Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2015, Linaro Limited
4 */
5#include <linux/arm-smccc.h>
6#include <linux/device.h>
7#include <linux/err.h>
8#include <linux/errno.h>
9#include <linux/mm.h>
10#include <linux/sched.h>
11#include <linux/slab.h>
12#include <linux/tee_drv.h>
13#include <linux/types.h>
14#include <linux/uaccess.h>
15#include "optee_private.h"
16#include "optee_smc.h"
17
18struct optee_call_waiter {
19 struct list_head list_node;
20 struct completion c;
21};
22
23static void optee_cq_wait_init(struct optee_call_queue *cq,
24 struct optee_call_waiter *w)
25{
26 /*
27 * We're preparing to make a call to secure world. In case we can't
28 * allocate a thread in secure world we'll end up waiting in
29 * optee_cq_wait_for_completion().
30 *
31 * Normally if there's no contention in secure world the call will
32 * complete and we can cleanup directly with optee_cq_wait_final().
33 */
34 mutex_lock(&cq->mutex);
35
36 /*
37 * We add ourselves to the queue, but we don't wait. This
38 * guarantees that we don't lose a completion if secure world
39 * returns busy and another thread just exited and try to complete
40 * someone.
41 */
42 init_completion(&w->c);
43 list_add_tail(&w->list_node, &cq->waiters);
44
45 mutex_unlock(&cq->mutex);
46}
47
48static void optee_cq_wait_for_completion(struct optee_call_queue *cq,
49 struct optee_call_waiter *w)
50{
51 wait_for_completion(&w->c);
52
53 mutex_lock(&cq->mutex);
54
55 /* Move to end of list to get out of the way for other waiters */
56 list_del(&w->list_node);
57 reinit_completion(&w->c);
58 list_add_tail(&w->list_node, &cq->waiters);
59
60 mutex_unlock(&cq->mutex);
61}
62
63static void optee_cq_complete_one(struct optee_call_queue *cq)
64{
65 struct optee_call_waiter *w;
66
67 list_for_each_entry(w, &cq->waiters, list_node) {
68 if (!completion_done(&w->c)) {
69 complete(&w->c);
70 break;
71 }
72 }
73}
74
75static void optee_cq_wait_final(struct optee_call_queue *cq,
76 struct optee_call_waiter *w)
77{
78 /*
79 * We're done with the call to secure world. The thread in secure
80 * world that was used for this call is now available for some
81 * other task to use.
82 */
83 mutex_lock(&cq->mutex);
84
85 /* Get out of the list */
86 list_del(&w->list_node);
87
88 /* Wake up one eventual waiting task */
89 optee_cq_complete_one(cq);
90
91 /*
92 * If we're completed we've got a completion from another task that
93 * was just done with its call to secure world. Since yet another
94 * thread now is available in secure world wake up another eventual
95 * waiting task.
96 */
97 if (completion_done(&w->c))
98 optee_cq_complete_one(cq);
99
100 mutex_unlock(&cq->mutex);
101}
102
103/* Requires the filpstate mutex to be held */
104static struct optee_session *find_session(struct optee_context_data *ctxdata,
105 u32 session_id)
106{
107 struct optee_session *sess;
108
109 list_for_each_entry(sess, &ctxdata->sess_list, list_node)
110 if (sess->session_id == session_id)
111 return sess;
112
113 return NULL;
114}
115
116/**
117 * optee_do_call_with_arg() - Do an SMC to OP-TEE in secure world
118 * @ctx: calling context
119 * @parg: physical address of message to pass to secure world
120 *
121 * Does and SMC to OP-TEE in secure world and handles eventual resulting
122 * Remote Procedure Calls (RPC) from OP-TEE.
123 *
124 * Returns return code from secure world, 0 is OK
125 */
126u32 optee_do_call_with_arg(struct tee_context *ctx, phys_addr_t parg)
127{
128 struct optee *optee = tee_get_drvdata(ctx->teedev);
129 struct optee_call_waiter w;
130 struct optee_rpc_param param = { };
131 struct optee_call_ctx call_ctx = { };
132 u32 ret;
133
134 param.a0 = OPTEE_SMC_CALL_WITH_ARG;
135 reg_pair_from_64(¶m.a1, ¶m.a2, parg);
136 /* Initialize waiter */
137 optee_cq_wait_init(&optee->call_queue, &w);
138 while (true) {
139 struct arm_smccc_res res;
140
141 optee->invoke_fn(param.a0, param.a1, param.a2, param.a3,
142 param.a4, param.a5, param.a6, param.a7,
143 &res);
144
145 if (res.a0 == OPTEE_SMC_RETURN_ETHREAD_LIMIT) {
146 /*
147 * Out of threads in secure world, wait for a thread
148 * become available.
149 */
150 optee_cq_wait_for_completion(&optee->call_queue, &w);
151 } else if (OPTEE_SMC_RETURN_IS_RPC(res.a0)) {
152 cond_resched();
153 param.a0 = res.a0;
154 param.a1 = res.a1;
155 param.a2 = res.a2;
156 param.a3 = res.a3;
157 optee_handle_rpc(ctx, ¶m, &call_ctx);
158 } else {
159 ret = res.a0;
160 break;
161 }
162 }
163
164 optee_rpc_finalize_call(&call_ctx);
165 /*
166 * We're done with our thread in secure world, if there's any
167 * thread waiters wake up one.
168 */
169 optee_cq_wait_final(&optee->call_queue, &w);
170
171 return ret;
172}
173
174static struct tee_shm *get_msg_arg(struct tee_context *ctx, size_t num_params,
175 struct optee_msg_arg **msg_arg,
176 phys_addr_t *msg_parg)
177{
178 int rc;
179 struct tee_shm *shm;
180 struct optee_msg_arg *ma;
181
182 shm = tee_shm_alloc(ctx, OPTEE_MSG_GET_ARG_SIZE(num_params),
183 TEE_SHM_MAPPED);
184 if (IS_ERR(shm))
185 return shm;
186
187 ma = tee_shm_get_va(shm, 0);
188 if (IS_ERR(ma)) {
189 rc = PTR_ERR(ma);
190 goto out;
191 }
192
193 rc = tee_shm_get_pa(shm, 0, msg_parg);
194 if (rc)
195 goto out;
196
197 memset(ma, 0, OPTEE_MSG_GET_ARG_SIZE(num_params));
198 ma->num_params = num_params;
199 *msg_arg = ma;
200out:
201 if (rc) {
202 tee_shm_free(shm);
203 return ERR_PTR(rc);
204 }
205
206 return shm;
207}
208
209int optee_open_session(struct tee_context *ctx,
210 struct tee_ioctl_open_session_arg *arg,
211 struct tee_param *param)
212{
213 struct optee_context_data *ctxdata = ctx->data;
214 int rc;
215 struct tee_shm *shm;
216 struct optee_msg_arg *msg_arg;
217 phys_addr_t msg_parg;
218 struct optee_session *sess = NULL;
219
220 /* +2 for the meta parameters added below */
221 shm = get_msg_arg(ctx, arg->num_params + 2, &msg_arg, &msg_parg);
222 if (IS_ERR(shm))
223 return PTR_ERR(shm);
224
225 msg_arg->cmd = OPTEE_MSG_CMD_OPEN_SESSION;
226 msg_arg->cancel_id = arg->cancel_id;
227
228 /*
229 * Initialize and add the meta parameters needed when opening a
230 * session.
231 */
232 msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT |
233 OPTEE_MSG_ATTR_META;
234 msg_arg->params[1].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT |
235 OPTEE_MSG_ATTR_META;
236 memcpy(&msg_arg->params[0].u.value, arg->uuid, sizeof(arg->uuid));
237 msg_arg->params[1].u.value.c = arg->clnt_login;
238
239 rc = tee_session_calc_client_uuid((uuid_t *)&msg_arg->params[1].u.value,
240 arg->clnt_login, arg->clnt_uuid);
241 if (rc)
242 goto out;
243
244 rc = optee_to_msg_param(msg_arg->params + 2, arg->num_params, param);
245 if (rc)
246 goto out;
247
248 sess = kzalloc(sizeof(*sess), GFP_KERNEL);
249 if (!sess) {
250 rc = -ENOMEM;
251 goto out;
252 }
253
254 if (optee_do_call_with_arg(ctx, msg_parg)) {
255 msg_arg->ret = TEEC_ERROR_COMMUNICATION;
256 msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
257 }
258
259 if (msg_arg->ret == TEEC_SUCCESS) {
260 /* A new session has been created, add it to the list. */
261 sess->session_id = msg_arg->session;
262 mutex_lock(&ctxdata->mutex);
263 list_add(&sess->list_node, &ctxdata->sess_list);
264 mutex_unlock(&ctxdata->mutex);
265 } else {
266 kfree(sess);
267 }
268
269 if (optee_from_msg_param(param, arg->num_params, msg_arg->params + 2)) {
270 arg->ret = TEEC_ERROR_COMMUNICATION;
271 arg->ret_origin = TEEC_ORIGIN_COMMS;
272 /* Close session again to avoid leakage */
273 optee_close_session(ctx, msg_arg->session);
274 } else {
275 arg->session = msg_arg->session;
276 arg->ret = msg_arg->ret;
277 arg->ret_origin = msg_arg->ret_origin;
278 }
279out:
280 tee_shm_free(shm);
281
282 return rc;
283}
284
285int optee_close_session(struct tee_context *ctx, u32 session)
286{
287 struct optee_context_data *ctxdata = ctx->data;
288 struct tee_shm *shm;
289 struct optee_msg_arg *msg_arg;
290 phys_addr_t msg_parg;
291 struct optee_session *sess;
292
293 /* Check that the session is valid and remove it from the list */
294 mutex_lock(&ctxdata->mutex);
295 sess = find_session(ctxdata, session);
296 if (sess)
297 list_del(&sess->list_node);
298 mutex_unlock(&ctxdata->mutex);
299 if (!sess)
300 return -EINVAL;
301 kfree(sess);
302
303 shm = get_msg_arg(ctx, 0, &msg_arg, &msg_parg);
304 if (IS_ERR(shm))
305 return PTR_ERR(shm);
306
307 msg_arg->cmd = OPTEE_MSG_CMD_CLOSE_SESSION;
308 msg_arg->session = session;
309 optee_do_call_with_arg(ctx, msg_parg);
310
311 tee_shm_free(shm);
312 return 0;
313}
314
315int optee_invoke_func(struct tee_context *ctx, struct tee_ioctl_invoke_arg *arg,
316 struct tee_param *param)
317{
318 struct optee_context_data *ctxdata = ctx->data;
319 struct tee_shm *shm;
320 struct optee_msg_arg *msg_arg;
321 phys_addr_t msg_parg;
322 struct optee_session *sess;
323 int rc;
324
325 /* Check that the session is valid */
326 mutex_lock(&ctxdata->mutex);
327 sess = find_session(ctxdata, arg->session);
328 mutex_unlock(&ctxdata->mutex);
329 if (!sess)
330 return -EINVAL;
331
332 shm = get_msg_arg(ctx, arg->num_params, &msg_arg, &msg_parg);
333 if (IS_ERR(shm))
334 return PTR_ERR(shm);
335 msg_arg->cmd = OPTEE_MSG_CMD_INVOKE_COMMAND;
336 msg_arg->func = arg->func;
337 msg_arg->session = arg->session;
338 msg_arg->cancel_id = arg->cancel_id;
339
340 rc = optee_to_msg_param(msg_arg->params, arg->num_params, param);
341 if (rc)
342 goto out;
343
344 if (optee_do_call_with_arg(ctx, msg_parg)) {
345 msg_arg->ret = TEEC_ERROR_COMMUNICATION;
346 msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
347 }
348
349 if (optee_from_msg_param(param, arg->num_params, msg_arg->params)) {
350 msg_arg->ret = TEEC_ERROR_COMMUNICATION;
351 msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
352 }
353
354 arg->ret = msg_arg->ret;
355 arg->ret_origin = msg_arg->ret_origin;
356out:
357 tee_shm_free(shm);
358 return rc;
359}
360
361int optee_cancel_req(struct tee_context *ctx, u32 cancel_id, u32 session)
362{
363 struct optee_context_data *ctxdata = ctx->data;
364 struct tee_shm *shm;
365 struct optee_msg_arg *msg_arg;
366 phys_addr_t msg_parg;
367 struct optee_session *sess;
368
369 /* Check that the session is valid */
370 mutex_lock(&ctxdata->mutex);
371 sess = find_session(ctxdata, session);
372 mutex_unlock(&ctxdata->mutex);
373 if (!sess)
374 return -EINVAL;
375
376 shm = get_msg_arg(ctx, 0, &msg_arg, &msg_parg);
377 if (IS_ERR(shm))
378 return PTR_ERR(shm);
379
380 msg_arg->cmd = OPTEE_MSG_CMD_CANCEL;
381 msg_arg->session = session;
382 msg_arg->cancel_id = cancel_id;
383 optee_do_call_with_arg(ctx, msg_parg);
384
385 tee_shm_free(shm);
386 return 0;
387}
388
389/**
390 * optee_enable_shm_cache() - Enables caching of some shared memory allocation
391 * in OP-TEE
392 * @optee: main service struct
393 */
394void optee_enable_shm_cache(struct optee *optee)
395{
396 struct optee_call_waiter w;
397
398 /* We need to retry until secure world isn't busy. */
399 optee_cq_wait_init(&optee->call_queue, &w);
400 while (true) {
401 struct arm_smccc_res res;
402
403 optee->invoke_fn(OPTEE_SMC_ENABLE_SHM_CACHE, 0, 0, 0, 0, 0, 0,
404 0, &res);
405 if (res.a0 == OPTEE_SMC_RETURN_OK)
406 break;
407 optee_cq_wait_for_completion(&optee->call_queue, &w);
408 }
409 optee_cq_wait_final(&optee->call_queue, &w);
410}
411
412/**
413 * optee_disable_shm_cache() - Disables caching of some shared memory allocation
414 * in OP-TEE
415 * @optee: main service struct
416 */
417void optee_disable_shm_cache(struct optee *optee)
418{
419 struct optee_call_waiter w;
420
421 /* We need to retry until secure world isn't busy. */
422 optee_cq_wait_init(&optee->call_queue, &w);
423 while (true) {
424 union {
425 struct arm_smccc_res smccc;
426 struct optee_smc_disable_shm_cache_result result;
427 } res;
428
429 optee->invoke_fn(OPTEE_SMC_DISABLE_SHM_CACHE, 0, 0, 0, 0, 0, 0,
430 0, &res.smccc);
431 if (res.result.status == OPTEE_SMC_RETURN_ENOTAVAIL)
432 break; /* All shm's freed */
433 if (res.result.status == OPTEE_SMC_RETURN_OK) {
434 struct tee_shm *shm;
435
436 shm = reg_pair_to_ptr(res.result.shm_upper32,
437 res.result.shm_lower32);
438 tee_shm_free(shm);
439 } else {
440 optee_cq_wait_for_completion(&optee->call_queue, &w);
441 }
442 }
443 optee_cq_wait_final(&optee->call_queue, &w);
444}
445
446#define PAGELIST_ENTRIES_PER_PAGE \
447 ((OPTEE_MSG_NONCONTIG_PAGE_SIZE / sizeof(u64)) - 1)
448
449/**
450 * optee_fill_pages_list() - write list of user pages to given shared
451 * buffer.
452 *
453 * @dst: page-aligned buffer where list of pages will be stored
454 * @pages: array of pages that represents shared buffer
455 * @num_pages: number of entries in @pages
456 * @page_offset: offset of user buffer from page start
457 *
458 * @dst should be big enough to hold list of user page addresses and
459 * links to the next pages of buffer
460 */
461void optee_fill_pages_list(u64 *dst, struct page **pages, int num_pages,
462 size_t page_offset)
463{
464 int n = 0;
465 phys_addr_t optee_page;
466 /*
467 * Refer to OPTEE_MSG_ATTR_NONCONTIG description in optee_msg.h
468 * for details.
469 */
470 struct {
471 u64 pages_list[PAGELIST_ENTRIES_PER_PAGE];
472 u64 next_page_data;
473 } *pages_data;
474
475 /*
476 * Currently OP-TEE uses 4k page size and it does not looks
477 * like this will change in the future. On other hand, there are
478 * no know ARM architectures with page size < 4k.
479 * Thus the next built assert looks redundant. But the following
480 * code heavily relies on this assumption, so it is better be
481 * safe than sorry.
482 */
483 BUILD_BUG_ON(PAGE_SIZE < OPTEE_MSG_NONCONTIG_PAGE_SIZE);
484
485 pages_data = (void *)dst;
486 /*
487 * If linux page is bigger than 4k, and user buffer offset is
488 * larger than 4k/8k/12k/etc this will skip first 4k pages,
489 * because they bear no value data for OP-TEE.
490 */
491 optee_page = page_to_phys(*pages) +
492 round_down(page_offset, OPTEE_MSG_NONCONTIG_PAGE_SIZE);
493
494 while (true) {
495 pages_data->pages_list[n++] = optee_page;
496
497 if (n == PAGELIST_ENTRIES_PER_PAGE) {
498 pages_data->next_page_data =
499 virt_to_phys(pages_data + 1);
500 pages_data++;
501 n = 0;
502 }
503
504 optee_page += OPTEE_MSG_NONCONTIG_PAGE_SIZE;
505 if (!(optee_page & ~PAGE_MASK)) {
506 if (!--num_pages)
507 break;
508 pages++;
509 optee_page = page_to_phys(*pages);
510 }
511 }
512}
513
514/*
515 * The final entry in each pagelist page is a pointer to the next
516 * pagelist page.
517 */
518static size_t get_pages_list_size(size_t num_entries)
519{
520 int pages = DIV_ROUND_UP(num_entries, PAGELIST_ENTRIES_PER_PAGE);
521
522 return pages * OPTEE_MSG_NONCONTIG_PAGE_SIZE;
523}
524
525u64 *optee_allocate_pages_list(size_t num_entries)
526{
527 return alloc_pages_exact(get_pages_list_size(num_entries), GFP_KERNEL);
528}
529
530void optee_free_pages_list(void *list, size_t num_entries)
531{
532 free_pages_exact(list, get_pages_list_size(num_entries));
533}
534
535static bool is_normal_memory(pgprot_t p)
536{
537#if defined(CONFIG_ARM)
538 return (((pgprot_val(p) & L_PTE_MT_MASK) == L_PTE_MT_WRITEALLOC) ||
539 ((pgprot_val(p) & L_PTE_MT_MASK) == L_PTE_MT_WRITEBACK));
540#elif defined(CONFIG_ARM64)
541 return (pgprot_val(p) & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL);
542#else
543#error "Unuspported architecture"
544#endif
545}
546
547static int __check_mem_type(struct vm_area_struct *vma, unsigned long end)
548{
549 while (vma && is_normal_memory(vma->vm_page_prot)) {
550 if (vma->vm_end >= end)
551 return 0;
552 vma = vma->vm_next;
553 }
554
555 return -EINVAL;
556}
557
558static int check_mem_type(unsigned long start, size_t num_pages)
559{
560 struct mm_struct *mm = current->mm;
561 int rc;
562
563 /*
564 * Allow kernel address to register with OP-TEE as kernel
565 * pages are configured as normal memory only.
566 */
567 if (virt_addr_valid(start))
568 return 0;
569
570 mmap_read_lock(mm);
571 rc = __check_mem_type(find_vma(mm, start),
572 start + num_pages * PAGE_SIZE);
573 mmap_read_unlock(mm);
574
575 return rc;
576}
577
578int optee_shm_register(struct tee_context *ctx, struct tee_shm *shm,
579 struct page **pages, size_t num_pages,
580 unsigned long start)
581{
582 struct tee_shm *shm_arg = NULL;
583 struct optee_msg_arg *msg_arg;
584 u64 *pages_list;
585 phys_addr_t msg_parg;
586 int rc;
587
588 if (!num_pages)
589 return -EINVAL;
590
591 rc = check_mem_type(start, num_pages);
592 if (rc)
593 return rc;
594
595 pages_list = optee_allocate_pages_list(num_pages);
596 if (!pages_list)
597 return -ENOMEM;
598
599 shm_arg = get_msg_arg(ctx, 1, &msg_arg, &msg_parg);
600 if (IS_ERR(shm_arg)) {
601 rc = PTR_ERR(shm_arg);
602 goto out;
603 }
604
605 optee_fill_pages_list(pages_list, pages, num_pages,
606 tee_shm_get_page_offset(shm));
607
608 msg_arg->cmd = OPTEE_MSG_CMD_REGISTER_SHM;
609 msg_arg->params->attr = OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT |
610 OPTEE_MSG_ATTR_NONCONTIG;
611 msg_arg->params->u.tmem.shm_ref = (unsigned long)shm;
612 msg_arg->params->u.tmem.size = tee_shm_get_size(shm);
613 /*
614 * In the least bits of msg_arg->params->u.tmem.buf_ptr we
615 * store buffer offset from 4k page, as described in OP-TEE ABI.
616 */
617 msg_arg->params->u.tmem.buf_ptr = virt_to_phys(pages_list) |
618 (tee_shm_get_page_offset(shm) & (OPTEE_MSG_NONCONTIG_PAGE_SIZE - 1));
619
620 if (optee_do_call_with_arg(ctx, msg_parg) ||
621 msg_arg->ret != TEEC_SUCCESS)
622 rc = -EINVAL;
623
624 tee_shm_free(shm_arg);
625out:
626 optee_free_pages_list(pages_list, num_pages);
627 return rc;
628}
629
630int optee_shm_unregister(struct tee_context *ctx, struct tee_shm *shm)
631{
632 struct tee_shm *shm_arg;
633 struct optee_msg_arg *msg_arg;
634 phys_addr_t msg_parg;
635 int rc = 0;
636
637 shm_arg = get_msg_arg(ctx, 1, &msg_arg, &msg_parg);
638 if (IS_ERR(shm_arg))
639 return PTR_ERR(shm_arg);
640
641 msg_arg->cmd = OPTEE_MSG_CMD_UNREGISTER_SHM;
642
643 msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_RMEM_INPUT;
644 msg_arg->params[0].u.rmem.shm_ref = (unsigned long)shm;
645
646 if (optee_do_call_with_arg(ctx, msg_parg) ||
647 msg_arg->ret != TEEC_SUCCESS)
648 rc = -EINVAL;
649 tee_shm_free(shm_arg);
650 return rc;
651}
652
653int optee_shm_register_supp(struct tee_context *ctx, struct tee_shm *shm,
654 struct page **pages, size_t num_pages,
655 unsigned long start)
656{
657 /*
658 * We don't want to register supplicant memory in OP-TEE.
659 * Instead information about it will be passed in RPC code.
660 */
661 return check_mem_type(start, num_pages);
662}
663
664int optee_shm_unregister_supp(struct tee_context *ctx, struct tee_shm *shm)
665{
666 return 0;
667}