Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Copyright (C) 2008-2009 Michal Simek <monstr@monstr.eu>
4 * Copyright (C) 2008-2009 PetaLogix
5 * Copyright (C) 2006 Atmark Techno, Inc.
6 */
7
8#ifndef _ASM_MICROBLAZE_PGTABLE_H
9#define _ASM_MICROBLAZE_PGTABLE_H
10
11#include <asm/setup.h>
12
13#ifndef __ASSEMBLY__
14extern int mem_init_done;
15#endif
16
17#include <asm-generic/pgtable-nopmd.h>
18
19#ifdef __KERNEL__
20#ifndef __ASSEMBLY__
21
22#include <linux/sched.h>
23#include <linux/threads.h>
24#include <asm/processor.h> /* For TASK_SIZE */
25#include <asm/mmu.h>
26#include <asm/page.h>
27
28#define FIRST_USER_ADDRESS 0UL
29
30extern unsigned long va_to_phys(unsigned long address);
31extern pte_t *va_to_pte(unsigned long address);
32
33/*
34 * The following only work if pte_present() is true.
35 * Undefined behaviour if not..
36 */
37
38/* Start and end of the vmalloc area. */
39/* Make sure to map the vmalloc area above the pinned kernel memory area
40 of 32Mb. */
41#define VMALLOC_START (CONFIG_KERNEL_START + CONFIG_LOWMEM_SIZE)
42#define VMALLOC_END ioremap_bot
43
44#endif /* __ASSEMBLY__ */
45
46/*
47 * Macro to mark a page protection value as "uncacheable".
48 */
49
50#define _PAGE_CACHE_CTL (_PAGE_GUARDED | _PAGE_NO_CACHE | \
51 _PAGE_WRITETHRU)
52
53#define pgprot_noncached(prot) \
54 (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
55 _PAGE_NO_CACHE | _PAGE_GUARDED))
56
57#define pgprot_noncached_wc(prot) \
58 (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
59 _PAGE_NO_CACHE))
60
61/*
62 * The MicroBlaze MMU is identical to the PPC-40x MMU, and uses a hash
63 * table containing PTEs, together with a set of 16 segment registers, to
64 * define the virtual to physical address mapping.
65 *
66 * We use the hash table as an extended TLB, i.e. a cache of currently
67 * active mappings. We maintain a two-level page table tree, much
68 * like that used by the i386, for the sake of the Linux memory
69 * management code. Low-level assembler code in hashtable.S
70 * (procedure hash_page) is responsible for extracting ptes from the
71 * tree and putting them into the hash table when necessary, and
72 * updating the accessed and modified bits in the page table tree.
73 */
74
75/*
76 * The MicroBlaze processor has a TLB architecture identical to PPC-40x. The
77 * instruction and data sides share a unified, 64-entry, semi-associative
78 * TLB which is maintained totally under software control. In addition, the
79 * instruction side has a hardware-managed, 2,4, or 8-entry, fully-associative
80 * TLB which serves as a first level to the shared TLB. These two TLBs are
81 * known as the UTLB and ITLB, respectively (see "mmu.h" for definitions).
82 */
83
84/*
85 * The normal case is that PTEs are 32-bits and we have a 1-page
86 * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages. -- paulus
87 *
88 */
89
90/* PGDIR_SHIFT determines what a top-level page table entry can map */
91#define PGDIR_SHIFT (PAGE_SHIFT + PTE_SHIFT)
92#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
93#define PGDIR_MASK (~(PGDIR_SIZE-1))
94
95/*
96 * entries per page directory level: our page-table tree is two-level, so
97 * we don't really have any PMD directory.
98 */
99#define PTRS_PER_PTE (1 << PTE_SHIFT)
100#define PTRS_PER_PMD 1
101#define PTRS_PER_PGD (1 << (32 - PGDIR_SHIFT))
102
103#define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
104#define FIRST_USER_PGD_NR 0
105
106#define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT)
107#define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS)
108
109#define pte_ERROR(e) \
110 printk(KERN_ERR "%s:%d: bad pte "PTE_FMT".\n", \
111 __FILE__, __LINE__, pte_val(e))
112#define pgd_ERROR(e) \
113 printk(KERN_ERR "%s:%d: bad pgd %08lx.\n", \
114 __FILE__, __LINE__, pgd_val(e))
115
116/*
117 * Bits in a linux-style PTE. These match the bits in the
118 * (hardware-defined) PTE as closely as possible.
119 */
120
121/* There are several potential gotchas here. The hardware TLBLO
122 * field looks like this:
123 *
124 * 0 1 2 3 4 ... 18 19 20 21 22 23 24 25 26 27 28 29 30 31
125 * RPN..................... 0 0 EX WR ZSEL....... W I M G
126 *
127 * Where possible we make the Linux PTE bits match up with this
128 *
129 * - bits 20 and 21 must be cleared, because we use 4k pages (4xx can
130 * support down to 1k pages), this is done in the TLBMiss exception
131 * handler.
132 * - We use only zones 0 (for kernel pages) and 1 (for user pages)
133 * of the 16 available. Bit 24-26 of the TLB are cleared in the TLB
134 * miss handler. Bit 27 is PAGE_USER, thus selecting the correct
135 * zone.
136 * - PRESENT *must* be in the bottom two bits because swap cache
137 * entries use the top 30 bits. Because 4xx doesn't support SMP
138 * anyway, M is irrelevant so we borrow it for PAGE_PRESENT. Bit 30
139 * is cleared in the TLB miss handler before the TLB entry is loaded.
140 * - All other bits of the PTE are loaded into TLBLO without
141 * * modification, leaving us only the bits 20, 21, 24, 25, 26, 30 for
142 * software PTE bits. We actually use bits 21, 24, 25, and
143 * 30 respectively for the software bits: ACCESSED, DIRTY, RW, and
144 * PRESENT.
145 */
146
147/* Definitions for MicroBlaze. */
148#define _PAGE_GUARDED 0x001 /* G: page is guarded from prefetch */
149#define _PAGE_PRESENT 0x002 /* software: PTE contains a translation */
150#define _PAGE_NO_CACHE 0x004 /* I: caching is inhibited */
151#define _PAGE_WRITETHRU 0x008 /* W: caching is write-through */
152#define _PAGE_USER 0x010 /* matches one of the zone permission bits */
153#define _PAGE_RW 0x040 /* software: Writes permitted */
154#define _PAGE_DIRTY 0x080 /* software: dirty page */
155#define _PAGE_HWWRITE 0x100 /* hardware: Dirty & RW, set in exception */
156#define _PAGE_HWEXEC 0x200 /* hardware: EX permission */
157#define _PAGE_ACCESSED 0x400 /* software: R: page referenced */
158#define _PMD_PRESENT PAGE_MASK
159
160/*
161 * Some bits are unused...
162 */
163#ifndef _PAGE_HASHPTE
164#define _PAGE_HASHPTE 0
165#endif
166#ifndef _PTE_NONE_MASK
167#define _PTE_NONE_MASK 0
168#endif
169#ifndef _PAGE_SHARED
170#define _PAGE_SHARED 0
171#endif
172#ifndef _PAGE_EXEC
173#define _PAGE_EXEC 0
174#endif
175
176#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
177
178/*
179 * Note: the _PAGE_COHERENT bit automatically gets set in the hardware
180 * PTE if CONFIG_SMP is defined (hash_page does this); there is no need
181 * to have it in the Linux PTE, and in fact the bit could be reused for
182 * another purpose. -- paulus.
183 */
184#define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED)
185#define _PAGE_WRENABLE (_PAGE_RW | _PAGE_DIRTY | _PAGE_HWWRITE)
186
187#define _PAGE_KERNEL \
188 (_PAGE_BASE | _PAGE_WRENABLE | _PAGE_SHARED | _PAGE_HWEXEC)
189
190#define _PAGE_IO (_PAGE_KERNEL | _PAGE_NO_CACHE | _PAGE_GUARDED)
191
192#define PAGE_NONE __pgprot(_PAGE_BASE)
193#define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_USER)
194#define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
195#define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW)
196#define PAGE_SHARED_X \
197 __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW | _PAGE_EXEC)
198#define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_USER)
199#define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
200
201#define PAGE_KERNEL __pgprot(_PAGE_KERNEL)
202#define PAGE_KERNEL_RO __pgprot(_PAGE_BASE | _PAGE_SHARED)
203#define PAGE_KERNEL_CI __pgprot(_PAGE_IO)
204
205/*
206 * We consider execute permission the same as read.
207 * Also, write permissions imply read permissions.
208 */
209#define __P000 PAGE_NONE
210#define __P001 PAGE_READONLY_X
211#define __P010 PAGE_COPY
212#define __P011 PAGE_COPY_X
213#define __P100 PAGE_READONLY
214#define __P101 PAGE_READONLY_X
215#define __P110 PAGE_COPY
216#define __P111 PAGE_COPY_X
217
218#define __S000 PAGE_NONE
219#define __S001 PAGE_READONLY_X
220#define __S010 PAGE_SHARED
221#define __S011 PAGE_SHARED_X
222#define __S100 PAGE_READONLY
223#define __S101 PAGE_READONLY_X
224#define __S110 PAGE_SHARED
225#define __S111 PAGE_SHARED_X
226
227#ifndef __ASSEMBLY__
228/*
229 * ZERO_PAGE is a global shared page that is always zero: used
230 * for zero-mapped memory areas etc..
231 */
232extern unsigned long empty_zero_page[1024];
233#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
234
235#endif /* __ASSEMBLY__ */
236
237#define pte_none(pte) ((pte_val(pte) & ~_PTE_NONE_MASK) == 0)
238#define pte_present(pte) (pte_val(pte) & _PAGE_PRESENT)
239#define pte_clear(mm, addr, ptep) \
240 do { set_pte_at((mm), (addr), (ptep), __pte(0)); } while (0)
241
242#define pmd_none(pmd) (!pmd_val(pmd))
243#define pmd_bad(pmd) ((pmd_val(pmd) & _PMD_PRESENT) == 0)
244#define pmd_present(pmd) ((pmd_val(pmd) & _PMD_PRESENT) != 0)
245#define pmd_clear(pmdp) do { pmd_val(*(pmdp)) = 0; } while (0)
246
247#define pte_page(x) (mem_map + (unsigned long) \
248 ((pte_val(x) - memory_start) >> PAGE_SHIFT))
249#define PFN_SHIFT_OFFSET (PAGE_SHIFT)
250
251#define pte_pfn(x) (pte_val(x) >> PFN_SHIFT_OFFSET)
252
253#define pfn_pte(pfn, prot) \
254 __pte(((pte_basic_t)(pfn) << PFN_SHIFT_OFFSET) | pgprot_val(prot))
255
256#ifndef __ASSEMBLY__
257/*
258 * The following only work if pte_present() is true.
259 * Undefined behaviour if not..
260 */
261static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_USER; }
262static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; }
263static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC; }
264static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
265static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
266
267static inline void pte_uncache(pte_t pte) { pte_val(pte) |= _PAGE_NO_CACHE; }
268static inline void pte_cache(pte_t pte) { pte_val(pte) &= ~_PAGE_NO_CACHE; }
269
270static inline pte_t pte_rdprotect(pte_t pte) \
271 { pte_val(pte) &= ~_PAGE_USER; return pte; }
272static inline pte_t pte_wrprotect(pte_t pte) \
273 { pte_val(pte) &= ~(_PAGE_RW | _PAGE_HWWRITE); return pte; }
274static inline pte_t pte_exprotect(pte_t pte) \
275 { pte_val(pte) &= ~_PAGE_EXEC; return pte; }
276static inline pte_t pte_mkclean(pte_t pte) \
277 { pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HWWRITE); return pte; }
278static inline pte_t pte_mkold(pte_t pte) \
279 { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
280
281static inline pte_t pte_mkread(pte_t pte) \
282 { pte_val(pte) |= _PAGE_USER; return pte; }
283static inline pte_t pte_mkexec(pte_t pte) \
284 { pte_val(pte) |= _PAGE_USER | _PAGE_EXEC; return pte; }
285static inline pte_t pte_mkwrite(pte_t pte) \
286 { pte_val(pte) |= _PAGE_RW; return pte; }
287static inline pte_t pte_mkdirty(pte_t pte) \
288 { pte_val(pte) |= _PAGE_DIRTY; return pte; }
289static inline pte_t pte_mkyoung(pte_t pte) \
290 { pte_val(pte) |= _PAGE_ACCESSED; return pte; }
291
292/*
293 * Conversion functions: convert a page and protection to a page entry,
294 * and a page entry and page directory to the page they refer to.
295 */
296
297static inline pte_t mk_pte_phys(phys_addr_t physpage, pgprot_t pgprot)
298{
299 pte_t pte;
300 pte_val(pte) = physpage | pgprot_val(pgprot);
301 return pte;
302}
303
304#define mk_pte(page, pgprot) \
305({ \
306 pte_t pte; \
307 pte_val(pte) = (((page - mem_map) << PAGE_SHIFT) + memory_start) | \
308 pgprot_val(pgprot); \
309 pte; \
310})
311
312static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
313{
314 pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot);
315 return pte;
316}
317
318/*
319 * Atomic PTE updates.
320 *
321 * pte_update clears and sets bit atomically, and returns
322 * the old pte value.
323 * The ((unsigned long)(p+1) - 4) hack is to get to the least-significant
324 * 32 bits of the PTE regardless of whether PTEs are 32 or 64 bits.
325 */
326static inline unsigned long pte_update(pte_t *p, unsigned long clr,
327 unsigned long set)
328{
329 unsigned long flags, old, tmp;
330
331 raw_local_irq_save(flags);
332
333 __asm__ __volatile__( "lw %0, %2, r0 \n"
334 "andn %1, %0, %3 \n"
335 "or %1, %1, %4 \n"
336 "sw %1, %2, r0 \n"
337 : "=&r" (old), "=&r" (tmp)
338 : "r" ((unsigned long)(p + 1) - 4), "r" (clr), "r" (set)
339 : "cc");
340
341 raw_local_irq_restore(flags);
342
343 return old;
344}
345
346/*
347 * set_pte stores a linux PTE into the linux page table.
348 */
349static inline void set_pte(struct mm_struct *mm, unsigned long addr,
350 pte_t *ptep, pte_t pte)
351{
352 *ptep = pte;
353}
354
355static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
356 pte_t *ptep, pte_t pte)
357{
358 *ptep = pte;
359}
360
361#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
362static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
363 unsigned long address, pte_t *ptep)
364{
365 return (pte_update(ptep, _PAGE_ACCESSED, 0) & _PAGE_ACCESSED) != 0;
366}
367
368static inline int ptep_test_and_clear_dirty(struct mm_struct *mm,
369 unsigned long addr, pte_t *ptep)
370{
371 return (pte_update(ptep, \
372 (_PAGE_DIRTY | _PAGE_HWWRITE), 0) & _PAGE_DIRTY) != 0;
373}
374
375#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
376static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
377 unsigned long addr, pte_t *ptep)
378{
379 return __pte(pte_update(ptep, ~_PAGE_HASHPTE, 0));
380}
381
382/*static inline void ptep_set_wrprotect(struct mm_struct *mm,
383 unsigned long addr, pte_t *ptep)
384{
385 pte_update(ptep, (_PAGE_RW | _PAGE_HWWRITE), 0);
386}*/
387
388static inline void ptep_mkdirty(struct mm_struct *mm,
389 unsigned long addr, pte_t *ptep)
390{
391 pte_update(ptep, 0, _PAGE_DIRTY);
392}
393
394/*#define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0)*/
395
396/* Convert pmd entry to page */
397/* our pmd entry is an effective address of pte table*/
398/* returns effective address of the pmd entry*/
399static inline unsigned long pmd_page_vaddr(pmd_t pmd)
400{
401 return ((unsigned long) (pmd_val(pmd) & PAGE_MASK));
402}
403
404/* returns struct *page of the pmd entry*/
405#define pmd_page(pmd) (pfn_to_page(__pa(pmd_val(pmd)) >> PAGE_SHIFT))
406
407/* Find an entry in the third-level page table.. */
408
409extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
410
411/*
412 * Encode and decode a swap entry.
413 * Note that the bits we use in a PTE for representing a swap entry
414 * must not include the _PAGE_PRESENT bit, or the _PAGE_HASHPTE bit
415 * (if used). -- paulus
416 */
417#define __swp_type(entry) ((entry).val & 0x3f)
418#define __swp_offset(entry) ((entry).val >> 6)
419#define __swp_entry(type, offset) \
420 ((swp_entry_t) { (type) | ((offset) << 6) })
421#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> 2 })
422#define __swp_entry_to_pte(x) ((pte_t) { (x).val << 2 })
423
424extern unsigned long iopa(unsigned long addr);
425
426/* Values for nocacheflag and cmode */
427/* These are not used by the APUS kernel_map, but prevents
428 * compilation errors.
429 */
430#define IOMAP_FULL_CACHING 0
431#define IOMAP_NOCACHE_SER 1
432#define IOMAP_NOCACHE_NONSER 2
433#define IOMAP_NO_COPYBACK 3
434
435/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
436#define kern_addr_valid(addr) (1)
437
438void do_page_fault(struct pt_regs *regs, unsigned long address,
439 unsigned long error_code);
440
441void mapin_ram(void);
442int map_page(unsigned long va, phys_addr_t pa, int flags);
443
444extern int mem_init_done;
445
446asmlinkage void __init mmu_init(void);
447
448void __init *early_get_page(void);
449
450#endif /* __ASSEMBLY__ */
451#endif /* __KERNEL__ */
452
453#ifndef __ASSEMBLY__
454extern unsigned long ioremap_bot, ioremap_base;
455
456void setup_memory(void);
457#endif /* __ASSEMBLY__ */
458
459#endif /* _ASM_MICROBLAZE_PGTABLE_H */