If the lookup failed despite the dentry change attribute being
1534 * a match, then we should revalidate the directory cache.
1535 */
1536 if (!ret && nfs_verify_change_attribute(dir, dentry->d_time))
1537 nfs_mark_dir_for_revalidate(dir);
1538 return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1539}
1540
1541/*
1542 * This is called every time the dcache has a lookup hit,
1543 * and we should check whether we can really trust that
1544 * lookup.
1545 *
1546 * NOTE! The hit can be a negative hit too, don't assume
1547 * we have an inode!
1548 *
1549 * If the parent directory is seen to have changed, we throw out the
1550 * cached dentry and do a new lookup.
1551 */
1552static int
1553nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1554 unsigned int flags)
1555{
1556 struct inode *inode;
1557 int error;
1558
1559 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1560 inode = d_inode(dentry);
1561
1562 if (!inode)
1563 return nfs_lookup_revalidate_negative(dir, dentry, flags);
1564
1565 if (is_bad_inode(inode)) {
1566 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1567 __func__, dentry);
1568 goto out_bad;
1569 }
1570
1571 if (nfs_verifier_is_delegated(dentry))
1572 return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1573
1574 /* Force a full look up iff the parent directory has changed */
1575 if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1576 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1577 error = nfs_lookup_verify_inode(inode, flags);
1578 if (error) {
1579 if (error == -ESTALE)
1580 nfs_mark_dir_for_revalidate(dir);
1581 goto out_bad;
1582 }
1583 nfs_advise_use_readdirplus(dir);
1584 goto out_valid;
1585 }
1586
1587 if (flags & LOOKUP_RCU)
1588 return -ECHILD;
1589
1590 if (NFS_STALE(inode))
1591 goto out_bad;
1592
1593 trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1594 error = nfs_lookup_revalidate_dentry(dir, dentry, inode);
1595 trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1596 return error;
1597out_valid:
1598 return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1599out_bad:
1600 if (flags & LOOKUP_RCU)
1601 return -ECHILD;
1602 return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1603}
1604
1605static int
1606__nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1607 int (*reval)(struct inode *, struct dentry *, unsigned int))
1608{
1609 struct dentry *parent;
1610 struct inode *dir;
1611 int ret;
1612
1613 if (flags & LOOKUP_RCU) {
1614 parent = READ_ONCE(dentry->d_parent);
1615 dir = d_inode_rcu(parent);
1616 if (!dir)
1617 return -ECHILD;
1618 ret = reval(dir, dentry, flags);
1619 if (parent != READ_ONCE(dentry->d_parent))
1620 return -ECHILD;
1621 } else {
1622 parent = dget_parent(dentry);
1623 ret = reval(d_inode(parent), dentry, flags);
1624 dput(parent);
1625 }
1626 return ret;
1627}
1628
1629static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1630{
1631 return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1632}
1633
1634/*
1635 * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1636 * when we don't really care about the dentry name. This is called when a
1637 * pathwalk ends on a dentry that was not found via a normal lookup in the
1638 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1639 *
1640 * In this situation, we just want to verify that the inode itself is OK
1641 * since the dentry might have changed on the server.
1642 */
1643static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1644{
1645 struct inode *inode = d_inode(dentry);
1646 int error = 0;
1647
1648 /*
1649 * I believe we can only get a negative dentry here in the case of a
1650 * procfs-style symlink. Just assume it's correct for now, but we may
1651 * eventually need to do something more here.
1652 */
1653 if (!inode) {
1654 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1655 __func__, dentry);
1656 return 1;
1657 }
1658
1659 if (is_bad_inode(inode)) {
1660 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1661 __func__, dentry);
1662 return 0;
1663 }
1664
1665 error = nfs_lookup_verify_inode(inode, flags);
1666 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1667 __func__, inode->i_ino, error ? "invalid" : "valid");
1668 return !error;
1669}
1670
1671/*
1672 * This is called from dput() when d_count is going to 0.
1673 */
1674static int nfs_dentry_delete(const struct dentry *dentry)
1675{
1676 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1677 dentry, dentry->d_flags);
1678
1679 /* Unhash any dentry with a stale inode */
1680 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1681 return 1;
1682
1683 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1684 /* Unhash it, so that ->d_iput() would be called */
1685 return 1;
1686 }
1687 if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1688 /* Unhash it, so that ancestors of killed async unlink
1689 * files will be cleaned up during umount */
1690 return 1;
1691 }
1692 return 0;
1693
1694}
1695
1696/* Ensure that we revalidate inode->i_nlink */
1697static void nfs_drop_nlink(struct inode *inode)
1698{
1699 spin_lock(&inode->i_lock);
1700 /* drop the inode if we're reasonably sure this is the last link */
1701 if (inode->i_nlink > 0)
1702 drop_nlink(inode);
1703 NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1704 nfs_set_cache_invalid(
1705 inode, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME |
1706 NFS_INO_INVALID_OTHER | NFS_INO_REVAL_FORCED);
1707 spin_unlock(&inode->i_lock);
1708}
1709
1710/*
1711 * Called when the dentry loses inode.
1712 * We use it to clean up silly-renamed files.
1713 */
1714static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1715{
1716 if (S_ISDIR(inode->i_mode))
1717 /* drop any readdir cache as it could easily be old */
1718 nfs_set_cache_invalid(inode, NFS_INO_INVALID_DATA);
1719
1720 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1721 nfs_complete_unlink(dentry, inode);
1722 nfs_drop_nlink(inode);
1723 }
1724 iput(inode);
1725}
1726
1727static void nfs_d_release(struct dentry *dentry)
1728{
1729 /* free cached devname value, if it survived that far */
1730 if (unlikely(dentry->d_fsdata)) {
1731 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1732 WARN_ON(1);
1733 else
1734 kfree(dentry->d_fsdata);
1735 }
1736}
1737
1738const struct dentry_operations nfs_dentry_operations = {
1739 .d_revalidate = nfs_lookup_revalidate,
1740 .d_weak_revalidate = nfs_weak_revalidate,
1741 .d_delete = nfs_dentry_delete,
1742 .d_iput = nfs_dentry_iput,
1743 .d_automount = nfs_d_automount,
1744 .d_release = nfs_d_release,
1745};
1746EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1747
1748struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1749{
1750 struct dentry *res;
1751 struct inode *inode = NULL;
1752 struct nfs_fh *fhandle = NULL;
1753 struct nfs_fattr *fattr = NULL;
1754 struct nfs4_label *label = NULL;
1755 unsigned long dir_verifier;
1756 int error;
1757
1758 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1759 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1760
1761 if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1762 return ERR_PTR(-ENAMETOOLONG);
1763
1764 /*
1765 * If we're doing an exclusive create, optimize away the lookup
1766 * but don't hash the dentry.
1767 */
1768 if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1769 return NULL;
1770
1771 res = ERR_PTR(-ENOMEM);
1772 fhandle = nfs_alloc_fhandle();
1773 fattr = nfs_alloc_fattr();
1774 if (fhandle == NULL || fattr == NULL)
1775 goto out;
1776
1777 label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1778 if (IS_ERR(label))
1779 goto out;
1780
1781 dir_verifier = nfs_save_change_attribute(dir);
1782 trace_nfs_lookup_enter(dir, dentry, flags);
1783 error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label);
1784 if (error == -ENOENT)
1785 goto no_entry;
1786 if (error < 0) {
1787 res = ERR_PTR(error);
1788 goto out_label;
1789 }
1790 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1791 res = ERR_CAST(inode);
1792 if (IS_ERR(res))
1793 goto out_label;
1794
1795 /* Notify readdir to use READDIRPLUS */
1796 nfs_force_use_readdirplus(dir);
1797
1798no_entry:
1799 res = d_splice_alias(inode, dentry);
1800 if (res != NULL) {
1801 if (IS_ERR(res))
1802 goto out_label;
1803 dentry = res;
1804 }
1805 nfs_set_verifier(dentry, dir_verifier);
1806out_label:
1807 trace_nfs_lookup_exit(dir, dentry, flags, error);
1808 nfs4_label_free(label);
1809out:
1810 nfs_free_fattr(fattr);
1811 nfs_free_fhandle(fhandle);
1812 return res;
1813}
1814EXPORT_SYMBOL_GPL(nfs_lookup);
1815
1816#if IS_ENABLED(CONFIG_NFS_V4)
1817static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1818
1819const struct dentry_operations nfs4_dentry_operations = {
1820 .d_revalidate = nfs4_lookup_revalidate,
1821 .d_weak_revalidate = nfs_weak_revalidate,
1822 .d_delete = nfs_dentry_delete,
1823 .d_iput = nfs_dentry_iput,
1824 .d_automount = nfs_d_automount,
1825 .d_release = nfs_d_release,
1826};
1827EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1828
1829static fmode_t flags_to_mode(int flags)
1830{
1831 fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1832 if ((flags & O_ACCMODE) != O_WRONLY)
1833 res |= FMODE_READ;
1834 if ((flags & O_ACCMODE) != O_RDONLY)
1835 res |= FMODE_WRITE;
1836 return res;
1837}
1838
1839static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1840{
1841 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1842}
1843
1844static int do_open(struct inode *inode, struct file *filp)
1845{
1846 nfs_fscache_open_file(inode, filp);
1847 return 0;
1848}
1849
1850static int nfs_finish_open(struct nfs_open_context *ctx,
1851 struct dentry *dentry,
1852 struct file *file, unsigned open_flags)
1853{
1854 int err;
1855
1856 err = finish_open(file, dentry, do_open);
1857 if (err)
1858 goto out;
1859 if (S_ISREG(file->f_path.dentry->d_inode->i_mode))
1860 nfs_file_set_open_context(file, ctx);
1861 else
1862 err = -EOPENSTALE;
1863out:
1864 return err;
1865}
1866
1867int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1868 struct file *file, unsigned open_flags,
1869 umode_t mode)
1870{
1871 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1872 struct nfs_open_context *ctx;
1873 struct dentry *res;
1874 struct iattr attr = { .ia_valid = ATTR_OPEN };
1875 struct inode *inode;
1876 unsigned int lookup_flags = 0;
1877 bool switched = false;
1878 int created = 0;
1879 int err;
1880
1881 /* Expect a negative dentry */
1882 BUG_ON(d_inode(dentry));
1883
1884 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1885 dir->i_sb->s_id, dir->i_ino, dentry);
1886
1887 err = nfs_check_flags(open_flags);
1888 if (err)
1889 return err;
1890
1891 /* NFS only supports OPEN on regular files */
1892 if ((open_flags & O_DIRECTORY)) {
1893 if (!d_in_lookup(dentry)) {
1894 /*
1895 * Hashed negative dentry with O_DIRECTORY: dentry was
1896 * revalidated and is fine, no need to perform lookup
1897 * again
1898 */
1899 return -ENOENT;
1900 }
1901 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1902 goto no_open;
1903 }
1904
1905 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1906 return -ENAMETOOLONG;
1907
1908 if (open_flags & O_CREAT) {
1909 struct nfs_server *server = NFS_SERVER(dir);
1910
1911 if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
1912 mode &= ~current_umask();
1913
1914 attr.ia_valid |= ATTR_MODE;
1915 attr.ia_mode = mode;
1916 }
1917 if (open_flags & O_TRUNC) {
1918 attr.ia_valid |= ATTR_SIZE;
1919 attr.ia_size = 0;
1920 }
1921
1922 if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1923 d_drop(dentry);
1924 switched = true;
1925 dentry = d_alloc_parallel(dentry->d_parent,
1926 &dentry->d_name, &wq);
1927 if (IS_ERR(dentry))
1928 return PTR_ERR(dentry);
1929 if (unlikely(!d_in_lookup(dentry)))
1930 return finish_no_open(file, dentry);
1931 }
1932
1933 ctx = create_nfs_open_context(dentry, open_flags, file);
1934 err = PTR_ERR(ctx);
1935 if (IS_ERR(ctx))
1936 goto out;
1937
1938 trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1939 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
1940 if (created)
1941 file->f_mode |= FMODE_CREATED;
1942 if (IS_ERR(inode)) {
1943 err = PTR_ERR(inode);
1944 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1945 put_nfs_open_context(ctx);
1946 d_drop(dentry);
1947 switch (err) {
1948 case -ENOENT:
1949 d_splice_alias(NULL, dentry);
1950 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1951 break;
1952 case -EISDIR:
1953 case -ENOTDIR:
1954 goto no_open;
1955 case -ELOOP:
1956 if (!(open_flags & O_NOFOLLOW))
1957 goto no_open;
1958 break;
1959 /* case -EINVAL: */
1960 default:
1961 break;
1962 }
1963 goto out;
1964 }
1965
1966 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
1967 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1968 put_nfs_open_context(ctx);
1969out:
1970 if (unlikely(switched)) {
1971 d_lookup_done(dentry);
1972 dput(dentry);
1973 }
1974 return err;
1975
1976no_open:
1977 res = nfs_lookup(dir, dentry, lookup_flags);
1978 if (switched) {
1979 d_lookup_done(dentry);
1980 if (!res)
1981 res = dentry;
1982 else
1983 dput(dentry);
1984 }
1985 if (IS_ERR(res))
1986 return PTR_ERR(res);
1987 return finish_no_open(file, res);
1988}
1989EXPORT_SYMBOL_GPL(nfs_atomic_open);
1990
1991static int
1992nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1993 unsigned int flags)
1994{
1995 struct inode *inode;
1996
1997 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1998 goto full_reval;
1999 if (d_mountpoint(dentry))
2000 goto full_reval;
2001
2002 inode = d_inode(dentry);
2003
2004 /* We can't create new files in nfs_open_revalidate(), so we
2005 * optimize away revalidation of negative dentries.
2006 */
2007 if (inode == NULL)
2008 goto full_reval;
2009
2010 if (nfs_verifier_is_delegated(dentry))
2011 return nfs_lookup_revalidate_delegated(dir, dentry, inode);
2012
2013 /* NFS only supports OPEN on regular files */
2014 if (!S_ISREG(inode->i_mode))
2015 goto full_reval;
2016
2017 /* We cannot do exclusive creation on a positive dentry */
2018 if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
2019 goto reval_dentry;
2020
2021 /* Check if the directory changed */
2022 if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
2023 goto reval_dentry;
2024
2025 /* Let f_op->open() actually open (and revalidate) the file */
2026 return 1;
2027reval_dentry:
2028 if (flags & LOOKUP_RCU)
2029 return -ECHILD;
2030 return nfs_lookup_revalidate_dentry(dir, dentry, inode);
2031
2032full_reval:
2033 return nfs_do_lookup_revalidate(dir, dentry, flags);
2034}
2035
2036static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
2037{
2038 return __nfs_lookup_revalidate(dentry, flags,
2039 nfs4_do_lookup_revalidate);
2040}
2041
2042#endif /* CONFIG_NFSV4 */
2043
2044struct dentry *
2045nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle,
2046 struct nfs_fattr *fattr,
2047 struct nfs4_label *label)
2048{
2049 struct dentry *parent = dget_parent(dentry);
2050 struct inode *dir = d_inode(parent);
2051 struct inode *inode;
2052 struct dentry *d;
2053 int error;
2054
2055 d_drop(dentry);
2056
2057 if (fhandle->size == 0) {
2058 error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, NULL);
2059 if (error)
2060 goto out_error;
2061 }
2062 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2063 if (!(fattr->valid & NFS_ATTR_FATTR)) {
2064 struct nfs_server *server = NFS_SB(dentry->d_sb);
2065 error = server->nfs_client->rpc_ops->getattr(server, fhandle,
2066 fattr, NULL, NULL);
2067 if (error < 0)
2068 goto out_error;
2069 }
2070 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
2071 d = d_splice_alias(inode, dentry);
2072out:
2073 dput(parent);
2074 return d;
2075out_error:
2076 d = ERR_PTR(error);
2077 goto out;
2078}
2079EXPORT_SYMBOL_GPL(nfs_add_or_obtain);
2080
2081/*
2082 * Code common to create, mkdir, and mknod.
2083 */
2084int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
2085 struct nfs_fattr *fattr,
2086 struct nfs4_label *label)
2087{
2088 struct dentry *d;
2089
2090 d = nfs_add_or_obtain(dentry, fhandle, fattr, label);
2091 if (IS_ERR(d))
2092 return PTR_ERR(d);
2093
2094 /* Callers don't care */
2095 dput(d);
2096 return 0;
2097}
2098EXPORT_SYMBOL_GPL(nfs_instantiate);
2099
2100/*
2101 * Following a failed create operation, we drop the dentry rather
2102 * than retain a negative dentry. This avoids a problem in the event
2103 * that the operation succeeded on the server, but an error in the
2104 * reply path made it appear to have failed.
2105 */
2106int nfs_create(struct user_namespace *mnt_userns, struct inode *dir,
2107 struct dentry *dentry, umode_t mode, bool excl)
2108{
2109 struct iattr attr;
2110 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
2111 int error;
2112
2113 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
2114 dir->i_sb->s_id, dir->i_ino, dentry);
2115
2116 attr.ia_mode = mode;
2117 attr.ia_valid = ATTR_MODE;
2118
2119 trace_nfs_create_enter(dir, dentry, open_flags);
2120 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
2121 trace_nfs_create_exit(dir, dentry, open_flags, error);
2122 if (error != 0)
2123 goto out_err;
2124 return 0;
2125out_err:
2126 d_drop(dentry);
2127 return error;
2128}
2129EXPORT_SYMBOL_GPL(nfs_create);
2130
2131/*
2132 * See comments for nfs_proc_create regarding failed operations.
2133 */
2134int
2135nfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2136 struct dentry *dentry, umode_t mode, dev_t rdev)
2137{
2138 struct iattr attr;
2139 int status;
2140
2141 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
2142 dir->i_sb->s_id, dir->i_ino, dentry);
2143
2144 attr.ia_mode = mode;
2145 attr.ia_valid = ATTR_MODE;
2146
2147 trace_nfs_mknod_enter(dir, dentry);
2148 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
2149 trace_nfs_mknod_exit(dir, dentry, status);
2150 if (status != 0)
2151 goto out_err;
2152 return 0;
2153out_err:
2154 d_drop(dentry);
2155 return status;
2156}
2157EXPORT_SYMBOL_GPL(nfs_mknod);
2158
2159/*
2160 * See comments for nfs_proc_create regarding failed operations.
2161 */
2162int nfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2163 struct dentry *dentry, umode_t mode)
2164{
2165 struct iattr attr;
2166 int error;
2167
2168 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
2169 dir->i_sb->s_id, dir->i_ino, dentry);
2170
2171 attr.ia_valid = ATTR_MODE;
2172 attr.ia_mode = mode | S_IFDIR;
2173
2174 trace_nfs_mkdir_enter(dir, dentry);
2175 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
2176 trace_nfs_mkdir_exit(dir, dentry, error);
2177 if (error != 0)
2178 goto out_err;
2179 return 0;
2180out_err:
2181 d_drop(dentry);
2182 return error;
2183}
2184EXPORT_SYMBOL_GPL(nfs_mkdir);
2185
2186static void nfs_dentry_handle_enoent(struct dentry *dentry)
2187{
2188 if (simple_positive(dentry))
2189 d_delete(dentry);
2190}
2191
2192int nfs_rmdir(struct inode *dir, struct dentry *dentry)
2193{
2194 int error;
2195
2196 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
2197 dir->i_sb->s_id, dir->i_ino, dentry);
2198
2199 trace_nfs_rmdir_enter(dir, dentry);
2200 if (d_really_is_positive(dentry)) {
2201 down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2202 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2203 /* Ensure the VFS deletes this inode */
2204 switch (error) {
2205 case 0:
2206 clear_nlink(d_inode(dentry));
2207 break;
2208 case -ENOENT:
2209 nfs_dentry_handle_enoent(dentry);
2210 }
2211 up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2212 } else
2213 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2214 trace_nfs_rmdir_exit(dir, dentry, error);
2215
2216 return error;
2217}
2218EXPORT_SYMBOL_GPL(nfs_rmdir);
2219
2220/*
2221 * Remove a file after making sure there are no pending writes,
2222 * and after checking that the file has only one user.
2223 *
2224 * We invalidate the attribute cache and free the inode prior to the operation
2225 * to avoid possible races if the server reuses the inode.
2226 */
2227static int nfs_safe_remove(struct dentry *dentry)
2228{
2229 struct inode *dir = d_inode(dentry->d_parent);
2230 struct inode *inode = d_inode(dentry);
2231 int error = -EBUSY;
2232
2233 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
2234
2235 /* If the dentry was sillyrenamed, we simply call d_delete() */
2236 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
2237 error = 0;
2238 goto out;
2239 }
2240
2241 trace_nfs_remove_enter(dir, dentry);
2242 if (inode != NULL) {
2243 error = NFS_PROTO(dir)->remove(dir, dentry);
2244 if (error == 0)
2245 nfs_drop_nlink(inode);
2246 } else
2247 error = NFS_PROTO(dir)->remove(dir, dentry);
2248 if (error == -ENOENT)
2249 nfs_dentry_handle_enoent(dentry);
2250 trace_nfs_remove_exit(dir, dentry, error);
2251out:
2252 return error;
2253}
2254
2255/* We do silly rename. In case sillyrename() returns -EBUSY, the inode
2256 * belongs to an active ".nfs..." file and we return -EBUSY.
2257 *
2258 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
2259 */
2260int nfs_unlink(struct inode *dir, struct dentry *dentry)
2261{
2262 int error;
2263 int need_rehash = 0;
2264
2265 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
2266 dir->i_ino, dentry);
2267
2268 trace_nfs_unlink_enter(dir, dentry);
2269 spin_lock(&dentry->d_lock);
2270 if (d_count(dentry) > 1) {
2271 spin_unlock(&dentry->d_lock);
2272 /* Start asynchronous writeout of the inode */
2273 write_inode_now(d_inode(dentry), 0);
2274 error = nfs_sillyrename(dir, dentry);
2275 goto out;
2276 }
2277 if (!d_unhashed(dentry)) {
2278 __d_drop(dentry);
2279 need_rehash = 1;
2280 }
2281 spin_unlock(&dentry->d_lock);
2282 error = nfs_safe_remove(dentry);
2283 if (!error || error == -ENOENT) {
2284 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2285 } else if (need_rehash)
2286 d_rehash(dentry);
2287out:
2288 trace_nfs_unlink_exit(dir, dentry, error);
2289 return error;
2290}
2291EXPORT_SYMBOL_GPL(nfs_unlink);
2292
2293/*
2294 * To create a symbolic link, most file systems instantiate a new inode,
2295 * add a page to it containing the path, then write it out to the disk
2296 * using prepare_write/commit_write.
2297 *
2298 * Unfortunately the NFS client can't create the in-core inode first
2299 * because it needs a file handle to create an in-core inode (see
2300 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
2301 * symlink request has completed on the server.
2302 *
2303 * So instead we allocate a raw page, copy the symname into it, then do
2304 * the SYMLINK request with the page as the buffer. If it succeeds, we
2305 * now have a new file handle and can instantiate an in-core NFS inode
2306 * and move the raw page into its mapping.
2307 */
2308int nfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
2309 struct dentry *dentry, const char *symname)
2310{
2311 struct page *page;
2312 char *kaddr;
2313 struct iattr attr;
2314 unsigned int pathlen = strlen(symname);
2315 int error;
2316
2317 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
2318 dir->i_ino, dentry, symname);
2319
2320 if (pathlen > PAGE_SIZE)
2321 return -ENAMETOOLONG;
2322
2323 attr.ia_mode = S_IFLNK | S_IRWXUGO;
2324 attr.ia_valid = ATTR_MODE;
2325
2326 page = alloc_page(GFP_USER);
2327 if (!page)
2328 return -ENOMEM;
2329
2330 kaddr = page_address(page);
2331 memcpy(kaddr, symname, pathlen);
2332 if (pathlen < PAGE_SIZE)
2333 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
2334
2335 trace_nfs_symlink_enter(dir, dentry);
2336 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
2337 trace_nfs_symlink_exit(dir, dentry, error);
2338 if (error != 0) {
2339 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2340 dir->i_sb->s_id, dir->i_ino,
2341 dentry, symname, error);
2342 d_drop(dentry);
2343 __free_page(page);
2344 return error;
2345 }
2346
2347 /*
2348 * No big deal if we can't add this page to the page cache here.
2349 * READLINK will get the missing page from the server if needed.
2350 */
2351 if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
2352 GFP_KERNEL)) {
2353 SetPageUptodate(page);
2354 unlock_page(page);
2355 /*
2356 * add_to_page_cache_lru() grabs an extra page refcount.
2357 * Drop it here to avoid leaking this page later.
2358 */
2359 put_page(page);
2360 } else
2361 __free_page(page);
2362
2363 return 0;
2364}
2365EXPORT_SYMBOL_GPL(nfs_symlink);
2366
2367int
2368nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2369{
2370 struct inode *inode = d_inode(old_dentry);
2371 int error;
2372
2373 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2374 old_dentry, dentry);
2375
2376 trace_nfs_link_enter(inode, dir, dentry);
2377 d_drop(dentry);
2378 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2379 if (error == 0) {
2380 ihold(inode);
2381 d_add(dentry, inode);
2382 }
2383 trace_nfs_link_exit(inode, dir, dentry, error);
2384 return error;
2385}
2386EXPORT_SYMBOL_GPL(nfs_link);
2387
2388/*
2389 * RENAME
2390 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2391 * different file handle for the same inode after a rename (e.g. when
2392 * moving to a different directory). A fail-safe method to do so would
2393 * be to look up old_dir/old_name, create a link to new_dir/new_name and
2394 * rename the old file using the sillyrename stuff. This way, the original
2395 * file in old_dir will go away when the last process iput()s the inode.
2396 *
2397 * FIXED.
2398 *
2399 * It actually works quite well. One needs to have the possibility for
2400 * at least one ".nfs..." file in each directory the file ever gets
2401 * moved or linked to which happens automagically with the new
2402 * implementation that only depends on the dcache stuff instead of
2403 * using the inode layer
2404 *
2405 * Unfortunately, things are a little more complicated than indicated
2406 * above. For a cross-directory move, we want to make sure we can get
2407 * rid of the old inode after the operation. This means there must be
2408 * no pending writes (if it's a file), and the use count must be 1.
2409 * If these conditions are met, we can drop the dentries before doing
2410 * the rename.
2411 */
2412int nfs_rename(struct user_namespace *mnt_userns, struct inode *old_dir,
2413 struct dentry *old_dentry, struct inode *new_dir,
2414 struct dentry *new_dentry, unsigned int flags)
2415{
2416 struct inode *old_inode = d_inode(old_dentry);
2417 struct inode *new_inode = d_inode(new_dentry);
2418 struct dentry *dentry = NULL, *rehash = NULL;
2419 struct rpc_task *task;
2420 int error = -EBUSY;
2421
2422 if (flags)
2423 return -EINVAL;
2424
2425 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2426 old_dentry, new_dentry,
2427 d_count(new_dentry));
2428
2429 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2430 /*
2431 * For non-directories, check whether the target is busy and if so,
2432 * make a copy of the dentry and then do a silly-rename. If the
2433 * silly-rename succeeds, the copied dentry is hashed and becomes
2434 * the new target.
2435 */
2436 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2437 /*
2438 * To prevent any new references to the target during the
2439 * rename, we unhash the dentry in advance.
2440 */
2441 if (!d_unhashed(new_dentry)) {
2442 d_drop(new_dentry);
2443 rehash = new_dentry;
2444 }
2445
2446 if (d_count(new_dentry) > 2) {
2447 int err;
2448
2449 /* copy the target dentry's name */
2450 dentry = d_alloc(new_dentry->d_parent,
2451 &new_dentry->d_name);
2452 if (!dentry)
2453 goto out;
2454
2455 /* silly-rename the existing target ... */
2456 err = nfs_sillyrename(new_dir, new_dentry);
2457 if (err)
2458 goto out;
2459
2460 new_dentry = dentry;
2461 rehash = NULL;
2462 new_inode = NULL;
2463 }
2464 }
2465
2466 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2467 if (IS_ERR(task)) {
2468 error = PTR_ERR(task);
2469 goto out;
2470 }
2471
2472 error = rpc_wait_for_completion_task(task);
2473 if (error != 0) {
2474 ((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2475 /* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2476 smp_wmb();
2477 } else
2478 error = task->tk_status;
2479 rpc_put_task(task);
2480 /* Ensure the inode attributes are revalidated */
2481 if (error == 0) {
2482 spin_lock(&old_inode->i_lock);
2483 NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2484 nfs_set_cache_invalid(old_inode, NFS_INO_INVALID_CHANGE |
2485 NFS_INO_INVALID_CTIME |
2486 NFS_INO_REVAL_FORCED);
2487 spin_unlock(&old_inode->i_lock);
2488 }
2489out:
2490 if (rehash)
2491 d_rehash(rehash);
2492 trace_nfs_rename_exit(old_dir, old_dentry,
2493 new_dir, new_dentry, error);
2494 if (!error) {
2495 if (new_inode != NULL)
2496 nfs_drop_nlink(new_inode);
2497 /*
2498 * The d_move() should be here instead of in an async RPC completion
2499 * handler because we need the proper locks to move the dentry. If
2500 * we're interrupted by a signal, the async RPC completion handler
2501 * should mark the directories for revalidation.
2502 */
2503 d_move(old_dentry, new_dentry);
2504 nfs_set_verifier(old_dentry,
2505 nfs_save_change_attribute(new_dir));
2506 } else if (error == -ENOENT)
2507 nfs_dentry_handle_enoent(old_dentry);
2508
2509 /* new dentry created? */
2510 if (dentry)
2511 dput(dentry);
2512 return error;
2513}
2514EXPORT_SYMBOL_GPL(nfs_rename);
2515
2516static DEFINE_SPINLOCK(nfs_access_lru_lock);
2517static LIST_HEAD(nfs_access_lru_list);
2518static atomic_long_t nfs_access_nr_entries;
2519
2520static unsigned long nfs_access_max_cachesize = 4*1024*1024;
2521module_param(nfs_access_max_cachesize, ulong, 0644);
2522MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2523
2524static void nfs_access_free_entry(struct nfs_access_entry *entry)
2525{
2526 put_cred(entry->cred);
2527 kfree_rcu(entry, rcu_head);
2528 smp_mb__before_atomic();
2529 atomic_long_dec(&nfs_access_nr_entries);
2530 smp_mb__after_atomic();
2531}
2532
2533static void nfs_access_free_list(struct list_head *head)
2534{
2535 struct nfs_access_entry *cache;
2536
2537 while (!list_empty(head)) {
2538 cache = list_entry(head->next, struct nfs_access_entry, lru);
2539 list_del(&cache->lru);
2540 nfs_access_free_entry(cache);
2541 }
2542}
2543
2544static unsigned long
2545nfs_do_access_cache_scan(unsigned int nr_to_scan)
2546{
2547 LIST_HEAD(head);
2548 struct nfs_inode *nfsi, *next;
2549 struct nfs_access_entry *cache;
2550 long freed = 0;
2551
2552 spin_lock(&nfs_access_lru_lock);
2553 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2554 struct inode *inode;
2555
2556 if (nr_to_scan-- == 0)
2557 break;
2558 inode = &nfsi->vfs_inode;
2559 spin_lock(&inode->i_lock);
2560 if (list_empty(&nfsi->access_cache_entry_lru))
2561 goto remove_lru_entry;
2562 cache = list_entry(nfsi->access_cache_entry_lru.next,
2563 struct nfs_access_entry, lru);
2564 list_move(&cache->lru, &head);
2565 rb_erase(&cache->rb_node, &nfsi->access_cache);
2566 freed++;
2567 if (!list_empty(&nfsi->access_cache_entry_lru))
2568 list_move_tail(&nfsi->access_cache_inode_lru,
2569 &nfs_access_lru_list);
2570 else {
2571remove_lru_entry:
2572 list_del_init(&nfsi->access_cache_inode_lru);
2573 smp_mb__before_atomic();
2574 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2575 smp_mb__after_atomic();
2576 }
2577 spin_unlock(&inode->i_lock);
2578 }
2579 spin_unlock(&nfs_access_lru_lock);
2580 nfs_access_free_list(&head);
2581 return freed;
2582}
2583
2584unsigned long
2585nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2586{
2587 int nr_to_scan = sc->nr_to_scan;
2588 gfp_t gfp_mask = sc->gfp_mask;
2589
2590 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2591 return SHRINK_STOP;
2592 return nfs_do_access_cache_scan(nr_to_scan);
2593}
2594
2595
2596unsigned long
2597nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2598{
2599 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2600}
2601
2602static void
2603nfs_access_cache_enforce_limit(void)
2604{
2605 long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2606 unsigned long diff;
2607 unsigned int nr_to_scan;
2608
2609 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2610 return;
2611 nr_to_scan = 100;
2612 diff = nr_entries - nfs_access_max_cachesize;
2613 if (diff < nr_to_scan)
2614 nr_to_scan = diff;
2615 nfs_do_access_cache_scan(nr_to_scan);
2616}
2617
2618static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2619{
2620 struct rb_root *root_node = &nfsi->access_cache;
2621 struct rb_node *n;
2622 struct nfs_access_entry *entry;
2623
2624 /* Unhook entries from the cache */
2625 while ((n = rb_first(root_node)) != NULL) {
2626 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2627 rb_erase(n, root_node);
2628 list_move(&entry->lru, head);
2629 }
2630 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2631}
2632
2633void nfs_access_zap_cache(struct inode *inode)
2634{
2635 LIST_HEAD(head);
2636
2637 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2638 return;
2639 /* Remove from global LRU init */
2640 spin_lock(&nfs_access_lru_lock);
2641 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2642 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2643
2644 spin_lock(&inode->i_lock);
2645 __nfs_access_zap_cache(NFS_I(inode), &head);
2646 spin_unlock(&inode->i_lock);
2647 spin_unlock(&nfs_access_lru_lock);
2648 nfs_access_free_list(&head);
2649}
2650EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2651
2652static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2653{
2654 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2655
2656 while (n != NULL) {
2657 struct nfs_access_entry *entry =
2658 rb_entry(n, struct nfs_access_entry, rb_node);
2659 int cmp = cred_fscmp(cred, entry->cred);
2660
2661 if (cmp < 0)
2662 n = n->rb_left;
2663 else if (cmp > 0)
2664 n = n->rb_right;
2665 else
2666 return entry;
2667 }
2668 return NULL;
2669}
2670
2671static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res, bool may_block)
2672{
2673 struct nfs_inode *nfsi = NFS_I(inode);
2674 struct nfs_access_entry *cache;
2675 bool retry = true;
2676 int err;
2677
2678 spin_lock(&inode->i_lock);
2679 for(;;) {
2680 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2681 goto out_zap;
2682 cache = nfs_access_search_rbtree(inode, cred);
2683 err = -ENOENT;
2684 if (cache == NULL)
2685 goto out;
2686 /* Found an entry, is our attribute cache valid? */
2687 if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2688 break;
2689 if (!retry)
2690 break;
2691 err = -ECHILD;
2692 if (!may_block)
2693 goto out;
2694 spin_unlock(&inode->i_lock);
2695 err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2696 if (err)
2697 return err;
2698 spin_lock(&inode->i_lock);
2699 retry = false;
2700 }
2701 res->cred = cache->cred;
2702 res->mask = cache->mask;
2703 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2704 err = 0;
2705out:
2706 spin_unlock(&inode->i_lock);
2707 return err;
2708out_zap:
2709 spin_unlock(&inode->i_lock);
2710 nfs_access_zap_cache(inode);
2711 return -ENOENT;
2712}
2713
2714static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res)
2715{
2716 /* Only check the most recently returned cache entry,
2717 * but do it without locking.
2718 */
2719 struct nfs_inode *nfsi = NFS_I(inode);
2720 struct nfs_access_entry *cache;
2721 int err = -ECHILD;
2722 struct list_head *lh;
2723
2724 rcu_read_lock();
2725 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2726 goto out;
2727 lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru));
2728 cache = list_entry(lh, struct nfs_access_entry, lru);
2729 if (lh == &nfsi->access_cache_entry_lru ||
2730 cred_fscmp(cred, cache->cred) != 0)
2731 cache = NULL;
2732 if (cache == NULL)
2733 goto out;
2734 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2735 goto out;
2736 res->cred = cache->cred;
2737 res->mask = cache->mask;
2738 err = 0;
2739out:
2740 rcu_read_unlock();
2741 return err;
2742}
2743
2744int nfs_access_get_cached(struct inode *inode, const struct cred *cred, struct
2745nfs_access_entry *res, bool may_block)
2746{
2747 int status;
2748
2749 status = nfs_access_get_cached_rcu(inode, cred, res);
2750 if (status != 0)
2751 status = nfs_access_get_cached_locked(inode, cred, res,
2752 may_block);
2753
2754 return status;
2755}
2756EXPORT_SYMBOL_GPL(nfs_access_get_cached);
2757
2758static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2759{
2760 struct nfs_inode *nfsi = NFS_I(inode);
2761 struct rb_root *root_node = &nfsi->access_cache;
2762 struct rb_node **p = &root_node->rb_node;
2763 struct rb_node *parent = NULL;
2764 struct nfs_access_entry *entry;
2765 int cmp;
2766
2767 spin_lock(&inode->i_lock);
2768 while (*p != NULL) {
2769 parent = *p;
2770 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2771 cmp = cred_fscmp(set->cred, entry->cred);
2772
2773 if (cmp < 0)
2774 p = &parent->rb_left;
2775 else if (cmp > 0)
2776 p = &parent->rb_right;
2777 else
2778 goto found;
2779 }
2780 rb_link_node(&set->rb_node, parent, p);
2781 rb_insert_color(&set->rb_node, root_node);
2782 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2783 spin_unlock(&inode->i_lock);
2784 return;
2785found:
2786 rb_replace_node(parent, &set->rb_node, root_node);
2787 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2788 list_del(&entry->lru);
2789 spin_unlock(&inode->i_lock);
2790 nfs_access_free_entry(entry);
2791}
2792
2793void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2794{
2795 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2796 if (cache == NULL)
2797 return;
2798 RB_CLEAR_NODE(&cache->rb_node);
2799 cache->cred = get_cred(set->cred);
2800 cache->mask = set->mask;
2801
2802 /* The above field assignments must be visible
2803 * before this item appears on the lru. We cannot easily
2804 * use rcu_assign_pointer, so just force the memory barrier.
2805 */
2806 smp_wmb();
2807 nfs_access_add_rbtree(inode, cache);
2808
2809 /* Update accounting */
2810 smp_mb__before_atomic();
2811 atomic_long_inc(&nfs_access_nr_entries);
2812 smp_mb__after_atomic();
2813
2814 /* Add inode to global LRU list */
2815 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2816 spin_lock(&nfs_access_lru_lock);
2817 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2818 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2819 &nfs_access_lru_list);
2820 spin_unlock(&nfs_access_lru_lock);
2821 }
2822 nfs_access_cache_enforce_limit();
2823}
2824EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2825
2826#define NFS_MAY_READ (NFS_ACCESS_READ)
2827#define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
2828 NFS_ACCESS_EXTEND | \
2829 NFS_ACCESS_DELETE)
2830#define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
2831 NFS_ACCESS_EXTEND)
2832#define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
2833#define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
2834#define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
2835static int
2836nfs_access_calc_mask(u32 access_result, umode_t umode)
2837{
2838 int mask = 0;
2839
2840 if (access_result & NFS_MAY_READ)
2841 mask |= MAY_READ;
2842 if (S_ISDIR(umode)) {
2843 if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
2844 mask |= MAY_WRITE;
2845 if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
2846 mask |= MAY_EXEC;
2847 } else if (S_ISREG(umode)) {
2848 if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
2849 mask |= MAY_WRITE;
2850 if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
2851 mask |= MAY_EXEC;
2852 } else if (access_result & NFS_MAY_WRITE)
2853 mask |= MAY_WRITE;
2854 return mask;
2855}
2856
2857void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2858{
2859 entry->mask = access_result;
2860}
2861EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2862
2863static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
2864{
2865 struct nfs_access_entry cache;
2866 bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2867 int cache_mask = -1;
2868 int status;
2869
2870 trace_nfs_access_enter(inode);
2871
2872 status = nfs_access_get_cached(inode, cred, &cache, may_block);
2873 if (status == 0)
2874 goto out_cached;
2875
2876 status = -ECHILD;
2877 if (!may_block)
2878 goto out;
2879
2880 /*
2881 * Determine which access bits we want to ask for...
2882 */
2883 cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND;
2884 if (nfs_server_capable(inode, NFS_CAP_XATTR)) {
2885 cache.mask |= NFS_ACCESS_XAREAD | NFS_ACCESS_XAWRITE |
2886 NFS_ACCESS_XALIST;
2887 }
2888 if (S_ISDIR(inode->i_mode))
2889 cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
2890 else
2891 cache.mask |= NFS_ACCESS_EXECUTE;
2892 cache.cred = cred;
2893 status = NFS_PROTO(inode)->access(inode, &cache);
2894 if (status != 0) {
2895 if (status == -ESTALE) {
2896 if (!S_ISDIR(inode->i_mode))
2897 nfs_set_inode_stale(inode);
2898 else
2899 nfs_zap_caches(inode);
2900 }
2901 goto out;
2902 }
2903 nfs_access_add_cache(inode, &cache);
2904out_cached:
2905 cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
2906 if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2907 status = -EACCES;
2908out:
2909 trace_nfs_access_exit(inode, mask, cache_mask, status);
2910 return status;
2911}
2912
2913static int nfs_open_permission_mask(int openflags)
2914{
2915 int mask = 0;
2916
2917 if (openflags & __FMODE_EXEC) {
2918 /* ONLY check exec rights */
2919 mask = MAY_EXEC;
2920 } else {
2921 if ((openflags & O_ACCMODE) != O_WRONLY)
2922 mask |= MAY_READ;
2923 if ((openflags & O_ACCMODE) != O_RDONLY)
2924 mask |= MAY_WRITE;
2925 }
2926
2927 return mask;
2928}
2929
2930int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
2931{
2932 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2933}
2934EXPORT_SYMBOL_GPL(nfs_may_open);
2935
2936static int nfs_execute_ok(struct inode *inode, int mask)
2937{
2938 struct nfs_server *server = NFS_SERVER(inode);
2939 int ret = 0;
2940
2941 if (S_ISDIR(inode->i_mode))
2942 return 0;
2943 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_OTHER)) {
2944 if (mask & MAY_NOT_BLOCK)
2945 return -ECHILD;
2946 ret = __nfs_revalidate_inode(server, inode);
2947 }
2948 if (ret == 0 && !execute_ok(inode))
2949 ret = -EACCES;
2950 return ret;
2951}
2952
2953int nfs_permission(struct user_namespace *mnt_userns,
2954 struct inode *inode,
2955 int mask)
2956{
2957 const struct cred *cred = current_cred();
2958 int res = 0;
2959
2960 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2961
2962 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2963 goto out;
2964 /* Is this sys_access() ? */
2965 if (mask & (MAY_ACCESS | MAY_CHDIR))
2966 goto force_lookup;
2967
2968 switch (inode->i_mode & S_IFMT) {
2969 case S_IFLNK:
2970 goto out;
2971 case S_IFREG:
2972 if ((mask & MAY_OPEN) &&
2973 nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2974 return 0;
2975 break;
2976 case S_IFDIR:
2977 /*
2978 * Optimize away all write operations, since the server
2979 * will check permissions when we perform the op.
2980 */
2981 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2982 goto out;
2983 }
2984
2985force_lookup:
2986 if (!NFS_PROTO(inode)->access)
2987 goto out_notsup;
2988
2989 res = nfs_do_access(inode, cred, mask);
2990out:
2991 if (!res && (mask & MAY_EXEC))
2992 res = nfs_execute_ok(inode, mask);
2993
2994 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2995 inode->i_sb->s_id, inode->i_ino, mask, res);
2996 return res;
2997out_notsup:
2998 if (mask & MAY_NOT_BLOCK)
2999 return -ECHILD;
3000
3001 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
3002 if (res == 0)
3003 res = generic_permission(&init_user_ns, inode, mask);
3004 goto out;
3005}
3006EXPORT_SYMBOL_GPL(nfs_permission);
3007
3008/*
3009 * Local variables:
3010 * version-control: t
3011 * kept-new-versions: 5
3012 * End:
3013 */