Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/slab.h>
7#include <linux/blkdev.h>
8#include <linux/writeback.h>
9#include <linux/sched/mm.h>
10#include "misc.h"
11#include "ctree.h"
12#include "transaction.h"
13#include "btrfs_inode.h"
14#include "extent_io.h"
15#include "disk-io.h"
16#include "compression.h"
17#include "delalloc-space.h"
18#include "qgroup.h"
19
20static struct kmem_cache *btrfs_ordered_extent_cache;
21
22static u64 entry_end(struct btrfs_ordered_extent *entry)
23{
24 if (entry->file_offset + entry->num_bytes < entry->file_offset)
25 return (u64)-1;
26 return entry->file_offset + entry->num_bytes;
27}
28
29/* returns NULL if the insertion worked, or it returns the node it did find
30 * in the tree
31 */
32static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
33 struct rb_node *node)
34{
35 struct rb_node **p = &root->rb_node;
36 struct rb_node *parent = NULL;
37 struct btrfs_ordered_extent *entry;
38
39 while (*p) {
40 parent = *p;
41 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
42
43 if (file_offset < entry->file_offset)
44 p = &(*p)->rb_left;
45 else if (file_offset >= entry_end(entry))
46 p = &(*p)->rb_right;
47 else
48 return parent;
49 }
50
51 rb_link_node(node, parent, p);
52 rb_insert_color(node, root);
53 return NULL;
54}
55
56/*
57 * look for a given offset in the tree, and if it can't be found return the
58 * first lesser offset
59 */
60static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
61 struct rb_node **prev_ret)
62{
63 struct rb_node *n = root->rb_node;
64 struct rb_node *prev = NULL;
65 struct rb_node *test;
66 struct btrfs_ordered_extent *entry;
67 struct btrfs_ordered_extent *prev_entry = NULL;
68
69 while (n) {
70 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
71 prev = n;
72 prev_entry = entry;
73
74 if (file_offset < entry->file_offset)
75 n = n->rb_left;
76 else if (file_offset >= entry_end(entry))
77 n = n->rb_right;
78 else
79 return n;
80 }
81 if (!prev_ret)
82 return NULL;
83
84 while (prev && file_offset >= entry_end(prev_entry)) {
85 test = rb_next(prev);
86 if (!test)
87 break;
88 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
89 rb_node);
90 if (file_offset < entry_end(prev_entry))
91 break;
92
93 prev = test;
94 }
95 if (prev)
96 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
97 rb_node);
98 while (prev && file_offset < entry_end(prev_entry)) {
99 test = rb_prev(prev);
100 if (!test)
101 break;
102 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
103 rb_node);
104 prev = test;
105 }
106 *prev_ret = prev;
107 return NULL;
108}
109
110/*
111 * helper to check if a given offset is inside a given entry
112 */
113static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
114{
115 if (file_offset < entry->file_offset ||
116 entry->file_offset + entry->num_bytes <= file_offset)
117 return 0;
118 return 1;
119}
120
121static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
122 u64 len)
123{
124 if (file_offset + len <= entry->file_offset ||
125 entry->file_offset + entry->num_bytes <= file_offset)
126 return 0;
127 return 1;
128}
129
130/*
131 * look find the first ordered struct that has this offset, otherwise
132 * the first one less than this offset
133 */
134static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
135 u64 file_offset)
136{
137 struct rb_root *root = &tree->tree;
138 struct rb_node *prev = NULL;
139 struct rb_node *ret;
140 struct btrfs_ordered_extent *entry;
141
142 if (tree->last) {
143 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
144 rb_node);
145 if (offset_in_entry(entry, file_offset))
146 return tree->last;
147 }
148 ret = __tree_search(root, file_offset, &prev);
149 if (!ret)
150 ret = prev;
151 if (ret)
152 tree->last = ret;
153 return ret;
154}
155
156/*
157 * Allocate and add a new ordered_extent into the per-inode tree.
158 *
159 * The tree is given a single reference on the ordered extent that was
160 * inserted.
161 */
162static int __btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset,
163 u64 disk_bytenr, u64 num_bytes,
164 u64 disk_num_bytes, int type, int dio,
165 int compress_type)
166{
167 struct btrfs_root *root = inode->root;
168 struct btrfs_fs_info *fs_info = root->fs_info;
169 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
170 struct rb_node *node;
171 struct btrfs_ordered_extent *entry;
172 int ret;
173
174 if (type == BTRFS_ORDERED_NOCOW || type == BTRFS_ORDERED_PREALLOC) {
175 /* For nocow write, we can release the qgroup rsv right now */
176 ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes);
177 if (ret < 0)
178 return ret;
179 ret = 0;
180 } else {
181 /*
182 * The ordered extent has reserved qgroup space, release now
183 * and pass the reserved number for qgroup_record to free.
184 */
185 ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes);
186 if (ret < 0)
187 return ret;
188 }
189 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
190 if (!entry)
191 return -ENOMEM;
192
193 entry->file_offset = file_offset;
194 entry->disk_bytenr = disk_bytenr;
195 entry->num_bytes = num_bytes;
196 entry->disk_num_bytes = disk_num_bytes;
197 entry->bytes_left = num_bytes;
198 entry->inode = igrab(&inode->vfs_inode);
199 entry->compress_type = compress_type;
200 entry->truncated_len = (u64)-1;
201 entry->qgroup_rsv = ret;
202 entry->physical = (u64)-1;
203 entry->disk = NULL;
204 entry->partno = (u8)-1;
205
206 ASSERT(type == BTRFS_ORDERED_REGULAR ||
207 type == BTRFS_ORDERED_NOCOW ||
208 type == BTRFS_ORDERED_PREALLOC ||
209 type == BTRFS_ORDERED_COMPRESSED);
210 set_bit(type, &entry->flags);
211
212 percpu_counter_add_batch(&fs_info->ordered_bytes, num_bytes,
213 fs_info->delalloc_batch);
214
215 if (dio)
216 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
217
218 /* one ref for the tree */
219 refcount_set(&entry->refs, 1);
220 init_waitqueue_head(&entry->wait);
221 INIT_LIST_HEAD(&entry->list);
222 INIT_LIST_HEAD(&entry->log_list);
223 INIT_LIST_HEAD(&entry->root_extent_list);
224 INIT_LIST_HEAD(&entry->work_list);
225 init_completion(&entry->completion);
226
227 trace_btrfs_ordered_extent_add(inode, entry);
228
229 spin_lock_irq(&tree->lock);
230 node = tree_insert(&tree->tree, file_offset,
231 &entry->rb_node);
232 if (node)
233 btrfs_panic(fs_info, -EEXIST,
234 "inconsistency in ordered tree at offset %llu",
235 file_offset);
236 spin_unlock_irq(&tree->lock);
237
238 spin_lock(&root->ordered_extent_lock);
239 list_add_tail(&entry->root_extent_list,
240 &root->ordered_extents);
241 root->nr_ordered_extents++;
242 if (root->nr_ordered_extents == 1) {
243 spin_lock(&fs_info->ordered_root_lock);
244 BUG_ON(!list_empty(&root->ordered_root));
245 list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
246 spin_unlock(&fs_info->ordered_root_lock);
247 }
248 spin_unlock(&root->ordered_extent_lock);
249
250 /*
251 * We don't need the count_max_extents here, we can assume that all of
252 * that work has been done at higher layers, so this is truly the
253 * smallest the extent is going to get.
254 */
255 spin_lock(&inode->lock);
256 btrfs_mod_outstanding_extents(inode, 1);
257 spin_unlock(&inode->lock);
258
259 return 0;
260}
261
262int btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset,
263 u64 disk_bytenr, u64 num_bytes, u64 disk_num_bytes,
264 int type)
265{
266 ASSERT(type == BTRFS_ORDERED_REGULAR ||
267 type == BTRFS_ORDERED_NOCOW ||
268 type == BTRFS_ORDERED_PREALLOC);
269 return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
270 num_bytes, disk_num_bytes, type, 0,
271 BTRFS_COMPRESS_NONE);
272}
273
274int btrfs_add_ordered_extent_dio(struct btrfs_inode *inode, u64 file_offset,
275 u64 disk_bytenr, u64 num_bytes,
276 u64 disk_num_bytes, int type)
277{
278 ASSERT(type == BTRFS_ORDERED_REGULAR ||
279 type == BTRFS_ORDERED_NOCOW ||
280 type == BTRFS_ORDERED_PREALLOC);
281 return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
282 num_bytes, disk_num_bytes, type, 1,
283 BTRFS_COMPRESS_NONE);
284}
285
286int btrfs_add_ordered_extent_compress(struct btrfs_inode *inode, u64 file_offset,
287 u64 disk_bytenr, u64 num_bytes,
288 u64 disk_num_bytes, int compress_type)
289{
290 ASSERT(compress_type != BTRFS_COMPRESS_NONE);
291 return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
292 num_bytes, disk_num_bytes,
293 BTRFS_ORDERED_COMPRESSED, 0,
294 compress_type);
295}
296
297/*
298 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
299 * when an ordered extent is finished. If the list covers more than one
300 * ordered extent, it is split across multiples.
301 */
302void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
303 struct btrfs_ordered_sum *sum)
304{
305 struct btrfs_ordered_inode_tree *tree;
306
307 tree = &BTRFS_I(entry->inode)->ordered_tree;
308 spin_lock_irq(&tree->lock);
309 list_add_tail(&sum->list, &entry->list);
310 spin_unlock_irq(&tree->lock);
311}
312
313/*
314 * Finish IO for one ordered extent across a given range. The range can
315 * contain several ordered extents.
316 *
317 * @found_ret: Return the finished ordered extent
318 * @file_offset: File offset for the finished IO
319 * Will also be updated to one byte past the range that is
320 * recordered as finished. This allows caller to walk forward.
321 * @io_size: Length of the finish IO range
322 * @uptodate: If the IO finished without problem
323 *
324 * Return true if any ordered extent is finished in the range, and update
325 * @found_ret and @file_offset.
326 * Return false otherwise.
327 *
328 * NOTE: Although The range can cross multiple ordered extents, only one
329 * ordered extent will be updated during one call. The caller is responsible to
330 * iterate all ordered extents in the range.
331 */
332bool btrfs_dec_test_first_ordered_pending(struct btrfs_inode *inode,
333 struct btrfs_ordered_extent **finished_ret,
334 u64 *file_offset, u64 io_size, int uptodate)
335{
336 struct btrfs_fs_info *fs_info = inode->root->fs_info;
337 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
338 struct rb_node *node;
339 struct btrfs_ordered_extent *entry = NULL;
340 bool finished = false;
341 unsigned long flags;
342 u64 dec_end;
343 u64 dec_start;
344 u64 to_dec;
345
346 spin_lock_irqsave(&tree->lock, flags);
347 node = tree_search(tree, *file_offset);
348 if (!node)
349 goto out;
350
351 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
352 if (!offset_in_entry(entry, *file_offset))
353 goto out;
354
355 dec_start = max(*file_offset, entry->file_offset);
356 dec_end = min(*file_offset + io_size,
357 entry->file_offset + entry->num_bytes);
358 *file_offset = dec_end;
359 if (dec_start > dec_end) {
360 btrfs_crit(fs_info, "bad ordering dec_start %llu end %llu",
361 dec_start, dec_end);
362 }
363 to_dec = dec_end - dec_start;
364 if (to_dec > entry->bytes_left) {
365 btrfs_crit(fs_info,
366 "bad ordered accounting left %llu size %llu",
367 entry->bytes_left, to_dec);
368 }
369 entry->bytes_left -= to_dec;
370 if (!uptodate)
371 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
372
373 if (entry->bytes_left == 0) {
374 /*
375 * Ensure only one caller can set the flag and finished_ret
376 * accordingly
377 */
378 finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
379 /* test_and_set_bit implies a barrier */
380 cond_wake_up_nomb(&entry->wait);
381 }
382out:
383 if (finished && finished_ret && entry) {
384 *finished_ret = entry;
385 refcount_inc(&entry->refs);
386 }
387 spin_unlock_irqrestore(&tree->lock, flags);
388 return finished;
389}
390
391/*
392 * Finish IO for one ordered extent across a given range. The range can only
393 * contain one ordered extent.
394 *
395 * @cached: The cached ordered extent. If not NULL, we can skip the tree
396 * search and use the ordered extent directly.
397 * Will be also used to store the finished ordered extent.
398 * @file_offset: File offset for the finished IO
399 * @io_size: Length of the finish IO range
400 * @uptodate: If the IO finishes without problem
401 *
402 * Return true if the ordered extent is finished in the range, and update
403 * @cached.
404 * Return false otherwise.
405 *
406 * NOTE: The range can NOT cross multiple ordered extents.
407 * Thus caller should ensure the range doesn't cross ordered extents.
408 */
409bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode,
410 struct btrfs_ordered_extent **cached,
411 u64 file_offset, u64 io_size, int uptodate)
412{
413 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
414 struct rb_node *node;
415 struct btrfs_ordered_extent *entry = NULL;
416 unsigned long flags;
417 bool finished = false;
418
419 spin_lock_irqsave(&tree->lock, flags);
420 if (cached && *cached) {
421 entry = *cached;
422 goto have_entry;
423 }
424
425 node = tree_search(tree, file_offset);
426 if (!node)
427 goto out;
428
429 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
430have_entry:
431 if (!offset_in_entry(entry, file_offset))
432 goto out;
433
434 if (io_size > entry->bytes_left)
435 btrfs_crit(inode->root->fs_info,
436 "bad ordered accounting left %llu size %llu",
437 entry->bytes_left, io_size);
438
439 entry->bytes_left -= io_size;
440 if (!uptodate)
441 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
442
443 if (entry->bytes_left == 0) {
444 /*
445 * Ensure only one caller can set the flag and finished_ret
446 * accordingly
447 */
448 finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
449 /* test_and_set_bit implies a barrier */
450 cond_wake_up_nomb(&entry->wait);
451 }
452out:
453 if (finished && cached && entry) {
454 *cached = entry;
455 refcount_inc(&entry->refs);
456 }
457 spin_unlock_irqrestore(&tree->lock, flags);
458 return finished;
459}
460
461/*
462 * used to drop a reference on an ordered extent. This will free
463 * the extent if the last reference is dropped
464 */
465void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
466{
467 struct list_head *cur;
468 struct btrfs_ordered_sum *sum;
469
470 trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry);
471
472 if (refcount_dec_and_test(&entry->refs)) {
473 ASSERT(list_empty(&entry->root_extent_list));
474 ASSERT(list_empty(&entry->log_list));
475 ASSERT(RB_EMPTY_NODE(&entry->rb_node));
476 if (entry->inode)
477 btrfs_add_delayed_iput(entry->inode);
478 while (!list_empty(&entry->list)) {
479 cur = entry->list.next;
480 sum = list_entry(cur, struct btrfs_ordered_sum, list);
481 list_del(&sum->list);
482 kvfree(sum);
483 }
484 kmem_cache_free(btrfs_ordered_extent_cache, entry);
485 }
486}
487
488/*
489 * remove an ordered extent from the tree. No references are dropped
490 * and waiters are woken up.
491 */
492void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode,
493 struct btrfs_ordered_extent *entry)
494{
495 struct btrfs_ordered_inode_tree *tree;
496 struct btrfs_root *root = btrfs_inode->root;
497 struct btrfs_fs_info *fs_info = root->fs_info;
498 struct rb_node *node;
499 bool pending;
500
501 /* This is paired with btrfs_add_ordered_extent. */
502 spin_lock(&btrfs_inode->lock);
503 btrfs_mod_outstanding_extents(btrfs_inode, -1);
504 spin_unlock(&btrfs_inode->lock);
505 if (root != fs_info->tree_root)
506 btrfs_delalloc_release_metadata(btrfs_inode, entry->num_bytes,
507 false);
508
509 percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes,
510 fs_info->delalloc_batch);
511
512 tree = &btrfs_inode->ordered_tree;
513 spin_lock_irq(&tree->lock);
514 node = &entry->rb_node;
515 rb_erase(node, &tree->tree);
516 RB_CLEAR_NODE(node);
517 if (tree->last == node)
518 tree->last = NULL;
519 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
520 pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags);
521 spin_unlock_irq(&tree->lock);
522
523 /*
524 * The current running transaction is waiting on us, we need to let it
525 * know that we're complete and wake it up.
526 */
527 if (pending) {
528 struct btrfs_transaction *trans;
529
530 /*
531 * The checks for trans are just a formality, it should be set,
532 * but if it isn't we don't want to deref/assert under the spin
533 * lock, so be nice and check if trans is set, but ASSERT() so
534 * if it isn't set a developer will notice.
535 */
536 spin_lock(&fs_info->trans_lock);
537 trans = fs_info->running_transaction;
538 if (trans)
539 refcount_inc(&trans->use_count);
540 spin_unlock(&fs_info->trans_lock);
541
542 ASSERT(trans);
543 if (trans) {
544 if (atomic_dec_and_test(&trans->pending_ordered))
545 wake_up(&trans->pending_wait);
546 btrfs_put_transaction(trans);
547 }
548 }
549
550 spin_lock(&root->ordered_extent_lock);
551 list_del_init(&entry->root_extent_list);
552 root->nr_ordered_extents--;
553
554 trace_btrfs_ordered_extent_remove(btrfs_inode, entry);
555
556 if (!root->nr_ordered_extents) {
557 spin_lock(&fs_info->ordered_root_lock);
558 BUG_ON(list_empty(&root->ordered_root));
559 list_del_init(&root->ordered_root);
560 spin_unlock(&fs_info->ordered_root_lock);
561 }
562 spin_unlock(&root->ordered_extent_lock);
563 wake_up(&entry->wait);
564}
565
566static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
567{
568 struct btrfs_ordered_extent *ordered;
569
570 ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
571 btrfs_start_ordered_extent(ordered, 1);
572 complete(&ordered->completion);
573}
574
575/*
576 * wait for all the ordered extents in a root. This is done when balancing
577 * space between drives.
578 */
579u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
580 const u64 range_start, const u64 range_len)
581{
582 struct btrfs_fs_info *fs_info = root->fs_info;
583 LIST_HEAD(splice);
584 LIST_HEAD(skipped);
585 LIST_HEAD(works);
586 struct btrfs_ordered_extent *ordered, *next;
587 u64 count = 0;
588 const u64 range_end = range_start + range_len;
589
590 mutex_lock(&root->ordered_extent_mutex);
591 spin_lock(&root->ordered_extent_lock);
592 list_splice_init(&root->ordered_extents, &splice);
593 while (!list_empty(&splice) && nr) {
594 ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
595 root_extent_list);
596
597 if (range_end <= ordered->disk_bytenr ||
598 ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
599 list_move_tail(&ordered->root_extent_list, &skipped);
600 cond_resched_lock(&root->ordered_extent_lock);
601 continue;
602 }
603
604 list_move_tail(&ordered->root_extent_list,
605 &root->ordered_extents);
606 refcount_inc(&ordered->refs);
607 spin_unlock(&root->ordered_extent_lock);
608
609 btrfs_init_work(&ordered->flush_work,
610 btrfs_run_ordered_extent_work, NULL, NULL);
611 list_add_tail(&ordered->work_list, &works);
612 btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
613
614 cond_resched();
615 spin_lock(&root->ordered_extent_lock);
616 if (nr != U64_MAX)
617 nr--;
618 count++;
619 }
620 list_splice_tail(&skipped, &root->ordered_extents);
621 list_splice_tail(&splice, &root->ordered_extents);
622 spin_unlock(&root->ordered_extent_lock);
623
624 list_for_each_entry_safe(ordered, next, &works, work_list) {
625 list_del_init(&ordered->work_list);
626 wait_for_completion(&ordered->completion);
627 btrfs_put_ordered_extent(ordered);
628 cond_resched();
629 }
630 mutex_unlock(&root->ordered_extent_mutex);
631
632 return count;
633}
634
635void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
636 const u64 range_start, const u64 range_len)
637{
638 struct btrfs_root *root;
639 struct list_head splice;
640 u64 done;
641
642 INIT_LIST_HEAD(&splice);
643
644 mutex_lock(&fs_info->ordered_operations_mutex);
645 spin_lock(&fs_info->ordered_root_lock);
646 list_splice_init(&fs_info->ordered_roots, &splice);
647 while (!list_empty(&splice) && nr) {
648 root = list_first_entry(&splice, struct btrfs_root,
649 ordered_root);
650 root = btrfs_grab_root(root);
651 BUG_ON(!root);
652 list_move_tail(&root->ordered_root,
653 &fs_info->ordered_roots);
654 spin_unlock(&fs_info->ordered_root_lock);
655
656 done = btrfs_wait_ordered_extents(root, nr,
657 range_start, range_len);
658 btrfs_put_root(root);
659
660 spin_lock(&fs_info->ordered_root_lock);
661 if (nr != U64_MAX) {
662 nr -= done;
663 }
664 }
665 list_splice_tail(&splice, &fs_info->ordered_roots);
666 spin_unlock(&fs_info->ordered_root_lock);
667 mutex_unlock(&fs_info->ordered_operations_mutex);
668}
669
670/*
671 * Used to start IO or wait for a given ordered extent to finish.
672 *
673 * If wait is one, this effectively waits on page writeback for all the pages
674 * in the extent, and it waits on the io completion code to insert
675 * metadata into the btree corresponding to the extent
676 */
677void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry, int wait)
678{
679 u64 start = entry->file_offset;
680 u64 end = start + entry->num_bytes - 1;
681 struct btrfs_inode *inode = BTRFS_I(entry->inode);
682
683 trace_btrfs_ordered_extent_start(inode, entry);
684
685 /*
686 * pages in the range can be dirty, clean or writeback. We
687 * start IO on any dirty ones so the wait doesn't stall waiting
688 * for the flusher thread to find them
689 */
690 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
691 filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end);
692 if (wait) {
693 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
694 &entry->flags));
695 }
696}
697
698/*
699 * Used to wait on ordered extents across a large range of bytes.
700 */
701int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
702{
703 int ret = 0;
704 int ret_wb = 0;
705 u64 end;
706 u64 orig_end;
707 struct btrfs_ordered_extent *ordered;
708
709 if (start + len < start) {
710 orig_end = INT_LIMIT(loff_t);
711 } else {
712 orig_end = start + len - 1;
713 if (orig_end > INT_LIMIT(loff_t))
714 orig_end = INT_LIMIT(loff_t);
715 }
716
717 /* start IO across the range first to instantiate any delalloc
718 * extents
719 */
720 ret = btrfs_fdatawrite_range(inode, start, orig_end);
721 if (ret)
722 return ret;
723
724 /*
725 * If we have a writeback error don't return immediately. Wait first
726 * for any ordered extents that haven't completed yet. This is to make
727 * sure no one can dirty the same page ranges and call writepages()
728 * before the ordered extents complete - to avoid failures (-EEXIST)
729 * when adding the new ordered extents to the ordered tree.
730 */
731 ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
732
733 end = orig_end;
734 while (1) {
735 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end);
736 if (!ordered)
737 break;
738 if (ordered->file_offset > orig_end) {
739 btrfs_put_ordered_extent(ordered);
740 break;
741 }
742 if (ordered->file_offset + ordered->num_bytes <= start) {
743 btrfs_put_ordered_extent(ordered);
744 break;
745 }
746 btrfs_start_ordered_extent(ordered, 1);
747 end = ordered->file_offset;
748 /*
749 * If the ordered extent had an error save the error but don't
750 * exit without waiting first for all other ordered extents in
751 * the range to complete.
752 */
753 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
754 ret = -EIO;
755 btrfs_put_ordered_extent(ordered);
756 if (end == 0 || end == start)
757 break;
758 end--;
759 }
760 return ret_wb ? ret_wb : ret;
761}
762
763/*
764 * find an ordered extent corresponding to file_offset. return NULL if
765 * nothing is found, otherwise take a reference on the extent and return it
766 */
767struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
768 u64 file_offset)
769{
770 struct btrfs_ordered_inode_tree *tree;
771 struct rb_node *node;
772 struct btrfs_ordered_extent *entry = NULL;
773 unsigned long flags;
774
775 tree = &inode->ordered_tree;
776 spin_lock_irqsave(&tree->lock, flags);
777 node = tree_search(tree, file_offset);
778 if (!node)
779 goto out;
780
781 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
782 if (!offset_in_entry(entry, file_offset))
783 entry = NULL;
784 if (entry)
785 refcount_inc(&entry->refs);
786out:
787 spin_unlock_irqrestore(&tree->lock, flags);
788 return entry;
789}
790
791/* Since the DIO code tries to lock a wide area we need to look for any ordered
792 * extents that exist in the range, rather than just the start of the range.
793 */
794struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
795 struct btrfs_inode *inode, u64 file_offset, u64 len)
796{
797 struct btrfs_ordered_inode_tree *tree;
798 struct rb_node *node;
799 struct btrfs_ordered_extent *entry = NULL;
800
801 tree = &inode->ordered_tree;
802 spin_lock_irq(&tree->lock);
803 node = tree_search(tree, file_offset);
804 if (!node) {
805 node = tree_search(tree, file_offset + len);
806 if (!node)
807 goto out;
808 }
809
810 while (1) {
811 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
812 if (range_overlaps(entry, file_offset, len))
813 break;
814
815 if (entry->file_offset >= file_offset + len) {
816 entry = NULL;
817 break;
818 }
819 entry = NULL;
820 node = rb_next(node);
821 if (!node)
822 break;
823 }
824out:
825 if (entry)
826 refcount_inc(&entry->refs);
827 spin_unlock_irq(&tree->lock);
828 return entry;
829}
830
831/*
832 * Adds all ordered extents to the given list. The list ends up sorted by the
833 * file_offset of the ordered extents.
834 */
835void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode,
836 struct list_head *list)
837{
838 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
839 struct rb_node *n;
840
841 ASSERT(inode_is_locked(&inode->vfs_inode));
842
843 spin_lock_irq(&tree->lock);
844 for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
845 struct btrfs_ordered_extent *ordered;
846
847 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
848
849 if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
850 continue;
851
852 ASSERT(list_empty(&ordered->log_list));
853 list_add_tail(&ordered->log_list, list);
854 refcount_inc(&ordered->refs);
855 }
856 spin_unlock_irq(&tree->lock);
857}
858
859/*
860 * lookup and return any extent before 'file_offset'. NULL is returned
861 * if none is found
862 */
863struct btrfs_ordered_extent *
864btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset)
865{
866 struct btrfs_ordered_inode_tree *tree;
867 struct rb_node *node;
868 struct btrfs_ordered_extent *entry = NULL;
869
870 tree = &inode->ordered_tree;
871 spin_lock_irq(&tree->lock);
872 node = tree_search(tree, file_offset);
873 if (!node)
874 goto out;
875
876 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
877 refcount_inc(&entry->refs);
878out:
879 spin_unlock_irq(&tree->lock);
880 return entry;
881}
882
883/*
884 * btrfs_flush_ordered_range - Lock the passed range and ensures all pending
885 * ordered extents in it are run to completion.
886 *
887 * @inode: Inode whose ordered tree is to be searched
888 * @start: Beginning of range to flush
889 * @end: Last byte of range to lock
890 * @cached_state: If passed, will return the extent state responsible for the
891 * locked range. It's the caller's responsibility to free the cached state.
892 *
893 * This function always returns with the given range locked, ensuring after it's
894 * called no order extent can be pending.
895 */
896void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
897 u64 end,
898 struct extent_state **cached_state)
899{
900 struct btrfs_ordered_extent *ordered;
901 struct extent_state *cache = NULL;
902 struct extent_state **cachedp = &cache;
903
904 if (cached_state)
905 cachedp = cached_state;
906
907 while (1) {
908 lock_extent_bits(&inode->io_tree, start, end, cachedp);
909 ordered = btrfs_lookup_ordered_range(inode, start,
910 end - start + 1);
911 if (!ordered) {
912 /*
913 * If no external cached_state has been passed then
914 * decrement the extra ref taken for cachedp since we
915 * aren't exposing it outside of this function
916 */
917 if (!cached_state)
918 refcount_dec(&cache->refs);
919 break;
920 }
921 unlock_extent_cached(&inode->io_tree, start, end, cachedp);
922 btrfs_start_ordered_extent(ordered, 1);
923 btrfs_put_ordered_extent(ordered);
924 }
925}
926
927static int clone_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pos,
928 u64 len)
929{
930 struct inode *inode = ordered->inode;
931 u64 file_offset = ordered->file_offset + pos;
932 u64 disk_bytenr = ordered->disk_bytenr + pos;
933 u64 num_bytes = len;
934 u64 disk_num_bytes = len;
935 int type;
936 unsigned long flags_masked = ordered->flags & ~(1 << BTRFS_ORDERED_DIRECT);
937 int compress_type = ordered->compress_type;
938 unsigned long weight;
939 int ret;
940
941 weight = hweight_long(flags_masked);
942 WARN_ON_ONCE(weight > 1);
943 if (!weight)
944 type = 0;
945 else
946 type = __ffs(flags_masked);
947
948 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered->flags)) {
949 WARN_ON_ONCE(1);
950 ret = btrfs_add_ordered_extent_compress(BTRFS_I(inode),
951 file_offset, disk_bytenr, num_bytes,
952 disk_num_bytes, compress_type);
953 } else if (test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
954 ret = btrfs_add_ordered_extent_dio(BTRFS_I(inode), file_offset,
955 disk_bytenr, num_bytes, disk_num_bytes, type);
956 } else {
957 ret = btrfs_add_ordered_extent(BTRFS_I(inode), file_offset,
958 disk_bytenr, num_bytes, disk_num_bytes, type);
959 }
960
961 return ret;
962}
963
964int btrfs_split_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pre,
965 u64 post)
966{
967 struct inode *inode = ordered->inode;
968 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
969 struct rb_node *node;
970 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
971 int ret = 0;
972
973 spin_lock_irq(&tree->lock);
974 /* Remove from tree once */
975 node = &ordered->rb_node;
976 rb_erase(node, &tree->tree);
977 RB_CLEAR_NODE(node);
978 if (tree->last == node)
979 tree->last = NULL;
980
981 ordered->file_offset += pre;
982 ordered->disk_bytenr += pre;
983 ordered->num_bytes -= (pre + post);
984 ordered->disk_num_bytes -= (pre + post);
985 ordered->bytes_left -= (pre + post);
986
987 /* Re-insert the node */
988 node = tree_insert(&tree->tree, ordered->file_offset, &ordered->rb_node);
989 if (node)
990 btrfs_panic(fs_info, -EEXIST,
991 "zoned: inconsistency in ordered tree at offset %llu",
992 ordered->file_offset);
993
994 spin_unlock_irq(&tree->lock);
995
996 if (pre)
997 ret = clone_ordered_extent(ordered, 0, pre);
998 if (post)
999 ret = clone_ordered_extent(ordered, pre + ordered->disk_num_bytes,
1000 post);
1001
1002 return ret;
1003}
1004
1005int __init ordered_data_init(void)
1006{
1007 btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1008 sizeof(struct btrfs_ordered_extent), 0,
1009 SLAB_MEM_SPREAD,
1010 NULL);
1011 if (!btrfs_ordered_extent_cache)
1012 return -ENOMEM;
1013
1014 return 0;
1015}
1016
1017void __cold ordered_data_exit(void)
1018{
1019 kmem_cache_destroy(btrfs_ordered_extent_cache);
1020}