Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * background writeback - scan btree for dirty data and write it to the backing
4 * device
5 *
6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7 * Copyright 2012 Google, Inc.
8 */
9
10#include "bcache.h"
11#include "btree.h"
12#include "debug.h"
13#include "writeback.h"
14
15#include <linux/delay.h>
16#include <linux/kthread.h>
17#include <linux/sched/clock.h>
18#include <trace/events/bcache.h>
19
20static void update_gc_after_writeback(struct cache_set *c)
21{
22 if (c->gc_after_writeback != (BCH_ENABLE_AUTO_GC) ||
23 c->gc_stats.in_use < BCH_AUTO_GC_DIRTY_THRESHOLD)
24 return;
25
26 c->gc_after_writeback |= BCH_DO_AUTO_GC;
27}
28
29/* Rate limiting */
30static uint64_t __calc_target_rate(struct cached_dev *dc)
31{
32 struct cache_set *c = dc->disk.c;
33
34 /*
35 * This is the size of the cache, minus the amount used for
36 * flash-only devices
37 */
38 uint64_t cache_sectors = c->nbuckets * c->cache->sb.bucket_size -
39 atomic_long_read(&c->flash_dev_dirty_sectors);
40
41 /*
42 * Unfortunately there is no control of global dirty data. If the
43 * user states that they want 10% dirty data in the cache, and has,
44 * e.g., 5 backing volumes of equal size, we try and ensure each
45 * backing volume uses about 2% of the cache for dirty data.
46 */
47 uint32_t bdev_share =
48 div64_u64(bdev_sectors(dc->bdev) << WRITEBACK_SHARE_SHIFT,
49 c->cached_dev_sectors);
50
51 uint64_t cache_dirty_target =
52 div_u64(cache_sectors * dc->writeback_percent, 100);
53
54 /* Ensure each backing dev gets at least one dirty share */
55 if (bdev_share < 1)
56 bdev_share = 1;
57
58 return (cache_dirty_target * bdev_share) >> WRITEBACK_SHARE_SHIFT;
59}
60
61static void __update_writeback_rate(struct cached_dev *dc)
62{
63 /*
64 * PI controller:
65 * Figures out the amount that should be written per second.
66 *
67 * First, the error (number of sectors that are dirty beyond our
68 * target) is calculated. The error is accumulated (numerically
69 * integrated).
70 *
71 * Then, the proportional value and integral value are scaled
72 * based on configured values. These are stored as inverses to
73 * avoid fixed point math and to make configuration easy-- e.g.
74 * the default value of 40 for writeback_rate_p_term_inverse
75 * attempts to write at a rate that would retire all the dirty
76 * blocks in 40 seconds.
77 *
78 * The writeback_rate_i_inverse value of 10000 means that 1/10000th
79 * of the error is accumulated in the integral term per second.
80 * This acts as a slow, long-term average that is not subject to
81 * variations in usage like the p term.
82 */
83 int64_t target = __calc_target_rate(dc);
84 int64_t dirty = bcache_dev_sectors_dirty(&dc->disk);
85 int64_t error = dirty - target;
86 int64_t proportional_scaled =
87 div_s64(error, dc->writeback_rate_p_term_inverse);
88 int64_t integral_scaled;
89 uint32_t new_rate;
90
91 /*
92 * We need to consider the number of dirty buckets as well
93 * when calculating the proportional_scaled, Otherwise we might
94 * have an unreasonable small writeback rate at a highly fragmented situation
95 * when very few dirty sectors consumed a lot dirty buckets, the
96 * worst case is when dirty buckets reached cutoff_writeback_sync and
97 * dirty data is still not even reached to writeback percent, so the rate
98 * still will be at the minimum value, which will cause the write
99 * stuck at a non-writeback mode.
100 */
101 struct cache_set *c = dc->disk.c;
102
103 int64_t dirty_buckets = c->nbuckets - c->avail_nbuckets;
104
105 if (dc->writeback_consider_fragment &&
106 c->gc_stats.in_use > BCH_WRITEBACK_FRAGMENT_THRESHOLD_LOW && dirty > 0) {
107 int64_t fragment =
108 div_s64((dirty_buckets * c->cache->sb.bucket_size), dirty);
109 int64_t fp_term;
110 int64_t fps;
111
112 if (c->gc_stats.in_use <= BCH_WRITEBACK_FRAGMENT_THRESHOLD_MID) {
113 fp_term = dc->writeback_rate_fp_term_low *
114 (c->gc_stats.in_use - BCH_WRITEBACK_FRAGMENT_THRESHOLD_LOW);
115 } else if (c->gc_stats.in_use <= BCH_WRITEBACK_FRAGMENT_THRESHOLD_HIGH) {
116 fp_term = dc->writeback_rate_fp_term_mid *
117 (c->gc_stats.in_use - BCH_WRITEBACK_FRAGMENT_THRESHOLD_MID);
118 } else {
119 fp_term = dc->writeback_rate_fp_term_high *
120 (c->gc_stats.in_use - BCH_WRITEBACK_FRAGMENT_THRESHOLD_HIGH);
121 }
122 fps = div_s64(dirty, dirty_buckets) * fp_term;
123 if (fragment > 3 && fps > proportional_scaled) {
124 /* Only overrite the p when fragment > 3 */
125 proportional_scaled = fps;
126 }
127 }
128
129 if ((error < 0 && dc->writeback_rate_integral > 0) ||
130 (error > 0 && time_before64(local_clock(),
131 dc->writeback_rate.next + NSEC_PER_MSEC))) {
132 /*
133 * Only decrease the integral term if it's more than
134 * zero. Only increase the integral term if the device
135 * is keeping up. (Don't wind up the integral
136 * ineffectively in either case).
137 *
138 * It's necessary to scale this by
139 * writeback_rate_update_seconds to keep the integral
140 * term dimensioned properly.
141 */
142 dc->writeback_rate_integral += error *
143 dc->writeback_rate_update_seconds;
144 }
145
146 integral_scaled = div_s64(dc->writeback_rate_integral,
147 dc->writeback_rate_i_term_inverse);
148
149 new_rate = clamp_t(int32_t, (proportional_scaled + integral_scaled),
150 dc->writeback_rate_minimum, NSEC_PER_SEC);
151
152 dc->writeback_rate_proportional = proportional_scaled;
153 dc->writeback_rate_integral_scaled = integral_scaled;
154 dc->writeback_rate_change = new_rate -
155 atomic_long_read(&dc->writeback_rate.rate);
156 atomic_long_set(&dc->writeback_rate.rate, new_rate);
157 dc->writeback_rate_target = target;
158}
159
160static bool set_at_max_writeback_rate(struct cache_set *c,
161 struct cached_dev *dc)
162{
163 /* Don't sst max writeback rate if it is disabled */
164 if (!c->idle_max_writeback_rate_enabled)
165 return false;
166
167 /* Don't set max writeback rate if gc is running */
168 if (!c->gc_mark_valid)
169 return false;
170 /*
171 * Idle_counter is increased everytime when update_writeback_rate() is
172 * called. If all backing devices attached to the same cache set have
173 * identical dc->writeback_rate_update_seconds values, it is about 6
174 * rounds of update_writeback_rate() on each backing device before
175 * c->at_max_writeback_rate is set to 1, and then max wrteback rate set
176 * to each dc->writeback_rate.rate.
177 * In order to avoid extra locking cost for counting exact dirty cached
178 * devices number, c->attached_dev_nr is used to calculate the idle
179 * throushold. It might be bigger if not all cached device are in write-
180 * back mode, but it still works well with limited extra rounds of
181 * update_writeback_rate().
182 */
183 if (atomic_inc_return(&c->idle_counter) <
184 atomic_read(&c->attached_dev_nr) * 6)
185 return false;
186
187 if (atomic_read(&c->at_max_writeback_rate) != 1)
188 atomic_set(&c->at_max_writeback_rate, 1);
189
190 atomic_long_set(&dc->writeback_rate.rate, INT_MAX);
191
192 /* keep writeback_rate_target as existing value */
193 dc->writeback_rate_proportional = 0;
194 dc->writeback_rate_integral_scaled = 0;
195 dc->writeback_rate_change = 0;
196
197 /*
198 * Check c->idle_counter and c->at_max_writeback_rate agagain in case
199 * new I/O arrives during before set_at_max_writeback_rate() returns.
200 * Then the writeback rate is set to 1, and its new value should be
201 * decided via __update_writeback_rate().
202 */
203 if ((atomic_read(&c->idle_counter) <
204 atomic_read(&c->attached_dev_nr) * 6) ||
205 !atomic_read(&c->at_max_writeback_rate))
206 return false;
207
208 return true;
209}
210
211static void update_writeback_rate(struct work_struct *work)
212{
213 struct cached_dev *dc = container_of(to_delayed_work(work),
214 struct cached_dev,
215 writeback_rate_update);
216 struct cache_set *c = dc->disk.c;
217
218 /*
219 * should check BCACHE_DEV_RATE_DW_RUNNING before calling
220 * cancel_delayed_work_sync().
221 */
222 set_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
223 /* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
224 smp_mb__after_atomic();
225
226 /*
227 * CACHE_SET_IO_DISABLE might be set via sysfs interface,
228 * check it here too.
229 */
230 if (!test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) ||
231 test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
232 clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
233 /* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
234 smp_mb__after_atomic();
235 return;
236 }
237
238 if (atomic_read(&dc->has_dirty) && dc->writeback_percent) {
239 /*
240 * If the whole cache set is idle, set_at_max_writeback_rate()
241 * will set writeback rate to a max number. Then it is
242 * unncessary to update writeback rate for an idle cache set
243 * in maximum writeback rate number(s).
244 */
245 if (!set_at_max_writeback_rate(c, dc)) {
246 down_read(&dc->writeback_lock);
247 __update_writeback_rate(dc);
248 update_gc_after_writeback(c);
249 up_read(&dc->writeback_lock);
250 }
251 }
252
253
254 /*
255 * CACHE_SET_IO_DISABLE might be set via sysfs interface,
256 * check it here too.
257 */
258 if (test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) &&
259 !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
260 schedule_delayed_work(&dc->writeback_rate_update,
261 dc->writeback_rate_update_seconds * HZ);
262 }
263
264 /*
265 * should check BCACHE_DEV_RATE_DW_RUNNING before calling
266 * cancel_delayed_work_sync().
267 */
268 clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
269 /* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
270 smp_mb__after_atomic();
271}
272
273static unsigned int writeback_delay(struct cached_dev *dc,
274 unsigned int sectors)
275{
276 if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
277 !dc->writeback_percent)
278 return 0;
279
280 return bch_next_delay(&dc->writeback_rate, sectors);
281}
282
283struct dirty_io {
284 struct closure cl;
285 struct cached_dev *dc;
286 uint16_t sequence;
287 struct bio bio;
288};
289
290static void dirty_init(struct keybuf_key *w)
291{
292 struct dirty_io *io = w->private;
293 struct bio *bio = &io->bio;
294
295 bio_init(bio, bio->bi_inline_vecs,
296 DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS));
297 if (!io->dc->writeback_percent)
298 bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
299
300 bio->bi_iter.bi_size = KEY_SIZE(&w->key) << 9;
301 bio->bi_private = w;
302 bch_bio_map(bio, NULL);
303}
304
305static void dirty_io_destructor(struct closure *cl)
306{
307 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
308
309 kfree(io);
310}
311
312static void write_dirty_finish(struct closure *cl)
313{
314 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
315 struct keybuf_key *w = io->bio.bi_private;
316 struct cached_dev *dc = io->dc;
317
318 bio_free_pages(&io->bio);
319
320 /* This is kind of a dumb way of signalling errors. */
321 if (KEY_DIRTY(&w->key)) {
322 int ret;
323 unsigned int i;
324 struct keylist keys;
325
326 bch_keylist_init(&keys);
327
328 bkey_copy(keys.top, &w->key);
329 SET_KEY_DIRTY(keys.top, false);
330 bch_keylist_push(&keys);
331
332 for (i = 0; i < KEY_PTRS(&w->key); i++)
333 atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin);
334
335 ret = bch_btree_insert(dc->disk.c, &keys, NULL, &w->key);
336
337 if (ret)
338 trace_bcache_writeback_collision(&w->key);
339
340 atomic_long_inc(ret
341 ? &dc->disk.c->writeback_keys_failed
342 : &dc->disk.c->writeback_keys_done);
343 }
344
345 bch_keybuf_del(&dc->writeback_keys, w);
346 up(&dc->in_flight);
347
348 closure_return_with_destructor(cl, dirty_io_destructor);
349}
350
351static void dirty_endio(struct bio *bio)
352{
353 struct keybuf_key *w = bio->bi_private;
354 struct dirty_io *io = w->private;
355
356 if (bio->bi_status) {
357 SET_KEY_DIRTY(&w->key, false);
358 bch_count_backing_io_errors(io->dc, bio);
359 }
360
361 closure_put(&io->cl);
362}
363
364static void write_dirty(struct closure *cl)
365{
366 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
367 struct keybuf_key *w = io->bio.bi_private;
368 struct cached_dev *dc = io->dc;
369
370 uint16_t next_sequence;
371
372 if (atomic_read(&dc->writeback_sequence_next) != io->sequence) {
373 /* Not our turn to write; wait for a write to complete */
374 closure_wait(&dc->writeback_ordering_wait, cl);
375
376 if (atomic_read(&dc->writeback_sequence_next) == io->sequence) {
377 /*
378 * Edge case-- it happened in indeterminate order
379 * relative to when we were added to wait list..
380 */
381 closure_wake_up(&dc->writeback_ordering_wait);
382 }
383
384 continue_at(cl, write_dirty, io->dc->writeback_write_wq);
385 return;
386 }
387
388 next_sequence = io->sequence + 1;
389
390 /*
391 * IO errors are signalled using the dirty bit on the key.
392 * If we failed to read, we should not attempt to write to the
393 * backing device. Instead, immediately go to write_dirty_finish
394 * to clean up.
395 */
396 if (KEY_DIRTY(&w->key)) {
397 dirty_init(w);
398 bio_set_op_attrs(&io->bio, REQ_OP_WRITE, 0);
399 io->bio.bi_iter.bi_sector = KEY_START(&w->key);
400 bio_set_dev(&io->bio, io->dc->bdev);
401 io->bio.bi_end_io = dirty_endio;
402
403 /* I/O request sent to backing device */
404 closure_bio_submit(io->dc->disk.c, &io->bio, cl);
405 }
406
407 atomic_set(&dc->writeback_sequence_next, next_sequence);
408 closure_wake_up(&dc->writeback_ordering_wait);
409
410 continue_at(cl, write_dirty_finish, io->dc->writeback_write_wq);
411}
412
413static void read_dirty_endio(struct bio *bio)
414{
415 struct keybuf_key *w = bio->bi_private;
416 struct dirty_io *io = w->private;
417
418 /* is_read = 1 */
419 bch_count_io_errors(PTR_CACHE(io->dc->disk.c, &w->key, 0),
420 bio->bi_status, 1,
421 "reading dirty data from cache");
422
423 dirty_endio(bio);
424}
425
426static void read_dirty_submit(struct closure *cl)
427{
428 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
429
430 closure_bio_submit(io->dc->disk.c, &io->bio, cl);
431
432 continue_at(cl, write_dirty, io->dc->writeback_write_wq);
433}
434
435static void read_dirty(struct cached_dev *dc)
436{
437 unsigned int delay = 0;
438 struct keybuf_key *next, *keys[MAX_WRITEBACKS_IN_PASS], *w;
439 size_t size;
440 int nk, i;
441 struct dirty_io *io;
442 struct closure cl;
443 uint16_t sequence = 0;
444
445 BUG_ON(!llist_empty(&dc->writeback_ordering_wait.list));
446 atomic_set(&dc->writeback_sequence_next, sequence);
447 closure_init_stack(&cl);
448
449 /*
450 * XXX: if we error, background writeback just spins. Should use some
451 * mempools.
452 */
453
454 next = bch_keybuf_next(&dc->writeback_keys);
455
456 while (!kthread_should_stop() &&
457 !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) &&
458 next) {
459 size = 0;
460 nk = 0;
461
462 do {
463 BUG_ON(ptr_stale(dc->disk.c, &next->key, 0));
464
465 /*
466 * Don't combine too many operations, even if they
467 * are all small.
468 */
469 if (nk >= MAX_WRITEBACKS_IN_PASS)
470 break;
471
472 /*
473 * If the current operation is very large, don't
474 * further combine operations.
475 */
476 if (size >= MAX_WRITESIZE_IN_PASS)
477 break;
478
479 /*
480 * Operations are only eligible to be combined
481 * if they are contiguous.
482 *
483 * TODO: add a heuristic willing to fire a
484 * certain amount of non-contiguous IO per pass,
485 * so that we can benefit from backing device
486 * command queueing.
487 */
488 if ((nk != 0) && bkey_cmp(&keys[nk-1]->key,
489 &START_KEY(&next->key)))
490 break;
491
492 size += KEY_SIZE(&next->key);
493 keys[nk++] = next;
494 } while ((next = bch_keybuf_next(&dc->writeback_keys)));
495
496 /* Now we have gathered a set of 1..5 keys to write back. */
497 for (i = 0; i < nk; i++) {
498 w = keys[i];
499
500 io = kzalloc(struct_size(io, bio.bi_inline_vecs,
501 DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS)),
502 GFP_KERNEL);
503 if (!io)
504 goto err;
505
506 w->private = io;
507 io->dc = dc;
508 io->sequence = sequence++;
509
510 dirty_init(w);
511 bio_set_op_attrs(&io->bio, REQ_OP_READ, 0);
512 io->bio.bi_iter.bi_sector = PTR_OFFSET(&w->key, 0);
513 bio_set_dev(&io->bio,
514 PTR_CACHE(dc->disk.c, &w->key, 0)->bdev);
515 io->bio.bi_end_io = read_dirty_endio;
516
517 if (bch_bio_alloc_pages(&io->bio, GFP_KERNEL))
518 goto err_free;
519
520 trace_bcache_writeback(&w->key);
521
522 down(&dc->in_flight);
523
524 /*
525 * We've acquired a semaphore for the maximum
526 * simultaneous number of writebacks; from here
527 * everything happens asynchronously.
528 */
529 closure_call(&io->cl, read_dirty_submit, NULL, &cl);
530 }
531
532 delay = writeback_delay(dc, size);
533
534 while (!kthread_should_stop() &&
535 !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) &&
536 delay) {
537 schedule_timeout_interruptible(delay);
538 delay = writeback_delay(dc, 0);
539 }
540 }
541
542 if (0) {
543err_free:
544 kfree(w->private);
545err:
546 bch_keybuf_del(&dc->writeback_keys, w);
547 }
548
549 /*
550 * Wait for outstanding writeback IOs to finish (and keybuf slots to be
551 * freed) before refilling again
552 */
553 closure_sync(&cl);
554}
555
556/* Scan for dirty data */
557
558void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned int inode,
559 uint64_t offset, int nr_sectors)
560{
561 struct bcache_device *d = c->devices[inode];
562 unsigned int stripe_offset, sectors_dirty;
563 int stripe;
564
565 if (!d)
566 return;
567
568 stripe = offset_to_stripe(d, offset);
569 if (stripe < 0)
570 return;
571
572 if (UUID_FLASH_ONLY(&c->uuids[inode]))
573 atomic_long_add(nr_sectors, &c->flash_dev_dirty_sectors);
574
575 stripe_offset = offset & (d->stripe_size - 1);
576
577 while (nr_sectors) {
578 int s = min_t(unsigned int, abs(nr_sectors),
579 d->stripe_size - stripe_offset);
580
581 if (nr_sectors < 0)
582 s = -s;
583
584 if (stripe >= d->nr_stripes)
585 return;
586
587 sectors_dirty = atomic_add_return(s,
588 d->stripe_sectors_dirty + stripe);
589 if (sectors_dirty == d->stripe_size)
590 set_bit(stripe, d->full_dirty_stripes);
591 else
592 clear_bit(stripe, d->full_dirty_stripes);
593
594 nr_sectors -= s;
595 stripe_offset = 0;
596 stripe++;
597 }
598}
599
600static bool dirty_pred(struct keybuf *buf, struct bkey *k)
601{
602 struct cached_dev *dc = container_of(buf,
603 struct cached_dev,
604 writeback_keys);
605
606 BUG_ON(KEY_INODE(k) != dc->disk.id);
607
608 return KEY_DIRTY(k);
609}
610
611static void refill_full_stripes(struct cached_dev *dc)
612{
613 struct keybuf *buf = &dc->writeback_keys;
614 unsigned int start_stripe, next_stripe;
615 int stripe;
616 bool wrapped = false;
617
618 stripe = offset_to_stripe(&dc->disk, KEY_OFFSET(&buf->last_scanned));
619 if (stripe < 0)
620 stripe = 0;
621
622 start_stripe = stripe;
623
624 while (1) {
625 stripe = find_next_bit(dc->disk.full_dirty_stripes,
626 dc->disk.nr_stripes, stripe);
627
628 if (stripe == dc->disk.nr_stripes)
629 goto next;
630
631 next_stripe = find_next_zero_bit(dc->disk.full_dirty_stripes,
632 dc->disk.nr_stripes, stripe);
633
634 buf->last_scanned = KEY(dc->disk.id,
635 stripe * dc->disk.stripe_size, 0);
636
637 bch_refill_keybuf(dc->disk.c, buf,
638 &KEY(dc->disk.id,
639 next_stripe * dc->disk.stripe_size, 0),
640 dirty_pred);
641
642 if (array_freelist_empty(&buf->freelist))
643 return;
644
645 stripe = next_stripe;
646next:
647 if (wrapped && stripe > start_stripe)
648 return;
649
650 if (stripe == dc->disk.nr_stripes) {
651 stripe = 0;
652 wrapped = true;
653 }
654 }
655}
656
657/*
658 * Returns true if we scanned the entire disk
659 */
660static bool refill_dirty(struct cached_dev *dc)
661{
662 struct keybuf *buf = &dc->writeback_keys;
663 struct bkey start = KEY(dc->disk.id, 0, 0);
664 struct bkey end = KEY(dc->disk.id, MAX_KEY_OFFSET, 0);
665 struct bkey start_pos;
666
667 /*
668 * make sure keybuf pos is inside the range for this disk - at bringup
669 * we might not be attached yet so this disk's inode nr isn't
670 * initialized then
671 */
672 if (bkey_cmp(&buf->last_scanned, &start) < 0 ||
673 bkey_cmp(&buf->last_scanned, &end) > 0)
674 buf->last_scanned = start;
675
676 if (dc->partial_stripes_expensive) {
677 refill_full_stripes(dc);
678 if (array_freelist_empty(&buf->freelist))
679 return false;
680 }
681
682 start_pos = buf->last_scanned;
683 bch_refill_keybuf(dc->disk.c, buf, &end, dirty_pred);
684
685 if (bkey_cmp(&buf->last_scanned, &end) < 0)
686 return false;
687
688 /*
689 * If we get to the end start scanning again from the beginning, and
690 * only scan up to where we initially started scanning from:
691 */
692 buf->last_scanned = start;
693 bch_refill_keybuf(dc->disk.c, buf, &start_pos, dirty_pred);
694
695 return bkey_cmp(&buf->last_scanned, &start_pos) >= 0;
696}
697
698static int bch_writeback_thread(void *arg)
699{
700 struct cached_dev *dc = arg;
701 struct cache_set *c = dc->disk.c;
702 bool searched_full_index;
703
704 bch_ratelimit_reset(&dc->writeback_rate);
705
706 while (!kthread_should_stop() &&
707 !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
708 down_write(&dc->writeback_lock);
709 set_current_state(TASK_INTERRUPTIBLE);
710 /*
711 * If the bache device is detaching, skip here and continue
712 * to perform writeback. Otherwise, if no dirty data on cache,
713 * or there is dirty data on cache but writeback is disabled,
714 * the writeback thread should sleep here and wait for others
715 * to wake up it.
716 */
717 if (!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) &&
718 (!atomic_read(&dc->has_dirty) || !dc->writeback_running)) {
719 up_write(&dc->writeback_lock);
720
721 if (kthread_should_stop() ||
722 test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
723 set_current_state(TASK_RUNNING);
724 break;
725 }
726
727 schedule();
728 continue;
729 }
730 set_current_state(TASK_RUNNING);
731
732 searched_full_index = refill_dirty(dc);
733
734 if (searched_full_index &&
735 RB_EMPTY_ROOT(&dc->writeback_keys.keys)) {
736 atomic_set(&dc->has_dirty, 0);
737 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
738 bch_write_bdev_super(dc, NULL);
739 /*
740 * If bcache device is detaching via sysfs interface,
741 * writeback thread should stop after there is no dirty
742 * data on cache. BCACHE_DEV_DETACHING flag is set in
743 * bch_cached_dev_detach().
744 */
745 if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) {
746 struct closure cl;
747
748 closure_init_stack(&cl);
749 memset(&dc->sb.set_uuid, 0, 16);
750 SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
751
752 bch_write_bdev_super(dc, &cl);
753 closure_sync(&cl);
754
755 up_write(&dc->writeback_lock);
756 break;
757 }
758
759 /*
760 * When dirty data rate is high (e.g. 50%+), there might
761 * be heavy buckets fragmentation after writeback
762 * finished, which hurts following write performance.
763 * If users really care about write performance they
764 * may set BCH_ENABLE_AUTO_GC via sysfs, then when
765 * BCH_DO_AUTO_GC is set, garbage collection thread
766 * will be wake up here. After moving gc, the shrunk
767 * btree and discarded free buckets SSD space may be
768 * helpful for following write requests.
769 */
770 if (c->gc_after_writeback ==
771 (BCH_ENABLE_AUTO_GC|BCH_DO_AUTO_GC)) {
772 c->gc_after_writeback &= ~BCH_DO_AUTO_GC;
773 force_wake_up_gc(c);
774 }
775 }
776
777 up_write(&dc->writeback_lock);
778
779 read_dirty(dc);
780
781 if (searched_full_index) {
782 unsigned int delay = dc->writeback_delay * HZ;
783
784 while (delay &&
785 !kthread_should_stop() &&
786 !test_bit(CACHE_SET_IO_DISABLE, &c->flags) &&
787 !test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
788 delay = schedule_timeout_interruptible(delay);
789
790 bch_ratelimit_reset(&dc->writeback_rate);
791 }
792 }
793
794 if (dc->writeback_write_wq) {
795 flush_workqueue(dc->writeback_write_wq);
796 destroy_workqueue(dc->writeback_write_wq);
797 }
798 cached_dev_put(dc);
799 wait_for_kthread_stop();
800
801 return 0;
802}
803
804/* Init */
805#define INIT_KEYS_EACH_TIME 500000
806#define INIT_KEYS_SLEEP_MS 100
807
808struct sectors_dirty_init {
809 struct btree_op op;
810 unsigned int inode;
811 size_t count;
812 struct bkey start;
813};
814
815static int sectors_dirty_init_fn(struct btree_op *_op, struct btree *b,
816 struct bkey *k)
817{
818 struct sectors_dirty_init *op = container_of(_op,
819 struct sectors_dirty_init, op);
820 if (KEY_INODE(k) > op->inode)
821 return MAP_DONE;
822
823 if (KEY_DIRTY(k))
824 bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
825 KEY_START(k), KEY_SIZE(k));
826
827 op->count++;
828 if (atomic_read(&b->c->search_inflight) &&
829 !(op->count % INIT_KEYS_EACH_TIME)) {
830 bkey_copy_key(&op->start, k);
831 return -EAGAIN;
832 }
833
834 return MAP_CONTINUE;
835}
836
837static int bch_root_node_dirty_init(struct cache_set *c,
838 struct bcache_device *d,
839 struct bkey *k)
840{
841 struct sectors_dirty_init op;
842 int ret;
843
844 bch_btree_op_init(&op.op, -1);
845 op.inode = d->id;
846 op.count = 0;
847 op.start = KEY(op.inode, 0, 0);
848
849 do {
850 ret = bcache_btree(map_keys_recurse,
851 k,
852 c->root,
853 &op.op,
854 &op.start,
855 sectors_dirty_init_fn,
856 0);
857 if (ret == -EAGAIN)
858 schedule_timeout_interruptible(
859 msecs_to_jiffies(INIT_KEYS_SLEEP_MS));
860 else if (ret < 0) {
861 pr_warn("sectors dirty init failed, ret=%d!\n", ret);
862 break;
863 }
864 } while (ret == -EAGAIN);
865
866 return ret;
867}
868
869static int bch_dirty_init_thread(void *arg)
870{
871 struct dirty_init_thrd_info *info = arg;
872 struct bch_dirty_init_state *state = info->state;
873 struct cache_set *c = state->c;
874 struct btree_iter iter;
875 struct bkey *k, *p;
876 int cur_idx, prev_idx, skip_nr;
877
878 k = p = NULL;
879 cur_idx = prev_idx = 0;
880
881 bch_btree_iter_init(&c->root->keys, &iter, NULL);
882 k = bch_btree_iter_next_filter(&iter, &c->root->keys, bch_ptr_bad);
883 BUG_ON(!k);
884
885 p = k;
886
887 while (k) {
888 spin_lock(&state->idx_lock);
889 cur_idx = state->key_idx;
890 state->key_idx++;
891 spin_unlock(&state->idx_lock);
892
893 skip_nr = cur_idx - prev_idx;
894
895 while (skip_nr) {
896 k = bch_btree_iter_next_filter(&iter,
897 &c->root->keys,
898 bch_ptr_bad);
899 if (k)
900 p = k;
901 else {
902 atomic_set(&state->enough, 1);
903 /* Update state->enough earlier */
904 smp_mb__after_atomic();
905 goto out;
906 }
907 skip_nr--;
908 cond_resched();
909 }
910
911 if (p) {
912 if (bch_root_node_dirty_init(c, state->d, p) < 0)
913 goto out;
914 }
915
916 p = NULL;
917 prev_idx = cur_idx;
918 cond_resched();
919 }
920
921out:
922 /* In order to wake up state->wait in time */
923 smp_mb__before_atomic();
924 if (atomic_dec_and_test(&state->started))
925 wake_up(&state->wait);
926
927 return 0;
928}
929
930static int bch_btre_dirty_init_thread_nr(void)
931{
932 int n = num_online_cpus()/2;
933
934 if (n == 0)
935 n = 1;
936 else if (n > BCH_DIRTY_INIT_THRD_MAX)
937 n = BCH_DIRTY_INIT_THRD_MAX;
938
939 return n;
940}
941
942void bch_sectors_dirty_init(struct bcache_device *d)
943{
944 int i;
945 struct bkey *k = NULL;
946 struct btree_iter iter;
947 struct sectors_dirty_init op;
948 struct cache_set *c = d->c;
949 struct bch_dirty_init_state *state;
950 char name[32];
951
952 /* Just count root keys if no leaf node */
953 if (c->root->level == 0) {
954 bch_btree_op_init(&op.op, -1);
955 op.inode = d->id;
956 op.count = 0;
957 op.start = KEY(op.inode, 0, 0);
958
959 for_each_key_filter(&c->root->keys,
960 k, &iter, bch_ptr_invalid)
961 sectors_dirty_init_fn(&op.op, c->root, k);
962 return;
963 }
964
965 state = kzalloc(sizeof(struct bch_dirty_init_state), GFP_KERNEL);
966 if (!state) {
967 pr_warn("sectors dirty init failed: cannot allocate memory\n");
968 return;
969 }
970
971 state->c = c;
972 state->d = d;
973 state->total_threads = bch_btre_dirty_init_thread_nr();
974 state->key_idx = 0;
975 spin_lock_init(&state->idx_lock);
976 atomic_set(&state->started, 0);
977 atomic_set(&state->enough, 0);
978 init_waitqueue_head(&state->wait);
979
980 for (i = 0; i < state->total_threads; i++) {
981 /* Fetch latest state->enough earlier */
982 smp_mb__before_atomic();
983 if (atomic_read(&state->enough))
984 break;
985
986 state->infos[i].state = state;
987 atomic_inc(&state->started);
988 snprintf(name, sizeof(name), "bch_dirty_init[%d]", i);
989
990 state->infos[i].thread =
991 kthread_run(bch_dirty_init_thread,
992 &state->infos[i],
993 name);
994 if (IS_ERR(state->infos[i].thread)) {
995 pr_err("fails to run thread bch_dirty_init[%d]\n", i);
996 for (--i; i >= 0; i--)
997 kthread_stop(state->infos[i].thread);
998 goto out;
999 }
1000 }
1001
1002 wait_event_interruptible(state->wait,
1003 atomic_read(&state->started) == 0 ||
1004 test_bit(CACHE_SET_IO_DISABLE, &c->flags));
1005
1006out:
1007 kfree(state);
1008}
1009
1010void bch_cached_dev_writeback_init(struct cached_dev *dc)
1011{
1012 sema_init(&dc->in_flight, 64);
1013 init_rwsem(&dc->writeback_lock);
1014 bch_keybuf_init(&dc->writeback_keys);
1015
1016 dc->writeback_metadata = true;
1017 dc->writeback_running = false;
1018 dc->writeback_consider_fragment = true;
1019 dc->writeback_percent = 10;
1020 dc->writeback_delay = 30;
1021 atomic_long_set(&dc->writeback_rate.rate, 1024);
1022 dc->writeback_rate_minimum = 8;
1023
1024 dc->writeback_rate_update_seconds = WRITEBACK_RATE_UPDATE_SECS_DEFAULT;
1025 dc->writeback_rate_p_term_inverse = 40;
1026 dc->writeback_rate_fp_term_low = 1;
1027 dc->writeback_rate_fp_term_mid = 10;
1028 dc->writeback_rate_fp_term_high = 1000;
1029 dc->writeback_rate_i_term_inverse = 10000;
1030
1031 WARN_ON(test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags));
1032 INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate);
1033}
1034
1035int bch_cached_dev_writeback_start(struct cached_dev *dc)
1036{
1037 dc->writeback_write_wq = alloc_workqueue("bcache_writeback_wq",
1038 WQ_MEM_RECLAIM, 0);
1039 if (!dc->writeback_write_wq)
1040 return -ENOMEM;
1041
1042 cached_dev_get(dc);
1043 dc->writeback_thread = kthread_create(bch_writeback_thread, dc,
1044 "bcache_writeback");
1045 if (IS_ERR(dc->writeback_thread)) {
1046 cached_dev_put(dc);
1047 destroy_workqueue(dc->writeback_write_wq);
1048 return PTR_ERR(dc->writeback_thread);
1049 }
1050 dc->writeback_running = true;
1051
1052 WARN_ON(test_and_set_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags));
1053 schedule_delayed_work(&dc->writeback_rate_update,
1054 dc->writeback_rate_update_seconds * HZ);
1055
1056 bch_writeback_queue(dc);
1057
1058 return 0;
1059}