Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * drivers/base/core.c - core driver model code (device registration, etc)
4 *
5 * Copyright (c) 2002-3 Patrick Mochel
6 * Copyright (c) 2002-3 Open Source Development Labs
7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8 * Copyright (c) 2006 Novell, Inc.
9 */
10
11#include <linux/acpi.h>
12#include <linux/cpufreq.h>
13#include <linux/device.h>
14#include <linux/err.h>
15#include <linux/fwnode.h>
16#include <linux/init.h>
17#include <linux/module.h>
18#include <linux/slab.h>
19#include <linux/string.h>
20#include <linux/kdev_t.h>
21#include <linux/notifier.h>
22#include <linux/of.h>
23#include <linux/of_device.h>
24#include <linux/genhd.h>
25#include <linux/mutex.h>
26#include <linux/pm_runtime.h>
27#include <linux/netdevice.h>
28#include <linux/sched/signal.h>
29#include <linux/sched/mm.h>
30#include <linux/sysfs.h>
31#include <linux/dma-map-ops.h> /* for dma_default_coherent */
32
33#include "base.h"
34#include "power/power.h"
35
36#ifdef CONFIG_SYSFS_DEPRECATED
37#ifdef CONFIG_SYSFS_DEPRECATED_V2
38long sysfs_deprecated = 1;
39#else
40long sysfs_deprecated = 0;
41#endif
42static int __init sysfs_deprecated_setup(char *arg)
43{
44 return kstrtol(arg, 10, &sysfs_deprecated);
45}
46early_param("sysfs.deprecated", sysfs_deprecated_setup);
47#endif
48
49/* Device links support. */
50static LIST_HEAD(deferred_sync);
51static unsigned int defer_sync_state_count = 1;
52static DEFINE_MUTEX(fwnode_link_lock);
53static bool fw_devlink_is_permissive(void);
54
55/**
56 * fwnode_link_add - Create a link between two fwnode_handles.
57 * @con: Consumer end of the link.
58 * @sup: Supplier end of the link.
59 *
60 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link
61 * represents the detail that the firmware lists @sup fwnode as supplying a
62 * resource to @con.
63 *
64 * The driver core will use the fwnode link to create a device link between the
65 * two device objects corresponding to @con and @sup when they are created. The
66 * driver core will automatically delete the fwnode link between @con and @sup
67 * after doing that.
68 *
69 * Attempts to create duplicate links between the same pair of fwnode handles
70 * are ignored and there is no reference counting.
71 */
72int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup)
73{
74 struct fwnode_link *link;
75 int ret = 0;
76
77 mutex_lock(&fwnode_link_lock);
78
79 list_for_each_entry(link, &sup->consumers, s_hook)
80 if (link->consumer == con)
81 goto out;
82
83 link = kzalloc(sizeof(*link), GFP_KERNEL);
84 if (!link) {
85 ret = -ENOMEM;
86 goto out;
87 }
88
89 link->supplier = sup;
90 INIT_LIST_HEAD(&link->s_hook);
91 link->consumer = con;
92 INIT_LIST_HEAD(&link->c_hook);
93
94 list_add(&link->s_hook, &sup->consumers);
95 list_add(&link->c_hook, &con->suppliers);
96out:
97 mutex_unlock(&fwnode_link_lock);
98
99 return ret;
100}
101
102/**
103 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle.
104 * @fwnode: fwnode whose supplier links need to be deleted
105 *
106 * Deletes all supplier links connecting directly to @fwnode.
107 */
108static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode)
109{
110 struct fwnode_link *link, *tmp;
111
112 mutex_lock(&fwnode_link_lock);
113 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
114 list_del(&link->s_hook);
115 list_del(&link->c_hook);
116 kfree(link);
117 }
118 mutex_unlock(&fwnode_link_lock);
119}
120
121/**
122 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle.
123 * @fwnode: fwnode whose consumer links need to be deleted
124 *
125 * Deletes all consumer links connecting directly to @fwnode.
126 */
127static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode)
128{
129 struct fwnode_link *link, *tmp;
130
131 mutex_lock(&fwnode_link_lock);
132 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
133 list_del(&link->s_hook);
134 list_del(&link->c_hook);
135 kfree(link);
136 }
137 mutex_unlock(&fwnode_link_lock);
138}
139
140/**
141 * fwnode_links_purge - Delete all links connected to a fwnode_handle.
142 * @fwnode: fwnode whose links needs to be deleted
143 *
144 * Deletes all links connecting directly to a fwnode.
145 */
146void fwnode_links_purge(struct fwnode_handle *fwnode)
147{
148 fwnode_links_purge_suppliers(fwnode);
149 fwnode_links_purge_consumers(fwnode);
150}
151
152static void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode)
153{
154 struct fwnode_handle *child;
155
156 /* Don't purge consumer links of an added child */
157 if (fwnode->dev)
158 return;
159
160 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
161 fwnode_links_purge_consumers(fwnode);
162
163 fwnode_for_each_available_child_node(fwnode, child)
164 fw_devlink_purge_absent_suppliers(child);
165}
166
167#ifdef CONFIG_SRCU
168static DEFINE_MUTEX(device_links_lock);
169DEFINE_STATIC_SRCU(device_links_srcu);
170
171static inline void device_links_write_lock(void)
172{
173 mutex_lock(&device_links_lock);
174}
175
176static inline void device_links_write_unlock(void)
177{
178 mutex_unlock(&device_links_lock);
179}
180
181int device_links_read_lock(void) __acquires(&device_links_srcu)
182{
183 return srcu_read_lock(&device_links_srcu);
184}
185
186void device_links_read_unlock(int idx) __releases(&device_links_srcu)
187{
188 srcu_read_unlock(&device_links_srcu, idx);
189}
190
191int device_links_read_lock_held(void)
192{
193 return srcu_read_lock_held(&device_links_srcu);
194}
195#else /* !CONFIG_SRCU */
196static DECLARE_RWSEM(device_links_lock);
197
198static inline void device_links_write_lock(void)
199{
200 down_write(&device_links_lock);
201}
202
203static inline void device_links_write_unlock(void)
204{
205 up_write(&device_links_lock);
206}
207
208int device_links_read_lock(void)
209{
210 down_read(&device_links_lock);
211 return 0;
212}
213
214void device_links_read_unlock(int not_used)
215{
216 up_read(&device_links_lock);
217}
218
219#ifdef CONFIG_DEBUG_LOCK_ALLOC
220int device_links_read_lock_held(void)
221{
222 return lockdep_is_held(&device_links_lock);
223}
224#endif
225#endif /* !CONFIG_SRCU */
226
227static bool device_is_ancestor(struct device *dev, struct device *target)
228{
229 while (target->parent) {
230 target = target->parent;
231 if (dev == target)
232 return true;
233 }
234 return false;
235}
236
237/**
238 * device_is_dependent - Check if one device depends on another one
239 * @dev: Device to check dependencies for.
240 * @target: Device to check against.
241 *
242 * Check if @target depends on @dev or any device dependent on it (its child or
243 * its consumer etc). Return 1 if that is the case or 0 otherwise.
244 */
245int device_is_dependent(struct device *dev, void *target)
246{
247 struct device_link *link;
248 int ret;
249
250 /*
251 * The "ancestors" check is needed to catch the case when the target
252 * device has not been completely initialized yet and it is still
253 * missing from the list of children of its parent device.
254 */
255 if (dev == target || device_is_ancestor(dev, target))
256 return 1;
257
258 ret = device_for_each_child(dev, target, device_is_dependent);
259 if (ret)
260 return ret;
261
262 list_for_each_entry(link, &dev->links.consumers, s_node) {
263 if ((link->flags & ~DL_FLAG_INFERRED) ==
264 (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
265 continue;
266
267 if (link->consumer == target)
268 return 1;
269
270 ret = device_is_dependent(link->consumer, target);
271 if (ret)
272 break;
273 }
274 return ret;
275}
276
277static void device_link_init_status(struct device_link *link,
278 struct device *consumer,
279 struct device *supplier)
280{
281 switch (supplier->links.status) {
282 case DL_DEV_PROBING:
283 switch (consumer->links.status) {
284 case DL_DEV_PROBING:
285 /*
286 * A consumer driver can create a link to a supplier
287 * that has not completed its probing yet as long as it
288 * knows that the supplier is already functional (for
289 * example, it has just acquired some resources from the
290 * supplier).
291 */
292 link->status = DL_STATE_CONSUMER_PROBE;
293 break;
294 default:
295 link->status = DL_STATE_DORMANT;
296 break;
297 }
298 break;
299 case DL_DEV_DRIVER_BOUND:
300 switch (consumer->links.status) {
301 case DL_DEV_PROBING:
302 link->status = DL_STATE_CONSUMER_PROBE;
303 break;
304 case DL_DEV_DRIVER_BOUND:
305 link->status = DL_STATE_ACTIVE;
306 break;
307 default:
308 link->status = DL_STATE_AVAILABLE;
309 break;
310 }
311 break;
312 case DL_DEV_UNBINDING:
313 link->status = DL_STATE_SUPPLIER_UNBIND;
314 break;
315 default:
316 link->status = DL_STATE_DORMANT;
317 break;
318 }
319}
320
321static int device_reorder_to_tail(struct device *dev, void *not_used)
322{
323 struct device_link *link;
324
325 /*
326 * Devices that have not been registered yet will be put to the ends
327 * of the lists during the registration, so skip them here.
328 */
329 if (device_is_registered(dev))
330 devices_kset_move_last(dev);
331
332 if (device_pm_initialized(dev))
333 device_pm_move_last(dev);
334
335 device_for_each_child(dev, NULL, device_reorder_to_tail);
336 list_for_each_entry(link, &dev->links.consumers, s_node) {
337 if ((link->flags & ~DL_FLAG_INFERRED) ==
338 (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
339 continue;
340 device_reorder_to_tail(link->consumer, NULL);
341 }
342
343 return 0;
344}
345
346/**
347 * device_pm_move_to_tail - Move set of devices to the end of device lists
348 * @dev: Device to move
349 *
350 * This is a device_reorder_to_tail() wrapper taking the requisite locks.
351 *
352 * It moves the @dev along with all of its children and all of its consumers
353 * to the ends of the device_kset and dpm_list, recursively.
354 */
355void device_pm_move_to_tail(struct device *dev)
356{
357 int idx;
358
359 idx = device_links_read_lock();
360 device_pm_lock();
361 device_reorder_to_tail(dev, NULL);
362 device_pm_unlock();
363 device_links_read_unlock(idx);
364}
365
366#define to_devlink(dev) container_of((dev), struct device_link, link_dev)
367
368static ssize_t status_show(struct device *dev,
369 struct device_attribute *attr, char *buf)
370{
371 const char *output;
372
373 switch (to_devlink(dev)->status) {
374 case DL_STATE_NONE:
375 output = "not tracked";
376 break;
377 case DL_STATE_DORMANT:
378 output = "dormant";
379 break;
380 case DL_STATE_AVAILABLE:
381 output = "available";
382 break;
383 case DL_STATE_CONSUMER_PROBE:
384 output = "consumer probing";
385 break;
386 case DL_STATE_ACTIVE:
387 output = "active";
388 break;
389 case DL_STATE_SUPPLIER_UNBIND:
390 output = "supplier unbinding";
391 break;
392 default:
393 output = "unknown";
394 break;
395 }
396
397 return sysfs_emit(buf, "%s\n", output);
398}
399static DEVICE_ATTR_RO(status);
400
401static ssize_t auto_remove_on_show(struct device *dev,
402 struct device_attribute *attr, char *buf)
403{
404 struct device_link *link = to_devlink(dev);
405 const char *output;
406
407 if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
408 output = "supplier unbind";
409 else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
410 output = "consumer unbind";
411 else
412 output = "never";
413
414 return sysfs_emit(buf, "%s\n", output);
415}
416static DEVICE_ATTR_RO(auto_remove_on);
417
418static ssize_t runtime_pm_show(struct device *dev,
419 struct device_attribute *attr, char *buf)
420{
421 struct device_link *link = to_devlink(dev);
422
423 return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
424}
425static DEVICE_ATTR_RO(runtime_pm);
426
427static ssize_t sync_state_only_show(struct device *dev,
428 struct device_attribute *attr, char *buf)
429{
430 struct device_link *link = to_devlink(dev);
431
432 return sysfs_emit(buf, "%d\n",
433 !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
434}
435static DEVICE_ATTR_RO(sync_state_only);
436
437static struct attribute *devlink_attrs[] = {
438 &dev_attr_status.attr,
439 &dev_attr_auto_remove_on.attr,
440 &dev_attr_runtime_pm.attr,
441 &dev_attr_sync_state_only.attr,
442 NULL,
443};
444ATTRIBUTE_GROUPS(devlink);
445
446static void device_link_free(struct device_link *link)
447{
448 while (refcount_dec_not_one(&link->rpm_active))
449 pm_runtime_put(link->supplier);
450
451 put_device(link->consumer);
452 put_device(link->supplier);
453 kfree(link);
454}
455
456#ifdef CONFIG_SRCU
457static void __device_link_free_srcu(struct rcu_head *rhead)
458{
459 device_link_free(container_of(rhead, struct device_link, rcu_head));
460}
461
462static void devlink_dev_release(struct device *dev)
463{
464 struct device_link *link = to_devlink(dev);
465
466 call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu);
467}
468#else
469static void devlink_dev_release(struct device *dev)
470{
471 device_link_free(to_devlink(dev));
472}
473#endif
474
475static struct class devlink_class = {
476 .name = "devlink",
477 .owner = THIS_MODULE,
478 .dev_groups = devlink_groups,
479 .dev_release = devlink_dev_release,
480};
481
482static int devlink_add_symlinks(struct device *dev,
483 struct class_interface *class_intf)
484{
485 int ret;
486 size_t len;
487 struct device_link *link = to_devlink(dev);
488 struct device *sup = link->supplier;
489 struct device *con = link->consumer;
490 char *buf;
491
492 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
493 strlen(dev_bus_name(con)) + strlen(dev_name(con)));
494 len += strlen(":");
495 len += strlen("supplier:") + 1;
496 buf = kzalloc(len, GFP_KERNEL);
497 if (!buf)
498 return -ENOMEM;
499
500 ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
501 if (ret)
502 goto out;
503
504 ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
505 if (ret)
506 goto err_con;
507
508 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
509 ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
510 if (ret)
511 goto err_con_dev;
512
513 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
514 ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
515 if (ret)
516 goto err_sup_dev;
517
518 goto out;
519
520err_sup_dev:
521 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
522 sysfs_remove_link(&sup->kobj, buf);
523err_con_dev:
524 sysfs_remove_link(&link->link_dev.kobj, "consumer");
525err_con:
526 sysfs_remove_link(&link->link_dev.kobj, "supplier");
527out:
528 kfree(buf);
529 return ret;
530}
531
532static void devlink_remove_symlinks(struct device *dev,
533 struct class_interface *class_intf)
534{
535 struct device_link *link = to_devlink(dev);
536 size_t len;
537 struct device *sup = link->supplier;
538 struct device *con = link->consumer;
539 char *buf;
540
541 sysfs_remove_link(&link->link_dev.kobj, "consumer");
542 sysfs_remove_link(&link->link_dev.kobj, "supplier");
543
544 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
545 strlen(dev_bus_name(con)) + strlen(dev_name(con)));
546 len += strlen(":");
547 len += strlen("supplier:") + 1;
548 buf = kzalloc(len, GFP_KERNEL);
549 if (!buf) {
550 WARN(1, "Unable to properly free device link symlinks!\n");
551 return;
552 }
553
554 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
555 sysfs_remove_link(&con->kobj, buf);
556 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
557 sysfs_remove_link(&sup->kobj, buf);
558 kfree(buf);
559}
560
561static struct class_interface devlink_class_intf = {
562 .class = &devlink_class,
563 .add_dev = devlink_add_symlinks,
564 .remove_dev = devlink_remove_symlinks,
565};
566
567static int __init devlink_class_init(void)
568{
569 int ret;
570
571 ret = class_register(&devlink_class);
572 if (ret)
573 return ret;
574
575 ret = class_interface_register(&devlink_class_intf);
576 if (ret)
577 class_unregister(&devlink_class);
578
579 return ret;
580}
581postcore_initcall(devlink_class_init);
582
583#define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
584 DL_FLAG_AUTOREMOVE_SUPPLIER | \
585 DL_FLAG_AUTOPROBE_CONSUMER | \
586 DL_FLAG_SYNC_STATE_ONLY | \
587 DL_FLAG_INFERRED)
588
589#define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
590 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
591
592/**
593 * device_link_add - Create a link between two devices.
594 * @consumer: Consumer end of the link.
595 * @supplier: Supplier end of the link.
596 * @flags: Link flags.
597 *
598 * The caller is responsible for the proper synchronization of the link creation
599 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the
600 * runtime PM framework to take the link into account. Second, if the
601 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
602 * be forced into the active meta state and reference-counted upon the creation
603 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
604 * ignored.
605 *
606 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
607 * expected to release the link returned by it directly with the help of either
608 * device_link_del() or device_link_remove().
609 *
610 * If that flag is not set, however, the caller of this function is handing the
611 * management of the link over to the driver core entirely and its return value
612 * can only be used to check whether or not the link is present. In that case,
613 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
614 * flags can be used to indicate to the driver core when the link can be safely
615 * deleted. Namely, setting one of them in @flags indicates to the driver core
616 * that the link is not going to be used (by the given caller of this function)
617 * after unbinding the consumer or supplier driver, respectively, from its
618 * device, so the link can be deleted at that point. If none of them is set,
619 * the link will be maintained until one of the devices pointed to by it (either
620 * the consumer or the supplier) is unregistered.
621 *
622 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
623 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
624 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
625 * be used to request the driver core to automatically probe for a consumer
626 * driver after successfully binding a driver to the supplier device.
627 *
628 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
629 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
630 * the same time is invalid and will cause NULL to be returned upfront.
631 * However, if a device link between the given @consumer and @supplier pair
632 * exists already when this function is called for them, the existing link will
633 * be returned regardless of its current type and status (the link's flags may
634 * be modified then). The caller of this function is then expected to treat
635 * the link as though it has just been created, so (in particular) if
636 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
637 * explicitly when not needed any more (as stated above).
638 *
639 * A side effect of the link creation is re-ordering of dpm_list and the
640 * devices_kset list by moving the consumer device and all devices depending
641 * on it to the ends of these lists (that does not happen to devices that have
642 * not been registered when this function is called).
643 *
644 * The supplier device is required to be registered when this function is called
645 * and NULL will be returned if that is not the case. The consumer device need
646 * not be registered, however.
647 */
648struct device_link *device_link_add(struct device *consumer,
649 struct device *supplier, u32 flags)
650{
651 struct device_link *link;
652
653 if (!consumer || !supplier || flags & ~DL_ADD_VALID_FLAGS ||
654 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
655 (flags & DL_FLAG_SYNC_STATE_ONLY &&
656 (flags & ~DL_FLAG_INFERRED) != DL_FLAG_SYNC_STATE_ONLY) ||
657 (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
658 flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
659 DL_FLAG_AUTOREMOVE_SUPPLIER)))
660 return NULL;
661
662 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
663 if (pm_runtime_get_sync(supplier) < 0) {
664 pm_runtime_put_noidle(supplier);
665 return NULL;
666 }
667 }
668
669 if (!(flags & DL_FLAG_STATELESS))
670 flags |= DL_FLAG_MANAGED;
671
672 device_links_write_lock();
673 device_pm_lock();
674
675 /*
676 * If the supplier has not been fully registered yet or there is a
677 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
678 * the supplier already in the graph, return NULL. If the link is a
679 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
680 * because it only affects sync_state() callbacks.
681 */
682 if (!device_pm_initialized(supplier)
683 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
684 device_is_dependent(consumer, supplier))) {
685 link = NULL;
686 goto out;
687 }
688
689 /*
690 * SYNC_STATE_ONLY links are useless once a consumer device has probed.
691 * So, only create it if the consumer hasn't probed yet.
692 */
693 if (flags & DL_FLAG_SYNC_STATE_ONLY &&
694 consumer->links.status != DL_DEV_NO_DRIVER &&
695 consumer->links.status != DL_DEV_PROBING) {
696 link = NULL;
697 goto out;
698 }
699
700 /*
701 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
702 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
703 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
704 */
705 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
706 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
707
708 list_for_each_entry(link, &supplier->links.consumers, s_node) {
709 if (link->consumer != consumer)
710 continue;
711
712 if (link->flags & DL_FLAG_INFERRED &&
713 !(flags & DL_FLAG_INFERRED))
714 link->flags &= ~DL_FLAG_INFERRED;
715
716 if (flags & DL_FLAG_PM_RUNTIME) {
717 if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
718 pm_runtime_new_link(consumer);
719 link->flags |= DL_FLAG_PM_RUNTIME;
720 }
721 if (flags & DL_FLAG_RPM_ACTIVE)
722 refcount_inc(&link->rpm_active);
723 }
724
725 if (flags & DL_FLAG_STATELESS) {
726 kref_get(&link->kref);
727 if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
728 !(link->flags & DL_FLAG_STATELESS)) {
729 link->flags |= DL_FLAG_STATELESS;
730 goto reorder;
731 } else {
732 link->flags |= DL_FLAG_STATELESS;
733 goto out;
734 }
735 }
736
737 /*
738 * If the life time of the link following from the new flags is
739 * longer than indicated by the flags of the existing link,
740 * update the existing link to stay around longer.
741 */
742 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
743 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
744 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
745 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
746 }
747 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
748 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
749 DL_FLAG_AUTOREMOVE_SUPPLIER);
750 }
751 if (!(link->flags & DL_FLAG_MANAGED)) {
752 kref_get(&link->kref);
753 link->flags |= DL_FLAG_MANAGED;
754 device_link_init_status(link, consumer, supplier);
755 }
756 if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
757 !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
758 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
759 goto reorder;
760 }
761
762 goto out;
763 }
764
765 link = kzalloc(sizeof(*link), GFP_KERNEL);
766 if (!link)
767 goto out;
768
769 refcount_set(&link->rpm_active, 1);
770
771 get_device(supplier);
772 link->supplier = supplier;
773 INIT_LIST_HEAD(&link->s_node);
774 get_device(consumer);
775 link->consumer = consumer;
776 INIT_LIST_HEAD(&link->c_node);
777 link->flags = flags;
778 kref_init(&link->kref);
779
780 link->link_dev.class = &devlink_class;
781 device_set_pm_not_required(&link->link_dev);
782 dev_set_name(&link->link_dev, "%s:%s--%s:%s",
783 dev_bus_name(supplier), dev_name(supplier),
784 dev_bus_name(consumer), dev_name(consumer));
785 if (device_register(&link->link_dev)) {
786 put_device(consumer);
787 put_device(supplier);
788 kfree(link);
789 link = NULL;
790 goto out;
791 }
792
793 if (flags & DL_FLAG_PM_RUNTIME) {
794 if (flags & DL_FLAG_RPM_ACTIVE)
795 refcount_inc(&link->rpm_active);
796
797 pm_runtime_new_link(consumer);
798 }
799
800 /* Determine the initial link state. */
801 if (flags & DL_FLAG_STATELESS)
802 link->status = DL_STATE_NONE;
803 else
804 device_link_init_status(link, consumer, supplier);
805
806 /*
807 * Some callers expect the link creation during consumer driver probe to
808 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
809 */
810 if (link->status == DL_STATE_CONSUMER_PROBE &&
811 flags & DL_FLAG_PM_RUNTIME)
812 pm_runtime_resume(supplier);
813
814 list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
815 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
816
817 if (flags & DL_FLAG_SYNC_STATE_ONLY) {
818 dev_dbg(consumer,
819 "Linked as a sync state only consumer to %s\n",
820 dev_name(supplier));
821 goto out;
822 }
823
824reorder:
825 /*
826 * Move the consumer and all of the devices depending on it to the end
827 * of dpm_list and the devices_kset list.
828 *
829 * It is necessary to hold dpm_list locked throughout all that or else
830 * we may end up suspending with a wrong ordering of it.
831 */
832 device_reorder_to_tail(consumer, NULL);
833
834 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
835
836out:
837 device_pm_unlock();
838 device_links_write_unlock();
839
840 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
841 pm_runtime_put(supplier);
842
843 return link;
844}
845EXPORT_SYMBOL_GPL(device_link_add);
846
847#ifdef CONFIG_SRCU
848static void __device_link_del(struct kref *kref)
849{
850 struct device_link *link = container_of(kref, struct device_link, kref);
851
852 dev_dbg(link->consumer, "Dropping the link to %s\n",
853 dev_name(link->supplier));
854
855 pm_runtime_drop_link(link);
856
857 list_del_rcu(&link->s_node);
858 list_del_rcu(&link->c_node);
859 device_unregister(&link->link_dev);
860}
861#else /* !CONFIG_SRCU */
862static void __device_link_del(struct kref *kref)
863{
864 struct device_link *link = container_of(kref, struct device_link, kref);
865
866 dev_info(link->consumer, "Dropping the link to %s\n",
867 dev_name(link->supplier));
868
869 pm_runtime_drop_link(link);
870
871 list_del(&link->s_node);
872 list_del(&link->c_node);
873 device_unregister(&link->link_dev);
874}
875#endif /* !CONFIG_SRCU */
876
877static void device_link_put_kref(struct device_link *link)
878{
879 if (link->flags & DL_FLAG_STATELESS)
880 kref_put(&link->kref, __device_link_del);
881 else
882 WARN(1, "Unable to drop a managed device link reference\n");
883}
884
885/**
886 * device_link_del - Delete a stateless link between two devices.
887 * @link: Device link to delete.
888 *
889 * The caller must ensure proper synchronization of this function with runtime
890 * PM. If the link was added multiple times, it needs to be deleted as often.
891 * Care is required for hotplugged devices: Their links are purged on removal
892 * and calling device_link_del() is then no longer allowed.
893 */
894void device_link_del(struct device_link *link)
895{
896 device_links_write_lock();
897 device_link_put_kref(link);
898 device_links_write_unlock();
899}
900EXPORT_SYMBOL_GPL(device_link_del);
901
902/**
903 * device_link_remove - Delete a stateless link between two devices.
904 * @consumer: Consumer end of the link.
905 * @supplier: Supplier end of the link.
906 *
907 * The caller must ensure proper synchronization of this function with runtime
908 * PM.
909 */
910void device_link_remove(void *consumer, struct device *supplier)
911{
912 struct device_link *link;
913
914 if (WARN_ON(consumer == supplier))
915 return;
916
917 device_links_write_lock();
918
919 list_for_each_entry(link, &supplier->links.consumers, s_node) {
920 if (link->consumer == consumer) {
921 device_link_put_kref(link);
922 break;
923 }
924 }
925
926 device_links_write_unlock();
927}
928EXPORT_SYMBOL_GPL(device_link_remove);
929
930static void device_links_missing_supplier(struct device *dev)
931{
932 struct device_link *link;
933
934 list_for_each_entry(link, &dev->links.suppliers, c_node) {
935 if (link->status != DL_STATE_CONSUMER_PROBE)
936 continue;
937
938 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
939 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
940 } else {
941 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
942 WRITE_ONCE(link->status, DL_STATE_DORMANT);
943 }
944 }
945}
946
947/**
948 * device_links_check_suppliers - Check presence of supplier drivers.
949 * @dev: Consumer device.
950 *
951 * Check links from this device to any suppliers. Walk the list of the device's
952 * links to suppliers and see if all of them are available. If not, simply
953 * return -EPROBE_DEFER.
954 *
955 * We need to guarantee that the supplier will not go away after the check has
956 * been positive here. It only can go away in __device_release_driver() and
957 * that function checks the device's links to consumers. This means we need to
958 * mark the link as "consumer probe in progress" to make the supplier removal
959 * wait for us to complete (or bad things may happen).
960 *
961 * Links without the DL_FLAG_MANAGED flag set are ignored.
962 */
963int device_links_check_suppliers(struct device *dev)
964{
965 struct device_link *link;
966 int ret = 0;
967
968 /*
969 * Device waiting for supplier to become available is not allowed to
970 * probe.
971 */
972 mutex_lock(&fwnode_link_lock);
973 if (dev->fwnode && !list_empty(&dev->fwnode->suppliers) &&
974 !fw_devlink_is_permissive()) {
975 dev_dbg(dev, "probe deferral - wait for supplier %pfwP\n",
976 list_first_entry(&dev->fwnode->suppliers,
977 struct fwnode_link,
978 c_hook)->supplier);
979 mutex_unlock(&fwnode_link_lock);
980 return -EPROBE_DEFER;
981 }
982 mutex_unlock(&fwnode_link_lock);
983
984 device_links_write_lock();
985
986 list_for_each_entry(link, &dev->links.suppliers, c_node) {
987 if (!(link->flags & DL_FLAG_MANAGED))
988 continue;
989
990 if (link->status != DL_STATE_AVAILABLE &&
991 !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
992 device_links_missing_supplier(dev);
993 dev_dbg(dev, "probe deferral - supplier %s not ready\n",
994 dev_name(link->supplier));
995 ret = -EPROBE_DEFER;
996 break;
997 }
998 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
999 }
1000 dev->links.status = DL_DEV_PROBING;
1001
1002 device_links_write_unlock();
1003 return ret;
1004}
1005
1006/**
1007 * __device_links_queue_sync_state - Queue a device for sync_state() callback
1008 * @dev: Device to call sync_state() on
1009 * @list: List head to queue the @dev on
1010 *
1011 * Queues a device for a sync_state() callback when the device links write lock
1012 * isn't held. This allows the sync_state() execution flow to use device links
1013 * APIs. The caller must ensure this function is called with
1014 * device_links_write_lock() held.
1015 *
1016 * This function does a get_device() to make sure the device is not freed while
1017 * on this list.
1018 *
1019 * So the caller must also ensure that device_links_flush_sync_list() is called
1020 * as soon as the caller releases device_links_write_lock(). This is necessary
1021 * to make sure the sync_state() is called in a timely fashion and the
1022 * put_device() is called on this device.
1023 */
1024static void __device_links_queue_sync_state(struct device *dev,
1025 struct list_head *list)
1026{
1027 struct device_link *link;
1028
1029 if (!dev_has_sync_state(dev))
1030 return;
1031 if (dev->state_synced)
1032 return;
1033
1034 list_for_each_entry(link, &dev->links.consumers, s_node) {
1035 if (!(link->flags & DL_FLAG_MANAGED))
1036 continue;
1037 if (link->status != DL_STATE_ACTIVE)
1038 return;
1039 }
1040
1041 /*
1042 * Set the flag here to avoid adding the same device to a list more
1043 * than once. This can happen if new consumers get added to the device
1044 * and probed before the list is flushed.
1045 */
1046 dev->state_synced = true;
1047
1048 if (WARN_ON(!list_empty(&dev->links.defer_sync)))
1049 return;
1050
1051 get_device(dev);
1052 list_add_tail(&dev->links.defer_sync, list);
1053}
1054
1055/**
1056 * device_links_flush_sync_list - Call sync_state() on a list of devices
1057 * @list: List of devices to call sync_state() on
1058 * @dont_lock_dev: Device for which lock is already held by the caller
1059 *
1060 * Calls sync_state() on all the devices that have been queued for it. This
1061 * function is used in conjunction with __device_links_queue_sync_state(). The
1062 * @dont_lock_dev parameter is useful when this function is called from a
1063 * context where a device lock is already held.
1064 */
1065static void device_links_flush_sync_list(struct list_head *list,
1066 struct device *dont_lock_dev)
1067{
1068 struct device *dev, *tmp;
1069
1070 list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
1071 list_del_init(&dev->links.defer_sync);
1072
1073 if (dev != dont_lock_dev)
1074 device_lock(dev);
1075
1076 if (dev->bus->sync_state)
1077 dev->bus->sync_state(dev);
1078 else if (dev->driver && dev->driver->sync_state)
1079 dev->driver->sync_state(dev);
1080
1081 if (dev != dont_lock_dev)
1082 device_unlock(dev);
1083
1084 put_device(dev);
1085 }
1086}
1087
1088void device_links_supplier_sync_state_pause(void)
1089{
1090 device_links_write_lock();
1091 defer_sync_state_count++;
1092 device_links_write_unlock();
1093}
1094
1095void device_links_supplier_sync_state_resume(void)
1096{
1097 struct device *dev, *tmp;
1098 LIST_HEAD(sync_list);
1099
1100 device_links_write_lock();
1101 if (!defer_sync_state_count) {
1102 WARN(true, "Unmatched sync_state pause/resume!");
1103 goto out;
1104 }
1105 defer_sync_state_count--;
1106 if (defer_sync_state_count)
1107 goto out;
1108
1109 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
1110 /*
1111 * Delete from deferred_sync list before queuing it to
1112 * sync_list because defer_sync is used for both lists.
1113 */
1114 list_del_init(&dev->links.defer_sync);
1115 __device_links_queue_sync_state(dev, &sync_list);
1116 }
1117out:
1118 device_links_write_unlock();
1119
1120 device_links_flush_sync_list(&sync_list, NULL);
1121}
1122
1123static int sync_state_resume_initcall(void)
1124{
1125 device_links_supplier_sync_state_resume();
1126 return 0;
1127}
1128late_initcall(sync_state_resume_initcall);
1129
1130static void __device_links_supplier_defer_sync(struct device *sup)
1131{
1132 if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
1133 list_add_tail(&sup->links.defer_sync, &deferred_sync);
1134}
1135
1136static void device_link_drop_managed(struct device_link *link)
1137{
1138 link->flags &= ~DL_FLAG_MANAGED;
1139 WRITE_ONCE(link->status, DL_STATE_NONE);
1140 kref_put(&link->kref, __device_link_del);
1141}
1142
1143static ssize_t waiting_for_supplier_show(struct device *dev,
1144 struct device_attribute *attr,
1145 char *buf)
1146{
1147 bool val;
1148
1149 device_lock(dev);
1150 val = !list_empty(&dev->fwnode->suppliers);
1151 device_unlock(dev);
1152 return sysfs_emit(buf, "%u\n", val);
1153}
1154static DEVICE_ATTR_RO(waiting_for_supplier);
1155
1156/**
1157 * device_links_driver_bound - Update device links after probing its driver.
1158 * @dev: Device to update the links for.
1159 *
1160 * The probe has been successful, so update links from this device to any
1161 * consumers by changing their status to "available".
1162 *
1163 * Also change the status of @dev's links to suppliers to "active".
1164 *
1165 * Links without the DL_FLAG_MANAGED flag set are ignored.
1166 */
1167void device_links_driver_bound(struct device *dev)
1168{
1169 struct device_link *link, *ln;
1170 LIST_HEAD(sync_list);
1171
1172 /*
1173 * If a device binds successfully, it's expected to have created all
1174 * the device links it needs to or make new device links as it needs
1175 * them. So, fw_devlink no longer needs to create device links to any
1176 * of the device's suppliers.
1177 *
1178 * Also, if a child firmware node of this bound device is not added as
1179 * a device by now, assume it is never going to be added and make sure
1180 * other devices don't defer probe indefinitely by waiting for such a
1181 * child device.
1182 */
1183 if (dev->fwnode && dev->fwnode->dev == dev) {
1184 struct fwnode_handle *child;
1185 fwnode_links_purge_suppliers(dev->fwnode);
1186 fwnode_for_each_available_child_node(dev->fwnode, child)
1187 fw_devlink_purge_absent_suppliers(child);
1188 }
1189 device_remove_file(dev, &dev_attr_waiting_for_supplier);
1190
1191 device_links_write_lock();
1192
1193 list_for_each_entry(link, &dev->links.consumers, s_node) {
1194 if (!(link->flags & DL_FLAG_MANAGED))
1195 continue;
1196
1197 /*
1198 * Links created during consumer probe may be in the "consumer
1199 * probe" state to start with if the supplier is still probing
1200 * when they are created and they may become "active" if the
1201 * consumer probe returns first. Skip them here.
1202 */
1203 if (link->status == DL_STATE_CONSUMER_PROBE ||
1204 link->status == DL_STATE_ACTIVE)
1205 continue;
1206
1207 WARN_ON(link->status != DL_STATE_DORMANT);
1208 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1209
1210 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1211 driver_deferred_probe_add(link->consumer);
1212 }
1213
1214 if (defer_sync_state_count)
1215 __device_links_supplier_defer_sync(dev);
1216 else
1217 __device_links_queue_sync_state(dev, &sync_list);
1218
1219 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1220 struct device *supplier;
1221
1222 if (!(link->flags & DL_FLAG_MANAGED))
1223 continue;
1224
1225 supplier = link->supplier;
1226 if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1227 /*
1228 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1229 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1230 * save to drop the managed link completely.
1231 */
1232 device_link_drop_managed(link);
1233 } else {
1234 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1235 WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1236 }
1237
1238 /*
1239 * This needs to be done even for the deleted
1240 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1241 * device link that was preventing the supplier from getting a
1242 * sync_state() call.
1243 */
1244 if (defer_sync_state_count)
1245 __device_links_supplier_defer_sync(supplier);
1246 else
1247 __device_links_queue_sync_state(supplier, &sync_list);
1248 }
1249
1250 dev->links.status = DL_DEV_DRIVER_BOUND;
1251
1252 device_links_write_unlock();
1253
1254 device_links_flush_sync_list(&sync_list, dev);
1255}
1256
1257/**
1258 * __device_links_no_driver - Update links of a device without a driver.
1259 * @dev: Device without a drvier.
1260 *
1261 * Delete all non-persistent links from this device to any suppliers.
1262 *
1263 * Persistent links stay around, but their status is changed to "available",
1264 * unless they already are in the "supplier unbind in progress" state in which
1265 * case they need not be updated.
1266 *
1267 * Links without the DL_FLAG_MANAGED flag set are ignored.
1268 */
1269static void __device_links_no_driver(struct device *dev)
1270{
1271 struct device_link *link, *ln;
1272
1273 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1274 if (!(link->flags & DL_FLAG_MANAGED))
1275 continue;
1276
1277 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1278 device_link_drop_managed(link);
1279 continue;
1280 }
1281
1282 if (link->status != DL_STATE_CONSUMER_PROBE &&
1283 link->status != DL_STATE_ACTIVE)
1284 continue;
1285
1286 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1287 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1288 } else {
1289 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1290 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1291 }
1292 }
1293
1294 dev->links.status = DL_DEV_NO_DRIVER;
1295}
1296
1297/**
1298 * device_links_no_driver - Update links after failing driver probe.
1299 * @dev: Device whose driver has just failed to probe.
1300 *
1301 * Clean up leftover links to consumers for @dev and invoke
1302 * %__device_links_no_driver() to update links to suppliers for it as
1303 * appropriate.
1304 *
1305 * Links without the DL_FLAG_MANAGED flag set are ignored.
1306 */
1307void device_links_no_driver(struct device *dev)
1308{
1309 struct device_link *link;
1310
1311 device_links_write_lock();
1312
1313 list_for_each_entry(link, &dev->links.consumers, s_node) {
1314 if (!(link->flags & DL_FLAG_MANAGED))
1315 continue;
1316
1317 /*
1318 * The probe has failed, so if the status of the link is
1319 * "consumer probe" or "active", it must have been added by
1320 * a probing consumer while this device was still probing.
1321 * Change its state to "dormant", as it represents a valid
1322 * relationship, but it is not functionally meaningful.
1323 */
1324 if (link->status == DL_STATE_CONSUMER_PROBE ||
1325 link->status == DL_STATE_ACTIVE)
1326 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1327 }
1328
1329 __device_links_no_driver(dev);
1330
1331 device_links_write_unlock();
1332}
1333
1334/**
1335 * device_links_driver_cleanup - Update links after driver removal.
1336 * @dev: Device whose driver has just gone away.
1337 *
1338 * Update links to consumers for @dev by changing their status to "dormant" and
1339 * invoke %__device_links_no_driver() to update links to suppliers for it as
1340 * appropriate.
1341 *
1342 * Links without the DL_FLAG_MANAGED flag set are ignored.
1343 */
1344void device_links_driver_cleanup(struct device *dev)
1345{
1346 struct device_link *link, *ln;
1347
1348 device_links_write_lock();
1349
1350 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1351 if (!(link->flags & DL_FLAG_MANAGED))
1352 continue;
1353
1354 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1355 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1356
1357 /*
1358 * autoremove the links between this @dev and its consumer
1359 * devices that are not active, i.e. where the link state
1360 * has moved to DL_STATE_SUPPLIER_UNBIND.
1361 */
1362 if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1363 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1364 device_link_drop_managed(link);
1365
1366 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1367 }
1368
1369 list_del_init(&dev->links.defer_sync);
1370 __device_links_no_driver(dev);
1371
1372 device_links_write_unlock();
1373}
1374
1375/**
1376 * device_links_busy - Check if there are any busy links to consumers.
1377 * @dev: Device to check.
1378 *
1379 * Check each consumer of the device and return 'true' if its link's status
1380 * is one of "consumer probe" or "active" (meaning that the given consumer is
1381 * probing right now or its driver is present). Otherwise, change the link
1382 * state to "supplier unbind" to prevent the consumer from being probed
1383 * successfully going forward.
1384 *
1385 * Return 'false' if there are no probing or active consumers.
1386 *
1387 * Links without the DL_FLAG_MANAGED flag set are ignored.
1388 */
1389bool device_links_busy(struct device *dev)
1390{
1391 struct device_link *link;
1392 bool ret = false;
1393
1394 device_links_write_lock();
1395
1396 list_for_each_entry(link, &dev->links.consumers, s_node) {
1397 if (!(link->flags & DL_FLAG_MANAGED))
1398 continue;
1399
1400 if (link->status == DL_STATE_CONSUMER_PROBE
1401 || link->status == DL_STATE_ACTIVE) {
1402 ret = true;
1403 break;
1404 }
1405 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1406 }
1407
1408 dev->links.status = DL_DEV_UNBINDING;
1409
1410 device_links_write_unlock();
1411 return ret;
1412}
1413
1414/**
1415 * device_links_unbind_consumers - Force unbind consumers of the given device.
1416 * @dev: Device to unbind the consumers of.
1417 *
1418 * Walk the list of links to consumers for @dev and if any of them is in the
1419 * "consumer probe" state, wait for all device probes in progress to complete
1420 * and start over.
1421 *
1422 * If that's not the case, change the status of the link to "supplier unbind"
1423 * and check if the link was in the "active" state. If so, force the consumer
1424 * driver to unbind and start over (the consumer will not re-probe as we have
1425 * changed the state of the link already).
1426 *
1427 * Links without the DL_FLAG_MANAGED flag set are ignored.
1428 */
1429void device_links_unbind_consumers(struct device *dev)
1430{
1431 struct device_link *link;
1432
1433 start:
1434 device_links_write_lock();
1435
1436 list_for_each_entry(link, &dev->links.consumers, s_node) {
1437 enum device_link_state status;
1438
1439 if (!(link->flags & DL_FLAG_MANAGED) ||
1440 link->flags & DL_FLAG_SYNC_STATE_ONLY)
1441 continue;
1442
1443 status = link->status;
1444 if (status == DL_STATE_CONSUMER_PROBE) {
1445 device_links_write_unlock();
1446
1447 wait_for_device_probe();
1448 goto start;
1449 }
1450 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1451 if (status == DL_STATE_ACTIVE) {
1452 struct device *consumer = link->consumer;
1453
1454 get_device(consumer);
1455
1456 device_links_write_unlock();
1457
1458 device_release_driver_internal(consumer, NULL,
1459 consumer->parent);
1460 put_device(consumer);
1461 goto start;
1462 }
1463 }
1464
1465 device_links_write_unlock();
1466}
1467
1468/**
1469 * device_links_purge - Delete existing links to other devices.
1470 * @dev: Target device.
1471 */
1472static void device_links_purge(struct device *dev)
1473{
1474 struct device_link *link, *ln;
1475
1476 if (dev->class == &devlink_class)
1477 return;
1478
1479 /*
1480 * Delete all of the remaining links from this device to any other
1481 * devices (either consumers or suppliers).
1482 */
1483 device_links_write_lock();
1484
1485 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1486 WARN_ON(link->status == DL_STATE_ACTIVE);
1487 __device_link_del(&link->kref);
1488 }
1489
1490 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1491 WARN_ON(link->status != DL_STATE_DORMANT &&
1492 link->status != DL_STATE_NONE);
1493 __device_link_del(&link->kref);
1494 }
1495
1496 device_links_write_unlock();
1497}
1498
1499#define FW_DEVLINK_FLAGS_PERMISSIVE (DL_FLAG_INFERRED | \
1500 DL_FLAG_SYNC_STATE_ONLY)
1501#define FW_DEVLINK_FLAGS_ON (DL_FLAG_INFERRED | \
1502 DL_FLAG_AUTOPROBE_CONSUMER)
1503#define FW_DEVLINK_FLAGS_RPM (FW_DEVLINK_FLAGS_ON | \
1504 DL_FLAG_PM_RUNTIME)
1505
1506static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1507static int __init fw_devlink_setup(char *arg)
1508{
1509 if (!arg)
1510 return -EINVAL;
1511
1512 if (strcmp(arg, "off") == 0) {
1513 fw_devlink_flags = 0;
1514 } else if (strcmp(arg, "permissive") == 0) {
1515 fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1516 } else if (strcmp(arg, "on") == 0) {
1517 fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1518 } else if (strcmp(arg, "rpm") == 0) {
1519 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1520 }
1521 return 0;
1522}
1523early_param("fw_devlink", fw_devlink_setup);
1524
1525static bool fw_devlink_strict;
1526static int __init fw_devlink_strict_setup(char *arg)
1527{
1528 return strtobool(arg, &fw_devlink_strict);
1529}
1530early_param("fw_devlink.strict", fw_devlink_strict_setup);
1531
1532u32 fw_devlink_get_flags(void)
1533{
1534 return fw_devlink_flags;
1535}
1536
1537static bool fw_devlink_is_permissive(void)
1538{
1539 return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE;
1540}
1541
1542bool fw_devlink_is_strict(void)
1543{
1544 return fw_devlink_strict && !fw_devlink_is_permissive();
1545}
1546
1547static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode)
1548{
1549 if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED)
1550 return;
1551
1552 fwnode_call_int_op(fwnode, add_links);
1553 fwnode->flags |= FWNODE_FLAG_LINKS_ADDED;
1554}
1555
1556static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode)
1557{
1558 struct fwnode_handle *child = NULL;
1559
1560 fw_devlink_parse_fwnode(fwnode);
1561
1562 while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1563 fw_devlink_parse_fwtree(child);
1564}
1565
1566/**
1567 * fw_devlink_relax_cycle - Convert cyclic links to SYNC_STATE_ONLY links
1568 * @con: Device to check dependencies for.
1569 * @sup: Device to check against.
1570 *
1571 * Check if @sup depends on @con or any device dependent on it (its child or
1572 * its consumer etc). When such a cyclic dependency is found, convert all
1573 * device links created solely by fw_devlink into SYNC_STATE_ONLY device links.
1574 * This is the equivalent of doing fw_devlink=permissive just between the
1575 * devices in the cycle. We need to do this because, at this point, fw_devlink
1576 * can't tell which of these dependencies is not a real dependency.
1577 *
1578 * Return 1 if a cycle is found. Otherwise, return 0.
1579 */
1580static int fw_devlink_relax_cycle(struct device *con, void *sup)
1581{
1582 struct device_link *link;
1583 int ret;
1584
1585 if (con == sup)
1586 return 1;
1587
1588 ret = device_for_each_child(con, sup, fw_devlink_relax_cycle);
1589 if (ret)
1590 return ret;
1591
1592 list_for_each_entry(link, &con->links.consumers, s_node) {
1593 if ((link->flags & ~DL_FLAG_INFERRED) ==
1594 (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
1595 continue;
1596
1597 if (!fw_devlink_relax_cycle(link->consumer, sup))
1598 continue;
1599
1600 ret = 1;
1601
1602 if (!(link->flags & DL_FLAG_INFERRED))
1603 continue;
1604
1605 pm_runtime_drop_link(link);
1606 link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE;
1607 dev_dbg(link->consumer, "Relaxing link with %s\n",
1608 dev_name(link->supplier));
1609 }
1610 return ret;
1611}
1612
1613/**
1614 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode
1615 * @con - Consumer device for the device link
1616 * @sup_handle - fwnode handle of supplier
1617 *
1618 * This function will try to create a device link between the consumer device
1619 * @con and the supplier device represented by @sup_handle.
1620 *
1621 * The supplier has to be provided as a fwnode because incorrect cycles in
1622 * fwnode links can sometimes cause the supplier device to never be created.
1623 * This function detects such cases and returns an error if it cannot create a
1624 * device link from the consumer to a missing supplier.
1625 *
1626 * Returns,
1627 * 0 on successfully creating a device link
1628 * -EINVAL if the device link cannot be created as expected
1629 * -EAGAIN if the device link cannot be created right now, but it may be
1630 * possible to do that in the future
1631 */
1632static int fw_devlink_create_devlink(struct device *con,
1633 struct fwnode_handle *sup_handle, u32 flags)
1634{
1635 struct device *sup_dev;
1636 int ret = 0;
1637
1638 sup_dev = get_dev_from_fwnode(sup_handle);
1639 if (sup_dev) {
1640 /*
1641 * If it's one of those drivers that don't actually bind to
1642 * their device using driver core, then don't wait on this
1643 * supplier device indefinitely.
1644 */
1645 if (sup_dev->links.status == DL_DEV_NO_DRIVER &&
1646 sup_handle->flags & FWNODE_FLAG_INITIALIZED) {
1647 ret = -EINVAL;
1648 goto out;
1649 }
1650
1651 /*
1652 * If this fails, it is due to cycles in device links. Just
1653 * give up on this link and treat it as invalid.
1654 */
1655 if (!device_link_add(con, sup_dev, flags) &&
1656 !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
1657 dev_info(con, "Fixing up cyclic dependency with %s\n",
1658 dev_name(sup_dev));
1659 device_links_write_lock();
1660 fw_devlink_relax_cycle(con, sup_dev);
1661 device_links_write_unlock();
1662 device_link_add(con, sup_dev,
1663 FW_DEVLINK_FLAGS_PERMISSIVE);
1664 ret = -EINVAL;
1665 }
1666
1667 goto out;
1668 }
1669
1670 /* Supplier that's already initialized without a struct device. */
1671 if (sup_handle->flags & FWNODE_FLAG_INITIALIZED)
1672 return -EINVAL;
1673
1674 /*
1675 * DL_FLAG_SYNC_STATE_ONLY doesn't block probing and supports
1676 * cycles. So cycle detection isn't necessary and shouldn't be
1677 * done.
1678 */
1679 if (flags & DL_FLAG_SYNC_STATE_ONLY)
1680 return -EAGAIN;
1681
1682 /*
1683 * If we can't find the supplier device from its fwnode, it might be
1684 * due to a cyclic dependency between fwnodes. Some of these cycles can
1685 * be broken by applying logic. Check for these types of cycles and
1686 * break them so that devices in the cycle probe properly.
1687 *
1688 * If the supplier's parent is dependent on the consumer, then
1689 * the consumer-supplier dependency is a false dependency. So,
1690 * treat it as an invalid link.
1691 */
1692 sup_dev = fwnode_get_next_parent_dev(sup_handle);
1693 if (sup_dev && device_is_dependent(con, sup_dev)) {
1694 dev_dbg(con, "Not linking to %pfwP - False link\n",
1695 sup_handle);
1696 ret = -EINVAL;
1697 } else {
1698 /*
1699 * Can't check for cycles or no cycles. So let's try
1700 * again later.
1701 */
1702 ret = -EAGAIN;
1703 }
1704
1705out:
1706 put_device(sup_dev);
1707 return ret;
1708}
1709
1710/**
1711 * __fw_devlink_link_to_consumers - Create device links to consumers of a device
1712 * @dev - Device that needs to be linked to its consumers
1713 *
1714 * This function looks at all the consumer fwnodes of @dev and creates device
1715 * links between the consumer device and @dev (supplier).
1716 *
1717 * If the consumer device has not been added yet, then this function creates a
1718 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device
1719 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a
1720 * sync_state() callback before the real consumer device gets to be added and
1721 * then probed.
1722 *
1723 * Once device links are created from the real consumer to @dev (supplier), the
1724 * fwnode links are deleted.
1725 */
1726static void __fw_devlink_link_to_consumers(struct device *dev)
1727{
1728 struct fwnode_handle *fwnode = dev->fwnode;
1729 struct fwnode_link *link, *tmp;
1730
1731 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
1732 u32 dl_flags = fw_devlink_get_flags();
1733 struct device *con_dev;
1734 bool own_link = true;
1735 int ret;
1736
1737 con_dev = get_dev_from_fwnode(link->consumer);
1738 /*
1739 * If consumer device is not available yet, make a "proxy"
1740 * SYNC_STATE_ONLY link from the consumer's parent device to
1741 * the supplier device. This is necessary to make sure the
1742 * supplier doesn't get a sync_state() callback before the real
1743 * consumer can create a device link to the supplier.
1744 *
1745 * This proxy link step is needed to handle the case where the
1746 * consumer's parent device is added before the supplier.
1747 */
1748 if (!con_dev) {
1749 con_dev = fwnode_get_next_parent_dev(link->consumer);
1750 /*
1751 * However, if the consumer's parent device is also the
1752 * parent of the supplier, don't create a
1753 * consumer-supplier link from the parent to its child
1754 * device. Such a dependency is impossible.
1755 */
1756 if (con_dev &&
1757 fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) {
1758 put_device(con_dev);
1759 con_dev = NULL;
1760 } else {
1761 own_link = false;
1762 dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1763 }
1764 }
1765
1766 if (!con_dev)
1767 continue;
1768
1769 ret = fw_devlink_create_devlink(con_dev, fwnode, dl_flags);
1770 put_device(con_dev);
1771 if (!own_link || ret == -EAGAIN)
1772 continue;
1773
1774 list_del(&link->s_hook);
1775 list_del(&link->c_hook);
1776 kfree(link);
1777 }
1778}
1779
1780/**
1781 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device
1782 * @dev - The consumer device that needs to be linked to its suppliers
1783 * @fwnode - Root of the fwnode tree that is used to create device links
1784 *
1785 * This function looks at all the supplier fwnodes of fwnode tree rooted at
1786 * @fwnode and creates device links between @dev (consumer) and all the
1787 * supplier devices of the entire fwnode tree at @fwnode.
1788 *
1789 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev
1790 * and the real suppliers of @dev. Once these device links are created, the
1791 * fwnode links are deleted. When such device links are successfully created,
1792 * this function is called recursively on those supplier devices. This is
1793 * needed to detect and break some invalid cycles in fwnode links. See
1794 * fw_devlink_create_devlink() for more details.
1795 *
1796 * In addition, it also looks at all the suppliers of the entire fwnode tree
1797 * because some of the child devices of @dev that have not been added yet
1798 * (because @dev hasn't probed) might already have their suppliers added to
1799 * driver core. So, this function creates SYNC_STATE_ONLY device links between
1800 * @dev (consumer) and these suppliers to make sure they don't execute their
1801 * sync_state() callbacks before these child devices have a chance to create
1802 * their device links. The fwnode links that correspond to the child devices
1803 * aren't delete because they are needed later to create the device links
1804 * between the real consumer and supplier devices.
1805 */
1806static void __fw_devlink_link_to_suppliers(struct device *dev,
1807 struct fwnode_handle *fwnode)
1808{
1809 bool own_link = (dev->fwnode == fwnode);
1810 struct fwnode_link *link, *tmp;
1811 struct fwnode_handle *child = NULL;
1812 u32 dl_flags;
1813
1814 if (own_link)
1815 dl_flags = fw_devlink_get_flags();
1816 else
1817 dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1818
1819 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
1820 int ret;
1821 struct device *sup_dev;
1822 struct fwnode_handle *sup = link->supplier;
1823
1824 ret = fw_devlink_create_devlink(dev, sup, dl_flags);
1825 if (!own_link || ret == -EAGAIN)
1826 continue;
1827
1828 list_del(&link->s_hook);
1829 list_del(&link->c_hook);
1830 kfree(link);
1831
1832 /* If no device link was created, nothing more to do. */
1833 if (ret)
1834 continue;
1835
1836 /*
1837 * If a device link was successfully created to a supplier, we
1838 * now need to try and link the supplier to all its suppliers.
1839 *
1840 * This is needed to detect and delete false dependencies in
1841 * fwnode links that haven't been converted to a device link
1842 * yet. See comments in fw_devlink_create_devlink() for more
1843 * details on the false dependency.
1844 *
1845 * Without deleting these false dependencies, some devices will
1846 * never probe because they'll keep waiting for their false
1847 * dependency fwnode links to be converted to device links.
1848 */
1849 sup_dev = get_dev_from_fwnode(sup);
1850 __fw_devlink_link_to_suppliers(sup_dev, sup_dev->fwnode);
1851 put_device(sup_dev);
1852 }
1853
1854 /*
1855 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of
1856 * all the descendants. This proxy link step is needed to handle the
1857 * case where the supplier is added before the consumer's parent device
1858 * (@dev).
1859 */
1860 while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1861 __fw_devlink_link_to_suppliers(dev, child);
1862}
1863
1864static void fw_devlink_link_device(struct device *dev)
1865{
1866 struct fwnode_handle *fwnode = dev->fwnode;
1867
1868 if (!fw_devlink_flags)
1869 return;
1870
1871 fw_devlink_parse_fwtree(fwnode);
1872
1873 mutex_lock(&fwnode_link_lock);
1874 __fw_devlink_link_to_consumers(dev);
1875 __fw_devlink_link_to_suppliers(dev, fwnode);
1876 mutex_unlock(&fwnode_link_lock);
1877}
1878
1879/* Device links support end. */
1880
1881int (*platform_notify)(struct device *dev) = NULL;
1882int (*platform_notify_remove)(struct device *dev) = NULL;
1883static struct kobject *dev_kobj;
1884struct kobject *sysfs_dev_char_kobj;
1885struct kobject *sysfs_dev_block_kobj;
1886
1887static DEFINE_MUTEX(device_hotplug_lock);
1888
1889void lock_device_hotplug(void)
1890{
1891 mutex_lock(&device_hotplug_lock);
1892}
1893
1894void unlock_device_hotplug(void)
1895{
1896 mutex_unlock(&device_hotplug_lock);
1897}
1898
1899int lock_device_hotplug_sysfs(void)
1900{
1901 if (mutex_trylock(&device_hotplug_lock))
1902 return 0;
1903
1904 /* Avoid busy looping (5 ms of sleep should do). */
1905 msleep(5);
1906 return restart_syscall();
1907}
1908
1909#ifdef CONFIG_BLOCK
1910static inline int device_is_not_partition(struct device *dev)
1911{
1912 return !(dev->type == &part_type);
1913}
1914#else
1915static inline int device_is_not_partition(struct device *dev)
1916{
1917 return 1;
1918}
1919#endif
1920
1921static int
1922device_platform_notify(struct device *dev, enum kobject_action action)
1923{
1924 int ret;
1925
1926 ret = acpi_platform_notify(dev, action);
1927 if (ret)
1928 return ret;
1929
1930 ret = software_node_notify(dev, action);
1931 if (ret)
1932 return ret;
1933
1934 if (platform_notify && action == KOBJ_ADD)
1935 platform_notify(dev);
1936 else if (platform_notify_remove && action == KOBJ_REMOVE)
1937 platform_notify_remove(dev);
1938 return 0;
1939}
1940
1941/**
1942 * dev_driver_string - Return a device's driver name, if at all possible
1943 * @dev: struct device to get the name of
1944 *
1945 * Will return the device's driver's name if it is bound to a device. If
1946 * the device is not bound to a driver, it will return the name of the bus
1947 * it is attached to. If it is not attached to a bus either, an empty
1948 * string will be returned.
1949 */
1950const char *dev_driver_string(const struct device *dev)
1951{
1952 struct device_driver *drv;
1953
1954 /* dev->driver can change to NULL underneath us because of unbinding,
1955 * so be careful about accessing it. dev->bus and dev->class should
1956 * never change once they are set, so they don't need special care.
1957 */
1958 drv = READ_ONCE(dev->driver);
1959 return drv ? drv->name : dev_bus_name(dev);
1960}
1961EXPORT_SYMBOL(dev_driver_string);
1962
1963#define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
1964
1965static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
1966 char *buf)
1967{
1968 struct device_attribute *dev_attr = to_dev_attr(attr);
1969 struct device *dev = kobj_to_dev(kobj);
1970 ssize_t ret = -EIO;
1971
1972 if (dev_attr->show)
1973 ret = dev_attr->show(dev, dev_attr, buf);
1974 if (ret >= (ssize_t)PAGE_SIZE) {
1975 printk("dev_attr_show: %pS returned bad count\n",
1976 dev_attr->show);
1977 }
1978 return ret;
1979}
1980
1981static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
1982 const char *buf, size_t count)
1983{
1984 struct device_attribute *dev_attr = to_dev_attr(attr);
1985 struct device *dev = kobj_to_dev(kobj);
1986 ssize_t ret = -EIO;
1987
1988 if (dev_attr->store)
1989 ret = dev_attr->store(dev, dev_attr, buf, count);
1990 return ret;
1991}
1992
1993static const struct sysfs_ops dev_sysfs_ops = {
1994 .show = dev_attr_show,
1995 .store = dev_attr_store,
1996};
1997
1998#define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
1999
2000ssize_t device_store_ulong(struct device *dev,
2001 struct device_attribute *attr,
2002 const char *buf, size_t size)
2003{
2004 struct dev_ext_attribute *ea = to_ext_attr(attr);
2005 int ret;
2006 unsigned long new;
2007
2008 ret = kstrtoul(buf, 0, &new);
2009 if (ret)
2010 return ret;
2011 *(unsigned long *)(ea->var) = new;
2012 /* Always return full write size even if we didn't consume all */
2013 return size;
2014}
2015EXPORT_SYMBOL_GPL(device_store_ulong);
2016
2017ssize_t device_show_ulong(struct device *dev,
2018 struct device_attribute *attr,
2019 char *buf)
2020{
2021 struct dev_ext_attribute *ea = to_ext_attr(attr);
2022 return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
2023}
2024EXPORT_SYMBOL_GPL(device_show_ulong);
2025
2026ssize_t device_store_int(struct device *dev,
2027 struct device_attribute *attr,
2028 const char *buf, size_t size)
2029{
2030 struct dev_ext_attribute *ea = to_ext_attr(attr);
2031 int ret;
2032 long new;
2033
2034 ret = kstrtol(buf, 0, &new);
2035 if (ret)
2036 return ret;
2037
2038 if (new > INT_MAX || new < INT_MIN)
2039 return -EINVAL;
2040 *(int *)(ea->var) = new;
2041 /* Always return full write size even if we didn't consume all */
2042 return size;
2043}
2044EXPORT_SYMBOL_GPL(device_store_int);
2045
2046ssize_t device_show_int(struct device *dev,
2047 struct device_attribute *attr,
2048 char *buf)
2049{
2050 struct dev_ext_attribute *ea = to_ext_attr(attr);
2051
2052 return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
2053}
2054EXPORT_SYMBOL_GPL(device_show_int);
2055
2056ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
2057 const char *buf, size_t size)
2058{
2059 struct dev_ext_attribute *ea = to_ext_attr(attr);
2060
2061 if (strtobool(buf, ea->var) < 0)
2062 return -EINVAL;
2063
2064 return size;
2065}
2066EXPORT_SYMBOL_GPL(device_store_bool);
2067
2068ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
2069 char *buf)
2070{
2071 struct dev_ext_attribute *ea = to_ext_attr(attr);
2072
2073 return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
2074}
2075EXPORT_SYMBOL_GPL(device_show_bool);
2076
2077/**
2078 * device_release - free device structure.
2079 * @kobj: device's kobject.
2080 *
2081 * This is called once the reference count for the object
2082 * reaches 0. We forward the call to the device's release
2083 * method, which should handle actually freeing the structure.
2084 */
2085static void device_release(struct kobject *kobj)
2086{
2087 struct device *dev = kobj_to_dev(kobj);
2088 struct device_private *p = dev->p;
2089
2090 /*
2091 * Some platform devices are driven without driver attached
2092 * and managed resources may have been acquired. Make sure
2093 * all resources are released.
2094 *
2095 * Drivers still can add resources into device after device
2096 * is deleted but alive, so release devres here to avoid
2097 * possible memory leak.
2098 */
2099 devres_release_all(dev);
2100
2101 kfree(dev->dma_range_map);
2102
2103 if (dev->release)
2104 dev->release(dev);
2105 else if (dev->type && dev->type->release)
2106 dev->type->release(dev);
2107 else if (dev->class && dev->class->dev_release)
2108 dev->class->dev_release(dev);
2109 else
2110 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
2111 dev_name(dev));
2112 kfree(p);
2113}
2114
2115static const void *device_namespace(struct kobject *kobj)
2116{
2117 struct device *dev = kobj_to_dev(kobj);
2118 const void *ns = NULL;
2119
2120 if (dev->class && dev->class->ns_type)
2121 ns = dev->class->namespace(dev);
2122
2123 return ns;
2124}
2125
2126static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
2127{
2128 struct device *dev = kobj_to_dev(kobj);
2129
2130 if (dev->class && dev->class->get_ownership)
2131 dev->class->get_ownership(dev, uid, gid);
2132}
2133
2134static struct kobj_type device_ktype = {
2135 .release = device_release,
2136 .sysfs_ops = &dev_sysfs_ops,
2137 .namespace = device_namespace,
2138 .get_ownership = device_get_ownership,
2139};
2140
2141
2142static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
2143{
2144 struct kobj_type *ktype = get_ktype(kobj);
2145
2146 if (ktype == &device_ktype) {
2147 struct device *dev = kobj_to_dev(kobj);
2148 if (dev->bus)
2149 return 1;
2150 if (dev->class)
2151 return 1;
2152 }
2153 return 0;
2154}
2155
2156static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
2157{
2158 struct device *dev = kobj_to_dev(kobj);
2159
2160 if (dev->bus)
2161 return dev->bus->name;
2162 if (dev->class)
2163 return dev->class->name;
2164 return NULL;
2165}
2166
2167static int dev_uevent(struct kset *kset, struct kobject *kobj,
2168 struct kobj_uevent_env *env)
2169{
2170 struct device *dev = kobj_to_dev(kobj);
2171 int retval = 0;
2172
2173 /* add device node properties if present */
2174 if (MAJOR(dev->devt)) {
2175 const char *tmp;
2176 const char *name;
2177 umode_t mode = 0;
2178 kuid_t uid = GLOBAL_ROOT_UID;
2179 kgid_t gid = GLOBAL_ROOT_GID;
2180
2181 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
2182 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
2183 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
2184 if (name) {
2185 add_uevent_var(env, "DEVNAME=%s", name);
2186 if (mode)
2187 add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
2188 if (!uid_eq(uid, GLOBAL_ROOT_UID))
2189 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
2190 if (!gid_eq(gid, GLOBAL_ROOT_GID))
2191 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
2192 kfree(tmp);
2193 }
2194 }
2195
2196 if (dev->type && dev->type->name)
2197 add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
2198
2199 if (dev->driver)
2200 add_uevent_var(env, "DRIVER=%s", dev->driver->name);
2201
2202 /* Add common DT information about the device */
2203 of_device_uevent(dev, env);
2204
2205 /* have the bus specific function add its stuff */
2206 if (dev->bus && dev->bus->uevent) {
2207 retval = dev->bus->uevent(dev, env);
2208 if (retval)
2209 pr_debug("device: '%s': %s: bus uevent() returned %d\n",
2210 dev_name(dev), __func__, retval);
2211 }
2212
2213 /* have the class specific function add its stuff */
2214 if (dev->class && dev->class->dev_uevent) {
2215 retval = dev->class->dev_uevent(dev, env);
2216 if (retval)
2217 pr_debug("device: '%s': %s: class uevent() "
2218 "returned %d\n", dev_name(dev),
2219 __func__, retval);
2220 }
2221
2222 /* have the device type specific function add its stuff */
2223 if (dev->type && dev->type->uevent) {
2224 retval = dev->type->uevent(dev, env);
2225 if (retval)
2226 pr_debug("device: '%s': %s: dev_type uevent() "
2227 "returned %d\n", dev_name(dev),
2228 __func__, retval);
2229 }
2230
2231 return retval;
2232}
2233
2234static const struct kset_uevent_ops device_uevent_ops = {
2235 .filter = dev_uevent_filter,
2236 .name = dev_uevent_name,
2237 .uevent = dev_uevent,
2238};
2239
2240static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
2241 char *buf)
2242{
2243 struct kobject *top_kobj;
2244 struct kset *kset;
2245 struct kobj_uevent_env *env = NULL;
2246 int i;
2247 int len = 0;
2248 int retval;
2249
2250 /* search the kset, the device belongs to */
2251 top_kobj = &dev->kobj;
2252 while (!top_kobj->kset && top_kobj->parent)
2253 top_kobj = top_kobj->parent;
2254 if (!top_kobj->kset)
2255 goto out;
2256
2257 kset = top_kobj->kset;
2258 if (!kset->uevent_ops || !kset->uevent_ops->uevent)
2259 goto out;
2260
2261 /* respect filter */
2262 if (kset->uevent_ops && kset->uevent_ops->filter)
2263 if (!kset->uevent_ops->filter(kset, &dev->kobj))
2264 goto out;
2265
2266 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
2267 if (!env)
2268 return -ENOMEM;
2269
2270 /* let the kset specific function add its keys */
2271 retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
2272 if (retval)
2273 goto out;
2274
2275 /* copy keys to file */
2276 for (i = 0; i < env->envp_idx; i++)
2277 len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2278out:
2279 kfree(env);
2280 return len;
2281}
2282
2283static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2284 const char *buf, size_t count)
2285{
2286 int rc;
2287
2288 rc = kobject_synth_uevent(&dev->kobj, buf, count);
2289
2290 if (rc) {
2291 dev_err(dev, "uevent: failed to send synthetic uevent\n");
2292 return rc;
2293 }
2294
2295 return count;
2296}
2297static DEVICE_ATTR_RW(uevent);
2298
2299static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2300 char *buf)
2301{
2302 bool val;
2303
2304 device_lock(dev);
2305 val = !dev->offline;
2306 device_unlock(dev);
2307 return sysfs_emit(buf, "%u\n", val);
2308}
2309
2310static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2311 const char *buf, size_t count)
2312{
2313 bool val;
2314 int ret;
2315
2316 ret = strtobool(buf, &val);
2317 if (ret < 0)
2318 return ret;
2319
2320 ret = lock_device_hotplug_sysfs();
2321 if (ret)
2322 return ret;
2323
2324 ret = val ? device_online(dev) : device_offline(dev);
2325 unlock_device_hotplug();
2326 return ret < 0 ? ret : count;
2327}
2328static DEVICE_ATTR_RW(online);
2329
2330int device_add_groups(struct device *dev, const struct attribute_group **groups)
2331{
2332 return sysfs_create_groups(&dev->kobj, groups);
2333}
2334EXPORT_SYMBOL_GPL(device_add_groups);
2335
2336void device_remove_groups(struct device *dev,
2337 const struct attribute_group **groups)
2338{
2339 sysfs_remove_groups(&dev->kobj, groups);
2340}
2341EXPORT_SYMBOL_GPL(device_remove_groups);
2342
2343union device_attr_group_devres {
2344 const struct attribute_group *group;
2345 const struct attribute_group **groups;
2346};
2347
2348static int devm_attr_group_match(struct device *dev, void *res, void *data)
2349{
2350 return ((union device_attr_group_devres *)res)->group == data;
2351}
2352
2353static void devm_attr_group_remove(struct device *dev, void *res)
2354{
2355 union device_attr_group_devres *devres = res;
2356 const struct attribute_group *group = devres->group;
2357
2358 dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2359 sysfs_remove_group(&dev->kobj, group);
2360}
2361
2362static void devm_attr_groups_remove(struct device *dev, void *res)
2363{
2364 union device_attr_group_devres *devres = res;
2365 const struct attribute_group **groups = devres->groups;
2366
2367 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
2368 sysfs_remove_groups(&dev->kobj, groups);
2369}
2370
2371/**
2372 * devm_device_add_group - given a device, create a managed attribute group
2373 * @dev: The device to create the group for
2374 * @grp: The attribute group to create
2375 *
2376 * This function creates a group for the first time. It will explicitly
2377 * warn and error if any of the attribute files being created already exist.
2378 *
2379 * Returns 0 on success or error code on failure.
2380 */
2381int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2382{
2383 union device_attr_group_devres *devres;
2384 int error;
2385
2386 devres = devres_alloc(devm_attr_group_remove,
2387 sizeof(*devres), GFP_KERNEL);
2388 if (!devres)
2389 return -ENOMEM;
2390
2391 error = sysfs_create_group(&dev->kobj, grp);
2392 if (error) {
2393 devres_free(devres);
2394 return error;
2395 }
2396
2397 devres->group = grp;
2398 devres_add(dev, devres);
2399 return 0;
2400}
2401EXPORT_SYMBOL_GPL(devm_device_add_group);
2402
2403/**
2404 * devm_device_remove_group: remove a managed group from a device
2405 * @dev: device to remove the group from
2406 * @grp: group to remove
2407 *
2408 * This function removes a group of attributes from a device. The attributes
2409 * previously have to have been created for this group, otherwise it will fail.
2410 */
2411void devm_device_remove_group(struct device *dev,
2412 const struct attribute_group *grp)
2413{
2414 WARN_ON(devres_release(dev, devm_attr_group_remove,
2415 devm_attr_group_match,
2416 /* cast away const */ (void *)grp));
2417}
2418EXPORT_SYMBOL_GPL(devm_device_remove_group);
2419
2420/**
2421 * devm_device_add_groups - create a bunch of managed attribute groups
2422 * @dev: The device to create the group for
2423 * @groups: The attribute groups to create, NULL terminated
2424 *
2425 * This function creates a bunch of managed attribute groups. If an error
2426 * occurs when creating a group, all previously created groups will be
2427 * removed, unwinding everything back to the original state when this
2428 * function was called. It will explicitly warn and error if any of the
2429 * attribute files being created already exist.
2430 *
2431 * Returns 0 on success or error code from sysfs_create_group on failure.
2432 */
2433int devm_device_add_groups(struct device *dev,
2434 const struct attribute_group **groups)
2435{
2436 union device_attr_group_devres *devres;
2437 int error;
2438
2439 devres = devres_alloc(devm_attr_groups_remove,
2440 sizeof(*devres), GFP_KERNEL);
2441 if (!devres)
2442 return -ENOMEM;
2443
2444 error = sysfs_create_groups(&dev->kobj, groups);
2445 if (error) {
2446 devres_free(devres);
2447 return error;
2448 }
2449
2450 devres->groups = groups;
2451 devres_add(dev, devres);
2452 return 0;
2453}
2454EXPORT_SYMBOL_GPL(devm_device_add_groups);
2455
2456/**
2457 * devm_device_remove_groups - remove a list of managed groups
2458 *
2459 * @dev: The device for the groups to be removed from
2460 * @groups: NULL terminated list of groups to be removed
2461 *
2462 * If groups is not NULL, remove the specified groups from the device.
2463 */
2464void devm_device_remove_groups(struct device *dev,
2465 const struct attribute_group **groups)
2466{
2467 WARN_ON(devres_release(dev, devm_attr_groups_remove,
2468 devm_attr_group_match,
2469 /* cast away const */ (void *)groups));
2470}
2471EXPORT_SYMBOL_GPL(devm_device_remove_groups);
2472
2473static int device_add_attrs(struct device *dev)
2474{
2475 struct class *class = dev->class;
2476 const struct device_type *type = dev->type;
2477 int error;
2478
2479 if (class) {
2480 error = device_add_groups(dev, class->dev_groups);
2481 if (error)
2482 return error;
2483 }
2484
2485 if (type) {
2486 error = device_add_groups(dev, type->groups);
2487 if (error)
2488 goto err_remove_class_groups;
2489 }
2490
2491 error = device_add_groups(dev, dev->groups);
2492 if (error)
2493 goto err_remove_type_groups;
2494
2495 if (device_supports_offline(dev) && !dev->offline_disabled) {
2496 error = device_create_file(dev, &dev_attr_online);
2497 if (error)
2498 goto err_remove_dev_groups;
2499 }
2500
2501 if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) {
2502 error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2503 if (error)
2504 goto err_remove_dev_online;
2505 }
2506
2507 return 0;
2508
2509 err_remove_dev_online:
2510 device_remove_file(dev, &dev_attr_online);
2511 err_remove_dev_groups:
2512 device_remove_groups(dev, dev->groups);
2513 err_remove_type_groups:
2514 if (type)
2515 device_remove_groups(dev, type->groups);
2516 err_remove_class_groups:
2517 if (class)
2518 device_remove_groups(dev, class->dev_groups);
2519
2520 return error;
2521}
2522
2523static void device_remove_attrs(struct device *dev)
2524{
2525 struct class *class = dev->class;
2526 const struct device_type *type = dev->type;
2527
2528 device_remove_file(dev, &dev_attr_waiting_for_supplier);
2529 device_remove_file(dev, &dev_attr_online);
2530 device_remove_groups(dev, dev->groups);
2531
2532 if (type)
2533 device_remove_groups(dev, type->groups);
2534
2535 if (class)
2536 device_remove_groups(dev, class->dev_groups);
2537}
2538
2539static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2540 char *buf)
2541{
2542 return print_dev_t(buf, dev->devt);
2543}
2544static DEVICE_ATTR_RO(dev);
2545
2546/* /sys/devices/ */
2547struct kset *devices_kset;
2548
2549/**
2550 * devices_kset_move_before - Move device in the devices_kset's list.
2551 * @deva: Device to move.
2552 * @devb: Device @deva should come before.
2553 */
2554static void devices_kset_move_before(struct device *deva, struct device *devb)
2555{
2556 if (!devices_kset)
2557 return;
2558 pr_debug("devices_kset: Moving %s before %s\n",
2559 dev_name(deva), dev_name(devb));
2560 spin_lock(&devices_kset->list_lock);
2561 list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2562 spin_unlock(&devices_kset->list_lock);
2563}
2564
2565/**
2566 * devices_kset_move_after - Move device in the devices_kset's list.
2567 * @deva: Device to move
2568 * @devb: Device @deva should come after.
2569 */
2570static void devices_kset_move_after(struct device *deva, struct device *devb)
2571{
2572 if (!devices_kset)
2573 return;
2574 pr_debug("devices_kset: Moving %s after %s\n",
2575 dev_name(deva), dev_name(devb));
2576 spin_lock(&devices_kset->list_lock);
2577 list_move(&deva->kobj.entry, &devb->kobj.entry);
2578 spin_unlock(&devices_kset->list_lock);
2579}
2580
2581/**
2582 * devices_kset_move_last - move the device to the end of devices_kset's list.
2583 * @dev: device to move
2584 */
2585void devices_kset_move_last(struct device *dev)
2586{
2587 if (!devices_kset)
2588 return;
2589 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
2590 spin_lock(&devices_kset->list_lock);
2591 list_move_tail(&dev->kobj.entry, &devices_kset->list);
2592 spin_unlock(&devices_kset->list_lock);
2593}
2594
2595/**
2596 * device_create_file - create sysfs attribute file for device.
2597 * @dev: device.
2598 * @attr: device attribute descriptor.
2599 */
2600int device_create_file(struct device *dev,
2601 const struct device_attribute *attr)
2602{
2603 int error = 0;
2604
2605 if (dev) {
2606 WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
2607 "Attribute %s: write permission without 'store'\n",
2608 attr->attr.name);
2609 WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
2610 "Attribute %s: read permission without 'show'\n",
2611 attr->attr.name);
2612 error = sysfs_create_file(&dev->kobj, &attr->attr);
2613 }
2614
2615 return error;
2616}
2617EXPORT_SYMBOL_GPL(device_create_file);
2618
2619/**
2620 * device_remove_file - remove sysfs attribute file.
2621 * @dev: device.
2622 * @attr: device attribute descriptor.
2623 */
2624void device_remove_file(struct device *dev,
2625 const struct device_attribute *attr)
2626{
2627 if (dev)
2628 sysfs_remove_file(&dev->kobj, &attr->attr);
2629}
2630EXPORT_SYMBOL_GPL(device_remove_file);
2631
2632/**
2633 * device_remove_file_self - remove sysfs attribute file from its own method.
2634 * @dev: device.
2635 * @attr: device attribute descriptor.
2636 *
2637 * See kernfs_remove_self() for details.
2638 */
2639bool device_remove_file_self(struct device *dev,
2640 const struct device_attribute *attr)
2641{
2642 if (dev)
2643 return sysfs_remove_file_self(&dev->kobj, &attr->attr);
2644 else
2645 return false;
2646}
2647EXPORT_SYMBOL_GPL(device_remove_file_self);
2648
2649/**
2650 * device_create_bin_file - create sysfs binary attribute file for device.
2651 * @dev: device.
2652 * @attr: device binary attribute descriptor.
2653 */
2654int device_create_bin_file(struct device *dev,
2655 const struct bin_attribute *attr)
2656{
2657 int error = -EINVAL;
2658 if (dev)
2659 error = sysfs_create_bin_file(&dev->kobj, attr);
2660 return error;
2661}
2662EXPORT_SYMBOL_GPL(device_create_bin_file);
2663
2664/**
2665 * device_remove_bin_file - remove sysfs binary attribute file
2666 * @dev: device.
2667 * @attr: device binary attribute descriptor.
2668 */
2669void device_remove_bin_file(struct device *dev,
2670 const struct bin_attribute *attr)
2671{
2672 if (dev)
2673 sysfs_remove_bin_file(&dev->kobj, attr);
2674}
2675EXPORT_SYMBOL_GPL(device_remove_bin_file);
2676
2677static void klist_children_get(struct klist_node *n)
2678{
2679 struct device_private *p = to_device_private_parent(n);
2680 struct device *dev = p->device;
2681
2682 get_device(dev);
2683}
2684
2685static void klist_children_put(struct klist_node *n)
2686{
2687 struct device_private *p = to_device_private_parent(n);
2688 struct device *dev = p->device;
2689
2690 put_device(dev);
2691}
2692
2693/**
2694 * device_initialize - init device structure.
2695 * @dev: device.
2696 *
2697 * This prepares the device for use by other layers by initializing
2698 * its fields.
2699 * It is the first half of device_register(), if called by
2700 * that function, though it can also be called separately, so one
2701 * may use @dev's fields. In particular, get_device()/put_device()
2702 * may be used for reference counting of @dev after calling this
2703 * function.
2704 *
2705 * All fields in @dev must be initialized by the caller to 0, except
2706 * for those explicitly set to some other value. The simplest
2707 * approach is to use kzalloc() to allocate the structure containing
2708 * @dev.
2709 *
2710 * NOTE: Use put_device() to give up your reference instead of freeing
2711 * @dev directly once you have called this function.
2712 */
2713void device_initialize(struct device *dev)
2714{
2715 dev->kobj.kset = devices_kset;
2716 kobject_init(&dev->kobj, &device_ktype);
2717 INIT_LIST_HEAD(&dev->dma_pools);
2718 mutex_init(&dev->mutex);
2719#ifdef CONFIG_PROVE_LOCKING
2720 mutex_init(&dev->lockdep_mutex);
2721#endif
2722 lockdep_set_novalidate_class(&dev->mutex);
2723 spin_lock_init(&dev->devres_lock);
2724 INIT_LIST_HEAD(&dev->devres_head);
2725 device_pm_init(dev);
2726 set_dev_node(dev, -1);
2727#ifdef CONFIG_GENERIC_MSI_IRQ
2728 INIT_LIST_HEAD(&dev->msi_list);
2729#endif
2730 INIT_LIST_HEAD(&dev->links.consumers);
2731 INIT_LIST_HEAD(&dev->links.suppliers);
2732 INIT_LIST_HEAD(&dev->links.defer_sync);
2733 dev->links.status = DL_DEV_NO_DRIVER;
2734#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
2735 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
2736 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
2737 dev->dma_coherent = dma_default_coherent;
2738#endif
2739}
2740EXPORT_SYMBOL_GPL(device_initialize);
2741
2742struct kobject *virtual_device_parent(struct device *dev)
2743{
2744 static struct kobject *virtual_dir = NULL;
2745
2746 if (!virtual_dir)
2747 virtual_dir = kobject_create_and_add("virtual",
2748 &devices_kset->kobj);
2749
2750 return virtual_dir;
2751}
2752
2753struct class_dir {
2754 struct kobject kobj;
2755 struct class *class;
2756};
2757
2758#define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
2759
2760static void class_dir_release(struct kobject *kobj)
2761{
2762 struct class_dir *dir = to_class_dir(kobj);
2763 kfree(dir);
2764}
2765
2766static const
2767struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
2768{
2769 struct class_dir *dir = to_class_dir(kobj);
2770 return dir->class->ns_type;
2771}
2772
2773static struct kobj_type class_dir_ktype = {
2774 .release = class_dir_release,
2775 .sysfs_ops = &kobj_sysfs_ops,
2776 .child_ns_type = class_dir_child_ns_type
2777};
2778
2779static struct kobject *
2780class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
2781{
2782 struct class_dir *dir;
2783 int retval;
2784
2785 dir = kzalloc(sizeof(*dir), GFP_KERNEL);
2786 if (!dir)
2787 return ERR_PTR(-ENOMEM);
2788
2789 dir->class = class;
2790 kobject_init(&dir->kobj, &class_dir_ktype);
2791
2792 dir->kobj.kset = &class->p->glue_dirs;
2793
2794 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
2795 if (retval < 0) {
2796 kobject_put(&dir->kobj);
2797 return ERR_PTR(retval);
2798 }
2799 return &dir->kobj;
2800}
2801
2802static DEFINE_MUTEX(gdp_mutex);
2803
2804static struct kobject *get_device_parent(struct device *dev,
2805 struct device *parent)
2806{
2807 if (dev->class) {
2808 struct kobject *kobj = NULL;
2809 struct kobject *parent_kobj;
2810 struct kobject *k;
2811
2812#ifdef CONFIG_BLOCK
2813 /* block disks show up in /sys/block */
2814 if (sysfs_deprecated && dev->class == &block_class) {
2815 if (parent && parent->class == &block_class)
2816 return &parent->kobj;
2817 return &block_class.p->subsys.kobj;
2818 }
2819#endif
2820
2821 /*
2822 * If we have no parent, we live in "virtual".
2823 * Class-devices with a non class-device as parent, live
2824 * in a "glue" directory to prevent namespace collisions.
2825 */
2826 if (parent == NULL)
2827 parent_kobj = virtual_device_parent(dev);
2828 else if (parent->class && !dev->class->ns_type)
2829 return &parent->kobj;
2830 else
2831 parent_kobj = &parent->kobj;
2832
2833 mutex_lock(&gdp_mutex);
2834
2835 /* find our class-directory at the parent and reference it */
2836 spin_lock(&dev->class->p->glue_dirs.list_lock);
2837 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
2838 if (k->parent == parent_kobj) {
2839 kobj = kobject_get(k);
2840 break;
2841 }
2842 spin_unlock(&dev->class->p->glue_dirs.list_lock);
2843 if (kobj) {
2844 mutex_unlock(&gdp_mutex);
2845 return kobj;
2846 }
2847
2848 /* or create a new class-directory at the parent device */
2849 k = class_dir_create_and_add(dev->class, parent_kobj);
2850 /* do not emit an uevent for this simple "glue" directory */
2851 mutex_unlock(&gdp_mutex);
2852 return k;
2853 }
2854
2855 /* subsystems can specify a default root directory for their devices */
2856 if (!parent && dev->bus && dev->bus->dev_root)
2857 return &dev->bus->dev_root->kobj;
2858
2859 if (parent)
2860 return &parent->kobj;
2861 return NULL;
2862}
2863
2864static inline bool live_in_glue_dir(struct kobject *kobj,
2865 struct device *dev)
2866{
2867 if (!kobj || !dev->class ||
2868 kobj->kset != &dev->class->p->glue_dirs)
2869 return false;
2870 return true;
2871}
2872
2873static inline struct kobject *get_glue_dir(struct device *dev)
2874{
2875 return dev->kobj.parent;
2876}
2877
2878/*
2879 * make sure cleaning up dir as the last step, we need to make
2880 * sure .release handler of kobject is run with holding the
2881 * global lock
2882 */
2883static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
2884{
2885 unsigned int ref;
2886
2887 /* see if we live in a "glue" directory */
2888 if (!live_in_glue_dir(glue_dir, dev))
2889 return;
2890
2891 mutex_lock(&gdp_mutex);
2892 /**
2893 * There is a race condition between removing glue directory
2894 * and adding a new device under the glue directory.
2895 *
2896 * CPU1: CPU2:
2897 *
2898 * device_add()
2899 * get_device_parent()
2900 * class_dir_create_and_add()
2901 * kobject_add_internal()
2902 * create_dir() // create glue_dir
2903 *
2904 * device_add()
2905 * get_device_parent()
2906 * kobject_get() // get glue_dir
2907 *
2908 * device_del()
2909 * cleanup_glue_dir()
2910 * kobject_del(glue_dir)
2911 *
2912 * kobject_add()
2913 * kobject_add_internal()
2914 * create_dir() // in glue_dir
2915 * sysfs_create_dir_ns()
2916 * kernfs_create_dir_ns(sd)
2917 *
2918 * sysfs_remove_dir() // glue_dir->sd=NULL
2919 * sysfs_put() // free glue_dir->sd
2920 *
2921 * // sd is freed
2922 * kernfs_new_node(sd)
2923 * kernfs_get(glue_dir)
2924 * kernfs_add_one()
2925 * kernfs_put()
2926 *
2927 * Before CPU1 remove last child device under glue dir, if CPU2 add
2928 * a new device under glue dir, the glue_dir kobject reference count
2929 * will be increase to 2 in kobject_get(k). And CPU2 has been called
2930 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
2931 * and sysfs_put(). This result in glue_dir->sd is freed.
2932 *
2933 * Then the CPU2 will see a stale "empty" but still potentially used
2934 * glue dir around in kernfs_new_node().
2935 *
2936 * In order to avoid this happening, we also should make sure that
2937 * kernfs_node for glue_dir is released in CPU1 only when refcount
2938 * for glue_dir kobj is 1.
2939 */
2940 ref = kref_read(&glue_dir->kref);
2941 if (!kobject_has_children(glue_dir) && !--ref)
2942 kobject_del(glue_dir);
2943 kobject_put(glue_dir);
2944 mutex_unlock(&gdp_mutex);
2945}
2946
2947static int device_add_class_symlinks(struct device *dev)
2948{
2949 struct device_node *of_node = dev_of_node(dev);
2950 int error;
2951
2952 if (of_node) {
2953 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
2954 if (error)
2955 dev_warn(dev, "Error %d creating of_node link\n",error);
2956 /* An error here doesn't warrant bringing down the device */
2957 }
2958
2959 if (!dev->class)
2960 return 0;
2961
2962 error = sysfs_create_link(&dev->kobj,
2963 &dev->class->p->subsys.kobj,
2964 "subsystem");
2965 if (error)
2966 goto out_devnode;
2967
2968 if (dev->parent && device_is_not_partition(dev)) {
2969 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
2970 "device");
2971 if (error)
2972 goto out_subsys;
2973 }
2974
2975#ifdef CONFIG_BLOCK
2976 /* /sys/block has directories and does not need symlinks */
2977 if (sysfs_deprecated && dev->class == &block_class)
2978 return 0;
2979#endif
2980
2981 /* link in the class directory pointing to the device */
2982 error = sysfs_create_link(&dev->class->p->subsys.kobj,
2983 &dev->kobj, dev_name(dev));
2984 if (error)
2985 goto out_device;
2986
2987 return 0;
2988
2989out_device:
2990 sysfs_remove_link(&dev->kobj, "device");
2991
2992out_subsys:
2993 sysfs_remove_link(&dev->kobj, "subsystem");
2994out_devnode:
2995 sysfs_remove_link(&dev->kobj, "of_node");
2996 return error;
2997}
2998
2999static void device_remove_class_symlinks(struct device *dev)
3000{
3001 if (dev_of_node(dev))
3002 sysfs_remove_link(&dev->kobj, "of_node");
3003
3004 if (!dev->class)
3005 return;
3006
3007 if (dev->parent && device_is_not_partition(dev))
3008 sysfs_remove_link(&dev->kobj, "device");
3009 sysfs_remove_link(&dev->kobj, "subsystem");
3010#ifdef CONFIG_BLOCK
3011 if (sysfs_deprecated && dev->class == &block_class)
3012 return;
3013#endif
3014 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
3015}
3016
3017/**
3018 * dev_set_name - set a device name
3019 * @dev: device
3020 * @fmt: format string for the device's name
3021 */
3022int dev_set_name(struct device *dev, const char *fmt, ...)
3023{
3024 va_list vargs;
3025 int err;
3026
3027 va_start(vargs, fmt);
3028 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
3029 va_end(vargs);
3030 return err;
3031}
3032EXPORT_SYMBOL_GPL(dev_set_name);
3033
3034/**
3035 * device_to_dev_kobj - select a /sys/dev/ directory for the device
3036 * @dev: device
3037 *
3038 * By default we select char/ for new entries. Setting class->dev_obj
3039 * to NULL prevents an entry from being created. class->dev_kobj must
3040 * be set (or cleared) before any devices are registered to the class
3041 * otherwise device_create_sys_dev_entry() and
3042 * device_remove_sys_dev_entry() will disagree about the presence of
3043 * the link.
3044 */
3045static struct kobject *device_to_dev_kobj(struct device *dev)
3046{
3047 struct kobject *kobj;
3048
3049 if (dev->class)
3050 kobj = dev->class->dev_kobj;
3051 else
3052 kobj = sysfs_dev_char_kobj;
3053
3054 return kobj;
3055}
3056
3057static int device_create_sys_dev_entry(struct device *dev)
3058{
3059 struct kobject *kobj = device_to_dev_kobj(dev);
3060 int error = 0;
3061 char devt_str[15];
3062
3063 if (kobj) {
3064 format_dev_t(devt_str, dev->devt);
3065 error = sysfs_create_link(kobj, &dev->kobj, devt_str);
3066 }
3067
3068 return error;
3069}
3070
3071static void device_remove_sys_dev_entry(struct device *dev)
3072{
3073 struct kobject *kobj = device_to_dev_kobj(dev);
3074 char devt_str[15];
3075
3076 if (kobj) {
3077 format_dev_t(devt_str, dev->devt);
3078 sysfs_remove_link(kobj, devt_str);
3079 }
3080}
3081
3082static int device_private_init(struct device *dev)
3083{
3084 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
3085 if (!dev->p)
3086 return -ENOMEM;
3087 dev->p->device = dev;
3088 klist_init(&dev->p->klist_children, klist_children_get,
3089 klist_children_put);
3090 INIT_LIST_HEAD(&dev->p->deferred_probe);
3091 return 0;
3092}
3093
3094/**
3095 * device_add - add device to device hierarchy.
3096 * @dev: device.
3097 *
3098 * This is part 2 of device_register(), though may be called
3099 * separately _iff_ device_initialize() has been called separately.
3100 *
3101 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
3102 * to the global and sibling lists for the device, then
3103 * adds it to the other relevant subsystems of the driver model.
3104 *
3105 * Do not call this routine or device_register() more than once for
3106 * any device structure. The driver model core is not designed to work
3107 * with devices that get unregistered and then spring back to life.
3108 * (Among other things, it's very hard to guarantee that all references
3109 * to the previous incarnation of @dev have been dropped.) Allocate
3110 * and register a fresh new struct device instead.
3111 *
3112 * NOTE: _Never_ directly free @dev after calling this function, even
3113 * if it returned an error! Always use put_device() to give up your
3114 * reference instead.
3115 *
3116 * Rule of thumb is: if device_add() succeeds, you should call
3117 * device_del() when you want to get rid of it. If device_add() has
3118 * *not* succeeded, use *only* put_device() to drop the reference
3119 * count.
3120 */
3121int device_add(struct device *dev)
3122{
3123 struct device *parent;
3124 struct kobject *kobj;
3125 struct class_interface *class_intf;
3126 int error = -EINVAL;
3127 struct kobject *glue_dir = NULL;
3128
3129 dev = get_device(dev);
3130 if (!dev)
3131 goto done;
3132
3133 if (!dev->p) {
3134 error = device_private_init(dev);
3135 if (error)
3136 goto done;
3137 }
3138
3139 /*
3140 * for statically allocated devices, which should all be converted
3141 * some day, we need to initialize the name. We prevent reading back
3142 * the name, and force the use of dev_name()
3143 */
3144 if (dev->init_name) {
3145 dev_set_name(dev, "%s", dev->init_name);
3146 dev->init_name = NULL;
3147 }
3148
3149 /* subsystems can specify simple device enumeration */
3150 if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
3151 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
3152
3153 if (!dev_name(dev)) {
3154 error = -EINVAL;
3155 goto name_error;
3156 }
3157
3158 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3159
3160 parent = get_device(dev->parent);
3161 kobj = get_device_parent(dev, parent);
3162 if (IS_ERR(kobj)) {
3163 error = PTR_ERR(kobj);
3164 goto parent_error;
3165 }
3166 if (kobj)
3167 dev->kobj.parent = kobj;
3168
3169 /* use parent numa_node */
3170 if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
3171 set_dev_node(dev, dev_to_node(parent));
3172
3173 /* first, register with generic layer. */
3174 /* we require the name to be set before, and pass NULL */
3175 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
3176 if (error) {
3177 glue_dir = get_glue_dir(dev);
3178 goto Error;
3179 }
3180
3181 /* notify platform of device entry */
3182 error = device_platform_notify(dev, KOBJ_ADD);
3183 if (error)
3184 goto platform_error;
3185
3186 error = device_create_file(dev, &dev_attr_uevent);
3187 if (error)
3188 goto attrError;
3189
3190 error = device_add_class_symlinks(dev);
3191 if (error)
3192 goto SymlinkError;
3193 error = device_add_attrs(dev);
3194 if (error)
3195 goto AttrsError;
3196 error = bus_add_device(dev);
3197 if (error)
3198 goto BusError;
3199 error = dpm_sysfs_add(dev);
3200 if (error)
3201 goto DPMError;
3202 device_pm_add(dev);
3203
3204 if (MAJOR(dev->devt)) {
3205 error = device_create_file(dev, &dev_attr_dev);
3206 if (error)
3207 goto DevAttrError;
3208
3209 error = device_create_sys_dev_entry(dev);
3210 if (error)
3211 goto SysEntryError;
3212
3213 devtmpfs_create_node(dev);
3214 }
3215
3216 /* Notify clients of device addition. This call must come
3217 * after dpm_sysfs_add() and before kobject_uevent().
3218 */
3219 if (dev->bus)
3220 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3221 BUS_NOTIFY_ADD_DEVICE, dev);
3222
3223 kobject_uevent(&dev->kobj, KOBJ_ADD);
3224
3225 /*
3226 * Check if any of the other devices (consumers) have been waiting for
3227 * this device (supplier) to be added so that they can create a device
3228 * link to it.
3229 *
3230 * This needs to happen after device_pm_add() because device_link_add()
3231 * requires the supplier be registered before it's called.
3232 *
3233 * But this also needs to happen before bus_probe_device() to make sure
3234 * waiting consumers can link to it before the driver is bound to the
3235 * device and the driver sync_state callback is called for this device.
3236 */
3237 if (dev->fwnode && !dev->fwnode->dev) {
3238 dev->fwnode->dev = dev;
3239 fw_devlink_link_device(dev);
3240 }
3241
3242 bus_probe_device(dev);
3243 if (parent)
3244 klist_add_tail(&dev->p->knode_parent,
3245 &parent->p->klist_children);
3246
3247 if (dev->class) {
3248 mutex_lock(&dev->class->p->mutex);
3249 /* tie the class to the device */
3250 klist_add_tail(&dev->p->knode_class,
3251 &dev->class->p->klist_devices);
3252
3253 /* notify any interfaces that the device is here */
3254 list_for_each_entry(class_intf,
3255 &dev->class->p->interfaces, node)
3256 if (class_intf->add_dev)
3257 class_intf->add_dev(dev, class_intf);
3258 mutex_unlock(&dev->class->p->mutex);
3259 }
3260done:
3261 put_device(dev);
3262 return error;
3263 SysEntryError:
3264 if (MAJOR(dev->devt))
3265 device_remove_file(dev, &dev_attr_dev);
3266 DevAttrError:
3267 device_pm_remove(dev);
3268 dpm_sysfs_remove(dev);
3269 DPMError:
3270 bus_remove_device(dev);
3271 BusError:
3272 device_remove_attrs(dev);
3273 AttrsError:
3274 device_remove_class_symlinks(dev);
3275 SymlinkError:
3276 device_remove_file(dev, &dev_attr_uevent);
3277 attrError:
3278 device_platform_notify(dev, KOBJ_REMOVE);
3279platform_error:
3280 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3281 glue_dir = get_glue_dir(dev);
3282 kobject_del(&dev->kobj);
3283 Error:
3284 cleanup_glue_dir(dev, glue_dir);
3285parent_error:
3286 put_device(parent);
3287name_error:
3288 kfree(dev->p);
3289 dev->p = NULL;
3290 goto done;
3291}
3292EXPORT_SYMBOL_GPL(device_add);
3293
3294/**
3295 * device_register - register a device with the system.
3296 * @dev: pointer to the device structure
3297 *
3298 * This happens in two clean steps - initialize the device
3299 * and add it to the system. The two steps can be called
3300 * separately, but this is the easiest and most common.
3301 * I.e. you should only call the two helpers separately if
3302 * have a clearly defined need to use and refcount the device
3303 * before it is added to the hierarchy.
3304 *
3305 * For more information, see the kerneldoc for device_initialize()
3306 * and device_add().
3307 *
3308 * NOTE: _Never_ directly free @dev after calling this function, even
3309 * if it returned an error! Always use put_device() to give up the
3310 * reference initialized in this function instead.
3311 */
3312int device_register(struct device *dev)
3313{
3314 device_initialize(dev);
3315 return device_add(dev);
3316}
3317EXPORT_SYMBOL_GPL(device_register);
3318
3319/**
3320 * get_device - increment reference count for device.
3321 * @dev: device.
3322 *
3323 * This simply forwards the call to kobject_get(), though
3324 * we do take care to provide for the case that we get a NULL
3325 * pointer passed in.
3326 */
3327struct device *get_device(struct device *dev)
3328{
3329 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3330}
3331EXPORT_SYMBOL_GPL(get_device);
3332
3333/**
3334 * put_device - decrement reference count.
3335 * @dev: device in question.
3336 */
3337void put_device(struct device *dev)
3338{
3339 /* might_sleep(); */
3340 if (dev)
3341 kobject_put(&dev->kobj);
3342}
3343EXPORT_SYMBOL_GPL(put_device);
3344
3345bool kill_device(struct device *dev)
3346{
3347 /*
3348 * Require the device lock and set the "dead" flag to guarantee that
3349 * the update behavior is consistent with the other bitfields near
3350 * it and that we cannot have an asynchronous probe routine trying
3351 * to run while we are tearing out the bus/class/sysfs from
3352 * underneath the device.
3353 */
3354 lockdep_assert_held(&dev->mutex);
3355
3356 if (dev->p->dead)
3357 return false;
3358 dev->p->dead = true;
3359 return true;
3360}
3361EXPORT_SYMBOL_GPL(kill_device);
3362
3363/**
3364 * device_del - delete device from system.
3365 * @dev: device.
3366 *
3367 * This is the first part of the device unregistration
3368 * sequence. This removes the device from the lists we control
3369 * from here, has it removed from the other driver model
3370 * subsystems it was added to in device_add(), and removes it
3371 * from the kobject hierarchy.
3372 *
3373 * NOTE: this should be called manually _iff_ device_add() was
3374 * also called manually.
3375 */
3376void device_del(struct device *dev)
3377{
3378 struct device *parent = dev->parent;
3379 struct kobject *glue_dir = NULL;
3380 struct class_interface *class_intf;
3381 unsigned int noio_flag;
3382
3383 device_lock(dev);
3384 kill_device(dev);
3385 device_unlock(dev);
3386
3387 if (dev->fwnode && dev->fwnode->dev == dev)
3388 dev->fwnode->dev = NULL;
3389
3390 /* Notify clients of device removal. This call must come
3391 * before dpm_sysfs_remove().
3392 */
3393 noio_flag = memalloc_noio_save();
3394 if (dev->bus)
3395 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3396 BUS_NOTIFY_DEL_DEVICE, dev);
3397
3398 dpm_sysfs_remove(dev);
3399 if (parent)
3400 klist_del(&dev->p->knode_parent);
3401 if (MAJOR(dev->devt)) {
3402 devtmpfs_delete_node(dev);
3403 device_remove_sys_dev_entry(dev);
3404 device_remove_file(dev, &dev_attr_dev);
3405 }
3406 if (dev->class) {
3407 device_remove_class_symlinks(dev);
3408
3409 mutex_lock(&dev->class->p->mutex);
3410 /* notify any interfaces that the device is now gone */
3411 list_for_each_entry(class_intf,
3412 &dev->class->p->interfaces, node)
3413 if (class_intf->remove_dev)
3414 class_intf->remove_dev(dev, class_intf);
3415 /* remove the device from the class list */
3416 klist_del(&dev->p->knode_class);
3417 mutex_unlock(&dev->class->p->mutex);
3418 }
3419 device_remove_file(dev, &dev_attr_uevent);
3420 device_remove_attrs(dev);
3421 bus_remove_device(dev);
3422 device_pm_remove(dev);
3423 driver_deferred_probe_del(dev);
3424 device_platform_notify(dev, KOBJ_REMOVE);
3425 device_remove_properties(dev);
3426 device_links_purge(dev);
3427
3428 if (dev->bus)
3429 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3430 BUS_NOTIFY_REMOVED_DEVICE, dev);
3431 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3432 glue_dir = get_glue_dir(dev);
3433 kobject_del(&dev->kobj);
3434 cleanup_glue_dir(dev, glue_dir);
3435 memalloc_noio_restore(noio_flag);
3436 put_device(parent);
3437}
3438EXPORT_SYMBOL_GPL(device_del);
3439
3440/**
3441 * device_unregister - unregister device from system.
3442 * @dev: device going away.
3443 *
3444 * We do this in two parts, like we do device_register(). First,
3445 * we remove it from all the subsystems with device_del(), then
3446 * we decrement the reference count via put_device(). If that
3447 * is the final reference count, the device will be cleaned up
3448 * via device_release() above. Otherwise, the structure will
3449 * stick around until the final reference to the device is dropped.
3450 */
3451void device_unregister(struct device *dev)
3452{
3453 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3454 device_del(dev);
3455 put_device(dev);
3456}
3457EXPORT_SYMBOL_GPL(device_unregister);
3458
3459static struct device *prev_device(struct klist_iter *i)
3460{
3461 struct klist_node *n = klist_prev(i);
3462 struct device *dev = NULL;
3463 struct device_private *p;
3464
3465 if (n) {
3466 p = to_device_private_parent(n);
3467 dev = p->device;
3468 }
3469 return dev;
3470}
3471
3472static struct device *next_device(struct klist_iter *i)
3473{
3474 struct klist_node *n = klist_next(i);
3475 struct device *dev = NULL;
3476 struct device_private *p;
3477
3478 if (n) {
3479 p = to_device_private_parent(n);
3480 dev = p->device;
3481 }
3482 return dev;
3483}
3484
3485/**
3486 * device_get_devnode - path of device node file
3487 * @dev: device
3488 * @mode: returned file access mode
3489 * @uid: returned file owner
3490 * @gid: returned file group
3491 * @tmp: possibly allocated string
3492 *
3493 * Return the relative path of a possible device node.
3494 * Non-default names may need to allocate a memory to compose
3495 * a name. This memory is returned in tmp and needs to be
3496 * freed by the caller.
3497 */
3498const char *device_get_devnode(struct device *dev,
3499 umode_t *mode, kuid_t *uid, kgid_t *gid,
3500 const char **tmp)
3501{
3502 char *s;
3503
3504 *tmp = NULL;
3505
3506 /* the device type may provide a specific name */
3507 if (dev->type && dev->type->devnode)
3508 *tmp = dev->type->devnode(dev, mode, uid, gid);
3509 if (*tmp)
3510 return *tmp;
3511
3512 /* the class may provide a specific name */
3513 if (dev->class && dev->class->devnode)
3514 *tmp = dev->class->devnode(dev, mode);
3515 if (*tmp)
3516 return *tmp;
3517
3518 /* return name without allocation, tmp == NULL */
3519 if (strchr(dev_name(dev), '!') == NULL)
3520 return dev_name(dev);
3521
3522 /* replace '!' in the name with '/' */
3523 s = kstrdup(dev_name(dev), GFP_KERNEL);
3524 if (!s)
3525 return NULL;
3526 strreplace(s, '!', '/');
3527 return *tmp = s;
3528}
3529
3530/**
3531 * device_for_each_child - device child iterator.
3532 * @parent: parent struct device.
3533 * @fn: function to be called for each device.
3534 * @data: data for the callback.
3535 *
3536 * Iterate over @parent's child devices, and call @fn for each,
3537 * passing it @data.
3538 *
3539 * We check the return of @fn each time. If it returns anything
3540 * other than 0, we break out and return that value.
3541 */
3542int device_for_each_child(struct device *parent, void *data,
3543 int (*fn)(struct device *dev, void *data))
3544{
3545 struct klist_iter i;
3546 struct device *child;
3547 int error = 0;
3548
3549 if (!parent->p)
3550 return 0;
3551
3552 klist_iter_init(&parent->p->klist_children, &i);
3553 while (!error && (child = next_device(&i)))
3554 error = fn(child, data);
3555 klist_iter_exit(&i);
3556 return error;
3557}
3558EXPORT_SYMBOL_GPL(device_for_each_child);
3559
3560/**
3561 * device_for_each_child_reverse - device child iterator in reversed order.
3562 * @parent: parent struct device.
3563 * @fn: function to be called for each device.
3564 * @data: data for the callback.
3565 *
3566 * Iterate over @parent's child devices, and call @fn for each,
3567 * passing it @data.
3568 *
3569 * We check the return of @fn each time. If it returns anything
3570 * other than 0, we break out and return that value.
3571 */
3572int device_for_each_child_reverse(struct device *parent, void *data,
3573 int (*fn)(struct device *dev, void *data))
3574{
3575 struct klist_iter i;
3576 struct device *child;
3577 int error = 0;
3578
3579 if (!parent->p)
3580 return 0;
3581
3582 klist_iter_init(&parent->p->klist_children, &i);
3583 while ((child = prev_device(&i)) && !error)
3584 error = fn(child, data);
3585 klist_iter_exit(&i);
3586 return error;
3587}
3588EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
3589
3590/**
3591 * device_find_child - device iterator for locating a particular device.
3592 * @parent: parent struct device
3593 * @match: Callback function to check device
3594 * @data: Data to pass to match function
3595 *
3596 * This is similar to the device_for_each_child() function above, but it
3597 * returns a reference to a device that is 'found' for later use, as
3598 * determined by the @match callback.
3599 *
3600 * The callback should return 0 if the device doesn't match and non-zero
3601 * if it does. If the callback returns non-zero and a reference to the
3602 * current device can be obtained, this function will return to the caller
3603 * and not iterate over any more devices.
3604 *
3605 * NOTE: you will need to drop the reference with put_device() after use.
3606 */
3607struct device *device_find_child(struct device *parent, void *data,
3608 int (*match)(struct device *dev, void *data))
3609{
3610 struct klist_iter i;
3611 struct device *child;
3612
3613 if (!parent)
3614 return NULL;
3615
3616 klist_iter_init(&parent->p->klist_children, &i);
3617 while ((child = next_device(&i)))
3618 if (match(child, data) && get_device(child))
3619 break;
3620 klist_iter_exit(&i);
3621 return child;
3622}
3623EXPORT_SYMBOL_GPL(device_find_child);
3624
3625/**
3626 * device_find_child_by_name - device iterator for locating a child device.
3627 * @parent: parent struct device
3628 * @name: name of the child device
3629 *
3630 * This is similar to the device_find_child() function above, but it
3631 * returns a reference to a device that has the name @name.
3632 *
3633 * NOTE: you will need to drop the reference with put_device() after use.
3634 */
3635struct device *device_find_child_by_name(struct device *parent,
3636 const char *name)
3637{
3638 struct klist_iter i;
3639 struct device *child;
3640
3641 if (!parent)
3642 return NULL;
3643
3644 klist_iter_init(&parent->p->klist_children, &i);
3645 while ((child = next_device(&i)))
3646 if (sysfs_streq(dev_name(child), name) && get_device(child))
3647 break;
3648 klist_iter_exit(&i);
3649 return child;
3650}
3651EXPORT_SYMBOL_GPL(device_find_child_by_name);
3652
3653int __init devices_init(void)
3654{
3655 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
3656 if (!devices_kset)
3657 return -ENOMEM;
3658 dev_kobj = kobject_create_and_add("dev", NULL);
3659 if (!dev_kobj)
3660 goto dev_kobj_err;
3661 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
3662 if (!sysfs_dev_block_kobj)
3663 goto block_kobj_err;
3664 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
3665 if (!sysfs_dev_char_kobj)
3666 goto char_kobj_err;
3667
3668 return 0;
3669
3670 char_kobj_err:
3671 kobject_put(sysfs_dev_block_kobj);
3672 block_kobj_err:
3673 kobject_put(dev_kobj);
3674 dev_kobj_err:
3675 kset_unregister(devices_kset);
3676 return -ENOMEM;
3677}
3678
3679static int device_check_offline(struct device *dev, void *not_used)
3680{
3681 int ret;
3682
3683 ret = device_for_each_child(dev, NULL, device_check_offline);
3684 if (ret)
3685 return ret;
3686
3687 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
3688}
3689
3690/**
3691 * device_offline - Prepare the device for hot-removal.
3692 * @dev: Device to be put offline.
3693 *
3694 * Execute the device bus type's .offline() callback, if present, to prepare
3695 * the device for a subsequent hot-removal. If that succeeds, the device must
3696 * not be used until either it is removed or its bus type's .online() callback
3697 * is executed.
3698 *
3699 * Call under device_hotplug_lock.
3700 */
3701int device_offline(struct device *dev)
3702{
3703 int ret;
3704
3705 if (dev->offline_disabled)
3706 return -EPERM;
3707
3708 ret = device_for_each_child(dev, NULL, device_check_offline);
3709 if (ret)
3710 return ret;
3711
3712 device_lock(dev);
3713 if (device_supports_offline(dev)) {
3714 if (dev->offline) {
3715 ret = 1;
3716 } else {
3717 ret = dev->bus->offline(dev);
3718 if (!ret) {
3719 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
3720 dev->offline = true;
3721 }
3722 }
3723 }
3724 device_unlock(dev);
3725
3726 return ret;
3727}
3728
3729/**
3730 * device_online - Put the device back online after successful device_offline().
3731 * @dev: Device to be put back online.
3732 *
3733 * If device_offline() has been successfully executed for @dev, but the device
3734 * has not been removed subsequently, execute its bus type's .online() callback
3735 * to indicate that the device can be used again.
3736 *
3737 * Call under device_hotplug_lock.
3738 */
3739int device_online(struct device *dev)
3740{
3741 int ret = 0;
3742
3743 device_lock(dev);
3744 if (device_supports_offline(dev)) {
3745 if (dev->offline) {
3746 ret = dev->bus->online(dev);
3747 if (!ret) {
3748 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
3749 dev->offline = false;
3750 }
3751 } else {
3752 ret = 1;
3753 }
3754 }
3755 device_unlock(dev);
3756
3757 return ret;
3758}
3759
3760struct root_device {
3761 struct device dev;
3762 struct module *owner;
3763};
3764
3765static inline struct root_device *to_root_device(struct device *d)
3766{
3767 return container_of(d, struct root_device, dev);
3768}
3769
3770static void root_device_release(struct device *dev)
3771{
3772 kfree(to_root_device(dev));
3773}
3774
3775/**
3776 * __root_device_register - allocate and register a root device
3777 * @name: root device name
3778 * @owner: owner module of the root device, usually THIS_MODULE
3779 *
3780 * This function allocates a root device and registers it
3781 * using device_register(). In order to free the returned
3782 * device, use root_device_unregister().
3783 *
3784 * Root devices are dummy devices which allow other devices
3785 * to be grouped under /sys/devices. Use this function to
3786 * allocate a root device and then use it as the parent of
3787 * any device which should appear under /sys/devices/{name}
3788 *
3789 * The /sys/devices/{name} directory will also contain a
3790 * 'module' symlink which points to the @owner directory
3791 * in sysfs.
3792 *
3793 * Returns &struct device pointer on success, or ERR_PTR() on error.
3794 *
3795 * Note: You probably want to use root_device_register().
3796 */
3797struct device *__root_device_register(const char *name, struct module *owner)
3798{
3799 struct root_device *root;
3800 int err = -ENOMEM;
3801
3802 root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
3803 if (!root)
3804 return ERR_PTR(err);
3805
3806 err = dev_set_name(&root->dev, "%s", name);
3807 if (err) {
3808 kfree(root);
3809 return ERR_PTR(err);
3810 }
3811
3812 root->dev.release = root_device_release;
3813
3814 err = device_register(&root->dev);
3815 if (err) {
3816 put_device(&root->dev);
3817 return ERR_PTR(err);
3818 }
3819
3820#ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */
3821 if (owner) {
3822 struct module_kobject *mk = &owner->mkobj;
3823
3824 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
3825 if (err) {
3826 device_unregister(&root->dev);
3827 return ERR_PTR(err);
3828 }
3829 root->owner = owner;
3830 }
3831#endif
3832
3833 return &root->dev;
3834}
3835EXPORT_SYMBOL_GPL(__root_device_register);
3836
3837/**
3838 * root_device_unregister - unregister and free a root device
3839 * @dev: device going away
3840 *
3841 * This function unregisters and cleans up a device that was created by
3842 * root_device_register().
3843 */
3844void root_device_unregister(struct device *dev)
3845{
3846 struct root_device *root = to_root_device(dev);
3847
3848 if (root->owner)
3849 sysfs_remove_link(&root->dev.kobj, "module");
3850
3851 device_unregister(dev);
3852}
3853EXPORT_SYMBOL_GPL(root_device_unregister);
3854
3855
3856static void device_create_release(struct device *dev)
3857{
3858 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3859 kfree(dev);
3860}
3861
3862static __printf(6, 0) struct device *
3863device_create_groups_vargs(struct class *class, struct device *parent,
3864 dev_t devt, void *drvdata,
3865 const struct attribute_group **groups,
3866 const char *fmt, va_list args)
3867{
3868 struct device *dev = NULL;
3869 int retval = -ENODEV;
3870
3871 if (class == NULL || IS_ERR(class))
3872 goto error;
3873
3874 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3875 if (!dev) {
3876 retval = -ENOMEM;
3877 goto error;
3878 }
3879
3880 device_initialize(dev);
3881 dev->devt = devt;
3882 dev->class = class;
3883 dev->parent = parent;
3884 dev->groups = groups;
3885 dev->release = device_create_release;
3886 dev_set_drvdata(dev, drvdata);
3887
3888 retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
3889 if (retval)
3890 goto error;
3891
3892 retval = device_add(dev);
3893 if (retval)
3894 goto error;
3895
3896 return dev;
3897
3898error:
3899 put_device(dev);
3900 return ERR_PTR(retval);
3901}
3902
3903/**
3904 * device_create - creates a device and registers it with sysfs
3905 * @class: pointer to the struct class that this device should be registered to
3906 * @parent: pointer to the parent struct device of this new device, if any
3907 * @devt: the dev_t for the char device to be added
3908 * @drvdata: the data to be added to the device for callbacks
3909 * @fmt: string for the device's name
3910 *
3911 * This function can be used by char device classes. A struct device
3912 * will be created in sysfs, registered to the specified class.
3913 *
3914 * A "dev" file will be created, showing the dev_t for the device, if
3915 * the dev_t is not 0,0.
3916 * If a pointer to a parent struct device is passed in, the newly created
3917 * struct device will be a child of that device in sysfs.
3918 * The pointer to the struct device will be returned from the call.
3919 * Any further sysfs files that might be required can be created using this
3920 * pointer.
3921 *
3922 * Returns &struct device pointer on success, or ERR_PTR() on error.
3923 *
3924 * Note: the struct class passed to this function must have previously
3925 * been created with a call to class_create().
3926 */
3927struct device *device_create(struct class *class, struct device *parent,
3928 dev_t devt, void *drvdata, const char *fmt, ...)
3929{
3930 va_list vargs;
3931 struct device *dev;
3932
3933 va_start(vargs, fmt);
3934 dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
3935 fmt, vargs);
3936 va_end(vargs);
3937 return dev;
3938}
3939EXPORT_SYMBOL_GPL(device_create);
3940
3941/**
3942 * device_create_with_groups - creates a device and registers it with sysfs
3943 * @class: pointer to the struct class that this device should be registered to
3944 * @parent: pointer to the parent struct device of this new device, if any
3945 * @devt: the dev_t for the char device to be added
3946 * @drvdata: the data to be added to the device for callbacks
3947 * @groups: NULL-terminated list of attribute groups to be created
3948 * @fmt: string for the device's name
3949 *
3950 * This function can be used by char device classes. A struct device
3951 * will be created in sysfs, registered to the specified class.
3952 * Additional attributes specified in the groups parameter will also
3953 * be created automatically.
3954 *
3955 * A "dev" file will be created, showing the dev_t for the device, if
3956 * the dev_t is not 0,0.
3957 * If a pointer to a parent struct device is passed in, the newly created
3958 * struct device will be a child of that device in sysfs.
3959 * The pointer to the struct device will be returned from the call.
3960 * Any further sysfs files that might be required can be created using this
3961 * pointer.
3962 *
3963 * Returns &struct device pointer on success, or ERR_PTR() on error.
3964 *
3965 * Note: the struct class passed to this function must have previously
3966 * been created with a call to class_create().
3967 */
3968struct device *device_create_with_groups(struct class *class,
3969 struct device *parent, dev_t devt,
3970 void *drvdata,
3971 const struct attribute_group **groups,
3972 const char *fmt, ...)
3973{
3974 va_list vargs;
3975 struct device *dev;
3976
3977 va_start(vargs, fmt);
3978 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
3979 fmt, vargs);
3980 va_end(vargs);
3981 return dev;
3982}
3983EXPORT_SYMBOL_GPL(device_create_with_groups);
3984
3985/**
3986 * device_destroy - removes a device that was created with device_create()
3987 * @class: pointer to the struct class that this device was registered with
3988 * @devt: the dev_t of the device that was previously registered
3989 *
3990 * This call unregisters and cleans up a device that was created with a
3991 * call to device_create().
3992 */
3993void device_destroy(struct class *class, dev_t devt)
3994{
3995 struct device *dev;
3996
3997 dev = class_find_device_by_devt(class, devt);
3998 if (dev) {
3999 put_device(dev);
4000 device_unregister(dev);
4001 }
4002}
4003EXPORT_SYMBOL_GPL(device_destroy);
4004
4005/**
4006 * device_rename - renames a device
4007 * @dev: the pointer to the struct device to be renamed
4008 * @new_name: the new name of the device
4009 *
4010 * It is the responsibility of the caller to provide mutual
4011 * exclusion between two different calls of device_rename
4012 * on the same device to ensure that new_name is valid and
4013 * won't conflict with other devices.
4014 *
4015 * Note: Don't call this function. Currently, the networking layer calls this
4016 * function, but that will change. The following text from Kay Sievers offers
4017 * some insight:
4018 *
4019 * Renaming devices is racy at many levels, symlinks and other stuff are not
4020 * replaced atomically, and you get a "move" uevent, but it's not easy to
4021 * connect the event to the old and new device. Device nodes are not renamed at
4022 * all, there isn't even support for that in the kernel now.
4023 *
4024 * In the meantime, during renaming, your target name might be taken by another
4025 * driver, creating conflicts. Or the old name is taken directly after you
4026 * renamed it -- then you get events for the same DEVPATH, before you even see
4027 * the "move" event. It's just a mess, and nothing new should ever rely on
4028 * kernel device renaming. Besides that, it's not even implemented now for
4029 * other things than (driver-core wise very simple) network devices.
4030 *
4031 * We are currently about to change network renaming in udev to completely
4032 * disallow renaming of devices in the same namespace as the kernel uses,
4033 * because we can't solve the problems properly, that arise with swapping names
4034 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
4035 * be allowed to some other name than eth[0-9]*, for the aforementioned
4036 * reasons.
4037 *
4038 * Make up a "real" name in the driver before you register anything, or add
4039 * some other attributes for userspace to find the device, or use udev to add
4040 * symlinks -- but never rename kernel devices later, it's a complete mess. We
4041 * don't even want to get into that and try to implement the missing pieces in
4042 * the core. We really have other pieces to fix in the driver core mess. :)
4043 */
4044int device_rename(struct device *dev, const char *new_name)
4045{
4046 struct kobject *kobj = &dev->kobj;
4047 char *old_device_name = NULL;
4048 int error;
4049
4050 dev = get_device(dev);
4051 if (!dev)
4052 return -EINVAL;
4053
4054 dev_dbg(dev, "renaming to %s\n", new_name);
4055
4056 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
4057 if (!old_device_name) {
4058 error = -ENOMEM;
4059 goto out;
4060 }
4061
4062 if (dev->class) {
4063 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
4064 kobj, old_device_name,
4065 new_name, kobject_namespace(kobj));
4066 if (error)
4067 goto out;
4068 }
4069
4070 error = kobject_rename(kobj, new_name);
4071 if (error)
4072 goto out;
4073
4074out:
4075 put_device(dev);
4076
4077 kfree(old_device_name);
4078
4079 return error;
4080}
4081EXPORT_SYMBOL_GPL(device_rename);
4082
4083static int device_move_class_links(struct device *dev,
4084 struct device *old_parent,
4085 struct device *new_parent)
4086{
4087 int error = 0;
4088
4089 if (old_parent)
4090 sysfs_remove_link(&dev->kobj, "device");
4091 if (new_parent)
4092 error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
4093 "device");
4094 return error;
4095}
4096
4097/**
4098 * device_move - moves a device to a new parent
4099 * @dev: the pointer to the struct device to be moved
4100 * @new_parent: the new parent of the device (can be NULL)
4101 * @dpm_order: how to reorder the dpm_list
4102 */
4103int device_move(struct device *dev, struct device *new_parent,
4104 enum dpm_order dpm_order)
4105{
4106 int error;
4107 struct device *old_parent;
4108 struct kobject *new_parent_kobj;
4109
4110 dev = get_device(dev);
4111 if (!dev)
4112 return -EINVAL;
4113
4114 device_pm_lock();
4115 new_parent = get_device(new_parent);
4116 new_parent_kobj = get_device_parent(dev, new_parent);
4117 if (IS_ERR(new_parent_kobj)) {
4118 error = PTR_ERR(new_parent_kobj);
4119 put_device(new_parent);
4120 goto out;
4121 }
4122
4123 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
4124 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
4125 error = kobject_move(&dev->kobj, new_parent_kobj);
4126 if (error) {
4127 cleanup_glue_dir(dev, new_parent_kobj);
4128 put_device(new_parent);
4129 goto out;
4130 }
4131 old_parent = dev->parent;
4132 dev->parent = new_parent;
4133 if (old_parent)
4134 klist_remove(&dev->p->knode_parent);
4135 if (new_parent) {
4136 klist_add_tail(&dev->p->knode_parent,
4137 &new_parent->p->klist_children);
4138 set_dev_node(dev, dev_to_node(new_parent));
4139 }
4140
4141 if (dev->class) {
4142 error = device_move_class_links(dev, old_parent, new_parent);
4143 if (error) {
4144 /* We ignore errors on cleanup since we're hosed anyway... */
4145 device_move_class_links(dev, new_parent, old_parent);
4146 if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
4147 if (new_parent)
4148 klist_remove(&dev->p->knode_parent);
4149 dev->parent = old_parent;
4150 if (old_parent) {
4151 klist_add_tail(&dev->p->knode_parent,
4152 &old_parent->p->klist_children);
4153 set_dev_node(dev, dev_to_node(old_parent));
4154 }
4155 }
4156 cleanup_glue_dir(dev, new_parent_kobj);
4157 put_device(new_parent);
4158 goto out;
4159 }
4160 }
4161 switch (dpm_order) {
4162 case DPM_ORDER_NONE:
4163 break;
4164 case DPM_ORDER_DEV_AFTER_PARENT:
4165 device_pm_move_after(dev, new_parent);
4166 devices_kset_move_after(dev, new_parent);
4167 break;
4168 case DPM_ORDER_PARENT_BEFORE_DEV:
4169 device_pm_move_before(new_parent, dev);
4170 devices_kset_move_before(new_parent, dev);
4171 break;
4172 case DPM_ORDER_DEV_LAST:
4173 device_pm_move_last(dev);
4174 devices_kset_move_last(dev);
4175 break;
4176 }
4177
4178 put_device(old_parent);
4179out:
4180 device_pm_unlock();
4181 put_device(dev);
4182 return error;
4183}
4184EXPORT_SYMBOL_GPL(device_move);
4185
4186static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
4187 kgid_t kgid)
4188{
4189 struct kobject *kobj = &dev->kobj;
4190 struct class *class = dev->class;
4191 const struct device_type *type = dev->type;
4192 int error;
4193
4194 if (class) {
4195 /*
4196 * Change the device groups of the device class for @dev to
4197 * @kuid/@kgid.
4198 */
4199 error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
4200 kgid);
4201 if (error)
4202 return error;
4203 }
4204
4205 if (type) {
4206 /*
4207 * Change the device groups of the device type for @dev to
4208 * @kuid/@kgid.
4209 */
4210 error = sysfs_groups_change_owner(kobj, type->groups, kuid,
4211 kgid);
4212 if (error)
4213 return error;
4214 }
4215
4216 /* Change the device groups of @dev to @kuid/@kgid. */
4217 error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
4218 if (error)
4219 return error;
4220
4221 if (device_supports_offline(dev) && !dev->offline_disabled) {
4222 /* Change online device attributes of @dev to @kuid/@kgid. */
4223 error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
4224 kuid, kgid);
4225 if (error)
4226 return error;
4227 }
4228
4229 return 0;
4230}
4231
4232/**
4233 * device_change_owner - change the owner of an existing device.
4234 * @dev: device.
4235 * @kuid: new owner's kuid
4236 * @kgid: new owner's kgid
4237 *
4238 * This changes the owner of @dev and its corresponding sysfs entries to
4239 * @kuid/@kgid. This function closely mirrors how @dev was added via driver
4240 * core.
4241 *
4242 * Returns 0 on success or error code on failure.
4243 */
4244int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
4245{
4246 int error;
4247 struct kobject *kobj = &dev->kobj;
4248
4249 dev = get_device(dev);
4250 if (!dev)
4251 return -EINVAL;
4252
4253 /*
4254 * Change the kobject and the default attributes and groups of the
4255 * ktype associated with it to @kuid/@kgid.
4256 */
4257 error = sysfs_change_owner(kobj, kuid, kgid);
4258 if (error)
4259 goto out;
4260
4261 /*
4262 * Change the uevent file for @dev to the new owner. The uevent file
4263 * was created in a separate step when @dev got added and we mirror
4264 * that step here.
4265 */
4266 error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4267 kgid);
4268 if (error)
4269 goto out;
4270
4271 /*
4272 * Change the device groups, the device groups associated with the
4273 * device class, and the groups associated with the device type of @dev
4274 * to @kuid/@kgid.
4275 */
4276 error = device_attrs_change_owner(dev, kuid, kgid);
4277 if (error)
4278 goto out;
4279
4280 error = dpm_sysfs_change_owner(dev, kuid, kgid);
4281 if (error)
4282 goto out;
4283
4284#ifdef CONFIG_BLOCK
4285 if (sysfs_deprecated && dev->class == &block_class)
4286 goto out;
4287#endif
4288
4289 /*
4290 * Change the owner of the symlink located in the class directory of
4291 * the device class associated with @dev which points to the actual
4292 * directory entry for @dev to @kuid/@kgid. This ensures that the
4293 * symlink shows the same permissions as its target.
4294 */
4295 error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj,
4296 dev_name(dev), kuid, kgid);
4297 if (error)
4298 goto out;
4299
4300out:
4301 put_device(dev);
4302 return error;
4303}
4304EXPORT_SYMBOL_GPL(device_change_owner);
4305
4306/**
4307 * device_shutdown - call ->shutdown() on each device to shutdown.
4308 */
4309void device_shutdown(void)
4310{
4311 struct device *dev, *parent;
4312
4313 wait_for_device_probe();
4314 device_block_probing();
4315
4316 cpufreq_suspend();
4317
4318 spin_lock(&devices_kset->list_lock);
4319 /*
4320 * Walk the devices list backward, shutting down each in turn.
4321 * Beware that device unplug events may also start pulling
4322 * devices offline, even as the system is shutting down.
4323 */
4324 while (!list_empty(&devices_kset->list)) {
4325 dev = list_entry(devices_kset->list.prev, struct device,
4326 kobj.entry);
4327
4328 /*
4329 * hold reference count of device's parent to
4330 * prevent it from being freed because parent's
4331 * lock is to be held
4332 */
4333 parent = get_device(dev->parent);
4334 get_device(dev);
4335 /*
4336 * Make sure the device is off the kset list, in the
4337 * event that dev->*->shutdown() doesn't remove it.
4338 */
4339 list_del_init(&dev->kobj.entry);
4340 spin_unlock(&devices_kset->list_lock);
4341
4342 /* hold lock to avoid race with probe/release */
4343 if (parent)
4344 device_lock(parent);
4345 device_lock(dev);
4346
4347 /* Don't allow any more runtime suspends */
4348 pm_runtime_get_noresume(dev);
4349 pm_runtime_barrier(dev);
4350
4351 if (dev->class && dev->class->shutdown_pre) {
4352 if (initcall_debug)
4353 dev_info(dev, "shutdown_pre\n");
4354 dev->class->shutdown_pre(dev);
4355 }
4356 if (dev->bus && dev->bus->shutdown) {
4357 if (initcall_debug)
4358 dev_info(dev, "shutdown\n");
4359 dev->bus->shutdown(dev);
4360 } else if (dev->driver && dev->driver->shutdown) {
4361 if (initcall_debug)
4362 dev_info(dev, "shutdown\n");
4363 dev->driver->shutdown(dev);
4364 }
4365
4366 device_unlock(dev);
4367 if (parent)
4368 device_unlock(parent);
4369
4370 put_device(dev);
4371 put_device(parent);
4372
4373 spin_lock(&devices_kset->list_lock);
4374 }
4375 spin_unlock(&devices_kset->list_lock);
4376}
4377
4378/*
4379 * Device logging functions
4380 */
4381
4382#ifdef CONFIG_PRINTK
4383static void
4384set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4385{
4386 const char *subsys;
4387
4388 memset(dev_info, 0, sizeof(*dev_info));
4389
4390 if (dev->class)
4391 subsys = dev->class->name;
4392 else if (dev->bus)
4393 subsys = dev->bus->name;
4394 else
4395 return;
4396
4397 strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem));
4398
4399 /*
4400 * Add device identifier DEVICE=:
4401 * b12:8 block dev_t
4402 * c127:3 char dev_t
4403 * n8 netdev ifindex
4404 * +sound:card0 subsystem:devname
4405 */
4406 if (MAJOR(dev->devt)) {
4407 char c;
4408
4409 if (strcmp(subsys, "block") == 0)
4410 c = 'b';
4411 else
4412 c = 'c';
4413
4414 snprintf(dev_info->device, sizeof(dev_info->device),
4415 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
4416 } else if (strcmp(subsys, "net") == 0) {
4417 struct net_device *net = to_net_dev(dev);
4418
4419 snprintf(dev_info->device, sizeof(dev_info->device),
4420 "n%u", net->ifindex);
4421 } else {
4422 snprintf(dev_info->device, sizeof(dev_info->device),
4423 "+%s:%s", subsys, dev_name(dev));
4424 }
4425}
4426
4427int dev_vprintk_emit(int level, const struct device *dev,
4428 const char *fmt, va_list args)
4429{
4430 struct dev_printk_info dev_info;
4431
4432 set_dev_info(dev, &dev_info);
4433
4434 return vprintk_emit(0, level, &dev_info, fmt, args);
4435}
4436EXPORT_SYMBOL(dev_vprintk_emit);
4437
4438int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4439{
4440 va_list args;
4441 int r;
4442
4443 va_start(args, fmt);
4444
4445 r = dev_vprintk_emit(level, dev, fmt, args);
4446
4447 va_end(args);
4448
4449 return r;
4450}
4451EXPORT_SYMBOL(dev_printk_emit);
4452
4453static void __dev_printk(const char *level, const struct device *dev,
4454 struct va_format *vaf)
4455{
4456 if (dev)
4457 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4458 dev_driver_string(dev), dev_name(dev), vaf);
4459 else
4460 printk("%s(NULL device *): %pV", level, vaf);
4461}
4462
4463void dev_printk(const char *level, const struct device *dev,
4464 const char *fmt, ...)
4465{
4466 struct va_format vaf;
4467 va_list args;
4468
4469 va_start(args, fmt);
4470
4471 vaf.fmt = fmt;
4472 vaf.va = &args;
4473
4474 __dev_printk(level, dev, &vaf);
4475
4476 va_end(args);
4477}
4478EXPORT_SYMBOL(dev_printk);
4479
4480#define define_dev_printk_level(func, kern_level) \
4481void func(const struct device *dev, const char *fmt, ...) \
4482{ \
4483 struct va_format vaf; \
4484 va_list args; \
4485 \
4486 va_start(args, fmt); \
4487 \
4488 vaf.fmt = fmt; \
4489 vaf.va = &args; \
4490 \
4491 __dev_printk(kern_level, dev, &vaf); \
4492 \
4493 va_end(args); \
4494} \
4495EXPORT_SYMBOL(func);
4496
4497define_dev_printk_level(_dev_emerg, KERN_EMERG);
4498define_dev_printk_level(_dev_alert, KERN_ALERT);
4499define_dev_printk_level(_dev_crit, KERN_CRIT);
4500define_dev_printk_level(_dev_err, KERN_ERR);
4501define_dev_printk_level(_dev_warn, KERN_WARNING);
4502define_dev_printk_level(_dev_notice, KERN_NOTICE);
4503define_dev_printk_level(_dev_info, KERN_INFO);
4504
4505#endif
4506
4507/**
4508 * dev_err_probe - probe error check and log helper
4509 * @dev: the pointer to the struct device
4510 * @err: error value to test
4511 * @fmt: printf-style format string
4512 * @...: arguments as specified in the format string
4513 *
4514 * This helper implements common pattern present in probe functions for error
4515 * checking: print debug or error message depending if the error value is
4516 * -EPROBE_DEFER and propagate error upwards.
4517 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
4518 * checked later by reading devices_deferred debugfs attribute.
4519 * It replaces code sequence::
4520 *
4521 * if (err != -EPROBE_DEFER)
4522 * dev_err(dev, ...);
4523 * else
4524 * dev_dbg(dev, ...);
4525 * return err;
4526 *
4527 * with::
4528 *
4529 * return dev_err_probe(dev, err, ...);
4530 *
4531 * Returns @err.
4532 *
4533 */
4534int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
4535{
4536 struct va_format vaf;
4537 va_list args;
4538
4539 va_start(args, fmt);
4540 vaf.fmt = fmt;
4541 vaf.va = &args;
4542
4543 if (err != -EPROBE_DEFER) {
4544 dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4545 } else {
4546 device_set_deferred_probe_reason(dev, &vaf);
4547 dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4548 }
4549
4550 va_end(args);
4551
4552 return err;
4553}
4554EXPORT_SYMBOL_GPL(dev_err_probe);
4555
4556static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
4557{
4558 return fwnode && !IS_ERR(fwnode->secondary);
4559}
4560
4561/**
4562 * set_primary_fwnode - Change the primary firmware node of a given device.
4563 * @dev: Device to handle.
4564 * @fwnode: New primary firmware node of the device.
4565 *
4566 * Set the device's firmware node pointer to @fwnode, but if a secondary
4567 * firmware node of the device is present, preserve it.
4568 *
4569 * Valid fwnode cases are:
4570 * - primary --> secondary --> -ENODEV
4571 * - primary --> NULL
4572 * - secondary --> -ENODEV
4573 * - NULL
4574 */
4575void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4576{
4577 struct device *parent = dev->parent;
4578 struct fwnode_handle *fn = dev->fwnode;
4579
4580 if (fwnode) {
4581 if (fwnode_is_primary(fn))
4582 fn = fn->secondary;
4583
4584 if (fn) {
4585 WARN_ON(fwnode->secondary);
4586 fwnode->secondary = fn;
4587 }
4588 dev->fwnode = fwnode;
4589 } else {
4590 if (fwnode_is_primary(fn)) {
4591 dev->fwnode = fn->secondary;
4592 /* Set fn->secondary = NULL, so fn remains the primary fwnode */
4593 if (!(parent && fn == parent->fwnode))
4594 fn->secondary = NULL;
4595 } else {
4596 dev->fwnode = NULL;
4597 }
4598 }
4599}
4600EXPORT_SYMBOL_GPL(set_primary_fwnode);
4601
4602/**
4603 * set_secondary_fwnode - Change the secondary firmware node of a given device.
4604 * @dev: Device to handle.
4605 * @fwnode: New secondary firmware node of the device.
4606 *
4607 * If a primary firmware node of the device is present, set its secondary
4608 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to
4609 * @fwnode.
4610 */
4611void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4612{
4613 if (fwnode)
4614 fwnode->secondary = ERR_PTR(-ENODEV);
4615
4616 if (fwnode_is_primary(dev->fwnode))
4617 dev->fwnode->secondary = fwnode;
4618 else
4619 dev->fwnode = fwnode;
4620}
4621EXPORT_SYMBOL_GPL(set_secondary_fwnode);
4622
4623/**
4624 * device_set_of_node_from_dev - reuse device-tree node of another device
4625 * @dev: device whose device-tree node is being set
4626 * @dev2: device whose device-tree node is being reused
4627 *
4628 * Takes another reference to the new device-tree node after first dropping
4629 * any reference held to the old node.
4630 */
4631void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
4632{
4633 of_node_put(dev->of_node);
4634 dev->of_node = of_node_get(dev2->of_node);
4635 dev->of_node_reused = true;
4636}
4637EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
4638
4639int device_match_name(struct device *dev, const void *name)
4640{
4641 return sysfs_streq(dev_name(dev), name);
4642}
4643EXPORT_SYMBOL_GPL(device_match_name);
4644
4645int device_match_of_node(struct device *dev, const void *np)
4646{
4647 return dev->of_node == np;
4648}
4649EXPORT_SYMBOL_GPL(device_match_of_node);
4650
4651int device_match_fwnode(struct device *dev, const void *fwnode)
4652{
4653 return dev_fwnode(dev) == fwnode;
4654}
4655EXPORT_SYMBOL_GPL(device_match_fwnode);
4656
4657int device_match_devt(struct device *dev, const void *pdevt)
4658{
4659 return dev->devt == *(dev_t *)pdevt;
4660}
4661EXPORT_SYMBOL_GPL(device_match_devt);
4662
4663int device_match_acpi_dev(struct device *dev, const void *adev)
4664{
4665 return ACPI_COMPANION(dev) == adev;
4666}
4667EXPORT_SYMBOL(device_match_acpi_dev);
4668
4669int device_match_any(struct device *dev, const void *unused)
4670{
4671 return 1;
4672}
4673EXPORT_SYMBOL_GPL(device_match_any);