Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
18#include <linux/stddef.h>
19#include <linux/mm.h>
20#include <linux/highmem.h>
21#include <linux/swap.h>
22#include <linux/interrupt.h>
23#include <linux/pagemap.h>
24#include <linux/jiffies.h>
25#include <linux/memblock.h>
26#include <linux/compiler.h>
27#include <linux/kernel.h>
28#include <linux/kasan.h>
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
34#include <linux/ratelimit.h>
35#include <linux/oom.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
40#include <linux/memory_hotplug.h>
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
43#include <linux/vmstat.h>
44#include <linux/mempolicy.h>
45#include <linux/memremap.h>
46#include <linux/stop_machine.h>
47#include <linux/random.h>
48#include <linux/sort.h>
49#include <linux/pfn.h>
50#include <linux/backing-dev.h>
51#include <linux/fault-inject.h>
52#include <linux/page-isolation.h>
53#include <linux/debugobjects.h>
54#include <linux/kmemleak.h>
55#include <linux/compaction.h>
56#include <trace/events/kmem.h>
57#include <trace/events/oom.h>
58#include <linux/prefetch.h>
59#include <linux/mm_inline.h>
60#include <linux/mmu_notifier.h>
61#include <linux/migrate.h>
62#include <linux/hugetlb.h>
63#include <linux/sched/rt.h>
64#include <linux/sched/mm.h>
65#include <linux/page_owner.h>
66#include <linux/kthread.h>
67#include <linux/memcontrol.h>
68#include <linux/ftrace.h>
69#include <linux/lockdep.h>
70#include <linux/nmi.h>
71#include <linux/psi.h>
72#include <linux/padata.h>
73#include <linux/khugepaged.h>
74#include <linux/buffer_head.h>
75
76#include <asm/sections.h>
77#include <asm/tlbflush.h>
78#include <asm/div64.h>
79#include "internal.h"
80#include "shuffle.h"
81#include "page_reporting.h"
82
83/* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
84typedef int __bitwise fpi_t;
85
86/* No special request */
87#define FPI_NONE ((__force fpi_t)0)
88
89/*
90 * Skip free page reporting notification for the (possibly merged) page.
91 * This does not hinder free page reporting from grabbing the page,
92 * reporting it and marking it "reported" - it only skips notifying
93 * the free page reporting infrastructure about a newly freed page. For
94 * example, used when temporarily pulling a page from a freelist and
95 * putting it back unmodified.
96 */
97#define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
98
99/*
100 * Place the (possibly merged) page to the tail of the freelist. Will ignore
101 * page shuffling (relevant code - e.g., memory onlining - is expected to
102 * shuffle the whole zone).
103 *
104 * Note: No code should rely on this flag for correctness - it's purely
105 * to allow for optimizations when handing back either fresh pages
106 * (memory onlining) or untouched pages (page isolation, free page
107 * reporting).
108 */
109#define FPI_TO_TAIL ((__force fpi_t)BIT(1))
110
111/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
112static DEFINE_MUTEX(pcp_batch_high_lock);
113#define MIN_PERCPU_PAGELIST_FRACTION (8)
114
115#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
116DEFINE_PER_CPU(int, numa_node);
117EXPORT_PER_CPU_SYMBOL(numa_node);
118#endif
119
120DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
121
122#ifdef CONFIG_HAVE_MEMORYLESS_NODES
123/*
124 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
125 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
126 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
127 * defined in <linux/topology.h>.
128 */
129DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
130EXPORT_PER_CPU_SYMBOL(_numa_mem_);
131#endif
132
133/* work_structs for global per-cpu drains */
134struct pcpu_drain {
135 struct zone *zone;
136 struct work_struct work;
137};
138static DEFINE_MUTEX(pcpu_drain_mutex);
139static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
140
141#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
142volatile unsigned long latent_entropy __latent_entropy;
143EXPORT_SYMBOL(latent_entropy);
144#endif
145
146/*
147 * Array of node states.
148 */
149nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
150 [N_POSSIBLE] = NODE_MASK_ALL,
151 [N_ONLINE] = { { [0] = 1UL } },
152#ifndef CONFIG_NUMA
153 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
154#ifdef CONFIG_HIGHMEM
155 [N_HIGH_MEMORY] = { { [0] = 1UL } },
156#endif
157 [N_MEMORY] = { { [0] = 1UL } },
158 [N_CPU] = { { [0] = 1UL } },
159#endif /* NUMA */
160};
161EXPORT_SYMBOL(node_states);
162
163atomic_long_t _totalram_pages __read_mostly;
164EXPORT_SYMBOL(_totalram_pages);
165unsigned long totalreserve_pages __read_mostly;
166unsigned long totalcma_pages __read_mostly;
167
168int percpu_pagelist_fraction;
169gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
170DEFINE_STATIC_KEY_FALSE(init_on_alloc);
171EXPORT_SYMBOL(init_on_alloc);
172
173DEFINE_STATIC_KEY_FALSE(init_on_free);
174EXPORT_SYMBOL(init_on_free);
175
176static bool _init_on_alloc_enabled_early __read_mostly
177 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
178static int __init early_init_on_alloc(char *buf)
179{
180
181 return kstrtobool(buf, &_init_on_alloc_enabled_early);
182}
183early_param("init_on_alloc", early_init_on_alloc);
184
185static bool _init_on_free_enabled_early __read_mostly
186 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
187static int __init early_init_on_free(char *buf)
188{
189 return kstrtobool(buf, &_init_on_free_enabled_early);
190}
191early_param("init_on_free", early_init_on_free);
192
193/*
194 * A cached value of the page's pageblock's migratetype, used when the page is
195 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
196 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
197 * Also the migratetype set in the page does not necessarily match the pcplist
198 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
199 * other index - this ensures that it will be put on the correct CMA freelist.
200 */
201static inline int get_pcppage_migratetype(struct page *page)
202{
203 return page->index;
204}
205
206static inline void set_pcppage_migratetype(struct page *page, int migratetype)
207{
208 page->index = migratetype;
209}
210
211#ifdef CONFIG_PM_SLEEP
212/*
213 * The following functions are used by the suspend/hibernate code to temporarily
214 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
215 * while devices are suspended. To avoid races with the suspend/hibernate code,
216 * they should always be called with system_transition_mutex held
217 * (gfp_allowed_mask also should only be modified with system_transition_mutex
218 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
219 * with that modification).
220 */
221
222static gfp_t saved_gfp_mask;
223
224void pm_restore_gfp_mask(void)
225{
226 WARN_ON(!mutex_is_locked(&system_transition_mutex));
227 if (saved_gfp_mask) {
228 gfp_allowed_mask = saved_gfp_mask;
229 saved_gfp_mask = 0;
230 }
231}
232
233void pm_restrict_gfp_mask(void)
234{
235 WARN_ON(!mutex_is_locked(&system_transition_mutex));
236 WARN_ON(saved_gfp_mask);
237 saved_gfp_mask = gfp_allowed_mask;
238 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
239}
240
241bool pm_suspended_storage(void)
242{
243 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
244 return false;
245 return true;
246}
247#endif /* CONFIG_PM_SLEEP */
248
249#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
250unsigned int pageblock_order __read_mostly;
251#endif
252
253static void __free_pages_ok(struct page *page, unsigned int order,
254 fpi_t fpi_flags);
255
256/*
257 * results with 256, 32 in the lowmem_reserve sysctl:
258 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
259 * 1G machine -> (16M dma, 784M normal, 224M high)
260 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
261 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
262 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
263 *
264 * TBD: should special case ZONE_DMA32 machines here - in those we normally
265 * don't need any ZONE_NORMAL reservation
266 */
267int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
268#ifdef CONFIG_ZONE_DMA
269 [ZONE_DMA] = 256,
270#endif
271#ifdef CONFIG_ZONE_DMA32
272 [ZONE_DMA32] = 256,
273#endif
274 [ZONE_NORMAL] = 32,
275#ifdef CONFIG_HIGHMEM
276 [ZONE_HIGHMEM] = 0,
277#endif
278 [ZONE_MOVABLE] = 0,
279};
280
281static char * const zone_names[MAX_NR_ZONES] = {
282#ifdef CONFIG_ZONE_DMA
283 "DMA",
284#endif
285#ifdef CONFIG_ZONE_DMA32
286 "DMA32",
287#endif
288 "Normal",
289#ifdef CONFIG_HIGHMEM
290 "HighMem",
291#endif
292 "Movable",
293#ifdef CONFIG_ZONE_DEVICE
294 "Device",
295#endif
296};
297
298const char * const migratetype_names[MIGRATE_TYPES] = {
299 "Unmovable",
300 "Movable",
301 "Reclaimable",
302 "HighAtomic",
303#ifdef CONFIG_CMA
304 "CMA",
305#endif
306#ifdef CONFIG_MEMORY_ISOLATION
307 "Isolate",
308#endif
309};
310
311compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
312 [NULL_COMPOUND_DTOR] = NULL,
313 [COMPOUND_PAGE_DTOR] = free_compound_page,
314#ifdef CONFIG_HUGETLB_PAGE
315 [HUGETLB_PAGE_DTOR] = free_huge_page,
316#endif
317#ifdef CONFIG_TRANSPARENT_HUGEPAGE
318 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
319#endif
320};
321
322int min_free_kbytes = 1024;
323int user_min_free_kbytes = -1;
324#ifdef CONFIG_DISCONTIGMEM
325/*
326 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
327 * are not on separate NUMA nodes. Functionally this works but with
328 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
329 * quite small. By default, do not boost watermarks on discontigmem as in
330 * many cases very high-order allocations like THP are likely to be
331 * unsupported and the premature reclaim offsets the advantage of long-term
332 * fragmentation avoidance.
333 */
334int watermark_boost_factor __read_mostly;
335#else
336int watermark_boost_factor __read_mostly = 15000;
337#endif
338int watermark_scale_factor = 10;
339
340static unsigned long nr_kernel_pages __initdata;
341static unsigned long nr_all_pages __initdata;
342static unsigned long dma_reserve __initdata;
343
344static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
345static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
346static unsigned long required_kernelcore __initdata;
347static unsigned long required_kernelcore_percent __initdata;
348static unsigned long required_movablecore __initdata;
349static unsigned long required_movablecore_percent __initdata;
350static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
351static bool mirrored_kernelcore __meminitdata;
352
353/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
354int movable_zone;
355EXPORT_SYMBOL(movable_zone);
356
357#if MAX_NUMNODES > 1
358unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
359unsigned int nr_online_nodes __read_mostly = 1;
360EXPORT_SYMBOL(nr_node_ids);
361EXPORT_SYMBOL(nr_online_nodes);
362#endif
363
364int page_group_by_mobility_disabled __read_mostly;
365
366#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
367/*
368 * During boot we initialize deferred pages on-demand, as needed, but once
369 * page_alloc_init_late() has finished, the deferred pages are all initialized,
370 * and we can permanently disable that path.
371 */
372static DEFINE_STATIC_KEY_TRUE(deferred_pages);
373
374/*
375 * Calling kasan_free_pages() only after deferred memory initialization
376 * has completed. Poisoning pages during deferred memory init will greatly
377 * lengthen the process and cause problem in large memory systems as the
378 * deferred pages initialization is done with interrupt disabled.
379 *
380 * Assuming that there will be no reference to those newly initialized
381 * pages before they are ever allocated, this should have no effect on
382 * KASAN memory tracking as the poison will be properly inserted at page
383 * allocation time. The only corner case is when pages are allocated by
384 * on-demand allocation and then freed again before the deferred pages
385 * initialization is done, but this is not likely to happen.
386 */
387static inline void kasan_free_nondeferred_pages(struct page *page, int order)
388{
389 if (!static_branch_unlikely(&deferred_pages))
390 kasan_free_pages(page, order);
391}
392
393/* Returns true if the struct page for the pfn is uninitialised */
394static inline bool __meminit early_page_uninitialised(unsigned long pfn)
395{
396 int nid = early_pfn_to_nid(pfn);
397
398 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
399 return true;
400
401 return false;
402}
403
404/*
405 * Returns true when the remaining initialisation should be deferred until
406 * later in the boot cycle when it can be parallelised.
407 */
408static bool __meminit
409defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
410{
411 static unsigned long prev_end_pfn, nr_initialised;
412
413 /*
414 * prev_end_pfn static that contains the end of previous zone
415 * No need to protect because called very early in boot before smp_init.
416 */
417 if (prev_end_pfn != end_pfn) {
418 prev_end_pfn = end_pfn;
419 nr_initialised = 0;
420 }
421
422 /* Always populate low zones for address-constrained allocations */
423 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
424 return false;
425
426 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
427 return true;
428 /*
429 * We start only with one section of pages, more pages are added as
430 * needed until the rest of deferred pages are initialized.
431 */
432 nr_initialised++;
433 if ((nr_initialised > PAGES_PER_SECTION) &&
434 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
435 NODE_DATA(nid)->first_deferred_pfn = pfn;
436 return true;
437 }
438 return false;
439}
440#else
441#define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
442
443static inline bool early_page_uninitialised(unsigned long pfn)
444{
445 return false;
446}
447
448static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
449{
450 return false;
451}
452#endif
453
454/* Return a pointer to the bitmap storing bits affecting a block of pages */
455static inline unsigned long *get_pageblock_bitmap(struct page *page,
456 unsigned long pfn)
457{
458#ifdef CONFIG_SPARSEMEM
459 return section_to_usemap(__pfn_to_section(pfn));
460#else
461 return page_zone(page)->pageblock_flags;
462#endif /* CONFIG_SPARSEMEM */
463}
464
465static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
466{
467#ifdef CONFIG_SPARSEMEM
468 pfn &= (PAGES_PER_SECTION-1);
469#else
470 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
471#endif /* CONFIG_SPARSEMEM */
472 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
473}
474
475static __always_inline
476unsigned long __get_pfnblock_flags_mask(struct page *page,
477 unsigned long pfn,
478 unsigned long mask)
479{
480 unsigned long *bitmap;
481 unsigned long bitidx, word_bitidx;
482 unsigned long word;
483
484 bitmap = get_pageblock_bitmap(page, pfn);
485 bitidx = pfn_to_bitidx(page, pfn);
486 word_bitidx = bitidx / BITS_PER_LONG;
487 bitidx &= (BITS_PER_LONG-1);
488
489 word = bitmap[word_bitidx];
490 return (word >> bitidx) & mask;
491}
492
493/**
494 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
495 * @page: The page within the block of interest
496 * @pfn: The target page frame number
497 * @mask: mask of bits that the caller is interested in
498 *
499 * Return: pageblock_bits flags
500 */
501unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
502 unsigned long mask)
503{
504 return __get_pfnblock_flags_mask(page, pfn, mask);
505}
506
507static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
508{
509 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
510}
511
512/**
513 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
514 * @page: The page within the block of interest
515 * @flags: The flags to set
516 * @pfn: The target page frame number
517 * @mask: mask of bits that the caller is interested in
518 */
519void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
520 unsigned long pfn,
521 unsigned long mask)
522{
523 unsigned long *bitmap;
524 unsigned long bitidx, word_bitidx;
525 unsigned long old_word, word;
526
527 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
528 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
529
530 bitmap = get_pageblock_bitmap(page, pfn);
531 bitidx = pfn_to_bitidx(page, pfn);
532 word_bitidx = bitidx / BITS_PER_LONG;
533 bitidx &= (BITS_PER_LONG-1);
534
535 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
536
537 mask <<= bitidx;
538 flags <<= bitidx;
539
540 word = READ_ONCE(bitmap[word_bitidx]);
541 for (;;) {
542 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
543 if (word == old_word)
544 break;
545 word = old_word;
546 }
547}
548
549void set_pageblock_migratetype(struct page *page, int migratetype)
550{
551 if (unlikely(page_group_by_mobility_disabled &&
552 migratetype < MIGRATE_PCPTYPES))
553 migratetype = MIGRATE_UNMOVABLE;
554
555 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
556 page_to_pfn(page), MIGRATETYPE_MASK);
557}
558
559#ifdef CONFIG_DEBUG_VM
560static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
561{
562 int ret = 0;
563 unsigned seq;
564 unsigned long pfn = page_to_pfn(page);
565 unsigned long sp, start_pfn;
566
567 do {
568 seq = zone_span_seqbegin(zone);
569 start_pfn = zone->zone_start_pfn;
570 sp = zone->spanned_pages;
571 if (!zone_spans_pfn(zone, pfn))
572 ret = 1;
573 } while (zone_span_seqretry(zone, seq));
574
575 if (ret)
576 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
577 pfn, zone_to_nid(zone), zone->name,
578 start_pfn, start_pfn + sp);
579
580 return ret;
581}
582
583static int page_is_consistent(struct zone *zone, struct page *page)
584{
585 if (!pfn_valid_within(page_to_pfn(page)))
586 return 0;
587 if (zone != page_zone(page))
588 return 0;
589
590 return 1;
591}
592/*
593 * Temporary debugging check for pages not lying within a given zone.
594 */
595static int __maybe_unused bad_range(struct zone *zone, struct page *page)
596{
597 if (page_outside_zone_boundaries(zone, page))
598 return 1;
599 if (!page_is_consistent(zone, page))
600 return 1;
601
602 return 0;
603}
604#else
605static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
606{
607 return 0;
608}
609#endif
610
611static void bad_page(struct page *page, const char *reason)
612{
613 static unsigned long resume;
614 static unsigned long nr_shown;
615 static unsigned long nr_unshown;
616
617 /*
618 * Allow a burst of 60 reports, then keep quiet for that minute;
619 * or allow a steady drip of one report per second.
620 */
621 if (nr_shown == 60) {
622 if (time_before(jiffies, resume)) {
623 nr_unshown++;
624 goto out;
625 }
626 if (nr_unshown) {
627 pr_alert(
628 "BUG: Bad page state: %lu messages suppressed\n",
629 nr_unshown);
630 nr_unshown = 0;
631 }
632 nr_shown = 0;
633 }
634 if (nr_shown++ == 0)
635 resume = jiffies + 60 * HZ;
636
637 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
638 current->comm, page_to_pfn(page));
639 __dump_page(page, reason);
640 dump_page_owner(page);
641
642 print_modules();
643 dump_stack();
644out:
645 /* Leave bad fields for debug, except PageBuddy could make trouble */
646 page_mapcount_reset(page); /* remove PageBuddy */
647 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
648}
649
650/*
651 * Higher-order pages are called "compound pages". They are structured thusly:
652 *
653 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
654 *
655 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
656 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
657 *
658 * The first tail page's ->compound_dtor holds the offset in array of compound
659 * page destructors. See compound_page_dtors.
660 *
661 * The first tail page's ->compound_order holds the order of allocation.
662 * This usage means that zero-order pages may not be compound.
663 */
664
665void free_compound_page(struct page *page)
666{
667 mem_cgroup_uncharge(page);
668 __free_pages_ok(page, compound_order(page), FPI_NONE);
669}
670
671void prep_compound_page(struct page *page, unsigned int order)
672{
673 int i;
674 int nr_pages = 1 << order;
675
676 __SetPageHead(page);
677 for (i = 1; i < nr_pages; i++) {
678 struct page *p = page + i;
679 set_page_count(p, 0);
680 p->mapping = TAIL_MAPPING;
681 set_compound_head(p, page);
682 }
683
684 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
685 set_compound_order(page, order);
686 atomic_set(compound_mapcount_ptr(page), -1);
687 if (hpage_pincount_available(page))
688 atomic_set(compound_pincount_ptr(page), 0);
689}
690
691#ifdef CONFIG_DEBUG_PAGEALLOC
692unsigned int _debug_guardpage_minorder;
693
694bool _debug_pagealloc_enabled_early __read_mostly
695 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
696EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
697DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
698EXPORT_SYMBOL(_debug_pagealloc_enabled);
699
700DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
701
702static int __init early_debug_pagealloc(char *buf)
703{
704 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
705}
706early_param("debug_pagealloc", early_debug_pagealloc);
707
708static int __init debug_guardpage_minorder_setup(char *buf)
709{
710 unsigned long res;
711
712 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
713 pr_err("Bad debug_guardpage_minorder value\n");
714 return 0;
715 }
716 _debug_guardpage_minorder = res;
717 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
718 return 0;
719}
720early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
721
722static inline bool set_page_guard(struct zone *zone, struct page *page,
723 unsigned int order, int migratetype)
724{
725 if (!debug_guardpage_enabled())
726 return false;
727
728 if (order >= debug_guardpage_minorder())
729 return false;
730
731 __SetPageGuard(page);
732 INIT_LIST_HEAD(&page->lru);
733 set_page_private(page, order);
734 /* Guard pages are not available for any usage */
735 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
736
737 return true;
738}
739
740static inline void clear_page_guard(struct zone *zone, struct page *page,
741 unsigned int order, int migratetype)
742{
743 if (!debug_guardpage_enabled())
744 return;
745
746 __ClearPageGuard(page);
747
748 set_page_private(page, 0);
749 if (!is_migrate_isolate(migratetype))
750 __mod_zone_freepage_state(zone, (1 << order), migratetype);
751}
752#else
753static inline bool set_page_guard(struct zone *zone, struct page *page,
754 unsigned int order, int migratetype) { return false; }
755static inline void clear_page_guard(struct zone *zone, struct page *page,
756 unsigned int order, int migratetype) {}
757#endif
758
759/*
760 * Enable static keys related to various memory debugging and hardening options.
761 * Some override others, and depend on early params that are evaluated in the
762 * order of appearance. So we need to first gather the full picture of what was
763 * enabled, and then make decisions.
764 */
765void init_mem_debugging_and_hardening(void)
766{
767 if (_init_on_alloc_enabled_early) {
768 if (page_poisoning_enabled())
769 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
770 "will take precedence over init_on_alloc\n");
771 else
772 static_branch_enable(&init_on_alloc);
773 }
774 if (_init_on_free_enabled_early) {
775 if (page_poisoning_enabled())
776 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
777 "will take precedence over init_on_free\n");
778 else
779 static_branch_enable(&init_on_free);
780 }
781
782#ifdef CONFIG_PAGE_POISONING
783 /*
784 * Page poisoning is debug page alloc for some arches. If
785 * either of those options are enabled, enable poisoning.
786 */
787 if (page_poisoning_enabled() ||
788 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
789 debug_pagealloc_enabled()))
790 static_branch_enable(&_page_poisoning_enabled);
791#endif
792
793#ifdef CONFIG_DEBUG_PAGEALLOC
794 if (!debug_pagealloc_enabled())
795 return;
796
797 static_branch_enable(&_debug_pagealloc_enabled);
798
799 if (!debug_guardpage_minorder())
800 return;
801
802 static_branch_enable(&_debug_guardpage_enabled);
803#endif
804}
805
806static inline void set_buddy_order(struct page *page, unsigned int order)
807{
808 set_page_private(page, order);
809 __SetPageBuddy(page);
810}
811
812/*
813 * This function checks whether a page is free && is the buddy
814 * we can coalesce a page and its buddy if
815 * (a) the buddy is not in a hole (check before calling!) &&
816 * (b) the buddy is in the buddy system &&
817 * (c) a page and its buddy have the same order &&
818 * (d) a page and its buddy are in the same zone.
819 *
820 * For recording whether a page is in the buddy system, we set PageBuddy.
821 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
822 *
823 * For recording page's order, we use page_private(page).
824 */
825static inline bool page_is_buddy(struct page *page, struct page *buddy,
826 unsigned int order)
827{
828 if (!page_is_guard(buddy) && !PageBuddy(buddy))
829 return false;
830
831 if (buddy_order(buddy) != order)
832 return false;
833
834 /*
835 * zone check is done late to avoid uselessly calculating
836 * zone/node ids for pages that could never merge.
837 */
838 if (page_zone_id(page) != page_zone_id(buddy))
839 return false;
840
841 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
842
843 return true;
844}
845
846#ifdef CONFIG_COMPACTION
847static inline struct capture_control *task_capc(struct zone *zone)
848{
849 struct capture_control *capc = current->capture_control;
850
851 return unlikely(capc) &&
852 !(current->flags & PF_KTHREAD) &&
853 !capc->page &&
854 capc->cc->zone == zone ? capc : NULL;
855}
856
857static inline bool
858compaction_capture(struct capture_control *capc, struct page *page,
859 int order, int migratetype)
860{
861 if (!capc || order != capc->cc->order)
862 return false;
863
864 /* Do not accidentally pollute CMA or isolated regions*/
865 if (is_migrate_cma(migratetype) ||
866 is_migrate_isolate(migratetype))
867 return false;
868
869 /*
870 * Do not let lower order allocations polluate a movable pageblock.
871 * This might let an unmovable request use a reclaimable pageblock
872 * and vice-versa but no more than normal fallback logic which can
873 * have trouble finding a high-order free page.
874 */
875 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
876 return false;
877
878 capc->page = page;
879 return true;
880}
881
882#else
883static inline struct capture_control *task_capc(struct zone *zone)
884{
885 return NULL;
886}
887
888static inline bool
889compaction_capture(struct capture_control *capc, struct page *page,
890 int order, int migratetype)
891{
892 return false;
893}
894#endif /* CONFIG_COMPACTION */
895
896/* Used for pages not on another list */
897static inline void add_to_free_list(struct page *page, struct zone *zone,
898 unsigned int order, int migratetype)
899{
900 struct free_area *area = &zone->free_area[order];
901
902 list_add(&page->lru, &area->free_list[migratetype]);
903 area->nr_free++;
904}
905
906/* Used for pages not on another list */
907static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
908 unsigned int order, int migratetype)
909{
910 struct free_area *area = &zone->free_area[order];
911
912 list_add_tail(&page->lru, &area->free_list[migratetype]);
913 area->nr_free++;
914}
915
916/*
917 * Used for pages which are on another list. Move the pages to the tail
918 * of the list - so the moved pages won't immediately be considered for
919 * allocation again (e.g., optimization for memory onlining).
920 */
921static inline void move_to_free_list(struct page *page, struct zone *zone,
922 unsigned int order, int migratetype)
923{
924 struct free_area *area = &zone->free_area[order];
925
926 list_move_tail(&page->lru, &area->free_list[migratetype]);
927}
928
929static inline void del_page_from_free_list(struct page *page, struct zone *zone,
930 unsigned int order)
931{
932 /* clear reported state and update reported page count */
933 if (page_reported(page))
934 __ClearPageReported(page);
935
936 list_del(&page->lru);
937 __ClearPageBuddy(page);
938 set_page_private(page, 0);
939 zone->free_area[order].nr_free--;
940}
941
942/*
943 * If this is not the largest possible page, check if the buddy
944 * of the next-highest order is free. If it is, it's possible
945 * that pages are being freed that will coalesce soon. In case,
946 * that is happening, add the free page to the tail of the list
947 * so it's less likely to be used soon and more likely to be merged
948 * as a higher order page
949 */
950static inline bool
951buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
952 struct page *page, unsigned int order)
953{
954 struct page *higher_page, *higher_buddy;
955 unsigned long combined_pfn;
956
957 if (order >= MAX_ORDER - 2)
958 return false;
959
960 if (!pfn_valid_within(buddy_pfn))
961 return false;
962
963 combined_pfn = buddy_pfn & pfn;
964 higher_page = page + (combined_pfn - pfn);
965 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
966 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
967
968 return pfn_valid_within(buddy_pfn) &&
969 page_is_buddy(higher_page, higher_buddy, order + 1);
970}
971
972/*
973 * Freeing function for a buddy system allocator.
974 *
975 * The concept of a buddy system is to maintain direct-mapped table
976 * (containing bit values) for memory blocks of various "orders".
977 * The bottom level table contains the map for the smallest allocatable
978 * units of memory (here, pages), and each level above it describes
979 * pairs of units from the levels below, hence, "buddies".
980 * At a high level, all that happens here is marking the table entry
981 * at the bottom level available, and propagating the changes upward
982 * as necessary, plus some accounting needed to play nicely with other
983 * parts of the VM system.
984 * At each level, we keep a list of pages, which are heads of continuous
985 * free pages of length of (1 << order) and marked with PageBuddy.
986 * Page's order is recorded in page_private(page) field.
987 * So when we are allocating or freeing one, we can derive the state of the
988 * other. That is, if we allocate a small block, and both were
989 * free, the remainder of the region must be split into blocks.
990 * If a block is freed, and its buddy is also free, then this
991 * triggers coalescing into a block of larger size.
992 *
993 * -- nyc
994 */
995
996static inline void __free_one_page(struct page *page,
997 unsigned long pfn,
998 struct zone *zone, unsigned int order,
999 int migratetype, fpi_t fpi_flags)
1000{
1001 struct capture_control *capc = task_capc(zone);
1002 unsigned long buddy_pfn;
1003 unsigned long combined_pfn;
1004 unsigned int max_order;
1005 struct page *buddy;
1006 bool to_tail;
1007
1008 max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order);
1009
1010 VM_BUG_ON(!zone_is_initialized(zone));
1011 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1012
1013 VM_BUG_ON(migratetype == -1);
1014 if (likely(!is_migrate_isolate(migratetype)))
1015 __mod_zone_freepage_state(zone, 1 << order, migratetype);
1016
1017 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1018 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1019
1020continue_merging:
1021 while (order < max_order) {
1022 if (compaction_capture(capc, page, order, migratetype)) {
1023 __mod_zone_freepage_state(zone, -(1 << order),
1024 migratetype);
1025 return;
1026 }
1027 buddy_pfn = __find_buddy_pfn(pfn, order);
1028 buddy = page + (buddy_pfn - pfn);
1029
1030 if (!pfn_valid_within(buddy_pfn))
1031 goto done_merging;
1032 if (!page_is_buddy(page, buddy, order))
1033 goto done_merging;
1034 /*
1035 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1036 * merge with it and move up one order.
1037 */
1038 if (page_is_guard(buddy))
1039 clear_page_guard(zone, buddy, order, migratetype);
1040 else
1041 del_page_from_free_list(buddy, zone, order);
1042 combined_pfn = buddy_pfn & pfn;
1043 page = page + (combined_pfn - pfn);
1044 pfn = combined_pfn;
1045 order++;
1046 }
1047 if (order < MAX_ORDER - 1) {
1048 /* If we are here, it means order is >= pageblock_order.
1049 * We want to prevent merge between freepages on isolate
1050 * pageblock and normal pageblock. Without this, pageblock
1051 * isolation could cause incorrect freepage or CMA accounting.
1052 *
1053 * We don't want to hit this code for the more frequent
1054 * low-order merging.
1055 */
1056 if (unlikely(has_isolate_pageblock(zone))) {
1057 int buddy_mt;
1058
1059 buddy_pfn = __find_buddy_pfn(pfn, order);
1060 buddy = page + (buddy_pfn - pfn);
1061 buddy_mt = get_pageblock_migratetype(buddy);
1062
1063 if (migratetype != buddy_mt
1064 && (is_migrate_isolate(migratetype) ||
1065 is_migrate_isolate(buddy_mt)))
1066 goto done_merging;
1067 }
1068 max_order = order + 1;
1069 goto continue_merging;
1070 }
1071
1072done_merging:
1073 set_buddy_order(page, order);
1074
1075 if (fpi_flags & FPI_TO_TAIL)
1076 to_tail = true;
1077 else if (is_shuffle_order(order))
1078 to_tail = shuffle_pick_tail();
1079 else
1080 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1081
1082 if (to_tail)
1083 add_to_free_list_tail(page, zone, order, migratetype);
1084 else
1085 add_to_free_list(page, zone, order, migratetype);
1086
1087 /* Notify page reporting subsystem of freed page */
1088 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1089 page_reporting_notify_free(order);
1090}
1091
1092/*
1093 * A bad page could be due to a number of fields. Instead of multiple branches,
1094 * try and check multiple fields with one check. The caller must do a detailed
1095 * check if necessary.
1096 */
1097static inline bool page_expected_state(struct page *page,
1098 unsigned long check_flags)
1099{
1100 if (unlikely(atomic_read(&page->_mapcount) != -1))
1101 return false;
1102
1103 if (unlikely((unsigned long)page->mapping |
1104 page_ref_count(page) |
1105#ifdef CONFIG_MEMCG
1106 (unsigned long)page_memcg(page) |
1107#endif
1108 (page->flags & check_flags)))
1109 return false;
1110
1111 return true;
1112}
1113
1114static const char *page_bad_reason(struct page *page, unsigned long flags)
1115{
1116 const char *bad_reason = NULL;
1117
1118 if (unlikely(atomic_read(&page->_mapcount) != -1))
1119 bad_reason = "nonzero mapcount";
1120 if (unlikely(page->mapping != NULL))
1121 bad_reason = "non-NULL mapping";
1122 if (unlikely(page_ref_count(page) != 0))
1123 bad_reason = "nonzero _refcount";
1124 if (unlikely(page->flags & flags)) {
1125 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1126 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1127 else
1128 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1129 }
1130#ifdef CONFIG_MEMCG
1131 if (unlikely(page_memcg(page)))
1132 bad_reason = "page still charged to cgroup";
1133#endif
1134 return bad_reason;
1135}
1136
1137static void check_free_page_bad(struct page *page)
1138{
1139 bad_page(page,
1140 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1141}
1142
1143static inline int check_free_page(struct page *page)
1144{
1145 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1146 return 0;
1147
1148 /* Something has gone sideways, find it */
1149 check_free_page_bad(page);
1150 return 1;
1151}
1152
1153static int free_tail_pages_check(struct page *head_page, struct page *page)
1154{
1155 int ret = 1;
1156
1157 /*
1158 * We rely page->lru.next never has bit 0 set, unless the page
1159 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1160 */
1161 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1162
1163 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1164 ret = 0;
1165 goto out;
1166 }
1167 switch (page - head_page) {
1168 case 1:
1169 /* the first tail page: ->mapping may be compound_mapcount() */
1170 if (unlikely(compound_mapcount(page))) {
1171 bad_page(page, "nonzero compound_mapcount");
1172 goto out;
1173 }
1174 break;
1175 case 2:
1176 /*
1177 * the second tail page: ->mapping is
1178 * deferred_list.next -- ignore value.
1179 */
1180 break;
1181 default:
1182 if (page->mapping != TAIL_MAPPING) {
1183 bad_page(page, "corrupted mapping in tail page");
1184 goto out;
1185 }
1186 break;
1187 }
1188 if (unlikely(!PageTail(page))) {
1189 bad_page(page, "PageTail not set");
1190 goto out;
1191 }
1192 if (unlikely(compound_head(page) != head_page)) {
1193 bad_page(page, "compound_head not consistent");
1194 goto out;
1195 }
1196 ret = 0;
1197out:
1198 page->mapping = NULL;
1199 clear_compound_head(page);
1200 return ret;
1201}
1202
1203static void kernel_init_free_pages(struct page *page, int numpages)
1204{
1205 int i;
1206
1207 /* s390's use of memset() could override KASAN redzones. */
1208 kasan_disable_current();
1209 for (i = 0; i < numpages; i++) {
1210 u8 tag = page_kasan_tag(page + i);
1211 page_kasan_tag_reset(page + i);
1212 clear_highpage(page + i);
1213 page_kasan_tag_set(page + i, tag);
1214 }
1215 kasan_enable_current();
1216}
1217
1218static __always_inline bool free_pages_prepare(struct page *page,
1219 unsigned int order, bool check_free)
1220{
1221 int bad = 0;
1222
1223 VM_BUG_ON_PAGE(PageTail(page), page);
1224
1225 trace_mm_page_free(page, order);
1226
1227 if (unlikely(PageHWPoison(page)) && !order) {
1228 /*
1229 * Do not let hwpoison pages hit pcplists/buddy
1230 * Untie memcg state and reset page's owner
1231 */
1232 if (memcg_kmem_enabled() && PageMemcgKmem(page))
1233 __memcg_kmem_uncharge_page(page, order);
1234 reset_page_owner(page, order);
1235 return false;
1236 }
1237
1238 /*
1239 * Check tail pages before head page information is cleared to
1240 * avoid checking PageCompound for order-0 pages.
1241 */
1242 if (unlikely(order)) {
1243 bool compound = PageCompound(page);
1244 int i;
1245
1246 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1247
1248 if (compound)
1249 ClearPageDoubleMap(page);
1250 for (i = 1; i < (1 << order); i++) {
1251 if (compound)
1252 bad += free_tail_pages_check(page, page + i);
1253 if (unlikely(check_free_page(page + i))) {
1254 bad++;
1255 continue;
1256 }
1257 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1258 }
1259 }
1260 if (PageMappingFlags(page))
1261 page->mapping = NULL;
1262 if (memcg_kmem_enabled() && PageMemcgKmem(page))
1263 __memcg_kmem_uncharge_page(page, order);
1264 if (check_free)
1265 bad += check_free_page(page);
1266 if (bad)
1267 return false;
1268
1269 page_cpupid_reset_last(page);
1270 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1271 reset_page_owner(page, order);
1272
1273 if (!PageHighMem(page)) {
1274 debug_check_no_locks_freed(page_address(page),
1275 PAGE_SIZE << order);
1276 debug_check_no_obj_freed(page_address(page),
1277 PAGE_SIZE << order);
1278 }
1279 if (want_init_on_free())
1280 kernel_init_free_pages(page, 1 << order);
1281
1282 kernel_poison_pages(page, 1 << order);
1283
1284 /*
1285 * With hardware tag-based KASAN, memory tags must be set before the
1286 * page becomes unavailable via debug_pagealloc or arch_free_page.
1287 */
1288 kasan_free_nondeferred_pages(page, order);
1289
1290 /*
1291 * arch_free_page() can make the page's contents inaccessible. s390
1292 * does this. So nothing which can access the page's contents should
1293 * happen after this.
1294 */
1295 arch_free_page(page, order);
1296
1297 debug_pagealloc_unmap_pages(page, 1 << order);
1298
1299 return true;
1300}
1301
1302#ifdef CONFIG_DEBUG_VM
1303/*
1304 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1305 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1306 * moved from pcp lists to free lists.
1307 */
1308static bool free_pcp_prepare(struct page *page)
1309{
1310 return free_pages_prepare(page, 0, true);
1311}
1312
1313static bool bulkfree_pcp_prepare(struct page *page)
1314{
1315 if (debug_pagealloc_enabled_static())
1316 return check_free_page(page);
1317 else
1318 return false;
1319}
1320#else
1321/*
1322 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1323 * moving from pcp lists to free list in order to reduce overhead. With
1324 * debug_pagealloc enabled, they are checked also immediately when being freed
1325 * to the pcp lists.
1326 */
1327static bool free_pcp_prepare(struct page *page)
1328{
1329 if (debug_pagealloc_enabled_static())
1330 return free_pages_prepare(page, 0, true);
1331 else
1332 return free_pages_prepare(page, 0, false);
1333}
1334
1335static bool bulkfree_pcp_prepare(struct page *page)
1336{
1337 return check_free_page(page);
1338}
1339#endif /* CONFIG_DEBUG_VM */
1340
1341static inline void prefetch_buddy(struct page *page)
1342{
1343 unsigned long pfn = page_to_pfn(page);
1344 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1345 struct page *buddy = page + (buddy_pfn - pfn);
1346
1347 prefetch(buddy);
1348}
1349
1350/*
1351 * Frees a number of pages from the PCP lists
1352 * Assumes all pages on list are in same zone, and of same order.
1353 * count is the number of pages to free.
1354 *
1355 * If the zone was previously in an "all pages pinned" state then look to
1356 * see if this freeing clears that state.
1357 *
1358 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1359 * pinned" detection logic.
1360 */
1361static void free_pcppages_bulk(struct zone *zone, int count,
1362 struct per_cpu_pages *pcp)
1363{
1364 int migratetype = 0;
1365 int batch_free = 0;
1366 int prefetch_nr = READ_ONCE(pcp->batch);
1367 bool isolated_pageblocks;
1368 struct page *page, *tmp;
1369 LIST_HEAD(head);
1370
1371 /*
1372 * Ensure proper count is passed which otherwise would stuck in the
1373 * below while (list_empty(list)) loop.
1374 */
1375 count = min(pcp->count, count);
1376 while (count) {
1377 struct list_head *list;
1378
1379 /*
1380 * Remove pages from lists in a round-robin fashion. A
1381 * batch_free count is maintained that is incremented when an
1382 * empty list is encountered. This is so more pages are freed
1383 * off fuller lists instead of spinning excessively around empty
1384 * lists
1385 */
1386 do {
1387 batch_free++;
1388 if (++migratetype == MIGRATE_PCPTYPES)
1389 migratetype = 0;
1390 list = &pcp->lists[migratetype];
1391 } while (list_empty(list));
1392
1393 /* This is the only non-empty list. Free them all. */
1394 if (batch_free == MIGRATE_PCPTYPES)
1395 batch_free = count;
1396
1397 do {
1398 page = list_last_entry(list, struct page, lru);
1399 /* must delete to avoid corrupting pcp list */
1400 list_del(&page->lru);
1401 pcp->count--;
1402
1403 if (bulkfree_pcp_prepare(page))
1404 continue;
1405
1406 list_add_tail(&page->lru, &head);
1407
1408 /*
1409 * We are going to put the page back to the global
1410 * pool, prefetch its buddy to speed up later access
1411 * under zone->lock. It is believed the overhead of
1412 * an additional test and calculating buddy_pfn here
1413 * can be offset by reduced memory latency later. To
1414 * avoid excessive prefetching due to large count, only
1415 * prefetch buddy for the first pcp->batch nr of pages.
1416 */
1417 if (prefetch_nr) {
1418 prefetch_buddy(page);
1419 prefetch_nr--;
1420 }
1421 } while (--count && --batch_free && !list_empty(list));
1422 }
1423
1424 spin_lock(&zone->lock);
1425 isolated_pageblocks = has_isolate_pageblock(zone);
1426
1427 /*
1428 * Use safe version since after __free_one_page(),
1429 * page->lru.next will not point to original list.
1430 */
1431 list_for_each_entry_safe(page, tmp, &head, lru) {
1432 int mt = get_pcppage_migratetype(page);
1433 /* MIGRATE_ISOLATE page should not go to pcplists */
1434 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1435 /* Pageblock could have been isolated meanwhile */
1436 if (unlikely(isolated_pageblocks))
1437 mt = get_pageblock_migratetype(page);
1438
1439 __free_one_page(page, page_to_pfn(page), zone, 0, mt, FPI_NONE);
1440 trace_mm_page_pcpu_drain(page, 0, mt);
1441 }
1442 spin_unlock(&zone->lock);
1443}
1444
1445static void free_one_page(struct zone *zone,
1446 struct page *page, unsigned long pfn,
1447 unsigned int order,
1448 int migratetype, fpi_t fpi_flags)
1449{
1450 spin_lock(&zone->lock);
1451 if (unlikely(has_isolate_pageblock(zone) ||
1452 is_migrate_isolate(migratetype))) {
1453 migratetype = get_pfnblock_migratetype(page, pfn);
1454 }
1455 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1456 spin_unlock(&zone->lock);
1457}
1458
1459static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1460 unsigned long zone, int nid)
1461{
1462 mm_zero_struct_page(page);
1463 set_page_links(page, zone, nid, pfn);
1464 init_page_count(page);
1465 page_mapcount_reset(page);
1466 page_cpupid_reset_last(page);
1467 page_kasan_tag_reset(page);
1468
1469 INIT_LIST_HEAD(&page->lru);
1470#ifdef WANT_PAGE_VIRTUAL
1471 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1472 if (!is_highmem_idx(zone))
1473 set_page_address(page, __va(pfn << PAGE_SHIFT));
1474#endif
1475}
1476
1477#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1478static void __meminit init_reserved_page(unsigned long pfn)
1479{
1480 pg_data_t *pgdat;
1481 int nid, zid;
1482
1483 if (!early_page_uninitialised(pfn))
1484 return;
1485
1486 nid = early_pfn_to_nid(pfn);
1487 pgdat = NODE_DATA(nid);
1488
1489 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1490 struct zone *zone = &pgdat->node_zones[zid];
1491
1492 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1493 break;
1494 }
1495 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1496}
1497#else
1498static inline void init_reserved_page(unsigned long pfn)
1499{
1500}
1501#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1502
1503/*
1504 * Initialised pages do not have PageReserved set. This function is
1505 * called for each range allocated by the bootmem allocator and
1506 * marks the pages PageReserved. The remaining valid pages are later
1507 * sent to the buddy page allocator.
1508 */
1509void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1510{
1511 unsigned long start_pfn = PFN_DOWN(start);
1512 unsigned long end_pfn = PFN_UP(end);
1513
1514 for (; start_pfn < end_pfn; start_pfn++) {
1515 if (pfn_valid(start_pfn)) {
1516 struct page *page = pfn_to_page(start_pfn);
1517
1518 init_reserved_page(start_pfn);
1519
1520 /* Avoid false-positive PageTail() */
1521 INIT_LIST_HEAD(&page->lru);
1522
1523 /*
1524 * no need for atomic set_bit because the struct
1525 * page is not visible yet so nobody should
1526 * access it yet.
1527 */
1528 __SetPageReserved(page);
1529 }
1530 }
1531}
1532
1533static void __free_pages_ok(struct page *page, unsigned int order,
1534 fpi_t fpi_flags)
1535{
1536 unsigned long flags;
1537 int migratetype;
1538 unsigned long pfn = page_to_pfn(page);
1539
1540 if (!free_pages_prepare(page, order, true))
1541 return;
1542
1543 migratetype = get_pfnblock_migratetype(page, pfn);
1544 local_irq_save(flags);
1545 __count_vm_events(PGFREE, 1 << order);
1546 free_one_page(page_zone(page), page, pfn, order, migratetype,
1547 fpi_flags);
1548 local_irq_restore(flags);
1549}
1550
1551void __free_pages_core(struct page *page, unsigned int order)
1552{
1553 unsigned int nr_pages = 1 << order;
1554 struct page *p = page;
1555 unsigned int loop;
1556
1557 /*
1558 * When initializing the memmap, __init_single_page() sets the refcount
1559 * of all pages to 1 ("allocated"/"not free"). We have to set the
1560 * refcount of all involved pages to 0.
1561 */
1562 prefetchw(p);
1563 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1564 prefetchw(p + 1);
1565 __ClearPageReserved(p);
1566 set_page_count(p, 0);
1567 }
1568 __ClearPageReserved(p);
1569 set_page_count(p, 0);
1570
1571 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1572
1573 /*
1574 * Bypass PCP and place fresh pages right to the tail, primarily
1575 * relevant for memory onlining.
1576 */
1577 __free_pages_ok(page, order, FPI_TO_TAIL);
1578}
1579
1580#ifdef CONFIG_NEED_MULTIPLE_NODES
1581
1582/*
1583 * During memory init memblocks map pfns to nids. The search is expensive and
1584 * this caches recent lookups. The implementation of __early_pfn_to_nid
1585 * treats start/end as pfns.
1586 */
1587struct mminit_pfnnid_cache {
1588 unsigned long last_start;
1589 unsigned long last_end;
1590 int last_nid;
1591};
1592
1593static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1594
1595/*
1596 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1597 */
1598static int __meminit __early_pfn_to_nid(unsigned long pfn,
1599 struct mminit_pfnnid_cache *state)
1600{
1601 unsigned long start_pfn, end_pfn;
1602 int nid;
1603
1604 if (state->last_start <= pfn && pfn < state->last_end)
1605 return state->last_nid;
1606
1607 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1608 if (nid != NUMA_NO_NODE) {
1609 state->last_start = start_pfn;
1610 state->last_end = end_pfn;
1611 state->last_nid = nid;
1612 }
1613
1614 return nid;
1615}
1616
1617int __meminit early_pfn_to_nid(unsigned long pfn)
1618{
1619 static DEFINE_SPINLOCK(early_pfn_lock);
1620 int nid;
1621
1622 spin_lock(&early_pfn_lock);
1623 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1624 if (nid < 0)
1625 nid = first_online_node;
1626 spin_unlock(&early_pfn_lock);
1627
1628 return nid;
1629}
1630#endif /* CONFIG_NEED_MULTIPLE_NODES */
1631
1632void __init memblock_free_pages(struct page *page, unsigned long pfn,
1633 unsigned int order)
1634{
1635 if (early_page_uninitialised(pfn))
1636 return;
1637 __free_pages_core(page, order);
1638}
1639
1640/*
1641 * Check that the whole (or subset of) a pageblock given by the interval of
1642 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1643 * with the migration of free compaction scanner. The scanners then need to
1644 * use only pfn_valid_within() check for arches that allow holes within
1645 * pageblocks.
1646 *
1647 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1648 *
1649 * It's possible on some configurations to have a setup like node0 node1 node0
1650 * i.e. it's possible that all pages within a zones range of pages do not
1651 * belong to a single zone. We assume that a border between node0 and node1
1652 * can occur within a single pageblock, but not a node0 node1 node0
1653 * interleaving within a single pageblock. It is therefore sufficient to check
1654 * the first and last page of a pageblock and avoid checking each individual
1655 * page in a pageblock.
1656 */
1657struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1658 unsigned long end_pfn, struct zone *zone)
1659{
1660 struct page *start_page;
1661 struct page *end_page;
1662
1663 /* end_pfn is one past the range we are checking */
1664 end_pfn--;
1665
1666 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1667 return NULL;
1668
1669 start_page = pfn_to_online_page(start_pfn);
1670 if (!start_page)
1671 return NULL;
1672
1673 if (page_zone(start_page) != zone)
1674 return NULL;
1675
1676 end_page = pfn_to_page(end_pfn);
1677
1678 /* This gives a shorter code than deriving page_zone(end_page) */
1679 if (page_zone_id(start_page) != page_zone_id(end_page))
1680 return NULL;
1681
1682 return start_page;
1683}
1684
1685void set_zone_contiguous(struct zone *zone)
1686{
1687 unsigned long block_start_pfn = zone->zone_start_pfn;
1688 unsigned long block_end_pfn;
1689
1690 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1691 for (; block_start_pfn < zone_end_pfn(zone);
1692 block_start_pfn = block_end_pfn,
1693 block_end_pfn += pageblock_nr_pages) {
1694
1695 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1696
1697 if (!__pageblock_pfn_to_page(block_start_pfn,
1698 block_end_pfn, zone))
1699 return;
1700 cond_resched();
1701 }
1702
1703 /* We confirm that there is no hole */
1704 zone->contiguous = true;
1705}
1706
1707void clear_zone_contiguous(struct zone *zone)
1708{
1709 zone->contiguous = false;
1710}
1711
1712#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1713static void __init deferred_free_range(unsigned long pfn,
1714 unsigned long nr_pages)
1715{
1716 struct page *page;
1717 unsigned long i;
1718
1719 if (!nr_pages)
1720 return;
1721
1722 page = pfn_to_page(pfn);
1723
1724 /* Free a large naturally-aligned chunk if possible */
1725 if (nr_pages == pageblock_nr_pages &&
1726 (pfn & (pageblock_nr_pages - 1)) == 0) {
1727 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1728 __free_pages_core(page, pageblock_order);
1729 return;
1730 }
1731
1732 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1733 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1734 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1735 __free_pages_core(page, 0);
1736 }
1737}
1738
1739/* Completion tracking for deferred_init_memmap() threads */
1740static atomic_t pgdat_init_n_undone __initdata;
1741static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1742
1743static inline void __init pgdat_init_report_one_done(void)
1744{
1745 if (atomic_dec_and_test(&pgdat_init_n_undone))
1746 complete(&pgdat_init_all_done_comp);
1747}
1748
1749/*
1750 * Returns true if page needs to be initialized or freed to buddy allocator.
1751 *
1752 * First we check if pfn is valid on architectures where it is possible to have
1753 * holes within pageblock_nr_pages. On systems where it is not possible, this
1754 * function is optimized out.
1755 *
1756 * Then, we check if a current large page is valid by only checking the validity
1757 * of the head pfn.
1758 */
1759static inline bool __init deferred_pfn_valid(unsigned long pfn)
1760{
1761 if (!pfn_valid_within(pfn))
1762 return false;
1763 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1764 return false;
1765 return true;
1766}
1767
1768/*
1769 * Free pages to buddy allocator. Try to free aligned pages in
1770 * pageblock_nr_pages sizes.
1771 */
1772static void __init deferred_free_pages(unsigned long pfn,
1773 unsigned long end_pfn)
1774{
1775 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1776 unsigned long nr_free = 0;
1777
1778 for (; pfn < end_pfn; pfn++) {
1779 if (!deferred_pfn_valid(pfn)) {
1780 deferred_free_range(pfn - nr_free, nr_free);
1781 nr_free = 0;
1782 } else if (!(pfn & nr_pgmask)) {
1783 deferred_free_range(pfn - nr_free, nr_free);
1784 nr_free = 1;
1785 } else {
1786 nr_free++;
1787 }
1788 }
1789 /* Free the last block of pages to allocator */
1790 deferred_free_range(pfn - nr_free, nr_free);
1791}
1792
1793/*
1794 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1795 * by performing it only once every pageblock_nr_pages.
1796 * Return number of pages initialized.
1797 */
1798static unsigned long __init deferred_init_pages(struct zone *zone,
1799 unsigned long pfn,
1800 unsigned long end_pfn)
1801{
1802 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1803 int nid = zone_to_nid(zone);
1804 unsigned long nr_pages = 0;
1805 int zid = zone_idx(zone);
1806 struct page *page = NULL;
1807
1808 for (; pfn < end_pfn; pfn++) {
1809 if (!deferred_pfn_valid(pfn)) {
1810 page = NULL;
1811 continue;
1812 } else if (!page || !(pfn & nr_pgmask)) {
1813 page = pfn_to_page(pfn);
1814 } else {
1815 page++;
1816 }
1817 __init_single_page(page, pfn, zid, nid);
1818 nr_pages++;
1819 }
1820 return (nr_pages);
1821}
1822
1823/*
1824 * This function is meant to pre-load the iterator for the zone init.
1825 * Specifically it walks through the ranges until we are caught up to the
1826 * first_init_pfn value and exits there. If we never encounter the value we
1827 * return false indicating there are no valid ranges left.
1828 */
1829static bool __init
1830deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1831 unsigned long *spfn, unsigned long *epfn,
1832 unsigned long first_init_pfn)
1833{
1834 u64 j;
1835
1836 /*
1837 * Start out by walking through the ranges in this zone that have
1838 * already been initialized. We don't need to do anything with them
1839 * so we just need to flush them out of the system.
1840 */
1841 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1842 if (*epfn <= first_init_pfn)
1843 continue;
1844 if (*spfn < first_init_pfn)
1845 *spfn = first_init_pfn;
1846 *i = j;
1847 return true;
1848 }
1849
1850 return false;
1851}
1852
1853/*
1854 * Initialize and free pages. We do it in two loops: first we initialize
1855 * struct page, then free to buddy allocator, because while we are
1856 * freeing pages we can access pages that are ahead (computing buddy
1857 * page in __free_one_page()).
1858 *
1859 * In order to try and keep some memory in the cache we have the loop
1860 * broken along max page order boundaries. This way we will not cause
1861 * any issues with the buddy page computation.
1862 */
1863static unsigned long __init
1864deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1865 unsigned long *end_pfn)
1866{
1867 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1868 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1869 unsigned long nr_pages = 0;
1870 u64 j = *i;
1871
1872 /* First we loop through and initialize the page values */
1873 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1874 unsigned long t;
1875
1876 if (mo_pfn <= *start_pfn)
1877 break;
1878
1879 t = min(mo_pfn, *end_pfn);
1880 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1881
1882 if (mo_pfn < *end_pfn) {
1883 *start_pfn = mo_pfn;
1884 break;
1885 }
1886 }
1887
1888 /* Reset values and now loop through freeing pages as needed */
1889 swap(j, *i);
1890
1891 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1892 unsigned long t;
1893
1894 if (mo_pfn <= spfn)
1895 break;
1896
1897 t = min(mo_pfn, epfn);
1898 deferred_free_pages(spfn, t);
1899
1900 if (mo_pfn <= epfn)
1901 break;
1902 }
1903
1904 return nr_pages;
1905}
1906
1907static void __init
1908deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
1909 void *arg)
1910{
1911 unsigned long spfn, epfn;
1912 struct zone *zone = arg;
1913 u64 i;
1914
1915 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
1916
1917 /*
1918 * Initialize and free pages in MAX_ORDER sized increments so that we
1919 * can avoid introducing any issues with the buddy allocator.
1920 */
1921 while (spfn < end_pfn) {
1922 deferred_init_maxorder(&i, zone, &spfn, &epfn);
1923 cond_resched();
1924 }
1925}
1926
1927/* An arch may override for more concurrency. */
1928__weak int __init
1929deferred_page_init_max_threads(const struct cpumask *node_cpumask)
1930{
1931 return 1;
1932}
1933
1934/* Initialise remaining memory on a node */
1935static int __init deferred_init_memmap(void *data)
1936{
1937 pg_data_t *pgdat = data;
1938 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1939 unsigned long spfn = 0, epfn = 0;
1940 unsigned long first_init_pfn, flags;
1941 unsigned long start = jiffies;
1942 struct zone *zone;
1943 int zid, max_threads;
1944 u64 i;
1945
1946 /* Bind memory initialisation thread to a local node if possible */
1947 if (!cpumask_empty(cpumask))
1948 set_cpus_allowed_ptr(current, cpumask);
1949
1950 pgdat_resize_lock(pgdat, &flags);
1951 first_init_pfn = pgdat->first_deferred_pfn;
1952 if (first_init_pfn == ULONG_MAX) {
1953 pgdat_resize_unlock(pgdat, &flags);
1954 pgdat_init_report_one_done();
1955 return 0;
1956 }
1957
1958 /* Sanity check boundaries */
1959 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1960 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1961 pgdat->first_deferred_pfn = ULONG_MAX;
1962
1963 /*
1964 * Once we unlock here, the zone cannot be grown anymore, thus if an
1965 * interrupt thread must allocate this early in boot, zone must be
1966 * pre-grown prior to start of deferred page initialization.
1967 */
1968 pgdat_resize_unlock(pgdat, &flags);
1969
1970 /* Only the highest zone is deferred so find it */
1971 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1972 zone = pgdat->node_zones + zid;
1973 if (first_init_pfn < zone_end_pfn(zone))
1974 break;
1975 }
1976
1977 /* If the zone is empty somebody else may have cleared out the zone */
1978 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1979 first_init_pfn))
1980 goto zone_empty;
1981
1982 max_threads = deferred_page_init_max_threads(cpumask);
1983
1984 while (spfn < epfn) {
1985 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
1986 struct padata_mt_job job = {
1987 .thread_fn = deferred_init_memmap_chunk,
1988 .fn_arg = zone,
1989 .start = spfn,
1990 .size = epfn_align - spfn,
1991 .align = PAGES_PER_SECTION,
1992 .min_chunk = PAGES_PER_SECTION,
1993 .max_threads = max_threads,
1994 };
1995
1996 padata_do_multithreaded(&job);
1997 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1998 epfn_align);
1999 }
2000zone_empty:
2001 /* Sanity check that the next zone really is unpopulated */
2002 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2003
2004 pr_info("node %d deferred pages initialised in %ums\n",
2005 pgdat->node_id, jiffies_to_msecs(jiffies - start));
2006
2007 pgdat_init_report_one_done();
2008 return 0;
2009}
2010
2011/*
2012 * If this zone has deferred pages, try to grow it by initializing enough
2013 * deferred pages to satisfy the allocation specified by order, rounded up to
2014 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
2015 * of SECTION_SIZE bytes by initializing struct pages in increments of
2016 * PAGES_PER_SECTION * sizeof(struct page) bytes.
2017 *
2018 * Return true when zone was grown, otherwise return false. We return true even
2019 * when we grow less than requested, to let the caller decide if there are
2020 * enough pages to satisfy the allocation.
2021 *
2022 * Note: We use noinline because this function is needed only during boot, and
2023 * it is called from a __ref function _deferred_grow_zone. This way we are
2024 * making sure that it is not inlined into permanent text section.
2025 */
2026static noinline bool __init
2027deferred_grow_zone(struct zone *zone, unsigned int order)
2028{
2029 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2030 pg_data_t *pgdat = zone->zone_pgdat;
2031 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2032 unsigned long spfn, epfn, flags;
2033 unsigned long nr_pages = 0;
2034 u64 i;
2035
2036 /* Only the last zone may have deferred pages */
2037 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2038 return false;
2039
2040 pgdat_resize_lock(pgdat, &flags);
2041
2042 /*
2043 * If someone grew this zone while we were waiting for spinlock, return
2044 * true, as there might be enough pages already.
2045 */
2046 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2047 pgdat_resize_unlock(pgdat, &flags);
2048 return true;
2049 }
2050
2051 /* If the zone is empty somebody else may have cleared out the zone */
2052 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2053 first_deferred_pfn)) {
2054 pgdat->first_deferred_pfn = ULONG_MAX;
2055 pgdat_resize_unlock(pgdat, &flags);
2056 /* Retry only once. */
2057 return first_deferred_pfn != ULONG_MAX;
2058 }
2059
2060 /*
2061 * Initialize and free pages in MAX_ORDER sized increments so
2062 * that we can avoid introducing any issues with the buddy
2063 * allocator.
2064 */
2065 while (spfn < epfn) {
2066 /* update our first deferred PFN for this section */
2067 first_deferred_pfn = spfn;
2068
2069 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2070 touch_nmi_watchdog();
2071
2072 /* We should only stop along section boundaries */
2073 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2074 continue;
2075
2076 /* If our quota has been met we can stop here */
2077 if (nr_pages >= nr_pages_needed)
2078 break;
2079 }
2080
2081 pgdat->first_deferred_pfn = spfn;
2082 pgdat_resize_unlock(pgdat, &flags);
2083
2084 return nr_pages > 0;
2085}
2086
2087/*
2088 * deferred_grow_zone() is __init, but it is called from
2089 * get_page_from_freelist() during early boot until deferred_pages permanently
2090 * disables this call. This is why we have refdata wrapper to avoid warning,
2091 * and to ensure that the function body gets unloaded.
2092 */
2093static bool __ref
2094_deferred_grow_zone(struct zone *zone, unsigned int order)
2095{
2096 return deferred_grow_zone(zone, order);
2097}
2098
2099#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2100
2101void __init page_alloc_init_late(void)
2102{
2103 struct zone *zone;
2104 int nid;
2105
2106#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2107
2108 /* There will be num_node_state(N_MEMORY) threads */
2109 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2110 for_each_node_state(nid, N_MEMORY) {
2111 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2112 }
2113
2114 /* Block until all are initialised */
2115 wait_for_completion(&pgdat_init_all_done_comp);
2116
2117 /*
2118 * The number of managed pages has changed due to the initialisation
2119 * so the pcpu batch and high limits needs to be updated or the limits
2120 * will be artificially small.
2121 */
2122 for_each_populated_zone(zone)
2123 zone_pcp_update(zone);
2124
2125 /*
2126 * We initialized the rest of the deferred pages. Permanently disable
2127 * on-demand struct page initialization.
2128 */
2129 static_branch_disable(&deferred_pages);
2130
2131 /* Reinit limits that are based on free pages after the kernel is up */
2132 files_maxfiles_init();
2133#endif
2134
2135 buffer_init();
2136
2137 /* Discard memblock private memory */
2138 memblock_discard();
2139
2140 for_each_node_state(nid, N_MEMORY)
2141 shuffle_free_memory(NODE_DATA(nid));
2142
2143 for_each_populated_zone(zone)
2144 set_zone_contiguous(zone);
2145}
2146
2147#ifdef CONFIG_CMA
2148/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2149void __init init_cma_reserved_pageblock(struct page *page)
2150{
2151 unsigned i = pageblock_nr_pages;
2152 struct page *p = page;
2153
2154 do {
2155 __ClearPageReserved(p);
2156 set_page_count(p, 0);
2157 } while (++p, --i);
2158
2159 set_pageblock_migratetype(page, MIGRATE_CMA);
2160
2161 if (pageblock_order >= MAX_ORDER) {
2162 i = pageblock_nr_pages;
2163 p = page;
2164 do {
2165 set_page_refcounted(p);
2166 __free_pages(p, MAX_ORDER - 1);
2167 p += MAX_ORDER_NR_PAGES;
2168 } while (i -= MAX_ORDER_NR_PAGES);
2169 } else {
2170 set_page_refcounted(page);
2171 __free_pages(page, pageblock_order);
2172 }
2173
2174 adjust_managed_page_count(page, pageblock_nr_pages);
2175 page_zone(page)->cma_pages += pageblock_nr_pages;
2176}
2177#endif
2178
2179/*
2180 * The order of subdivision here is critical for the IO subsystem.
2181 * Please do not alter this order without good reasons and regression
2182 * testing. Specifically, as large blocks of memory are subdivided,
2183 * the order in which smaller blocks are delivered depends on the order
2184 * they're subdivided in this function. This is the primary factor
2185 * influencing the order in which pages are delivered to the IO
2186 * subsystem according to empirical testing, and this is also justified
2187 * by considering the behavior of a buddy system containing a single
2188 * large block of memory acted on by a series of small allocations.
2189 * This behavior is a critical factor in sglist merging's success.
2190 *
2191 * -- nyc
2192 */
2193static inline void expand(struct zone *zone, struct page *page,
2194 int low, int high, int migratetype)
2195{
2196 unsigned long size = 1 << high;
2197
2198 while (high > low) {
2199 high--;
2200 size >>= 1;
2201 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2202
2203 /*
2204 * Mark as guard pages (or page), that will allow to
2205 * merge back to allocator when buddy will be freed.
2206 * Corresponding page table entries will not be touched,
2207 * pages will stay not present in virtual address space
2208 */
2209 if (set_page_guard(zone, &page[size], high, migratetype))
2210 continue;
2211
2212 add_to_free_list(&page[size], zone, high, migratetype);
2213 set_buddy_order(&page[size], high);
2214 }
2215}
2216
2217static void check_new_page_bad(struct page *page)
2218{
2219 if (unlikely(page->flags & __PG_HWPOISON)) {
2220 /* Don't complain about hwpoisoned pages */
2221 page_mapcount_reset(page); /* remove PageBuddy */
2222 return;
2223 }
2224
2225 bad_page(page,
2226 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2227}
2228
2229/*
2230 * This page is about to be returned from the page allocator
2231 */
2232static inline int check_new_page(struct page *page)
2233{
2234 if (likely(page_expected_state(page,
2235 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2236 return 0;
2237
2238 check_new_page_bad(page);
2239 return 1;
2240}
2241
2242#ifdef CONFIG_DEBUG_VM
2243/*
2244 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2245 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2246 * also checked when pcp lists are refilled from the free lists.
2247 */
2248static inline bool check_pcp_refill(struct page *page)
2249{
2250 if (debug_pagealloc_enabled_static())
2251 return check_new_page(page);
2252 else
2253 return false;
2254}
2255
2256static inline bool check_new_pcp(struct page *page)
2257{
2258 return check_new_page(page);
2259}
2260#else
2261/*
2262 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2263 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2264 * enabled, they are also checked when being allocated from the pcp lists.
2265 */
2266static inline bool check_pcp_refill(struct page *page)
2267{
2268 return check_new_page(page);
2269}
2270static inline bool check_new_pcp(struct page *page)
2271{
2272 if (debug_pagealloc_enabled_static())
2273 return check_new_page(page);
2274 else
2275 return false;
2276}
2277#endif /* CONFIG_DEBUG_VM */
2278
2279static bool check_new_pages(struct page *page, unsigned int order)
2280{
2281 int i;
2282 for (i = 0; i < (1 << order); i++) {
2283 struct page *p = page + i;
2284
2285 if (unlikely(check_new_page(p)))
2286 return true;
2287 }
2288
2289 return false;
2290}
2291
2292inline void post_alloc_hook(struct page *page, unsigned int order,
2293 gfp_t gfp_flags)
2294{
2295 set_page_private(page, 0);
2296 set_page_refcounted(page);
2297
2298 arch_alloc_page(page, order);
2299 debug_pagealloc_map_pages(page, 1 << order);
2300 kasan_alloc_pages(page, order);
2301 kernel_unpoison_pages(page, 1 << order);
2302 set_page_owner(page, order, gfp_flags);
2303
2304 if (!want_init_on_free() && want_init_on_alloc(gfp_flags))
2305 kernel_init_free_pages(page, 1 << order);
2306}
2307
2308static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2309 unsigned int alloc_flags)
2310{
2311 post_alloc_hook(page, order, gfp_flags);
2312
2313 if (order && (gfp_flags & __GFP_COMP))
2314 prep_compound_page(page, order);
2315
2316 /*
2317 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2318 * allocate the page. The expectation is that the caller is taking
2319 * steps that will free more memory. The caller should avoid the page
2320 * being used for !PFMEMALLOC purposes.
2321 */
2322 if (alloc_flags & ALLOC_NO_WATERMARKS)
2323 set_page_pfmemalloc(page);
2324 else
2325 clear_page_pfmemalloc(page);
2326}
2327
2328/*
2329 * Go through the free lists for the given migratetype and remove
2330 * the smallest available page from the freelists
2331 */
2332static __always_inline
2333struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2334 int migratetype)
2335{
2336 unsigned int current_order;
2337 struct free_area *area;
2338 struct page *page;
2339
2340 /* Find a page of the appropriate size in the preferred list */
2341 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2342 area = &(zone->free_area[current_order]);
2343 page = get_page_from_free_area(area, migratetype);
2344 if (!page)
2345 continue;
2346 del_page_from_free_list(page, zone, current_order);
2347 expand(zone, page, order, current_order, migratetype);
2348 set_pcppage_migratetype(page, migratetype);
2349 return page;
2350 }
2351
2352 return NULL;
2353}
2354
2355
2356/*
2357 * This array describes the order lists are fallen back to when
2358 * the free lists for the desirable migrate type are depleted
2359 */
2360static int fallbacks[MIGRATE_TYPES][3] = {
2361 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2362 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2363 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2364#ifdef CONFIG_CMA
2365 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
2366#endif
2367#ifdef CONFIG_MEMORY_ISOLATION
2368 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
2369#endif
2370};
2371
2372#ifdef CONFIG_CMA
2373static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2374 unsigned int order)
2375{
2376 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2377}
2378#else
2379static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2380 unsigned int order) { return NULL; }
2381#endif
2382
2383/*
2384 * Move the free pages in a range to the freelist tail of the requested type.
2385 * Note that start_page and end_pages are not aligned on a pageblock
2386 * boundary. If alignment is required, use move_freepages_block()
2387 */
2388static int move_freepages(struct zone *zone,
2389 struct page *start_page, struct page *end_page,
2390 int migratetype, int *num_movable)
2391{
2392 struct page *page;
2393 unsigned int order;
2394 int pages_moved = 0;
2395
2396 for (page = start_page; page <= end_page;) {
2397 if (!pfn_valid_within(page_to_pfn(page))) {
2398 page++;
2399 continue;
2400 }
2401
2402 if (!PageBuddy(page)) {
2403 /*
2404 * We assume that pages that could be isolated for
2405 * migration are movable. But we don't actually try
2406 * isolating, as that would be expensive.
2407 */
2408 if (num_movable &&
2409 (PageLRU(page) || __PageMovable(page)))
2410 (*num_movable)++;
2411
2412 page++;
2413 continue;
2414 }
2415
2416 /* Make sure we are not inadvertently changing nodes */
2417 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2418 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2419
2420 order = buddy_order(page);
2421 move_to_free_list(page, zone, order, migratetype);
2422 page += 1 << order;
2423 pages_moved += 1 << order;
2424 }
2425
2426 return pages_moved;
2427}
2428
2429int move_freepages_block(struct zone *zone, struct page *page,
2430 int migratetype, int *num_movable)
2431{
2432 unsigned long start_pfn, end_pfn;
2433 struct page *start_page, *end_page;
2434
2435 if (num_movable)
2436 *num_movable = 0;
2437
2438 start_pfn = page_to_pfn(page);
2439 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2440 start_page = pfn_to_page(start_pfn);
2441 end_page = start_page + pageblock_nr_pages - 1;
2442 end_pfn = start_pfn + pageblock_nr_pages - 1;
2443
2444 /* Do not cross zone boundaries */
2445 if (!zone_spans_pfn(zone, start_pfn))
2446 start_page = page;
2447 if (!zone_spans_pfn(zone, end_pfn))
2448 return 0;
2449
2450 return move_freepages(zone, start_page, end_page, migratetype,
2451 num_movable);
2452}
2453
2454static void change_pageblock_range(struct page *pageblock_page,
2455 int start_order, int migratetype)
2456{
2457 int nr_pageblocks = 1 << (start_order - pageblock_order);
2458
2459 while (nr_pageblocks--) {
2460 set_pageblock_migratetype(pageblock_page, migratetype);
2461 pageblock_page += pageblock_nr_pages;
2462 }
2463}
2464
2465/*
2466 * When we are falling back to another migratetype during allocation, try to
2467 * steal extra free pages from the same pageblocks to satisfy further
2468 * allocations, instead of polluting multiple pageblocks.
2469 *
2470 * If we are stealing a relatively large buddy page, it is likely there will
2471 * be more free pages in the pageblock, so try to steal them all. For
2472 * reclaimable and unmovable allocations, we steal regardless of page size,
2473 * as fragmentation caused by those allocations polluting movable pageblocks
2474 * is worse than movable allocations stealing from unmovable and reclaimable
2475 * pageblocks.
2476 */
2477static bool can_steal_fallback(unsigned int order, int start_mt)
2478{
2479 /*
2480 * Leaving this order check is intended, although there is
2481 * relaxed order check in next check. The reason is that
2482 * we can actually steal whole pageblock if this condition met,
2483 * but, below check doesn't guarantee it and that is just heuristic
2484 * so could be changed anytime.
2485 */
2486 if (order >= pageblock_order)
2487 return true;
2488
2489 if (order >= pageblock_order / 2 ||
2490 start_mt == MIGRATE_RECLAIMABLE ||
2491 start_mt == MIGRATE_UNMOVABLE ||
2492 page_group_by_mobility_disabled)
2493 return true;
2494
2495 return false;
2496}
2497
2498static inline bool boost_watermark(struct zone *zone)
2499{
2500 unsigned long max_boost;
2501
2502 if (!watermark_boost_factor)
2503 return false;
2504 /*
2505 * Don't bother in zones that are unlikely to produce results.
2506 * On small machines, including kdump capture kernels running
2507 * in a small area, boosting the watermark can cause an out of
2508 * memory situation immediately.
2509 */
2510 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2511 return false;
2512
2513 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2514 watermark_boost_factor, 10000);
2515
2516 /*
2517 * high watermark may be uninitialised if fragmentation occurs
2518 * very early in boot so do not boost. We do not fall
2519 * through and boost by pageblock_nr_pages as failing
2520 * allocations that early means that reclaim is not going
2521 * to help and it may even be impossible to reclaim the
2522 * boosted watermark resulting in a hang.
2523 */
2524 if (!max_boost)
2525 return false;
2526
2527 max_boost = max(pageblock_nr_pages, max_boost);
2528
2529 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2530 max_boost);
2531
2532 return true;
2533}
2534
2535/*
2536 * This function implements actual steal behaviour. If order is large enough,
2537 * we can steal whole pageblock. If not, we first move freepages in this
2538 * pageblock to our migratetype and determine how many already-allocated pages
2539 * are there in the pageblock with a compatible migratetype. If at least half
2540 * of pages are free or compatible, we can change migratetype of the pageblock
2541 * itself, so pages freed in the future will be put on the correct free list.
2542 */
2543static void steal_suitable_fallback(struct zone *zone, struct page *page,
2544 unsigned int alloc_flags, int start_type, bool whole_block)
2545{
2546 unsigned int current_order = buddy_order(page);
2547 int free_pages, movable_pages, alike_pages;
2548 int old_block_type;
2549
2550 old_block_type = get_pageblock_migratetype(page);
2551
2552 /*
2553 * This can happen due to races and we want to prevent broken
2554 * highatomic accounting.
2555 */
2556 if (is_migrate_highatomic(old_block_type))
2557 goto single_page;
2558
2559 /* Take ownership for orders >= pageblock_order */
2560 if (current_order >= pageblock_order) {
2561 change_pageblock_range(page, current_order, start_type);
2562 goto single_page;
2563 }
2564
2565 /*
2566 * Boost watermarks to increase reclaim pressure to reduce the
2567 * likelihood of future fallbacks. Wake kswapd now as the node
2568 * may be balanced overall and kswapd will not wake naturally.
2569 */
2570 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2571 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2572
2573 /* We are not allowed to try stealing from the whole block */
2574 if (!whole_block)
2575 goto single_page;
2576
2577 free_pages = move_freepages_block(zone, page, start_type,
2578 &movable_pages);
2579 /*
2580 * Determine how many pages are compatible with our allocation.
2581 * For movable allocation, it's the number of movable pages which
2582 * we just obtained. For other types it's a bit more tricky.
2583 */
2584 if (start_type == MIGRATE_MOVABLE) {
2585 alike_pages = movable_pages;
2586 } else {
2587 /*
2588 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2589 * to MOVABLE pageblock, consider all non-movable pages as
2590 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2591 * vice versa, be conservative since we can't distinguish the
2592 * exact migratetype of non-movable pages.
2593 */
2594 if (old_block_type == MIGRATE_MOVABLE)
2595 alike_pages = pageblock_nr_pages
2596 - (free_pages + movable_pages);
2597 else
2598 alike_pages = 0;
2599 }
2600
2601 /* moving whole block can fail due to zone boundary conditions */
2602 if (!free_pages)
2603 goto single_page;
2604
2605 /*
2606 * If a sufficient number of pages in the block are either free or of
2607 * comparable migratability as our allocation, claim the whole block.
2608 */
2609 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2610 page_group_by_mobility_disabled)
2611 set_pageblock_migratetype(page, start_type);
2612
2613 return;
2614
2615single_page:
2616 move_to_free_list(page, zone, current_order, start_type);
2617}
2618
2619/*
2620 * Check whether there is a suitable fallback freepage with requested order.
2621 * If only_stealable is true, this function returns fallback_mt only if
2622 * we can steal other freepages all together. This would help to reduce
2623 * fragmentation due to mixed migratetype pages in one pageblock.
2624 */
2625int find_suitable_fallback(struct free_area *area, unsigned int order,
2626 int migratetype, bool only_stealable, bool *can_steal)
2627{
2628 int i;
2629 int fallback_mt;
2630
2631 if (area->nr_free == 0)
2632 return -1;
2633
2634 *can_steal = false;
2635 for (i = 0;; i++) {
2636 fallback_mt = fallbacks[migratetype][i];
2637 if (fallback_mt == MIGRATE_TYPES)
2638 break;
2639
2640 if (free_area_empty(area, fallback_mt))
2641 continue;
2642
2643 if (can_steal_fallback(order, migratetype))
2644 *can_steal = true;
2645
2646 if (!only_stealable)
2647 return fallback_mt;
2648
2649 if (*can_steal)
2650 return fallback_mt;
2651 }
2652
2653 return -1;
2654}
2655
2656/*
2657 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2658 * there are no empty page blocks that contain a page with a suitable order
2659 */
2660static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2661 unsigned int alloc_order)
2662{
2663 int mt;
2664 unsigned long max_managed, flags;
2665
2666 /*
2667 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2668 * Check is race-prone but harmless.
2669 */
2670 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2671 if (zone->nr_reserved_highatomic >= max_managed)
2672 return;
2673
2674 spin_lock_irqsave(&zone->lock, flags);
2675
2676 /* Recheck the nr_reserved_highatomic limit under the lock */
2677 if (zone->nr_reserved_highatomic >= max_managed)
2678 goto out_unlock;
2679
2680 /* Yoink! */
2681 mt = get_pageblock_migratetype(page);
2682 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2683 && !is_migrate_cma(mt)) {
2684 zone->nr_reserved_highatomic += pageblock_nr_pages;
2685 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2686 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2687 }
2688
2689out_unlock:
2690 spin_unlock_irqrestore(&zone->lock, flags);
2691}
2692
2693/*
2694 * Used when an allocation is about to fail under memory pressure. This
2695 * potentially hurts the reliability of high-order allocations when under
2696 * intense memory pressure but failed atomic allocations should be easier
2697 * to recover from than an OOM.
2698 *
2699 * If @force is true, try to unreserve a pageblock even though highatomic
2700 * pageblock is exhausted.
2701 */
2702static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2703 bool force)
2704{
2705 struct zonelist *zonelist = ac->zonelist;
2706 unsigned long flags;
2707 struct zoneref *z;
2708 struct zone *zone;
2709 struct page *page;
2710 int order;
2711 bool ret;
2712
2713 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2714 ac->nodemask) {
2715 /*
2716 * Preserve at least one pageblock unless memory pressure
2717 * is really high.
2718 */
2719 if (!force && zone->nr_reserved_highatomic <=
2720 pageblock_nr_pages)
2721 continue;
2722
2723 spin_lock_irqsave(&zone->lock, flags);
2724 for (order = 0; order < MAX_ORDER; order++) {
2725 struct free_area *area = &(zone->free_area[order]);
2726
2727 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2728 if (!page)
2729 continue;
2730
2731 /*
2732 * In page freeing path, migratetype change is racy so
2733 * we can counter several free pages in a pageblock
2734 * in this loop althoug we changed the pageblock type
2735 * from highatomic to ac->migratetype. So we should
2736 * adjust the count once.
2737 */
2738 if (is_migrate_highatomic_page(page)) {
2739 /*
2740 * It should never happen but changes to
2741 * locking could inadvertently allow a per-cpu
2742 * drain to add pages to MIGRATE_HIGHATOMIC
2743 * while unreserving so be safe and watch for
2744 * underflows.
2745 */
2746 zone->nr_reserved_highatomic -= min(
2747 pageblock_nr_pages,
2748 zone->nr_reserved_highatomic);
2749 }
2750
2751 /*
2752 * Convert to ac->migratetype and avoid the normal
2753 * pageblock stealing heuristics. Minimally, the caller
2754 * is doing the work and needs the pages. More
2755 * importantly, if the block was always converted to
2756 * MIGRATE_UNMOVABLE or another type then the number
2757 * of pageblocks that cannot be completely freed
2758 * may increase.
2759 */
2760 set_pageblock_migratetype(page, ac->migratetype);
2761 ret = move_freepages_block(zone, page, ac->migratetype,
2762 NULL);
2763 if (ret) {
2764 spin_unlock_irqrestore(&zone->lock, flags);
2765 return ret;
2766 }
2767 }
2768 spin_unlock_irqrestore(&zone->lock, flags);
2769 }
2770
2771 return false;
2772}
2773
2774/*
2775 * Try finding a free buddy page on the fallback list and put it on the free
2776 * list of requested migratetype, possibly along with other pages from the same
2777 * block, depending on fragmentation avoidance heuristics. Returns true if
2778 * fallback was found so that __rmqueue_smallest() can grab it.
2779 *
2780 * The use of signed ints for order and current_order is a deliberate
2781 * deviation from the rest of this file, to make the for loop
2782 * condition simpler.
2783 */
2784static __always_inline bool
2785__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2786 unsigned int alloc_flags)
2787{
2788 struct free_area *area;
2789 int current_order;
2790 int min_order = order;
2791 struct page *page;
2792 int fallback_mt;
2793 bool can_steal;
2794
2795 /*
2796 * Do not steal pages from freelists belonging to other pageblocks
2797 * i.e. orders < pageblock_order. If there are no local zones free,
2798 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2799 */
2800 if (alloc_flags & ALLOC_NOFRAGMENT)
2801 min_order = pageblock_order;
2802
2803 /*
2804 * Find the largest available free page in the other list. This roughly
2805 * approximates finding the pageblock with the most free pages, which
2806 * would be too costly to do exactly.
2807 */
2808 for (current_order = MAX_ORDER - 1; current_order >= min_order;
2809 --current_order) {
2810 area = &(zone->free_area[current_order]);
2811 fallback_mt = find_suitable_fallback(area, current_order,
2812 start_migratetype, false, &can_steal);
2813 if (fallback_mt == -1)
2814 continue;
2815
2816 /*
2817 * We cannot steal all free pages from the pageblock and the
2818 * requested migratetype is movable. In that case it's better to
2819 * steal and split the smallest available page instead of the
2820 * largest available page, because even if the next movable
2821 * allocation falls back into a different pageblock than this
2822 * one, it won't cause permanent fragmentation.
2823 */
2824 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2825 && current_order > order)
2826 goto find_smallest;
2827
2828 goto do_steal;
2829 }
2830
2831 return false;
2832
2833find_smallest:
2834 for (current_order = order; current_order < MAX_ORDER;
2835 current_order++) {
2836 area = &(zone->free_area[current_order]);
2837 fallback_mt = find_suitable_fallback(area, current_order,
2838 start_migratetype, false, &can_steal);
2839 if (fallback_mt != -1)
2840 break;
2841 }
2842
2843 /*
2844 * This should not happen - we already found a suitable fallback
2845 * when looking for the largest page.
2846 */
2847 VM_BUG_ON(current_order == MAX_ORDER);
2848
2849do_steal:
2850 page = get_page_from_free_area(area, fallback_mt);
2851
2852 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2853 can_steal);
2854
2855 trace_mm_page_alloc_extfrag(page, order, current_order,
2856 start_migratetype, fallback_mt);
2857
2858 return true;
2859
2860}
2861
2862/*
2863 * Do the hard work of removing an element from the buddy allocator.
2864 * Call me with the zone->lock already held.
2865 */
2866static __always_inline struct page *
2867__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2868 unsigned int alloc_flags)
2869{
2870 struct page *page;
2871
2872 if (IS_ENABLED(CONFIG_CMA)) {
2873 /*
2874 * Balance movable allocations between regular and CMA areas by
2875 * allocating from CMA when over half of the zone's free memory
2876 * is in the CMA area.
2877 */
2878 if (alloc_flags & ALLOC_CMA &&
2879 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2880 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2881 page = __rmqueue_cma_fallback(zone, order);
2882 if (page)
2883 goto out;
2884 }
2885 }
2886retry:
2887 page = __rmqueue_smallest(zone, order, migratetype);
2888 if (unlikely(!page)) {
2889 if (alloc_flags & ALLOC_CMA)
2890 page = __rmqueue_cma_fallback(zone, order);
2891
2892 if (!page && __rmqueue_fallback(zone, order, migratetype,
2893 alloc_flags))
2894 goto retry;
2895 }
2896out:
2897 if (page)
2898 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2899 return page;
2900}
2901
2902/*
2903 * Obtain a specified number of elements from the buddy allocator, all under
2904 * a single hold of the lock, for efficiency. Add them to the supplied list.
2905 * Returns the number of new pages which were placed at *list.
2906 */
2907static int rmqueue_bulk(struct zone *zone, unsigned int order,
2908 unsigned long count, struct list_head *list,
2909 int migratetype, unsigned int alloc_flags)
2910{
2911 int i, alloced = 0;
2912
2913 spin_lock(&zone->lock);
2914 for (i = 0; i < count; ++i) {
2915 struct page *page = __rmqueue(zone, order, migratetype,
2916 alloc_flags);
2917 if (unlikely(page == NULL))
2918 break;
2919
2920 if (unlikely(check_pcp_refill(page)))
2921 continue;
2922
2923 /*
2924 * Split buddy pages returned by expand() are received here in
2925 * physical page order. The page is added to the tail of
2926 * caller's list. From the callers perspective, the linked list
2927 * is ordered by page number under some conditions. This is
2928 * useful for IO devices that can forward direction from the
2929 * head, thus also in the physical page order. This is useful
2930 * for IO devices that can merge IO requests if the physical
2931 * pages are ordered properly.
2932 */
2933 list_add_tail(&page->lru, list);
2934 alloced++;
2935 if (is_migrate_cma(get_pcppage_migratetype(page)))
2936 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2937 -(1 << order));
2938 }
2939
2940 /*
2941 * i pages were removed from the buddy list even if some leak due
2942 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2943 * on i. Do not confuse with 'alloced' which is the number of
2944 * pages added to the pcp list.
2945 */
2946 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2947 spin_unlock(&zone->lock);
2948 return alloced;
2949}
2950
2951#ifdef CONFIG_NUMA
2952/*
2953 * Called from the vmstat counter updater to drain pagesets of this
2954 * currently executing processor on remote nodes after they have
2955 * expired.
2956 *
2957 * Note that this function must be called with the thread pinned to
2958 * a single processor.
2959 */
2960void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2961{
2962 unsigned long flags;
2963 int to_drain, batch;
2964
2965 local_irq_save(flags);
2966 batch = READ_ONCE(pcp->batch);
2967 to_drain = min(pcp->count, batch);
2968 if (to_drain > 0)
2969 free_pcppages_bulk(zone, to_drain, pcp);
2970 local_irq_restore(flags);
2971}
2972#endif
2973
2974/*
2975 * Drain pcplists of the indicated processor and zone.
2976 *
2977 * The processor must either be the current processor and the
2978 * thread pinned to the current processor or a processor that
2979 * is not online.
2980 */
2981static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2982{
2983 unsigned long flags;
2984 struct per_cpu_pageset *pset;
2985 struct per_cpu_pages *pcp;
2986
2987 local_irq_save(flags);
2988 pset = per_cpu_ptr(zone->pageset, cpu);
2989
2990 pcp = &pset->pcp;
2991 if (pcp->count)
2992 free_pcppages_bulk(zone, pcp->count, pcp);
2993 local_irq_restore(flags);
2994}
2995
2996/*
2997 * Drain pcplists of all zones on the indicated processor.
2998 *
2999 * The processor must either be the current processor and the
3000 * thread pinned to the current processor or a processor that
3001 * is not online.
3002 */
3003static void drain_pages(unsigned int cpu)
3004{
3005 struct zone *zone;
3006
3007 for_each_populated_zone(zone) {
3008 drain_pages_zone(cpu, zone);
3009 }
3010}
3011
3012/*
3013 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3014 *
3015 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3016 * the single zone's pages.
3017 */
3018void drain_local_pages(struct zone *zone)
3019{
3020 int cpu = smp_processor_id();
3021
3022 if (zone)
3023 drain_pages_zone(cpu, zone);
3024 else
3025 drain_pages(cpu);
3026}
3027
3028static void drain_local_pages_wq(struct work_struct *work)
3029{
3030 struct pcpu_drain *drain;
3031
3032 drain = container_of(work, struct pcpu_drain, work);
3033
3034 /*
3035 * drain_all_pages doesn't use proper cpu hotplug protection so
3036 * we can race with cpu offline when the WQ can move this from
3037 * a cpu pinned worker to an unbound one. We can operate on a different
3038 * cpu which is allright but we also have to make sure to not move to
3039 * a different one.
3040 */
3041 preempt_disable();
3042 drain_local_pages(drain->zone);
3043 preempt_enable();
3044}
3045
3046/*
3047 * The implementation of drain_all_pages(), exposing an extra parameter to
3048 * drain on all cpus.
3049 *
3050 * drain_all_pages() is optimized to only execute on cpus where pcplists are
3051 * not empty. The check for non-emptiness can however race with a free to
3052 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3053 * that need the guarantee that every CPU has drained can disable the
3054 * optimizing racy check.
3055 */
3056static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3057{
3058 int cpu;
3059
3060 /*
3061 * Allocate in the BSS so we wont require allocation in
3062 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3063 */
3064 static cpumask_t cpus_with_pcps;
3065
3066 /*
3067 * Make sure nobody triggers this path before mm_percpu_wq is fully
3068 * initialized.
3069 */
3070 if (WARN_ON_ONCE(!mm_percpu_wq))
3071 return;
3072
3073 /*
3074 * Do not drain if one is already in progress unless it's specific to
3075 * a zone. Such callers are primarily CMA and memory hotplug and need
3076 * the drain to be complete when the call returns.
3077 */
3078 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3079 if (!zone)
3080 return;
3081 mutex_lock(&pcpu_drain_mutex);
3082 }
3083
3084 /*
3085 * We don't care about racing with CPU hotplug event
3086 * as offline notification will cause the notified
3087 * cpu to drain that CPU pcps and on_each_cpu_mask
3088 * disables preemption as part of its processing
3089 */
3090 for_each_online_cpu(cpu) {
3091 struct per_cpu_pageset *pcp;
3092 struct zone *z;
3093 bool has_pcps = false;
3094
3095 if (force_all_cpus) {
3096 /*
3097 * The pcp.count check is racy, some callers need a
3098 * guarantee that no cpu is missed.
3099 */
3100 has_pcps = true;
3101 } else if (zone) {
3102 pcp = per_cpu_ptr(zone->pageset, cpu);
3103 if (pcp->pcp.count)
3104 has_pcps = true;
3105 } else {
3106 for_each_populated_zone(z) {
3107 pcp = per_cpu_ptr(z->pageset, cpu);
3108 if (pcp->pcp.count) {
3109 has_pcps = true;
3110 break;
3111 }
3112 }
3113 }
3114
3115 if (has_pcps)
3116 cpumask_set_cpu(cpu, &cpus_with_pcps);
3117 else
3118 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3119 }
3120
3121 for_each_cpu(cpu, &cpus_with_pcps) {
3122 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3123
3124 drain->zone = zone;
3125 INIT_WORK(&drain->work, drain_local_pages_wq);
3126 queue_work_on(cpu, mm_percpu_wq, &drain->work);
3127 }
3128 for_each_cpu(cpu, &cpus_with_pcps)
3129 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3130
3131 mutex_unlock(&pcpu_drain_mutex);
3132}
3133
3134/*
3135 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3136 *
3137 * When zone parameter is non-NULL, spill just the single zone's pages.
3138 *
3139 * Note that this can be extremely slow as the draining happens in a workqueue.
3140 */
3141void drain_all_pages(struct zone *zone)
3142{
3143 __drain_all_pages(zone, false);
3144}
3145
3146#ifdef CONFIG_HIBERNATION
3147
3148/*
3149 * Touch the watchdog for every WD_PAGE_COUNT pages.
3150 */
3151#define WD_PAGE_COUNT (128*1024)
3152
3153void mark_free_pages(struct zone *zone)
3154{
3155 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3156 unsigned long flags;
3157 unsigned int order, t;
3158 struct page *page;
3159
3160 if (zone_is_empty(zone))
3161 return;
3162
3163 spin_lock_irqsave(&zone->lock, flags);
3164
3165 max_zone_pfn = zone_end_pfn(zone);
3166 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3167 if (pfn_valid(pfn)) {
3168 page = pfn_to_page(pfn);
3169
3170 if (!--page_count) {
3171 touch_nmi_watchdog();
3172 page_count = WD_PAGE_COUNT;
3173 }
3174
3175 if (page_zone(page) != zone)
3176 continue;
3177
3178 if (!swsusp_page_is_forbidden(page))
3179 swsusp_unset_page_free(page);
3180 }
3181
3182 for_each_migratetype_order(order, t) {
3183 list_for_each_entry(page,
3184 &zone->free_area[order].free_list[t], lru) {
3185 unsigned long i;
3186
3187 pfn = page_to_pfn(page);
3188 for (i = 0; i < (1UL << order); i++) {
3189 if (!--page_count) {
3190 touch_nmi_watchdog();
3191 page_count = WD_PAGE_COUNT;
3192 }
3193 swsusp_set_page_free(pfn_to_page(pfn + i));
3194 }
3195 }
3196 }
3197 spin_unlock_irqrestore(&zone->lock, flags);
3198}
3199#endif /* CONFIG_PM */
3200
3201static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
3202{
3203 int migratetype;
3204
3205 if (!free_pcp_prepare(page))
3206 return false;
3207
3208 migratetype = get_pfnblock_migratetype(page, pfn);
3209 set_pcppage_migratetype(page, migratetype);
3210 return true;
3211}
3212
3213static void free_unref_page_commit(struct page *page, unsigned long pfn)
3214{
3215 struct zone *zone = page_zone(page);
3216 struct per_cpu_pages *pcp;
3217 int migratetype;
3218
3219 migratetype = get_pcppage_migratetype(page);
3220 __count_vm_event(PGFREE);
3221
3222 /*
3223 * We only track unmovable, reclaimable and movable on pcp lists.
3224 * Free ISOLATE pages back to the allocator because they are being
3225 * offlined but treat HIGHATOMIC as movable pages so we can get those
3226 * areas back if necessary. Otherwise, we may have to free
3227 * excessively into the page allocator
3228 */
3229 if (migratetype >= MIGRATE_PCPTYPES) {
3230 if (unlikely(is_migrate_isolate(migratetype))) {
3231 free_one_page(zone, page, pfn, 0, migratetype,
3232 FPI_NONE);
3233 return;
3234 }
3235 migratetype = MIGRATE_MOVABLE;
3236 }
3237
3238 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3239 list_add(&page->lru, &pcp->lists[migratetype]);
3240 pcp->count++;
3241 if (pcp->count >= READ_ONCE(pcp->high))
3242 free_pcppages_bulk(zone, READ_ONCE(pcp->batch), pcp);
3243}
3244
3245/*
3246 * Free a 0-order page
3247 */
3248void free_unref_page(struct page *page)
3249{
3250 unsigned long flags;
3251 unsigned long pfn = page_to_pfn(page);
3252
3253 if (!free_unref_page_prepare(page, pfn))
3254 return;
3255
3256 local_irq_save(flags);
3257 free_unref_page_commit(page, pfn);
3258 local_irq_restore(flags);
3259}
3260
3261/*
3262 * Free a list of 0-order pages
3263 */
3264void free_unref_page_list(struct list_head *list)
3265{
3266 struct page *page, *next;
3267 unsigned long flags, pfn;
3268 int batch_count = 0;
3269
3270 /* Prepare pages for freeing */
3271 list_for_each_entry_safe(page, next, list, lru) {
3272 pfn = page_to_pfn(page);
3273 if (!free_unref_page_prepare(page, pfn))
3274 list_del(&page->lru);
3275 set_page_private(page, pfn);
3276 }
3277
3278 local_irq_save(flags);
3279 list_for_each_entry_safe(page, next, list, lru) {
3280 unsigned long pfn = page_private(page);
3281
3282 set_page_private(page, 0);
3283 trace_mm_page_free_batched(page);
3284 free_unref_page_commit(page, pfn);
3285
3286 /*
3287 * Guard against excessive IRQ disabled times when we get
3288 * a large list of pages to free.
3289 */
3290 if (++batch_count == SWAP_CLUSTER_MAX) {
3291 local_irq_restore(flags);
3292 batch_count = 0;
3293 local_irq_save(flags);
3294 }
3295 }
3296 local_irq_restore(flags);
3297}
3298
3299/*
3300 * split_page takes a non-compound higher-order page, and splits it into
3301 * n (1<<order) sub-pages: page[0..n]
3302 * Each sub-page must be freed individually.
3303 *
3304 * Note: this is probably too low level an operation for use in drivers.
3305 * Please consult with lkml before using this in your driver.
3306 */
3307void split_page(struct page *page, unsigned int order)
3308{
3309 int i;
3310
3311 VM_BUG_ON_PAGE(PageCompound(page), page);
3312 VM_BUG_ON_PAGE(!page_count(page), page);
3313
3314 for (i = 1; i < (1 << order); i++)
3315 set_page_refcounted(page + i);
3316 split_page_owner(page, 1 << order);
3317 split_page_memcg(page, 1 << order);
3318}
3319EXPORT_SYMBOL_GPL(split_page);
3320
3321int __isolate_free_page(struct page *page, unsigned int order)
3322{
3323 unsigned long watermark;
3324 struct zone *zone;
3325 int mt;
3326
3327 BUG_ON(!PageBuddy(page));
3328
3329 zone = page_zone(page);
3330 mt = get_pageblock_migratetype(page);
3331
3332 if (!is_migrate_isolate(mt)) {
3333 /*
3334 * Obey watermarks as if the page was being allocated. We can
3335 * emulate a high-order watermark check with a raised order-0
3336 * watermark, because we already know our high-order page
3337 * exists.
3338 */
3339 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3340 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3341 return 0;
3342
3343 __mod_zone_freepage_state(zone, -(1UL << order), mt);
3344 }
3345
3346 /* Remove page from free list */
3347
3348 del_page_from_free_list(page, zone, order);
3349
3350 /*
3351 * Set the pageblock if the isolated page is at least half of a
3352 * pageblock
3353 */
3354 if (order >= pageblock_order - 1) {
3355 struct page *endpage = page + (1 << order) - 1;
3356 for (; page < endpage; page += pageblock_nr_pages) {
3357 int mt = get_pageblock_migratetype(page);
3358 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3359 && !is_migrate_highatomic(mt))
3360 set_pageblock_migratetype(page,
3361 MIGRATE_MOVABLE);
3362 }
3363 }
3364
3365
3366 return 1UL << order;
3367}
3368
3369/**
3370 * __putback_isolated_page - Return a now-isolated page back where we got it
3371 * @page: Page that was isolated
3372 * @order: Order of the isolated page
3373 * @mt: The page's pageblock's migratetype
3374 *
3375 * This function is meant to return a page pulled from the free lists via
3376 * __isolate_free_page back to the free lists they were pulled from.
3377 */
3378void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3379{
3380 struct zone *zone = page_zone(page);
3381
3382 /* zone lock should be held when this function is called */
3383 lockdep_assert_held(&zone->lock);
3384
3385 /* Return isolated page to tail of freelist. */
3386 __free_one_page(page, page_to_pfn(page), zone, order, mt,
3387 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3388}
3389
3390/*
3391 * Update NUMA hit/miss statistics
3392 *
3393 * Must be called with interrupts disabled.
3394 */
3395static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3396{
3397#ifdef CONFIG_NUMA
3398 enum numa_stat_item local_stat = NUMA_LOCAL;
3399
3400 /* skip numa counters update if numa stats is disabled */
3401 if (!static_branch_likely(&vm_numa_stat_key))
3402 return;
3403
3404 if (zone_to_nid(z) != numa_node_id())
3405 local_stat = NUMA_OTHER;
3406
3407 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3408 __inc_numa_state(z, NUMA_HIT);
3409 else {
3410 __inc_numa_state(z, NUMA_MISS);
3411 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
3412 }
3413 __inc_numa_state(z, local_stat);
3414#endif
3415}
3416
3417/* Remove page from the per-cpu list, caller must protect the list */
3418static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3419 unsigned int alloc_flags,
3420 struct per_cpu_pages *pcp,
3421 struct list_head *list)
3422{
3423 struct page *page;
3424
3425 do {
3426 if (list_empty(list)) {
3427 pcp->count += rmqueue_bulk(zone, 0,
3428 READ_ONCE(pcp->batch), list,
3429 migratetype, alloc_flags);
3430 if (unlikely(list_empty(list)))
3431 return NULL;
3432 }
3433
3434 page = list_first_entry(list, struct page, lru);
3435 list_del(&page->lru);
3436 pcp->count--;
3437 } while (check_new_pcp(page));
3438
3439 return page;
3440}
3441
3442/* Lock and remove page from the per-cpu list */
3443static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3444 struct zone *zone, gfp_t gfp_flags,
3445 int migratetype, unsigned int alloc_flags)
3446{
3447 struct per_cpu_pages *pcp;
3448 struct list_head *list;
3449 struct page *page;
3450 unsigned long flags;
3451
3452 local_irq_save(flags);
3453 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3454 list = &pcp->lists[migratetype];
3455 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list);
3456 if (page) {
3457 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3458 zone_statistics(preferred_zone, zone);
3459 }
3460 local_irq_restore(flags);
3461 return page;
3462}
3463
3464/*
3465 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3466 */
3467static inline
3468struct page *rmqueue(struct zone *preferred_zone,
3469 struct zone *zone, unsigned int order,
3470 gfp_t gfp_flags, unsigned int alloc_flags,
3471 int migratetype)
3472{
3473 unsigned long flags;
3474 struct page *page;
3475
3476 if (likely(order == 0)) {
3477 /*
3478 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3479 * we need to skip it when CMA area isn't allowed.
3480 */
3481 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3482 migratetype != MIGRATE_MOVABLE) {
3483 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3484 migratetype, alloc_flags);
3485 goto out;
3486 }
3487 }
3488
3489 /*
3490 * We most definitely don't want callers attempting to
3491 * allocate greater than order-1 page units with __GFP_NOFAIL.
3492 */
3493 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3494 spin_lock_irqsave(&zone->lock, flags);
3495
3496 do {
3497 page = NULL;
3498 /*
3499 * order-0 request can reach here when the pcplist is skipped
3500 * due to non-CMA allocation context. HIGHATOMIC area is
3501 * reserved for high-order atomic allocation, so order-0
3502 * request should skip it.
3503 */
3504 if (order > 0 && alloc_flags & ALLOC_HARDER) {
3505 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3506 if (page)
3507 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3508 }
3509 if (!page)
3510 page = __rmqueue(zone, order, migratetype, alloc_flags);
3511 } while (page && check_new_pages(page, order));
3512 spin_unlock(&zone->lock);
3513 if (!page)
3514 goto failed;
3515 __mod_zone_freepage_state(zone, -(1 << order),
3516 get_pcppage_migratetype(page));
3517
3518 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3519 zone_statistics(preferred_zone, zone);
3520 local_irq_restore(flags);
3521
3522out:
3523 /* Separate test+clear to avoid unnecessary atomics */
3524 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3525 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3526 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3527 }
3528
3529 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3530 return page;
3531
3532failed:
3533 local_irq_restore(flags);
3534 return NULL;
3535}
3536
3537#ifdef CONFIG_FAIL_PAGE_ALLOC
3538
3539static struct {
3540 struct fault_attr attr;
3541
3542 bool ignore_gfp_highmem;
3543 bool ignore_gfp_reclaim;
3544 u32 min_order;
3545} fail_page_alloc = {
3546 .attr = FAULT_ATTR_INITIALIZER,
3547 .ignore_gfp_reclaim = true,
3548 .ignore_gfp_highmem = true,
3549 .min_order = 1,
3550};
3551
3552static int __init setup_fail_page_alloc(char *str)
3553{
3554 return setup_fault_attr(&fail_page_alloc.attr, str);
3555}
3556__setup("fail_page_alloc=", setup_fail_page_alloc);
3557
3558static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3559{
3560 if (order < fail_page_alloc.min_order)
3561 return false;
3562 if (gfp_mask & __GFP_NOFAIL)
3563 return false;
3564 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3565 return false;
3566 if (fail_page_alloc.ignore_gfp_reclaim &&
3567 (gfp_mask & __GFP_DIRECT_RECLAIM))
3568 return false;
3569
3570 return should_fail(&fail_page_alloc.attr, 1 << order);
3571}
3572
3573#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3574
3575static int __init fail_page_alloc_debugfs(void)
3576{
3577 umode_t mode = S_IFREG | 0600;
3578 struct dentry *dir;
3579
3580 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3581 &fail_page_alloc.attr);
3582
3583 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3584 &fail_page_alloc.ignore_gfp_reclaim);
3585 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3586 &fail_page_alloc.ignore_gfp_highmem);
3587 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3588
3589 return 0;
3590}
3591
3592late_initcall(fail_page_alloc_debugfs);
3593
3594#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3595
3596#else /* CONFIG_FAIL_PAGE_ALLOC */
3597
3598static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3599{
3600 return false;
3601}
3602
3603#endif /* CONFIG_FAIL_PAGE_ALLOC */
3604
3605noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3606{
3607 return __should_fail_alloc_page(gfp_mask, order);
3608}
3609ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3610
3611static inline long __zone_watermark_unusable_free(struct zone *z,
3612 unsigned int order, unsigned int alloc_flags)
3613{
3614 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3615 long unusable_free = (1 << order) - 1;
3616
3617 /*
3618 * If the caller does not have rights to ALLOC_HARDER then subtract
3619 * the high-atomic reserves. This will over-estimate the size of the
3620 * atomic reserve but it avoids a search.
3621 */
3622 if (likely(!alloc_harder))
3623 unusable_free += z->nr_reserved_highatomic;
3624
3625#ifdef CONFIG_CMA
3626 /* If allocation can't use CMA areas don't use free CMA pages */
3627 if (!(alloc_flags & ALLOC_CMA))
3628 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3629#endif
3630
3631 return unusable_free;
3632}
3633
3634/*
3635 * Return true if free base pages are above 'mark'. For high-order checks it
3636 * will return true of the order-0 watermark is reached and there is at least
3637 * one free page of a suitable size. Checking now avoids taking the zone lock
3638 * to check in the allocation paths if no pages are free.
3639 */
3640bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3641 int highest_zoneidx, unsigned int alloc_flags,
3642 long free_pages)
3643{
3644 long min = mark;
3645 int o;
3646 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3647
3648 /* free_pages may go negative - that's OK */
3649 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3650
3651 if (alloc_flags & ALLOC_HIGH)
3652 min -= min / 2;
3653
3654 if (unlikely(alloc_harder)) {
3655 /*
3656 * OOM victims can try even harder than normal ALLOC_HARDER
3657 * users on the grounds that it's definitely going to be in
3658 * the exit path shortly and free memory. Any allocation it
3659 * makes during the free path will be small and short-lived.
3660 */
3661 if (alloc_flags & ALLOC_OOM)
3662 min -= min / 2;
3663 else
3664 min -= min / 4;
3665 }
3666
3667 /*
3668 * Check watermarks for an order-0 allocation request. If these
3669 * are not met, then a high-order request also cannot go ahead
3670 * even if a suitable page happened to be free.
3671 */
3672 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3673 return false;
3674
3675 /* If this is an order-0 request then the watermark is fine */
3676 if (!order)
3677 return true;
3678
3679 /* For a high-order request, check at least one suitable page is free */
3680 for (o = order; o < MAX_ORDER; o++) {
3681 struct free_area *area = &z->free_area[o];
3682 int mt;
3683
3684 if (!area->nr_free)
3685 continue;
3686
3687 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3688 if (!free_area_empty(area, mt))
3689 return true;
3690 }
3691
3692#ifdef CONFIG_CMA
3693 if ((alloc_flags & ALLOC_CMA) &&
3694 !free_area_empty(area, MIGRATE_CMA)) {
3695 return true;
3696 }
3697#endif
3698 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3699 return true;
3700 }
3701 return false;
3702}
3703
3704bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3705 int highest_zoneidx, unsigned int alloc_flags)
3706{
3707 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3708 zone_page_state(z, NR_FREE_PAGES));
3709}
3710
3711static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3712 unsigned long mark, int highest_zoneidx,
3713 unsigned int alloc_flags, gfp_t gfp_mask)
3714{
3715 long free_pages;
3716
3717 free_pages = zone_page_state(z, NR_FREE_PAGES);
3718
3719 /*
3720 * Fast check for order-0 only. If this fails then the reserves
3721 * need to be calculated.
3722 */
3723 if (!order) {
3724 long fast_free;
3725
3726 fast_free = free_pages;
3727 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3728 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3729 return true;
3730 }
3731
3732 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3733 free_pages))
3734 return true;
3735 /*
3736 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3737 * when checking the min watermark. The min watermark is the
3738 * point where boosting is ignored so that kswapd is woken up
3739 * when below the low watermark.
3740 */
3741 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3742 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3743 mark = z->_watermark[WMARK_MIN];
3744 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3745 alloc_flags, free_pages);
3746 }
3747
3748 return false;
3749}
3750
3751bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3752 unsigned long mark, int highest_zoneidx)
3753{
3754 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3755
3756 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3757 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3758
3759 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3760 free_pages);
3761}
3762
3763#ifdef CONFIG_NUMA
3764static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3765{
3766 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3767 node_reclaim_distance;
3768}
3769#else /* CONFIG_NUMA */
3770static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3771{
3772 return true;
3773}
3774#endif /* CONFIG_NUMA */
3775
3776/*
3777 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3778 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3779 * premature use of a lower zone may cause lowmem pressure problems that
3780 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3781 * probably too small. It only makes sense to spread allocations to avoid
3782 * fragmentation between the Normal and DMA32 zones.
3783 */
3784static inline unsigned int
3785alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3786{
3787 unsigned int alloc_flags;
3788
3789 /*
3790 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3791 * to save a branch.
3792 */
3793 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3794
3795#ifdef CONFIG_ZONE_DMA32
3796 if (!zone)
3797 return alloc_flags;
3798
3799 if (zone_idx(zone) != ZONE_NORMAL)
3800 return alloc_flags;
3801
3802 /*
3803 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3804 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3805 * on UMA that if Normal is populated then so is DMA32.
3806 */
3807 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3808 if (nr_online_nodes > 1 && !populated_zone(--zone))
3809 return alloc_flags;
3810
3811 alloc_flags |= ALLOC_NOFRAGMENT;
3812#endif /* CONFIG_ZONE_DMA32 */
3813 return alloc_flags;
3814}
3815
3816static inline unsigned int current_alloc_flags(gfp_t gfp_mask,
3817 unsigned int alloc_flags)
3818{
3819#ifdef CONFIG_CMA
3820 unsigned int pflags = current->flags;
3821
3822 if (!(pflags & PF_MEMALLOC_NOCMA) &&
3823 gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3824 alloc_flags |= ALLOC_CMA;
3825
3826#endif
3827 return alloc_flags;
3828}
3829
3830/*
3831 * get_page_from_freelist goes through the zonelist trying to allocate
3832 * a page.
3833 */
3834static struct page *
3835get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3836 const struct alloc_context *ac)
3837{
3838 struct zoneref *z;
3839 struct zone *zone;
3840 struct pglist_data *last_pgdat_dirty_limit = NULL;
3841 bool no_fallback;
3842
3843retry:
3844 /*
3845 * Scan zonelist, looking for a zone with enough free.
3846 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3847 */
3848 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3849 z = ac->preferred_zoneref;
3850 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3851 ac->nodemask) {
3852 struct page *page;
3853 unsigned long mark;
3854
3855 if (cpusets_enabled() &&
3856 (alloc_flags & ALLOC_CPUSET) &&
3857 !__cpuset_zone_allowed(zone, gfp_mask))
3858 continue;
3859 /*
3860 * When allocating a page cache page for writing, we
3861 * want to get it from a node that is within its dirty
3862 * limit, such that no single node holds more than its
3863 * proportional share of globally allowed dirty pages.
3864 * The dirty limits take into account the node's
3865 * lowmem reserves and high watermark so that kswapd
3866 * should be able to balance it without having to
3867 * write pages from its LRU list.
3868 *
3869 * XXX: For now, allow allocations to potentially
3870 * exceed the per-node dirty limit in the slowpath
3871 * (spread_dirty_pages unset) before going into reclaim,
3872 * which is important when on a NUMA setup the allowed
3873 * nodes are together not big enough to reach the
3874 * global limit. The proper fix for these situations
3875 * will require awareness of nodes in the
3876 * dirty-throttling and the flusher threads.
3877 */
3878 if (ac->spread_dirty_pages) {
3879 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3880 continue;
3881
3882 if (!node_dirty_ok(zone->zone_pgdat)) {
3883 last_pgdat_dirty_limit = zone->zone_pgdat;
3884 continue;
3885 }
3886 }
3887
3888 if (no_fallback && nr_online_nodes > 1 &&
3889 zone != ac->preferred_zoneref->zone) {
3890 int local_nid;
3891
3892 /*
3893 * If moving to a remote node, retry but allow
3894 * fragmenting fallbacks. Locality is more important
3895 * than fragmentation avoidance.
3896 */
3897 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3898 if (zone_to_nid(zone) != local_nid) {
3899 alloc_flags &= ~ALLOC_NOFRAGMENT;
3900 goto retry;
3901 }
3902 }
3903
3904 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3905 if (!zone_watermark_fast(zone, order, mark,
3906 ac->highest_zoneidx, alloc_flags,
3907 gfp_mask)) {
3908 int ret;
3909
3910#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3911 /*
3912 * Watermark failed for this zone, but see if we can
3913 * grow this zone if it contains deferred pages.
3914 */
3915 if (static_branch_unlikely(&deferred_pages)) {
3916 if (_deferred_grow_zone(zone, order))
3917 goto try_this_zone;
3918 }
3919#endif
3920 /* Checked here to keep the fast path fast */
3921 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3922 if (alloc_flags & ALLOC_NO_WATERMARKS)
3923 goto try_this_zone;
3924
3925 if (node_reclaim_mode == 0 ||
3926 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3927 continue;
3928
3929 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3930 switch (ret) {
3931 case NODE_RECLAIM_NOSCAN:
3932 /* did not scan */
3933 continue;
3934 case NODE_RECLAIM_FULL:
3935 /* scanned but unreclaimable */
3936 continue;
3937 default:
3938 /* did we reclaim enough */
3939 if (zone_watermark_ok(zone, order, mark,
3940 ac->highest_zoneidx, alloc_flags))
3941 goto try_this_zone;
3942
3943 continue;
3944 }
3945 }
3946
3947try_this_zone:
3948 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3949 gfp_mask, alloc_flags, ac->migratetype);
3950 if (page) {
3951 prep_new_page(page, order, gfp_mask, alloc_flags);
3952
3953 /*
3954 * If this is a high-order atomic allocation then check
3955 * if the pageblock should be reserved for the future
3956 */
3957 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3958 reserve_highatomic_pageblock(page, zone, order);
3959
3960 return page;
3961 } else {
3962#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3963 /* Try again if zone has deferred pages */
3964 if (static_branch_unlikely(&deferred_pages)) {
3965 if (_deferred_grow_zone(zone, order))
3966 goto try_this_zone;
3967 }
3968#endif
3969 }
3970 }
3971
3972 /*
3973 * It's possible on a UMA machine to get through all zones that are
3974 * fragmented. If avoiding fragmentation, reset and try again.
3975 */
3976 if (no_fallback) {
3977 alloc_flags &= ~ALLOC_NOFRAGMENT;
3978 goto retry;
3979 }
3980
3981 return NULL;
3982}
3983
3984static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3985{
3986 unsigned int filter = SHOW_MEM_FILTER_NODES;
3987
3988 /*
3989 * This documents exceptions given to allocations in certain
3990 * contexts that are allowed to allocate outside current's set
3991 * of allowed nodes.
3992 */
3993 if (!(gfp_mask & __GFP_NOMEMALLOC))
3994 if (tsk_is_oom_victim(current) ||
3995 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3996 filter &= ~SHOW_MEM_FILTER_NODES;
3997 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3998 filter &= ~SHOW_MEM_FILTER_NODES;
3999
4000 show_mem(filter, nodemask);
4001}
4002
4003void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4004{
4005 struct va_format vaf;
4006 va_list args;
4007 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4008
4009 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
4010 return;
4011
4012 va_start(args, fmt);
4013 vaf.fmt = fmt;
4014 vaf.va = &args;
4015 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4016 current->comm, &vaf, gfp_mask, &gfp_mask,
4017 nodemask_pr_args(nodemask));
4018 va_end(args);
4019
4020 cpuset_print_current_mems_allowed();
4021 pr_cont("\n");
4022 dump_stack();
4023 warn_alloc_show_mem(gfp_mask, nodemask);
4024}
4025
4026static inline struct page *
4027__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4028 unsigned int alloc_flags,
4029 const struct alloc_context *ac)
4030{
4031 struct page *page;
4032
4033 page = get_page_from_freelist(gfp_mask, order,
4034 alloc_flags|ALLOC_CPUSET, ac);
4035 /*
4036 * fallback to ignore cpuset restriction if our nodes
4037 * are depleted
4038 */
4039 if (!page)
4040 page = get_page_from_freelist(gfp_mask, order,
4041 alloc_flags, ac);
4042
4043 return page;
4044}
4045
4046static inline struct page *
4047__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4048 const struct alloc_context *ac, unsigned long *did_some_progress)
4049{
4050 struct oom_control oc = {
4051 .zonelist = ac->zonelist,
4052 .nodemask = ac->nodemask,
4053 .memcg = NULL,
4054 .gfp_mask = gfp_mask,
4055 .order = order,
4056 };
4057 struct page *page;
4058
4059 *did_some_progress = 0;
4060
4061 /*
4062 * Acquire the oom lock. If that fails, somebody else is
4063 * making progress for us.
4064 */
4065 if (!mutex_trylock(&oom_lock)) {
4066 *did_some_progress = 1;
4067 schedule_timeout_uninterruptible(1);
4068 return NULL;
4069 }
4070
4071 /*
4072 * Go through the zonelist yet one more time, keep very high watermark
4073 * here, this is only to catch a parallel oom killing, we must fail if
4074 * we're still under heavy pressure. But make sure that this reclaim
4075 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4076 * allocation which will never fail due to oom_lock already held.
4077 */
4078 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4079 ~__GFP_DIRECT_RECLAIM, order,
4080 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4081 if (page)
4082 goto out;
4083
4084 /* Coredumps can quickly deplete all memory reserves */
4085 if (current->flags & PF_DUMPCORE)
4086 goto out;
4087 /* The OOM killer will not help higher order allocs */
4088 if (order > PAGE_ALLOC_COSTLY_ORDER)
4089 goto out;
4090 /*
4091 * We have already exhausted all our reclaim opportunities without any
4092 * success so it is time to admit defeat. We will skip the OOM killer
4093 * because it is very likely that the caller has a more reasonable
4094 * fallback than shooting a random task.
4095 *
4096 * The OOM killer may not free memory on a specific node.
4097 */
4098 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4099 goto out;
4100 /* The OOM killer does not needlessly kill tasks for lowmem */
4101 if (ac->highest_zoneidx < ZONE_NORMAL)
4102 goto out;
4103 if (pm_suspended_storage())
4104 goto out;
4105 /*
4106 * XXX: GFP_NOFS allocations should rather fail than rely on
4107 * other request to make a forward progress.
4108 * We are in an unfortunate situation where out_of_memory cannot
4109 * do much for this context but let's try it to at least get
4110 * access to memory reserved if the current task is killed (see
4111 * out_of_memory). Once filesystems are ready to handle allocation
4112 * failures more gracefully we should just bail out here.
4113 */
4114
4115 /* Exhausted what can be done so it's blame time */
4116 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
4117 *did_some_progress = 1;
4118
4119 /*
4120 * Help non-failing allocations by giving them access to memory
4121 * reserves
4122 */
4123 if (gfp_mask & __GFP_NOFAIL)
4124 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4125 ALLOC_NO_WATERMARKS, ac);
4126 }
4127out:
4128 mutex_unlock(&oom_lock);
4129 return page;
4130}
4131
4132/*
4133 * Maximum number of compaction retries wit a progress before OOM
4134 * killer is consider as the only way to move forward.
4135 */
4136#define MAX_COMPACT_RETRIES 16
4137
4138#ifdef CONFIG_COMPACTION
4139/* Try memory compaction for high-order allocations before reclaim */
4140static struct page *
4141__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4142 unsigned int alloc_flags, const struct alloc_context *ac,
4143 enum compact_priority prio, enum compact_result *compact_result)
4144{
4145 struct page *page = NULL;
4146 unsigned long pflags;
4147 unsigned int noreclaim_flag;
4148
4149 if (!order)
4150 return NULL;
4151
4152 psi_memstall_enter(&pflags);
4153 noreclaim_flag = memalloc_noreclaim_save();
4154
4155 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4156 prio, &page);
4157
4158 memalloc_noreclaim_restore(noreclaim_flag);
4159 psi_memstall_leave(&pflags);
4160
4161 /*
4162 * At least in one zone compaction wasn't deferred or skipped, so let's
4163 * count a compaction stall
4164 */
4165 count_vm_event(COMPACTSTALL);
4166
4167 /* Prep a captured page if available */
4168 if (page)
4169 prep_new_page(page, order, gfp_mask, alloc_flags);
4170
4171 /* Try get a page from the freelist if available */
4172 if (!page)
4173 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4174
4175 if (page) {
4176 struct zone *zone = page_zone(page);
4177
4178 zone->compact_blockskip_flush = false;
4179 compaction_defer_reset(zone, order, true);
4180 count_vm_event(COMPACTSUCCESS);
4181 return page;
4182 }
4183
4184 /*
4185 * It's bad if compaction run occurs and fails. The most likely reason
4186 * is that pages exist, but not enough to satisfy watermarks.
4187 */
4188 count_vm_event(COMPACTFAIL);
4189
4190 cond_resched();
4191
4192 return NULL;
4193}
4194
4195static inline bool
4196should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4197 enum compact_result compact_result,
4198 enum compact_priority *compact_priority,
4199 int *compaction_retries)
4200{
4201 int max_retries = MAX_COMPACT_RETRIES;
4202 int min_priority;
4203 bool ret = false;
4204 int retries = *compaction_retries;
4205 enum compact_priority priority = *compact_priority;
4206
4207 if (!order)
4208 return false;
4209
4210 if (compaction_made_progress(compact_result))
4211 (*compaction_retries)++;
4212
4213 /*
4214 * compaction considers all the zone as desperately out of memory
4215 * so it doesn't really make much sense to retry except when the
4216 * failure could be caused by insufficient priority
4217 */
4218 if (compaction_failed(compact_result))
4219 goto check_priority;
4220
4221 /*
4222 * compaction was skipped because there are not enough order-0 pages
4223 * to work with, so we retry only if it looks like reclaim can help.
4224 */
4225 if (compaction_needs_reclaim(compact_result)) {
4226 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4227 goto out;
4228 }
4229
4230 /*
4231 * make sure the compaction wasn't deferred or didn't bail out early
4232 * due to locks contention before we declare that we should give up.
4233 * But the next retry should use a higher priority if allowed, so
4234 * we don't just keep bailing out endlessly.
4235 */
4236 if (compaction_withdrawn(compact_result)) {
4237 goto check_priority;
4238 }
4239
4240 /*
4241 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4242 * costly ones because they are de facto nofail and invoke OOM
4243 * killer to move on while costly can fail and users are ready
4244 * to cope with that. 1/4 retries is rather arbitrary but we
4245 * would need much more detailed feedback from compaction to
4246 * make a better decision.
4247 */
4248 if (order > PAGE_ALLOC_COSTLY_ORDER)
4249 max_retries /= 4;
4250 if (*compaction_retries <= max_retries) {
4251 ret = true;
4252 goto out;
4253 }
4254
4255 /*
4256 * Make sure there are attempts at the highest priority if we exhausted
4257 * all retries or failed at the lower priorities.
4258 */
4259check_priority:
4260 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4261 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4262
4263 if (*compact_priority > min_priority) {
4264 (*compact_priority)--;
4265 *compaction_retries = 0;
4266 ret = true;
4267 }
4268out:
4269 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4270 return ret;
4271}
4272#else
4273static inline struct page *
4274__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4275 unsigned int alloc_flags, const struct alloc_context *ac,
4276 enum compact_priority prio, enum compact_result *compact_result)
4277{
4278 *compact_result = COMPACT_SKIPPED;
4279 return NULL;
4280}
4281
4282static inline bool
4283should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4284 enum compact_result compact_result,
4285 enum compact_priority *compact_priority,
4286 int *compaction_retries)
4287{
4288 struct zone *zone;
4289 struct zoneref *z;
4290
4291 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4292 return false;
4293
4294 /*
4295 * There are setups with compaction disabled which would prefer to loop
4296 * inside the allocator rather than hit the oom killer prematurely.
4297 * Let's give them a good hope and keep retrying while the order-0
4298 * watermarks are OK.
4299 */
4300 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4301 ac->highest_zoneidx, ac->nodemask) {
4302 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4303 ac->highest_zoneidx, alloc_flags))
4304 return true;
4305 }
4306 return false;
4307}
4308#endif /* CONFIG_COMPACTION */
4309
4310#ifdef CONFIG_LOCKDEP
4311static struct lockdep_map __fs_reclaim_map =
4312 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4313
4314static bool __need_reclaim(gfp_t gfp_mask)
4315{
4316 /* no reclaim without waiting on it */
4317 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4318 return false;
4319
4320 /* this guy won't enter reclaim */
4321 if (current->flags & PF_MEMALLOC)
4322 return false;
4323
4324 if (gfp_mask & __GFP_NOLOCKDEP)
4325 return false;
4326
4327 return true;
4328}
4329
4330void __fs_reclaim_acquire(void)
4331{
4332 lock_map_acquire(&__fs_reclaim_map);
4333}
4334
4335void __fs_reclaim_release(void)
4336{
4337 lock_map_release(&__fs_reclaim_map);
4338}
4339
4340void fs_reclaim_acquire(gfp_t gfp_mask)
4341{
4342 gfp_mask = current_gfp_context(gfp_mask);
4343
4344 if (__need_reclaim(gfp_mask)) {
4345 if (gfp_mask & __GFP_FS)
4346 __fs_reclaim_acquire();
4347
4348#ifdef CONFIG_MMU_NOTIFIER
4349 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4350 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4351#endif
4352
4353 }
4354}
4355EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4356
4357void fs_reclaim_release(gfp_t gfp_mask)
4358{
4359 gfp_mask = current_gfp_context(gfp_mask);
4360
4361 if (__need_reclaim(gfp_mask)) {
4362 if (gfp_mask & __GFP_FS)
4363 __fs_reclaim_release();
4364 }
4365}
4366EXPORT_SYMBOL_GPL(fs_reclaim_release);
4367#endif
4368
4369/* Perform direct synchronous page reclaim */
4370static unsigned long
4371__perform_reclaim(gfp_t gfp_mask, unsigned int order,
4372 const struct alloc_context *ac)
4373{
4374 unsigned int noreclaim_flag;
4375 unsigned long pflags, progress;
4376
4377 cond_resched();
4378
4379 /* We now go into synchronous reclaim */
4380 cpuset_memory_pressure_bump();
4381 psi_memstall_enter(&pflags);
4382 fs_reclaim_acquire(gfp_mask);
4383 noreclaim_flag = memalloc_noreclaim_save();
4384
4385 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4386 ac->nodemask);
4387
4388 memalloc_noreclaim_restore(noreclaim_flag);
4389 fs_reclaim_release(gfp_mask);
4390 psi_memstall_leave(&pflags);
4391
4392 cond_resched();
4393
4394 return progress;
4395}
4396
4397/* The really slow allocator path where we enter direct reclaim */
4398static inline struct page *
4399__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4400 unsigned int alloc_flags, const struct alloc_context *ac,
4401 unsigned long *did_some_progress)
4402{
4403 struct page *page = NULL;
4404 bool drained = false;
4405
4406 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4407 if (unlikely(!(*did_some_progress)))
4408 return NULL;
4409
4410retry:
4411 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4412
4413 /*
4414 * If an allocation failed after direct reclaim, it could be because
4415 * pages are pinned on the per-cpu lists or in high alloc reserves.
4416 * Shrink them and try again
4417 */
4418 if (!page && !drained) {
4419 unreserve_highatomic_pageblock(ac, false);
4420 drain_all_pages(NULL);
4421 drained = true;
4422 goto retry;
4423 }
4424
4425 return page;
4426}
4427
4428static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4429 const struct alloc_context *ac)
4430{
4431 struct zoneref *z;
4432 struct zone *zone;
4433 pg_data_t *last_pgdat = NULL;
4434 enum zone_type highest_zoneidx = ac->highest_zoneidx;
4435
4436 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4437 ac->nodemask) {
4438 if (last_pgdat != zone->zone_pgdat)
4439 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4440 last_pgdat = zone->zone_pgdat;
4441 }
4442}
4443
4444static inline unsigned int
4445gfp_to_alloc_flags(gfp_t gfp_mask)
4446{
4447 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4448
4449 /*
4450 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4451 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4452 * to save two branches.
4453 */
4454 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4455 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4456
4457 /*
4458 * The caller may dip into page reserves a bit more if the caller
4459 * cannot run direct reclaim, or if the caller has realtime scheduling
4460 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4461 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4462 */
4463 alloc_flags |= (__force int)
4464 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4465
4466 if (gfp_mask & __GFP_ATOMIC) {
4467 /*
4468 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4469 * if it can't schedule.
4470 */
4471 if (!(gfp_mask & __GFP_NOMEMALLOC))
4472 alloc_flags |= ALLOC_HARDER;
4473 /*
4474 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4475 * comment for __cpuset_node_allowed().
4476 */
4477 alloc_flags &= ~ALLOC_CPUSET;
4478 } else if (unlikely(rt_task(current)) && !in_interrupt())
4479 alloc_flags |= ALLOC_HARDER;
4480
4481 alloc_flags = current_alloc_flags(gfp_mask, alloc_flags);
4482
4483 return alloc_flags;
4484}
4485
4486static bool oom_reserves_allowed(struct task_struct *tsk)
4487{
4488 if (!tsk_is_oom_victim(tsk))
4489 return false;
4490
4491 /*
4492 * !MMU doesn't have oom reaper so give access to memory reserves
4493 * only to the thread with TIF_MEMDIE set
4494 */
4495 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4496 return false;
4497
4498 return true;
4499}
4500
4501/*
4502 * Distinguish requests which really need access to full memory
4503 * reserves from oom victims which can live with a portion of it
4504 */
4505static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4506{
4507 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4508 return 0;
4509 if (gfp_mask & __GFP_MEMALLOC)
4510 return ALLOC_NO_WATERMARKS;
4511 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4512 return ALLOC_NO_WATERMARKS;
4513 if (!in_interrupt()) {
4514 if (current->flags & PF_MEMALLOC)
4515 return ALLOC_NO_WATERMARKS;
4516 else if (oom_reserves_allowed(current))
4517 return ALLOC_OOM;
4518 }
4519
4520 return 0;
4521}
4522
4523bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4524{
4525 return !!__gfp_pfmemalloc_flags(gfp_mask);
4526}
4527
4528/*
4529 * Checks whether it makes sense to retry the reclaim to make a forward progress
4530 * for the given allocation request.
4531 *
4532 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4533 * without success, or when we couldn't even meet the watermark if we
4534 * reclaimed all remaining pages on the LRU lists.
4535 *
4536 * Returns true if a retry is viable or false to enter the oom path.
4537 */
4538static inline bool
4539should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4540 struct alloc_context *ac, int alloc_flags,
4541 bool did_some_progress, int *no_progress_loops)
4542{
4543 struct zone *zone;
4544 struct zoneref *z;
4545 bool ret = false;
4546
4547 /*
4548 * Costly allocations might have made a progress but this doesn't mean
4549 * their order will become available due to high fragmentation so
4550 * always increment the no progress counter for them
4551 */
4552 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4553 *no_progress_loops = 0;
4554 else
4555 (*no_progress_loops)++;
4556
4557 /*
4558 * Make sure we converge to OOM if we cannot make any progress
4559 * several times in the row.
4560 */
4561 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4562 /* Before OOM, exhaust highatomic_reserve */
4563 return unreserve_highatomic_pageblock(ac, true);
4564 }
4565
4566 /*
4567 * Keep reclaiming pages while there is a chance this will lead
4568 * somewhere. If none of the target zones can satisfy our allocation
4569 * request even if all reclaimable pages are considered then we are
4570 * screwed and have to go OOM.
4571 */
4572 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4573 ac->highest_zoneidx, ac->nodemask) {
4574 unsigned long available;
4575 unsigned long reclaimable;
4576 unsigned long min_wmark = min_wmark_pages(zone);
4577 bool wmark;
4578
4579 available = reclaimable = zone_reclaimable_pages(zone);
4580 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4581
4582 /*
4583 * Would the allocation succeed if we reclaimed all
4584 * reclaimable pages?
4585 */
4586 wmark = __zone_watermark_ok(zone, order, min_wmark,
4587 ac->highest_zoneidx, alloc_flags, available);
4588 trace_reclaim_retry_zone(z, order, reclaimable,
4589 available, min_wmark, *no_progress_loops, wmark);
4590 if (wmark) {
4591 /*
4592 * If we didn't make any progress and have a lot of
4593 * dirty + writeback pages then we should wait for
4594 * an IO to complete to slow down the reclaim and
4595 * prevent from pre mature OOM
4596 */
4597 if (!did_some_progress) {
4598 unsigned long write_pending;
4599
4600 write_pending = zone_page_state_snapshot(zone,
4601 NR_ZONE_WRITE_PENDING);
4602
4603 if (2 * write_pending > reclaimable) {
4604 congestion_wait(BLK_RW_ASYNC, HZ/10);
4605 return true;
4606 }
4607 }
4608
4609 ret = true;
4610 goto out;
4611 }
4612 }
4613
4614out:
4615 /*
4616 * Memory allocation/reclaim might be called from a WQ context and the
4617 * current implementation of the WQ concurrency control doesn't
4618 * recognize that a particular WQ is congested if the worker thread is
4619 * looping without ever sleeping. Therefore we have to do a short sleep
4620 * here rather than calling cond_resched().
4621 */
4622 if (current->flags & PF_WQ_WORKER)
4623 schedule_timeout_uninterruptible(1);
4624 else
4625 cond_resched();
4626 return ret;
4627}
4628
4629static inline bool
4630check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4631{
4632 /*
4633 * It's possible that cpuset's mems_allowed and the nodemask from
4634 * mempolicy don't intersect. This should be normally dealt with by
4635 * policy_nodemask(), but it's possible to race with cpuset update in
4636 * such a way the check therein was true, and then it became false
4637 * before we got our cpuset_mems_cookie here.
4638 * This assumes that for all allocations, ac->nodemask can come only
4639 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4640 * when it does not intersect with the cpuset restrictions) or the
4641 * caller can deal with a violated nodemask.
4642 */
4643 if (cpusets_enabled() && ac->nodemask &&
4644 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4645 ac->nodemask = NULL;
4646 return true;
4647 }
4648
4649 /*
4650 * When updating a task's mems_allowed or mempolicy nodemask, it is
4651 * possible to race with parallel threads in such a way that our
4652 * allocation can fail while the mask is being updated. If we are about
4653 * to fail, check if the cpuset changed during allocation and if so,
4654 * retry.
4655 */
4656 if (read_mems_allowed_retry(cpuset_mems_cookie))
4657 return true;
4658
4659 return false;
4660}
4661
4662static inline struct page *
4663__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4664 struct alloc_context *ac)
4665{
4666 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4667 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4668 struct page *page = NULL;
4669 unsigned int alloc_flags;
4670 unsigned long did_some_progress;
4671 enum compact_priority compact_priority;
4672 enum compact_result compact_result;
4673 int compaction_retries;
4674 int no_progress_loops;
4675 unsigned int cpuset_mems_cookie;
4676 int reserve_flags;
4677
4678 /*
4679 * We also sanity check to catch abuse of atomic reserves being used by
4680 * callers that are not in atomic context.
4681 */
4682 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4683 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4684 gfp_mask &= ~__GFP_ATOMIC;
4685
4686retry_cpuset:
4687 compaction_retries = 0;
4688 no_progress_loops = 0;
4689 compact_priority = DEF_COMPACT_PRIORITY;
4690 cpuset_mems_cookie = read_mems_allowed_begin();
4691
4692 /*
4693 * The fast path uses conservative alloc_flags to succeed only until
4694 * kswapd needs to be woken up, and to avoid the cost of setting up
4695 * alloc_flags precisely. So we do that now.
4696 */
4697 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4698
4699 /*
4700 * We need to recalculate the starting point for the zonelist iterator
4701 * because we might have used different nodemask in the fast path, or
4702 * there was a cpuset modification and we are retrying - otherwise we
4703 * could end up iterating over non-eligible zones endlessly.
4704 */
4705 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4706 ac->highest_zoneidx, ac->nodemask);
4707 if (!ac->preferred_zoneref->zone)
4708 goto nopage;
4709
4710 if (alloc_flags & ALLOC_KSWAPD)
4711 wake_all_kswapds(order, gfp_mask, ac);
4712
4713 /*
4714 * The adjusted alloc_flags might result in immediate success, so try
4715 * that first
4716 */
4717 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4718 if (page)
4719 goto got_pg;
4720
4721 /*
4722 * For costly allocations, try direct compaction first, as it's likely
4723 * that we have enough base pages and don't need to reclaim. For non-
4724 * movable high-order allocations, do that as well, as compaction will
4725 * try prevent permanent fragmentation by migrating from blocks of the
4726 * same migratetype.
4727 * Don't try this for allocations that are allowed to ignore
4728 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4729 */
4730 if (can_direct_reclaim &&
4731 (costly_order ||
4732 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4733 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4734 page = __alloc_pages_direct_compact(gfp_mask, order,
4735 alloc_flags, ac,
4736 INIT_COMPACT_PRIORITY,
4737 &compact_result);
4738 if (page)
4739 goto got_pg;
4740
4741 /*
4742 * Checks for costly allocations with __GFP_NORETRY, which
4743 * includes some THP page fault allocations
4744 */
4745 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4746 /*
4747 * If allocating entire pageblock(s) and compaction
4748 * failed because all zones are below low watermarks
4749 * or is prohibited because it recently failed at this
4750 * order, fail immediately unless the allocator has
4751 * requested compaction and reclaim retry.
4752 *
4753 * Reclaim is
4754 * - potentially very expensive because zones are far
4755 * below their low watermarks or this is part of very
4756 * bursty high order allocations,
4757 * - not guaranteed to help because isolate_freepages()
4758 * may not iterate over freed pages as part of its
4759 * linear scan, and
4760 * - unlikely to make entire pageblocks free on its
4761 * own.
4762 */
4763 if (compact_result == COMPACT_SKIPPED ||
4764 compact_result == COMPACT_DEFERRED)
4765 goto nopage;
4766
4767 /*
4768 * Looks like reclaim/compaction is worth trying, but
4769 * sync compaction could be very expensive, so keep
4770 * using async compaction.
4771 */
4772 compact_priority = INIT_COMPACT_PRIORITY;
4773 }
4774 }
4775
4776retry:
4777 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4778 if (alloc_flags & ALLOC_KSWAPD)
4779 wake_all_kswapds(order, gfp_mask, ac);
4780
4781 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4782 if (reserve_flags)
4783 alloc_flags = current_alloc_flags(gfp_mask, reserve_flags);
4784
4785 /*
4786 * Reset the nodemask and zonelist iterators if memory policies can be
4787 * ignored. These allocations are high priority and system rather than
4788 * user oriented.
4789 */
4790 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4791 ac->nodemask = NULL;
4792 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4793 ac->highest_zoneidx, ac->nodemask);
4794 }
4795
4796 /* Attempt with potentially adjusted zonelist and alloc_flags */
4797 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4798 if (page)
4799 goto got_pg;
4800
4801 /* Caller is not willing to reclaim, we can't balance anything */
4802 if (!can_direct_reclaim)
4803 goto nopage;
4804
4805 /* Avoid recursion of direct reclaim */
4806 if (current->flags & PF_MEMALLOC)
4807 goto nopage;
4808
4809 /* Try direct reclaim and then allocating */
4810 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4811 &did_some_progress);
4812 if (page)
4813 goto got_pg;
4814
4815 /* Try direct compaction and then allocating */
4816 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4817 compact_priority, &compact_result);
4818 if (page)
4819 goto got_pg;
4820
4821 /* Do not loop if specifically requested */
4822 if (gfp_mask & __GFP_NORETRY)
4823 goto nopage;
4824
4825 /*
4826 * Do not retry costly high order allocations unless they are
4827 * __GFP_RETRY_MAYFAIL
4828 */
4829 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4830 goto nopage;
4831
4832 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4833 did_some_progress > 0, &no_progress_loops))
4834 goto retry;
4835
4836 /*
4837 * It doesn't make any sense to retry for the compaction if the order-0
4838 * reclaim is not able to make any progress because the current
4839 * implementation of the compaction depends on the sufficient amount
4840 * of free memory (see __compaction_suitable)
4841 */
4842 if (did_some_progress > 0 &&
4843 should_compact_retry(ac, order, alloc_flags,
4844 compact_result, &compact_priority,
4845 &compaction_retries))
4846 goto retry;
4847
4848
4849 /* Deal with possible cpuset update races before we start OOM killing */
4850 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4851 goto retry_cpuset;
4852
4853 /* Reclaim has failed us, start killing things */
4854 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4855 if (page)
4856 goto got_pg;
4857
4858 /* Avoid allocations with no watermarks from looping endlessly */
4859 if (tsk_is_oom_victim(current) &&
4860 (alloc_flags & ALLOC_OOM ||
4861 (gfp_mask & __GFP_NOMEMALLOC)))
4862 goto nopage;
4863
4864 /* Retry as long as the OOM killer is making progress */
4865 if (did_some_progress) {
4866 no_progress_loops = 0;
4867 goto retry;
4868 }
4869
4870nopage:
4871 /* Deal with possible cpuset update races before we fail */
4872 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4873 goto retry_cpuset;
4874
4875 /*
4876 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4877 * we always retry
4878 */
4879 if (gfp_mask & __GFP_NOFAIL) {
4880 /*
4881 * All existing users of the __GFP_NOFAIL are blockable, so warn
4882 * of any new users that actually require GFP_NOWAIT
4883 */
4884 if (WARN_ON_ONCE(!can_direct_reclaim))
4885 goto fail;
4886
4887 /*
4888 * PF_MEMALLOC request from this context is rather bizarre
4889 * because we cannot reclaim anything and only can loop waiting
4890 * for somebody to do a work for us
4891 */
4892 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4893
4894 /*
4895 * non failing costly orders are a hard requirement which we
4896 * are not prepared for much so let's warn about these users
4897 * so that we can identify them and convert them to something
4898 * else.
4899 */
4900 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4901
4902 /*
4903 * Help non-failing allocations by giving them access to memory
4904 * reserves but do not use ALLOC_NO_WATERMARKS because this
4905 * could deplete whole memory reserves which would just make
4906 * the situation worse
4907 */
4908 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4909 if (page)
4910 goto got_pg;
4911
4912 cond_resched();
4913 goto retry;
4914 }
4915fail:
4916 warn_alloc(gfp_mask, ac->nodemask,
4917 "page allocation failure: order:%u", order);
4918got_pg:
4919 return page;
4920}
4921
4922static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4923 int preferred_nid, nodemask_t *nodemask,
4924 struct alloc_context *ac, gfp_t *alloc_mask,
4925 unsigned int *alloc_flags)
4926{
4927 ac->highest_zoneidx = gfp_zone(gfp_mask);
4928 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4929 ac->nodemask = nodemask;
4930 ac->migratetype = gfp_migratetype(gfp_mask);
4931
4932 if (cpusets_enabled()) {
4933 *alloc_mask |= __GFP_HARDWALL;
4934 /*
4935 * When we are in the interrupt context, it is irrelevant
4936 * to the current task context. It means that any node ok.
4937 */
4938 if (!in_interrupt() && !ac->nodemask)
4939 ac->nodemask = &cpuset_current_mems_allowed;
4940 else
4941 *alloc_flags |= ALLOC_CPUSET;
4942 }
4943
4944 fs_reclaim_acquire(gfp_mask);
4945 fs_reclaim_release(gfp_mask);
4946
4947 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4948
4949 if (should_fail_alloc_page(gfp_mask, order))
4950 return false;
4951
4952 *alloc_flags = current_alloc_flags(gfp_mask, *alloc_flags);
4953
4954 /* Dirty zone balancing only done in the fast path */
4955 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4956
4957 /*
4958 * The preferred zone is used for statistics but crucially it is
4959 * also used as the starting point for the zonelist iterator. It
4960 * may get reset for allocations that ignore memory policies.
4961 */
4962 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4963 ac->highest_zoneidx, ac->nodemask);
4964
4965 return true;
4966}
4967
4968/*
4969 * This is the 'heart' of the zoned buddy allocator.
4970 */
4971struct page *
4972__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4973 nodemask_t *nodemask)
4974{
4975 struct page *page;
4976 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4977 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4978 struct alloc_context ac = { };
4979
4980 /*
4981 * There are several places where we assume that the order value is sane
4982 * so bail out early if the request is out of bound.
4983 */
4984 if (unlikely(order >= MAX_ORDER)) {
4985 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4986 return NULL;
4987 }
4988
4989 gfp_mask &= gfp_allowed_mask;
4990 alloc_mask = gfp_mask;
4991 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4992 return NULL;
4993
4994 /*
4995 * Forbid the first pass from falling back to types that fragment
4996 * memory until all local zones are considered.
4997 */
4998 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4999
5000 /* First allocation attempt */
5001 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
5002 if (likely(page))
5003 goto out;
5004
5005 /*
5006 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5007 * resp. GFP_NOIO which has to be inherited for all allocation requests
5008 * from a particular context which has been marked by
5009 * memalloc_no{fs,io}_{save,restore}.
5010 */
5011 alloc_mask = current_gfp_context(gfp_mask);
5012 ac.spread_dirty_pages = false;
5013
5014 /*
5015 * Restore the original nodemask if it was potentially replaced with
5016 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5017 */
5018 ac.nodemask = nodemask;
5019
5020 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
5021
5022out:
5023 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
5024 unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) {
5025 __free_pages(page, order);
5026 page = NULL;
5027 }
5028
5029 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
5030
5031 return page;
5032}
5033EXPORT_SYMBOL(__alloc_pages_nodemask);
5034
5035/*
5036 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5037 * address cannot represent highmem pages. Use alloc_pages and then kmap if
5038 * you need to access high mem.
5039 */
5040unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5041{
5042 struct page *page;
5043
5044 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5045 if (!page)
5046 return 0;
5047 return (unsigned long) page_address(page);
5048}
5049EXPORT_SYMBOL(__get_free_pages);
5050
5051unsigned long get_zeroed_page(gfp_t gfp_mask)
5052{
5053 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5054}
5055EXPORT_SYMBOL(get_zeroed_page);
5056
5057static inline void free_the_page(struct page *page, unsigned int order)
5058{
5059 if (order == 0) /* Via pcp? */
5060 free_unref_page(page);
5061 else
5062 __free_pages_ok(page, order, FPI_NONE);
5063}
5064
5065/**
5066 * __free_pages - Free pages allocated with alloc_pages().
5067 * @page: The page pointer returned from alloc_pages().
5068 * @order: The order of the allocation.
5069 *
5070 * This function can free multi-page allocations that are not compound
5071 * pages. It does not check that the @order passed in matches that of
5072 * the allocation, so it is easy to leak memory. Freeing more memory
5073 * than was allocated will probably emit a warning.
5074 *
5075 * If the last reference to this page is speculative, it will be released
5076 * by put_page() which only frees the first page of a non-compound
5077 * allocation. To prevent the remaining pages from being leaked, we free
5078 * the subsequent pages here. If you want to use the page's reference
5079 * count to decide when to free the allocation, you should allocate a
5080 * compound page, and use put_page() instead of __free_pages().
5081 *
5082 * Context: May be called in interrupt context or while holding a normal
5083 * spinlock, but not in NMI context or while holding a raw spinlock.
5084 */
5085void __free_pages(struct page *page, unsigned int order)
5086{
5087 if (put_page_testzero(page))
5088 free_the_page(page, order);
5089 else if (!PageHead(page))
5090 while (order-- > 0)
5091 free_the_page(page + (1 << order), order);
5092}
5093EXPORT_SYMBOL(__free_pages);
5094
5095void free_pages(unsigned long addr, unsigned int order)
5096{
5097 if (addr != 0) {
5098 VM_BUG_ON(!virt_addr_valid((void *)addr));
5099 __free_pages(virt_to_page((void *)addr), order);
5100 }
5101}
5102
5103EXPORT_SYMBOL(free_pages);
5104
5105/*
5106 * Page Fragment:
5107 * An arbitrary-length arbitrary-offset area of memory which resides
5108 * within a 0 or higher order page. Multiple fragments within that page
5109 * are individually refcounted, in the page's reference counter.
5110 *
5111 * The page_frag functions below provide a simple allocation framework for
5112 * page fragments. This is used by the network stack and network device
5113 * drivers to provide a backing region of memory for use as either an
5114 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5115 */
5116static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5117 gfp_t gfp_mask)
5118{
5119 struct page *page = NULL;
5120 gfp_t gfp = gfp_mask;
5121
5122#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5123 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5124 __GFP_NOMEMALLOC;
5125 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5126 PAGE_FRAG_CACHE_MAX_ORDER);
5127 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5128#endif
5129 if (unlikely(!page))
5130 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5131
5132 nc->va = page ? page_address(page) : NULL;
5133
5134 return page;
5135}
5136
5137void __page_frag_cache_drain(struct page *page, unsigned int count)
5138{
5139 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5140
5141 if (page_ref_sub_and_test(page, count))
5142 free_the_page(page, compound_order(page));
5143}
5144EXPORT_SYMBOL(__page_frag_cache_drain);
5145
5146void *page_frag_alloc_align(struct page_frag_cache *nc,
5147 unsigned int fragsz, gfp_t gfp_mask,
5148 unsigned int align_mask)
5149{
5150 unsigned int size = PAGE_SIZE;
5151 struct page *page;
5152 int offset;
5153
5154 if (unlikely(!nc->va)) {
5155refill:
5156 page = __page_frag_cache_refill(nc, gfp_mask);
5157 if (!page)
5158 return NULL;
5159
5160#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5161 /* if size can vary use size else just use PAGE_SIZE */
5162 size = nc->size;
5163#endif
5164 /* Even if we own the page, we do not use atomic_set().
5165 * This would break get_page_unless_zero() users.
5166 */
5167 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5168
5169 /* reset page count bias and offset to start of new frag */
5170 nc->pfmemalloc = page_is_pfmemalloc(page);
5171 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5172 nc->offset = size;
5173 }
5174
5175 offset = nc->offset - fragsz;
5176 if (unlikely(offset < 0)) {
5177 page = virt_to_page(nc->va);
5178
5179 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5180 goto refill;
5181
5182 if (unlikely(nc->pfmemalloc)) {
5183 free_the_page(page, compound_order(page));
5184 goto refill;
5185 }
5186
5187#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5188 /* if size can vary use size else just use PAGE_SIZE */
5189 size = nc->size;
5190#endif
5191 /* OK, page count is 0, we can safely set it */
5192 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5193
5194 /* reset page count bias and offset to start of new frag */
5195 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5196 offset = size - fragsz;
5197 }
5198
5199 nc->pagecnt_bias--;
5200 offset &= align_mask;
5201 nc->offset = offset;
5202
5203 return nc->va + offset;
5204}
5205EXPORT_SYMBOL(page_frag_alloc_align);
5206
5207/*
5208 * Frees a page fragment allocated out of either a compound or order 0 page.
5209 */
5210void page_frag_free(void *addr)
5211{
5212 struct page *page = virt_to_head_page(addr);
5213
5214 if (unlikely(put_page_testzero(page)))
5215 free_the_page(page, compound_order(page));
5216}
5217EXPORT_SYMBOL(page_frag_free);
5218
5219static void *make_alloc_exact(unsigned long addr, unsigned int order,
5220 size_t size)
5221{
5222 if (addr) {
5223 unsigned long alloc_end = addr + (PAGE_SIZE << order);
5224 unsigned long used = addr + PAGE_ALIGN(size);
5225
5226 split_page(virt_to_page((void *)addr), order);
5227 while (used < alloc_end) {
5228 free_page(used);
5229 used += PAGE_SIZE;
5230 }
5231 }
5232 return (void *)addr;
5233}
5234
5235/**
5236 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5237 * @size: the number of bytes to allocate
5238 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5239 *
5240 * This function is similar to alloc_pages(), except that it allocates the
5241 * minimum number of pages to satisfy the request. alloc_pages() can only
5242 * allocate memory in power-of-two pages.
5243 *
5244 * This function is also limited by MAX_ORDER.
5245 *
5246 * Memory allocated by this function must be released by free_pages_exact().
5247 *
5248 * Return: pointer to the allocated area or %NULL in case of error.
5249 */
5250void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5251{
5252 unsigned int order = get_order(size);
5253 unsigned long addr;
5254
5255 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5256 gfp_mask &= ~__GFP_COMP;
5257
5258 addr = __get_free_pages(gfp_mask, order);
5259 return make_alloc_exact(addr, order, size);
5260}
5261EXPORT_SYMBOL(alloc_pages_exact);
5262
5263/**
5264 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5265 * pages on a node.
5266 * @nid: the preferred node ID where memory should be allocated
5267 * @size: the number of bytes to allocate
5268 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5269 *
5270 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5271 * back.
5272 *
5273 * Return: pointer to the allocated area or %NULL in case of error.
5274 */
5275void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5276{
5277 unsigned int order = get_order(size);
5278 struct page *p;
5279
5280 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5281 gfp_mask &= ~__GFP_COMP;
5282
5283 p = alloc_pages_node(nid, gfp_mask, order);
5284 if (!p)
5285 return NULL;
5286 return make_alloc_exact((unsigned long)page_address(p), order, size);
5287}
5288
5289/**
5290 * free_pages_exact - release memory allocated via alloc_pages_exact()
5291 * @virt: the value returned by alloc_pages_exact.
5292 * @size: size of allocation, same value as passed to alloc_pages_exact().
5293 *
5294 * Release the memory allocated by a previous call to alloc_pages_exact.
5295 */
5296void free_pages_exact(void *virt, size_t size)
5297{
5298 unsigned long addr = (unsigned long)virt;
5299 unsigned long end = addr + PAGE_ALIGN(size);
5300
5301 while (addr < end) {
5302 free_page(addr);
5303 addr += PAGE_SIZE;
5304 }
5305}
5306EXPORT_SYMBOL(free_pages_exact);
5307
5308/**
5309 * nr_free_zone_pages - count number of pages beyond high watermark
5310 * @offset: The zone index of the highest zone
5311 *
5312 * nr_free_zone_pages() counts the number of pages which are beyond the
5313 * high watermark within all zones at or below a given zone index. For each
5314 * zone, the number of pages is calculated as:
5315 *
5316 * nr_free_zone_pages = managed_pages - high_pages
5317 *
5318 * Return: number of pages beyond high watermark.
5319 */
5320static unsigned long nr_free_zone_pages(int offset)
5321{
5322 struct zoneref *z;
5323 struct zone *zone;
5324
5325 /* Just pick one node, since fallback list is circular */
5326 unsigned long sum = 0;
5327
5328 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5329
5330 for_each_zone_zonelist(zone, z, zonelist, offset) {
5331 unsigned long size = zone_managed_pages(zone);
5332 unsigned long high = high_wmark_pages(zone);
5333 if (size > high)
5334 sum += size - high;
5335 }
5336
5337 return sum;
5338}
5339
5340/**
5341 * nr_free_buffer_pages - count number of pages beyond high watermark
5342 *
5343 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5344 * watermark within ZONE_DMA and ZONE_NORMAL.
5345 *
5346 * Return: number of pages beyond high watermark within ZONE_DMA and
5347 * ZONE_NORMAL.
5348 */
5349unsigned long nr_free_buffer_pages(void)
5350{
5351 return nr_free_zone_pages(gfp_zone(GFP_USER));
5352}
5353EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5354
5355static inline void show_node(struct zone *zone)
5356{
5357 if (IS_ENABLED(CONFIG_NUMA))
5358 printk("Node %d ", zone_to_nid(zone));
5359}
5360
5361long si_mem_available(void)
5362{
5363 long available;
5364 unsigned long pagecache;
5365 unsigned long wmark_low = 0;
5366 unsigned long pages[NR_LRU_LISTS];
5367 unsigned long reclaimable;
5368 struct zone *zone;
5369 int lru;
5370
5371 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5372 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5373
5374 for_each_zone(zone)
5375 wmark_low += low_wmark_pages(zone);
5376
5377 /*
5378 * Estimate the amount of memory available for userspace allocations,
5379 * without causing swapping.
5380 */
5381 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5382
5383 /*
5384 * Not all the page cache can be freed, otherwise the system will
5385 * start swapping. Assume at least half of the page cache, or the
5386 * low watermark worth of cache, needs to stay.
5387 */
5388 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5389 pagecache -= min(pagecache / 2, wmark_low);
5390 available += pagecache;
5391
5392 /*
5393 * Part of the reclaimable slab and other kernel memory consists of
5394 * items that are in use, and cannot be freed. Cap this estimate at the
5395 * low watermark.
5396 */
5397 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5398 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5399 available += reclaimable - min(reclaimable / 2, wmark_low);
5400
5401 if (available < 0)
5402 available = 0;
5403 return available;
5404}
5405EXPORT_SYMBOL_GPL(si_mem_available);
5406
5407void si_meminfo(struct sysinfo *val)
5408{
5409 val->totalram = totalram_pages();
5410 val->sharedram = global_node_page_state(NR_SHMEM);
5411 val->freeram = global_zone_page_state(NR_FREE_PAGES);
5412 val->bufferram = nr_blockdev_pages();
5413 val->totalhigh = totalhigh_pages();
5414 val->freehigh = nr_free_highpages();
5415 val->mem_unit = PAGE_SIZE;
5416}
5417
5418EXPORT_SYMBOL(si_meminfo);
5419
5420#ifdef CONFIG_NUMA
5421void si_meminfo_node(struct sysinfo *val, int nid)
5422{
5423 int zone_type; /* needs to be signed */
5424 unsigned long managed_pages = 0;
5425 unsigned long managed_highpages = 0;
5426 unsigned long free_highpages = 0;
5427 pg_data_t *pgdat = NODE_DATA(nid);
5428
5429 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5430 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5431 val->totalram = managed_pages;
5432 val->sharedram = node_page_state(pgdat, NR_SHMEM);
5433 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5434#ifdef CONFIG_HIGHMEM
5435 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5436 struct zone *zone = &pgdat->node_zones[zone_type];
5437
5438 if (is_highmem(zone)) {
5439 managed_highpages += zone_managed_pages(zone);
5440 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5441 }
5442 }
5443 val->totalhigh = managed_highpages;
5444 val->freehigh = free_highpages;
5445#else
5446 val->totalhigh = managed_highpages;
5447 val->freehigh = free_highpages;
5448#endif
5449 val->mem_unit = PAGE_SIZE;
5450}
5451#endif
5452
5453/*
5454 * Determine whether the node should be displayed or not, depending on whether
5455 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5456 */
5457static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5458{
5459 if (!(flags & SHOW_MEM_FILTER_NODES))
5460 return false;
5461
5462 /*
5463 * no node mask - aka implicit memory numa policy. Do not bother with
5464 * the synchronization - read_mems_allowed_begin - because we do not
5465 * have to be precise here.
5466 */
5467 if (!nodemask)
5468 nodemask = &cpuset_current_mems_allowed;
5469
5470 return !node_isset(nid, *nodemask);
5471}
5472
5473#define K(x) ((x) << (PAGE_SHIFT-10))
5474
5475static void show_migration_types(unsigned char type)
5476{
5477 static const char types[MIGRATE_TYPES] = {
5478 [MIGRATE_UNMOVABLE] = 'U',
5479 [MIGRATE_MOVABLE] = 'M',
5480 [MIGRATE_RECLAIMABLE] = 'E',
5481 [MIGRATE_HIGHATOMIC] = 'H',
5482#ifdef CONFIG_CMA
5483 [MIGRATE_CMA] = 'C',
5484#endif
5485#ifdef CONFIG_MEMORY_ISOLATION
5486 [MIGRATE_ISOLATE] = 'I',
5487#endif
5488 };
5489 char tmp[MIGRATE_TYPES + 1];
5490 char *p = tmp;
5491 int i;
5492
5493 for (i = 0; i < MIGRATE_TYPES; i++) {
5494 if (type & (1 << i))
5495 *p++ = types[i];
5496 }
5497
5498 *p = '\0';
5499 printk(KERN_CONT "(%s) ", tmp);
5500}
5501
5502/*
5503 * Show free area list (used inside shift_scroll-lock stuff)
5504 * We also calculate the percentage fragmentation. We do this by counting the
5505 * memory on each free list with the exception of the first item on the list.
5506 *
5507 * Bits in @filter:
5508 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5509 * cpuset.
5510 */
5511void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5512{
5513 unsigned long free_pcp = 0;
5514 int cpu;
5515 struct zone *zone;
5516 pg_data_t *pgdat;
5517
5518 for_each_populated_zone(zone) {
5519 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5520 continue;
5521
5522 for_each_online_cpu(cpu)
5523 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5524 }
5525
5526 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5527 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5528 " unevictable:%lu dirty:%lu writeback:%lu\n"
5529 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5530 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5531 " free:%lu free_pcp:%lu free_cma:%lu\n",
5532 global_node_page_state(NR_ACTIVE_ANON),
5533 global_node_page_state(NR_INACTIVE_ANON),
5534 global_node_page_state(NR_ISOLATED_ANON),
5535 global_node_page_state(NR_ACTIVE_FILE),
5536 global_node_page_state(NR_INACTIVE_FILE),
5537 global_node_page_state(NR_ISOLATED_FILE),
5538 global_node_page_state(NR_UNEVICTABLE),
5539 global_node_page_state(NR_FILE_DIRTY),
5540 global_node_page_state(NR_WRITEBACK),
5541 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5542 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5543 global_node_page_state(NR_FILE_MAPPED),
5544 global_node_page_state(NR_SHMEM),
5545 global_node_page_state(NR_PAGETABLE),
5546 global_zone_page_state(NR_BOUNCE),
5547 global_zone_page_state(NR_FREE_PAGES),
5548 free_pcp,
5549 global_zone_page_state(NR_FREE_CMA_PAGES));
5550
5551 for_each_online_pgdat(pgdat) {
5552 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5553 continue;
5554
5555 printk("Node %d"
5556 " active_anon:%lukB"
5557 " inactive_anon:%lukB"
5558 " active_file:%lukB"
5559 " inactive_file:%lukB"
5560 " unevictable:%lukB"
5561 " isolated(anon):%lukB"
5562 " isolated(file):%lukB"
5563 " mapped:%lukB"
5564 " dirty:%lukB"
5565 " writeback:%lukB"
5566 " shmem:%lukB"
5567#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5568 " shmem_thp: %lukB"
5569 " shmem_pmdmapped: %lukB"
5570 " anon_thp: %lukB"
5571#endif
5572 " writeback_tmp:%lukB"
5573 " kernel_stack:%lukB"
5574#ifdef CONFIG_SHADOW_CALL_STACK
5575 " shadow_call_stack:%lukB"
5576#endif
5577 " pagetables:%lukB"
5578 " all_unreclaimable? %s"
5579 "\n",
5580 pgdat->node_id,
5581 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5582 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5583 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5584 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5585 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5586 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5587 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5588 K(node_page_state(pgdat, NR_FILE_MAPPED)),
5589 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5590 K(node_page_state(pgdat, NR_WRITEBACK)),
5591 K(node_page_state(pgdat, NR_SHMEM)),
5592#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5593 K(node_page_state(pgdat, NR_SHMEM_THPS)),
5594 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
5595 K(node_page_state(pgdat, NR_ANON_THPS)),
5596#endif
5597 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5598 node_page_state(pgdat, NR_KERNEL_STACK_KB),
5599#ifdef CONFIG_SHADOW_CALL_STACK
5600 node_page_state(pgdat, NR_KERNEL_SCS_KB),
5601#endif
5602 K(node_page_state(pgdat, NR_PAGETABLE)),
5603 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5604 "yes" : "no");
5605 }
5606
5607 for_each_populated_zone(zone) {
5608 int i;
5609
5610 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5611 continue;
5612
5613 free_pcp = 0;
5614 for_each_online_cpu(cpu)
5615 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5616
5617 show_node(zone);
5618 printk(KERN_CONT
5619 "%s"
5620 " free:%lukB"
5621 " min:%lukB"
5622 " low:%lukB"
5623 " high:%lukB"
5624 " reserved_highatomic:%luKB"
5625 " active_anon:%lukB"
5626 " inactive_anon:%lukB"
5627 " active_file:%lukB"
5628 " inactive_file:%lukB"
5629 " unevictable:%lukB"
5630 " writepending:%lukB"
5631 " present:%lukB"
5632 " managed:%lukB"
5633 " mlocked:%lukB"
5634 " bounce:%lukB"
5635 " free_pcp:%lukB"
5636 " local_pcp:%ukB"
5637 " free_cma:%lukB"
5638 "\n",
5639 zone->name,
5640 K(zone_page_state(zone, NR_FREE_PAGES)),
5641 K(min_wmark_pages(zone)),
5642 K(low_wmark_pages(zone)),
5643 K(high_wmark_pages(zone)),
5644 K(zone->nr_reserved_highatomic),
5645 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5646 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5647 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5648 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5649 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5650 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5651 K(zone->present_pages),
5652 K(zone_managed_pages(zone)),
5653 K(zone_page_state(zone, NR_MLOCK)),
5654 K(zone_page_state(zone, NR_BOUNCE)),
5655 K(free_pcp),
5656 K(this_cpu_read(zone->pageset->pcp.count)),
5657 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5658 printk("lowmem_reserve[]:");
5659 for (i = 0; i < MAX_NR_ZONES; i++)
5660 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5661 printk(KERN_CONT "\n");
5662 }
5663
5664 for_each_populated_zone(zone) {
5665 unsigned int order;
5666 unsigned long nr[MAX_ORDER], flags, total = 0;
5667 unsigned char types[MAX_ORDER];
5668
5669 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5670 continue;
5671 show_node(zone);
5672 printk(KERN_CONT "%s: ", zone->name);
5673
5674 spin_lock_irqsave(&zone->lock, flags);
5675 for (order = 0; order < MAX_ORDER; order++) {
5676 struct free_area *area = &zone->free_area[order];
5677 int type;
5678
5679 nr[order] = area->nr_free;
5680 total += nr[order] << order;
5681
5682 types[order] = 0;
5683 for (type = 0; type < MIGRATE_TYPES; type++) {
5684 if (!free_area_empty(area, type))
5685 types[order] |= 1 << type;
5686 }
5687 }
5688 spin_unlock_irqrestore(&zone->lock, flags);
5689 for (order = 0; order < MAX_ORDER; order++) {
5690 printk(KERN_CONT "%lu*%lukB ",
5691 nr[order], K(1UL) << order);
5692 if (nr[order])
5693 show_migration_types(types[order]);
5694 }
5695 printk(KERN_CONT "= %lukB\n", K(total));
5696 }
5697
5698 hugetlb_show_meminfo();
5699
5700 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5701
5702 show_swap_cache_info();
5703}
5704
5705static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5706{
5707 zoneref->zone = zone;
5708 zoneref->zone_idx = zone_idx(zone);
5709}
5710
5711/*
5712 * Builds allocation fallback zone lists.
5713 *
5714 * Add all populated zones of a node to the zonelist.
5715 */
5716static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5717{
5718 struct zone *zone;
5719 enum zone_type zone_type = MAX_NR_ZONES;
5720 int nr_zones = 0;
5721
5722 do {
5723 zone_type--;
5724 zone = pgdat->node_zones + zone_type;
5725 if (managed_zone(zone)) {
5726 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5727 check_highest_zone(zone_type);
5728 }
5729 } while (zone_type);
5730
5731 return nr_zones;
5732}
5733
5734#ifdef CONFIG_NUMA
5735
5736static int __parse_numa_zonelist_order(char *s)
5737{
5738 /*
5739 * We used to support different zonlists modes but they turned
5740 * out to be just not useful. Let's keep the warning in place
5741 * if somebody still use the cmd line parameter so that we do
5742 * not fail it silently
5743 */
5744 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5745 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
5746 return -EINVAL;
5747 }
5748 return 0;
5749}
5750
5751char numa_zonelist_order[] = "Node";
5752
5753/*
5754 * sysctl handler for numa_zonelist_order
5755 */
5756int numa_zonelist_order_handler(struct ctl_table *table, int write,
5757 void *buffer, size_t *length, loff_t *ppos)
5758{
5759 if (write)
5760 return __parse_numa_zonelist_order(buffer);
5761 return proc_dostring(table, write, buffer, length, ppos);
5762}
5763
5764
5765#define MAX_NODE_LOAD (nr_online_nodes)
5766static int node_load[MAX_NUMNODES];
5767
5768/**
5769 * find_next_best_node - find the next node that should appear in a given node's fallback list
5770 * @node: node whose fallback list we're appending
5771 * @used_node_mask: nodemask_t of already used nodes
5772 *
5773 * We use a number of factors to determine which is the next node that should
5774 * appear on a given node's fallback list. The node should not have appeared
5775 * already in @node's fallback list, and it should be the next closest node
5776 * according to the distance array (which contains arbitrary distance values
5777 * from each node to each node in the system), and should also prefer nodes
5778 * with no CPUs, since presumably they'll have very little allocation pressure
5779 * on them otherwise.
5780 *
5781 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5782 */
5783static int find_next_best_node(int node, nodemask_t *used_node_mask)
5784{
5785 int n, val;
5786 int min_val = INT_MAX;
5787 int best_node = NUMA_NO_NODE;
5788
5789 /* Use the local node if we haven't already */
5790 if (!node_isset(node, *used_node_mask)) {
5791 node_set(node, *used_node_mask);
5792 return node;
5793 }
5794
5795 for_each_node_state(n, N_MEMORY) {
5796
5797 /* Don't want a node to appear more than once */
5798 if (node_isset(n, *used_node_mask))
5799 continue;
5800
5801 /* Use the distance array to find the distance */
5802 val = node_distance(node, n);
5803
5804 /* Penalize nodes under us ("prefer the next node") */
5805 val += (n < node);
5806
5807 /* Give preference to headless and unused nodes */
5808 if (!cpumask_empty(cpumask_of_node(n)))
5809 val += PENALTY_FOR_NODE_WITH_CPUS;
5810
5811 /* Slight preference for less loaded node */
5812 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5813 val += node_load[n];
5814
5815 if (val < min_val) {
5816 min_val = val;
5817 best_node = n;
5818 }
5819 }
5820
5821 if (best_node >= 0)
5822 node_set(best_node, *used_node_mask);
5823
5824 return best_node;
5825}
5826
5827
5828/*
5829 * Build zonelists ordered by node and zones within node.
5830 * This results in maximum locality--normal zone overflows into local
5831 * DMA zone, if any--but risks exhausting DMA zone.
5832 */
5833static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5834 unsigned nr_nodes)
5835{
5836 struct zoneref *zonerefs;
5837 int i;
5838
5839 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5840
5841 for (i = 0; i < nr_nodes; i++) {
5842 int nr_zones;
5843
5844 pg_data_t *node = NODE_DATA(node_order[i]);
5845
5846 nr_zones = build_zonerefs_node(node, zonerefs);
5847 zonerefs += nr_zones;
5848 }
5849 zonerefs->zone = NULL;
5850 zonerefs->zone_idx = 0;
5851}
5852
5853/*
5854 * Build gfp_thisnode zonelists
5855 */
5856static void build_thisnode_zonelists(pg_data_t *pgdat)
5857{
5858 struct zoneref *zonerefs;
5859 int nr_zones;
5860
5861 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5862 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5863 zonerefs += nr_zones;
5864 zonerefs->zone = NULL;
5865 zonerefs->zone_idx = 0;
5866}
5867
5868/*
5869 * Build zonelists ordered by zone and nodes within zones.
5870 * This results in conserving DMA zone[s] until all Normal memory is
5871 * exhausted, but results in overflowing to remote node while memory
5872 * may still exist in local DMA zone.
5873 */
5874
5875static void build_zonelists(pg_data_t *pgdat)
5876{
5877 static int node_order[MAX_NUMNODES];
5878 int node, load, nr_nodes = 0;
5879 nodemask_t used_mask = NODE_MASK_NONE;
5880 int local_node, prev_node;
5881
5882 /* NUMA-aware ordering of nodes */
5883 local_node = pgdat->node_id;
5884 load = nr_online_nodes;
5885 prev_node = local_node;
5886
5887 memset(node_order, 0, sizeof(node_order));
5888 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5889 /*
5890 * We don't want to pressure a particular node.
5891 * So adding penalty to the first node in same
5892 * distance group to make it round-robin.
5893 */
5894 if (node_distance(local_node, node) !=
5895 node_distance(local_node, prev_node))
5896 node_load[node] = load;
5897
5898 node_order[nr_nodes++] = node;
5899 prev_node = node;
5900 load--;
5901 }
5902
5903 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5904 build_thisnode_zonelists(pgdat);
5905}
5906
5907#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5908/*
5909 * Return node id of node used for "local" allocations.
5910 * I.e., first node id of first zone in arg node's generic zonelist.
5911 * Used for initializing percpu 'numa_mem', which is used primarily
5912 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5913 */
5914int local_memory_node(int node)
5915{
5916 struct zoneref *z;
5917
5918 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5919 gfp_zone(GFP_KERNEL),
5920 NULL);
5921 return zone_to_nid(z->zone);
5922}
5923#endif
5924
5925static void setup_min_unmapped_ratio(void);
5926static void setup_min_slab_ratio(void);
5927#else /* CONFIG_NUMA */
5928
5929static void build_zonelists(pg_data_t *pgdat)
5930{
5931 int node, local_node;
5932 struct zoneref *zonerefs;
5933 int nr_zones;
5934
5935 local_node = pgdat->node_id;
5936
5937 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5938 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5939 zonerefs += nr_zones;
5940
5941 /*
5942 * Now we build the zonelist so that it contains the zones
5943 * of all the other nodes.
5944 * We don't want to pressure a particular node, so when
5945 * building the zones for node N, we make sure that the
5946 * zones coming right after the local ones are those from
5947 * node N+1 (modulo N)
5948 */
5949 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5950 if (!node_online(node))
5951 continue;
5952 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5953 zonerefs += nr_zones;
5954 }
5955 for (node = 0; node < local_node; node++) {
5956 if (!node_online(node))
5957 continue;
5958 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5959 zonerefs += nr_zones;
5960 }
5961
5962 zonerefs->zone = NULL;
5963 zonerefs->zone_idx = 0;
5964}
5965
5966#endif /* CONFIG_NUMA */
5967
5968/*
5969 * Boot pageset table. One per cpu which is going to be used for all
5970 * zones and all nodes. The parameters will be set in such a way
5971 * that an item put on a list will immediately be handed over to
5972 * the buddy list. This is safe since pageset manipulation is done
5973 * with interrupts disabled.
5974 *
5975 * The boot_pagesets must be kept even after bootup is complete for
5976 * unused processors and/or zones. They do play a role for bootstrapping
5977 * hotplugged processors.
5978 *
5979 * zoneinfo_show() and maybe other functions do
5980 * not check if the processor is online before following the pageset pointer.
5981 * Other parts of the kernel may not check if the zone is available.
5982 */
5983static void pageset_init(struct per_cpu_pageset *p);
5984/* These effectively disable the pcplists in the boot pageset completely */
5985#define BOOT_PAGESET_HIGH 0
5986#define BOOT_PAGESET_BATCH 1
5987static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5988static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5989
5990static void __build_all_zonelists(void *data)
5991{
5992 int nid;
5993 int __maybe_unused cpu;
5994 pg_data_t *self = data;
5995 static DEFINE_SPINLOCK(lock);
5996
5997 spin_lock(&lock);
5998
5999#ifdef CONFIG_NUMA
6000 memset(node_load, 0, sizeof(node_load));
6001#endif
6002
6003 /*
6004 * This node is hotadded and no memory is yet present. So just
6005 * building zonelists is fine - no need to touch other nodes.
6006 */
6007 if (self && !node_online(self->node_id)) {
6008 build_zonelists(self);
6009 } else {
6010 for_each_online_node(nid) {
6011 pg_data_t *pgdat = NODE_DATA(nid);
6012
6013 build_zonelists(pgdat);
6014 }
6015
6016#ifdef CONFIG_HAVE_MEMORYLESS_NODES
6017 /*
6018 * We now know the "local memory node" for each node--
6019 * i.e., the node of the first zone in the generic zonelist.
6020 * Set up numa_mem percpu variable for on-line cpus. During
6021 * boot, only the boot cpu should be on-line; we'll init the
6022 * secondary cpus' numa_mem as they come on-line. During
6023 * node/memory hotplug, we'll fixup all on-line cpus.
6024 */
6025 for_each_online_cpu(cpu)
6026 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6027#endif
6028 }
6029
6030 spin_unlock(&lock);
6031}
6032
6033static noinline void __init
6034build_all_zonelists_init(void)
6035{
6036 int cpu;
6037
6038 __build_all_zonelists(NULL);
6039
6040 /*
6041 * Initialize the boot_pagesets that are going to be used
6042 * for bootstrapping processors. The real pagesets for
6043 * each zone will be allocated later when the per cpu
6044 * allocator is available.
6045 *
6046 * boot_pagesets are used also for bootstrapping offline
6047 * cpus if the system is already booted because the pagesets
6048 * are needed to initialize allocators on a specific cpu too.
6049 * F.e. the percpu allocator needs the page allocator which
6050 * needs the percpu allocator in order to allocate its pagesets
6051 * (a chicken-egg dilemma).
6052 */
6053 for_each_possible_cpu(cpu)
6054 pageset_init(&per_cpu(boot_pageset, cpu));
6055
6056 mminit_verify_zonelist();
6057 cpuset_init_current_mems_allowed();
6058}
6059
6060/*
6061 * unless system_state == SYSTEM_BOOTING.
6062 *
6063 * __ref due to call of __init annotated helper build_all_zonelists_init
6064 * [protected by SYSTEM_BOOTING].
6065 */
6066void __ref build_all_zonelists(pg_data_t *pgdat)
6067{
6068 unsigned long vm_total_pages;
6069
6070 if (system_state == SYSTEM_BOOTING) {
6071 build_all_zonelists_init();
6072 } else {
6073 __build_all_zonelists(pgdat);
6074 /* cpuset refresh routine should be here */
6075 }
6076 /* Get the number of free pages beyond high watermark in all zones. */
6077 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6078 /*
6079 * Disable grouping by mobility if the number of pages in the
6080 * system is too low to allow the mechanism to work. It would be
6081 * more accurate, but expensive to check per-zone. This check is
6082 * made on memory-hotadd so a system can start with mobility
6083 * disabled and enable it later
6084 */
6085 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6086 page_group_by_mobility_disabled = 1;
6087 else
6088 page_group_by_mobility_disabled = 0;
6089
6090 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
6091 nr_online_nodes,
6092 page_group_by_mobility_disabled ? "off" : "on",
6093 vm_total_pages);
6094#ifdef CONFIG_NUMA
6095 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6096#endif
6097}
6098
6099/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6100static bool __meminit
6101overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6102{
6103 static struct memblock_region *r;
6104
6105 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6106 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6107 for_each_mem_region(r) {
6108 if (*pfn < memblock_region_memory_end_pfn(r))
6109 break;
6110 }
6111 }
6112 if (*pfn >= memblock_region_memory_base_pfn(r) &&
6113 memblock_is_mirror(r)) {
6114 *pfn = memblock_region_memory_end_pfn(r);
6115 return true;
6116 }
6117 }
6118 return false;
6119}
6120
6121/*
6122 * Initially all pages are reserved - free ones are freed
6123 * up by memblock_free_all() once the early boot process is
6124 * done. Non-atomic initialization, single-pass.
6125 *
6126 * All aligned pageblocks are initialized to the specified migratetype
6127 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6128 * zone stats (e.g., nr_isolate_pageblock) are touched.
6129 */
6130void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6131 unsigned long start_pfn, unsigned long zone_end_pfn,
6132 enum meminit_context context,
6133 struct vmem_altmap *altmap, int migratetype)
6134{
6135 unsigned long pfn, end_pfn = start_pfn + size;
6136 struct page *page;
6137
6138 if (highest_memmap_pfn < end_pfn - 1)
6139 highest_memmap_pfn = end_pfn - 1;
6140
6141#ifdef CONFIG_ZONE_DEVICE
6142 /*
6143 * Honor reservation requested by the driver for this ZONE_DEVICE
6144 * memory. We limit the total number of pages to initialize to just
6145 * those that might contain the memory mapping. We will defer the
6146 * ZONE_DEVICE page initialization until after we have released
6147 * the hotplug lock.
6148 */
6149 if (zone == ZONE_DEVICE) {
6150 if (!altmap)
6151 return;
6152
6153 if (start_pfn == altmap->base_pfn)
6154 start_pfn += altmap->reserve;
6155 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6156 }
6157#endif
6158
6159 for (pfn = start_pfn; pfn < end_pfn; ) {
6160 /*
6161 * There can be holes in boot-time mem_map[]s handed to this
6162 * function. They do not exist on hotplugged memory.
6163 */
6164 if (context == MEMINIT_EARLY) {
6165 if (overlap_memmap_init(zone, &pfn))
6166 continue;
6167 if (defer_init(nid, pfn, zone_end_pfn))
6168 break;
6169 }
6170
6171 page = pfn_to_page(pfn);
6172 __init_single_page(page, pfn, zone, nid);
6173 if (context == MEMINIT_HOTPLUG)
6174 __SetPageReserved(page);
6175
6176 /*
6177 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6178 * such that unmovable allocations won't be scattered all
6179 * over the place during system boot.
6180 */
6181 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6182 set_pageblock_migratetype(page, migratetype);
6183 cond_resched();
6184 }
6185 pfn++;
6186 }
6187}
6188
6189#ifdef CONFIG_ZONE_DEVICE
6190void __ref memmap_init_zone_device(struct zone *zone,
6191 unsigned long start_pfn,
6192 unsigned long nr_pages,
6193 struct dev_pagemap *pgmap)
6194{
6195 unsigned long pfn, end_pfn = start_pfn + nr_pages;
6196 struct pglist_data *pgdat = zone->zone_pgdat;
6197 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6198 unsigned long zone_idx = zone_idx(zone);
6199 unsigned long start = jiffies;
6200 int nid = pgdat->node_id;
6201
6202 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6203 return;
6204
6205 /*
6206 * The call to memmap_init_zone should have already taken care
6207 * of the pages reserved for the memmap, so we can just jump to
6208 * the end of that region and start processing the device pages.
6209 */
6210 if (altmap) {
6211 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6212 nr_pages = end_pfn - start_pfn;
6213 }
6214
6215 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6216 struct page *page = pfn_to_page(pfn);
6217
6218 __init_single_page(page, pfn, zone_idx, nid);
6219
6220 /*
6221 * Mark page reserved as it will need to wait for onlining
6222 * phase for it to be fully associated with a zone.
6223 *
6224 * We can use the non-atomic __set_bit operation for setting
6225 * the flag as we are still initializing the pages.
6226 */
6227 __SetPageReserved(page);
6228
6229 /*
6230 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6231 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6232 * ever freed or placed on a driver-private list.
6233 */
6234 page->pgmap = pgmap;
6235 page->zone_device_data = NULL;
6236
6237 /*
6238 * Mark the block movable so that blocks are reserved for
6239 * movable at startup. This will force kernel allocations
6240 * to reserve their blocks rather than leaking throughout
6241 * the address space during boot when many long-lived
6242 * kernel allocations are made.
6243 *
6244 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6245 * because this is done early in section_activate()
6246 */
6247 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6248 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6249 cond_resched();
6250 }
6251 }
6252
6253 pr_info("%s initialised %lu pages in %ums\n", __func__,
6254 nr_pages, jiffies_to_msecs(jiffies - start));
6255}
6256
6257#endif
6258static void __meminit zone_init_free_lists(struct zone *zone)
6259{
6260 unsigned int order, t;
6261 for_each_migratetype_order(order, t) {
6262 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6263 zone->free_area[order].nr_free = 0;
6264 }
6265}
6266
6267#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6268/*
6269 * Only struct pages that correspond to ranges defined by memblock.memory
6270 * are zeroed and initialized by going through __init_single_page() during
6271 * memmap_init_zone().
6272 *
6273 * But, there could be struct pages that correspond to holes in
6274 * memblock.memory. This can happen because of the following reasons:
6275 * - physical memory bank size is not necessarily the exact multiple of the
6276 * arbitrary section size
6277 * - early reserved memory may not be listed in memblock.memory
6278 * - memory layouts defined with memmap= kernel parameter may not align
6279 * nicely with memmap sections
6280 *
6281 * Explicitly initialize those struct pages so that:
6282 * - PG_Reserved is set
6283 * - zone and node links point to zone and node that span the page if the
6284 * hole is in the middle of a zone
6285 * - zone and node links point to adjacent zone/node if the hole falls on
6286 * the zone boundary; the pages in such holes will be prepended to the
6287 * zone/node above the hole except for the trailing pages in the last
6288 * section that will be appended to the zone/node below.
6289 */
6290static u64 __meminit init_unavailable_range(unsigned long spfn,
6291 unsigned long epfn,
6292 int zone, int node)
6293{
6294 unsigned long pfn;
6295 u64 pgcnt = 0;
6296
6297 for (pfn = spfn; pfn < epfn; pfn++) {
6298 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6299 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6300 + pageblock_nr_pages - 1;
6301 continue;
6302 }
6303 __init_single_page(pfn_to_page(pfn), pfn, zone, node);
6304 __SetPageReserved(pfn_to_page(pfn));
6305 pgcnt++;
6306 }
6307
6308 return pgcnt;
6309}
6310#else
6311static inline u64 init_unavailable_range(unsigned long spfn, unsigned long epfn,
6312 int zone, int node)
6313{
6314 return 0;
6315}
6316#endif
6317
6318void __meminit __weak memmap_init_zone(struct zone *zone)
6319{
6320 unsigned long zone_start_pfn = zone->zone_start_pfn;
6321 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6322 int i, nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6323 static unsigned long hole_pfn;
6324 unsigned long start_pfn, end_pfn;
6325 u64 pgcnt = 0;
6326
6327 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6328 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6329 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6330
6331 if (end_pfn > start_pfn)
6332 memmap_init_range(end_pfn - start_pfn, nid,
6333 zone_id, start_pfn, zone_end_pfn,
6334 MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6335
6336 if (hole_pfn < start_pfn)
6337 pgcnt += init_unavailable_range(hole_pfn, start_pfn,
6338 zone_id, nid);
6339 hole_pfn = end_pfn;
6340 }
6341
6342#ifdef CONFIG_SPARSEMEM
6343 /*
6344 * Initialize the hole in the range [zone_end_pfn, section_end].
6345 * If zone boundary falls in the middle of a section, this hole
6346 * will be re-initialized during the call to this function for the
6347 * higher zone.
6348 */
6349 end_pfn = round_up(zone_end_pfn, PAGES_PER_SECTION);
6350 if (hole_pfn < end_pfn)
6351 pgcnt += init_unavailable_range(hole_pfn, end_pfn,
6352 zone_id, nid);
6353#endif
6354
6355 if (pgcnt)
6356 pr_info(" %s zone: %llu pages in unavailable ranges\n",
6357 zone->name, pgcnt);
6358}
6359
6360static int zone_batchsize(struct zone *zone)
6361{
6362#ifdef CONFIG_MMU
6363 int batch;
6364
6365 /*
6366 * The per-cpu-pages pools are set to around 1000th of the
6367 * size of the zone.
6368 */
6369 batch = zone_managed_pages(zone) / 1024;
6370 /* But no more than a meg. */
6371 if (batch * PAGE_SIZE > 1024 * 1024)
6372 batch = (1024 * 1024) / PAGE_SIZE;
6373 batch /= 4; /* We effectively *= 4 below */
6374 if (batch < 1)
6375 batch = 1;
6376
6377 /*
6378 * Clamp the batch to a 2^n - 1 value. Having a power
6379 * of 2 value was found to be more likely to have
6380 * suboptimal cache aliasing properties in some cases.
6381 *
6382 * For example if 2 tasks are alternately allocating
6383 * batches of pages, one task can end up with a lot
6384 * of pages of one half of the possible page colors
6385 * and the other with pages of the other colors.
6386 */
6387 batch = rounddown_pow_of_two(batch + batch/2) - 1;
6388
6389 return batch;
6390
6391#else
6392 /* The deferral and batching of frees should be suppressed under NOMMU
6393 * conditions.
6394 *
6395 * The problem is that NOMMU needs to be able to allocate large chunks
6396 * of contiguous memory as there's no hardware page translation to
6397 * assemble apparent contiguous memory from discontiguous pages.
6398 *
6399 * Queueing large contiguous runs of pages for batching, however,
6400 * causes the pages to actually be freed in smaller chunks. As there
6401 * can be a significant delay between the individual batches being
6402 * recycled, this leads to the once large chunks of space being
6403 * fragmented and becoming unavailable for high-order allocations.
6404 */
6405 return 0;
6406#endif
6407}
6408
6409/*
6410 * pcp->high and pcp->batch values are related and generally batch is lower
6411 * than high. They are also related to pcp->count such that count is lower
6412 * than high, and as soon as it reaches high, the pcplist is flushed.
6413 *
6414 * However, guaranteeing these relations at all times would require e.g. write
6415 * barriers here but also careful usage of read barriers at the read side, and
6416 * thus be prone to error and bad for performance. Thus the update only prevents
6417 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6418 * can cope with those fields changing asynchronously, and fully trust only the
6419 * pcp->count field on the local CPU with interrupts disabled.
6420 *
6421 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6422 * outside of boot time (or some other assurance that no concurrent updaters
6423 * exist).
6424 */
6425static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6426 unsigned long batch)
6427{
6428 WRITE_ONCE(pcp->batch, batch);
6429 WRITE_ONCE(pcp->high, high);
6430}
6431
6432static void pageset_init(struct per_cpu_pageset *p)
6433{
6434 struct per_cpu_pages *pcp;
6435 int migratetype;
6436
6437 memset(p, 0, sizeof(*p));
6438
6439 pcp = &p->pcp;
6440 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6441 INIT_LIST_HEAD(&pcp->lists[migratetype]);
6442
6443 /*
6444 * Set batch and high values safe for a boot pageset. A true percpu
6445 * pageset's initialization will update them subsequently. Here we don't
6446 * need to be as careful as pageset_update() as nobody can access the
6447 * pageset yet.
6448 */
6449 pcp->high = BOOT_PAGESET_HIGH;
6450 pcp->batch = BOOT_PAGESET_BATCH;
6451}
6452
6453static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
6454 unsigned long batch)
6455{
6456 struct per_cpu_pageset *p;
6457 int cpu;
6458
6459 for_each_possible_cpu(cpu) {
6460 p = per_cpu_ptr(zone->pageset, cpu);
6461 pageset_update(&p->pcp, high, batch);
6462 }
6463}
6464
6465/*
6466 * Calculate and set new high and batch values for all per-cpu pagesets of a
6467 * zone, based on the zone's size and the percpu_pagelist_fraction sysctl.
6468 */
6469static void zone_set_pageset_high_and_batch(struct zone *zone)
6470{
6471 unsigned long new_high, new_batch;
6472
6473 if (percpu_pagelist_fraction) {
6474 new_high = zone_managed_pages(zone) / percpu_pagelist_fraction;
6475 new_batch = max(1UL, new_high / 4);
6476 if ((new_high / 4) > (PAGE_SHIFT * 8))
6477 new_batch = PAGE_SHIFT * 8;
6478 } else {
6479 new_batch = zone_batchsize(zone);
6480 new_high = 6 * new_batch;
6481 new_batch = max(1UL, 1 * new_batch);
6482 }
6483
6484 if (zone->pageset_high == new_high &&
6485 zone->pageset_batch == new_batch)
6486 return;
6487
6488 zone->pageset_high = new_high;
6489 zone->pageset_batch = new_batch;
6490
6491 __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
6492}
6493
6494void __meminit setup_zone_pageset(struct zone *zone)
6495{
6496 struct per_cpu_pageset *p;
6497 int cpu;
6498
6499 zone->pageset = alloc_percpu(struct per_cpu_pageset);
6500 for_each_possible_cpu(cpu) {
6501 p = per_cpu_ptr(zone->pageset, cpu);
6502 pageset_init(p);
6503 }
6504
6505 zone_set_pageset_high_and_batch(zone);
6506}
6507
6508/*
6509 * Allocate per cpu pagesets and initialize them.
6510 * Before this call only boot pagesets were available.
6511 */
6512void __init setup_per_cpu_pageset(void)
6513{
6514 struct pglist_data *pgdat;
6515 struct zone *zone;
6516 int __maybe_unused cpu;
6517
6518 for_each_populated_zone(zone)
6519 setup_zone_pageset(zone);
6520
6521#ifdef CONFIG_NUMA
6522 /*
6523 * Unpopulated zones continue using the boot pagesets.
6524 * The numa stats for these pagesets need to be reset.
6525 * Otherwise, they will end up skewing the stats of
6526 * the nodes these zones are associated with.
6527 */
6528 for_each_possible_cpu(cpu) {
6529 struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu);
6530 memset(pcp->vm_numa_stat_diff, 0,
6531 sizeof(pcp->vm_numa_stat_diff));
6532 }
6533#endif
6534
6535 for_each_online_pgdat(pgdat)
6536 pgdat->per_cpu_nodestats =
6537 alloc_percpu(struct per_cpu_nodestat);
6538}
6539
6540static __meminit void zone_pcp_init(struct zone *zone)
6541{
6542 /*
6543 * per cpu subsystem is not up at this point. The following code
6544 * relies on the ability of the linker to provide the
6545 * offset of a (static) per cpu variable into the per cpu area.
6546 */
6547 zone->pageset = &boot_pageset;
6548 zone->pageset_high = BOOT_PAGESET_HIGH;
6549 zone->pageset_batch = BOOT_PAGESET_BATCH;
6550
6551 if (populated_zone(zone))
6552 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
6553 zone->name, zone->present_pages,
6554 zone_batchsize(zone));
6555}
6556
6557void __meminit init_currently_empty_zone(struct zone *zone,
6558 unsigned long zone_start_pfn,
6559 unsigned long size)
6560{
6561 struct pglist_data *pgdat = zone->zone_pgdat;
6562 int zone_idx = zone_idx(zone) + 1;
6563
6564 if (zone_idx > pgdat->nr_zones)
6565 pgdat->nr_zones = zone_idx;
6566
6567 zone->zone_start_pfn = zone_start_pfn;
6568
6569 mminit_dprintk(MMINIT_TRACE, "memmap_init",
6570 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6571 pgdat->node_id,
6572 (unsigned long)zone_idx(zone),
6573 zone_start_pfn, (zone_start_pfn + size));
6574
6575 zone_init_free_lists(zone);
6576 zone->initialized = 1;
6577}
6578
6579/**
6580 * get_pfn_range_for_nid - Return the start and end page frames for a node
6581 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6582 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6583 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6584 *
6585 * It returns the start and end page frame of a node based on information
6586 * provided by memblock_set_node(). If called for a node
6587 * with no available memory, a warning is printed and the start and end
6588 * PFNs will be 0.
6589 */
6590void __init get_pfn_range_for_nid(unsigned int nid,
6591 unsigned long *start_pfn, unsigned long *end_pfn)
6592{
6593 unsigned long this_start_pfn, this_end_pfn;
6594 int i;
6595
6596 *start_pfn = -1UL;
6597 *end_pfn = 0;
6598
6599 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6600 *start_pfn = min(*start_pfn, this_start_pfn);
6601 *end_pfn = max(*end_pfn, this_end_pfn);
6602 }
6603
6604 if (*start_pfn == -1UL)
6605 *start_pfn = 0;
6606}
6607
6608/*
6609 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6610 * assumption is made that zones within a node are ordered in monotonic
6611 * increasing memory addresses so that the "highest" populated zone is used
6612 */
6613static void __init find_usable_zone_for_movable(void)
6614{
6615 int zone_index;
6616 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6617 if (zone_index == ZONE_MOVABLE)
6618 continue;
6619
6620 if (arch_zone_highest_possible_pfn[zone_index] >
6621 arch_zone_lowest_possible_pfn[zone_index])
6622 break;
6623 }
6624
6625 VM_BUG_ON(zone_index == -1);
6626 movable_zone = zone_index;
6627}
6628
6629/*
6630 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6631 * because it is sized independent of architecture. Unlike the other zones,
6632 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6633 * in each node depending on the size of each node and how evenly kernelcore
6634 * is distributed. This helper function adjusts the zone ranges
6635 * provided by the architecture for a given node by using the end of the
6636 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6637 * zones within a node are in order of monotonic increases memory addresses
6638 */
6639static void __init adjust_zone_range_for_zone_movable(int nid,
6640 unsigned long zone_type,
6641 unsigned long node_start_pfn,
6642 unsigned long node_end_pfn,
6643 unsigned long *zone_start_pfn,
6644 unsigned long *zone_end_pfn)
6645{
6646 /* Only adjust if ZONE_MOVABLE is on this node */
6647 if (zone_movable_pfn[nid]) {
6648 /* Size ZONE_MOVABLE */
6649 if (zone_type == ZONE_MOVABLE) {
6650 *zone_start_pfn = zone_movable_pfn[nid];
6651 *zone_end_pfn = min(node_end_pfn,
6652 arch_zone_highest_possible_pfn[movable_zone]);
6653
6654 /* Adjust for ZONE_MOVABLE starting within this range */
6655 } else if (!mirrored_kernelcore &&
6656 *zone_start_pfn < zone_movable_pfn[nid] &&
6657 *zone_end_pfn > zone_movable_pfn[nid]) {
6658 *zone_end_pfn = zone_movable_pfn[nid];
6659
6660 /* Check if this whole range is within ZONE_MOVABLE */
6661 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6662 *zone_start_pfn = *zone_end_pfn;
6663 }
6664}
6665
6666/*
6667 * Return the number of pages a zone spans in a node, including holes
6668 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6669 */
6670static unsigned long __init zone_spanned_pages_in_node(int nid,
6671 unsigned long zone_type,
6672 unsigned long node_start_pfn,
6673 unsigned long node_end_pfn,
6674 unsigned long *zone_start_pfn,
6675 unsigned long *zone_end_pfn)
6676{
6677 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6678 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6679 /* When hotadd a new node from cpu_up(), the node should be empty */
6680 if (!node_start_pfn && !node_end_pfn)
6681 return 0;
6682
6683 /* Get the start and end of the zone */
6684 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6685 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6686 adjust_zone_range_for_zone_movable(nid, zone_type,
6687 node_start_pfn, node_end_pfn,
6688 zone_start_pfn, zone_end_pfn);
6689
6690 /* Check that this node has pages within the zone's required range */
6691 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6692 return 0;
6693
6694 /* Move the zone boundaries inside the node if necessary */
6695 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6696 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6697
6698 /* Return the spanned pages */
6699 return *zone_end_pfn - *zone_start_pfn;
6700}
6701
6702/*
6703 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6704 * then all holes in the requested range will be accounted for.
6705 */
6706unsigned long __init __absent_pages_in_range(int nid,
6707 unsigned long range_start_pfn,
6708 unsigned long range_end_pfn)
6709{
6710 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6711 unsigned long start_pfn, end_pfn;
6712 int i;
6713
6714 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6715 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6716 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6717 nr_absent -= end_pfn - start_pfn;
6718 }
6719 return nr_absent;
6720}
6721
6722/**
6723 * absent_pages_in_range - Return number of page frames in holes within a range
6724 * @start_pfn: The start PFN to start searching for holes
6725 * @end_pfn: The end PFN to stop searching for holes
6726 *
6727 * Return: the number of pages frames in memory holes within a range.
6728 */
6729unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6730 unsigned long end_pfn)
6731{
6732 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6733}
6734
6735/* Return the number of page frames in holes in a zone on a node */
6736static unsigned long __init zone_absent_pages_in_node(int nid,
6737 unsigned long zone_type,
6738 unsigned long node_start_pfn,
6739 unsigned long node_end_pfn)
6740{
6741 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6742 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6743 unsigned long zone_start_pfn, zone_end_pfn;
6744 unsigned long nr_absent;
6745
6746 /* When hotadd a new node from cpu_up(), the node should be empty */
6747 if (!node_start_pfn && !node_end_pfn)
6748 return 0;
6749
6750 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6751 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6752
6753 adjust_zone_range_for_zone_movable(nid, zone_type,
6754 node_start_pfn, node_end_pfn,
6755 &zone_start_pfn, &zone_end_pfn);
6756 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6757
6758 /*
6759 * ZONE_MOVABLE handling.
6760 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6761 * and vice versa.
6762 */
6763 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6764 unsigned long start_pfn, end_pfn;
6765 struct memblock_region *r;
6766
6767 for_each_mem_region(r) {
6768 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6769 zone_start_pfn, zone_end_pfn);
6770 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6771 zone_start_pfn, zone_end_pfn);
6772
6773 if (zone_type == ZONE_MOVABLE &&
6774 memblock_is_mirror(r))
6775 nr_absent += end_pfn - start_pfn;
6776
6777 if (zone_type == ZONE_NORMAL &&
6778 !memblock_is_mirror(r))
6779 nr_absent += end_pfn - start_pfn;
6780 }
6781 }
6782
6783 return nr_absent;
6784}
6785
6786static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6787 unsigned long node_start_pfn,
6788 unsigned long node_end_pfn)
6789{
6790 unsigned long realtotalpages = 0, totalpages = 0;
6791 enum zone_type i;
6792
6793 for (i = 0; i < MAX_NR_ZONES; i++) {
6794 struct zone *zone = pgdat->node_zones + i;
6795 unsigned long zone_start_pfn, zone_end_pfn;
6796 unsigned long spanned, absent;
6797 unsigned long size, real_size;
6798
6799 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
6800 node_start_pfn,
6801 node_end_pfn,
6802 &zone_start_pfn,
6803 &zone_end_pfn);
6804 absent = zone_absent_pages_in_node(pgdat->node_id, i,
6805 node_start_pfn,
6806 node_end_pfn);
6807
6808 size = spanned;
6809 real_size = size - absent;
6810
6811 if (size)
6812 zone->zone_start_pfn = zone_start_pfn;
6813 else
6814 zone->zone_start_pfn = 0;
6815 zone->spanned_pages = size;
6816 zone->present_pages = real_size;
6817
6818 totalpages += size;
6819 realtotalpages += real_size;
6820 }
6821
6822 pgdat->node_spanned_pages = totalpages;
6823 pgdat->node_present_pages = realtotalpages;
6824 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6825 realtotalpages);
6826}
6827
6828#ifndef CONFIG_SPARSEMEM
6829/*
6830 * Calculate the size of the zone->blockflags rounded to an unsigned long
6831 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6832 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6833 * round what is now in bits to nearest long in bits, then return it in
6834 * bytes.
6835 */
6836static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6837{
6838 unsigned long usemapsize;
6839
6840 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6841 usemapsize = roundup(zonesize, pageblock_nr_pages);
6842 usemapsize = usemapsize >> pageblock_order;
6843 usemapsize *= NR_PAGEBLOCK_BITS;
6844 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6845
6846 return usemapsize / 8;
6847}
6848
6849static void __ref setup_usemap(struct zone *zone)
6850{
6851 unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
6852 zone->spanned_pages);
6853 zone->pageblock_flags = NULL;
6854 if (usemapsize) {
6855 zone->pageblock_flags =
6856 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6857 zone_to_nid(zone));
6858 if (!zone->pageblock_flags)
6859 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6860 usemapsize, zone->name, zone_to_nid(zone));
6861 }
6862}
6863#else
6864static inline void setup_usemap(struct zone *zone) {}
6865#endif /* CONFIG_SPARSEMEM */
6866
6867#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6868
6869/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6870void __init set_pageblock_order(void)
6871{
6872 unsigned int order;
6873
6874 /* Check that pageblock_nr_pages has not already been setup */
6875 if (pageblock_order)
6876 return;
6877
6878 if (HPAGE_SHIFT > PAGE_SHIFT)
6879 order = HUGETLB_PAGE_ORDER;
6880 else
6881 order = MAX_ORDER - 1;
6882
6883 /*
6884 * Assume the largest contiguous order of interest is a huge page.
6885 * This value may be variable depending on boot parameters on IA64 and
6886 * powerpc.
6887 */
6888 pageblock_order = order;
6889}
6890#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6891
6892/*
6893 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6894 * is unused as pageblock_order is set at compile-time. See
6895 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6896 * the kernel config
6897 */
6898void __init set_pageblock_order(void)
6899{
6900}
6901
6902#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6903
6904static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6905 unsigned long present_pages)
6906{
6907 unsigned long pages = spanned_pages;
6908
6909 /*
6910 * Provide a more accurate estimation if there are holes within
6911 * the zone and SPARSEMEM is in use. If there are holes within the
6912 * zone, each populated memory region may cost us one or two extra
6913 * memmap pages due to alignment because memmap pages for each
6914 * populated regions may not be naturally aligned on page boundary.
6915 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6916 */
6917 if (spanned_pages > present_pages + (present_pages >> 4) &&
6918 IS_ENABLED(CONFIG_SPARSEMEM))
6919 pages = present_pages;
6920
6921 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6922}
6923
6924#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6925static void pgdat_init_split_queue(struct pglist_data *pgdat)
6926{
6927 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
6928
6929 spin_lock_init(&ds_queue->split_queue_lock);
6930 INIT_LIST_HEAD(&ds_queue->split_queue);
6931 ds_queue->split_queue_len = 0;
6932}
6933#else
6934static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6935#endif
6936
6937#ifdef CONFIG_COMPACTION
6938static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6939{
6940 init_waitqueue_head(&pgdat->kcompactd_wait);
6941}
6942#else
6943static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6944#endif
6945
6946static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6947{
6948 pgdat_resize_init(pgdat);
6949
6950 pgdat_init_split_queue(pgdat);
6951 pgdat_init_kcompactd(pgdat);
6952
6953 init_waitqueue_head(&pgdat->kswapd_wait);
6954 init_waitqueue_head(&pgdat->pfmemalloc_wait);
6955
6956 pgdat_page_ext_init(pgdat);
6957 lruvec_init(&pgdat->__lruvec);
6958}
6959
6960static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6961 unsigned long remaining_pages)
6962{
6963 atomic_long_set(&zone->managed_pages, remaining_pages);
6964 zone_set_nid(zone, nid);
6965 zone->name = zone_names[idx];
6966 zone->zone_pgdat = NODE_DATA(nid);
6967 spin_lock_init(&zone->lock);
6968 zone_seqlock_init(zone);
6969 zone_pcp_init(zone);
6970}
6971
6972/*
6973 * Set up the zone data structures
6974 * - init pgdat internals
6975 * - init all zones belonging to this node
6976 *
6977 * NOTE: this function is only called during memory hotplug
6978 */
6979#ifdef CONFIG_MEMORY_HOTPLUG
6980void __ref free_area_init_core_hotplug(int nid)
6981{
6982 enum zone_type z;
6983 pg_data_t *pgdat = NODE_DATA(nid);
6984
6985 pgdat_init_internals(pgdat);
6986 for (z = 0; z < MAX_NR_ZONES; z++)
6987 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6988}
6989#endif
6990
6991/*
6992 * Set up the zone data structures:
6993 * - mark all pages reserved
6994 * - mark all memory queues empty
6995 * - clear the memory bitmaps
6996 *
6997 * NOTE: pgdat should get zeroed by caller.
6998 * NOTE: this function is only called during early init.
6999 */
7000static void __init free_area_init_core(struct pglist_data *pgdat)
7001{
7002 enum zone_type j;
7003 int nid = pgdat->node_id;
7004
7005 pgdat_init_internals(pgdat);
7006 pgdat->per_cpu_nodestats = &boot_nodestats;
7007
7008 for (j = 0; j < MAX_NR_ZONES; j++) {
7009 struct zone *zone = pgdat->node_zones + j;
7010 unsigned long size, freesize, memmap_pages;
7011
7012 size = zone->spanned_pages;
7013 freesize = zone->present_pages;
7014
7015 /*
7016 * Adjust freesize so that it accounts for how much memory
7017 * is used by this zone for memmap. This affects the watermark
7018 * and per-cpu initialisations
7019 */
7020 memmap_pages = calc_memmap_size(size, freesize);
7021 if (!is_highmem_idx(j)) {
7022 if (freesize >= memmap_pages) {
7023 freesize -= memmap_pages;
7024 if (memmap_pages)
7025 printk(KERN_DEBUG
7026 " %s zone: %lu pages used for memmap\n",
7027 zone_names[j], memmap_pages);
7028 } else
7029 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
7030 zone_names[j], memmap_pages, freesize);
7031 }
7032
7033 /* Account for reserved pages */
7034 if (j == 0 && freesize > dma_reserve) {
7035 freesize -= dma_reserve;
7036 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
7037 zone_names[0], dma_reserve);
7038 }
7039
7040 if (!is_highmem_idx(j))
7041 nr_kernel_pages += freesize;
7042 /* Charge for highmem memmap if there are enough kernel pages */
7043 else if (nr_kernel_pages > memmap_pages * 2)
7044 nr_kernel_pages -= memmap_pages;
7045 nr_all_pages += freesize;
7046
7047 /*
7048 * Set an approximate value for lowmem here, it will be adjusted
7049 * when the bootmem allocator frees pages into the buddy system.
7050 * And all highmem pages will be managed by the buddy system.
7051 */
7052 zone_init_internals(zone, j, nid, freesize);
7053
7054 if (!size)
7055 continue;
7056
7057 set_pageblock_order();
7058 setup_usemap(zone);
7059 init_currently_empty_zone(zone, zone->zone_start_pfn, size);
7060 memmap_init_zone(zone);
7061 }
7062}
7063
7064#ifdef CONFIG_FLAT_NODE_MEM_MAP
7065static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
7066{
7067 unsigned long __maybe_unused start = 0;
7068 unsigned long __maybe_unused offset = 0;
7069
7070 /* Skip empty nodes */
7071 if (!pgdat->node_spanned_pages)
7072 return;
7073
7074 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7075 offset = pgdat->node_start_pfn - start;
7076 /* ia64 gets its own node_mem_map, before this, without bootmem */
7077 if (!pgdat->node_mem_map) {
7078 unsigned long size, end;
7079 struct page *map;
7080
7081 /*
7082 * The zone's endpoints aren't required to be MAX_ORDER
7083 * aligned but the node_mem_map endpoints must be in order
7084 * for the buddy allocator to function correctly.
7085 */
7086 end = pgdat_end_pfn(pgdat);
7087 end = ALIGN(end, MAX_ORDER_NR_PAGES);
7088 size = (end - start) * sizeof(struct page);
7089 map = memblock_alloc_node(size, SMP_CACHE_BYTES,
7090 pgdat->node_id);
7091 if (!map)
7092 panic("Failed to allocate %ld bytes for node %d memory map\n",
7093 size, pgdat->node_id);
7094 pgdat->node_mem_map = map + offset;
7095 }
7096 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7097 __func__, pgdat->node_id, (unsigned long)pgdat,
7098 (unsigned long)pgdat->node_mem_map);
7099#ifndef CONFIG_NEED_MULTIPLE_NODES
7100 /*
7101 * With no DISCONTIG, the global mem_map is just set as node 0's
7102 */
7103 if (pgdat == NODE_DATA(0)) {
7104 mem_map = NODE_DATA(0)->node_mem_map;
7105 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7106 mem_map -= offset;
7107 }
7108#endif
7109}
7110#else
7111static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
7112#endif /* CONFIG_FLAT_NODE_MEM_MAP */
7113
7114#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7115static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7116{
7117 pgdat->first_deferred_pfn = ULONG_MAX;
7118}
7119#else
7120static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7121#endif
7122
7123static void __init free_area_init_node(int nid)
7124{
7125 pg_data_t *pgdat = NODE_DATA(nid);
7126 unsigned long start_pfn = 0;
7127 unsigned long end_pfn = 0;
7128
7129 /* pg_data_t should be reset to zero when it's allocated */
7130 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7131
7132 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7133
7134 pgdat->node_id = nid;
7135 pgdat->node_start_pfn = start_pfn;
7136 pgdat->per_cpu_nodestats = NULL;
7137
7138 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7139 (u64)start_pfn << PAGE_SHIFT,
7140 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7141 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7142
7143 alloc_node_mem_map(pgdat);
7144 pgdat_set_deferred_range(pgdat);
7145
7146 free_area_init_core(pgdat);
7147}
7148
7149void __init free_area_init_memoryless_node(int nid)
7150{
7151 free_area_init_node(nid);
7152}
7153
7154#if MAX_NUMNODES > 1
7155/*
7156 * Figure out the number of possible node ids.
7157 */
7158void __init setup_nr_node_ids(void)
7159{
7160 unsigned int highest;
7161
7162 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7163 nr_node_ids = highest + 1;
7164}
7165#endif
7166
7167/**
7168 * node_map_pfn_alignment - determine the maximum internode alignment
7169 *
7170 * This function should be called after node map is populated and sorted.
7171 * It calculates the maximum power of two alignment which can distinguish
7172 * all the nodes.
7173 *
7174 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7175 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7176 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7177 * shifted, 1GiB is enough and this function will indicate so.
7178 *
7179 * This is used to test whether pfn -> nid mapping of the chosen memory
7180 * model has fine enough granularity to avoid incorrect mapping for the
7181 * populated node map.
7182 *
7183 * Return: the determined alignment in pfn's. 0 if there is no alignment
7184 * requirement (single node).
7185 */
7186unsigned long __init node_map_pfn_alignment(void)
7187{
7188 unsigned long accl_mask = 0, last_end = 0;
7189 unsigned long start, end, mask;
7190 int last_nid = NUMA_NO_NODE;
7191 int i, nid;
7192
7193 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7194 if (!start || last_nid < 0 || last_nid == nid) {
7195 last_nid = nid;
7196 last_end = end;
7197 continue;
7198 }
7199
7200 /*
7201 * Start with a mask granular enough to pin-point to the
7202 * start pfn and tick off bits one-by-one until it becomes
7203 * too coarse to separate the current node from the last.
7204 */
7205 mask = ~((1 << __ffs(start)) - 1);
7206 while (mask && last_end <= (start & (mask << 1)))
7207 mask <<= 1;
7208
7209 /* accumulate all internode masks */
7210 accl_mask |= mask;
7211 }
7212
7213 /* convert mask to number of pages */
7214 return ~accl_mask + 1;
7215}
7216
7217/**
7218 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7219 *
7220 * Return: the minimum PFN based on information provided via
7221 * memblock_set_node().
7222 */
7223unsigned long __init find_min_pfn_with_active_regions(void)
7224{
7225 return PHYS_PFN(memblock_start_of_DRAM());
7226}
7227
7228/*
7229 * early_calculate_totalpages()
7230 * Sum pages in active regions for movable zone.
7231 * Populate N_MEMORY for calculating usable_nodes.
7232 */
7233static unsigned long __init early_calculate_totalpages(void)
7234{
7235 unsigned long totalpages = 0;
7236 unsigned long start_pfn, end_pfn;
7237 int i, nid;
7238
7239 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7240 unsigned long pages = end_pfn - start_pfn;
7241
7242 totalpages += pages;
7243 if (pages)
7244 node_set_state(nid, N_MEMORY);
7245 }
7246 return totalpages;
7247}
7248
7249/*
7250 * Find the PFN the Movable zone begins in each node. Kernel memory
7251 * is spread evenly between nodes as long as the nodes have enough
7252 * memory. When they don't, some nodes will have more kernelcore than
7253 * others
7254 */
7255static void __init find_zone_movable_pfns_for_nodes(void)
7256{
7257 int i, nid;
7258 unsigned long usable_startpfn;
7259 unsigned long kernelcore_node, kernelcore_remaining;
7260 /* save the state before borrow the nodemask */
7261 nodemask_t saved_node_state = node_states[N_MEMORY];
7262 unsigned long totalpages = early_calculate_totalpages();
7263 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7264 struct memblock_region *r;
7265
7266 /* Need to find movable_zone earlier when movable_node is specified. */
7267 find_usable_zone_for_movable();
7268
7269 /*
7270 * If movable_node is specified, ignore kernelcore and movablecore
7271 * options.
7272 */
7273 if (movable_node_is_enabled()) {
7274 for_each_mem_region(r) {
7275 if (!memblock_is_hotpluggable(r))
7276 continue;
7277
7278 nid = memblock_get_region_node(r);
7279
7280 usable_startpfn = PFN_DOWN(r->base);
7281 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7282 min(usable_startpfn, zone_movable_pfn[nid]) :
7283 usable_startpfn;
7284 }
7285
7286 goto out2;
7287 }
7288
7289 /*
7290 * If kernelcore=mirror is specified, ignore movablecore option
7291 */
7292 if (mirrored_kernelcore) {
7293 bool mem_below_4gb_not_mirrored = false;
7294
7295 for_each_mem_region(r) {
7296 if (memblock_is_mirror(r))
7297 continue;
7298
7299 nid = memblock_get_region_node(r);
7300
7301 usable_startpfn = memblock_region_memory_base_pfn(r);
7302
7303 if (usable_startpfn < 0x100000) {
7304 mem_below_4gb_not_mirrored = true;
7305 continue;
7306 }
7307
7308 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7309 min(usable_startpfn, zone_movable_pfn[nid]) :
7310 usable_startpfn;
7311 }
7312
7313 if (mem_below_4gb_not_mirrored)
7314 pr_warn("This configuration results in unmirrored kernel memory.\n");
7315
7316 goto out2;
7317 }
7318
7319 /*
7320 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7321 * amount of necessary memory.
7322 */
7323 if (required_kernelcore_percent)
7324 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7325 10000UL;
7326 if (required_movablecore_percent)
7327 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7328 10000UL;
7329
7330 /*
7331 * If movablecore= was specified, calculate what size of
7332 * kernelcore that corresponds so that memory usable for
7333 * any allocation type is evenly spread. If both kernelcore
7334 * and movablecore are specified, then the value of kernelcore
7335 * will be used for required_kernelcore if it's greater than
7336 * what movablecore would have allowed.
7337 */
7338 if (required_movablecore) {
7339 unsigned long corepages;
7340
7341 /*
7342 * Round-up so that ZONE_MOVABLE is at least as large as what
7343 * was requested by the user
7344 */
7345 required_movablecore =
7346 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7347 required_movablecore = min(totalpages, required_movablecore);
7348 corepages = totalpages - required_movablecore;
7349
7350 required_kernelcore = max(required_kernelcore, corepages);
7351 }
7352
7353 /*
7354 * If kernelcore was not specified or kernelcore size is larger
7355 * than totalpages, there is no ZONE_MOVABLE.
7356 */
7357 if (!required_kernelcore || required_kernelcore >= totalpages)
7358 goto out;
7359
7360 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7361 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7362
7363restart:
7364 /* Spread kernelcore memory as evenly as possible throughout nodes */
7365 kernelcore_node = required_kernelcore / usable_nodes;
7366 for_each_node_state(nid, N_MEMORY) {
7367 unsigned long start_pfn, end_pfn;
7368
7369 /*
7370 * Recalculate kernelcore_node if the division per node
7371 * now exceeds what is necessary to satisfy the requested
7372 * amount of memory for the kernel
7373 */
7374 if (required_kernelcore < kernelcore_node)
7375 kernelcore_node = required_kernelcore / usable_nodes;
7376
7377 /*
7378 * As the map is walked, we track how much memory is usable
7379 * by the kernel using kernelcore_remaining. When it is
7380 * 0, the rest of the node is usable by ZONE_MOVABLE
7381 */
7382 kernelcore_remaining = kernelcore_node;
7383
7384 /* Go through each range of PFNs within this node */
7385 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7386 unsigned long size_pages;
7387
7388 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7389 if (start_pfn >= end_pfn)
7390 continue;
7391
7392 /* Account for what is only usable for kernelcore */
7393 if (start_pfn < usable_startpfn) {
7394 unsigned long kernel_pages;
7395 kernel_pages = min(end_pfn, usable_startpfn)
7396 - start_pfn;
7397
7398 kernelcore_remaining -= min(kernel_pages,
7399 kernelcore_remaining);
7400 required_kernelcore -= min(kernel_pages,
7401 required_kernelcore);
7402
7403 /* Continue if range is now fully accounted */
7404 if (end_pfn <= usable_startpfn) {
7405
7406 /*
7407 * Push zone_movable_pfn to the end so
7408 * that if we have to rebalance
7409 * kernelcore across nodes, we will
7410 * not double account here
7411 */
7412 zone_movable_pfn[nid] = end_pfn;
7413 continue;
7414 }
7415 start_pfn = usable_startpfn;
7416 }
7417
7418 /*
7419 * The usable PFN range for ZONE_MOVABLE is from
7420 * start_pfn->end_pfn. Calculate size_pages as the
7421 * number of pages used as kernelcore
7422 */
7423 size_pages = end_pfn - start_pfn;
7424 if (size_pages > kernelcore_remaining)
7425 size_pages = kernelcore_remaining;
7426 zone_movable_pfn[nid] = start_pfn + size_pages;
7427
7428 /*
7429 * Some kernelcore has been met, update counts and
7430 * break if the kernelcore for this node has been
7431 * satisfied
7432 */
7433 required_kernelcore -= min(required_kernelcore,
7434 size_pages);
7435 kernelcore_remaining -= size_pages;
7436 if (!kernelcore_remaining)
7437 break;
7438 }
7439 }
7440
7441 /*
7442 * If there is still required_kernelcore, we do another pass with one
7443 * less node in the count. This will push zone_movable_pfn[nid] further
7444 * along on the nodes that still have memory until kernelcore is
7445 * satisfied
7446 */
7447 usable_nodes--;
7448 if (usable_nodes && required_kernelcore > usable_nodes)
7449 goto restart;
7450
7451out2:
7452 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7453 for (nid = 0; nid < MAX_NUMNODES; nid++)
7454 zone_movable_pfn[nid] =
7455 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7456
7457out:
7458 /* restore the node_state */
7459 node_states[N_MEMORY] = saved_node_state;
7460}
7461
7462/* Any regular or high memory on that node ? */
7463static void check_for_memory(pg_data_t *pgdat, int nid)
7464{
7465 enum zone_type zone_type;
7466
7467 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7468 struct zone *zone = &pgdat->node_zones[zone_type];
7469 if (populated_zone(zone)) {
7470 if (IS_ENABLED(CONFIG_HIGHMEM))
7471 node_set_state(nid, N_HIGH_MEMORY);
7472 if (zone_type <= ZONE_NORMAL)
7473 node_set_state(nid, N_NORMAL_MEMORY);
7474 break;
7475 }
7476 }
7477}
7478
7479/*
7480 * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7481 * such cases we allow max_zone_pfn sorted in the descending order
7482 */
7483bool __weak arch_has_descending_max_zone_pfns(void)
7484{
7485 return false;
7486}
7487
7488/**
7489 * free_area_init - Initialise all pg_data_t and zone data
7490 * @max_zone_pfn: an array of max PFNs for each zone
7491 *
7492 * This will call free_area_init_node() for each active node in the system.
7493 * Using the page ranges provided by memblock_set_node(), the size of each
7494 * zone in each node and their holes is calculated. If the maximum PFN
7495 * between two adjacent zones match, it is assumed that the zone is empty.
7496 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7497 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7498 * starts where the previous one ended. For example, ZONE_DMA32 starts
7499 * at arch_max_dma_pfn.
7500 */
7501void __init free_area_init(unsigned long *max_zone_pfn)
7502{
7503 unsigned long start_pfn, end_pfn;
7504 int i, nid, zone;
7505 bool descending;
7506
7507 /* Record where the zone boundaries are */
7508 memset(arch_zone_lowest_possible_pfn, 0,
7509 sizeof(arch_zone_lowest_possible_pfn));
7510 memset(arch_zone_highest_possible_pfn, 0,
7511 sizeof(arch_zone_highest_possible_pfn));
7512
7513 start_pfn = find_min_pfn_with_active_regions();
7514 descending = arch_has_descending_max_zone_pfns();
7515
7516 for (i = 0; i < MAX_NR_ZONES; i++) {
7517 if (descending)
7518 zone = MAX_NR_ZONES - i - 1;
7519 else
7520 zone = i;
7521
7522 if (zone == ZONE_MOVABLE)
7523 continue;
7524
7525 end_pfn = max(max_zone_pfn[zone], start_pfn);
7526 arch_zone_lowest_possible_pfn[zone] = start_pfn;
7527 arch_zone_highest_possible_pfn[zone] = end_pfn;
7528
7529 start_pfn = end_pfn;
7530 }
7531
7532 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7533 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7534 find_zone_movable_pfns_for_nodes();
7535
7536 /* Print out the zone ranges */
7537 pr_info("Zone ranges:\n");
7538 for (i = 0; i < MAX_NR_ZONES; i++) {
7539 if (i == ZONE_MOVABLE)
7540 continue;
7541 pr_info(" %-8s ", zone_names[i]);
7542 if (arch_zone_lowest_possible_pfn[i] ==
7543 arch_zone_highest_possible_pfn[i])
7544 pr_cont("empty\n");
7545 else
7546 pr_cont("[mem %#018Lx-%#018Lx]\n",
7547 (u64)arch_zone_lowest_possible_pfn[i]
7548 << PAGE_SHIFT,
7549 ((u64)arch_zone_highest_possible_pfn[i]
7550 << PAGE_SHIFT) - 1);
7551 }
7552
7553 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
7554 pr_info("Movable zone start for each node\n");
7555 for (i = 0; i < MAX_NUMNODES; i++) {
7556 if (zone_movable_pfn[i])
7557 pr_info(" Node %d: %#018Lx\n", i,
7558 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7559 }
7560
7561 /*
7562 * Print out the early node map, and initialize the
7563 * subsection-map relative to active online memory ranges to
7564 * enable future "sub-section" extensions of the memory map.
7565 */
7566 pr_info("Early memory node ranges\n");
7567 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7568 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7569 (u64)start_pfn << PAGE_SHIFT,
7570 ((u64)end_pfn << PAGE_SHIFT) - 1);
7571 subsection_map_init(start_pfn, end_pfn - start_pfn);
7572 }
7573
7574 /* Initialise every node */
7575 mminit_verify_pageflags_layout();
7576 setup_nr_node_ids();
7577 for_each_online_node(nid) {
7578 pg_data_t *pgdat = NODE_DATA(nid);
7579 free_area_init_node(nid);
7580
7581 /* Any memory on that node */
7582 if (pgdat->node_present_pages)
7583 node_set_state(nid, N_MEMORY);
7584 check_for_memory(pgdat, nid);
7585 }
7586}
7587
7588static int __init cmdline_parse_core(char *p, unsigned long *core,
7589 unsigned long *percent)
7590{
7591 unsigned long long coremem;
7592 char *endptr;
7593
7594 if (!p)
7595 return -EINVAL;
7596
7597 /* Value may be a percentage of total memory, otherwise bytes */
7598 coremem = simple_strtoull(p, &endptr, 0);
7599 if (*endptr == '%') {
7600 /* Paranoid check for percent values greater than 100 */
7601 WARN_ON(coremem > 100);
7602
7603 *percent = coremem;
7604 } else {
7605 coremem = memparse(p, &p);
7606 /* Paranoid check that UL is enough for the coremem value */
7607 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7608
7609 *core = coremem >> PAGE_SHIFT;
7610 *percent = 0UL;
7611 }
7612 return 0;
7613}
7614
7615/*
7616 * kernelcore=size sets the amount of memory for use for allocations that
7617 * cannot be reclaimed or migrated.
7618 */
7619static int __init cmdline_parse_kernelcore(char *p)
7620{
7621 /* parse kernelcore=mirror */
7622 if (parse_option_str(p, "mirror")) {
7623 mirrored_kernelcore = true;
7624 return 0;
7625 }
7626
7627 return cmdline_parse_core(p, &required_kernelcore,
7628 &required_kernelcore_percent);
7629}
7630
7631/*
7632 * movablecore=size sets the amount of memory for use for allocations that
7633 * can be reclaimed or migrated.
7634 */
7635static int __init cmdline_parse_movablecore(char *p)
7636{
7637 return cmdline_parse_core(p, &required_movablecore,
7638 &required_movablecore_percent);
7639}
7640
7641early_param("kernelcore", cmdline_parse_kernelcore);
7642early_param("movablecore", cmdline_parse_movablecore);
7643
7644void adjust_managed_page_count(struct page *page, long count)
7645{
7646 atomic_long_add(count, &page_zone(page)->managed_pages);
7647 totalram_pages_add(count);
7648#ifdef CONFIG_HIGHMEM
7649 if (PageHighMem(page))
7650 totalhigh_pages_add(count);
7651#endif
7652}
7653EXPORT_SYMBOL(adjust_managed_page_count);
7654
7655unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7656{
7657 void *pos;
7658 unsigned long pages = 0;
7659
7660 start = (void *)PAGE_ALIGN((unsigned long)start);
7661 end = (void *)((unsigned long)end & PAGE_MASK);
7662 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7663 struct page *page = virt_to_page(pos);
7664 void *direct_map_addr;
7665
7666 /*
7667 * 'direct_map_addr' might be different from 'pos'
7668 * because some architectures' virt_to_page()
7669 * work with aliases. Getting the direct map
7670 * address ensures that we get a _writeable_
7671 * alias for the memset().
7672 */
7673 direct_map_addr = page_address(page);
7674 /*
7675 * Perform a kasan-unchecked memset() since this memory
7676 * has not been initialized.
7677 */
7678 direct_map_addr = kasan_reset_tag(direct_map_addr);
7679 if ((unsigned int)poison <= 0xFF)
7680 memset(direct_map_addr, poison, PAGE_SIZE);
7681
7682 free_reserved_page(page);
7683 }
7684
7685 if (pages && s)
7686 pr_info("Freeing %s memory: %ldK\n",
7687 s, pages << (PAGE_SHIFT - 10));
7688
7689 return pages;
7690}
7691
7692void __init mem_init_print_info(const char *str)
7693{
7694 unsigned long physpages, codesize, datasize, rosize, bss_size;
7695 unsigned long init_code_size, init_data_size;
7696
7697 physpages = get_num_physpages();
7698 codesize = _etext - _stext;
7699 datasize = _edata - _sdata;
7700 rosize = __end_rodata - __start_rodata;
7701 bss_size = __bss_stop - __bss_start;
7702 init_data_size = __init_end - __init_begin;
7703 init_code_size = _einittext - _sinittext;
7704
7705 /*
7706 * Detect special cases and adjust section sizes accordingly:
7707 * 1) .init.* may be embedded into .data sections
7708 * 2) .init.text.* may be out of [__init_begin, __init_end],
7709 * please refer to arch/tile/kernel/vmlinux.lds.S.
7710 * 3) .rodata.* may be embedded into .text or .data sections.
7711 */
7712#define adj_init_size(start, end, size, pos, adj) \
7713 do { \
7714 if (start <= pos && pos < end && size > adj) \
7715 size -= adj; \
7716 } while (0)
7717
7718 adj_init_size(__init_begin, __init_end, init_data_size,
7719 _sinittext, init_code_size);
7720 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7721 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7722 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7723 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7724
7725#undef adj_init_size
7726
7727 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7728#ifdef CONFIG_HIGHMEM
7729 ", %luK highmem"
7730#endif
7731 "%s%s)\n",
7732 nr_free_pages() << (PAGE_SHIFT - 10),
7733 physpages << (PAGE_SHIFT - 10),
7734 codesize >> 10, datasize >> 10, rosize >> 10,
7735 (init_data_size + init_code_size) >> 10, bss_size >> 10,
7736 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7737 totalcma_pages << (PAGE_SHIFT - 10),
7738#ifdef CONFIG_HIGHMEM
7739 totalhigh_pages() << (PAGE_SHIFT - 10),
7740#endif
7741 str ? ", " : "", str ? str : "");
7742}
7743
7744/**
7745 * set_dma_reserve - set the specified number of pages reserved in the first zone
7746 * @new_dma_reserve: The number of pages to mark reserved
7747 *
7748 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7749 * In the DMA zone, a significant percentage may be consumed by kernel image
7750 * and other unfreeable allocations which can skew the watermarks badly. This
7751 * function may optionally be used to account for unfreeable pages in the
7752 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7753 * smaller per-cpu batchsize.
7754 */
7755void __init set_dma_reserve(unsigned long new_dma_reserve)
7756{
7757 dma_reserve = new_dma_reserve;
7758}
7759
7760static int page_alloc_cpu_dead(unsigned int cpu)
7761{
7762
7763 lru_add_drain_cpu(cpu);
7764 drain_pages(cpu);
7765
7766 /*
7767 * Spill the event counters of the dead processor
7768 * into the current processors event counters.
7769 * This artificially elevates the count of the current
7770 * processor.
7771 */
7772 vm_events_fold_cpu(cpu);
7773
7774 /*
7775 * Zero the differential counters of the dead processor
7776 * so that the vm statistics are consistent.
7777 *
7778 * This is only okay since the processor is dead and cannot
7779 * race with what we are doing.
7780 */
7781 cpu_vm_stats_fold(cpu);
7782 return 0;
7783}
7784
7785#ifdef CONFIG_NUMA
7786int hashdist = HASHDIST_DEFAULT;
7787
7788static int __init set_hashdist(char *str)
7789{
7790 if (!str)
7791 return 0;
7792 hashdist = simple_strtoul(str, &str, 0);
7793 return 1;
7794}
7795__setup("hashdist=", set_hashdist);
7796#endif
7797
7798void __init page_alloc_init(void)
7799{
7800 int ret;
7801
7802#ifdef CONFIG_NUMA
7803 if (num_node_state(N_MEMORY) == 1)
7804 hashdist = 0;
7805#endif
7806
7807 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7808 "mm/page_alloc:dead", NULL,
7809 page_alloc_cpu_dead);
7810 WARN_ON(ret < 0);
7811}
7812
7813/*
7814 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7815 * or min_free_kbytes changes.
7816 */
7817static void calculate_totalreserve_pages(void)
7818{
7819 struct pglist_data *pgdat;
7820 unsigned long reserve_pages = 0;
7821 enum zone_type i, j;
7822
7823 for_each_online_pgdat(pgdat) {
7824
7825 pgdat->totalreserve_pages = 0;
7826
7827 for (i = 0; i < MAX_NR_ZONES; i++) {
7828 struct zone *zone = pgdat->node_zones + i;
7829 long max = 0;
7830 unsigned long managed_pages = zone_managed_pages(zone);
7831
7832 /* Find valid and maximum lowmem_reserve in the zone */
7833 for (j = i; j < MAX_NR_ZONES; j++) {
7834 if (zone->lowmem_reserve[j] > max)
7835 max = zone->lowmem_reserve[j];
7836 }
7837
7838 /* we treat the high watermark as reserved pages. */
7839 max += high_wmark_pages(zone);
7840
7841 if (max > managed_pages)
7842 max = managed_pages;
7843
7844 pgdat->totalreserve_pages += max;
7845
7846 reserve_pages += max;
7847 }
7848 }
7849 totalreserve_pages = reserve_pages;
7850}
7851
7852/*
7853 * setup_per_zone_lowmem_reserve - called whenever
7854 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
7855 * has a correct pages reserved value, so an adequate number of
7856 * pages are left in the zone after a successful __alloc_pages().
7857 */
7858static void setup_per_zone_lowmem_reserve(void)
7859{
7860 struct pglist_data *pgdat;
7861 enum zone_type i, j;
7862
7863 for_each_online_pgdat(pgdat) {
7864 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
7865 struct zone *zone = &pgdat->node_zones[i];
7866 int ratio = sysctl_lowmem_reserve_ratio[i];
7867 bool clear = !ratio || !zone_managed_pages(zone);
7868 unsigned long managed_pages = 0;
7869
7870 for (j = i + 1; j < MAX_NR_ZONES; j++) {
7871 if (clear) {
7872 zone->lowmem_reserve[j] = 0;
7873 } else {
7874 struct zone *upper_zone = &pgdat->node_zones[j];
7875
7876 managed_pages += zone_managed_pages(upper_zone);
7877 zone->lowmem_reserve[j] = managed_pages / ratio;
7878 }
7879 }
7880 }
7881 }
7882
7883 /* update totalreserve_pages */
7884 calculate_totalreserve_pages();
7885}
7886
7887static void __setup_per_zone_wmarks(void)
7888{
7889 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7890 unsigned long lowmem_pages = 0;
7891 struct zone *zone;
7892 unsigned long flags;
7893
7894 /* Calculate total number of !ZONE_HIGHMEM pages */
7895 for_each_zone(zone) {
7896 if (!is_highmem(zone))
7897 lowmem_pages += zone_managed_pages(zone);
7898 }
7899
7900 for_each_zone(zone) {
7901 u64 tmp;
7902
7903 spin_lock_irqsave(&zone->lock, flags);
7904 tmp = (u64)pages_min * zone_managed_pages(zone);
7905 do_div(tmp, lowmem_pages);
7906 if (is_highmem(zone)) {
7907 /*
7908 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7909 * need highmem pages, so cap pages_min to a small
7910 * value here.
7911 *
7912 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7913 * deltas control async page reclaim, and so should
7914 * not be capped for highmem.
7915 */
7916 unsigned long min_pages;
7917
7918 min_pages = zone_managed_pages(zone) / 1024;
7919 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7920 zone->_watermark[WMARK_MIN] = min_pages;
7921 } else {
7922 /*
7923 * If it's a lowmem zone, reserve a number of pages
7924 * proportionate to the zone's size.
7925 */
7926 zone->_watermark[WMARK_MIN] = tmp;
7927 }
7928
7929 /*
7930 * Set the kswapd watermarks distance according to the
7931 * scale factor in proportion to available memory, but
7932 * ensure a minimum size on small systems.
7933 */
7934 tmp = max_t(u64, tmp >> 2,
7935 mult_frac(zone_managed_pages(zone),
7936 watermark_scale_factor, 10000));
7937
7938 zone->watermark_boost = 0;
7939 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7940 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7941
7942 spin_unlock_irqrestore(&zone->lock, flags);
7943 }
7944
7945 /* update totalreserve_pages */
7946 calculate_totalreserve_pages();
7947}
7948
7949/**
7950 * setup_per_zone_wmarks - called when min_free_kbytes changes
7951 * or when memory is hot-{added|removed}
7952 *
7953 * Ensures that the watermark[min,low,high] values for each zone are set
7954 * correctly with respect to min_free_kbytes.
7955 */
7956void setup_per_zone_wmarks(void)
7957{
7958 static DEFINE_SPINLOCK(lock);
7959
7960 spin_lock(&lock);
7961 __setup_per_zone_wmarks();
7962 spin_unlock(&lock);
7963}
7964
7965/*
7966 * Initialise min_free_kbytes.
7967 *
7968 * For small machines we want it small (128k min). For large machines
7969 * we want it large (256MB max). But it is not linear, because network
7970 * bandwidth does not increase linearly with machine size. We use
7971 *
7972 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7973 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7974 *
7975 * which yields
7976 *
7977 * 16MB: 512k
7978 * 32MB: 724k
7979 * 64MB: 1024k
7980 * 128MB: 1448k
7981 * 256MB: 2048k
7982 * 512MB: 2896k
7983 * 1024MB: 4096k
7984 * 2048MB: 5792k
7985 * 4096MB: 8192k
7986 * 8192MB: 11584k
7987 * 16384MB: 16384k
7988 */
7989int __meminit init_per_zone_wmark_min(void)
7990{
7991 unsigned long lowmem_kbytes;
7992 int new_min_free_kbytes;
7993
7994 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7995 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7996
7997 if (new_min_free_kbytes > user_min_free_kbytes) {
7998 min_free_kbytes = new_min_free_kbytes;
7999 if (min_free_kbytes < 128)
8000 min_free_kbytes = 128;
8001 if (min_free_kbytes > 262144)
8002 min_free_kbytes = 262144;
8003 } else {
8004 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8005 new_min_free_kbytes, user_min_free_kbytes);
8006 }
8007 setup_per_zone_wmarks();
8008 refresh_zone_stat_thresholds();
8009 setup_per_zone_lowmem_reserve();
8010
8011#ifdef CONFIG_NUMA
8012 setup_min_unmapped_ratio();
8013 setup_min_slab_ratio();
8014#endif
8015
8016 khugepaged_min_free_kbytes_update();
8017
8018 return 0;
8019}
8020postcore_initcall(init_per_zone_wmark_min)
8021
8022/*
8023 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8024 * that we can call two helper functions whenever min_free_kbytes
8025 * changes.
8026 */
8027int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8028 void *buffer, size_t *length, loff_t *ppos)
8029{
8030 int rc;
8031
8032 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8033 if (rc)
8034 return rc;
8035
8036 if (write) {
8037 user_min_free_kbytes = min_free_kbytes;
8038 setup_per_zone_wmarks();
8039 }
8040 return 0;
8041}
8042
8043int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8044 void *buffer, size_t *length, loff_t *ppos)
8045{
8046 int rc;
8047
8048 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8049 if (rc)
8050 return rc;
8051
8052 if (write)
8053 setup_per_zone_wmarks();
8054
8055 return 0;
8056}
8057
8058#ifdef CONFIG_NUMA
8059static void setup_min_unmapped_ratio(void)
8060{
8061 pg_data_t *pgdat;
8062 struct zone *zone;
8063
8064 for_each_online_pgdat(pgdat)
8065 pgdat->min_unmapped_pages = 0;
8066
8067 for_each_zone(zone)
8068 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8069 sysctl_min_unmapped_ratio) / 100;
8070}
8071
8072
8073int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8074 void *buffer, size_t *length, loff_t *ppos)
8075{
8076 int rc;
8077
8078 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8079 if (rc)
8080 return rc;
8081
8082 setup_min_unmapped_ratio();
8083
8084 return 0;
8085}
8086
8087static void setup_min_slab_ratio(void)
8088{
8089 pg_data_t *pgdat;
8090 struct zone *zone;
8091
8092 for_each_online_pgdat(pgdat)
8093 pgdat->min_slab_pages = 0;
8094
8095 for_each_zone(zone)
8096 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8097 sysctl_min_slab_ratio) / 100;
8098}
8099
8100int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8101 void *buffer, size_t *length, loff_t *ppos)
8102{
8103 int rc;
8104
8105 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8106 if (rc)
8107 return rc;
8108
8109 setup_min_slab_ratio();
8110
8111 return 0;
8112}
8113#endif
8114
8115/*
8116 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8117 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8118 * whenever sysctl_lowmem_reserve_ratio changes.
8119 *
8120 * The reserve ratio obviously has absolutely no relation with the
8121 * minimum watermarks. The lowmem reserve ratio can only make sense
8122 * if in function of the boot time zone sizes.
8123 */
8124int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8125 void *buffer, size_t *length, loff_t *ppos)
8126{
8127 int i;
8128
8129 proc_dointvec_minmax(table, write, buffer, length, ppos);
8130
8131 for (i = 0; i < MAX_NR_ZONES; i++) {
8132 if (sysctl_lowmem_reserve_ratio[i] < 1)
8133 sysctl_lowmem_reserve_ratio[i] = 0;
8134 }
8135
8136 setup_per_zone_lowmem_reserve();
8137 return 0;
8138}
8139
8140/*
8141 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
8142 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8143 * pagelist can have before it gets flushed back to buddy allocator.
8144 */
8145int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8146 void *buffer, size_t *length, loff_t *ppos)
8147{
8148 struct zone *zone;
8149 int old_percpu_pagelist_fraction;
8150 int ret;
8151
8152 mutex_lock(&pcp_batch_high_lock);
8153 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8154
8155 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8156 if (!write || ret < 0)
8157 goto out;
8158
8159 /* Sanity checking to avoid pcp imbalance */
8160 if (percpu_pagelist_fraction &&
8161 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8162 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8163 ret = -EINVAL;
8164 goto out;
8165 }
8166
8167 /* No change? */
8168 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8169 goto out;
8170
8171 for_each_populated_zone(zone)
8172 zone_set_pageset_high_and_batch(zone);
8173out:
8174 mutex_unlock(&pcp_batch_high_lock);
8175 return ret;
8176}
8177
8178#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8179/*
8180 * Returns the number of pages that arch has reserved but
8181 * is not known to alloc_large_system_hash().
8182 */
8183static unsigned long __init arch_reserved_kernel_pages(void)
8184{
8185 return 0;
8186}
8187#endif
8188
8189/*
8190 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8191 * machines. As memory size is increased the scale is also increased but at
8192 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8193 * quadruples the scale is increased by one, which means the size of hash table
8194 * only doubles, instead of quadrupling as well.
8195 * Because 32-bit systems cannot have large physical memory, where this scaling
8196 * makes sense, it is disabled on such platforms.
8197 */
8198#if __BITS_PER_LONG > 32
8199#define ADAPT_SCALE_BASE (64ul << 30)
8200#define ADAPT_SCALE_SHIFT 2
8201#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8202#endif
8203
8204/*
8205 * allocate a large system hash table from bootmem
8206 * - it is assumed that the hash table must contain an exact power-of-2
8207 * quantity of entries
8208 * - limit is the number of hash buckets, not the total allocation size
8209 */
8210void *__init alloc_large_system_hash(const char *tablename,
8211 unsigned long bucketsize,
8212 unsigned long numentries,
8213 int scale,
8214 int flags,
8215 unsigned int *_hash_shift,
8216 unsigned int *_hash_mask,
8217 unsigned long low_limit,
8218 unsigned long high_limit)
8219{
8220 unsigned long long max = high_limit;
8221 unsigned long log2qty, size;
8222 void *table = NULL;
8223 gfp_t gfp_flags;
8224 bool virt;
8225
8226 /* allow the kernel cmdline to have a say */
8227 if (!numentries) {
8228 /* round applicable memory size up to nearest megabyte */
8229 numentries = nr_kernel_pages;
8230 numentries -= arch_reserved_kernel_pages();
8231
8232 /* It isn't necessary when PAGE_SIZE >= 1MB */
8233 if (PAGE_SHIFT < 20)
8234 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8235
8236#if __BITS_PER_LONG > 32
8237 if (!high_limit) {
8238 unsigned long adapt;
8239
8240 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8241 adapt <<= ADAPT_SCALE_SHIFT)
8242 scale++;
8243 }
8244#endif
8245
8246 /* limit to 1 bucket per 2^scale bytes of low memory */
8247 if (scale > PAGE_SHIFT)
8248 numentries >>= (scale - PAGE_SHIFT);
8249 else
8250 numentries <<= (PAGE_SHIFT - scale);
8251
8252 /* Make sure we've got at least a 0-order allocation.. */
8253 if (unlikely(flags & HASH_SMALL)) {
8254 /* Makes no sense without HASH_EARLY */
8255 WARN_ON(!(flags & HASH_EARLY));
8256 if (!(numentries >> *_hash_shift)) {
8257 numentries = 1UL << *_hash_shift;
8258 BUG_ON(!numentries);
8259 }
8260 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8261 numentries = PAGE_SIZE / bucketsize;
8262 }
8263 numentries = roundup_pow_of_two(numentries);
8264
8265 /* limit allocation size to 1/16 total memory by default */
8266 if (max == 0) {
8267 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8268 do_div(max, bucketsize);
8269 }
8270 max = min(max, 0x80000000ULL);
8271
8272 if (numentries < low_limit)
8273 numentries = low_limit;
8274 if (numentries > max)
8275 numentries = max;
8276
8277 log2qty = ilog2(numentries);
8278
8279 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8280 do {
8281 virt = false;
8282 size = bucketsize << log2qty;
8283 if (flags & HASH_EARLY) {
8284 if (flags & HASH_ZERO)
8285 table = memblock_alloc(size, SMP_CACHE_BYTES);
8286 else
8287 table = memblock_alloc_raw(size,
8288 SMP_CACHE_BYTES);
8289 } else if (get_order(size) >= MAX_ORDER || hashdist) {
8290 table = __vmalloc(size, gfp_flags);
8291 virt = true;
8292 } else {
8293 /*
8294 * If bucketsize is not a power-of-two, we may free
8295 * some pages at the end of hash table which
8296 * alloc_pages_exact() automatically does
8297 */
8298 table = alloc_pages_exact(size, gfp_flags);
8299 kmemleak_alloc(table, size, 1, gfp_flags);
8300 }
8301 } while (!table && size > PAGE_SIZE && --log2qty);
8302
8303 if (!table)
8304 panic("Failed to allocate %s hash table\n", tablename);
8305
8306 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8307 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8308 virt ? "vmalloc" : "linear");
8309
8310 if (_hash_shift)
8311 *_hash_shift = log2qty;
8312 if (_hash_mask)
8313 *_hash_mask = (1 << log2qty) - 1;
8314
8315 return table;
8316}
8317
8318/*
8319 * This function checks whether pageblock includes unmovable pages or not.
8320 *
8321 * PageLRU check without isolation or lru_lock could race so that
8322 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8323 * check without lock_page also may miss some movable non-lru pages at
8324 * race condition. So you can't expect this function should be exact.
8325 *
8326 * Returns a page without holding a reference. If the caller wants to
8327 * dereference that page (e.g., dumping), it has to make sure that it
8328 * cannot get removed (e.g., via memory unplug) concurrently.
8329 *
8330 */
8331struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8332 int migratetype, int flags)
8333{
8334 unsigned long iter = 0;
8335 unsigned long pfn = page_to_pfn(page);
8336 unsigned long offset = pfn % pageblock_nr_pages;
8337
8338 if (is_migrate_cma_page(page)) {
8339 /*
8340 * CMA allocations (alloc_contig_range) really need to mark
8341 * isolate CMA pageblocks even when they are not movable in fact
8342 * so consider them movable here.
8343 */
8344 if (is_migrate_cma(migratetype))
8345 return NULL;
8346
8347 return page;
8348 }
8349
8350 for (; iter < pageblock_nr_pages - offset; iter++) {
8351 if (!pfn_valid_within(pfn + iter))
8352 continue;
8353
8354 page = pfn_to_page(pfn + iter);
8355
8356 /*
8357 * Both, bootmem allocations and memory holes are marked
8358 * PG_reserved and are unmovable. We can even have unmovable
8359 * allocations inside ZONE_MOVABLE, for example when
8360 * specifying "movablecore".
8361 */
8362 if (PageReserved(page))
8363 return page;
8364
8365 /*
8366 * If the zone is movable and we have ruled out all reserved
8367 * pages then it should be reasonably safe to assume the rest
8368 * is movable.
8369 */
8370 if (zone_idx(zone) == ZONE_MOVABLE)
8371 continue;
8372
8373 /*
8374 * Hugepages are not in LRU lists, but they're movable.
8375 * THPs are on the LRU, but need to be counted as #small pages.
8376 * We need not scan over tail pages because we don't
8377 * handle each tail page individually in migration.
8378 */
8379 if (PageHuge(page) || PageTransCompound(page)) {
8380 struct page *head = compound_head(page);
8381 unsigned int skip_pages;
8382
8383 if (PageHuge(page)) {
8384 if (!hugepage_migration_supported(page_hstate(head)))
8385 return page;
8386 } else if (!PageLRU(head) && !__PageMovable(head)) {
8387 return page;
8388 }
8389
8390 skip_pages = compound_nr(head) - (page - head);
8391 iter += skip_pages - 1;
8392 continue;
8393 }
8394
8395 /*
8396 * We can't use page_count without pin a page
8397 * because another CPU can free compound page.
8398 * This check already skips compound tails of THP
8399 * because their page->_refcount is zero at all time.
8400 */
8401 if (!page_ref_count(page)) {
8402 if (PageBuddy(page))
8403 iter += (1 << buddy_order(page)) - 1;
8404 continue;
8405 }
8406
8407 /*
8408 * The HWPoisoned page may be not in buddy system, and
8409 * page_count() is not 0.
8410 */
8411 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8412 continue;
8413
8414 /*
8415 * We treat all PageOffline() pages as movable when offlining
8416 * to give drivers a chance to decrement their reference count
8417 * in MEM_GOING_OFFLINE in order to indicate that these pages
8418 * can be offlined as there are no direct references anymore.
8419 * For actually unmovable PageOffline() where the driver does
8420 * not support this, we will fail later when trying to actually
8421 * move these pages that still have a reference count > 0.
8422 * (false negatives in this function only)
8423 */
8424 if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8425 continue;
8426
8427 if (__PageMovable(page) || PageLRU(page))
8428 continue;
8429
8430 /*
8431 * If there are RECLAIMABLE pages, we need to check
8432 * it. But now, memory offline itself doesn't call
8433 * shrink_node_slabs() and it still to be fixed.
8434 */
8435 return page;
8436 }
8437 return NULL;
8438}
8439
8440#ifdef CONFIG_CONTIG_ALLOC
8441static unsigned long pfn_max_align_down(unsigned long pfn)
8442{
8443 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8444 pageblock_nr_pages) - 1);
8445}
8446
8447static unsigned long pfn_max_align_up(unsigned long pfn)
8448{
8449 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8450 pageblock_nr_pages));
8451}
8452
8453/* [start, end) must belong to a single zone. */
8454static int __alloc_contig_migrate_range(struct compact_control *cc,
8455 unsigned long start, unsigned long end)
8456{
8457 /* This function is based on compact_zone() from compaction.c. */
8458 unsigned int nr_reclaimed;
8459 unsigned long pfn = start;
8460 unsigned int tries = 0;
8461 int ret = 0;
8462 struct migration_target_control mtc = {
8463 .nid = zone_to_nid(cc->zone),
8464 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8465 };
8466
8467 migrate_prep();
8468
8469 while (pfn < end || !list_empty(&cc->migratepages)) {
8470 if (fatal_signal_pending(current)) {
8471 ret = -EINTR;
8472 break;
8473 }
8474
8475 if (list_empty(&cc->migratepages)) {
8476 cc->nr_migratepages = 0;
8477 pfn = isolate_migratepages_range(cc, pfn, end);
8478 if (!pfn) {
8479 ret = -EINTR;
8480 break;
8481 }
8482 tries = 0;
8483 } else if (++tries == 5) {
8484 ret = ret < 0 ? ret : -EBUSY;
8485 break;
8486 }
8487
8488 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8489 &cc->migratepages);
8490 cc->nr_migratepages -= nr_reclaimed;
8491
8492 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8493 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE);
8494 }
8495 if (ret < 0) {
8496 putback_movable_pages(&cc->migratepages);
8497 return ret;
8498 }
8499 return 0;
8500}
8501
8502/**
8503 * alloc_contig_range() -- tries to allocate given range of pages
8504 * @start: start PFN to allocate
8505 * @end: one-past-the-last PFN to allocate
8506 * @migratetype: migratetype of the underlaying pageblocks (either
8507 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8508 * in range must have the same migratetype and it must
8509 * be either of the two.
8510 * @gfp_mask: GFP mask to use during compaction
8511 *
8512 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8513 * aligned. The PFN range must belong to a single zone.
8514 *
8515 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8516 * pageblocks in the range. Once isolated, the pageblocks should not
8517 * be modified by others.
8518 *
8519 * Return: zero on success or negative error code. On success all
8520 * pages which PFN is in [start, end) are allocated for the caller and
8521 * need to be freed with free_contig_range().
8522 */
8523int alloc_contig_range(unsigned long start, unsigned long end,
8524 unsigned migratetype, gfp_t gfp_mask)
8525{
8526 unsigned long outer_start, outer_end;
8527 unsigned int order;
8528 int ret = 0;
8529
8530 struct compact_control cc = {
8531 .nr_migratepages = 0,
8532 .order = -1,
8533 .zone = page_zone(pfn_to_page(start)),
8534 .mode = MIGRATE_SYNC,
8535 .ignore_skip_hint = true,
8536 .no_set_skip_hint = true,
8537 .gfp_mask = current_gfp_context(gfp_mask),
8538 .alloc_contig = true,
8539 };
8540 INIT_LIST_HEAD(&cc.migratepages);
8541
8542 /*
8543 * What we do here is we mark all pageblocks in range as
8544 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8545 * have different sizes, and due to the way page allocator
8546 * work, we align the range to biggest of the two pages so
8547 * that page allocator won't try to merge buddies from
8548 * different pageblocks and change MIGRATE_ISOLATE to some
8549 * other migration type.
8550 *
8551 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8552 * migrate the pages from an unaligned range (ie. pages that
8553 * we are interested in). This will put all the pages in
8554 * range back to page allocator as MIGRATE_ISOLATE.
8555 *
8556 * When this is done, we take the pages in range from page
8557 * allocator removing them from the buddy system. This way
8558 * page allocator will never consider using them.
8559 *
8560 * This lets us mark the pageblocks back as
8561 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8562 * aligned range but not in the unaligned, original range are
8563 * put back to page allocator so that buddy can use them.
8564 */
8565
8566 ret = start_isolate_page_range(pfn_max_align_down(start),
8567 pfn_max_align_up(end), migratetype, 0);
8568 if (ret)
8569 return ret;
8570
8571 drain_all_pages(cc.zone);
8572
8573 /*
8574 * In case of -EBUSY, we'd like to know which page causes problem.
8575 * So, just fall through. test_pages_isolated() has a tracepoint
8576 * which will report the busy page.
8577 *
8578 * It is possible that busy pages could become available before
8579 * the call to test_pages_isolated, and the range will actually be
8580 * allocated. So, if we fall through be sure to clear ret so that
8581 * -EBUSY is not accidentally used or returned to caller.
8582 */
8583 ret = __alloc_contig_migrate_range(&cc, start, end);
8584 if (ret && ret != -EBUSY)
8585 goto done;
8586 ret =0;
8587
8588 /*
8589 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8590 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8591 * more, all pages in [start, end) are free in page allocator.
8592 * What we are going to do is to allocate all pages from
8593 * [start, end) (that is remove them from page allocator).
8594 *
8595 * The only problem is that pages at the beginning and at the
8596 * end of interesting range may be not aligned with pages that
8597 * page allocator holds, ie. they can be part of higher order
8598 * pages. Because of this, we reserve the bigger range and
8599 * once this is done free the pages we are not interested in.
8600 *
8601 * We don't have to hold zone->lock here because the pages are
8602 * isolated thus they won't get removed from buddy.
8603 */
8604
8605 lru_add_drain_all();
8606
8607 order = 0;
8608 outer_start = start;
8609 while (!PageBuddy(pfn_to_page(outer_start))) {
8610 if (++order >= MAX_ORDER) {
8611 outer_start = start;
8612 break;
8613 }
8614 outer_start &= ~0UL << order;
8615 }
8616
8617 if (outer_start != start) {
8618 order = buddy_order(pfn_to_page(outer_start));
8619
8620 /*
8621 * outer_start page could be small order buddy page and
8622 * it doesn't include start page. Adjust outer_start
8623 * in this case to report failed page properly
8624 * on tracepoint in test_pages_isolated()
8625 */
8626 if (outer_start + (1UL << order) <= start)
8627 outer_start = start;
8628 }
8629
8630 /* Make sure the range is really isolated. */
8631 if (test_pages_isolated(outer_start, end, 0)) {
8632 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8633 __func__, outer_start, end);
8634 ret = -EBUSY;
8635 goto done;
8636 }
8637
8638 /* Grab isolated pages from freelists. */
8639 outer_end = isolate_freepages_range(&cc, outer_start, end);
8640 if (!outer_end) {
8641 ret = -EBUSY;
8642 goto done;
8643 }
8644
8645 /* Free head and tail (if any) */
8646 if (start != outer_start)
8647 free_contig_range(outer_start, start - outer_start);
8648 if (end != outer_end)
8649 free_contig_range(end, outer_end - end);
8650
8651done:
8652 undo_isolate_page_range(pfn_max_align_down(start),
8653 pfn_max_align_up(end), migratetype);
8654 return ret;
8655}
8656EXPORT_SYMBOL(alloc_contig_range);
8657
8658static int __alloc_contig_pages(unsigned long start_pfn,
8659 unsigned long nr_pages, gfp_t gfp_mask)
8660{
8661 unsigned long end_pfn = start_pfn + nr_pages;
8662
8663 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
8664 gfp_mask);
8665}
8666
8667static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
8668 unsigned long nr_pages)
8669{
8670 unsigned long i, end_pfn = start_pfn + nr_pages;
8671 struct page *page;
8672
8673 for (i = start_pfn; i < end_pfn; i++) {
8674 page = pfn_to_online_page(i);
8675 if (!page)
8676 return false;
8677
8678 if (page_zone(page) != z)
8679 return false;
8680
8681 if (PageReserved(page))
8682 return false;
8683
8684 if (page_count(page) > 0)
8685 return false;
8686
8687 if (PageHuge(page))
8688 return false;
8689 }
8690 return true;
8691}
8692
8693static bool zone_spans_last_pfn(const struct zone *zone,
8694 unsigned long start_pfn, unsigned long nr_pages)
8695{
8696 unsigned long last_pfn = start_pfn + nr_pages - 1;
8697
8698 return zone_spans_pfn(zone, last_pfn);
8699}
8700
8701/**
8702 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8703 * @nr_pages: Number of contiguous pages to allocate
8704 * @gfp_mask: GFP mask to limit search and used during compaction
8705 * @nid: Target node
8706 * @nodemask: Mask for other possible nodes
8707 *
8708 * This routine is a wrapper around alloc_contig_range(). It scans over zones
8709 * on an applicable zonelist to find a contiguous pfn range which can then be
8710 * tried for allocation with alloc_contig_range(). This routine is intended
8711 * for allocation requests which can not be fulfilled with the buddy allocator.
8712 *
8713 * The allocated memory is always aligned to a page boundary. If nr_pages is a
8714 * power of two then the alignment is guaranteed to be to the given nr_pages
8715 * (e.g. 1GB request would be aligned to 1GB).
8716 *
8717 * Allocated pages can be freed with free_contig_range() or by manually calling
8718 * __free_page() on each allocated page.
8719 *
8720 * Return: pointer to contiguous pages on success, or NULL if not successful.
8721 */
8722struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
8723 int nid, nodemask_t *nodemask)
8724{
8725 unsigned long ret, pfn, flags;
8726 struct zonelist *zonelist;
8727 struct zone *zone;
8728 struct zoneref *z;
8729
8730 zonelist = node_zonelist(nid, gfp_mask);
8731 for_each_zone_zonelist_nodemask(zone, z, zonelist,
8732 gfp_zone(gfp_mask), nodemask) {
8733 spin_lock_irqsave(&zone->lock, flags);
8734
8735 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
8736 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
8737 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
8738 /*
8739 * We release the zone lock here because
8740 * alloc_contig_range() will also lock the zone
8741 * at some point. If there's an allocation
8742 * spinning on this lock, it may win the race
8743 * and cause alloc_contig_range() to fail...
8744 */
8745 spin_unlock_irqrestore(&zone->lock, flags);
8746 ret = __alloc_contig_pages(pfn, nr_pages,
8747 gfp_mask);
8748 if (!ret)
8749 return pfn_to_page(pfn);
8750 spin_lock_irqsave(&zone->lock, flags);
8751 }
8752 pfn += nr_pages;
8753 }
8754 spin_unlock_irqrestore(&zone->lock, flags);
8755 }
8756 return NULL;
8757}
8758#endif /* CONFIG_CONTIG_ALLOC */
8759
8760void free_contig_range(unsigned long pfn, unsigned int nr_pages)
8761{
8762 unsigned int count = 0;
8763
8764 for (; nr_pages--; pfn++) {
8765 struct page *page = pfn_to_page(pfn);
8766
8767 count += page_count(page) != 1;
8768 __free_page(page);
8769 }
8770 WARN(count != 0, "%d pages are still in use!\n", count);
8771}
8772EXPORT_SYMBOL(free_contig_range);
8773
8774/*
8775 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8776 * page high values need to be recalulated.
8777 */
8778void __meminit zone_pcp_update(struct zone *zone)
8779{
8780 mutex_lock(&pcp_batch_high_lock);
8781 zone_set_pageset_high_and_batch(zone);
8782 mutex_unlock(&pcp_batch_high_lock);
8783}
8784
8785/*
8786 * Effectively disable pcplists for the zone by setting the high limit to 0
8787 * and draining all cpus. A concurrent page freeing on another CPU that's about
8788 * to put the page on pcplist will either finish before the drain and the page
8789 * will be drained, or observe the new high limit and skip the pcplist.
8790 *
8791 * Must be paired with a call to zone_pcp_enable().
8792 */
8793void zone_pcp_disable(struct zone *zone)
8794{
8795 mutex_lock(&pcp_batch_high_lock);
8796 __zone_set_pageset_high_and_batch(zone, 0, 1);
8797 __drain_all_pages(zone, true);
8798}
8799
8800void zone_pcp_enable(struct zone *zone)
8801{
8802 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
8803 mutex_unlock(&pcp_batch_high_lock);
8804}
8805
8806void zone_pcp_reset(struct zone *zone)
8807{
8808 unsigned long flags;
8809 int cpu;
8810 struct per_cpu_pageset *pset;
8811
8812 /* avoid races with drain_pages() */
8813 local_irq_save(flags);
8814 if (zone->pageset != &boot_pageset) {
8815 for_each_online_cpu(cpu) {
8816 pset = per_cpu_ptr(zone->pageset, cpu);
8817 drain_zonestat(zone, pset);
8818 }
8819 free_percpu(zone->pageset);
8820 zone->pageset = &boot_pageset;
8821 }
8822 local_irq_restore(flags);
8823}
8824
8825#ifdef CONFIG_MEMORY_HOTREMOVE
8826/*
8827 * All pages in the range must be in a single zone, must not contain holes,
8828 * must span full sections, and must be isolated before calling this function.
8829 */
8830void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8831{
8832 unsigned long pfn = start_pfn;
8833 struct page *page;
8834 struct zone *zone;
8835 unsigned int order;
8836 unsigned long flags;
8837
8838 offline_mem_sections(pfn, end_pfn);
8839 zone = page_zone(pfn_to_page(pfn));
8840 spin_lock_irqsave(&zone->lock, flags);
8841 while (pfn < end_pfn) {
8842 page = pfn_to_page(pfn);
8843 /*
8844 * The HWPoisoned page may be not in buddy system, and
8845 * page_count() is not 0.
8846 */
8847 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8848 pfn++;
8849 continue;
8850 }
8851 /*
8852 * At this point all remaining PageOffline() pages have a
8853 * reference count of 0 and can simply be skipped.
8854 */
8855 if (PageOffline(page)) {
8856 BUG_ON(page_count(page));
8857 BUG_ON(PageBuddy(page));
8858 pfn++;
8859 continue;
8860 }
8861
8862 BUG_ON(page_count(page));
8863 BUG_ON(!PageBuddy(page));
8864 order = buddy_order(page);
8865 del_page_from_free_list(page, zone, order);
8866 pfn += (1 << order);
8867 }
8868 spin_unlock_irqrestore(&zone->lock, flags);
8869}
8870#endif
8871
8872bool is_free_buddy_page(struct page *page)
8873{
8874 struct zone *zone = page_zone(page);
8875 unsigned long pfn = page_to_pfn(page);
8876 unsigned long flags;
8877 unsigned int order;
8878
8879 spin_lock_irqsave(&zone->lock, flags);
8880 for (order = 0; order < MAX_ORDER; order++) {
8881 struct page *page_head = page - (pfn & ((1 << order) - 1));
8882
8883 if (PageBuddy(page_head) && buddy_order(page_head) >= order)
8884 break;
8885 }
8886 spin_unlock_irqrestore(&zone->lock, flags);
8887
8888 return order < MAX_ORDER;
8889}
8890
8891#ifdef CONFIG_MEMORY_FAILURE
8892/*
8893 * Break down a higher-order page in sub-pages, and keep our target out of
8894 * buddy allocator.
8895 */
8896static void break_down_buddy_pages(struct zone *zone, struct page *page,
8897 struct page *target, int low, int high,
8898 int migratetype)
8899{
8900 unsigned long size = 1 << high;
8901 struct page *current_buddy, *next_page;
8902
8903 while (high > low) {
8904 high--;
8905 size >>= 1;
8906
8907 if (target >= &page[size]) {
8908 next_page = page + size;
8909 current_buddy = page;
8910 } else {
8911 next_page = page;
8912 current_buddy = page + size;
8913 }
8914
8915 if (set_page_guard(zone, current_buddy, high, migratetype))
8916 continue;
8917
8918 if (current_buddy != target) {
8919 add_to_free_list(current_buddy, zone, high, migratetype);
8920 set_buddy_order(current_buddy, high);
8921 page = next_page;
8922 }
8923 }
8924}
8925
8926/*
8927 * Take a page that will be marked as poisoned off the buddy allocator.
8928 */
8929bool take_page_off_buddy(struct page *page)
8930{
8931 struct zone *zone = page_zone(page);
8932 unsigned long pfn = page_to_pfn(page);
8933 unsigned long flags;
8934 unsigned int order;
8935 bool ret = false;
8936
8937 spin_lock_irqsave(&zone->lock, flags);
8938 for (order = 0; order < MAX_ORDER; order++) {
8939 struct page *page_head = page - (pfn & ((1 << order) - 1));
8940 int page_order = buddy_order(page_head);
8941
8942 if (PageBuddy(page_head) && page_order >= order) {
8943 unsigned long pfn_head = page_to_pfn(page_head);
8944 int migratetype = get_pfnblock_migratetype(page_head,
8945 pfn_head);
8946
8947 del_page_from_free_list(page_head, zone, page_order);
8948 break_down_buddy_pages(zone, page_head, page, 0,
8949 page_order, migratetype);
8950 ret = true;
8951 break;
8952 }
8953 if (page_count(page_head) > 0)
8954 break;
8955 }
8956 spin_unlock_irqrestore(&zone->lock, flags);
8957 return ret;
8958}
8959#endif