at v5.12 459 lines 15 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * Copyright (C) 2008-2009 Michal Simek <monstr@monstr.eu> 4 * Copyright (C) 2008-2009 PetaLogix 5 * Copyright (C) 2006 Atmark Techno, Inc. 6 */ 7 8#ifndef _ASM_MICROBLAZE_PGTABLE_H 9#define _ASM_MICROBLAZE_PGTABLE_H 10 11#include <asm/setup.h> 12 13#ifndef __ASSEMBLY__ 14extern int mem_init_done; 15#endif 16 17#include <asm-generic/pgtable-nopmd.h> 18 19#ifdef __KERNEL__ 20#ifndef __ASSEMBLY__ 21 22#include <linux/sched.h> 23#include <linux/threads.h> 24#include <asm/processor.h> /* For TASK_SIZE */ 25#include <asm/mmu.h> 26#include <asm/page.h> 27 28#define FIRST_USER_ADDRESS 0UL 29 30extern unsigned long va_to_phys(unsigned long address); 31extern pte_t *va_to_pte(unsigned long address); 32 33/* 34 * The following only work if pte_present() is true. 35 * Undefined behaviour if not.. 36 */ 37 38/* Start and end of the vmalloc area. */ 39/* Make sure to map the vmalloc area above the pinned kernel memory area 40 of 32Mb. */ 41#define VMALLOC_START (CONFIG_KERNEL_START + CONFIG_LOWMEM_SIZE) 42#define VMALLOC_END ioremap_bot 43 44#endif /* __ASSEMBLY__ */ 45 46/* 47 * Macro to mark a page protection value as "uncacheable". 48 */ 49 50#define _PAGE_CACHE_CTL (_PAGE_GUARDED | _PAGE_NO_CACHE | \ 51 _PAGE_WRITETHRU) 52 53#define pgprot_noncached(prot) \ 54 (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \ 55 _PAGE_NO_CACHE | _PAGE_GUARDED)) 56 57#define pgprot_noncached_wc(prot) \ 58 (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \ 59 _PAGE_NO_CACHE)) 60 61/* 62 * The MicroBlaze MMU is identical to the PPC-40x MMU, and uses a hash 63 * table containing PTEs, together with a set of 16 segment registers, to 64 * define the virtual to physical address mapping. 65 * 66 * We use the hash table as an extended TLB, i.e. a cache of currently 67 * active mappings. We maintain a two-level page table tree, much 68 * like that used by the i386, for the sake of the Linux memory 69 * management code. Low-level assembler code in hashtable.S 70 * (procedure hash_page) is responsible for extracting ptes from the 71 * tree and putting them into the hash table when necessary, and 72 * updating the accessed and modified bits in the page table tree. 73 */ 74 75/* 76 * The MicroBlaze processor has a TLB architecture identical to PPC-40x. The 77 * instruction and data sides share a unified, 64-entry, semi-associative 78 * TLB which is maintained totally under software control. In addition, the 79 * instruction side has a hardware-managed, 2,4, or 8-entry, fully-associative 80 * TLB which serves as a first level to the shared TLB. These two TLBs are 81 * known as the UTLB and ITLB, respectively (see "mmu.h" for definitions). 82 */ 83 84/* 85 * The normal case is that PTEs are 32-bits and we have a 1-page 86 * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages. -- paulus 87 * 88 */ 89 90/* PGDIR_SHIFT determines what a top-level page table entry can map */ 91#define PGDIR_SHIFT (PAGE_SHIFT + PTE_SHIFT) 92#define PGDIR_SIZE (1UL << PGDIR_SHIFT) 93#define PGDIR_MASK (~(PGDIR_SIZE-1)) 94 95/* 96 * entries per page directory level: our page-table tree is two-level, so 97 * we don't really have any PMD directory. 98 */ 99#define PTRS_PER_PTE (1 << PTE_SHIFT) 100#define PTRS_PER_PMD 1 101#define PTRS_PER_PGD (1 << (32 - PGDIR_SHIFT)) 102 103#define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE) 104#define FIRST_USER_PGD_NR 0 105 106#define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT) 107#define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS) 108 109#define pte_ERROR(e) \ 110 printk(KERN_ERR "%s:%d: bad pte "PTE_FMT".\n", \ 111 __FILE__, __LINE__, pte_val(e)) 112#define pgd_ERROR(e) \ 113 printk(KERN_ERR "%s:%d: bad pgd %08lx.\n", \ 114 __FILE__, __LINE__, pgd_val(e)) 115 116/* 117 * Bits in a linux-style PTE. These match the bits in the 118 * (hardware-defined) PTE as closely as possible. 119 */ 120 121/* There are several potential gotchas here. The hardware TLBLO 122 * field looks like this: 123 * 124 * 0 1 2 3 4 ... 18 19 20 21 22 23 24 25 26 27 28 29 30 31 125 * RPN..................... 0 0 EX WR ZSEL....... W I M G 126 * 127 * Where possible we make the Linux PTE bits match up with this 128 * 129 * - bits 20 and 21 must be cleared, because we use 4k pages (4xx can 130 * support down to 1k pages), this is done in the TLBMiss exception 131 * handler. 132 * - We use only zones 0 (for kernel pages) and 1 (for user pages) 133 * of the 16 available. Bit 24-26 of the TLB are cleared in the TLB 134 * miss handler. Bit 27 is PAGE_USER, thus selecting the correct 135 * zone. 136 * - PRESENT *must* be in the bottom two bits because swap cache 137 * entries use the top 30 bits. Because 4xx doesn't support SMP 138 * anyway, M is irrelevant so we borrow it for PAGE_PRESENT. Bit 30 139 * is cleared in the TLB miss handler before the TLB entry is loaded. 140 * - All other bits of the PTE are loaded into TLBLO without 141 * * modification, leaving us only the bits 20, 21, 24, 25, 26, 30 for 142 * software PTE bits. We actually use bits 21, 24, 25, and 143 * 30 respectively for the software bits: ACCESSED, DIRTY, RW, and 144 * PRESENT. 145 */ 146 147/* Definitions for MicroBlaze. */ 148#define _PAGE_GUARDED 0x001 /* G: page is guarded from prefetch */ 149#define _PAGE_PRESENT 0x002 /* software: PTE contains a translation */ 150#define _PAGE_NO_CACHE 0x004 /* I: caching is inhibited */ 151#define _PAGE_WRITETHRU 0x008 /* W: caching is write-through */ 152#define _PAGE_USER 0x010 /* matches one of the zone permission bits */ 153#define _PAGE_RW 0x040 /* software: Writes permitted */ 154#define _PAGE_DIRTY 0x080 /* software: dirty page */ 155#define _PAGE_HWWRITE 0x100 /* hardware: Dirty & RW, set in exception */ 156#define _PAGE_HWEXEC 0x200 /* hardware: EX permission */ 157#define _PAGE_ACCESSED 0x400 /* software: R: page referenced */ 158#define _PMD_PRESENT PAGE_MASK 159 160/* 161 * Some bits are unused... 162 */ 163#ifndef _PAGE_HASHPTE 164#define _PAGE_HASHPTE 0 165#endif 166#ifndef _PTE_NONE_MASK 167#define _PTE_NONE_MASK 0 168#endif 169#ifndef _PAGE_SHARED 170#define _PAGE_SHARED 0 171#endif 172#ifndef _PAGE_EXEC 173#define _PAGE_EXEC 0 174#endif 175 176#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) 177 178/* 179 * Note: the _PAGE_COHERENT bit automatically gets set in the hardware 180 * PTE if CONFIG_SMP is defined (hash_page does this); there is no need 181 * to have it in the Linux PTE, and in fact the bit could be reused for 182 * another purpose. -- paulus. 183 */ 184#define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED) 185#define _PAGE_WRENABLE (_PAGE_RW | _PAGE_DIRTY | _PAGE_HWWRITE) 186 187#define _PAGE_KERNEL \ 188 (_PAGE_BASE | _PAGE_WRENABLE | _PAGE_SHARED | _PAGE_HWEXEC) 189 190#define _PAGE_IO (_PAGE_KERNEL | _PAGE_NO_CACHE | _PAGE_GUARDED) 191 192#define PAGE_NONE __pgprot(_PAGE_BASE) 193#define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_USER) 194#define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC) 195#define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW) 196#define PAGE_SHARED_X \ 197 __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW | _PAGE_EXEC) 198#define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_USER) 199#define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC) 200 201#define PAGE_KERNEL __pgprot(_PAGE_KERNEL) 202#define PAGE_KERNEL_RO __pgprot(_PAGE_BASE | _PAGE_SHARED) 203#define PAGE_KERNEL_CI __pgprot(_PAGE_IO) 204 205/* 206 * We consider execute permission the same as read. 207 * Also, write permissions imply read permissions. 208 */ 209#define __P000 PAGE_NONE 210#define __P001 PAGE_READONLY_X 211#define __P010 PAGE_COPY 212#define __P011 PAGE_COPY_X 213#define __P100 PAGE_READONLY 214#define __P101 PAGE_READONLY_X 215#define __P110 PAGE_COPY 216#define __P111 PAGE_COPY_X 217 218#define __S000 PAGE_NONE 219#define __S001 PAGE_READONLY_X 220#define __S010 PAGE_SHARED 221#define __S011 PAGE_SHARED_X 222#define __S100 PAGE_READONLY 223#define __S101 PAGE_READONLY_X 224#define __S110 PAGE_SHARED 225#define __S111 PAGE_SHARED_X 226 227#ifndef __ASSEMBLY__ 228/* 229 * ZERO_PAGE is a global shared page that is always zero: used 230 * for zero-mapped memory areas etc.. 231 */ 232extern unsigned long empty_zero_page[1024]; 233#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) 234 235#endif /* __ASSEMBLY__ */ 236 237#define pte_none(pte) ((pte_val(pte) & ~_PTE_NONE_MASK) == 0) 238#define pte_present(pte) (pte_val(pte) & _PAGE_PRESENT) 239#define pte_clear(mm, addr, ptep) \ 240 do { set_pte_at((mm), (addr), (ptep), __pte(0)); } while (0) 241 242#define pmd_none(pmd) (!pmd_val(pmd)) 243#define pmd_bad(pmd) ((pmd_val(pmd) & _PMD_PRESENT) == 0) 244#define pmd_present(pmd) ((pmd_val(pmd) & _PMD_PRESENT) != 0) 245#define pmd_clear(pmdp) do { pmd_val(*(pmdp)) = 0; } while (0) 246 247#define pte_page(x) (mem_map + (unsigned long) \ 248 ((pte_val(x) - memory_start) >> PAGE_SHIFT)) 249#define PFN_SHIFT_OFFSET (PAGE_SHIFT) 250 251#define pte_pfn(x) (pte_val(x) >> PFN_SHIFT_OFFSET) 252 253#define pfn_pte(pfn, prot) \ 254 __pte(((pte_basic_t)(pfn) << PFN_SHIFT_OFFSET) | pgprot_val(prot)) 255 256#ifndef __ASSEMBLY__ 257/* 258 * The following only work if pte_present() is true. 259 * Undefined behaviour if not.. 260 */ 261static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_USER; } 262static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; } 263static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC; } 264static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } 265static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } 266 267static inline void pte_uncache(pte_t pte) { pte_val(pte) |= _PAGE_NO_CACHE; } 268static inline void pte_cache(pte_t pte) { pte_val(pte) &= ~_PAGE_NO_CACHE; } 269 270static inline pte_t pte_rdprotect(pte_t pte) \ 271 { pte_val(pte) &= ~_PAGE_USER; return pte; } 272static inline pte_t pte_wrprotect(pte_t pte) \ 273 { pte_val(pte) &= ~(_PAGE_RW | _PAGE_HWWRITE); return pte; } 274static inline pte_t pte_exprotect(pte_t pte) \ 275 { pte_val(pte) &= ~_PAGE_EXEC; return pte; } 276static inline pte_t pte_mkclean(pte_t pte) \ 277 { pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HWWRITE); return pte; } 278static inline pte_t pte_mkold(pte_t pte) \ 279 { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; } 280 281static inline pte_t pte_mkread(pte_t pte) \ 282 { pte_val(pte) |= _PAGE_USER; return pte; } 283static inline pte_t pte_mkexec(pte_t pte) \ 284 { pte_val(pte) |= _PAGE_USER | _PAGE_EXEC; return pte; } 285static inline pte_t pte_mkwrite(pte_t pte) \ 286 { pte_val(pte) |= _PAGE_RW; return pte; } 287static inline pte_t pte_mkdirty(pte_t pte) \ 288 { pte_val(pte) |= _PAGE_DIRTY; return pte; } 289static inline pte_t pte_mkyoung(pte_t pte) \ 290 { pte_val(pte) |= _PAGE_ACCESSED; return pte; } 291 292/* 293 * Conversion functions: convert a page and protection to a page entry, 294 * and a page entry and page directory to the page they refer to. 295 */ 296 297static inline pte_t mk_pte_phys(phys_addr_t physpage, pgprot_t pgprot) 298{ 299 pte_t pte; 300 pte_val(pte) = physpage | pgprot_val(pgprot); 301 return pte; 302} 303 304#define mk_pte(page, pgprot) \ 305({ \ 306 pte_t pte; \ 307 pte_val(pte) = (((page - mem_map) << PAGE_SHIFT) + memory_start) | \ 308 pgprot_val(pgprot); \ 309 pte; \ 310}) 311 312static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 313{ 314 pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); 315 return pte; 316} 317 318/* 319 * Atomic PTE updates. 320 * 321 * pte_update clears and sets bit atomically, and returns 322 * the old pte value. 323 * The ((unsigned long)(p+1) - 4) hack is to get to the least-significant 324 * 32 bits of the PTE regardless of whether PTEs are 32 or 64 bits. 325 */ 326static inline unsigned long pte_update(pte_t *p, unsigned long clr, 327 unsigned long set) 328{ 329 unsigned long flags, old, tmp; 330 331 raw_local_irq_save(flags); 332 333 __asm__ __volatile__( "lw %0, %2, r0 \n" 334 "andn %1, %0, %3 \n" 335 "or %1, %1, %4 \n" 336 "sw %1, %2, r0 \n" 337 : "=&r" (old), "=&r" (tmp) 338 : "r" ((unsigned long)(p + 1) - 4), "r" (clr), "r" (set) 339 : "cc"); 340 341 raw_local_irq_restore(flags); 342 343 return old; 344} 345 346/* 347 * set_pte stores a linux PTE into the linux page table. 348 */ 349static inline void set_pte(struct mm_struct *mm, unsigned long addr, 350 pte_t *ptep, pte_t pte) 351{ 352 *ptep = pte; 353} 354 355static inline void set_pte_at(struct mm_struct *mm, unsigned long addr, 356 pte_t *ptep, pte_t pte) 357{ 358 *ptep = pte; 359} 360 361#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 362static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, 363 unsigned long address, pte_t *ptep) 364{ 365 return (pte_update(ptep, _PAGE_ACCESSED, 0) & _PAGE_ACCESSED) != 0; 366} 367 368static inline int ptep_test_and_clear_dirty(struct mm_struct *mm, 369 unsigned long addr, pte_t *ptep) 370{ 371 return (pte_update(ptep, \ 372 (_PAGE_DIRTY | _PAGE_HWWRITE), 0) & _PAGE_DIRTY) != 0; 373} 374 375#define __HAVE_ARCH_PTEP_GET_AND_CLEAR 376static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 377 unsigned long addr, pte_t *ptep) 378{ 379 return __pte(pte_update(ptep, ~_PAGE_HASHPTE, 0)); 380} 381 382/*static inline void ptep_set_wrprotect(struct mm_struct *mm, 383 unsigned long addr, pte_t *ptep) 384{ 385 pte_update(ptep, (_PAGE_RW | _PAGE_HWWRITE), 0); 386}*/ 387 388static inline void ptep_mkdirty(struct mm_struct *mm, 389 unsigned long addr, pte_t *ptep) 390{ 391 pte_update(ptep, 0, _PAGE_DIRTY); 392} 393 394/*#define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0)*/ 395 396/* Convert pmd entry to page */ 397/* our pmd entry is an effective address of pte table*/ 398/* returns effective address of the pmd entry*/ 399static inline unsigned long pmd_page_vaddr(pmd_t pmd) 400{ 401 return ((unsigned long) (pmd_val(pmd) & PAGE_MASK)); 402} 403 404/* returns struct *page of the pmd entry*/ 405#define pmd_page(pmd) (pfn_to_page(__pa(pmd_val(pmd)) >> PAGE_SHIFT)) 406 407/* Find an entry in the third-level page table.. */ 408 409extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; 410 411/* 412 * Encode and decode a swap entry. 413 * Note that the bits we use in a PTE for representing a swap entry 414 * must not include the _PAGE_PRESENT bit, or the _PAGE_HASHPTE bit 415 * (if used). -- paulus 416 */ 417#define __swp_type(entry) ((entry).val & 0x3f) 418#define __swp_offset(entry) ((entry).val >> 6) 419#define __swp_entry(type, offset) \ 420 ((swp_entry_t) { (type) | ((offset) << 6) }) 421#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> 2 }) 422#define __swp_entry_to_pte(x) ((pte_t) { (x).val << 2 }) 423 424extern unsigned long iopa(unsigned long addr); 425 426/* Values for nocacheflag and cmode */ 427/* These are not used by the APUS kernel_map, but prevents 428 * compilation errors. 429 */ 430#define IOMAP_FULL_CACHING 0 431#define IOMAP_NOCACHE_SER 1 432#define IOMAP_NOCACHE_NONSER 2 433#define IOMAP_NO_COPYBACK 3 434 435/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */ 436#define kern_addr_valid(addr) (1) 437 438void do_page_fault(struct pt_regs *regs, unsigned long address, 439 unsigned long error_code); 440 441void mapin_ram(void); 442int map_page(unsigned long va, phys_addr_t pa, int flags); 443 444extern int mem_init_done; 445 446asmlinkage void __init mmu_init(void); 447 448void __init *early_get_page(void); 449 450#endif /* __ASSEMBLY__ */ 451#endif /* __KERNEL__ */ 452 453#ifndef __ASSEMBLY__ 454extern unsigned long ioremap_bot, ioremap_base; 455 456void setup_memory(void); 457#endif /* __ASSEMBLY__ */ 458 459#endif /* _ASM_MICROBLAZE_PGTABLE_H */