Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * fs/f2fs/node.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8#include <linux/fs.h>
9#include <linux/f2fs_fs.h>
10#include <linux/mpage.h>
11#include <linux/backing-dev.h>
12#include <linux/blkdev.h>
13#include <linux/pagevec.h>
14#include <linux/swap.h>
15
16#include "f2fs.h"
17#include "node.h"
18#include "segment.h"
19#include "xattr.h"
20#include <trace/events/f2fs.h>
21
22#define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
23
24static struct kmem_cache *nat_entry_slab;
25static struct kmem_cache *free_nid_slab;
26static struct kmem_cache *nat_entry_set_slab;
27static struct kmem_cache *fsync_node_entry_slab;
28
29/*
30 * Check whether the given nid is within node id range.
31 */
32int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
33{
34 if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
35 set_sbi_flag(sbi, SBI_NEED_FSCK);
36 f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
37 __func__, nid);
38 return -EFSCORRUPTED;
39 }
40 return 0;
41}
42
43bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
44{
45 struct f2fs_nm_info *nm_i = NM_I(sbi);
46 struct sysinfo val;
47 unsigned long avail_ram;
48 unsigned long mem_size = 0;
49 bool res = false;
50
51 si_meminfo(&val);
52
53 /* only uses low memory */
54 avail_ram = val.totalram - val.totalhigh;
55
56 /*
57 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
58 */
59 if (type == FREE_NIDS) {
60 mem_size = (nm_i->nid_cnt[FREE_NID] *
61 sizeof(struct free_nid)) >> PAGE_SHIFT;
62 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
63 } else if (type == NAT_ENTRIES) {
64 mem_size = (nm_i->nat_cnt[TOTAL_NAT] *
65 sizeof(struct nat_entry)) >> PAGE_SHIFT;
66 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
67 if (excess_cached_nats(sbi))
68 res = false;
69 } else if (type == DIRTY_DENTS) {
70 if (sbi->sb->s_bdi->wb.dirty_exceeded)
71 return false;
72 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
73 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
74 } else if (type == INO_ENTRIES) {
75 int i;
76
77 for (i = 0; i < MAX_INO_ENTRY; i++)
78 mem_size += sbi->im[i].ino_num *
79 sizeof(struct ino_entry);
80 mem_size >>= PAGE_SHIFT;
81 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
82 } else if (type == EXTENT_CACHE) {
83 mem_size = (atomic_read(&sbi->total_ext_tree) *
84 sizeof(struct extent_tree) +
85 atomic_read(&sbi->total_ext_node) *
86 sizeof(struct extent_node)) >> PAGE_SHIFT;
87 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
88 } else if (type == INMEM_PAGES) {
89 /* it allows 20% / total_ram for inmemory pages */
90 mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
91 res = mem_size < (val.totalram / 5);
92 } else {
93 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
94 return true;
95 }
96 return res;
97}
98
99static void clear_node_page_dirty(struct page *page)
100{
101 if (PageDirty(page)) {
102 f2fs_clear_page_cache_dirty_tag(page);
103 clear_page_dirty_for_io(page);
104 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
105 }
106 ClearPageUptodate(page);
107}
108
109static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
110{
111 return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid));
112}
113
114static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
115{
116 struct page *src_page;
117 struct page *dst_page;
118 pgoff_t dst_off;
119 void *src_addr;
120 void *dst_addr;
121 struct f2fs_nm_info *nm_i = NM_I(sbi);
122
123 dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
124
125 /* get current nat block page with lock */
126 src_page = get_current_nat_page(sbi, nid);
127 if (IS_ERR(src_page))
128 return src_page;
129 dst_page = f2fs_grab_meta_page(sbi, dst_off);
130 f2fs_bug_on(sbi, PageDirty(src_page));
131
132 src_addr = page_address(src_page);
133 dst_addr = page_address(dst_page);
134 memcpy(dst_addr, src_addr, PAGE_SIZE);
135 set_page_dirty(dst_page);
136 f2fs_put_page(src_page, 1);
137
138 set_to_next_nat(nm_i, nid);
139
140 return dst_page;
141}
142
143static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
144{
145 struct nat_entry *new;
146
147 if (no_fail)
148 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
149 else
150 new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
151 if (new) {
152 nat_set_nid(new, nid);
153 nat_reset_flag(new);
154 }
155 return new;
156}
157
158static void __free_nat_entry(struct nat_entry *e)
159{
160 kmem_cache_free(nat_entry_slab, e);
161}
162
163/* must be locked by nat_tree_lock */
164static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
165 struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
166{
167 if (no_fail)
168 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
169 else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
170 return NULL;
171
172 if (raw_ne)
173 node_info_from_raw_nat(&ne->ni, raw_ne);
174
175 spin_lock(&nm_i->nat_list_lock);
176 list_add_tail(&ne->list, &nm_i->nat_entries);
177 spin_unlock(&nm_i->nat_list_lock);
178
179 nm_i->nat_cnt[TOTAL_NAT]++;
180 nm_i->nat_cnt[RECLAIMABLE_NAT]++;
181 return ne;
182}
183
184static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
185{
186 struct nat_entry *ne;
187
188 ne = radix_tree_lookup(&nm_i->nat_root, n);
189
190 /* for recent accessed nat entry, move it to tail of lru list */
191 if (ne && !get_nat_flag(ne, IS_DIRTY)) {
192 spin_lock(&nm_i->nat_list_lock);
193 if (!list_empty(&ne->list))
194 list_move_tail(&ne->list, &nm_i->nat_entries);
195 spin_unlock(&nm_i->nat_list_lock);
196 }
197
198 return ne;
199}
200
201static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
202 nid_t start, unsigned int nr, struct nat_entry **ep)
203{
204 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
205}
206
207static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
208{
209 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
210 nm_i->nat_cnt[TOTAL_NAT]--;
211 nm_i->nat_cnt[RECLAIMABLE_NAT]--;
212 __free_nat_entry(e);
213}
214
215static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
216 struct nat_entry *ne)
217{
218 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
219 struct nat_entry_set *head;
220
221 head = radix_tree_lookup(&nm_i->nat_set_root, set);
222 if (!head) {
223 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
224
225 INIT_LIST_HEAD(&head->entry_list);
226 INIT_LIST_HEAD(&head->set_list);
227 head->set = set;
228 head->entry_cnt = 0;
229 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
230 }
231 return head;
232}
233
234static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
235 struct nat_entry *ne)
236{
237 struct nat_entry_set *head;
238 bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
239
240 if (!new_ne)
241 head = __grab_nat_entry_set(nm_i, ne);
242
243 /*
244 * update entry_cnt in below condition:
245 * 1. update NEW_ADDR to valid block address;
246 * 2. update old block address to new one;
247 */
248 if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
249 !get_nat_flag(ne, IS_DIRTY)))
250 head->entry_cnt++;
251
252 set_nat_flag(ne, IS_PREALLOC, new_ne);
253
254 if (get_nat_flag(ne, IS_DIRTY))
255 goto refresh_list;
256
257 nm_i->nat_cnt[DIRTY_NAT]++;
258 nm_i->nat_cnt[RECLAIMABLE_NAT]--;
259 set_nat_flag(ne, IS_DIRTY, true);
260refresh_list:
261 spin_lock(&nm_i->nat_list_lock);
262 if (new_ne)
263 list_del_init(&ne->list);
264 else
265 list_move_tail(&ne->list, &head->entry_list);
266 spin_unlock(&nm_i->nat_list_lock);
267}
268
269static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
270 struct nat_entry_set *set, struct nat_entry *ne)
271{
272 spin_lock(&nm_i->nat_list_lock);
273 list_move_tail(&ne->list, &nm_i->nat_entries);
274 spin_unlock(&nm_i->nat_list_lock);
275
276 set_nat_flag(ne, IS_DIRTY, false);
277 set->entry_cnt--;
278 nm_i->nat_cnt[DIRTY_NAT]--;
279 nm_i->nat_cnt[RECLAIMABLE_NAT]++;
280}
281
282static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
283 nid_t start, unsigned int nr, struct nat_entry_set **ep)
284{
285 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
286 start, nr);
287}
288
289bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
290{
291 return NODE_MAPPING(sbi) == page->mapping &&
292 IS_DNODE(page) && is_cold_node(page);
293}
294
295void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
296{
297 spin_lock_init(&sbi->fsync_node_lock);
298 INIT_LIST_HEAD(&sbi->fsync_node_list);
299 sbi->fsync_seg_id = 0;
300 sbi->fsync_node_num = 0;
301}
302
303static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
304 struct page *page)
305{
306 struct fsync_node_entry *fn;
307 unsigned long flags;
308 unsigned int seq_id;
309
310 fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, GFP_NOFS);
311
312 get_page(page);
313 fn->page = page;
314 INIT_LIST_HEAD(&fn->list);
315
316 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
317 list_add_tail(&fn->list, &sbi->fsync_node_list);
318 fn->seq_id = sbi->fsync_seg_id++;
319 seq_id = fn->seq_id;
320 sbi->fsync_node_num++;
321 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
322
323 return seq_id;
324}
325
326void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
327{
328 struct fsync_node_entry *fn;
329 unsigned long flags;
330
331 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
332 list_for_each_entry(fn, &sbi->fsync_node_list, list) {
333 if (fn->page == page) {
334 list_del(&fn->list);
335 sbi->fsync_node_num--;
336 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
337 kmem_cache_free(fsync_node_entry_slab, fn);
338 put_page(page);
339 return;
340 }
341 }
342 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
343 f2fs_bug_on(sbi, 1);
344}
345
346void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
347{
348 unsigned long flags;
349
350 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
351 sbi->fsync_seg_id = 0;
352 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
353}
354
355int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
356{
357 struct f2fs_nm_info *nm_i = NM_I(sbi);
358 struct nat_entry *e;
359 bool need = false;
360
361 down_read(&nm_i->nat_tree_lock);
362 e = __lookup_nat_cache(nm_i, nid);
363 if (e) {
364 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
365 !get_nat_flag(e, HAS_FSYNCED_INODE))
366 need = true;
367 }
368 up_read(&nm_i->nat_tree_lock);
369 return need;
370}
371
372bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
373{
374 struct f2fs_nm_info *nm_i = NM_I(sbi);
375 struct nat_entry *e;
376 bool is_cp = true;
377
378 down_read(&nm_i->nat_tree_lock);
379 e = __lookup_nat_cache(nm_i, nid);
380 if (e && !get_nat_flag(e, IS_CHECKPOINTED))
381 is_cp = false;
382 up_read(&nm_i->nat_tree_lock);
383 return is_cp;
384}
385
386bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
387{
388 struct f2fs_nm_info *nm_i = NM_I(sbi);
389 struct nat_entry *e;
390 bool need_update = true;
391
392 down_read(&nm_i->nat_tree_lock);
393 e = __lookup_nat_cache(nm_i, ino);
394 if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
395 (get_nat_flag(e, IS_CHECKPOINTED) ||
396 get_nat_flag(e, HAS_FSYNCED_INODE)))
397 need_update = false;
398 up_read(&nm_i->nat_tree_lock);
399 return need_update;
400}
401
402/* must be locked by nat_tree_lock */
403static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
404 struct f2fs_nat_entry *ne)
405{
406 struct f2fs_nm_info *nm_i = NM_I(sbi);
407 struct nat_entry *new, *e;
408
409 new = __alloc_nat_entry(nid, false);
410 if (!new)
411 return;
412
413 down_write(&nm_i->nat_tree_lock);
414 e = __lookup_nat_cache(nm_i, nid);
415 if (!e)
416 e = __init_nat_entry(nm_i, new, ne, false);
417 else
418 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
419 nat_get_blkaddr(e) !=
420 le32_to_cpu(ne->block_addr) ||
421 nat_get_version(e) != ne->version);
422 up_write(&nm_i->nat_tree_lock);
423 if (e != new)
424 __free_nat_entry(new);
425}
426
427static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
428 block_t new_blkaddr, bool fsync_done)
429{
430 struct f2fs_nm_info *nm_i = NM_I(sbi);
431 struct nat_entry *e;
432 struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
433
434 down_write(&nm_i->nat_tree_lock);
435 e = __lookup_nat_cache(nm_i, ni->nid);
436 if (!e) {
437 e = __init_nat_entry(nm_i, new, NULL, true);
438 copy_node_info(&e->ni, ni);
439 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
440 } else if (new_blkaddr == NEW_ADDR) {
441 /*
442 * when nid is reallocated,
443 * previous nat entry can be remained in nat cache.
444 * So, reinitialize it with new information.
445 */
446 copy_node_info(&e->ni, ni);
447 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
448 }
449 /* let's free early to reduce memory consumption */
450 if (e != new)
451 __free_nat_entry(new);
452
453 /* sanity check */
454 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
455 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
456 new_blkaddr == NULL_ADDR);
457 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
458 new_blkaddr == NEW_ADDR);
459 f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
460 new_blkaddr == NEW_ADDR);
461
462 /* increment version no as node is removed */
463 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
464 unsigned char version = nat_get_version(e);
465 nat_set_version(e, inc_node_version(version));
466 }
467
468 /* change address */
469 nat_set_blkaddr(e, new_blkaddr);
470 if (!__is_valid_data_blkaddr(new_blkaddr))
471 set_nat_flag(e, IS_CHECKPOINTED, false);
472 __set_nat_cache_dirty(nm_i, e);
473
474 /* update fsync_mark if its inode nat entry is still alive */
475 if (ni->nid != ni->ino)
476 e = __lookup_nat_cache(nm_i, ni->ino);
477 if (e) {
478 if (fsync_done && ni->nid == ni->ino)
479 set_nat_flag(e, HAS_FSYNCED_INODE, true);
480 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
481 }
482 up_write(&nm_i->nat_tree_lock);
483}
484
485int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
486{
487 struct f2fs_nm_info *nm_i = NM_I(sbi);
488 int nr = nr_shrink;
489
490 if (!down_write_trylock(&nm_i->nat_tree_lock))
491 return 0;
492
493 spin_lock(&nm_i->nat_list_lock);
494 while (nr_shrink) {
495 struct nat_entry *ne;
496
497 if (list_empty(&nm_i->nat_entries))
498 break;
499
500 ne = list_first_entry(&nm_i->nat_entries,
501 struct nat_entry, list);
502 list_del(&ne->list);
503 spin_unlock(&nm_i->nat_list_lock);
504
505 __del_from_nat_cache(nm_i, ne);
506 nr_shrink--;
507
508 spin_lock(&nm_i->nat_list_lock);
509 }
510 spin_unlock(&nm_i->nat_list_lock);
511
512 up_write(&nm_i->nat_tree_lock);
513 return nr - nr_shrink;
514}
515
516int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
517 struct node_info *ni)
518{
519 struct f2fs_nm_info *nm_i = NM_I(sbi);
520 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
521 struct f2fs_journal *journal = curseg->journal;
522 nid_t start_nid = START_NID(nid);
523 struct f2fs_nat_block *nat_blk;
524 struct page *page = NULL;
525 struct f2fs_nat_entry ne;
526 struct nat_entry *e;
527 pgoff_t index;
528 block_t blkaddr;
529 int i;
530
531 ni->nid = nid;
532
533 /* Check nat cache */
534 down_read(&nm_i->nat_tree_lock);
535 e = __lookup_nat_cache(nm_i, nid);
536 if (e) {
537 ni->ino = nat_get_ino(e);
538 ni->blk_addr = nat_get_blkaddr(e);
539 ni->version = nat_get_version(e);
540 up_read(&nm_i->nat_tree_lock);
541 return 0;
542 }
543
544 memset(&ne, 0, sizeof(struct f2fs_nat_entry));
545
546 /* Check current segment summary */
547 down_read(&curseg->journal_rwsem);
548 i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
549 if (i >= 0) {
550 ne = nat_in_journal(journal, i);
551 node_info_from_raw_nat(ni, &ne);
552 }
553 up_read(&curseg->journal_rwsem);
554 if (i >= 0) {
555 up_read(&nm_i->nat_tree_lock);
556 goto cache;
557 }
558
559 /* Fill node_info from nat page */
560 index = current_nat_addr(sbi, nid);
561 up_read(&nm_i->nat_tree_lock);
562
563 page = f2fs_get_meta_page(sbi, index);
564 if (IS_ERR(page))
565 return PTR_ERR(page);
566
567 nat_blk = (struct f2fs_nat_block *)page_address(page);
568 ne = nat_blk->entries[nid - start_nid];
569 node_info_from_raw_nat(ni, &ne);
570 f2fs_put_page(page, 1);
571cache:
572 blkaddr = le32_to_cpu(ne.block_addr);
573 if (__is_valid_data_blkaddr(blkaddr) &&
574 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
575 return -EFAULT;
576
577 /* cache nat entry */
578 cache_nat_entry(sbi, nid, &ne);
579 return 0;
580}
581
582/*
583 * readahead MAX_RA_NODE number of node pages.
584 */
585static void f2fs_ra_node_pages(struct page *parent, int start, int n)
586{
587 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
588 struct blk_plug plug;
589 int i, end;
590 nid_t nid;
591
592 blk_start_plug(&plug);
593
594 /* Then, try readahead for siblings of the desired node */
595 end = start + n;
596 end = min(end, NIDS_PER_BLOCK);
597 for (i = start; i < end; i++) {
598 nid = get_nid(parent, i, false);
599 f2fs_ra_node_page(sbi, nid);
600 }
601
602 blk_finish_plug(&plug);
603}
604
605pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
606{
607 const long direct_index = ADDRS_PER_INODE(dn->inode);
608 const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
609 const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
610 unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
611 int cur_level = dn->cur_level;
612 int max_level = dn->max_level;
613 pgoff_t base = 0;
614
615 if (!dn->max_level)
616 return pgofs + 1;
617
618 while (max_level-- > cur_level)
619 skipped_unit *= NIDS_PER_BLOCK;
620
621 switch (dn->max_level) {
622 case 3:
623 base += 2 * indirect_blks;
624 fallthrough;
625 case 2:
626 base += 2 * direct_blks;
627 fallthrough;
628 case 1:
629 base += direct_index;
630 break;
631 default:
632 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
633 }
634
635 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
636}
637
638/*
639 * The maximum depth is four.
640 * Offset[0] will have raw inode offset.
641 */
642static int get_node_path(struct inode *inode, long block,
643 int offset[4], unsigned int noffset[4])
644{
645 const long direct_index = ADDRS_PER_INODE(inode);
646 const long direct_blks = ADDRS_PER_BLOCK(inode);
647 const long dptrs_per_blk = NIDS_PER_BLOCK;
648 const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
649 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
650 int n = 0;
651 int level = 0;
652
653 noffset[0] = 0;
654
655 if (block < direct_index) {
656 offset[n] = block;
657 goto got;
658 }
659 block -= direct_index;
660 if (block < direct_blks) {
661 offset[n++] = NODE_DIR1_BLOCK;
662 noffset[n] = 1;
663 offset[n] = block;
664 level = 1;
665 goto got;
666 }
667 block -= direct_blks;
668 if (block < direct_blks) {
669 offset[n++] = NODE_DIR2_BLOCK;
670 noffset[n] = 2;
671 offset[n] = block;
672 level = 1;
673 goto got;
674 }
675 block -= direct_blks;
676 if (block < indirect_blks) {
677 offset[n++] = NODE_IND1_BLOCK;
678 noffset[n] = 3;
679 offset[n++] = block / direct_blks;
680 noffset[n] = 4 + offset[n - 1];
681 offset[n] = block % direct_blks;
682 level = 2;
683 goto got;
684 }
685 block -= indirect_blks;
686 if (block < indirect_blks) {
687 offset[n++] = NODE_IND2_BLOCK;
688 noffset[n] = 4 + dptrs_per_blk;
689 offset[n++] = block / direct_blks;
690 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
691 offset[n] = block % direct_blks;
692 level = 2;
693 goto got;
694 }
695 block -= indirect_blks;
696 if (block < dindirect_blks) {
697 offset[n++] = NODE_DIND_BLOCK;
698 noffset[n] = 5 + (dptrs_per_blk * 2);
699 offset[n++] = block / indirect_blks;
700 noffset[n] = 6 + (dptrs_per_blk * 2) +
701 offset[n - 1] * (dptrs_per_blk + 1);
702 offset[n++] = (block / direct_blks) % dptrs_per_blk;
703 noffset[n] = 7 + (dptrs_per_blk * 2) +
704 offset[n - 2] * (dptrs_per_blk + 1) +
705 offset[n - 1];
706 offset[n] = block % direct_blks;
707 level = 3;
708 goto got;
709 } else {
710 return -E2BIG;
711 }
712got:
713 return level;
714}
715
716/*
717 * Caller should call f2fs_put_dnode(dn).
718 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
719 * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
720 */
721int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
722{
723 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
724 struct page *npage[4];
725 struct page *parent = NULL;
726 int offset[4];
727 unsigned int noffset[4];
728 nid_t nids[4];
729 int level, i = 0;
730 int err = 0;
731
732 level = get_node_path(dn->inode, index, offset, noffset);
733 if (level < 0)
734 return level;
735
736 nids[0] = dn->inode->i_ino;
737 npage[0] = dn->inode_page;
738
739 if (!npage[0]) {
740 npage[0] = f2fs_get_node_page(sbi, nids[0]);
741 if (IS_ERR(npage[0]))
742 return PTR_ERR(npage[0]);
743 }
744
745 /* if inline_data is set, should not report any block indices */
746 if (f2fs_has_inline_data(dn->inode) && index) {
747 err = -ENOENT;
748 f2fs_put_page(npage[0], 1);
749 goto release_out;
750 }
751
752 parent = npage[0];
753 if (level != 0)
754 nids[1] = get_nid(parent, offset[0], true);
755 dn->inode_page = npage[0];
756 dn->inode_page_locked = true;
757
758 /* get indirect or direct nodes */
759 for (i = 1; i <= level; i++) {
760 bool done = false;
761
762 if (!nids[i] && mode == ALLOC_NODE) {
763 /* alloc new node */
764 if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
765 err = -ENOSPC;
766 goto release_pages;
767 }
768
769 dn->nid = nids[i];
770 npage[i] = f2fs_new_node_page(dn, noffset[i]);
771 if (IS_ERR(npage[i])) {
772 f2fs_alloc_nid_failed(sbi, nids[i]);
773 err = PTR_ERR(npage[i]);
774 goto release_pages;
775 }
776
777 set_nid(parent, offset[i - 1], nids[i], i == 1);
778 f2fs_alloc_nid_done(sbi, nids[i]);
779 done = true;
780 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
781 npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
782 if (IS_ERR(npage[i])) {
783 err = PTR_ERR(npage[i]);
784 goto release_pages;
785 }
786 done = true;
787 }
788 if (i == 1) {
789 dn->inode_page_locked = false;
790 unlock_page(parent);
791 } else {
792 f2fs_put_page(parent, 1);
793 }
794
795 if (!done) {
796 npage[i] = f2fs_get_node_page(sbi, nids[i]);
797 if (IS_ERR(npage[i])) {
798 err = PTR_ERR(npage[i]);
799 f2fs_put_page(npage[0], 0);
800 goto release_out;
801 }
802 }
803 if (i < level) {
804 parent = npage[i];
805 nids[i + 1] = get_nid(parent, offset[i], false);
806 }
807 }
808 dn->nid = nids[level];
809 dn->ofs_in_node = offset[level];
810 dn->node_page = npage[level];
811 dn->data_blkaddr = f2fs_data_blkaddr(dn);
812 return 0;
813
814release_pages:
815 f2fs_put_page(parent, 1);
816 if (i > 1)
817 f2fs_put_page(npage[0], 0);
818release_out:
819 dn->inode_page = NULL;
820 dn->node_page = NULL;
821 if (err == -ENOENT) {
822 dn->cur_level = i;
823 dn->max_level = level;
824 dn->ofs_in_node = offset[level];
825 }
826 return err;
827}
828
829static int truncate_node(struct dnode_of_data *dn)
830{
831 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
832 struct node_info ni;
833 int err;
834 pgoff_t index;
835
836 err = f2fs_get_node_info(sbi, dn->nid, &ni);
837 if (err)
838 return err;
839
840 /* Deallocate node address */
841 f2fs_invalidate_blocks(sbi, ni.blk_addr);
842 dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
843 set_node_addr(sbi, &ni, NULL_ADDR, false);
844
845 if (dn->nid == dn->inode->i_ino) {
846 f2fs_remove_orphan_inode(sbi, dn->nid);
847 dec_valid_inode_count(sbi);
848 f2fs_inode_synced(dn->inode);
849 }
850
851 clear_node_page_dirty(dn->node_page);
852 set_sbi_flag(sbi, SBI_IS_DIRTY);
853
854 index = dn->node_page->index;
855 f2fs_put_page(dn->node_page, 1);
856
857 invalidate_mapping_pages(NODE_MAPPING(sbi),
858 index, index);
859
860 dn->node_page = NULL;
861 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
862
863 return 0;
864}
865
866static int truncate_dnode(struct dnode_of_data *dn)
867{
868 struct page *page;
869 int err;
870
871 if (dn->nid == 0)
872 return 1;
873
874 /* get direct node */
875 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
876 if (PTR_ERR(page) == -ENOENT)
877 return 1;
878 else if (IS_ERR(page))
879 return PTR_ERR(page);
880
881 /* Make dnode_of_data for parameter */
882 dn->node_page = page;
883 dn->ofs_in_node = 0;
884 f2fs_truncate_data_blocks(dn);
885 err = truncate_node(dn);
886 if (err)
887 return err;
888
889 return 1;
890}
891
892static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
893 int ofs, int depth)
894{
895 struct dnode_of_data rdn = *dn;
896 struct page *page;
897 struct f2fs_node *rn;
898 nid_t child_nid;
899 unsigned int child_nofs;
900 int freed = 0;
901 int i, ret;
902
903 if (dn->nid == 0)
904 return NIDS_PER_BLOCK + 1;
905
906 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
907
908 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
909 if (IS_ERR(page)) {
910 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
911 return PTR_ERR(page);
912 }
913
914 f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
915
916 rn = F2FS_NODE(page);
917 if (depth < 3) {
918 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
919 child_nid = le32_to_cpu(rn->in.nid[i]);
920 if (child_nid == 0)
921 continue;
922 rdn.nid = child_nid;
923 ret = truncate_dnode(&rdn);
924 if (ret < 0)
925 goto out_err;
926 if (set_nid(page, i, 0, false))
927 dn->node_changed = true;
928 }
929 } else {
930 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
931 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
932 child_nid = le32_to_cpu(rn->in.nid[i]);
933 if (child_nid == 0) {
934 child_nofs += NIDS_PER_BLOCK + 1;
935 continue;
936 }
937 rdn.nid = child_nid;
938 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
939 if (ret == (NIDS_PER_BLOCK + 1)) {
940 if (set_nid(page, i, 0, false))
941 dn->node_changed = true;
942 child_nofs += ret;
943 } else if (ret < 0 && ret != -ENOENT) {
944 goto out_err;
945 }
946 }
947 freed = child_nofs;
948 }
949
950 if (!ofs) {
951 /* remove current indirect node */
952 dn->node_page = page;
953 ret = truncate_node(dn);
954 if (ret)
955 goto out_err;
956 freed++;
957 } else {
958 f2fs_put_page(page, 1);
959 }
960 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
961 return freed;
962
963out_err:
964 f2fs_put_page(page, 1);
965 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
966 return ret;
967}
968
969static int truncate_partial_nodes(struct dnode_of_data *dn,
970 struct f2fs_inode *ri, int *offset, int depth)
971{
972 struct page *pages[2];
973 nid_t nid[3];
974 nid_t child_nid;
975 int err = 0;
976 int i;
977 int idx = depth - 2;
978
979 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
980 if (!nid[0])
981 return 0;
982
983 /* get indirect nodes in the path */
984 for (i = 0; i < idx + 1; i++) {
985 /* reference count'll be increased */
986 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
987 if (IS_ERR(pages[i])) {
988 err = PTR_ERR(pages[i]);
989 idx = i - 1;
990 goto fail;
991 }
992 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
993 }
994
995 f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
996
997 /* free direct nodes linked to a partial indirect node */
998 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
999 child_nid = get_nid(pages[idx], i, false);
1000 if (!child_nid)
1001 continue;
1002 dn->nid = child_nid;
1003 err = truncate_dnode(dn);
1004 if (err < 0)
1005 goto fail;
1006 if (set_nid(pages[idx], i, 0, false))
1007 dn->node_changed = true;
1008 }
1009
1010 if (offset[idx + 1] == 0) {
1011 dn->node_page = pages[idx];
1012 dn->nid = nid[idx];
1013 err = truncate_node(dn);
1014 if (err)
1015 goto fail;
1016 } else {
1017 f2fs_put_page(pages[idx], 1);
1018 }
1019 offset[idx]++;
1020 offset[idx + 1] = 0;
1021 idx--;
1022fail:
1023 for (i = idx; i >= 0; i--)
1024 f2fs_put_page(pages[i], 1);
1025
1026 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1027
1028 return err;
1029}
1030
1031/*
1032 * All the block addresses of data and nodes should be nullified.
1033 */
1034int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1035{
1036 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1037 int err = 0, cont = 1;
1038 int level, offset[4], noffset[4];
1039 unsigned int nofs = 0;
1040 struct f2fs_inode *ri;
1041 struct dnode_of_data dn;
1042 struct page *page;
1043
1044 trace_f2fs_truncate_inode_blocks_enter(inode, from);
1045
1046 level = get_node_path(inode, from, offset, noffset);
1047 if (level < 0) {
1048 trace_f2fs_truncate_inode_blocks_exit(inode, level);
1049 return level;
1050 }
1051
1052 page = f2fs_get_node_page(sbi, inode->i_ino);
1053 if (IS_ERR(page)) {
1054 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1055 return PTR_ERR(page);
1056 }
1057
1058 set_new_dnode(&dn, inode, page, NULL, 0);
1059 unlock_page(page);
1060
1061 ri = F2FS_INODE(page);
1062 switch (level) {
1063 case 0:
1064 case 1:
1065 nofs = noffset[1];
1066 break;
1067 case 2:
1068 nofs = noffset[1];
1069 if (!offset[level - 1])
1070 goto skip_partial;
1071 err = truncate_partial_nodes(&dn, ri, offset, level);
1072 if (err < 0 && err != -ENOENT)
1073 goto fail;
1074 nofs += 1 + NIDS_PER_BLOCK;
1075 break;
1076 case 3:
1077 nofs = 5 + 2 * NIDS_PER_BLOCK;
1078 if (!offset[level - 1])
1079 goto skip_partial;
1080 err = truncate_partial_nodes(&dn, ri, offset, level);
1081 if (err < 0 && err != -ENOENT)
1082 goto fail;
1083 break;
1084 default:
1085 BUG();
1086 }
1087
1088skip_partial:
1089 while (cont) {
1090 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1091 switch (offset[0]) {
1092 case NODE_DIR1_BLOCK:
1093 case NODE_DIR2_BLOCK:
1094 err = truncate_dnode(&dn);
1095 break;
1096
1097 case NODE_IND1_BLOCK:
1098 case NODE_IND2_BLOCK:
1099 err = truncate_nodes(&dn, nofs, offset[1], 2);
1100 break;
1101
1102 case NODE_DIND_BLOCK:
1103 err = truncate_nodes(&dn, nofs, offset[1], 3);
1104 cont = 0;
1105 break;
1106
1107 default:
1108 BUG();
1109 }
1110 if (err < 0 && err != -ENOENT)
1111 goto fail;
1112 if (offset[1] == 0 &&
1113 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1114 lock_page(page);
1115 BUG_ON(page->mapping != NODE_MAPPING(sbi));
1116 f2fs_wait_on_page_writeback(page, NODE, true, true);
1117 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1118 set_page_dirty(page);
1119 unlock_page(page);
1120 }
1121 offset[1] = 0;
1122 offset[0]++;
1123 nofs += err;
1124 }
1125fail:
1126 f2fs_put_page(page, 0);
1127 trace_f2fs_truncate_inode_blocks_exit(inode, err);
1128 return err > 0 ? 0 : err;
1129}
1130
1131/* caller must lock inode page */
1132int f2fs_truncate_xattr_node(struct inode *inode)
1133{
1134 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1135 nid_t nid = F2FS_I(inode)->i_xattr_nid;
1136 struct dnode_of_data dn;
1137 struct page *npage;
1138 int err;
1139
1140 if (!nid)
1141 return 0;
1142
1143 npage = f2fs_get_node_page(sbi, nid);
1144 if (IS_ERR(npage))
1145 return PTR_ERR(npage);
1146
1147 set_new_dnode(&dn, inode, NULL, npage, nid);
1148 err = truncate_node(&dn);
1149 if (err) {
1150 f2fs_put_page(npage, 1);
1151 return err;
1152 }
1153
1154 f2fs_i_xnid_write(inode, 0);
1155
1156 return 0;
1157}
1158
1159/*
1160 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1161 * f2fs_unlock_op().
1162 */
1163int f2fs_remove_inode_page(struct inode *inode)
1164{
1165 struct dnode_of_data dn;
1166 int err;
1167
1168 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1169 err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1170 if (err)
1171 return err;
1172
1173 err = f2fs_truncate_xattr_node(inode);
1174 if (err) {
1175 f2fs_put_dnode(&dn);
1176 return err;
1177 }
1178
1179 /* remove potential inline_data blocks */
1180 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1181 S_ISLNK(inode->i_mode))
1182 f2fs_truncate_data_blocks_range(&dn, 1);
1183
1184 /* 0 is possible, after f2fs_new_inode() has failed */
1185 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1186 f2fs_put_dnode(&dn);
1187 return -EIO;
1188 }
1189
1190 if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1191 f2fs_warn(F2FS_I_SB(inode),
1192 "f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1193 inode->i_ino, (unsigned long long)inode->i_blocks);
1194 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1195 }
1196
1197 /* will put inode & node pages */
1198 err = truncate_node(&dn);
1199 if (err) {
1200 f2fs_put_dnode(&dn);
1201 return err;
1202 }
1203 return 0;
1204}
1205
1206struct page *f2fs_new_inode_page(struct inode *inode)
1207{
1208 struct dnode_of_data dn;
1209
1210 /* allocate inode page for new inode */
1211 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1212
1213 /* caller should f2fs_put_page(page, 1); */
1214 return f2fs_new_node_page(&dn, 0);
1215}
1216
1217struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1218{
1219 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1220 struct node_info new_ni;
1221 struct page *page;
1222 int err;
1223
1224 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1225 return ERR_PTR(-EPERM);
1226
1227 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1228 if (!page)
1229 return ERR_PTR(-ENOMEM);
1230
1231 if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1232 goto fail;
1233
1234#ifdef CONFIG_F2FS_CHECK_FS
1235 err = f2fs_get_node_info(sbi, dn->nid, &new_ni);
1236 if (err) {
1237 dec_valid_node_count(sbi, dn->inode, !ofs);
1238 goto fail;
1239 }
1240 f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
1241#endif
1242 new_ni.nid = dn->nid;
1243 new_ni.ino = dn->inode->i_ino;
1244 new_ni.blk_addr = NULL_ADDR;
1245 new_ni.flag = 0;
1246 new_ni.version = 0;
1247 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1248
1249 f2fs_wait_on_page_writeback(page, NODE, true, true);
1250 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1251 set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1252 if (!PageUptodate(page))
1253 SetPageUptodate(page);
1254 if (set_page_dirty(page))
1255 dn->node_changed = true;
1256
1257 if (f2fs_has_xattr_block(ofs))
1258 f2fs_i_xnid_write(dn->inode, dn->nid);
1259
1260 if (ofs == 0)
1261 inc_valid_inode_count(sbi);
1262 return page;
1263
1264fail:
1265 clear_node_page_dirty(page);
1266 f2fs_put_page(page, 1);
1267 return ERR_PTR(err);
1268}
1269
1270/*
1271 * Caller should do after getting the following values.
1272 * 0: f2fs_put_page(page, 0)
1273 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1274 */
1275static int read_node_page(struct page *page, int op_flags)
1276{
1277 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1278 struct node_info ni;
1279 struct f2fs_io_info fio = {
1280 .sbi = sbi,
1281 .type = NODE,
1282 .op = REQ_OP_READ,
1283 .op_flags = op_flags,
1284 .page = page,
1285 .encrypted_page = NULL,
1286 };
1287 int err;
1288
1289 if (PageUptodate(page)) {
1290 if (!f2fs_inode_chksum_verify(sbi, page)) {
1291 ClearPageUptodate(page);
1292 return -EFSBADCRC;
1293 }
1294 return LOCKED_PAGE;
1295 }
1296
1297 err = f2fs_get_node_info(sbi, page->index, &ni);
1298 if (err)
1299 return err;
1300
1301 if (unlikely(ni.blk_addr == NULL_ADDR) ||
1302 is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) {
1303 ClearPageUptodate(page);
1304 return -ENOENT;
1305 }
1306
1307 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1308
1309 err = f2fs_submit_page_bio(&fio);
1310
1311 if (!err)
1312 f2fs_update_iostat(sbi, FS_NODE_READ_IO, F2FS_BLKSIZE);
1313
1314 return err;
1315}
1316
1317/*
1318 * Readahead a node page
1319 */
1320void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1321{
1322 struct page *apage;
1323 int err;
1324
1325 if (!nid)
1326 return;
1327 if (f2fs_check_nid_range(sbi, nid))
1328 return;
1329
1330 apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1331 if (apage)
1332 return;
1333
1334 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1335 if (!apage)
1336 return;
1337
1338 err = read_node_page(apage, REQ_RAHEAD);
1339 f2fs_put_page(apage, err ? 1 : 0);
1340}
1341
1342static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1343 struct page *parent, int start)
1344{
1345 struct page *page;
1346 int err;
1347
1348 if (!nid)
1349 return ERR_PTR(-ENOENT);
1350 if (f2fs_check_nid_range(sbi, nid))
1351 return ERR_PTR(-EINVAL);
1352repeat:
1353 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1354 if (!page)
1355 return ERR_PTR(-ENOMEM);
1356
1357 err = read_node_page(page, 0);
1358 if (err < 0) {
1359 f2fs_put_page(page, 1);
1360 return ERR_PTR(err);
1361 } else if (err == LOCKED_PAGE) {
1362 err = 0;
1363 goto page_hit;
1364 }
1365
1366 if (parent)
1367 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1368
1369 lock_page(page);
1370
1371 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1372 f2fs_put_page(page, 1);
1373 goto repeat;
1374 }
1375
1376 if (unlikely(!PageUptodate(page))) {
1377 err = -EIO;
1378 goto out_err;
1379 }
1380
1381 if (!f2fs_inode_chksum_verify(sbi, page)) {
1382 err = -EFSBADCRC;
1383 goto out_err;
1384 }
1385page_hit:
1386 if(unlikely(nid != nid_of_node(page))) {
1387 f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1388 nid, nid_of_node(page), ino_of_node(page),
1389 ofs_of_node(page), cpver_of_node(page),
1390 next_blkaddr_of_node(page));
1391 err = -EINVAL;
1392out_err:
1393 ClearPageUptodate(page);
1394 f2fs_put_page(page, 1);
1395 return ERR_PTR(err);
1396 }
1397 return page;
1398}
1399
1400struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1401{
1402 return __get_node_page(sbi, nid, NULL, 0);
1403}
1404
1405struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1406{
1407 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1408 nid_t nid = get_nid(parent, start, false);
1409
1410 return __get_node_page(sbi, nid, parent, start);
1411}
1412
1413static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1414{
1415 struct inode *inode;
1416 struct page *page;
1417 int ret;
1418
1419 /* should flush inline_data before evict_inode */
1420 inode = ilookup(sbi->sb, ino);
1421 if (!inode)
1422 return;
1423
1424 page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1425 FGP_LOCK|FGP_NOWAIT, 0);
1426 if (!page)
1427 goto iput_out;
1428
1429 if (!PageUptodate(page))
1430 goto page_out;
1431
1432 if (!PageDirty(page))
1433 goto page_out;
1434
1435 if (!clear_page_dirty_for_io(page))
1436 goto page_out;
1437
1438 ret = f2fs_write_inline_data(inode, page);
1439 inode_dec_dirty_pages(inode);
1440 f2fs_remove_dirty_inode(inode);
1441 if (ret)
1442 set_page_dirty(page);
1443page_out:
1444 f2fs_put_page(page, 1);
1445iput_out:
1446 iput(inode);
1447}
1448
1449static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1450{
1451 pgoff_t index;
1452 struct pagevec pvec;
1453 struct page *last_page = NULL;
1454 int nr_pages;
1455
1456 pagevec_init(&pvec);
1457 index = 0;
1458
1459 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1460 PAGECACHE_TAG_DIRTY))) {
1461 int i;
1462
1463 for (i = 0; i < nr_pages; i++) {
1464 struct page *page = pvec.pages[i];
1465
1466 if (unlikely(f2fs_cp_error(sbi))) {
1467 f2fs_put_page(last_page, 0);
1468 pagevec_release(&pvec);
1469 return ERR_PTR(-EIO);
1470 }
1471
1472 if (!IS_DNODE(page) || !is_cold_node(page))
1473 continue;
1474 if (ino_of_node(page) != ino)
1475 continue;
1476
1477 lock_page(page);
1478
1479 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1480continue_unlock:
1481 unlock_page(page);
1482 continue;
1483 }
1484 if (ino_of_node(page) != ino)
1485 goto continue_unlock;
1486
1487 if (!PageDirty(page)) {
1488 /* someone wrote it for us */
1489 goto continue_unlock;
1490 }
1491
1492 if (last_page)
1493 f2fs_put_page(last_page, 0);
1494
1495 get_page(page);
1496 last_page = page;
1497 unlock_page(page);
1498 }
1499 pagevec_release(&pvec);
1500 cond_resched();
1501 }
1502 return last_page;
1503}
1504
1505static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1506 struct writeback_control *wbc, bool do_balance,
1507 enum iostat_type io_type, unsigned int *seq_id)
1508{
1509 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1510 nid_t nid;
1511 struct node_info ni;
1512 struct f2fs_io_info fio = {
1513 .sbi = sbi,
1514 .ino = ino_of_node(page),
1515 .type = NODE,
1516 .op = REQ_OP_WRITE,
1517 .op_flags = wbc_to_write_flags(wbc),
1518 .page = page,
1519 .encrypted_page = NULL,
1520 .submitted = false,
1521 .io_type = io_type,
1522 .io_wbc = wbc,
1523 };
1524 unsigned int seq;
1525
1526 trace_f2fs_writepage(page, NODE);
1527
1528 if (unlikely(f2fs_cp_error(sbi))) {
1529 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) {
1530 ClearPageUptodate(page);
1531 dec_page_count(sbi, F2FS_DIRTY_NODES);
1532 unlock_page(page);
1533 return 0;
1534 }
1535 goto redirty_out;
1536 }
1537
1538 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1539 goto redirty_out;
1540
1541 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1542 wbc->sync_mode == WB_SYNC_NONE &&
1543 IS_DNODE(page) && is_cold_node(page))
1544 goto redirty_out;
1545
1546 /* get old block addr of this node page */
1547 nid = nid_of_node(page);
1548 f2fs_bug_on(sbi, page->index != nid);
1549
1550 if (f2fs_get_node_info(sbi, nid, &ni))
1551 goto redirty_out;
1552
1553 if (wbc->for_reclaim) {
1554 if (!down_read_trylock(&sbi->node_write))
1555 goto redirty_out;
1556 } else {
1557 down_read(&sbi->node_write);
1558 }
1559
1560 /* This page is already truncated */
1561 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1562 ClearPageUptodate(page);
1563 dec_page_count(sbi, F2FS_DIRTY_NODES);
1564 up_read(&sbi->node_write);
1565 unlock_page(page);
1566 return 0;
1567 }
1568
1569 if (__is_valid_data_blkaddr(ni.blk_addr) &&
1570 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1571 DATA_GENERIC_ENHANCE)) {
1572 up_read(&sbi->node_write);
1573 goto redirty_out;
1574 }
1575
1576 if (atomic && !test_opt(sbi, NOBARRIER))
1577 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1578
1579 /* should add to global list before clearing PAGECACHE status */
1580 if (f2fs_in_warm_node_list(sbi, page)) {
1581 seq = f2fs_add_fsync_node_entry(sbi, page);
1582 if (seq_id)
1583 *seq_id = seq;
1584 }
1585
1586 set_page_writeback(page);
1587 ClearPageError(page);
1588
1589 fio.old_blkaddr = ni.blk_addr;
1590 f2fs_do_write_node_page(nid, &fio);
1591 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1592 dec_page_count(sbi, F2FS_DIRTY_NODES);
1593 up_read(&sbi->node_write);
1594
1595 if (wbc->for_reclaim) {
1596 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1597 submitted = NULL;
1598 }
1599
1600 unlock_page(page);
1601
1602 if (unlikely(f2fs_cp_error(sbi))) {
1603 f2fs_submit_merged_write(sbi, NODE);
1604 submitted = NULL;
1605 }
1606 if (submitted)
1607 *submitted = fio.submitted;
1608
1609 if (do_balance)
1610 f2fs_balance_fs(sbi, false);
1611 return 0;
1612
1613redirty_out:
1614 redirty_page_for_writepage(wbc, page);
1615 return AOP_WRITEPAGE_ACTIVATE;
1616}
1617
1618int f2fs_move_node_page(struct page *node_page, int gc_type)
1619{
1620 int err = 0;
1621
1622 if (gc_type == FG_GC) {
1623 struct writeback_control wbc = {
1624 .sync_mode = WB_SYNC_ALL,
1625 .nr_to_write = 1,
1626 .for_reclaim = 0,
1627 };
1628
1629 f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1630
1631 set_page_dirty(node_page);
1632
1633 if (!clear_page_dirty_for_io(node_page)) {
1634 err = -EAGAIN;
1635 goto out_page;
1636 }
1637
1638 if (__write_node_page(node_page, false, NULL,
1639 &wbc, false, FS_GC_NODE_IO, NULL)) {
1640 err = -EAGAIN;
1641 unlock_page(node_page);
1642 }
1643 goto release_page;
1644 } else {
1645 /* set page dirty and write it */
1646 if (!PageWriteback(node_page))
1647 set_page_dirty(node_page);
1648 }
1649out_page:
1650 unlock_page(node_page);
1651release_page:
1652 f2fs_put_page(node_page, 0);
1653 return err;
1654}
1655
1656static int f2fs_write_node_page(struct page *page,
1657 struct writeback_control *wbc)
1658{
1659 return __write_node_page(page, false, NULL, wbc, false,
1660 FS_NODE_IO, NULL);
1661}
1662
1663int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1664 struct writeback_control *wbc, bool atomic,
1665 unsigned int *seq_id)
1666{
1667 pgoff_t index;
1668 struct pagevec pvec;
1669 int ret = 0;
1670 struct page *last_page = NULL;
1671 bool marked = false;
1672 nid_t ino = inode->i_ino;
1673 int nr_pages;
1674 int nwritten = 0;
1675
1676 if (atomic) {
1677 last_page = last_fsync_dnode(sbi, ino);
1678 if (IS_ERR_OR_NULL(last_page))
1679 return PTR_ERR_OR_ZERO(last_page);
1680 }
1681retry:
1682 pagevec_init(&pvec);
1683 index = 0;
1684
1685 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1686 PAGECACHE_TAG_DIRTY))) {
1687 int i;
1688
1689 for (i = 0; i < nr_pages; i++) {
1690 struct page *page = pvec.pages[i];
1691 bool submitted = false;
1692
1693 if (unlikely(f2fs_cp_error(sbi))) {
1694 f2fs_put_page(last_page, 0);
1695 pagevec_release(&pvec);
1696 ret = -EIO;
1697 goto out;
1698 }
1699
1700 if (!IS_DNODE(page) || !is_cold_node(page))
1701 continue;
1702 if (ino_of_node(page) != ino)
1703 continue;
1704
1705 lock_page(page);
1706
1707 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1708continue_unlock:
1709 unlock_page(page);
1710 continue;
1711 }
1712 if (ino_of_node(page) != ino)
1713 goto continue_unlock;
1714
1715 if (!PageDirty(page) && page != last_page) {
1716 /* someone wrote it for us */
1717 goto continue_unlock;
1718 }
1719
1720 f2fs_wait_on_page_writeback(page, NODE, true, true);
1721
1722 set_fsync_mark(page, 0);
1723 set_dentry_mark(page, 0);
1724
1725 if (!atomic || page == last_page) {
1726 set_fsync_mark(page, 1);
1727 if (IS_INODE(page)) {
1728 if (is_inode_flag_set(inode,
1729 FI_DIRTY_INODE))
1730 f2fs_update_inode(inode, page);
1731 set_dentry_mark(page,
1732 f2fs_need_dentry_mark(sbi, ino));
1733 }
1734 /* may be written by other thread */
1735 if (!PageDirty(page))
1736 set_page_dirty(page);
1737 }
1738
1739 if (!clear_page_dirty_for_io(page))
1740 goto continue_unlock;
1741
1742 ret = __write_node_page(page, atomic &&
1743 page == last_page,
1744 &submitted, wbc, true,
1745 FS_NODE_IO, seq_id);
1746 if (ret) {
1747 unlock_page(page);
1748 f2fs_put_page(last_page, 0);
1749 break;
1750 } else if (submitted) {
1751 nwritten++;
1752 }
1753
1754 if (page == last_page) {
1755 f2fs_put_page(page, 0);
1756 marked = true;
1757 break;
1758 }
1759 }
1760 pagevec_release(&pvec);
1761 cond_resched();
1762
1763 if (ret || marked)
1764 break;
1765 }
1766 if (!ret && atomic && !marked) {
1767 f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1768 ino, last_page->index);
1769 lock_page(last_page);
1770 f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1771 set_page_dirty(last_page);
1772 unlock_page(last_page);
1773 goto retry;
1774 }
1775out:
1776 if (nwritten)
1777 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1778 return ret ? -EIO: 0;
1779}
1780
1781static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1782{
1783 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1784 bool clean;
1785
1786 if (inode->i_ino != ino)
1787 return 0;
1788
1789 if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1790 return 0;
1791
1792 spin_lock(&sbi->inode_lock[DIRTY_META]);
1793 clean = list_empty(&F2FS_I(inode)->gdirty_list);
1794 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1795
1796 if (clean)
1797 return 0;
1798
1799 inode = igrab(inode);
1800 if (!inode)
1801 return 0;
1802 return 1;
1803}
1804
1805static bool flush_dirty_inode(struct page *page)
1806{
1807 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1808 struct inode *inode;
1809 nid_t ino = ino_of_node(page);
1810
1811 inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1812 if (!inode)
1813 return false;
1814
1815 f2fs_update_inode(inode, page);
1816 unlock_page(page);
1817
1818 iput(inode);
1819 return true;
1820}
1821
1822void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1823{
1824 pgoff_t index = 0;
1825 struct pagevec pvec;
1826 int nr_pages;
1827
1828 pagevec_init(&pvec);
1829
1830 while ((nr_pages = pagevec_lookup_tag(&pvec,
1831 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1832 int i;
1833
1834 for (i = 0; i < nr_pages; i++) {
1835 struct page *page = pvec.pages[i];
1836
1837 if (!IS_DNODE(page))
1838 continue;
1839
1840 lock_page(page);
1841
1842 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1843continue_unlock:
1844 unlock_page(page);
1845 continue;
1846 }
1847
1848 if (!PageDirty(page)) {
1849 /* someone wrote it for us */
1850 goto continue_unlock;
1851 }
1852
1853 /* flush inline_data, if it's async context. */
1854 if (is_inline_node(page)) {
1855 clear_inline_node(page);
1856 unlock_page(page);
1857 flush_inline_data(sbi, ino_of_node(page));
1858 continue;
1859 }
1860 unlock_page(page);
1861 }
1862 pagevec_release(&pvec);
1863 cond_resched();
1864 }
1865}
1866
1867int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1868 struct writeback_control *wbc,
1869 bool do_balance, enum iostat_type io_type)
1870{
1871 pgoff_t index;
1872 struct pagevec pvec;
1873 int step = 0;
1874 int nwritten = 0;
1875 int ret = 0;
1876 int nr_pages, done = 0;
1877
1878 pagevec_init(&pvec);
1879
1880next_step:
1881 index = 0;
1882
1883 while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1884 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1885 int i;
1886
1887 for (i = 0; i < nr_pages; i++) {
1888 struct page *page = pvec.pages[i];
1889 bool submitted = false;
1890 bool may_dirty = true;
1891
1892 /* give a priority to WB_SYNC threads */
1893 if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1894 wbc->sync_mode == WB_SYNC_NONE) {
1895 done = 1;
1896 break;
1897 }
1898
1899 /*
1900 * flushing sequence with step:
1901 * 0. indirect nodes
1902 * 1. dentry dnodes
1903 * 2. file dnodes
1904 */
1905 if (step == 0 && IS_DNODE(page))
1906 continue;
1907 if (step == 1 && (!IS_DNODE(page) ||
1908 is_cold_node(page)))
1909 continue;
1910 if (step == 2 && (!IS_DNODE(page) ||
1911 !is_cold_node(page)))
1912 continue;
1913lock_node:
1914 if (wbc->sync_mode == WB_SYNC_ALL)
1915 lock_page(page);
1916 else if (!trylock_page(page))
1917 continue;
1918
1919 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1920continue_unlock:
1921 unlock_page(page);
1922 continue;
1923 }
1924
1925 if (!PageDirty(page)) {
1926 /* someone wrote it for us */
1927 goto continue_unlock;
1928 }
1929
1930 /* flush inline_data/inode, if it's async context. */
1931 if (!do_balance)
1932 goto write_node;
1933
1934 /* flush inline_data */
1935 if (is_inline_node(page)) {
1936 clear_inline_node(page);
1937 unlock_page(page);
1938 flush_inline_data(sbi, ino_of_node(page));
1939 goto lock_node;
1940 }
1941
1942 /* flush dirty inode */
1943 if (IS_INODE(page) && may_dirty) {
1944 may_dirty = false;
1945 if (flush_dirty_inode(page))
1946 goto lock_node;
1947 }
1948write_node:
1949 f2fs_wait_on_page_writeback(page, NODE, true, true);
1950
1951 if (!clear_page_dirty_for_io(page))
1952 goto continue_unlock;
1953
1954 set_fsync_mark(page, 0);
1955 set_dentry_mark(page, 0);
1956
1957 ret = __write_node_page(page, false, &submitted,
1958 wbc, do_balance, io_type, NULL);
1959 if (ret)
1960 unlock_page(page);
1961 else if (submitted)
1962 nwritten++;
1963
1964 if (--wbc->nr_to_write == 0)
1965 break;
1966 }
1967 pagevec_release(&pvec);
1968 cond_resched();
1969
1970 if (wbc->nr_to_write == 0) {
1971 step = 2;
1972 break;
1973 }
1974 }
1975
1976 if (step < 2) {
1977 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1978 wbc->sync_mode == WB_SYNC_NONE && step == 1)
1979 goto out;
1980 step++;
1981 goto next_step;
1982 }
1983out:
1984 if (nwritten)
1985 f2fs_submit_merged_write(sbi, NODE);
1986
1987 if (unlikely(f2fs_cp_error(sbi)))
1988 return -EIO;
1989 return ret;
1990}
1991
1992int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
1993 unsigned int seq_id)
1994{
1995 struct fsync_node_entry *fn;
1996 struct page *page;
1997 struct list_head *head = &sbi->fsync_node_list;
1998 unsigned long flags;
1999 unsigned int cur_seq_id = 0;
2000 int ret2, ret = 0;
2001
2002 while (seq_id && cur_seq_id < seq_id) {
2003 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2004 if (list_empty(head)) {
2005 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2006 break;
2007 }
2008 fn = list_first_entry(head, struct fsync_node_entry, list);
2009 if (fn->seq_id > seq_id) {
2010 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2011 break;
2012 }
2013 cur_seq_id = fn->seq_id;
2014 page = fn->page;
2015 get_page(page);
2016 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2017
2018 f2fs_wait_on_page_writeback(page, NODE, true, false);
2019 if (TestClearPageError(page))
2020 ret = -EIO;
2021
2022 put_page(page);
2023
2024 if (ret)
2025 break;
2026 }
2027
2028 ret2 = filemap_check_errors(NODE_MAPPING(sbi));
2029 if (!ret)
2030 ret = ret2;
2031
2032 return ret;
2033}
2034
2035static int f2fs_write_node_pages(struct address_space *mapping,
2036 struct writeback_control *wbc)
2037{
2038 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2039 struct blk_plug plug;
2040 long diff;
2041
2042 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2043 goto skip_write;
2044
2045 /* balancing f2fs's metadata in background */
2046 f2fs_balance_fs_bg(sbi, true);
2047
2048 /* collect a number of dirty node pages and write together */
2049 if (wbc->sync_mode != WB_SYNC_ALL &&
2050 get_pages(sbi, F2FS_DIRTY_NODES) <
2051 nr_pages_to_skip(sbi, NODE))
2052 goto skip_write;
2053
2054 if (wbc->sync_mode == WB_SYNC_ALL)
2055 atomic_inc(&sbi->wb_sync_req[NODE]);
2056 else if (atomic_read(&sbi->wb_sync_req[NODE]))
2057 goto skip_write;
2058
2059 trace_f2fs_writepages(mapping->host, wbc, NODE);
2060
2061 diff = nr_pages_to_write(sbi, NODE, wbc);
2062 blk_start_plug(&plug);
2063 f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2064 blk_finish_plug(&plug);
2065 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2066
2067 if (wbc->sync_mode == WB_SYNC_ALL)
2068 atomic_dec(&sbi->wb_sync_req[NODE]);
2069 return 0;
2070
2071skip_write:
2072 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2073 trace_f2fs_writepages(mapping->host, wbc, NODE);
2074 return 0;
2075}
2076
2077static int f2fs_set_node_page_dirty(struct page *page)
2078{
2079 trace_f2fs_set_page_dirty(page, NODE);
2080
2081 if (!PageUptodate(page))
2082 SetPageUptodate(page);
2083#ifdef CONFIG_F2FS_CHECK_FS
2084 if (IS_INODE(page))
2085 f2fs_inode_chksum_set(F2FS_P_SB(page), page);
2086#endif
2087 if (!PageDirty(page)) {
2088 __set_page_dirty_nobuffers(page);
2089 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
2090 f2fs_set_page_private(page, 0);
2091 return 1;
2092 }
2093 return 0;
2094}
2095
2096/*
2097 * Structure of the f2fs node operations
2098 */
2099const struct address_space_operations f2fs_node_aops = {
2100 .writepage = f2fs_write_node_page,
2101 .writepages = f2fs_write_node_pages,
2102 .set_page_dirty = f2fs_set_node_page_dirty,
2103 .invalidatepage = f2fs_invalidate_page,
2104 .releasepage = f2fs_release_page,
2105#ifdef CONFIG_MIGRATION
2106 .migratepage = f2fs_migrate_page,
2107#endif
2108};
2109
2110static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2111 nid_t n)
2112{
2113 return radix_tree_lookup(&nm_i->free_nid_root, n);
2114}
2115
2116static int __insert_free_nid(struct f2fs_sb_info *sbi,
2117 struct free_nid *i)
2118{
2119 struct f2fs_nm_info *nm_i = NM_I(sbi);
2120
2121 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2122 if (err)
2123 return err;
2124
2125 nm_i->nid_cnt[FREE_NID]++;
2126 list_add_tail(&i->list, &nm_i->free_nid_list);
2127 return 0;
2128}
2129
2130static void __remove_free_nid(struct f2fs_sb_info *sbi,
2131 struct free_nid *i, enum nid_state state)
2132{
2133 struct f2fs_nm_info *nm_i = NM_I(sbi);
2134
2135 f2fs_bug_on(sbi, state != i->state);
2136 nm_i->nid_cnt[state]--;
2137 if (state == FREE_NID)
2138 list_del(&i->list);
2139 radix_tree_delete(&nm_i->free_nid_root, i->nid);
2140}
2141
2142static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2143 enum nid_state org_state, enum nid_state dst_state)
2144{
2145 struct f2fs_nm_info *nm_i = NM_I(sbi);
2146
2147 f2fs_bug_on(sbi, org_state != i->state);
2148 i->state = dst_state;
2149 nm_i->nid_cnt[org_state]--;
2150 nm_i->nid_cnt[dst_state]++;
2151
2152 switch (dst_state) {
2153 case PREALLOC_NID:
2154 list_del(&i->list);
2155 break;
2156 case FREE_NID:
2157 list_add_tail(&i->list, &nm_i->free_nid_list);
2158 break;
2159 default:
2160 BUG_ON(1);
2161 }
2162}
2163
2164static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2165 bool set, bool build)
2166{
2167 struct f2fs_nm_info *nm_i = NM_I(sbi);
2168 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2169 unsigned int nid_ofs = nid - START_NID(nid);
2170
2171 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2172 return;
2173
2174 if (set) {
2175 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2176 return;
2177 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2178 nm_i->free_nid_count[nat_ofs]++;
2179 } else {
2180 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2181 return;
2182 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2183 if (!build)
2184 nm_i->free_nid_count[nat_ofs]--;
2185 }
2186}
2187
2188/* return if the nid is recognized as free */
2189static bool add_free_nid(struct f2fs_sb_info *sbi,
2190 nid_t nid, bool build, bool update)
2191{
2192 struct f2fs_nm_info *nm_i = NM_I(sbi);
2193 struct free_nid *i, *e;
2194 struct nat_entry *ne;
2195 int err = -EINVAL;
2196 bool ret = false;
2197
2198 /* 0 nid should not be used */
2199 if (unlikely(nid == 0))
2200 return false;
2201
2202 if (unlikely(f2fs_check_nid_range(sbi, nid)))
2203 return false;
2204
2205 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
2206 i->nid = nid;
2207 i->state = FREE_NID;
2208
2209 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2210
2211 spin_lock(&nm_i->nid_list_lock);
2212
2213 if (build) {
2214 /*
2215 * Thread A Thread B
2216 * - f2fs_create
2217 * - f2fs_new_inode
2218 * - f2fs_alloc_nid
2219 * - __insert_nid_to_list(PREALLOC_NID)
2220 * - f2fs_balance_fs_bg
2221 * - f2fs_build_free_nids
2222 * - __f2fs_build_free_nids
2223 * - scan_nat_page
2224 * - add_free_nid
2225 * - __lookup_nat_cache
2226 * - f2fs_add_link
2227 * - f2fs_init_inode_metadata
2228 * - f2fs_new_inode_page
2229 * - f2fs_new_node_page
2230 * - set_node_addr
2231 * - f2fs_alloc_nid_done
2232 * - __remove_nid_from_list(PREALLOC_NID)
2233 * - __insert_nid_to_list(FREE_NID)
2234 */
2235 ne = __lookup_nat_cache(nm_i, nid);
2236 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2237 nat_get_blkaddr(ne) != NULL_ADDR))
2238 goto err_out;
2239
2240 e = __lookup_free_nid_list(nm_i, nid);
2241 if (e) {
2242 if (e->state == FREE_NID)
2243 ret = true;
2244 goto err_out;
2245 }
2246 }
2247 ret = true;
2248 err = __insert_free_nid(sbi, i);
2249err_out:
2250 if (update) {
2251 update_free_nid_bitmap(sbi, nid, ret, build);
2252 if (!build)
2253 nm_i->available_nids++;
2254 }
2255 spin_unlock(&nm_i->nid_list_lock);
2256 radix_tree_preload_end();
2257
2258 if (err)
2259 kmem_cache_free(free_nid_slab, i);
2260 return ret;
2261}
2262
2263static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2264{
2265 struct f2fs_nm_info *nm_i = NM_I(sbi);
2266 struct free_nid *i;
2267 bool need_free = false;
2268
2269 spin_lock(&nm_i->nid_list_lock);
2270 i = __lookup_free_nid_list(nm_i, nid);
2271 if (i && i->state == FREE_NID) {
2272 __remove_free_nid(sbi, i, FREE_NID);
2273 need_free = true;
2274 }
2275 spin_unlock(&nm_i->nid_list_lock);
2276
2277 if (need_free)
2278 kmem_cache_free(free_nid_slab, i);
2279}
2280
2281static int scan_nat_page(struct f2fs_sb_info *sbi,
2282 struct page *nat_page, nid_t start_nid)
2283{
2284 struct f2fs_nm_info *nm_i = NM_I(sbi);
2285 struct f2fs_nat_block *nat_blk = page_address(nat_page);
2286 block_t blk_addr;
2287 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2288 int i;
2289
2290 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2291
2292 i = start_nid % NAT_ENTRY_PER_BLOCK;
2293
2294 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2295 if (unlikely(start_nid >= nm_i->max_nid))
2296 break;
2297
2298 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2299
2300 if (blk_addr == NEW_ADDR)
2301 return -EINVAL;
2302
2303 if (blk_addr == NULL_ADDR) {
2304 add_free_nid(sbi, start_nid, true, true);
2305 } else {
2306 spin_lock(&NM_I(sbi)->nid_list_lock);
2307 update_free_nid_bitmap(sbi, start_nid, false, true);
2308 spin_unlock(&NM_I(sbi)->nid_list_lock);
2309 }
2310 }
2311
2312 return 0;
2313}
2314
2315static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2316{
2317 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2318 struct f2fs_journal *journal = curseg->journal;
2319 int i;
2320
2321 down_read(&curseg->journal_rwsem);
2322 for (i = 0; i < nats_in_cursum(journal); i++) {
2323 block_t addr;
2324 nid_t nid;
2325
2326 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2327 nid = le32_to_cpu(nid_in_journal(journal, i));
2328 if (addr == NULL_ADDR)
2329 add_free_nid(sbi, nid, true, false);
2330 else
2331 remove_free_nid(sbi, nid);
2332 }
2333 up_read(&curseg->journal_rwsem);
2334}
2335
2336static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2337{
2338 struct f2fs_nm_info *nm_i = NM_I(sbi);
2339 unsigned int i, idx;
2340 nid_t nid;
2341
2342 down_read(&nm_i->nat_tree_lock);
2343
2344 for (i = 0; i < nm_i->nat_blocks; i++) {
2345 if (!test_bit_le(i, nm_i->nat_block_bitmap))
2346 continue;
2347 if (!nm_i->free_nid_count[i])
2348 continue;
2349 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2350 idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2351 NAT_ENTRY_PER_BLOCK, idx);
2352 if (idx >= NAT_ENTRY_PER_BLOCK)
2353 break;
2354
2355 nid = i * NAT_ENTRY_PER_BLOCK + idx;
2356 add_free_nid(sbi, nid, true, false);
2357
2358 if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2359 goto out;
2360 }
2361 }
2362out:
2363 scan_curseg_cache(sbi);
2364
2365 up_read(&nm_i->nat_tree_lock);
2366}
2367
2368static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2369 bool sync, bool mount)
2370{
2371 struct f2fs_nm_info *nm_i = NM_I(sbi);
2372 int i = 0, ret;
2373 nid_t nid = nm_i->next_scan_nid;
2374
2375 if (unlikely(nid >= nm_i->max_nid))
2376 nid = 0;
2377
2378 if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2379 nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2380
2381 /* Enough entries */
2382 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2383 return 0;
2384
2385 if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2386 return 0;
2387
2388 if (!mount) {
2389 /* try to find free nids in free_nid_bitmap */
2390 scan_free_nid_bits(sbi);
2391
2392 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2393 return 0;
2394 }
2395
2396 /* readahead nat pages to be scanned */
2397 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2398 META_NAT, true);
2399
2400 down_read(&nm_i->nat_tree_lock);
2401
2402 while (1) {
2403 if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2404 nm_i->nat_block_bitmap)) {
2405 struct page *page = get_current_nat_page(sbi, nid);
2406
2407 if (IS_ERR(page)) {
2408 ret = PTR_ERR(page);
2409 } else {
2410 ret = scan_nat_page(sbi, page, nid);
2411 f2fs_put_page(page, 1);
2412 }
2413
2414 if (ret) {
2415 up_read(&nm_i->nat_tree_lock);
2416 f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2417 return ret;
2418 }
2419 }
2420
2421 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2422 if (unlikely(nid >= nm_i->max_nid))
2423 nid = 0;
2424
2425 if (++i >= FREE_NID_PAGES)
2426 break;
2427 }
2428
2429 /* go to the next free nat pages to find free nids abundantly */
2430 nm_i->next_scan_nid = nid;
2431
2432 /* find free nids from current sum_pages */
2433 scan_curseg_cache(sbi);
2434
2435 up_read(&nm_i->nat_tree_lock);
2436
2437 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2438 nm_i->ra_nid_pages, META_NAT, false);
2439
2440 return 0;
2441}
2442
2443int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2444{
2445 int ret;
2446
2447 mutex_lock(&NM_I(sbi)->build_lock);
2448 ret = __f2fs_build_free_nids(sbi, sync, mount);
2449 mutex_unlock(&NM_I(sbi)->build_lock);
2450
2451 return ret;
2452}
2453
2454/*
2455 * If this function returns success, caller can obtain a new nid
2456 * from second parameter of this function.
2457 * The returned nid could be used ino as well as nid when inode is created.
2458 */
2459bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2460{
2461 struct f2fs_nm_info *nm_i = NM_I(sbi);
2462 struct free_nid *i = NULL;
2463retry:
2464 if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2465 f2fs_show_injection_info(sbi, FAULT_ALLOC_NID);
2466 return false;
2467 }
2468
2469 spin_lock(&nm_i->nid_list_lock);
2470
2471 if (unlikely(nm_i->available_nids == 0)) {
2472 spin_unlock(&nm_i->nid_list_lock);
2473 return false;
2474 }
2475
2476 /* We should not use stale free nids created by f2fs_build_free_nids */
2477 if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2478 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2479 i = list_first_entry(&nm_i->free_nid_list,
2480 struct free_nid, list);
2481 *nid = i->nid;
2482
2483 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2484 nm_i->available_nids--;
2485
2486 update_free_nid_bitmap(sbi, *nid, false, false);
2487
2488 spin_unlock(&nm_i->nid_list_lock);
2489 return true;
2490 }
2491 spin_unlock(&nm_i->nid_list_lock);
2492
2493 /* Let's scan nat pages and its caches to get free nids */
2494 if (!f2fs_build_free_nids(sbi, true, false))
2495 goto retry;
2496 return false;
2497}
2498
2499/*
2500 * f2fs_alloc_nid() should be called prior to this function.
2501 */
2502void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2503{
2504 struct f2fs_nm_info *nm_i = NM_I(sbi);
2505 struct free_nid *i;
2506
2507 spin_lock(&nm_i->nid_list_lock);
2508 i = __lookup_free_nid_list(nm_i, nid);
2509 f2fs_bug_on(sbi, !i);
2510 __remove_free_nid(sbi, i, PREALLOC_NID);
2511 spin_unlock(&nm_i->nid_list_lock);
2512
2513 kmem_cache_free(free_nid_slab, i);
2514}
2515
2516/*
2517 * f2fs_alloc_nid() should be called prior to this function.
2518 */
2519void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2520{
2521 struct f2fs_nm_info *nm_i = NM_I(sbi);
2522 struct free_nid *i;
2523 bool need_free = false;
2524
2525 if (!nid)
2526 return;
2527
2528 spin_lock(&nm_i->nid_list_lock);
2529 i = __lookup_free_nid_list(nm_i, nid);
2530 f2fs_bug_on(sbi, !i);
2531
2532 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2533 __remove_free_nid(sbi, i, PREALLOC_NID);
2534 need_free = true;
2535 } else {
2536 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2537 }
2538
2539 nm_i->available_nids++;
2540
2541 update_free_nid_bitmap(sbi, nid, true, false);
2542
2543 spin_unlock(&nm_i->nid_list_lock);
2544
2545 if (need_free)
2546 kmem_cache_free(free_nid_slab, i);
2547}
2548
2549int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2550{
2551 struct f2fs_nm_info *nm_i = NM_I(sbi);
2552 int nr = nr_shrink;
2553
2554 if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2555 return 0;
2556
2557 if (!mutex_trylock(&nm_i->build_lock))
2558 return 0;
2559
2560 while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2561 struct free_nid *i, *next;
2562 unsigned int batch = SHRINK_NID_BATCH_SIZE;
2563
2564 spin_lock(&nm_i->nid_list_lock);
2565 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2566 if (!nr_shrink || !batch ||
2567 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2568 break;
2569 __remove_free_nid(sbi, i, FREE_NID);
2570 kmem_cache_free(free_nid_slab, i);
2571 nr_shrink--;
2572 batch--;
2573 }
2574 spin_unlock(&nm_i->nid_list_lock);
2575 }
2576
2577 mutex_unlock(&nm_i->build_lock);
2578
2579 return nr - nr_shrink;
2580}
2581
2582int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2583{
2584 void *src_addr, *dst_addr;
2585 size_t inline_size;
2586 struct page *ipage;
2587 struct f2fs_inode *ri;
2588
2589 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2590 if (IS_ERR(ipage))
2591 return PTR_ERR(ipage);
2592
2593 ri = F2FS_INODE(page);
2594 if (ri->i_inline & F2FS_INLINE_XATTR) {
2595 if (!f2fs_has_inline_xattr(inode)) {
2596 set_inode_flag(inode, FI_INLINE_XATTR);
2597 stat_inc_inline_xattr(inode);
2598 }
2599 } else {
2600 if (f2fs_has_inline_xattr(inode)) {
2601 stat_dec_inline_xattr(inode);
2602 clear_inode_flag(inode, FI_INLINE_XATTR);
2603 }
2604 goto update_inode;
2605 }
2606
2607 dst_addr = inline_xattr_addr(inode, ipage);
2608 src_addr = inline_xattr_addr(inode, page);
2609 inline_size = inline_xattr_size(inode);
2610
2611 f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2612 memcpy(dst_addr, src_addr, inline_size);
2613update_inode:
2614 f2fs_update_inode(inode, ipage);
2615 f2fs_put_page(ipage, 1);
2616 return 0;
2617}
2618
2619int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2620{
2621 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2622 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2623 nid_t new_xnid;
2624 struct dnode_of_data dn;
2625 struct node_info ni;
2626 struct page *xpage;
2627 int err;
2628
2629 if (!prev_xnid)
2630 goto recover_xnid;
2631
2632 /* 1: invalidate the previous xattr nid */
2633 err = f2fs_get_node_info(sbi, prev_xnid, &ni);
2634 if (err)
2635 return err;
2636
2637 f2fs_invalidate_blocks(sbi, ni.blk_addr);
2638 dec_valid_node_count(sbi, inode, false);
2639 set_node_addr(sbi, &ni, NULL_ADDR, false);
2640
2641recover_xnid:
2642 /* 2: update xattr nid in inode */
2643 if (!f2fs_alloc_nid(sbi, &new_xnid))
2644 return -ENOSPC;
2645
2646 set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2647 xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2648 if (IS_ERR(xpage)) {
2649 f2fs_alloc_nid_failed(sbi, new_xnid);
2650 return PTR_ERR(xpage);
2651 }
2652
2653 f2fs_alloc_nid_done(sbi, new_xnid);
2654 f2fs_update_inode_page(inode);
2655
2656 /* 3: update and set xattr node page dirty */
2657 memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2658
2659 set_page_dirty(xpage);
2660 f2fs_put_page(xpage, 1);
2661
2662 return 0;
2663}
2664
2665int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2666{
2667 struct f2fs_inode *src, *dst;
2668 nid_t ino = ino_of_node(page);
2669 struct node_info old_ni, new_ni;
2670 struct page *ipage;
2671 int err;
2672
2673 err = f2fs_get_node_info(sbi, ino, &old_ni);
2674 if (err)
2675 return err;
2676
2677 if (unlikely(old_ni.blk_addr != NULL_ADDR))
2678 return -EINVAL;
2679retry:
2680 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2681 if (!ipage) {
2682 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2683 goto retry;
2684 }
2685
2686 /* Should not use this inode from free nid list */
2687 remove_free_nid(sbi, ino);
2688
2689 if (!PageUptodate(ipage))
2690 SetPageUptodate(ipage);
2691 fill_node_footer(ipage, ino, ino, 0, true);
2692 set_cold_node(ipage, false);
2693
2694 src = F2FS_INODE(page);
2695 dst = F2FS_INODE(ipage);
2696
2697 memcpy(dst, src, offsetof(struct f2fs_inode, i_ext));
2698 dst->i_size = 0;
2699 dst->i_blocks = cpu_to_le64(1);
2700 dst->i_links = cpu_to_le32(1);
2701 dst->i_xattr_nid = 0;
2702 dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2703 if (dst->i_inline & F2FS_EXTRA_ATTR) {
2704 dst->i_extra_isize = src->i_extra_isize;
2705
2706 if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2707 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2708 i_inline_xattr_size))
2709 dst->i_inline_xattr_size = src->i_inline_xattr_size;
2710
2711 if (f2fs_sb_has_project_quota(sbi) &&
2712 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2713 i_projid))
2714 dst->i_projid = src->i_projid;
2715
2716 if (f2fs_sb_has_inode_crtime(sbi) &&
2717 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2718 i_crtime_nsec)) {
2719 dst->i_crtime = src->i_crtime;
2720 dst->i_crtime_nsec = src->i_crtime_nsec;
2721 }
2722 }
2723
2724 new_ni = old_ni;
2725 new_ni.ino = ino;
2726
2727 if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2728 WARN_ON(1);
2729 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2730 inc_valid_inode_count(sbi);
2731 set_page_dirty(ipage);
2732 f2fs_put_page(ipage, 1);
2733 return 0;
2734}
2735
2736int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2737 unsigned int segno, struct f2fs_summary_block *sum)
2738{
2739 struct f2fs_node *rn;
2740 struct f2fs_summary *sum_entry;
2741 block_t addr;
2742 int i, idx, last_offset, nrpages;
2743
2744 /* scan the node segment */
2745 last_offset = sbi->blocks_per_seg;
2746 addr = START_BLOCK(sbi, segno);
2747 sum_entry = &sum->entries[0];
2748
2749 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2750 nrpages = bio_max_segs(last_offset - i);
2751
2752 /* readahead node pages */
2753 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2754
2755 for (idx = addr; idx < addr + nrpages; idx++) {
2756 struct page *page = f2fs_get_tmp_page(sbi, idx);
2757
2758 if (IS_ERR(page))
2759 return PTR_ERR(page);
2760
2761 rn = F2FS_NODE(page);
2762 sum_entry->nid = rn->footer.nid;
2763 sum_entry->version = 0;
2764 sum_entry->ofs_in_node = 0;
2765 sum_entry++;
2766 f2fs_put_page(page, 1);
2767 }
2768
2769 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2770 addr + nrpages);
2771 }
2772 return 0;
2773}
2774
2775static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2776{
2777 struct f2fs_nm_info *nm_i = NM_I(sbi);
2778 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2779 struct f2fs_journal *journal = curseg->journal;
2780 int i;
2781
2782 down_write(&curseg->journal_rwsem);
2783 for (i = 0; i < nats_in_cursum(journal); i++) {
2784 struct nat_entry *ne;
2785 struct f2fs_nat_entry raw_ne;
2786 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2787
2788 raw_ne = nat_in_journal(journal, i);
2789
2790 ne = __lookup_nat_cache(nm_i, nid);
2791 if (!ne) {
2792 ne = __alloc_nat_entry(nid, true);
2793 __init_nat_entry(nm_i, ne, &raw_ne, true);
2794 }
2795
2796 /*
2797 * if a free nat in journal has not been used after last
2798 * checkpoint, we should remove it from available nids,
2799 * since later we will add it again.
2800 */
2801 if (!get_nat_flag(ne, IS_DIRTY) &&
2802 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2803 spin_lock(&nm_i->nid_list_lock);
2804 nm_i->available_nids--;
2805 spin_unlock(&nm_i->nid_list_lock);
2806 }
2807
2808 __set_nat_cache_dirty(nm_i, ne);
2809 }
2810 update_nats_in_cursum(journal, -i);
2811 up_write(&curseg->journal_rwsem);
2812}
2813
2814static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2815 struct list_head *head, int max)
2816{
2817 struct nat_entry_set *cur;
2818
2819 if (nes->entry_cnt >= max)
2820 goto add_out;
2821
2822 list_for_each_entry(cur, head, set_list) {
2823 if (cur->entry_cnt >= nes->entry_cnt) {
2824 list_add(&nes->set_list, cur->set_list.prev);
2825 return;
2826 }
2827 }
2828add_out:
2829 list_add_tail(&nes->set_list, head);
2830}
2831
2832static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2833 struct page *page)
2834{
2835 struct f2fs_nm_info *nm_i = NM_I(sbi);
2836 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2837 struct f2fs_nat_block *nat_blk = page_address(page);
2838 int valid = 0;
2839 int i = 0;
2840
2841 if (!enabled_nat_bits(sbi, NULL))
2842 return;
2843
2844 if (nat_index == 0) {
2845 valid = 1;
2846 i = 1;
2847 }
2848 for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2849 if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2850 valid++;
2851 }
2852 if (valid == 0) {
2853 __set_bit_le(nat_index, nm_i->empty_nat_bits);
2854 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2855 return;
2856 }
2857
2858 __clear_bit_le(nat_index, nm_i->empty_nat_bits);
2859 if (valid == NAT_ENTRY_PER_BLOCK)
2860 __set_bit_le(nat_index, nm_i->full_nat_bits);
2861 else
2862 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2863}
2864
2865static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2866 struct nat_entry_set *set, struct cp_control *cpc)
2867{
2868 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2869 struct f2fs_journal *journal = curseg->journal;
2870 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2871 bool to_journal = true;
2872 struct f2fs_nat_block *nat_blk;
2873 struct nat_entry *ne, *cur;
2874 struct page *page = NULL;
2875
2876 /*
2877 * there are two steps to flush nat entries:
2878 * #1, flush nat entries to journal in current hot data summary block.
2879 * #2, flush nat entries to nat page.
2880 */
2881 if (enabled_nat_bits(sbi, cpc) ||
2882 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2883 to_journal = false;
2884
2885 if (to_journal) {
2886 down_write(&curseg->journal_rwsem);
2887 } else {
2888 page = get_next_nat_page(sbi, start_nid);
2889 if (IS_ERR(page))
2890 return PTR_ERR(page);
2891
2892 nat_blk = page_address(page);
2893 f2fs_bug_on(sbi, !nat_blk);
2894 }
2895
2896 /* flush dirty nats in nat entry set */
2897 list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2898 struct f2fs_nat_entry *raw_ne;
2899 nid_t nid = nat_get_nid(ne);
2900 int offset;
2901
2902 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
2903
2904 if (to_journal) {
2905 offset = f2fs_lookup_journal_in_cursum(journal,
2906 NAT_JOURNAL, nid, 1);
2907 f2fs_bug_on(sbi, offset < 0);
2908 raw_ne = &nat_in_journal(journal, offset);
2909 nid_in_journal(journal, offset) = cpu_to_le32(nid);
2910 } else {
2911 raw_ne = &nat_blk->entries[nid - start_nid];
2912 }
2913 raw_nat_from_node_info(raw_ne, &ne->ni);
2914 nat_reset_flag(ne);
2915 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
2916 if (nat_get_blkaddr(ne) == NULL_ADDR) {
2917 add_free_nid(sbi, nid, false, true);
2918 } else {
2919 spin_lock(&NM_I(sbi)->nid_list_lock);
2920 update_free_nid_bitmap(sbi, nid, false, false);
2921 spin_unlock(&NM_I(sbi)->nid_list_lock);
2922 }
2923 }
2924
2925 if (to_journal) {
2926 up_write(&curseg->journal_rwsem);
2927 } else {
2928 __update_nat_bits(sbi, start_nid, page);
2929 f2fs_put_page(page, 1);
2930 }
2931
2932 /* Allow dirty nats by node block allocation in write_begin */
2933 if (!set->entry_cnt) {
2934 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2935 kmem_cache_free(nat_entry_set_slab, set);
2936 }
2937 return 0;
2938}
2939
2940/*
2941 * This function is called during the checkpointing process.
2942 */
2943int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2944{
2945 struct f2fs_nm_info *nm_i = NM_I(sbi);
2946 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2947 struct f2fs_journal *journal = curseg->journal;
2948 struct nat_entry_set *setvec[SETVEC_SIZE];
2949 struct nat_entry_set *set, *tmp;
2950 unsigned int found;
2951 nid_t set_idx = 0;
2952 LIST_HEAD(sets);
2953 int err = 0;
2954
2955 /*
2956 * during unmount, let's flush nat_bits before checking
2957 * nat_cnt[DIRTY_NAT].
2958 */
2959 if (enabled_nat_bits(sbi, cpc)) {
2960 down_write(&nm_i->nat_tree_lock);
2961 remove_nats_in_journal(sbi);
2962 up_write(&nm_i->nat_tree_lock);
2963 }
2964
2965 if (!nm_i->nat_cnt[DIRTY_NAT])
2966 return 0;
2967
2968 down_write(&nm_i->nat_tree_lock);
2969
2970 /*
2971 * if there are no enough space in journal to store dirty nat
2972 * entries, remove all entries from journal and merge them
2973 * into nat entry set.
2974 */
2975 if (enabled_nat_bits(sbi, cpc) ||
2976 !__has_cursum_space(journal,
2977 nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL))
2978 remove_nats_in_journal(sbi);
2979
2980 while ((found = __gang_lookup_nat_set(nm_i,
2981 set_idx, SETVEC_SIZE, setvec))) {
2982 unsigned idx;
2983 set_idx = setvec[found - 1]->set + 1;
2984 for (idx = 0; idx < found; idx++)
2985 __adjust_nat_entry_set(setvec[idx], &sets,
2986 MAX_NAT_JENTRIES(journal));
2987 }
2988
2989 /* flush dirty nats in nat entry set */
2990 list_for_each_entry_safe(set, tmp, &sets, set_list) {
2991 err = __flush_nat_entry_set(sbi, set, cpc);
2992 if (err)
2993 break;
2994 }
2995
2996 up_write(&nm_i->nat_tree_lock);
2997 /* Allow dirty nats by node block allocation in write_begin */
2998
2999 return err;
3000}
3001
3002static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
3003{
3004 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3005 struct f2fs_nm_info *nm_i = NM_I(sbi);
3006 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
3007 unsigned int i;
3008 __u64 cp_ver = cur_cp_version(ckpt);
3009 block_t nat_bits_addr;
3010
3011 if (!enabled_nat_bits(sbi, NULL))
3012 return 0;
3013
3014 nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3015 nm_i->nat_bits = f2fs_kvzalloc(sbi,
3016 nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
3017 if (!nm_i->nat_bits)
3018 return -ENOMEM;
3019
3020 nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
3021 nm_i->nat_bits_blocks;
3022 for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3023 struct page *page;
3024
3025 page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3026 if (IS_ERR(page))
3027 return PTR_ERR(page);
3028
3029 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
3030 page_address(page), F2FS_BLKSIZE);
3031 f2fs_put_page(page, 1);
3032 }
3033
3034 cp_ver |= (cur_cp_crc(ckpt) << 32);
3035 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3036 disable_nat_bits(sbi, true);
3037 return 0;
3038 }
3039
3040 nm_i->full_nat_bits = nm_i->nat_bits + 8;
3041 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3042
3043 f2fs_notice(sbi, "Found nat_bits in checkpoint");
3044 return 0;
3045}
3046
3047static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3048{
3049 struct f2fs_nm_info *nm_i = NM_I(sbi);
3050 unsigned int i = 0;
3051 nid_t nid, last_nid;
3052
3053 if (!enabled_nat_bits(sbi, NULL))
3054 return;
3055
3056 for (i = 0; i < nm_i->nat_blocks; i++) {
3057 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3058 if (i >= nm_i->nat_blocks)
3059 break;
3060
3061 __set_bit_le(i, nm_i->nat_block_bitmap);
3062
3063 nid = i * NAT_ENTRY_PER_BLOCK;
3064 last_nid = nid + NAT_ENTRY_PER_BLOCK;
3065
3066 spin_lock(&NM_I(sbi)->nid_list_lock);
3067 for (; nid < last_nid; nid++)
3068 update_free_nid_bitmap(sbi, nid, true, true);
3069 spin_unlock(&NM_I(sbi)->nid_list_lock);
3070 }
3071
3072 for (i = 0; i < nm_i->nat_blocks; i++) {
3073 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3074 if (i >= nm_i->nat_blocks)
3075 break;
3076
3077 __set_bit_le(i, nm_i->nat_block_bitmap);
3078 }
3079}
3080
3081static int init_node_manager(struct f2fs_sb_info *sbi)
3082{
3083 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3084 struct f2fs_nm_info *nm_i = NM_I(sbi);
3085 unsigned char *version_bitmap;
3086 unsigned int nat_segs;
3087 int err;
3088
3089 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3090
3091 /* segment_count_nat includes pair segment so divide to 2. */
3092 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3093 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3094 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3095
3096 /* not used nids: 0, node, meta, (and root counted as valid node) */
3097 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3098 F2FS_RESERVED_NODE_NUM;
3099 nm_i->nid_cnt[FREE_NID] = 0;
3100 nm_i->nid_cnt[PREALLOC_NID] = 0;
3101 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3102 nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3103 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3104
3105 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3106 INIT_LIST_HEAD(&nm_i->free_nid_list);
3107 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3108 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3109 INIT_LIST_HEAD(&nm_i->nat_entries);
3110 spin_lock_init(&nm_i->nat_list_lock);
3111
3112 mutex_init(&nm_i->build_lock);
3113 spin_lock_init(&nm_i->nid_list_lock);
3114 init_rwsem(&nm_i->nat_tree_lock);
3115
3116 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3117 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3118 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3119 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3120 GFP_KERNEL);
3121 if (!nm_i->nat_bitmap)
3122 return -ENOMEM;
3123
3124 err = __get_nat_bitmaps(sbi);
3125 if (err)
3126 return err;
3127
3128#ifdef CONFIG_F2FS_CHECK_FS
3129 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3130 GFP_KERNEL);
3131 if (!nm_i->nat_bitmap_mir)
3132 return -ENOMEM;
3133#endif
3134
3135 return 0;
3136}
3137
3138static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3139{
3140 struct f2fs_nm_info *nm_i = NM_I(sbi);
3141 int i;
3142
3143 nm_i->free_nid_bitmap =
3144 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3145 nm_i->nat_blocks),
3146 GFP_KERNEL);
3147 if (!nm_i->free_nid_bitmap)
3148 return -ENOMEM;
3149
3150 for (i = 0; i < nm_i->nat_blocks; i++) {
3151 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3152 f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3153 if (!nm_i->free_nid_bitmap[i])
3154 return -ENOMEM;
3155 }
3156
3157 nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3158 GFP_KERNEL);
3159 if (!nm_i->nat_block_bitmap)
3160 return -ENOMEM;
3161
3162 nm_i->free_nid_count =
3163 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3164 nm_i->nat_blocks),
3165 GFP_KERNEL);
3166 if (!nm_i->free_nid_count)
3167 return -ENOMEM;
3168 return 0;
3169}
3170
3171int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3172{
3173 int err;
3174
3175 sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3176 GFP_KERNEL);
3177 if (!sbi->nm_info)
3178 return -ENOMEM;
3179
3180 err = init_node_manager(sbi);
3181 if (err)
3182 return err;
3183
3184 err = init_free_nid_cache(sbi);
3185 if (err)
3186 return err;
3187
3188 /* load free nid status from nat_bits table */
3189 load_free_nid_bitmap(sbi);
3190
3191 return f2fs_build_free_nids(sbi, true, true);
3192}
3193
3194void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3195{
3196 struct f2fs_nm_info *nm_i = NM_I(sbi);
3197 struct free_nid *i, *next_i;
3198 struct nat_entry *natvec[NATVEC_SIZE];
3199 struct nat_entry_set *setvec[SETVEC_SIZE];
3200 nid_t nid = 0;
3201 unsigned int found;
3202
3203 if (!nm_i)
3204 return;
3205
3206 /* destroy free nid list */
3207 spin_lock(&nm_i->nid_list_lock);
3208 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3209 __remove_free_nid(sbi, i, FREE_NID);
3210 spin_unlock(&nm_i->nid_list_lock);
3211 kmem_cache_free(free_nid_slab, i);
3212 spin_lock(&nm_i->nid_list_lock);
3213 }
3214 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3215 f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3216 f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3217 spin_unlock(&nm_i->nid_list_lock);
3218
3219 /* destroy nat cache */
3220 down_write(&nm_i->nat_tree_lock);
3221 while ((found = __gang_lookup_nat_cache(nm_i,
3222 nid, NATVEC_SIZE, natvec))) {
3223 unsigned idx;
3224
3225 nid = nat_get_nid(natvec[found - 1]) + 1;
3226 for (idx = 0; idx < found; idx++) {
3227 spin_lock(&nm_i->nat_list_lock);
3228 list_del(&natvec[idx]->list);
3229 spin_unlock(&nm_i->nat_list_lock);
3230
3231 __del_from_nat_cache(nm_i, natvec[idx]);
3232 }
3233 }
3234 f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]);
3235
3236 /* destroy nat set cache */
3237 nid = 0;
3238 while ((found = __gang_lookup_nat_set(nm_i,
3239 nid, SETVEC_SIZE, setvec))) {
3240 unsigned idx;
3241
3242 nid = setvec[found - 1]->set + 1;
3243 for (idx = 0; idx < found; idx++) {
3244 /* entry_cnt is not zero, when cp_error was occurred */
3245 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3246 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3247 kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3248 }
3249 }
3250 up_write(&nm_i->nat_tree_lock);
3251
3252 kvfree(nm_i->nat_block_bitmap);
3253 if (nm_i->free_nid_bitmap) {
3254 int i;
3255
3256 for (i = 0; i < nm_i->nat_blocks; i++)
3257 kvfree(nm_i->free_nid_bitmap[i]);
3258 kvfree(nm_i->free_nid_bitmap);
3259 }
3260 kvfree(nm_i->free_nid_count);
3261
3262 kvfree(nm_i->nat_bitmap);
3263 kvfree(nm_i->nat_bits);
3264#ifdef CONFIG_F2FS_CHECK_FS
3265 kvfree(nm_i->nat_bitmap_mir);
3266#endif
3267 sbi->nm_info = NULL;
3268 kfree(nm_i);
3269}
3270
3271int __init f2fs_create_node_manager_caches(void)
3272{
3273 nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3274 sizeof(struct nat_entry));
3275 if (!nat_entry_slab)
3276 goto fail;
3277
3278 free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3279 sizeof(struct free_nid));
3280 if (!free_nid_slab)
3281 goto destroy_nat_entry;
3282
3283 nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3284 sizeof(struct nat_entry_set));
3285 if (!nat_entry_set_slab)
3286 goto destroy_free_nid;
3287
3288 fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3289 sizeof(struct fsync_node_entry));
3290 if (!fsync_node_entry_slab)
3291 goto destroy_nat_entry_set;
3292 return 0;
3293
3294destroy_nat_entry_set:
3295 kmem_cache_destroy(nat_entry_set_slab);
3296destroy_free_nid:
3297 kmem_cache_destroy(free_nid_slab);
3298destroy_nat_entry:
3299 kmem_cache_destroy(nat_entry_slab);
3300fail:
3301 return -ENOMEM;
3302}
3303
3304void f2fs_destroy_node_manager_caches(void)
3305{
3306 kmem_cache_destroy(fsync_node_entry_slab);
3307 kmem_cache_destroy(nat_entry_set_slab);
3308 kmem_cache_destroy(free_nid_slab);
3309 kmem_cache_destroy(nat_entry_slab);
3310}