Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26 */
27
28#include <linux/page_counter.h>
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
31#include <linux/pagewalk.h>
32#include <linux/sched/mm.h>
33#include <linux/shmem_fs.h>
34#include <linux/hugetlb.h>
35#include <linux/pagemap.h>
36#include <linux/vm_event_item.h>
37#include <linux/smp.h>
38#include <linux/page-flags.h>
39#include <linux/backing-dev.h>
40#include <linux/bit_spinlock.h>
41#include <linux/rcupdate.h>
42#include <linux/limits.h>
43#include <linux/export.h>
44#include <linux/mutex.h>
45#include <linux/rbtree.h>
46#include <linux/slab.h>
47#include <linux/swap.h>
48#include <linux/swapops.h>
49#include <linux/spinlock.h>
50#include <linux/eventfd.h>
51#include <linux/poll.h>
52#include <linux/sort.h>
53#include <linux/fs.h>
54#include <linux/seq_file.h>
55#include <linux/vmpressure.h>
56#include <linux/mm_inline.h>
57#include <linux/swap_cgroup.h>
58#include <linux/cpu.h>
59#include <linux/oom.h>
60#include <linux/lockdep.h>
61#include <linux/file.h>
62#include <linux/tracehook.h>
63#include <linux/psi.h>
64#include <linux/seq_buf.h>
65#include "internal.h"
66#include <net/sock.h>
67#include <net/ip.h>
68#include "slab.h"
69
70#include <linux/uaccess.h>
71
72#include <trace/events/vmscan.h>
73
74struct cgroup_subsys memory_cgrp_subsys __read_mostly;
75EXPORT_SYMBOL(memory_cgrp_subsys);
76
77struct mem_cgroup *root_mem_cgroup __read_mostly;
78
79/* Active memory cgroup to use from an interrupt context */
80DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
81
82/* Socket memory accounting disabled? */
83static bool cgroup_memory_nosocket;
84
85/* Kernel memory accounting disabled? */
86static bool cgroup_memory_nokmem;
87
88/* Whether the swap controller is active */
89#ifdef CONFIG_MEMCG_SWAP
90bool cgroup_memory_noswap __read_mostly;
91#else
92#define cgroup_memory_noswap 1
93#endif
94
95#ifdef CONFIG_CGROUP_WRITEBACK
96static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
97#endif
98
99/* Whether legacy memory+swap accounting is active */
100static bool do_memsw_account(void)
101{
102 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
103}
104
105#define THRESHOLDS_EVENTS_TARGET 128
106#define SOFTLIMIT_EVENTS_TARGET 1024
107
108/*
109 * Cgroups above their limits are maintained in a RB-Tree, independent of
110 * their hierarchy representation
111 */
112
113struct mem_cgroup_tree_per_node {
114 struct rb_root rb_root;
115 struct rb_node *rb_rightmost;
116 spinlock_t lock;
117};
118
119struct mem_cgroup_tree {
120 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
121};
122
123static struct mem_cgroup_tree soft_limit_tree __read_mostly;
124
125/* for OOM */
126struct mem_cgroup_eventfd_list {
127 struct list_head list;
128 struct eventfd_ctx *eventfd;
129};
130
131/*
132 * cgroup_event represents events which userspace want to receive.
133 */
134struct mem_cgroup_event {
135 /*
136 * memcg which the event belongs to.
137 */
138 struct mem_cgroup *memcg;
139 /*
140 * eventfd to signal userspace about the event.
141 */
142 struct eventfd_ctx *eventfd;
143 /*
144 * Each of these stored in a list by the cgroup.
145 */
146 struct list_head list;
147 /*
148 * register_event() callback will be used to add new userspace
149 * waiter for changes related to this event. Use eventfd_signal()
150 * on eventfd to send notification to userspace.
151 */
152 int (*register_event)(struct mem_cgroup *memcg,
153 struct eventfd_ctx *eventfd, const char *args);
154 /*
155 * unregister_event() callback will be called when userspace closes
156 * the eventfd or on cgroup removing. This callback must be set,
157 * if you want provide notification functionality.
158 */
159 void (*unregister_event)(struct mem_cgroup *memcg,
160 struct eventfd_ctx *eventfd);
161 /*
162 * All fields below needed to unregister event when
163 * userspace closes eventfd.
164 */
165 poll_table pt;
166 wait_queue_head_t *wqh;
167 wait_queue_entry_t wait;
168 struct work_struct remove;
169};
170
171static void mem_cgroup_threshold(struct mem_cgroup *memcg);
172static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
173
174/* Stuffs for move charges at task migration. */
175/*
176 * Types of charges to be moved.
177 */
178#define MOVE_ANON 0x1U
179#define MOVE_FILE 0x2U
180#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
181
182/* "mc" and its members are protected by cgroup_mutex */
183static struct move_charge_struct {
184 spinlock_t lock; /* for from, to */
185 struct mm_struct *mm;
186 struct mem_cgroup *from;
187 struct mem_cgroup *to;
188 unsigned long flags;
189 unsigned long precharge;
190 unsigned long moved_charge;
191 unsigned long moved_swap;
192 struct task_struct *moving_task; /* a task moving charges */
193 wait_queue_head_t waitq; /* a waitq for other context */
194} mc = {
195 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
196 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
197};
198
199/*
200 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
201 * limit reclaim to prevent infinite loops, if they ever occur.
202 */
203#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
204#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
205
206/* for encoding cft->private value on file */
207enum res_type {
208 _MEM,
209 _MEMSWAP,
210 _OOM_TYPE,
211 _KMEM,
212 _TCP,
213};
214
215#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
216#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
217#define MEMFILE_ATTR(val) ((val) & 0xffff)
218/* Used for OOM nofiier */
219#define OOM_CONTROL (0)
220
221/*
222 * Iteration constructs for visiting all cgroups (under a tree). If
223 * loops are exited prematurely (break), mem_cgroup_iter_break() must
224 * be used for reference counting.
225 */
226#define for_each_mem_cgroup_tree(iter, root) \
227 for (iter = mem_cgroup_iter(root, NULL, NULL); \
228 iter != NULL; \
229 iter = mem_cgroup_iter(root, iter, NULL))
230
231#define for_each_mem_cgroup(iter) \
232 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
233 iter != NULL; \
234 iter = mem_cgroup_iter(NULL, iter, NULL))
235
236static inline bool should_force_charge(void)
237{
238 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
239 (current->flags & PF_EXITING);
240}
241
242/* Some nice accessors for the vmpressure. */
243struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
244{
245 if (!memcg)
246 memcg = root_mem_cgroup;
247 return &memcg->vmpressure;
248}
249
250struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
251{
252 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
253}
254
255#ifdef CONFIG_MEMCG_KMEM
256extern spinlock_t css_set_lock;
257
258static int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
259 unsigned int nr_pages);
260static void __memcg_kmem_uncharge(struct mem_cgroup *memcg,
261 unsigned int nr_pages);
262
263static void obj_cgroup_release(struct percpu_ref *ref)
264{
265 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
266 struct mem_cgroup *memcg;
267 unsigned int nr_bytes;
268 unsigned int nr_pages;
269 unsigned long flags;
270
271 /*
272 * At this point all allocated objects are freed, and
273 * objcg->nr_charged_bytes can't have an arbitrary byte value.
274 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
275 *
276 * The following sequence can lead to it:
277 * 1) CPU0: objcg == stock->cached_objcg
278 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
279 * PAGE_SIZE bytes are charged
280 * 3) CPU1: a process from another memcg is allocating something,
281 * the stock if flushed,
282 * objcg->nr_charged_bytes = PAGE_SIZE - 92
283 * 5) CPU0: we do release this object,
284 * 92 bytes are added to stock->nr_bytes
285 * 6) CPU0: stock is flushed,
286 * 92 bytes are added to objcg->nr_charged_bytes
287 *
288 * In the result, nr_charged_bytes == PAGE_SIZE.
289 * This page will be uncharged in obj_cgroup_release().
290 */
291 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
292 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
293 nr_pages = nr_bytes >> PAGE_SHIFT;
294
295 spin_lock_irqsave(&css_set_lock, flags);
296 memcg = obj_cgroup_memcg(objcg);
297 if (nr_pages)
298 __memcg_kmem_uncharge(memcg, nr_pages);
299 list_del(&objcg->list);
300 mem_cgroup_put(memcg);
301 spin_unlock_irqrestore(&css_set_lock, flags);
302
303 percpu_ref_exit(ref);
304 kfree_rcu(objcg, rcu);
305}
306
307static struct obj_cgroup *obj_cgroup_alloc(void)
308{
309 struct obj_cgroup *objcg;
310 int ret;
311
312 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
313 if (!objcg)
314 return NULL;
315
316 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
317 GFP_KERNEL);
318 if (ret) {
319 kfree(objcg);
320 return NULL;
321 }
322 INIT_LIST_HEAD(&objcg->list);
323 return objcg;
324}
325
326static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
327 struct mem_cgroup *parent)
328{
329 struct obj_cgroup *objcg, *iter;
330
331 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
332
333 spin_lock_irq(&css_set_lock);
334
335 /* Move active objcg to the parent's list */
336 xchg(&objcg->memcg, parent);
337 css_get(&parent->css);
338 list_add(&objcg->list, &parent->objcg_list);
339
340 /* Move already reparented objcgs to the parent's list */
341 list_for_each_entry(iter, &memcg->objcg_list, list) {
342 css_get(&parent->css);
343 xchg(&iter->memcg, parent);
344 css_put(&memcg->css);
345 }
346 list_splice(&memcg->objcg_list, &parent->objcg_list);
347
348 spin_unlock_irq(&css_set_lock);
349
350 percpu_ref_kill(&objcg->refcnt);
351}
352
353/*
354 * This will be used as a shrinker list's index.
355 * The main reason for not using cgroup id for this:
356 * this works better in sparse environments, where we have a lot of memcgs,
357 * but only a few kmem-limited. Or also, if we have, for instance, 200
358 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
359 * 200 entry array for that.
360 *
361 * The current size of the caches array is stored in memcg_nr_cache_ids. It
362 * will double each time we have to increase it.
363 */
364static DEFINE_IDA(memcg_cache_ida);
365int memcg_nr_cache_ids;
366
367/* Protects memcg_nr_cache_ids */
368static DECLARE_RWSEM(memcg_cache_ids_sem);
369
370void memcg_get_cache_ids(void)
371{
372 down_read(&memcg_cache_ids_sem);
373}
374
375void memcg_put_cache_ids(void)
376{
377 up_read(&memcg_cache_ids_sem);
378}
379
380/*
381 * MIN_SIZE is different than 1, because we would like to avoid going through
382 * the alloc/free process all the time. In a small machine, 4 kmem-limited
383 * cgroups is a reasonable guess. In the future, it could be a parameter or
384 * tunable, but that is strictly not necessary.
385 *
386 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
387 * this constant directly from cgroup, but it is understandable that this is
388 * better kept as an internal representation in cgroup.c. In any case, the
389 * cgrp_id space is not getting any smaller, and we don't have to necessarily
390 * increase ours as well if it increases.
391 */
392#define MEMCG_CACHES_MIN_SIZE 4
393#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
394
395/*
396 * A lot of the calls to the cache allocation functions are expected to be
397 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
398 * conditional to this static branch, we'll have to allow modules that does
399 * kmem_cache_alloc and the such to see this symbol as well
400 */
401DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
402EXPORT_SYMBOL(memcg_kmem_enabled_key);
403#endif
404
405static int memcg_shrinker_map_size;
406static DEFINE_MUTEX(memcg_shrinker_map_mutex);
407
408static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
409{
410 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
411}
412
413static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
414 int size, int old_size)
415{
416 struct memcg_shrinker_map *new, *old;
417 int nid;
418
419 lockdep_assert_held(&memcg_shrinker_map_mutex);
420
421 for_each_node(nid) {
422 old = rcu_dereference_protected(
423 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
424 /* Not yet online memcg */
425 if (!old)
426 return 0;
427
428 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
429 if (!new)
430 return -ENOMEM;
431
432 /* Set all old bits, clear all new bits */
433 memset(new->map, (int)0xff, old_size);
434 memset((void *)new->map + old_size, 0, size - old_size);
435
436 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
437 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
438 }
439
440 return 0;
441}
442
443static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
444{
445 struct mem_cgroup_per_node *pn;
446 struct memcg_shrinker_map *map;
447 int nid;
448
449 if (mem_cgroup_is_root(memcg))
450 return;
451
452 for_each_node(nid) {
453 pn = mem_cgroup_nodeinfo(memcg, nid);
454 map = rcu_dereference_protected(pn->shrinker_map, true);
455 kvfree(map);
456 rcu_assign_pointer(pn->shrinker_map, NULL);
457 }
458}
459
460static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
461{
462 struct memcg_shrinker_map *map;
463 int nid, size, ret = 0;
464
465 if (mem_cgroup_is_root(memcg))
466 return 0;
467
468 mutex_lock(&memcg_shrinker_map_mutex);
469 size = memcg_shrinker_map_size;
470 for_each_node(nid) {
471 map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
472 if (!map) {
473 memcg_free_shrinker_maps(memcg);
474 ret = -ENOMEM;
475 break;
476 }
477 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
478 }
479 mutex_unlock(&memcg_shrinker_map_mutex);
480
481 return ret;
482}
483
484int memcg_expand_shrinker_maps(int new_id)
485{
486 int size, old_size, ret = 0;
487 struct mem_cgroup *memcg;
488
489 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
490 old_size = memcg_shrinker_map_size;
491 if (size <= old_size)
492 return 0;
493
494 mutex_lock(&memcg_shrinker_map_mutex);
495 if (!root_mem_cgroup)
496 goto unlock;
497
498 for_each_mem_cgroup(memcg) {
499 if (mem_cgroup_is_root(memcg))
500 continue;
501 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
502 if (ret) {
503 mem_cgroup_iter_break(NULL, memcg);
504 goto unlock;
505 }
506 }
507unlock:
508 if (!ret)
509 memcg_shrinker_map_size = size;
510 mutex_unlock(&memcg_shrinker_map_mutex);
511 return ret;
512}
513
514void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
515{
516 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
517 struct memcg_shrinker_map *map;
518
519 rcu_read_lock();
520 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
521 /* Pairs with smp mb in shrink_slab() */
522 smp_mb__before_atomic();
523 set_bit(shrinker_id, map->map);
524 rcu_read_unlock();
525 }
526}
527
528/**
529 * mem_cgroup_css_from_page - css of the memcg associated with a page
530 * @page: page of interest
531 *
532 * If memcg is bound to the default hierarchy, css of the memcg associated
533 * with @page is returned. The returned css remains associated with @page
534 * until it is released.
535 *
536 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
537 * is returned.
538 */
539struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
540{
541 struct mem_cgroup *memcg;
542
543 memcg = page_memcg(page);
544
545 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
546 memcg = root_mem_cgroup;
547
548 return &memcg->css;
549}
550
551/**
552 * page_cgroup_ino - return inode number of the memcg a page is charged to
553 * @page: the page
554 *
555 * Look up the closest online ancestor of the memory cgroup @page is charged to
556 * and return its inode number or 0 if @page is not charged to any cgroup. It
557 * is safe to call this function without holding a reference to @page.
558 *
559 * Note, this function is inherently racy, because there is nothing to prevent
560 * the cgroup inode from getting torn down and potentially reallocated a moment
561 * after page_cgroup_ino() returns, so it only should be used by callers that
562 * do not care (such as procfs interfaces).
563 */
564ino_t page_cgroup_ino(struct page *page)
565{
566 struct mem_cgroup *memcg;
567 unsigned long ino = 0;
568
569 rcu_read_lock();
570 memcg = page_memcg_check(page);
571
572 while (memcg && !(memcg->css.flags & CSS_ONLINE))
573 memcg = parent_mem_cgroup(memcg);
574 if (memcg)
575 ino = cgroup_ino(memcg->css.cgroup);
576 rcu_read_unlock();
577 return ino;
578}
579
580static struct mem_cgroup_per_node *
581mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
582{
583 int nid = page_to_nid(page);
584
585 return memcg->nodeinfo[nid];
586}
587
588static struct mem_cgroup_tree_per_node *
589soft_limit_tree_node(int nid)
590{
591 return soft_limit_tree.rb_tree_per_node[nid];
592}
593
594static struct mem_cgroup_tree_per_node *
595soft_limit_tree_from_page(struct page *page)
596{
597 int nid = page_to_nid(page);
598
599 return soft_limit_tree.rb_tree_per_node[nid];
600}
601
602static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
603 struct mem_cgroup_tree_per_node *mctz,
604 unsigned long new_usage_in_excess)
605{
606 struct rb_node **p = &mctz->rb_root.rb_node;
607 struct rb_node *parent = NULL;
608 struct mem_cgroup_per_node *mz_node;
609 bool rightmost = true;
610
611 if (mz->on_tree)
612 return;
613
614 mz->usage_in_excess = new_usage_in_excess;
615 if (!mz->usage_in_excess)
616 return;
617 while (*p) {
618 parent = *p;
619 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
620 tree_node);
621 if (mz->usage_in_excess < mz_node->usage_in_excess) {
622 p = &(*p)->rb_left;
623 rightmost = false;
624 } else {
625 p = &(*p)->rb_right;
626 }
627 }
628
629 if (rightmost)
630 mctz->rb_rightmost = &mz->tree_node;
631
632 rb_link_node(&mz->tree_node, parent, p);
633 rb_insert_color(&mz->tree_node, &mctz->rb_root);
634 mz->on_tree = true;
635}
636
637static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
638 struct mem_cgroup_tree_per_node *mctz)
639{
640 if (!mz->on_tree)
641 return;
642
643 if (&mz->tree_node == mctz->rb_rightmost)
644 mctz->rb_rightmost = rb_prev(&mz->tree_node);
645
646 rb_erase(&mz->tree_node, &mctz->rb_root);
647 mz->on_tree = false;
648}
649
650static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
651 struct mem_cgroup_tree_per_node *mctz)
652{
653 unsigned long flags;
654
655 spin_lock_irqsave(&mctz->lock, flags);
656 __mem_cgroup_remove_exceeded(mz, mctz);
657 spin_unlock_irqrestore(&mctz->lock, flags);
658}
659
660static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
661{
662 unsigned long nr_pages = page_counter_read(&memcg->memory);
663 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
664 unsigned long excess = 0;
665
666 if (nr_pages > soft_limit)
667 excess = nr_pages - soft_limit;
668
669 return excess;
670}
671
672static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
673{
674 unsigned long excess;
675 struct mem_cgroup_per_node *mz;
676 struct mem_cgroup_tree_per_node *mctz;
677
678 mctz = soft_limit_tree_from_page(page);
679 if (!mctz)
680 return;
681 /*
682 * Necessary to update all ancestors when hierarchy is used.
683 * because their event counter is not touched.
684 */
685 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
686 mz = mem_cgroup_page_nodeinfo(memcg, page);
687 excess = soft_limit_excess(memcg);
688 /*
689 * We have to update the tree if mz is on RB-tree or
690 * mem is over its softlimit.
691 */
692 if (excess || mz->on_tree) {
693 unsigned long flags;
694
695 spin_lock_irqsave(&mctz->lock, flags);
696 /* if on-tree, remove it */
697 if (mz->on_tree)
698 __mem_cgroup_remove_exceeded(mz, mctz);
699 /*
700 * Insert again. mz->usage_in_excess will be updated.
701 * If excess is 0, no tree ops.
702 */
703 __mem_cgroup_insert_exceeded(mz, mctz, excess);
704 spin_unlock_irqrestore(&mctz->lock, flags);
705 }
706 }
707}
708
709static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
710{
711 struct mem_cgroup_tree_per_node *mctz;
712 struct mem_cgroup_per_node *mz;
713 int nid;
714
715 for_each_node(nid) {
716 mz = mem_cgroup_nodeinfo(memcg, nid);
717 mctz = soft_limit_tree_node(nid);
718 if (mctz)
719 mem_cgroup_remove_exceeded(mz, mctz);
720 }
721}
722
723static struct mem_cgroup_per_node *
724__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
725{
726 struct mem_cgroup_per_node *mz;
727
728retry:
729 mz = NULL;
730 if (!mctz->rb_rightmost)
731 goto done; /* Nothing to reclaim from */
732
733 mz = rb_entry(mctz->rb_rightmost,
734 struct mem_cgroup_per_node, tree_node);
735 /*
736 * Remove the node now but someone else can add it back,
737 * we will to add it back at the end of reclaim to its correct
738 * position in the tree.
739 */
740 __mem_cgroup_remove_exceeded(mz, mctz);
741 if (!soft_limit_excess(mz->memcg) ||
742 !css_tryget(&mz->memcg->css))
743 goto retry;
744done:
745 return mz;
746}
747
748static struct mem_cgroup_per_node *
749mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
750{
751 struct mem_cgroup_per_node *mz;
752
753 spin_lock_irq(&mctz->lock);
754 mz = __mem_cgroup_largest_soft_limit_node(mctz);
755 spin_unlock_irq(&mctz->lock);
756 return mz;
757}
758
759/**
760 * __mod_memcg_state - update cgroup memory statistics
761 * @memcg: the memory cgroup
762 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
763 * @val: delta to add to the counter, can be negative
764 */
765void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
766{
767 long x, threshold = MEMCG_CHARGE_BATCH;
768
769 if (mem_cgroup_disabled())
770 return;
771
772 if (memcg_stat_item_in_bytes(idx))
773 threshold <<= PAGE_SHIFT;
774
775 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
776 if (unlikely(abs(x) > threshold)) {
777 struct mem_cgroup *mi;
778
779 /*
780 * Batch local counters to keep them in sync with
781 * the hierarchical ones.
782 */
783 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
784 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
785 atomic_long_add(x, &mi->vmstats[idx]);
786 x = 0;
787 }
788 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
789}
790
791static struct mem_cgroup_per_node *
792parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
793{
794 struct mem_cgroup *parent;
795
796 parent = parent_mem_cgroup(pn->memcg);
797 if (!parent)
798 return NULL;
799 return mem_cgroup_nodeinfo(parent, nid);
800}
801
802void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
803 int val)
804{
805 struct mem_cgroup_per_node *pn;
806 struct mem_cgroup *memcg;
807 long x, threshold = MEMCG_CHARGE_BATCH;
808
809 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
810 memcg = pn->memcg;
811
812 /* Update memcg */
813 __mod_memcg_state(memcg, idx, val);
814
815 /* Update lruvec */
816 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
817
818 if (vmstat_item_in_bytes(idx))
819 threshold <<= PAGE_SHIFT;
820
821 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
822 if (unlikely(abs(x) > threshold)) {
823 pg_data_t *pgdat = lruvec_pgdat(lruvec);
824 struct mem_cgroup_per_node *pi;
825
826 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
827 atomic_long_add(x, &pi->lruvec_stat[idx]);
828 x = 0;
829 }
830 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
831}
832
833/**
834 * __mod_lruvec_state - update lruvec memory statistics
835 * @lruvec: the lruvec
836 * @idx: the stat item
837 * @val: delta to add to the counter, can be negative
838 *
839 * The lruvec is the intersection of the NUMA node and a cgroup. This
840 * function updates the all three counters that are affected by a
841 * change of state at this level: per-node, per-cgroup, per-lruvec.
842 */
843void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
844 int val)
845{
846 /* Update node */
847 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
848
849 /* Update memcg and lruvec */
850 if (!mem_cgroup_disabled())
851 __mod_memcg_lruvec_state(lruvec, idx, val);
852}
853
854void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
855 int val)
856{
857 struct page *head = compound_head(page); /* rmap on tail pages */
858 struct mem_cgroup *memcg = page_memcg(head);
859 pg_data_t *pgdat = page_pgdat(page);
860 struct lruvec *lruvec;
861
862 /* Untracked pages have no memcg, no lruvec. Update only the node */
863 if (!memcg) {
864 __mod_node_page_state(pgdat, idx, val);
865 return;
866 }
867
868 lruvec = mem_cgroup_lruvec(memcg, pgdat);
869 __mod_lruvec_state(lruvec, idx, val);
870}
871EXPORT_SYMBOL(__mod_lruvec_page_state);
872
873void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
874{
875 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
876 struct mem_cgroup *memcg;
877 struct lruvec *lruvec;
878
879 rcu_read_lock();
880 memcg = mem_cgroup_from_obj(p);
881
882 /*
883 * Untracked pages have no memcg, no lruvec. Update only the
884 * node. If we reparent the slab objects to the root memcg,
885 * when we free the slab object, we need to update the per-memcg
886 * vmstats to keep it correct for the root memcg.
887 */
888 if (!memcg) {
889 __mod_node_page_state(pgdat, idx, val);
890 } else {
891 lruvec = mem_cgroup_lruvec(memcg, pgdat);
892 __mod_lruvec_state(lruvec, idx, val);
893 }
894 rcu_read_unlock();
895}
896
897/**
898 * __count_memcg_events - account VM events in a cgroup
899 * @memcg: the memory cgroup
900 * @idx: the event item
901 * @count: the number of events that occured
902 */
903void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
904 unsigned long count)
905{
906 unsigned long x;
907
908 if (mem_cgroup_disabled())
909 return;
910
911 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
912 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
913 struct mem_cgroup *mi;
914
915 /*
916 * Batch local counters to keep them in sync with
917 * the hierarchical ones.
918 */
919 __this_cpu_add(memcg->vmstats_local->events[idx], x);
920 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
921 atomic_long_add(x, &mi->vmevents[idx]);
922 x = 0;
923 }
924 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
925}
926
927static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
928{
929 return atomic_long_read(&memcg->vmevents[event]);
930}
931
932static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
933{
934 long x = 0;
935 int cpu;
936
937 for_each_possible_cpu(cpu)
938 x += per_cpu(memcg->vmstats_local->events[event], cpu);
939 return x;
940}
941
942static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
943 struct page *page,
944 int nr_pages)
945{
946 /* pagein of a big page is an event. So, ignore page size */
947 if (nr_pages > 0)
948 __count_memcg_events(memcg, PGPGIN, 1);
949 else {
950 __count_memcg_events(memcg, PGPGOUT, 1);
951 nr_pages = -nr_pages; /* for event */
952 }
953
954 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
955}
956
957static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
958 enum mem_cgroup_events_target target)
959{
960 unsigned long val, next;
961
962 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
963 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
964 /* from time_after() in jiffies.h */
965 if ((long)(next - val) < 0) {
966 switch (target) {
967 case MEM_CGROUP_TARGET_THRESH:
968 next = val + THRESHOLDS_EVENTS_TARGET;
969 break;
970 case MEM_CGROUP_TARGET_SOFTLIMIT:
971 next = val + SOFTLIMIT_EVENTS_TARGET;
972 break;
973 default:
974 break;
975 }
976 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
977 return true;
978 }
979 return false;
980}
981
982/*
983 * Check events in order.
984 *
985 */
986static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
987{
988 /* threshold event is triggered in finer grain than soft limit */
989 if (unlikely(mem_cgroup_event_ratelimit(memcg,
990 MEM_CGROUP_TARGET_THRESH))) {
991 bool do_softlimit;
992
993 do_softlimit = mem_cgroup_event_ratelimit(memcg,
994 MEM_CGROUP_TARGET_SOFTLIMIT);
995 mem_cgroup_threshold(memcg);
996 if (unlikely(do_softlimit))
997 mem_cgroup_update_tree(memcg, page);
998 }
999}
1000
1001struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1002{
1003 /*
1004 * mm_update_next_owner() may clear mm->owner to NULL
1005 * if it races with swapoff, page migration, etc.
1006 * So this can be called with p == NULL.
1007 */
1008 if (unlikely(!p))
1009 return NULL;
1010
1011 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1012}
1013EXPORT_SYMBOL(mem_cgroup_from_task);
1014
1015/**
1016 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1017 * @mm: mm from which memcg should be extracted. It can be NULL.
1018 *
1019 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
1020 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
1021 * returned.
1022 */
1023struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1024{
1025 struct mem_cgroup *memcg;
1026
1027 if (mem_cgroup_disabled())
1028 return NULL;
1029
1030 rcu_read_lock();
1031 do {
1032 /*
1033 * Page cache insertions can happen withou an
1034 * actual mm context, e.g. during disk probing
1035 * on boot, loopback IO, acct() writes etc.
1036 */
1037 if (unlikely(!mm))
1038 memcg = root_mem_cgroup;
1039 else {
1040 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1041 if (unlikely(!memcg))
1042 memcg = root_mem_cgroup;
1043 }
1044 } while (!css_tryget(&memcg->css));
1045 rcu_read_unlock();
1046 return memcg;
1047}
1048EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1049
1050static __always_inline struct mem_cgroup *active_memcg(void)
1051{
1052 if (in_interrupt())
1053 return this_cpu_read(int_active_memcg);
1054 else
1055 return current->active_memcg;
1056}
1057
1058static __always_inline struct mem_cgroup *get_active_memcg(void)
1059{
1060 struct mem_cgroup *memcg;
1061
1062 rcu_read_lock();
1063 memcg = active_memcg();
1064 /* remote memcg must hold a ref. */
1065 if (memcg && WARN_ON_ONCE(!css_tryget(&memcg->css)))
1066 memcg = root_mem_cgroup;
1067 rcu_read_unlock();
1068
1069 return memcg;
1070}
1071
1072static __always_inline bool memcg_kmem_bypass(void)
1073{
1074 /* Allow remote memcg charging from any context. */
1075 if (unlikely(active_memcg()))
1076 return false;
1077
1078 /* Memcg to charge can't be determined. */
1079 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
1080 return true;
1081
1082 return false;
1083}
1084
1085/**
1086 * If active memcg is set, do not fallback to current->mm->memcg.
1087 */
1088static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1089{
1090 if (memcg_kmem_bypass())
1091 return NULL;
1092
1093 if (unlikely(active_memcg()))
1094 return get_active_memcg();
1095
1096 return get_mem_cgroup_from_mm(current->mm);
1097}
1098
1099/**
1100 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1101 * @root: hierarchy root
1102 * @prev: previously returned memcg, NULL on first invocation
1103 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1104 *
1105 * Returns references to children of the hierarchy below @root, or
1106 * @root itself, or %NULL after a full round-trip.
1107 *
1108 * Caller must pass the return value in @prev on subsequent
1109 * invocations for reference counting, or use mem_cgroup_iter_break()
1110 * to cancel a hierarchy walk before the round-trip is complete.
1111 *
1112 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1113 * in the hierarchy among all concurrent reclaimers operating on the
1114 * same node.
1115 */
1116struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1117 struct mem_cgroup *prev,
1118 struct mem_cgroup_reclaim_cookie *reclaim)
1119{
1120 struct mem_cgroup_reclaim_iter *iter;
1121 struct cgroup_subsys_state *css = NULL;
1122 struct mem_cgroup *memcg = NULL;
1123 struct mem_cgroup *pos = NULL;
1124
1125 if (mem_cgroup_disabled())
1126 return NULL;
1127
1128 if (!root)
1129 root = root_mem_cgroup;
1130
1131 if (prev && !reclaim)
1132 pos = prev;
1133
1134 rcu_read_lock();
1135
1136 if (reclaim) {
1137 struct mem_cgroup_per_node *mz;
1138
1139 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1140 iter = &mz->iter;
1141
1142 if (prev && reclaim->generation != iter->generation)
1143 goto out_unlock;
1144
1145 while (1) {
1146 pos = READ_ONCE(iter->position);
1147 if (!pos || css_tryget(&pos->css))
1148 break;
1149 /*
1150 * css reference reached zero, so iter->position will
1151 * be cleared by ->css_released. However, we should not
1152 * rely on this happening soon, because ->css_released
1153 * is called from a work queue, and by busy-waiting we
1154 * might block it. So we clear iter->position right
1155 * away.
1156 */
1157 (void)cmpxchg(&iter->position, pos, NULL);
1158 }
1159 }
1160
1161 if (pos)
1162 css = &pos->css;
1163
1164 for (;;) {
1165 css = css_next_descendant_pre(css, &root->css);
1166 if (!css) {
1167 /*
1168 * Reclaimers share the hierarchy walk, and a
1169 * new one might jump in right at the end of
1170 * the hierarchy - make sure they see at least
1171 * one group and restart from the beginning.
1172 */
1173 if (!prev)
1174 continue;
1175 break;
1176 }
1177
1178 /*
1179 * Verify the css and acquire a reference. The root
1180 * is provided by the caller, so we know it's alive
1181 * and kicking, and don't take an extra reference.
1182 */
1183 memcg = mem_cgroup_from_css(css);
1184
1185 if (css == &root->css)
1186 break;
1187
1188 if (css_tryget(css))
1189 break;
1190
1191 memcg = NULL;
1192 }
1193
1194 if (reclaim) {
1195 /*
1196 * The position could have already been updated by a competing
1197 * thread, so check that the value hasn't changed since we read
1198 * it to avoid reclaiming from the same cgroup twice.
1199 */
1200 (void)cmpxchg(&iter->position, pos, memcg);
1201
1202 if (pos)
1203 css_put(&pos->css);
1204
1205 if (!memcg)
1206 iter->generation++;
1207 else if (!prev)
1208 reclaim->generation = iter->generation;
1209 }
1210
1211out_unlock:
1212 rcu_read_unlock();
1213 if (prev && prev != root)
1214 css_put(&prev->css);
1215
1216 return memcg;
1217}
1218
1219/**
1220 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1221 * @root: hierarchy root
1222 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1223 */
1224void mem_cgroup_iter_break(struct mem_cgroup *root,
1225 struct mem_cgroup *prev)
1226{
1227 if (!root)
1228 root = root_mem_cgroup;
1229 if (prev && prev != root)
1230 css_put(&prev->css);
1231}
1232
1233static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1234 struct mem_cgroup *dead_memcg)
1235{
1236 struct mem_cgroup_reclaim_iter *iter;
1237 struct mem_cgroup_per_node *mz;
1238 int nid;
1239
1240 for_each_node(nid) {
1241 mz = mem_cgroup_nodeinfo(from, nid);
1242 iter = &mz->iter;
1243 cmpxchg(&iter->position, dead_memcg, NULL);
1244 }
1245}
1246
1247static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1248{
1249 struct mem_cgroup *memcg = dead_memcg;
1250 struct mem_cgroup *last;
1251
1252 do {
1253 __invalidate_reclaim_iterators(memcg, dead_memcg);
1254 last = memcg;
1255 } while ((memcg = parent_mem_cgroup(memcg)));
1256
1257 /*
1258 * When cgruop1 non-hierarchy mode is used,
1259 * parent_mem_cgroup() does not walk all the way up to the
1260 * cgroup root (root_mem_cgroup). So we have to handle
1261 * dead_memcg from cgroup root separately.
1262 */
1263 if (last != root_mem_cgroup)
1264 __invalidate_reclaim_iterators(root_mem_cgroup,
1265 dead_memcg);
1266}
1267
1268/**
1269 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1270 * @memcg: hierarchy root
1271 * @fn: function to call for each task
1272 * @arg: argument passed to @fn
1273 *
1274 * This function iterates over tasks attached to @memcg or to any of its
1275 * descendants and calls @fn for each task. If @fn returns a non-zero
1276 * value, the function breaks the iteration loop and returns the value.
1277 * Otherwise, it will iterate over all tasks and return 0.
1278 *
1279 * This function must not be called for the root memory cgroup.
1280 */
1281int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1282 int (*fn)(struct task_struct *, void *), void *arg)
1283{
1284 struct mem_cgroup *iter;
1285 int ret = 0;
1286
1287 BUG_ON(memcg == root_mem_cgroup);
1288
1289 for_each_mem_cgroup_tree(iter, memcg) {
1290 struct css_task_iter it;
1291 struct task_struct *task;
1292
1293 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1294 while (!ret && (task = css_task_iter_next(&it)))
1295 ret = fn(task, arg);
1296 css_task_iter_end(&it);
1297 if (ret) {
1298 mem_cgroup_iter_break(memcg, iter);
1299 break;
1300 }
1301 }
1302 return ret;
1303}
1304
1305#ifdef CONFIG_DEBUG_VM
1306void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
1307{
1308 struct mem_cgroup *memcg;
1309
1310 if (mem_cgroup_disabled())
1311 return;
1312
1313 memcg = page_memcg(page);
1314
1315 if (!memcg)
1316 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != root_mem_cgroup, page);
1317 else
1318 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != memcg, page);
1319}
1320#endif
1321
1322/**
1323 * lock_page_lruvec - lock and return lruvec for a given page.
1324 * @page: the page
1325 *
1326 * These functions are safe to use under any of the following conditions:
1327 * - page locked
1328 * - PageLRU cleared
1329 * - lock_page_memcg()
1330 * - page->_refcount is zero
1331 */
1332struct lruvec *lock_page_lruvec(struct page *page)
1333{
1334 struct lruvec *lruvec;
1335 struct pglist_data *pgdat = page_pgdat(page);
1336
1337 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1338 spin_lock(&lruvec->lru_lock);
1339
1340 lruvec_memcg_debug(lruvec, page);
1341
1342 return lruvec;
1343}
1344
1345struct lruvec *lock_page_lruvec_irq(struct page *page)
1346{
1347 struct lruvec *lruvec;
1348 struct pglist_data *pgdat = page_pgdat(page);
1349
1350 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1351 spin_lock_irq(&lruvec->lru_lock);
1352
1353 lruvec_memcg_debug(lruvec, page);
1354
1355 return lruvec;
1356}
1357
1358struct lruvec *lock_page_lruvec_irqsave(struct page *page, unsigned long *flags)
1359{
1360 struct lruvec *lruvec;
1361 struct pglist_data *pgdat = page_pgdat(page);
1362
1363 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1364 spin_lock_irqsave(&lruvec->lru_lock, *flags);
1365
1366 lruvec_memcg_debug(lruvec, page);
1367
1368 return lruvec;
1369}
1370
1371/**
1372 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1373 * @lruvec: mem_cgroup per zone lru vector
1374 * @lru: index of lru list the page is sitting on
1375 * @zid: zone id of the accounted pages
1376 * @nr_pages: positive when adding or negative when removing
1377 *
1378 * This function must be called under lru_lock, just before a page is added
1379 * to or just after a page is removed from an lru list (that ordering being
1380 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1381 */
1382void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1383 int zid, int nr_pages)
1384{
1385 struct mem_cgroup_per_node *mz;
1386 unsigned long *lru_size;
1387 long size;
1388
1389 if (mem_cgroup_disabled())
1390 return;
1391
1392 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1393 lru_size = &mz->lru_zone_size[zid][lru];
1394
1395 if (nr_pages < 0)
1396 *lru_size += nr_pages;
1397
1398 size = *lru_size;
1399 if (WARN_ONCE(size < 0,
1400 "%s(%p, %d, %d): lru_size %ld\n",
1401 __func__, lruvec, lru, nr_pages, size)) {
1402 VM_BUG_ON(1);
1403 *lru_size = 0;
1404 }
1405
1406 if (nr_pages > 0)
1407 *lru_size += nr_pages;
1408}
1409
1410/**
1411 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1412 * @memcg: the memory cgroup
1413 *
1414 * Returns the maximum amount of memory @mem can be charged with, in
1415 * pages.
1416 */
1417static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1418{
1419 unsigned long margin = 0;
1420 unsigned long count;
1421 unsigned long limit;
1422
1423 count = page_counter_read(&memcg->memory);
1424 limit = READ_ONCE(memcg->memory.max);
1425 if (count < limit)
1426 margin = limit - count;
1427
1428 if (do_memsw_account()) {
1429 count = page_counter_read(&memcg->memsw);
1430 limit = READ_ONCE(memcg->memsw.max);
1431 if (count < limit)
1432 margin = min(margin, limit - count);
1433 else
1434 margin = 0;
1435 }
1436
1437 return margin;
1438}
1439
1440/*
1441 * A routine for checking "mem" is under move_account() or not.
1442 *
1443 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1444 * moving cgroups. This is for waiting at high-memory pressure
1445 * caused by "move".
1446 */
1447static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1448{
1449 struct mem_cgroup *from;
1450 struct mem_cgroup *to;
1451 bool ret = false;
1452 /*
1453 * Unlike task_move routines, we access mc.to, mc.from not under
1454 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1455 */
1456 spin_lock(&mc.lock);
1457 from = mc.from;
1458 to = mc.to;
1459 if (!from)
1460 goto unlock;
1461
1462 ret = mem_cgroup_is_descendant(from, memcg) ||
1463 mem_cgroup_is_descendant(to, memcg);
1464unlock:
1465 spin_unlock(&mc.lock);
1466 return ret;
1467}
1468
1469static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1470{
1471 if (mc.moving_task && current != mc.moving_task) {
1472 if (mem_cgroup_under_move(memcg)) {
1473 DEFINE_WAIT(wait);
1474 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1475 /* moving charge context might have finished. */
1476 if (mc.moving_task)
1477 schedule();
1478 finish_wait(&mc.waitq, &wait);
1479 return true;
1480 }
1481 }
1482 return false;
1483}
1484
1485struct memory_stat {
1486 const char *name;
1487 unsigned int idx;
1488};
1489
1490static const struct memory_stat memory_stats[] = {
1491 { "anon", NR_ANON_MAPPED },
1492 { "file", NR_FILE_PAGES },
1493 { "kernel_stack", NR_KERNEL_STACK_KB },
1494 { "pagetables", NR_PAGETABLE },
1495 { "percpu", MEMCG_PERCPU_B },
1496 { "sock", MEMCG_SOCK },
1497 { "shmem", NR_SHMEM },
1498 { "file_mapped", NR_FILE_MAPPED },
1499 { "file_dirty", NR_FILE_DIRTY },
1500 { "file_writeback", NR_WRITEBACK },
1501#ifdef CONFIG_SWAP
1502 { "swapcached", NR_SWAPCACHE },
1503#endif
1504#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1505 { "anon_thp", NR_ANON_THPS },
1506 { "file_thp", NR_FILE_THPS },
1507 { "shmem_thp", NR_SHMEM_THPS },
1508#endif
1509 { "inactive_anon", NR_INACTIVE_ANON },
1510 { "active_anon", NR_ACTIVE_ANON },
1511 { "inactive_file", NR_INACTIVE_FILE },
1512 { "active_file", NR_ACTIVE_FILE },
1513 { "unevictable", NR_UNEVICTABLE },
1514 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
1515 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
1516
1517 /* The memory events */
1518 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
1519 { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
1520 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
1521 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
1522 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
1523 { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
1524 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
1525};
1526
1527/* Translate stat items to the correct unit for memory.stat output */
1528static int memcg_page_state_unit(int item)
1529{
1530 switch (item) {
1531 case MEMCG_PERCPU_B:
1532 case NR_SLAB_RECLAIMABLE_B:
1533 case NR_SLAB_UNRECLAIMABLE_B:
1534 case WORKINGSET_REFAULT_ANON:
1535 case WORKINGSET_REFAULT_FILE:
1536 case WORKINGSET_ACTIVATE_ANON:
1537 case WORKINGSET_ACTIVATE_FILE:
1538 case WORKINGSET_RESTORE_ANON:
1539 case WORKINGSET_RESTORE_FILE:
1540 case WORKINGSET_NODERECLAIM:
1541 return 1;
1542 case NR_KERNEL_STACK_KB:
1543 return SZ_1K;
1544 default:
1545 return PAGE_SIZE;
1546 }
1547}
1548
1549static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1550 int item)
1551{
1552 return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1553}
1554
1555static char *memory_stat_format(struct mem_cgroup *memcg)
1556{
1557 struct seq_buf s;
1558 int i;
1559
1560 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1561 if (!s.buffer)
1562 return NULL;
1563
1564 /*
1565 * Provide statistics on the state of the memory subsystem as
1566 * well as cumulative event counters that show past behavior.
1567 *
1568 * This list is ordered following a combination of these gradients:
1569 * 1) generic big picture -> specifics and details
1570 * 2) reflecting userspace activity -> reflecting kernel heuristics
1571 *
1572 * Current memory state:
1573 */
1574
1575 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1576 u64 size;
1577
1578 size = memcg_page_state_output(memcg, memory_stats[i].idx);
1579 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1580
1581 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1582 size += memcg_page_state_output(memcg,
1583 NR_SLAB_RECLAIMABLE_B);
1584 seq_buf_printf(&s, "slab %llu\n", size);
1585 }
1586 }
1587
1588 /* Accumulated memory events */
1589
1590 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1591 memcg_events(memcg, PGFAULT));
1592 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1593 memcg_events(memcg, PGMAJFAULT));
1594 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1595 memcg_events(memcg, PGREFILL));
1596 seq_buf_printf(&s, "pgscan %lu\n",
1597 memcg_events(memcg, PGSCAN_KSWAPD) +
1598 memcg_events(memcg, PGSCAN_DIRECT));
1599 seq_buf_printf(&s, "pgsteal %lu\n",
1600 memcg_events(memcg, PGSTEAL_KSWAPD) +
1601 memcg_events(memcg, PGSTEAL_DIRECT));
1602 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1603 memcg_events(memcg, PGACTIVATE));
1604 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1605 memcg_events(memcg, PGDEACTIVATE));
1606 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1607 memcg_events(memcg, PGLAZYFREE));
1608 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1609 memcg_events(memcg, PGLAZYFREED));
1610
1611#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1612 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1613 memcg_events(memcg, THP_FAULT_ALLOC));
1614 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1615 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1616#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1617
1618 /* The above should easily fit into one page */
1619 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1620
1621 return s.buffer;
1622}
1623
1624#define K(x) ((x) << (PAGE_SHIFT-10))
1625/**
1626 * mem_cgroup_print_oom_context: Print OOM information relevant to
1627 * memory controller.
1628 * @memcg: The memory cgroup that went over limit
1629 * @p: Task that is going to be killed
1630 *
1631 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1632 * enabled
1633 */
1634void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1635{
1636 rcu_read_lock();
1637
1638 if (memcg) {
1639 pr_cont(",oom_memcg=");
1640 pr_cont_cgroup_path(memcg->css.cgroup);
1641 } else
1642 pr_cont(",global_oom");
1643 if (p) {
1644 pr_cont(",task_memcg=");
1645 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1646 }
1647 rcu_read_unlock();
1648}
1649
1650/**
1651 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1652 * memory controller.
1653 * @memcg: The memory cgroup that went over limit
1654 */
1655void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1656{
1657 char *buf;
1658
1659 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1660 K((u64)page_counter_read(&memcg->memory)),
1661 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1662 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1663 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1664 K((u64)page_counter_read(&memcg->swap)),
1665 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1666 else {
1667 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1668 K((u64)page_counter_read(&memcg->memsw)),
1669 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1670 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1671 K((u64)page_counter_read(&memcg->kmem)),
1672 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1673 }
1674
1675 pr_info("Memory cgroup stats for ");
1676 pr_cont_cgroup_path(memcg->css.cgroup);
1677 pr_cont(":");
1678 buf = memory_stat_format(memcg);
1679 if (!buf)
1680 return;
1681 pr_info("%s", buf);
1682 kfree(buf);
1683}
1684
1685/*
1686 * Return the memory (and swap, if configured) limit for a memcg.
1687 */
1688unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1689{
1690 unsigned long max = READ_ONCE(memcg->memory.max);
1691
1692 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1693 if (mem_cgroup_swappiness(memcg))
1694 max += min(READ_ONCE(memcg->swap.max),
1695 (unsigned long)total_swap_pages);
1696 } else { /* v1 */
1697 if (mem_cgroup_swappiness(memcg)) {
1698 /* Calculate swap excess capacity from memsw limit */
1699 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1700
1701 max += min(swap, (unsigned long)total_swap_pages);
1702 }
1703 }
1704 return max;
1705}
1706
1707unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1708{
1709 return page_counter_read(&memcg->memory);
1710}
1711
1712static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1713 int order)
1714{
1715 struct oom_control oc = {
1716 .zonelist = NULL,
1717 .nodemask = NULL,
1718 .memcg = memcg,
1719 .gfp_mask = gfp_mask,
1720 .order = order,
1721 };
1722 bool ret = true;
1723
1724 if (mutex_lock_killable(&oom_lock))
1725 return true;
1726
1727 if (mem_cgroup_margin(memcg) >= (1 << order))
1728 goto unlock;
1729
1730 /*
1731 * A few threads which were not waiting at mutex_lock_killable() can
1732 * fail to bail out. Therefore, check again after holding oom_lock.
1733 */
1734 ret = should_force_charge() || out_of_memory(&oc);
1735
1736unlock:
1737 mutex_unlock(&oom_lock);
1738 return ret;
1739}
1740
1741static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1742 pg_data_t *pgdat,
1743 gfp_t gfp_mask,
1744 unsigned long *total_scanned)
1745{
1746 struct mem_cgroup *victim = NULL;
1747 int total = 0;
1748 int loop = 0;
1749 unsigned long excess;
1750 unsigned long nr_scanned;
1751 struct mem_cgroup_reclaim_cookie reclaim = {
1752 .pgdat = pgdat,
1753 };
1754
1755 excess = soft_limit_excess(root_memcg);
1756
1757 while (1) {
1758 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1759 if (!victim) {
1760 loop++;
1761 if (loop >= 2) {
1762 /*
1763 * If we have not been able to reclaim
1764 * anything, it might because there are
1765 * no reclaimable pages under this hierarchy
1766 */
1767 if (!total)
1768 break;
1769 /*
1770 * We want to do more targeted reclaim.
1771 * excess >> 2 is not to excessive so as to
1772 * reclaim too much, nor too less that we keep
1773 * coming back to reclaim from this cgroup
1774 */
1775 if (total >= (excess >> 2) ||
1776 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1777 break;
1778 }
1779 continue;
1780 }
1781 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1782 pgdat, &nr_scanned);
1783 *total_scanned += nr_scanned;
1784 if (!soft_limit_excess(root_memcg))
1785 break;
1786 }
1787 mem_cgroup_iter_break(root_memcg, victim);
1788 return total;
1789}
1790
1791#ifdef CONFIG_LOCKDEP
1792static struct lockdep_map memcg_oom_lock_dep_map = {
1793 .name = "memcg_oom_lock",
1794};
1795#endif
1796
1797static DEFINE_SPINLOCK(memcg_oom_lock);
1798
1799/*
1800 * Check OOM-Killer is already running under our hierarchy.
1801 * If someone is running, return false.
1802 */
1803static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1804{
1805 struct mem_cgroup *iter, *failed = NULL;
1806
1807 spin_lock(&memcg_oom_lock);
1808
1809 for_each_mem_cgroup_tree(iter, memcg) {
1810 if (iter->oom_lock) {
1811 /*
1812 * this subtree of our hierarchy is already locked
1813 * so we cannot give a lock.
1814 */
1815 failed = iter;
1816 mem_cgroup_iter_break(memcg, iter);
1817 break;
1818 } else
1819 iter->oom_lock = true;
1820 }
1821
1822 if (failed) {
1823 /*
1824 * OK, we failed to lock the whole subtree so we have
1825 * to clean up what we set up to the failing subtree
1826 */
1827 for_each_mem_cgroup_tree(iter, memcg) {
1828 if (iter == failed) {
1829 mem_cgroup_iter_break(memcg, iter);
1830 break;
1831 }
1832 iter->oom_lock = false;
1833 }
1834 } else
1835 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1836
1837 spin_unlock(&memcg_oom_lock);
1838
1839 return !failed;
1840}
1841
1842static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1843{
1844 struct mem_cgroup *iter;
1845
1846 spin_lock(&memcg_oom_lock);
1847 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1848 for_each_mem_cgroup_tree(iter, memcg)
1849 iter->oom_lock = false;
1850 spin_unlock(&memcg_oom_lock);
1851}
1852
1853static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1854{
1855 struct mem_cgroup *iter;
1856
1857 spin_lock(&memcg_oom_lock);
1858 for_each_mem_cgroup_tree(iter, memcg)
1859 iter->under_oom++;
1860 spin_unlock(&memcg_oom_lock);
1861}
1862
1863static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1864{
1865 struct mem_cgroup *iter;
1866
1867 /*
1868 * Be careful about under_oom underflows becase a child memcg
1869 * could have been added after mem_cgroup_mark_under_oom.
1870 */
1871 spin_lock(&memcg_oom_lock);
1872 for_each_mem_cgroup_tree(iter, memcg)
1873 if (iter->under_oom > 0)
1874 iter->under_oom--;
1875 spin_unlock(&memcg_oom_lock);
1876}
1877
1878static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1879
1880struct oom_wait_info {
1881 struct mem_cgroup *memcg;
1882 wait_queue_entry_t wait;
1883};
1884
1885static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1886 unsigned mode, int sync, void *arg)
1887{
1888 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1889 struct mem_cgroup *oom_wait_memcg;
1890 struct oom_wait_info *oom_wait_info;
1891
1892 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1893 oom_wait_memcg = oom_wait_info->memcg;
1894
1895 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1896 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1897 return 0;
1898 return autoremove_wake_function(wait, mode, sync, arg);
1899}
1900
1901static void memcg_oom_recover(struct mem_cgroup *memcg)
1902{
1903 /*
1904 * For the following lockless ->under_oom test, the only required
1905 * guarantee is that it must see the state asserted by an OOM when
1906 * this function is called as a result of userland actions
1907 * triggered by the notification of the OOM. This is trivially
1908 * achieved by invoking mem_cgroup_mark_under_oom() before
1909 * triggering notification.
1910 */
1911 if (memcg && memcg->under_oom)
1912 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1913}
1914
1915enum oom_status {
1916 OOM_SUCCESS,
1917 OOM_FAILED,
1918 OOM_ASYNC,
1919 OOM_SKIPPED
1920};
1921
1922static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1923{
1924 enum oom_status ret;
1925 bool locked;
1926
1927 if (order > PAGE_ALLOC_COSTLY_ORDER)
1928 return OOM_SKIPPED;
1929
1930 memcg_memory_event(memcg, MEMCG_OOM);
1931
1932 /*
1933 * We are in the middle of the charge context here, so we
1934 * don't want to block when potentially sitting on a callstack
1935 * that holds all kinds of filesystem and mm locks.
1936 *
1937 * cgroup1 allows disabling the OOM killer and waiting for outside
1938 * handling until the charge can succeed; remember the context and put
1939 * the task to sleep at the end of the page fault when all locks are
1940 * released.
1941 *
1942 * On the other hand, in-kernel OOM killer allows for an async victim
1943 * memory reclaim (oom_reaper) and that means that we are not solely
1944 * relying on the oom victim to make a forward progress and we can
1945 * invoke the oom killer here.
1946 *
1947 * Please note that mem_cgroup_out_of_memory might fail to find a
1948 * victim and then we have to bail out from the charge path.
1949 */
1950 if (memcg->oom_kill_disable) {
1951 if (!current->in_user_fault)
1952 return OOM_SKIPPED;
1953 css_get(&memcg->css);
1954 current->memcg_in_oom = memcg;
1955 current->memcg_oom_gfp_mask = mask;
1956 current->memcg_oom_order = order;
1957
1958 return OOM_ASYNC;
1959 }
1960
1961 mem_cgroup_mark_under_oom(memcg);
1962
1963 locked = mem_cgroup_oom_trylock(memcg);
1964
1965 if (locked)
1966 mem_cgroup_oom_notify(memcg);
1967
1968 mem_cgroup_unmark_under_oom(memcg);
1969 if (mem_cgroup_out_of_memory(memcg, mask, order))
1970 ret = OOM_SUCCESS;
1971 else
1972 ret = OOM_FAILED;
1973
1974 if (locked)
1975 mem_cgroup_oom_unlock(memcg);
1976
1977 return ret;
1978}
1979
1980/**
1981 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1982 * @handle: actually kill/wait or just clean up the OOM state
1983 *
1984 * This has to be called at the end of a page fault if the memcg OOM
1985 * handler was enabled.
1986 *
1987 * Memcg supports userspace OOM handling where failed allocations must
1988 * sleep on a waitqueue until the userspace task resolves the
1989 * situation. Sleeping directly in the charge context with all kinds
1990 * of locks held is not a good idea, instead we remember an OOM state
1991 * in the task and mem_cgroup_oom_synchronize() has to be called at
1992 * the end of the page fault to complete the OOM handling.
1993 *
1994 * Returns %true if an ongoing memcg OOM situation was detected and
1995 * completed, %false otherwise.
1996 */
1997bool mem_cgroup_oom_synchronize(bool handle)
1998{
1999 struct mem_cgroup *memcg = current->memcg_in_oom;
2000 struct oom_wait_info owait;
2001 bool locked;
2002
2003 /* OOM is global, do not handle */
2004 if (!memcg)
2005 return false;
2006
2007 if (!handle)
2008 goto cleanup;
2009
2010 owait.memcg = memcg;
2011 owait.wait.flags = 0;
2012 owait.wait.func = memcg_oom_wake_function;
2013 owait.wait.private = current;
2014 INIT_LIST_HEAD(&owait.wait.entry);
2015
2016 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2017 mem_cgroup_mark_under_oom(memcg);
2018
2019 locked = mem_cgroup_oom_trylock(memcg);
2020
2021 if (locked)
2022 mem_cgroup_oom_notify(memcg);
2023
2024 if (locked && !memcg->oom_kill_disable) {
2025 mem_cgroup_unmark_under_oom(memcg);
2026 finish_wait(&memcg_oom_waitq, &owait.wait);
2027 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
2028 current->memcg_oom_order);
2029 } else {
2030 schedule();
2031 mem_cgroup_unmark_under_oom(memcg);
2032 finish_wait(&memcg_oom_waitq, &owait.wait);
2033 }
2034
2035 if (locked) {
2036 mem_cgroup_oom_unlock(memcg);
2037 /*
2038 * There is no guarantee that an OOM-lock contender
2039 * sees the wakeups triggered by the OOM kill
2040 * uncharges. Wake any sleepers explicitely.
2041 */
2042 memcg_oom_recover(memcg);
2043 }
2044cleanup:
2045 current->memcg_in_oom = NULL;
2046 css_put(&memcg->css);
2047 return true;
2048}
2049
2050/**
2051 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2052 * @victim: task to be killed by the OOM killer
2053 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2054 *
2055 * Returns a pointer to a memory cgroup, which has to be cleaned up
2056 * by killing all belonging OOM-killable tasks.
2057 *
2058 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2059 */
2060struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2061 struct mem_cgroup *oom_domain)
2062{
2063 struct mem_cgroup *oom_group = NULL;
2064 struct mem_cgroup *memcg;
2065
2066 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2067 return NULL;
2068
2069 if (!oom_domain)
2070 oom_domain = root_mem_cgroup;
2071
2072 rcu_read_lock();
2073
2074 memcg = mem_cgroup_from_task(victim);
2075 if (memcg == root_mem_cgroup)
2076 goto out;
2077
2078 /*
2079 * If the victim task has been asynchronously moved to a different
2080 * memory cgroup, we might end up killing tasks outside oom_domain.
2081 * In this case it's better to ignore memory.group.oom.
2082 */
2083 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2084 goto out;
2085
2086 /*
2087 * Traverse the memory cgroup hierarchy from the victim task's
2088 * cgroup up to the OOMing cgroup (or root) to find the
2089 * highest-level memory cgroup with oom.group set.
2090 */
2091 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2092 if (memcg->oom_group)
2093 oom_group = memcg;
2094
2095 if (memcg == oom_domain)
2096 break;
2097 }
2098
2099 if (oom_group)
2100 css_get(&oom_group->css);
2101out:
2102 rcu_read_unlock();
2103
2104 return oom_group;
2105}
2106
2107void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2108{
2109 pr_info("Tasks in ");
2110 pr_cont_cgroup_path(memcg->css.cgroup);
2111 pr_cont(" are going to be killed due to memory.oom.group set\n");
2112}
2113
2114/**
2115 * lock_page_memcg - lock a page and memcg binding
2116 * @page: the page
2117 *
2118 * This function protects unlocked LRU pages from being moved to
2119 * another cgroup.
2120 *
2121 * It ensures lifetime of the returned memcg. Caller is responsible
2122 * for the lifetime of the page; __unlock_page_memcg() is available
2123 * when @page might get freed inside the locked section.
2124 */
2125struct mem_cgroup *lock_page_memcg(struct page *page)
2126{
2127 struct page *head = compound_head(page); /* rmap on tail pages */
2128 struct mem_cgroup *memcg;
2129 unsigned long flags;
2130
2131 /*
2132 * The RCU lock is held throughout the transaction. The fast
2133 * path can get away without acquiring the memcg->move_lock
2134 * because page moving starts with an RCU grace period.
2135 *
2136 * The RCU lock also protects the memcg from being freed when
2137 * the page state that is going to change is the only thing
2138 * preventing the page itself from being freed. E.g. writeback
2139 * doesn't hold a page reference and relies on PG_writeback to
2140 * keep off truncation, migration and so forth.
2141 */
2142 rcu_read_lock();
2143
2144 if (mem_cgroup_disabled())
2145 return NULL;
2146again:
2147 memcg = page_memcg(head);
2148 if (unlikely(!memcg))
2149 return NULL;
2150
2151#ifdef CONFIG_PROVE_LOCKING
2152 local_irq_save(flags);
2153 might_lock(&memcg->move_lock);
2154 local_irq_restore(flags);
2155#endif
2156
2157 if (atomic_read(&memcg->moving_account) <= 0)
2158 return memcg;
2159
2160 spin_lock_irqsave(&memcg->move_lock, flags);
2161 if (memcg != page_memcg(head)) {
2162 spin_unlock_irqrestore(&memcg->move_lock, flags);
2163 goto again;
2164 }
2165
2166 /*
2167 * When charge migration first begins, we can have locked and
2168 * unlocked page stat updates happening concurrently. Track
2169 * the task who has the lock for unlock_page_memcg().
2170 */
2171 memcg->move_lock_task = current;
2172 memcg->move_lock_flags = flags;
2173
2174 return memcg;
2175}
2176EXPORT_SYMBOL(lock_page_memcg);
2177
2178/**
2179 * __unlock_page_memcg - unlock and unpin a memcg
2180 * @memcg: the memcg
2181 *
2182 * Unlock and unpin a memcg returned by lock_page_memcg().
2183 */
2184void __unlock_page_memcg(struct mem_cgroup *memcg)
2185{
2186 if (memcg && memcg->move_lock_task == current) {
2187 unsigned long flags = memcg->move_lock_flags;
2188
2189 memcg->move_lock_task = NULL;
2190 memcg->move_lock_flags = 0;
2191
2192 spin_unlock_irqrestore(&memcg->move_lock, flags);
2193 }
2194
2195 rcu_read_unlock();
2196}
2197
2198/**
2199 * unlock_page_memcg - unlock a page and memcg binding
2200 * @page: the page
2201 */
2202void unlock_page_memcg(struct page *page)
2203{
2204 struct page *head = compound_head(page);
2205
2206 __unlock_page_memcg(page_memcg(head));
2207}
2208EXPORT_SYMBOL(unlock_page_memcg);
2209
2210struct memcg_stock_pcp {
2211 struct mem_cgroup *cached; /* this never be root cgroup */
2212 unsigned int nr_pages;
2213
2214#ifdef CONFIG_MEMCG_KMEM
2215 struct obj_cgroup *cached_objcg;
2216 unsigned int nr_bytes;
2217#endif
2218
2219 struct work_struct work;
2220 unsigned long flags;
2221#define FLUSHING_CACHED_CHARGE 0
2222};
2223static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2224static DEFINE_MUTEX(percpu_charge_mutex);
2225
2226#ifdef CONFIG_MEMCG_KMEM
2227static void drain_obj_stock(struct memcg_stock_pcp *stock);
2228static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2229 struct mem_cgroup *root_memcg);
2230
2231#else
2232static inline void drain_obj_stock(struct memcg_stock_pcp *stock)
2233{
2234}
2235static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2236 struct mem_cgroup *root_memcg)
2237{
2238 return false;
2239}
2240#endif
2241
2242/**
2243 * consume_stock: Try to consume stocked charge on this cpu.
2244 * @memcg: memcg to consume from.
2245 * @nr_pages: how many pages to charge.
2246 *
2247 * The charges will only happen if @memcg matches the current cpu's memcg
2248 * stock, and at least @nr_pages are available in that stock. Failure to
2249 * service an allocation will refill the stock.
2250 *
2251 * returns true if successful, false otherwise.
2252 */
2253static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2254{
2255 struct memcg_stock_pcp *stock;
2256 unsigned long flags;
2257 bool ret = false;
2258
2259 if (nr_pages > MEMCG_CHARGE_BATCH)
2260 return ret;
2261
2262 local_irq_save(flags);
2263
2264 stock = this_cpu_ptr(&memcg_stock);
2265 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2266 stock->nr_pages -= nr_pages;
2267 ret = true;
2268 }
2269
2270 local_irq_restore(flags);
2271
2272 return ret;
2273}
2274
2275/*
2276 * Returns stocks cached in percpu and reset cached information.
2277 */
2278static void drain_stock(struct memcg_stock_pcp *stock)
2279{
2280 struct mem_cgroup *old = stock->cached;
2281
2282 if (!old)
2283 return;
2284
2285 if (stock->nr_pages) {
2286 page_counter_uncharge(&old->memory, stock->nr_pages);
2287 if (do_memsw_account())
2288 page_counter_uncharge(&old->memsw, stock->nr_pages);
2289 stock->nr_pages = 0;
2290 }
2291
2292 css_put(&old->css);
2293 stock->cached = NULL;
2294}
2295
2296static void drain_local_stock(struct work_struct *dummy)
2297{
2298 struct memcg_stock_pcp *stock;
2299 unsigned long flags;
2300
2301 /*
2302 * The only protection from memory hotplug vs. drain_stock races is
2303 * that we always operate on local CPU stock here with IRQ disabled
2304 */
2305 local_irq_save(flags);
2306
2307 stock = this_cpu_ptr(&memcg_stock);
2308 drain_obj_stock(stock);
2309 drain_stock(stock);
2310 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2311
2312 local_irq_restore(flags);
2313}
2314
2315/*
2316 * Cache charges(val) to local per_cpu area.
2317 * This will be consumed by consume_stock() function, later.
2318 */
2319static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2320{
2321 struct memcg_stock_pcp *stock;
2322 unsigned long flags;
2323
2324 local_irq_save(flags);
2325
2326 stock = this_cpu_ptr(&memcg_stock);
2327 if (stock->cached != memcg) { /* reset if necessary */
2328 drain_stock(stock);
2329 css_get(&memcg->css);
2330 stock->cached = memcg;
2331 }
2332 stock->nr_pages += nr_pages;
2333
2334 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2335 drain_stock(stock);
2336
2337 local_irq_restore(flags);
2338}
2339
2340/*
2341 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2342 * of the hierarchy under it.
2343 */
2344static void drain_all_stock(struct mem_cgroup *root_memcg)
2345{
2346 int cpu, curcpu;
2347
2348 /* If someone's already draining, avoid adding running more workers. */
2349 if (!mutex_trylock(&percpu_charge_mutex))
2350 return;
2351 /*
2352 * Notify other cpus that system-wide "drain" is running
2353 * We do not care about races with the cpu hotplug because cpu down
2354 * as well as workers from this path always operate on the local
2355 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2356 */
2357 curcpu = get_cpu();
2358 for_each_online_cpu(cpu) {
2359 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2360 struct mem_cgroup *memcg;
2361 bool flush = false;
2362
2363 rcu_read_lock();
2364 memcg = stock->cached;
2365 if (memcg && stock->nr_pages &&
2366 mem_cgroup_is_descendant(memcg, root_memcg))
2367 flush = true;
2368 if (obj_stock_flush_required(stock, root_memcg))
2369 flush = true;
2370 rcu_read_unlock();
2371
2372 if (flush &&
2373 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2374 if (cpu == curcpu)
2375 drain_local_stock(&stock->work);
2376 else
2377 schedule_work_on(cpu, &stock->work);
2378 }
2379 }
2380 put_cpu();
2381 mutex_unlock(&percpu_charge_mutex);
2382}
2383
2384static int memcg_hotplug_cpu_dead(unsigned int cpu)
2385{
2386 struct memcg_stock_pcp *stock;
2387 struct mem_cgroup *memcg, *mi;
2388
2389 stock = &per_cpu(memcg_stock, cpu);
2390 drain_stock(stock);
2391
2392 for_each_mem_cgroup(memcg) {
2393 int i;
2394
2395 for (i = 0; i < MEMCG_NR_STAT; i++) {
2396 int nid;
2397 long x;
2398
2399 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2400 if (x)
2401 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2402 atomic_long_add(x, &memcg->vmstats[i]);
2403
2404 if (i >= NR_VM_NODE_STAT_ITEMS)
2405 continue;
2406
2407 for_each_node(nid) {
2408 struct mem_cgroup_per_node *pn;
2409
2410 pn = mem_cgroup_nodeinfo(memcg, nid);
2411 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2412 if (x)
2413 do {
2414 atomic_long_add(x, &pn->lruvec_stat[i]);
2415 } while ((pn = parent_nodeinfo(pn, nid)));
2416 }
2417 }
2418
2419 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2420 long x;
2421
2422 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2423 if (x)
2424 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2425 atomic_long_add(x, &memcg->vmevents[i]);
2426 }
2427 }
2428
2429 return 0;
2430}
2431
2432static unsigned long reclaim_high(struct mem_cgroup *memcg,
2433 unsigned int nr_pages,
2434 gfp_t gfp_mask)
2435{
2436 unsigned long nr_reclaimed = 0;
2437
2438 do {
2439 unsigned long pflags;
2440
2441 if (page_counter_read(&memcg->memory) <=
2442 READ_ONCE(memcg->memory.high))
2443 continue;
2444
2445 memcg_memory_event(memcg, MEMCG_HIGH);
2446
2447 psi_memstall_enter(&pflags);
2448 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2449 gfp_mask, true);
2450 psi_memstall_leave(&pflags);
2451 } while ((memcg = parent_mem_cgroup(memcg)) &&
2452 !mem_cgroup_is_root(memcg));
2453
2454 return nr_reclaimed;
2455}
2456
2457static void high_work_func(struct work_struct *work)
2458{
2459 struct mem_cgroup *memcg;
2460
2461 memcg = container_of(work, struct mem_cgroup, high_work);
2462 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2463}
2464
2465/*
2466 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2467 * enough to still cause a significant slowdown in most cases, while still
2468 * allowing diagnostics and tracing to proceed without becoming stuck.
2469 */
2470#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2471
2472/*
2473 * When calculating the delay, we use these either side of the exponentiation to
2474 * maintain precision and scale to a reasonable number of jiffies (see the table
2475 * below.
2476 *
2477 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2478 * overage ratio to a delay.
2479 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2480 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2481 * to produce a reasonable delay curve.
2482 *
2483 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2484 * reasonable delay curve compared to precision-adjusted overage, not
2485 * penalising heavily at first, but still making sure that growth beyond the
2486 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2487 * example, with a high of 100 megabytes:
2488 *
2489 * +-------+------------------------+
2490 * | usage | time to allocate in ms |
2491 * +-------+------------------------+
2492 * | 100M | 0 |
2493 * | 101M | 6 |
2494 * | 102M | 25 |
2495 * | 103M | 57 |
2496 * | 104M | 102 |
2497 * | 105M | 159 |
2498 * | 106M | 230 |
2499 * | 107M | 313 |
2500 * | 108M | 409 |
2501 * | 109M | 518 |
2502 * | 110M | 639 |
2503 * | 111M | 774 |
2504 * | 112M | 921 |
2505 * | 113M | 1081 |
2506 * | 114M | 1254 |
2507 * | 115M | 1439 |
2508 * | 116M | 1638 |
2509 * | 117M | 1849 |
2510 * | 118M | 2000 |
2511 * | 119M | 2000 |
2512 * | 120M | 2000 |
2513 * +-------+------------------------+
2514 */
2515 #define MEMCG_DELAY_PRECISION_SHIFT 20
2516 #define MEMCG_DELAY_SCALING_SHIFT 14
2517
2518static u64 calculate_overage(unsigned long usage, unsigned long high)
2519{
2520 u64 overage;
2521
2522 if (usage <= high)
2523 return 0;
2524
2525 /*
2526 * Prevent division by 0 in overage calculation by acting as if
2527 * it was a threshold of 1 page
2528 */
2529 high = max(high, 1UL);
2530
2531 overage = usage - high;
2532 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2533 return div64_u64(overage, high);
2534}
2535
2536static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2537{
2538 u64 overage, max_overage = 0;
2539
2540 do {
2541 overage = calculate_overage(page_counter_read(&memcg->memory),
2542 READ_ONCE(memcg->memory.high));
2543 max_overage = max(overage, max_overage);
2544 } while ((memcg = parent_mem_cgroup(memcg)) &&
2545 !mem_cgroup_is_root(memcg));
2546
2547 return max_overage;
2548}
2549
2550static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2551{
2552 u64 overage, max_overage = 0;
2553
2554 do {
2555 overage = calculate_overage(page_counter_read(&memcg->swap),
2556 READ_ONCE(memcg->swap.high));
2557 if (overage)
2558 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2559 max_overage = max(overage, max_overage);
2560 } while ((memcg = parent_mem_cgroup(memcg)) &&
2561 !mem_cgroup_is_root(memcg));
2562
2563 return max_overage;
2564}
2565
2566/*
2567 * Get the number of jiffies that we should penalise a mischievous cgroup which
2568 * is exceeding its memory.high by checking both it and its ancestors.
2569 */
2570static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2571 unsigned int nr_pages,
2572 u64 max_overage)
2573{
2574 unsigned long penalty_jiffies;
2575
2576 if (!max_overage)
2577 return 0;
2578
2579 /*
2580 * We use overage compared to memory.high to calculate the number of
2581 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2582 * fairly lenient on small overages, and increasingly harsh when the
2583 * memcg in question makes it clear that it has no intention of stopping
2584 * its crazy behaviour, so we exponentially increase the delay based on
2585 * overage amount.
2586 */
2587 penalty_jiffies = max_overage * max_overage * HZ;
2588 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2589 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2590
2591 /*
2592 * Factor in the task's own contribution to the overage, such that four
2593 * N-sized allocations are throttled approximately the same as one
2594 * 4N-sized allocation.
2595 *
2596 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2597 * larger the current charge patch is than that.
2598 */
2599 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2600}
2601
2602/*
2603 * Scheduled by try_charge() to be executed from the userland return path
2604 * and reclaims memory over the high limit.
2605 */
2606void mem_cgroup_handle_over_high(void)
2607{
2608 unsigned long penalty_jiffies;
2609 unsigned long pflags;
2610 unsigned long nr_reclaimed;
2611 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2612 int nr_retries = MAX_RECLAIM_RETRIES;
2613 struct mem_cgroup *memcg;
2614 bool in_retry = false;
2615
2616 if (likely(!nr_pages))
2617 return;
2618
2619 memcg = get_mem_cgroup_from_mm(current->mm);
2620 current->memcg_nr_pages_over_high = 0;
2621
2622retry_reclaim:
2623 /*
2624 * The allocating task should reclaim at least the batch size, but for
2625 * subsequent retries we only want to do what's necessary to prevent oom
2626 * or breaching resource isolation.
2627 *
2628 * This is distinct from memory.max or page allocator behaviour because
2629 * memory.high is currently batched, whereas memory.max and the page
2630 * allocator run every time an allocation is made.
2631 */
2632 nr_reclaimed = reclaim_high(memcg,
2633 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2634 GFP_KERNEL);
2635
2636 /*
2637 * memory.high is breached and reclaim is unable to keep up. Throttle
2638 * allocators proactively to slow down excessive growth.
2639 */
2640 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2641 mem_find_max_overage(memcg));
2642
2643 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2644 swap_find_max_overage(memcg));
2645
2646 /*
2647 * Clamp the max delay per usermode return so as to still keep the
2648 * application moving forwards and also permit diagnostics, albeit
2649 * extremely slowly.
2650 */
2651 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2652
2653 /*
2654 * Don't sleep if the amount of jiffies this memcg owes us is so low
2655 * that it's not even worth doing, in an attempt to be nice to those who
2656 * go only a small amount over their memory.high value and maybe haven't
2657 * been aggressively reclaimed enough yet.
2658 */
2659 if (penalty_jiffies <= HZ / 100)
2660 goto out;
2661
2662 /*
2663 * If reclaim is making forward progress but we're still over
2664 * memory.high, we want to encourage that rather than doing allocator
2665 * throttling.
2666 */
2667 if (nr_reclaimed || nr_retries--) {
2668 in_retry = true;
2669 goto retry_reclaim;
2670 }
2671
2672 /*
2673 * If we exit early, we're guaranteed to die (since
2674 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2675 * need to account for any ill-begotten jiffies to pay them off later.
2676 */
2677 psi_memstall_enter(&pflags);
2678 schedule_timeout_killable(penalty_jiffies);
2679 psi_memstall_leave(&pflags);
2680
2681out:
2682 css_put(&memcg->css);
2683}
2684
2685static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2686 unsigned int nr_pages)
2687{
2688 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2689 int nr_retries = MAX_RECLAIM_RETRIES;
2690 struct mem_cgroup *mem_over_limit;
2691 struct page_counter *counter;
2692 enum oom_status oom_status;
2693 unsigned long nr_reclaimed;
2694 bool may_swap = true;
2695 bool drained = false;
2696 unsigned long pflags;
2697
2698 if (mem_cgroup_is_root(memcg))
2699 return 0;
2700retry:
2701 if (consume_stock(memcg, nr_pages))
2702 return 0;
2703
2704 if (!do_memsw_account() ||
2705 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2706 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2707 goto done_restock;
2708 if (do_memsw_account())
2709 page_counter_uncharge(&memcg->memsw, batch);
2710 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2711 } else {
2712 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2713 may_swap = false;
2714 }
2715
2716 if (batch > nr_pages) {
2717 batch = nr_pages;
2718 goto retry;
2719 }
2720
2721 /*
2722 * Memcg doesn't have a dedicated reserve for atomic
2723 * allocations. But like the global atomic pool, we need to
2724 * put the burden of reclaim on regular allocation requests
2725 * and let these go through as privileged allocations.
2726 */
2727 if (gfp_mask & __GFP_ATOMIC)
2728 goto force;
2729
2730 /*
2731 * Unlike in global OOM situations, memcg is not in a physical
2732 * memory shortage. Allow dying and OOM-killed tasks to
2733 * bypass the last charges so that they can exit quickly and
2734 * free their memory.
2735 */
2736 if (unlikely(should_force_charge()))
2737 goto force;
2738
2739 /*
2740 * Prevent unbounded recursion when reclaim operations need to
2741 * allocate memory. This might exceed the limits temporarily,
2742 * but we prefer facilitating memory reclaim and getting back
2743 * under the limit over triggering OOM kills in these cases.
2744 */
2745 if (unlikely(current->flags & PF_MEMALLOC))
2746 goto force;
2747
2748 if (unlikely(task_in_memcg_oom(current)))
2749 goto nomem;
2750
2751 if (!gfpflags_allow_blocking(gfp_mask))
2752 goto nomem;
2753
2754 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2755
2756 psi_memstall_enter(&pflags);
2757 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2758 gfp_mask, may_swap);
2759 psi_memstall_leave(&pflags);
2760
2761 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2762 goto retry;
2763
2764 if (!drained) {
2765 drain_all_stock(mem_over_limit);
2766 drained = true;
2767 goto retry;
2768 }
2769
2770 if (gfp_mask & __GFP_NORETRY)
2771 goto nomem;
2772 /*
2773 * Even though the limit is exceeded at this point, reclaim
2774 * may have been able to free some pages. Retry the charge
2775 * before killing the task.
2776 *
2777 * Only for regular pages, though: huge pages are rather
2778 * unlikely to succeed so close to the limit, and we fall back
2779 * to regular pages anyway in case of failure.
2780 */
2781 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2782 goto retry;
2783 /*
2784 * At task move, charge accounts can be doubly counted. So, it's
2785 * better to wait until the end of task_move if something is going on.
2786 */
2787 if (mem_cgroup_wait_acct_move(mem_over_limit))
2788 goto retry;
2789
2790 if (nr_retries--)
2791 goto retry;
2792
2793 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2794 goto nomem;
2795
2796 if (gfp_mask & __GFP_NOFAIL)
2797 goto force;
2798
2799 if (fatal_signal_pending(current))
2800 goto force;
2801
2802 /*
2803 * keep retrying as long as the memcg oom killer is able to make
2804 * a forward progress or bypass the charge if the oom killer
2805 * couldn't make any progress.
2806 */
2807 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2808 get_order(nr_pages * PAGE_SIZE));
2809 switch (oom_status) {
2810 case OOM_SUCCESS:
2811 nr_retries = MAX_RECLAIM_RETRIES;
2812 goto retry;
2813 case OOM_FAILED:
2814 goto force;
2815 default:
2816 goto nomem;
2817 }
2818nomem:
2819 if (!(gfp_mask & __GFP_NOFAIL))
2820 return -ENOMEM;
2821force:
2822 /*
2823 * The allocation either can't fail or will lead to more memory
2824 * being freed very soon. Allow memory usage go over the limit
2825 * temporarily by force charging it.
2826 */
2827 page_counter_charge(&memcg->memory, nr_pages);
2828 if (do_memsw_account())
2829 page_counter_charge(&memcg->memsw, nr_pages);
2830
2831 return 0;
2832
2833done_restock:
2834 if (batch > nr_pages)
2835 refill_stock(memcg, batch - nr_pages);
2836
2837 /*
2838 * If the hierarchy is above the normal consumption range, schedule
2839 * reclaim on returning to userland. We can perform reclaim here
2840 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2841 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2842 * not recorded as it most likely matches current's and won't
2843 * change in the meantime. As high limit is checked again before
2844 * reclaim, the cost of mismatch is negligible.
2845 */
2846 do {
2847 bool mem_high, swap_high;
2848
2849 mem_high = page_counter_read(&memcg->memory) >
2850 READ_ONCE(memcg->memory.high);
2851 swap_high = page_counter_read(&memcg->swap) >
2852 READ_ONCE(memcg->swap.high);
2853
2854 /* Don't bother a random interrupted task */
2855 if (in_interrupt()) {
2856 if (mem_high) {
2857 schedule_work(&memcg->high_work);
2858 break;
2859 }
2860 continue;
2861 }
2862
2863 if (mem_high || swap_high) {
2864 /*
2865 * The allocating tasks in this cgroup will need to do
2866 * reclaim or be throttled to prevent further growth
2867 * of the memory or swap footprints.
2868 *
2869 * Target some best-effort fairness between the tasks,
2870 * and distribute reclaim work and delay penalties
2871 * based on how much each task is actually allocating.
2872 */
2873 current->memcg_nr_pages_over_high += batch;
2874 set_notify_resume(current);
2875 break;
2876 }
2877 } while ((memcg = parent_mem_cgroup(memcg)));
2878
2879 return 0;
2880}
2881
2882#if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2883static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2884{
2885 if (mem_cgroup_is_root(memcg))
2886 return;
2887
2888 page_counter_uncharge(&memcg->memory, nr_pages);
2889 if (do_memsw_account())
2890 page_counter_uncharge(&memcg->memsw, nr_pages);
2891}
2892#endif
2893
2894static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2895{
2896 VM_BUG_ON_PAGE(page_memcg(page), page);
2897 /*
2898 * Any of the following ensures page's memcg stability:
2899 *
2900 * - the page lock
2901 * - LRU isolation
2902 * - lock_page_memcg()
2903 * - exclusive reference
2904 */
2905 page->memcg_data = (unsigned long)memcg;
2906}
2907
2908#ifdef CONFIG_MEMCG_KMEM
2909int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2910 gfp_t gfp, bool new_page)
2911{
2912 unsigned int objects = objs_per_slab_page(s, page);
2913 unsigned long memcg_data;
2914 void *vec;
2915
2916 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2917 page_to_nid(page));
2918 if (!vec)
2919 return -ENOMEM;
2920
2921 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2922 if (new_page) {
2923 /*
2924 * If the slab page is brand new and nobody can yet access
2925 * it's memcg_data, no synchronization is required and
2926 * memcg_data can be simply assigned.
2927 */
2928 page->memcg_data = memcg_data;
2929 } else if (cmpxchg(&page->memcg_data, 0, memcg_data)) {
2930 /*
2931 * If the slab page is already in use, somebody can allocate
2932 * and assign obj_cgroups in parallel. In this case the existing
2933 * objcg vector should be reused.
2934 */
2935 kfree(vec);
2936 return 0;
2937 }
2938
2939 kmemleak_not_leak(vec);
2940 return 0;
2941}
2942
2943/*
2944 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2945 *
2946 * A passed kernel object can be a slab object or a generic kernel page, so
2947 * different mechanisms for getting the memory cgroup pointer should be used.
2948 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2949 * can not know for sure how the kernel object is implemented.
2950 * mem_cgroup_from_obj() can be safely used in such cases.
2951 *
2952 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2953 * cgroup_mutex, etc.
2954 */
2955struct mem_cgroup *mem_cgroup_from_obj(void *p)
2956{
2957 struct page *page;
2958
2959 if (mem_cgroup_disabled())
2960 return NULL;
2961
2962 page = virt_to_head_page(p);
2963
2964 /*
2965 * Slab objects are accounted individually, not per-page.
2966 * Memcg membership data for each individual object is saved in
2967 * the page->obj_cgroups.
2968 */
2969 if (page_objcgs_check(page)) {
2970 struct obj_cgroup *objcg;
2971 unsigned int off;
2972
2973 off = obj_to_index(page->slab_cache, page, p);
2974 objcg = page_objcgs(page)[off];
2975 if (objcg)
2976 return obj_cgroup_memcg(objcg);
2977
2978 return NULL;
2979 }
2980
2981 /*
2982 * page_memcg_check() is used here, because page_has_obj_cgroups()
2983 * check above could fail because the object cgroups vector wasn't set
2984 * at that moment, but it can be set concurrently.
2985 * page_memcg_check(page) will guarantee that a proper memory
2986 * cgroup pointer or NULL will be returned.
2987 */
2988 return page_memcg_check(page);
2989}
2990
2991__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2992{
2993 struct obj_cgroup *objcg = NULL;
2994 struct mem_cgroup *memcg;
2995
2996 if (memcg_kmem_bypass())
2997 return NULL;
2998
2999 rcu_read_lock();
3000 if (unlikely(active_memcg()))
3001 memcg = active_memcg();
3002 else
3003 memcg = mem_cgroup_from_task(current);
3004
3005 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
3006 objcg = rcu_dereference(memcg->objcg);
3007 if (objcg && obj_cgroup_tryget(objcg))
3008 break;
3009 objcg = NULL;
3010 }
3011 rcu_read_unlock();
3012
3013 return objcg;
3014}
3015
3016static int memcg_alloc_cache_id(void)
3017{
3018 int id, size;
3019 int err;
3020
3021 id = ida_simple_get(&memcg_cache_ida,
3022 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3023 if (id < 0)
3024 return id;
3025
3026 if (id < memcg_nr_cache_ids)
3027 return id;
3028
3029 /*
3030 * There's no space for the new id in memcg_caches arrays,
3031 * so we have to grow them.
3032 */
3033 down_write(&memcg_cache_ids_sem);
3034
3035 size = 2 * (id + 1);
3036 if (size < MEMCG_CACHES_MIN_SIZE)
3037 size = MEMCG_CACHES_MIN_SIZE;
3038 else if (size > MEMCG_CACHES_MAX_SIZE)
3039 size = MEMCG_CACHES_MAX_SIZE;
3040
3041 err = memcg_update_all_list_lrus(size);
3042 if (!err)
3043 memcg_nr_cache_ids = size;
3044
3045 up_write(&memcg_cache_ids_sem);
3046
3047 if (err) {
3048 ida_simple_remove(&memcg_cache_ida, id);
3049 return err;
3050 }
3051 return id;
3052}
3053
3054static void memcg_free_cache_id(int id)
3055{
3056 ida_simple_remove(&memcg_cache_ida, id);
3057}
3058
3059/**
3060 * __memcg_kmem_charge: charge a number of kernel pages to a memcg
3061 * @memcg: memory cgroup to charge
3062 * @gfp: reclaim mode
3063 * @nr_pages: number of pages to charge
3064 *
3065 * Returns 0 on success, an error code on failure.
3066 */
3067static int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
3068 unsigned int nr_pages)
3069{
3070 struct page_counter *counter;
3071 int ret;
3072
3073 ret = try_charge(memcg, gfp, nr_pages);
3074 if (ret)
3075 return ret;
3076
3077 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
3078 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
3079
3080 /*
3081 * Enforce __GFP_NOFAIL allocation because callers are not
3082 * prepared to see failures and likely do not have any failure
3083 * handling code.
3084 */
3085 if (gfp & __GFP_NOFAIL) {
3086 page_counter_charge(&memcg->kmem, nr_pages);
3087 return 0;
3088 }
3089 cancel_charge(memcg, nr_pages);
3090 return -ENOMEM;
3091 }
3092 return 0;
3093}
3094
3095/**
3096 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
3097 * @memcg: memcg to uncharge
3098 * @nr_pages: number of pages to uncharge
3099 */
3100static void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
3101{
3102 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
3103 page_counter_uncharge(&memcg->kmem, nr_pages);
3104
3105 refill_stock(memcg, nr_pages);
3106}
3107
3108/**
3109 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3110 * @page: page to charge
3111 * @gfp: reclaim mode
3112 * @order: allocation order
3113 *
3114 * Returns 0 on success, an error code on failure.
3115 */
3116int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3117{
3118 struct mem_cgroup *memcg;
3119 int ret = 0;
3120
3121 memcg = get_mem_cgroup_from_current();
3122 if (memcg && !mem_cgroup_is_root(memcg)) {
3123 ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
3124 if (!ret) {
3125 page->memcg_data = (unsigned long)memcg |
3126 MEMCG_DATA_KMEM;
3127 return 0;
3128 }
3129 css_put(&memcg->css);
3130 }
3131 return ret;
3132}
3133
3134/**
3135 * __memcg_kmem_uncharge_page: uncharge a kmem page
3136 * @page: page to uncharge
3137 * @order: allocation order
3138 */
3139void __memcg_kmem_uncharge_page(struct page *page, int order)
3140{
3141 struct mem_cgroup *memcg = page_memcg(page);
3142 unsigned int nr_pages = 1 << order;
3143
3144 if (!memcg)
3145 return;
3146
3147 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3148 __memcg_kmem_uncharge(memcg, nr_pages);
3149 page->memcg_data = 0;
3150 css_put(&memcg->css);
3151}
3152
3153static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3154{
3155 struct memcg_stock_pcp *stock;
3156 unsigned long flags;
3157 bool ret = false;
3158
3159 local_irq_save(flags);
3160
3161 stock = this_cpu_ptr(&memcg_stock);
3162 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3163 stock->nr_bytes -= nr_bytes;
3164 ret = true;
3165 }
3166
3167 local_irq_restore(flags);
3168
3169 return ret;
3170}
3171
3172static void drain_obj_stock(struct memcg_stock_pcp *stock)
3173{
3174 struct obj_cgroup *old = stock->cached_objcg;
3175
3176 if (!old)
3177 return;
3178
3179 if (stock->nr_bytes) {
3180 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3181 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3182
3183 if (nr_pages) {
3184 rcu_read_lock();
3185 __memcg_kmem_uncharge(obj_cgroup_memcg(old), nr_pages);
3186 rcu_read_unlock();
3187 }
3188
3189 /*
3190 * The leftover is flushed to the centralized per-memcg value.
3191 * On the next attempt to refill obj stock it will be moved
3192 * to a per-cpu stock (probably, on an other CPU), see
3193 * refill_obj_stock().
3194 *
3195 * How often it's flushed is a trade-off between the memory
3196 * limit enforcement accuracy and potential CPU contention,
3197 * so it might be changed in the future.
3198 */
3199 atomic_add(nr_bytes, &old->nr_charged_bytes);
3200 stock->nr_bytes = 0;
3201 }
3202
3203 obj_cgroup_put(old);
3204 stock->cached_objcg = NULL;
3205}
3206
3207static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3208 struct mem_cgroup *root_memcg)
3209{
3210 struct mem_cgroup *memcg;
3211
3212 if (stock->cached_objcg) {
3213 memcg = obj_cgroup_memcg(stock->cached_objcg);
3214 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3215 return true;
3216 }
3217
3218 return false;
3219}
3220
3221static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3222{
3223 struct memcg_stock_pcp *stock;
3224 unsigned long flags;
3225
3226 local_irq_save(flags);
3227
3228 stock = this_cpu_ptr(&memcg_stock);
3229 if (stock->cached_objcg != objcg) { /* reset if necessary */
3230 drain_obj_stock(stock);
3231 obj_cgroup_get(objcg);
3232 stock->cached_objcg = objcg;
3233 stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0);
3234 }
3235 stock->nr_bytes += nr_bytes;
3236
3237 if (stock->nr_bytes > PAGE_SIZE)
3238 drain_obj_stock(stock);
3239
3240 local_irq_restore(flags);
3241}
3242
3243int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3244{
3245 struct mem_cgroup *memcg;
3246 unsigned int nr_pages, nr_bytes;
3247 int ret;
3248
3249 if (consume_obj_stock(objcg, size))
3250 return 0;
3251
3252 /*
3253 * In theory, memcg->nr_charged_bytes can have enough
3254 * pre-charged bytes to satisfy the allocation. However,
3255 * flushing memcg->nr_charged_bytes requires two atomic
3256 * operations, and memcg->nr_charged_bytes can't be big,
3257 * so it's better to ignore it and try grab some new pages.
3258 * memcg->nr_charged_bytes will be flushed in
3259 * refill_obj_stock(), called from this function or
3260 * independently later.
3261 */
3262 rcu_read_lock();
3263retry:
3264 memcg = obj_cgroup_memcg(objcg);
3265 if (unlikely(!css_tryget(&memcg->css)))
3266 goto retry;
3267 rcu_read_unlock();
3268
3269 nr_pages = size >> PAGE_SHIFT;
3270 nr_bytes = size & (PAGE_SIZE - 1);
3271
3272 if (nr_bytes)
3273 nr_pages += 1;
3274
3275 ret = __memcg_kmem_charge(memcg, gfp, nr_pages);
3276 if (!ret && nr_bytes)
3277 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes);
3278
3279 css_put(&memcg->css);
3280 return ret;
3281}
3282
3283void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3284{
3285 refill_obj_stock(objcg, size);
3286}
3287
3288#endif /* CONFIG_MEMCG_KMEM */
3289
3290/*
3291 * Because page_memcg(head) is not set on tails, set it now.
3292 */
3293void split_page_memcg(struct page *head, unsigned int nr)
3294{
3295 struct mem_cgroup *memcg = page_memcg(head);
3296 int i;
3297
3298 if (mem_cgroup_disabled() || !memcg)
3299 return;
3300
3301 for (i = 1; i < nr; i++)
3302 head[i].memcg_data = head->memcg_data;
3303 css_get_many(&memcg->css, nr - 1);
3304}
3305
3306#ifdef CONFIG_MEMCG_SWAP
3307/**
3308 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3309 * @entry: swap entry to be moved
3310 * @from: mem_cgroup which the entry is moved from
3311 * @to: mem_cgroup which the entry is moved to
3312 *
3313 * It succeeds only when the swap_cgroup's record for this entry is the same
3314 * as the mem_cgroup's id of @from.
3315 *
3316 * Returns 0 on success, -EINVAL on failure.
3317 *
3318 * The caller must have charged to @to, IOW, called page_counter_charge() about
3319 * both res and memsw, and called css_get().
3320 */
3321static int mem_cgroup_move_swap_account(swp_entry_t entry,
3322 struct mem_cgroup *from, struct mem_cgroup *to)
3323{
3324 unsigned short old_id, new_id;
3325
3326 old_id = mem_cgroup_id(from);
3327 new_id = mem_cgroup_id(to);
3328
3329 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3330 mod_memcg_state(from, MEMCG_SWAP, -1);
3331 mod_memcg_state(to, MEMCG_SWAP, 1);
3332 return 0;
3333 }
3334 return -EINVAL;
3335}
3336#else
3337static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3338 struct mem_cgroup *from, struct mem_cgroup *to)
3339{
3340 return -EINVAL;
3341}
3342#endif
3343
3344static DEFINE_MUTEX(memcg_max_mutex);
3345
3346static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3347 unsigned long max, bool memsw)
3348{
3349 bool enlarge = false;
3350 bool drained = false;
3351 int ret;
3352 bool limits_invariant;
3353 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3354
3355 do {
3356 if (signal_pending(current)) {
3357 ret = -EINTR;
3358 break;
3359 }
3360
3361 mutex_lock(&memcg_max_mutex);
3362 /*
3363 * Make sure that the new limit (memsw or memory limit) doesn't
3364 * break our basic invariant rule memory.max <= memsw.max.
3365 */
3366 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3367 max <= memcg->memsw.max;
3368 if (!limits_invariant) {
3369 mutex_unlock(&memcg_max_mutex);
3370 ret = -EINVAL;
3371 break;
3372 }
3373 if (max > counter->max)
3374 enlarge = true;
3375 ret = page_counter_set_max(counter, max);
3376 mutex_unlock(&memcg_max_mutex);
3377
3378 if (!ret)
3379 break;
3380
3381 if (!drained) {
3382 drain_all_stock(memcg);
3383 drained = true;
3384 continue;
3385 }
3386
3387 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3388 GFP_KERNEL, !memsw)) {
3389 ret = -EBUSY;
3390 break;
3391 }
3392 } while (true);
3393
3394 if (!ret && enlarge)
3395 memcg_oom_recover(memcg);
3396
3397 return ret;
3398}
3399
3400unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3401 gfp_t gfp_mask,
3402 unsigned long *total_scanned)
3403{
3404 unsigned long nr_reclaimed = 0;
3405 struct mem_cgroup_per_node *mz, *next_mz = NULL;
3406 unsigned long reclaimed;
3407 int loop = 0;
3408 struct mem_cgroup_tree_per_node *mctz;
3409 unsigned long excess;
3410 unsigned long nr_scanned;
3411
3412 if (order > 0)
3413 return 0;
3414
3415 mctz = soft_limit_tree_node(pgdat->node_id);
3416
3417 /*
3418 * Do not even bother to check the largest node if the root
3419 * is empty. Do it lockless to prevent lock bouncing. Races
3420 * are acceptable as soft limit is best effort anyway.
3421 */
3422 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3423 return 0;
3424
3425 /*
3426 * This loop can run a while, specially if mem_cgroup's continuously
3427 * keep exceeding their soft limit and putting the system under
3428 * pressure
3429 */
3430 do {
3431 if (next_mz)
3432 mz = next_mz;
3433 else
3434 mz = mem_cgroup_largest_soft_limit_node(mctz);
3435 if (!mz)
3436 break;
3437
3438 nr_scanned = 0;
3439 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3440 gfp_mask, &nr_scanned);
3441 nr_reclaimed += reclaimed;
3442 *total_scanned += nr_scanned;
3443 spin_lock_irq(&mctz->lock);
3444 __mem_cgroup_remove_exceeded(mz, mctz);
3445
3446 /*
3447 * If we failed to reclaim anything from this memory cgroup
3448 * it is time to move on to the next cgroup
3449 */
3450 next_mz = NULL;
3451 if (!reclaimed)
3452 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3453
3454 excess = soft_limit_excess(mz->memcg);
3455 /*
3456 * One school of thought says that we should not add
3457 * back the node to the tree if reclaim returns 0.
3458 * But our reclaim could return 0, simply because due
3459 * to priority we are exposing a smaller subset of
3460 * memory to reclaim from. Consider this as a longer
3461 * term TODO.
3462 */
3463 /* If excess == 0, no tree ops */
3464 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3465 spin_unlock_irq(&mctz->lock);
3466 css_put(&mz->memcg->css);
3467 loop++;
3468 /*
3469 * Could not reclaim anything and there are no more
3470 * mem cgroups to try or we seem to be looping without
3471 * reclaiming anything.
3472 */
3473 if (!nr_reclaimed &&
3474 (next_mz == NULL ||
3475 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3476 break;
3477 } while (!nr_reclaimed);
3478 if (next_mz)
3479 css_put(&next_mz->memcg->css);
3480 return nr_reclaimed;
3481}
3482
3483/*
3484 * Reclaims as many pages from the given memcg as possible.
3485 *
3486 * Caller is responsible for holding css reference for memcg.
3487 */
3488static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3489{
3490 int nr_retries = MAX_RECLAIM_RETRIES;
3491
3492 /* we call try-to-free pages for make this cgroup empty */
3493 lru_add_drain_all();
3494
3495 drain_all_stock(memcg);
3496
3497 /* try to free all pages in this cgroup */
3498 while (nr_retries && page_counter_read(&memcg->memory)) {
3499 int progress;
3500
3501 if (signal_pending(current))
3502 return -EINTR;
3503
3504 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3505 GFP_KERNEL, true);
3506 if (!progress) {
3507 nr_retries--;
3508 /* maybe some writeback is necessary */
3509 congestion_wait(BLK_RW_ASYNC, HZ/10);
3510 }
3511
3512 }
3513
3514 return 0;
3515}
3516
3517static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3518 char *buf, size_t nbytes,
3519 loff_t off)
3520{
3521 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3522
3523 if (mem_cgroup_is_root(memcg))
3524 return -EINVAL;
3525 return mem_cgroup_force_empty(memcg) ?: nbytes;
3526}
3527
3528static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3529 struct cftype *cft)
3530{
3531 return 1;
3532}
3533
3534static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3535 struct cftype *cft, u64 val)
3536{
3537 if (val == 1)
3538 return 0;
3539
3540 pr_warn_once("Non-hierarchical mode is deprecated. "
3541 "Please report your usecase to linux-mm@kvack.org if you "
3542 "depend on this functionality.\n");
3543
3544 return -EINVAL;
3545}
3546
3547static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3548{
3549 unsigned long val;
3550
3551 if (mem_cgroup_is_root(memcg)) {
3552 val = memcg_page_state(memcg, NR_FILE_PAGES) +
3553 memcg_page_state(memcg, NR_ANON_MAPPED);
3554 if (swap)
3555 val += memcg_page_state(memcg, MEMCG_SWAP);
3556 } else {
3557 if (!swap)
3558 val = page_counter_read(&memcg->memory);
3559 else
3560 val = page_counter_read(&memcg->memsw);
3561 }
3562 return val;
3563}
3564
3565enum {
3566 RES_USAGE,
3567 RES_LIMIT,
3568 RES_MAX_USAGE,
3569 RES_FAILCNT,
3570 RES_SOFT_LIMIT,
3571};
3572
3573static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3574 struct cftype *cft)
3575{
3576 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3577 struct page_counter *counter;
3578
3579 switch (MEMFILE_TYPE(cft->private)) {
3580 case _MEM:
3581 counter = &memcg->memory;
3582 break;
3583 case _MEMSWAP:
3584 counter = &memcg->memsw;
3585 break;
3586 case _KMEM:
3587 counter = &memcg->kmem;
3588 break;
3589 case _TCP:
3590 counter = &memcg->tcpmem;
3591 break;
3592 default:
3593 BUG();
3594 }
3595
3596 switch (MEMFILE_ATTR(cft->private)) {
3597 case RES_USAGE:
3598 if (counter == &memcg->memory)
3599 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3600 if (counter == &memcg->memsw)
3601 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3602 return (u64)page_counter_read(counter) * PAGE_SIZE;
3603 case RES_LIMIT:
3604 return (u64)counter->max * PAGE_SIZE;
3605 case RES_MAX_USAGE:
3606 return (u64)counter->watermark * PAGE_SIZE;
3607 case RES_FAILCNT:
3608 return counter->failcnt;
3609 case RES_SOFT_LIMIT:
3610 return (u64)memcg->soft_limit * PAGE_SIZE;
3611 default:
3612 BUG();
3613 }
3614}
3615
3616static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3617{
3618 unsigned long stat[MEMCG_NR_STAT] = {0};
3619 struct mem_cgroup *mi;
3620 int node, cpu, i;
3621
3622 for_each_online_cpu(cpu)
3623 for (i = 0; i < MEMCG_NR_STAT; i++)
3624 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3625
3626 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3627 for (i = 0; i < MEMCG_NR_STAT; i++)
3628 atomic_long_add(stat[i], &mi->vmstats[i]);
3629
3630 for_each_node(node) {
3631 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3632 struct mem_cgroup_per_node *pi;
3633
3634 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3635 stat[i] = 0;
3636
3637 for_each_online_cpu(cpu)
3638 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3639 stat[i] += per_cpu(
3640 pn->lruvec_stat_cpu->count[i], cpu);
3641
3642 for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3643 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3644 atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3645 }
3646}
3647
3648static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3649{
3650 unsigned long events[NR_VM_EVENT_ITEMS];
3651 struct mem_cgroup *mi;
3652 int cpu, i;
3653
3654 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3655 events[i] = 0;
3656
3657 for_each_online_cpu(cpu)
3658 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3659 events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3660 cpu);
3661
3662 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3663 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3664 atomic_long_add(events[i], &mi->vmevents[i]);
3665}
3666
3667#ifdef CONFIG_MEMCG_KMEM
3668static int memcg_online_kmem(struct mem_cgroup *memcg)
3669{
3670 struct obj_cgroup *objcg;
3671 int memcg_id;
3672
3673 if (cgroup_memory_nokmem)
3674 return 0;
3675
3676 BUG_ON(memcg->kmemcg_id >= 0);
3677 BUG_ON(memcg->kmem_state);
3678
3679 memcg_id = memcg_alloc_cache_id();
3680 if (memcg_id < 0)
3681 return memcg_id;
3682
3683 objcg = obj_cgroup_alloc();
3684 if (!objcg) {
3685 memcg_free_cache_id(memcg_id);
3686 return -ENOMEM;
3687 }
3688 objcg->memcg = memcg;
3689 rcu_assign_pointer(memcg->objcg, objcg);
3690
3691 static_branch_enable(&memcg_kmem_enabled_key);
3692
3693 memcg->kmemcg_id = memcg_id;
3694 memcg->kmem_state = KMEM_ONLINE;
3695
3696 return 0;
3697}
3698
3699static void memcg_offline_kmem(struct mem_cgroup *memcg)
3700{
3701 struct cgroup_subsys_state *css;
3702 struct mem_cgroup *parent, *child;
3703 int kmemcg_id;
3704
3705 if (memcg->kmem_state != KMEM_ONLINE)
3706 return;
3707
3708 memcg->kmem_state = KMEM_ALLOCATED;
3709
3710 parent = parent_mem_cgroup(memcg);
3711 if (!parent)
3712 parent = root_mem_cgroup;
3713
3714 memcg_reparent_objcgs(memcg, parent);
3715
3716 kmemcg_id = memcg->kmemcg_id;
3717 BUG_ON(kmemcg_id < 0);
3718
3719 /*
3720 * Change kmemcg_id of this cgroup and all its descendants to the
3721 * parent's id, and then move all entries from this cgroup's list_lrus
3722 * to ones of the parent. After we have finished, all list_lrus
3723 * corresponding to this cgroup are guaranteed to remain empty. The
3724 * ordering is imposed by list_lru_node->lock taken by
3725 * memcg_drain_all_list_lrus().
3726 */
3727 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3728 css_for_each_descendant_pre(css, &memcg->css) {
3729 child = mem_cgroup_from_css(css);
3730 BUG_ON(child->kmemcg_id != kmemcg_id);
3731 child->kmemcg_id = parent->kmemcg_id;
3732 }
3733 rcu_read_unlock();
3734
3735 memcg_drain_all_list_lrus(kmemcg_id, parent);
3736
3737 memcg_free_cache_id(kmemcg_id);
3738}
3739
3740static void memcg_free_kmem(struct mem_cgroup *memcg)
3741{
3742 /* css_alloc() failed, offlining didn't happen */
3743 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3744 memcg_offline_kmem(memcg);
3745}
3746#else
3747static int memcg_online_kmem(struct mem_cgroup *memcg)
3748{
3749 return 0;
3750}
3751static void memcg_offline_kmem(struct mem_cgroup *memcg)
3752{
3753}
3754static void memcg_free_kmem(struct mem_cgroup *memcg)
3755{
3756}
3757#endif /* CONFIG_MEMCG_KMEM */
3758
3759static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3760 unsigned long max)
3761{
3762 int ret;
3763
3764 mutex_lock(&memcg_max_mutex);
3765 ret = page_counter_set_max(&memcg->kmem, max);
3766 mutex_unlock(&memcg_max_mutex);
3767 return ret;
3768}
3769
3770static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3771{
3772 int ret;
3773
3774 mutex_lock(&memcg_max_mutex);
3775
3776 ret = page_counter_set_max(&memcg->tcpmem, max);
3777 if (ret)
3778 goto out;
3779
3780 if (!memcg->tcpmem_active) {
3781 /*
3782 * The active flag needs to be written after the static_key
3783 * update. This is what guarantees that the socket activation
3784 * function is the last one to run. See mem_cgroup_sk_alloc()
3785 * for details, and note that we don't mark any socket as
3786 * belonging to this memcg until that flag is up.
3787 *
3788 * We need to do this, because static_keys will span multiple
3789 * sites, but we can't control their order. If we mark a socket
3790 * as accounted, but the accounting functions are not patched in
3791 * yet, we'll lose accounting.
3792 *
3793 * We never race with the readers in mem_cgroup_sk_alloc(),
3794 * because when this value change, the code to process it is not
3795 * patched in yet.
3796 */
3797 static_branch_inc(&memcg_sockets_enabled_key);
3798 memcg->tcpmem_active = true;
3799 }
3800out:
3801 mutex_unlock(&memcg_max_mutex);
3802 return ret;
3803}
3804
3805/*
3806 * The user of this function is...
3807 * RES_LIMIT.
3808 */
3809static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3810 char *buf, size_t nbytes, loff_t off)
3811{
3812 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3813 unsigned long nr_pages;
3814 int ret;
3815
3816 buf = strstrip(buf);
3817 ret = page_counter_memparse(buf, "-1", &nr_pages);
3818 if (ret)
3819 return ret;
3820
3821 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3822 case RES_LIMIT:
3823 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3824 ret = -EINVAL;
3825 break;
3826 }
3827 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3828 case _MEM:
3829 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3830 break;
3831 case _MEMSWAP:
3832 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3833 break;
3834 case _KMEM:
3835 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3836 "Please report your usecase to linux-mm@kvack.org if you "
3837 "depend on this functionality.\n");
3838 ret = memcg_update_kmem_max(memcg, nr_pages);
3839 break;
3840 case _TCP:
3841 ret = memcg_update_tcp_max(memcg, nr_pages);
3842 break;
3843 }
3844 break;
3845 case RES_SOFT_LIMIT:
3846 memcg->soft_limit = nr_pages;
3847 ret = 0;
3848 break;
3849 }
3850 return ret ?: nbytes;
3851}
3852
3853static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3854 size_t nbytes, loff_t off)
3855{
3856 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3857 struct page_counter *counter;
3858
3859 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3860 case _MEM:
3861 counter = &memcg->memory;
3862 break;
3863 case _MEMSWAP:
3864 counter = &memcg->memsw;
3865 break;
3866 case _KMEM:
3867 counter = &memcg->kmem;
3868 break;
3869 case _TCP:
3870 counter = &memcg->tcpmem;
3871 break;
3872 default:
3873 BUG();
3874 }
3875
3876 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3877 case RES_MAX_USAGE:
3878 page_counter_reset_watermark(counter);
3879 break;
3880 case RES_FAILCNT:
3881 counter->failcnt = 0;
3882 break;
3883 default:
3884 BUG();
3885 }
3886
3887 return nbytes;
3888}
3889
3890static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3891 struct cftype *cft)
3892{
3893 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3894}
3895
3896#ifdef CONFIG_MMU
3897static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3898 struct cftype *cft, u64 val)
3899{
3900 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3901
3902 if (val & ~MOVE_MASK)
3903 return -EINVAL;
3904
3905 /*
3906 * No kind of locking is needed in here, because ->can_attach() will
3907 * check this value once in the beginning of the process, and then carry
3908 * on with stale data. This means that changes to this value will only
3909 * affect task migrations starting after the change.
3910 */
3911 memcg->move_charge_at_immigrate = val;
3912 return 0;
3913}
3914#else
3915static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3916 struct cftype *cft, u64 val)
3917{
3918 return -ENOSYS;
3919}
3920#endif
3921
3922#ifdef CONFIG_NUMA
3923
3924#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3925#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3926#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3927
3928static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3929 int nid, unsigned int lru_mask, bool tree)
3930{
3931 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3932 unsigned long nr = 0;
3933 enum lru_list lru;
3934
3935 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3936
3937 for_each_lru(lru) {
3938 if (!(BIT(lru) & lru_mask))
3939 continue;
3940 if (tree)
3941 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3942 else
3943 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3944 }
3945 return nr;
3946}
3947
3948static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3949 unsigned int lru_mask,
3950 bool tree)
3951{
3952 unsigned long nr = 0;
3953 enum lru_list lru;
3954
3955 for_each_lru(lru) {
3956 if (!(BIT(lru) & lru_mask))
3957 continue;
3958 if (tree)
3959 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3960 else
3961 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3962 }
3963 return nr;
3964}
3965
3966static int memcg_numa_stat_show(struct seq_file *m, void *v)
3967{
3968 struct numa_stat {
3969 const char *name;
3970 unsigned int lru_mask;
3971 };
3972
3973 static const struct numa_stat stats[] = {
3974 { "total", LRU_ALL },
3975 { "file", LRU_ALL_FILE },
3976 { "anon", LRU_ALL_ANON },
3977 { "unevictable", BIT(LRU_UNEVICTABLE) },
3978 };
3979 const struct numa_stat *stat;
3980 int nid;
3981 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3982
3983 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3984 seq_printf(m, "%s=%lu", stat->name,
3985 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3986 false));
3987 for_each_node_state(nid, N_MEMORY)
3988 seq_printf(m, " N%d=%lu", nid,
3989 mem_cgroup_node_nr_lru_pages(memcg, nid,
3990 stat->lru_mask, false));
3991 seq_putc(m, '\n');
3992 }
3993
3994 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3995
3996 seq_printf(m, "hierarchical_%s=%lu", stat->name,
3997 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3998 true));
3999 for_each_node_state(nid, N_MEMORY)
4000 seq_printf(m, " N%d=%lu", nid,
4001 mem_cgroup_node_nr_lru_pages(memcg, nid,
4002 stat->lru_mask, true));
4003 seq_putc(m, '\n');
4004 }
4005
4006 return 0;
4007}
4008#endif /* CONFIG_NUMA */
4009
4010static const unsigned int memcg1_stats[] = {
4011 NR_FILE_PAGES,
4012 NR_ANON_MAPPED,
4013#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4014 NR_ANON_THPS,
4015#endif
4016 NR_SHMEM,
4017 NR_FILE_MAPPED,
4018 NR_FILE_DIRTY,
4019 NR_WRITEBACK,
4020 MEMCG_SWAP,
4021};
4022
4023static const char *const memcg1_stat_names[] = {
4024 "cache",
4025 "rss",
4026#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4027 "rss_huge",
4028#endif
4029 "shmem",
4030 "mapped_file",
4031 "dirty",
4032 "writeback",
4033 "swap",
4034};
4035
4036/* Universal VM events cgroup1 shows, original sort order */
4037static const unsigned int memcg1_events[] = {
4038 PGPGIN,
4039 PGPGOUT,
4040 PGFAULT,
4041 PGMAJFAULT,
4042};
4043
4044static int memcg_stat_show(struct seq_file *m, void *v)
4045{
4046 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4047 unsigned long memory, memsw;
4048 struct mem_cgroup *mi;
4049 unsigned int i;
4050
4051 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4052
4053 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4054 unsigned long nr;
4055
4056 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4057 continue;
4058 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4059 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
4060 }
4061
4062 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4063 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4064 memcg_events_local(memcg, memcg1_events[i]));
4065
4066 for (i = 0; i < NR_LRU_LISTS; i++)
4067 seq_printf(m, "%s %lu\n", lru_list_name(i),
4068 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4069 PAGE_SIZE);
4070
4071 /* Hierarchical information */
4072 memory = memsw = PAGE_COUNTER_MAX;
4073 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4074 memory = min(memory, READ_ONCE(mi->memory.max));
4075 memsw = min(memsw, READ_ONCE(mi->memsw.max));
4076 }
4077 seq_printf(m, "hierarchical_memory_limit %llu\n",
4078 (u64)memory * PAGE_SIZE);
4079 if (do_memsw_account())
4080 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4081 (u64)memsw * PAGE_SIZE);
4082
4083 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4084 unsigned long nr;
4085
4086 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4087 continue;
4088 nr = memcg_page_state(memcg, memcg1_stats[i]);
4089 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4090 (u64)nr * PAGE_SIZE);
4091 }
4092
4093 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4094 seq_printf(m, "total_%s %llu\n",
4095 vm_event_name(memcg1_events[i]),
4096 (u64)memcg_events(memcg, memcg1_events[i]));
4097
4098 for (i = 0; i < NR_LRU_LISTS; i++)
4099 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4100 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4101 PAGE_SIZE);
4102
4103#ifdef CONFIG_DEBUG_VM
4104 {
4105 pg_data_t *pgdat;
4106 struct mem_cgroup_per_node *mz;
4107 unsigned long anon_cost = 0;
4108 unsigned long file_cost = 0;
4109
4110 for_each_online_pgdat(pgdat) {
4111 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
4112
4113 anon_cost += mz->lruvec.anon_cost;
4114 file_cost += mz->lruvec.file_cost;
4115 }
4116 seq_printf(m, "anon_cost %lu\n", anon_cost);
4117 seq_printf(m, "file_cost %lu\n", file_cost);
4118 }
4119#endif
4120
4121 return 0;
4122}
4123
4124static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4125 struct cftype *cft)
4126{
4127 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4128
4129 return mem_cgroup_swappiness(memcg);
4130}
4131
4132static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4133 struct cftype *cft, u64 val)
4134{
4135 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4136
4137 if (val > 100)
4138 return -EINVAL;
4139
4140 if (css->parent)
4141 memcg->swappiness = val;
4142 else
4143 vm_swappiness = val;
4144
4145 return 0;
4146}
4147
4148static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4149{
4150 struct mem_cgroup_threshold_ary *t;
4151 unsigned long usage;
4152 int i;
4153
4154 rcu_read_lock();
4155 if (!swap)
4156 t = rcu_dereference(memcg->thresholds.primary);
4157 else
4158 t = rcu_dereference(memcg->memsw_thresholds.primary);
4159
4160 if (!t)
4161 goto unlock;
4162
4163 usage = mem_cgroup_usage(memcg, swap);
4164
4165 /*
4166 * current_threshold points to threshold just below or equal to usage.
4167 * If it's not true, a threshold was crossed after last
4168 * call of __mem_cgroup_threshold().
4169 */
4170 i = t->current_threshold;
4171
4172 /*
4173 * Iterate backward over array of thresholds starting from
4174 * current_threshold and check if a threshold is crossed.
4175 * If none of thresholds below usage is crossed, we read
4176 * only one element of the array here.
4177 */
4178 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4179 eventfd_signal(t->entries[i].eventfd, 1);
4180
4181 /* i = current_threshold + 1 */
4182 i++;
4183
4184 /*
4185 * Iterate forward over array of thresholds starting from
4186 * current_threshold+1 and check if a threshold is crossed.
4187 * If none of thresholds above usage is crossed, we read
4188 * only one element of the array here.
4189 */
4190 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4191 eventfd_signal(t->entries[i].eventfd, 1);
4192
4193 /* Update current_threshold */
4194 t->current_threshold = i - 1;
4195unlock:
4196 rcu_read_unlock();
4197}
4198
4199static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4200{
4201 while (memcg) {
4202 __mem_cgroup_threshold(memcg, false);
4203 if (do_memsw_account())
4204 __mem_cgroup_threshold(memcg, true);
4205
4206 memcg = parent_mem_cgroup(memcg);
4207 }
4208}
4209
4210static int compare_thresholds(const void *a, const void *b)
4211{
4212 const struct mem_cgroup_threshold *_a = a;
4213 const struct mem_cgroup_threshold *_b = b;
4214
4215 if (_a->threshold > _b->threshold)
4216 return 1;
4217
4218 if (_a->threshold < _b->threshold)
4219 return -1;
4220
4221 return 0;
4222}
4223
4224static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4225{
4226 struct mem_cgroup_eventfd_list *ev;
4227
4228 spin_lock(&memcg_oom_lock);
4229
4230 list_for_each_entry(ev, &memcg->oom_notify, list)
4231 eventfd_signal(ev->eventfd, 1);
4232
4233 spin_unlock(&memcg_oom_lock);
4234 return 0;
4235}
4236
4237static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4238{
4239 struct mem_cgroup *iter;
4240
4241 for_each_mem_cgroup_tree(iter, memcg)
4242 mem_cgroup_oom_notify_cb(iter);
4243}
4244
4245static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4246 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4247{
4248 struct mem_cgroup_thresholds *thresholds;
4249 struct mem_cgroup_threshold_ary *new;
4250 unsigned long threshold;
4251 unsigned long usage;
4252 int i, size, ret;
4253
4254 ret = page_counter_memparse(args, "-1", &threshold);
4255 if (ret)
4256 return ret;
4257
4258 mutex_lock(&memcg->thresholds_lock);
4259
4260 if (type == _MEM) {
4261 thresholds = &memcg->thresholds;
4262 usage = mem_cgroup_usage(memcg, false);
4263 } else if (type == _MEMSWAP) {
4264 thresholds = &memcg->memsw_thresholds;
4265 usage = mem_cgroup_usage(memcg, true);
4266 } else
4267 BUG();
4268
4269 /* Check if a threshold crossed before adding a new one */
4270 if (thresholds->primary)
4271 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4272
4273 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4274
4275 /* Allocate memory for new array of thresholds */
4276 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4277 if (!new) {
4278 ret = -ENOMEM;
4279 goto unlock;
4280 }
4281 new->size = size;
4282
4283 /* Copy thresholds (if any) to new array */
4284 if (thresholds->primary)
4285 memcpy(new->entries, thresholds->primary->entries,
4286 flex_array_size(new, entries, size - 1));
4287
4288 /* Add new threshold */
4289 new->entries[size - 1].eventfd = eventfd;
4290 new->entries[size - 1].threshold = threshold;
4291
4292 /* Sort thresholds. Registering of new threshold isn't time-critical */
4293 sort(new->entries, size, sizeof(*new->entries),
4294 compare_thresholds, NULL);
4295
4296 /* Find current threshold */
4297 new->current_threshold = -1;
4298 for (i = 0; i < size; i++) {
4299 if (new->entries[i].threshold <= usage) {
4300 /*
4301 * new->current_threshold will not be used until
4302 * rcu_assign_pointer(), so it's safe to increment
4303 * it here.
4304 */
4305 ++new->current_threshold;
4306 } else
4307 break;
4308 }
4309
4310 /* Free old spare buffer and save old primary buffer as spare */
4311 kfree(thresholds->spare);
4312 thresholds->spare = thresholds->primary;
4313
4314 rcu_assign_pointer(thresholds->primary, new);
4315
4316 /* To be sure that nobody uses thresholds */
4317 synchronize_rcu();
4318
4319unlock:
4320 mutex_unlock(&memcg->thresholds_lock);
4321
4322 return ret;
4323}
4324
4325static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4326 struct eventfd_ctx *eventfd, const char *args)
4327{
4328 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4329}
4330
4331static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4332 struct eventfd_ctx *eventfd, const char *args)
4333{
4334 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4335}
4336
4337static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4338 struct eventfd_ctx *eventfd, enum res_type type)
4339{
4340 struct mem_cgroup_thresholds *thresholds;
4341 struct mem_cgroup_threshold_ary *new;
4342 unsigned long usage;
4343 int i, j, size, entries;
4344
4345 mutex_lock(&memcg->thresholds_lock);
4346
4347 if (type == _MEM) {
4348 thresholds = &memcg->thresholds;
4349 usage = mem_cgroup_usage(memcg, false);
4350 } else if (type == _MEMSWAP) {
4351 thresholds = &memcg->memsw_thresholds;
4352 usage = mem_cgroup_usage(memcg, true);
4353 } else
4354 BUG();
4355
4356 if (!thresholds->primary)
4357 goto unlock;
4358
4359 /* Check if a threshold crossed before removing */
4360 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4361
4362 /* Calculate new number of threshold */
4363 size = entries = 0;
4364 for (i = 0; i < thresholds->primary->size; i++) {
4365 if (thresholds->primary->entries[i].eventfd != eventfd)
4366 size++;
4367 else
4368 entries++;
4369 }
4370
4371 new = thresholds->spare;
4372
4373 /* If no items related to eventfd have been cleared, nothing to do */
4374 if (!entries)
4375 goto unlock;
4376
4377 /* Set thresholds array to NULL if we don't have thresholds */
4378 if (!size) {
4379 kfree(new);
4380 new = NULL;
4381 goto swap_buffers;
4382 }
4383
4384 new->size = size;
4385
4386 /* Copy thresholds and find current threshold */
4387 new->current_threshold = -1;
4388 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4389 if (thresholds->primary->entries[i].eventfd == eventfd)
4390 continue;
4391
4392 new->entries[j] = thresholds->primary->entries[i];
4393 if (new->entries[j].threshold <= usage) {
4394 /*
4395 * new->current_threshold will not be used
4396 * until rcu_assign_pointer(), so it's safe to increment
4397 * it here.
4398 */
4399 ++new->current_threshold;
4400 }
4401 j++;
4402 }
4403
4404swap_buffers:
4405 /* Swap primary and spare array */
4406 thresholds->spare = thresholds->primary;
4407
4408 rcu_assign_pointer(thresholds->primary, new);
4409
4410 /* To be sure that nobody uses thresholds */
4411 synchronize_rcu();
4412
4413 /* If all events are unregistered, free the spare array */
4414 if (!new) {
4415 kfree(thresholds->spare);
4416 thresholds->spare = NULL;
4417 }
4418unlock:
4419 mutex_unlock(&memcg->thresholds_lock);
4420}
4421
4422static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4423 struct eventfd_ctx *eventfd)
4424{
4425 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4426}
4427
4428static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4429 struct eventfd_ctx *eventfd)
4430{
4431 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4432}
4433
4434static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4435 struct eventfd_ctx *eventfd, const char *args)
4436{
4437 struct mem_cgroup_eventfd_list *event;
4438
4439 event = kmalloc(sizeof(*event), GFP_KERNEL);
4440 if (!event)
4441 return -ENOMEM;
4442
4443 spin_lock(&memcg_oom_lock);
4444
4445 event->eventfd = eventfd;
4446 list_add(&event->list, &memcg->oom_notify);
4447
4448 /* already in OOM ? */
4449 if (memcg->under_oom)
4450 eventfd_signal(eventfd, 1);
4451 spin_unlock(&memcg_oom_lock);
4452
4453 return 0;
4454}
4455
4456static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4457 struct eventfd_ctx *eventfd)
4458{
4459 struct mem_cgroup_eventfd_list *ev, *tmp;
4460
4461 spin_lock(&memcg_oom_lock);
4462
4463 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4464 if (ev->eventfd == eventfd) {
4465 list_del(&ev->list);
4466 kfree(ev);
4467 }
4468 }
4469
4470 spin_unlock(&memcg_oom_lock);
4471}
4472
4473static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4474{
4475 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4476
4477 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4478 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4479 seq_printf(sf, "oom_kill %lu\n",
4480 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4481 return 0;
4482}
4483
4484static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4485 struct cftype *cft, u64 val)
4486{
4487 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4488
4489 /* cannot set to root cgroup and only 0 and 1 are allowed */
4490 if (!css->parent || !((val == 0) || (val == 1)))
4491 return -EINVAL;
4492
4493 memcg->oom_kill_disable = val;
4494 if (!val)
4495 memcg_oom_recover(memcg);
4496
4497 return 0;
4498}
4499
4500#ifdef CONFIG_CGROUP_WRITEBACK
4501
4502#include <trace/events/writeback.h>
4503
4504static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4505{
4506 return wb_domain_init(&memcg->cgwb_domain, gfp);
4507}
4508
4509static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4510{
4511 wb_domain_exit(&memcg->cgwb_domain);
4512}
4513
4514static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4515{
4516 wb_domain_size_changed(&memcg->cgwb_domain);
4517}
4518
4519struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4520{
4521 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4522
4523 if (!memcg->css.parent)
4524 return NULL;
4525
4526 return &memcg->cgwb_domain;
4527}
4528
4529/*
4530 * idx can be of type enum memcg_stat_item or node_stat_item.
4531 * Keep in sync with memcg_exact_page().
4532 */
4533static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4534{
4535 long x = atomic_long_read(&memcg->vmstats[idx]);
4536 int cpu;
4537
4538 for_each_online_cpu(cpu)
4539 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4540 if (x < 0)
4541 x = 0;
4542 return x;
4543}
4544
4545/**
4546 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4547 * @wb: bdi_writeback in question
4548 * @pfilepages: out parameter for number of file pages
4549 * @pheadroom: out parameter for number of allocatable pages according to memcg
4550 * @pdirty: out parameter for number of dirty pages
4551 * @pwriteback: out parameter for number of pages under writeback
4552 *
4553 * Determine the numbers of file, headroom, dirty, and writeback pages in
4554 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4555 * is a bit more involved.
4556 *
4557 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4558 * headroom is calculated as the lowest headroom of itself and the
4559 * ancestors. Note that this doesn't consider the actual amount of
4560 * available memory in the system. The caller should further cap
4561 * *@pheadroom accordingly.
4562 */
4563void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4564 unsigned long *pheadroom, unsigned long *pdirty,
4565 unsigned long *pwriteback)
4566{
4567 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4568 struct mem_cgroup *parent;
4569
4570 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4571
4572 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4573 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4574 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4575 *pheadroom = PAGE_COUNTER_MAX;
4576
4577 while ((parent = parent_mem_cgroup(memcg))) {
4578 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4579 READ_ONCE(memcg->memory.high));
4580 unsigned long used = page_counter_read(&memcg->memory);
4581
4582 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4583 memcg = parent;
4584 }
4585}
4586
4587/*
4588 * Foreign dirty flushing
4589 *
4590 * There's an inherent mismatch between memcg and writeback. The former
4591 * trackes ownership per-page while the latter per-inode. This was a
4592 * deliberate design decision because honoring per-page ownership in the
4593 * writeback path is complicated, may lead to higher CPU and IO overheads
4594 * and deemed unnecessary given that write-sharing an inode across
4595 * different cgroups isn't a common use-case.
4596 *
4597 * Combined with inode majority-writer ownership switching, this works well
4598 * enough in most cases but there are some pathological cases. For
4599 * example, let's say there are two cgroups A and B which keep writing to
4600 * different but confined parts of the same inode. B owns the inode and
4601 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4602 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4603 * triggering background writeback. A will be slowed down without a way to
4604 * make writeback of the dirty pages happen.
4605 *
4606 * Conditions like the above can lead to a cgroup getting repatedly and
4607 * severely throttled after making some progress after each
4608 * dirty_expire_interval while the underyling IO device is almost
4609 * completely idle.
4610 *
4611 * Solving this problem completely requires matching the ownership tracking
4612 * granularities between memcg and writeback in either direction. However,
4613 * the more egregious behaviors can be avoided by simply remembering the
4614 * most recent foreign dirtying events and initiating remote flushes on
4615 * them when local writeback isn't enough to keep the memory clean enough.
4616 *
4617 * The following two functions implement such mechanism. When a foreign
4618 * page - a page whose memcg and writeback ownerships don't match - is
4619 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4620 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4621 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4622 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4623 * foreign bdi_writebacks which haven't expired. Both the numbers of
4624 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4625 * limited to MEMCG_CGWB_FRN_CNT.
4626 *
4627 * The mechanism only remembers IDs and doesn't hold any object references.
4628 * As being wrong occasionally doesn't matter, updates and accesses to the
4629 * records are lockless and racy.
4630 */
4631void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4632 struct bdi_writeback *wb)
4633{
4634 struct mem_cgroup *memcg = page_memcg(page);
4635 struct memcg_cgwb_frn *frn;
4636 u64 now = get_jiffies_64();
4637 u64 oldest_at = now;
4638 int oldest = -1;
4639 int i;
4640
4641 trace_track_foreign_dirty(page, wb);
4642
4643 /*
4644 * Pick the slot to use. If there is already a slot for @wb, keep
4645 * using it. If not replace the oldest one which isn't being
4646 * written out.
4647 */
4648 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4649 frn = &memcg->cgwb_frn[i];
4650 if (frn->bdi_id == wb->bdi->id &&
4651 frn->memcg_id == wb->memcg_css->id)
4652 break;
4653 if (time_before64(frn->at, oldest_at) &&
4654 atomic_read(&frn->done.cnt) == 1) {
4655 oldest = i;
4656 oldest_at = frn->at;
4657 }
4658 }
4659
4660 if (i < MEMCG_CGWB_FRN_CNT) {
4661 /*
4662 * Re-using an existing one. Update timestamp lazily to
4663 * avoid making the cacheline hot. We want them to be
4664 * reasonably up-to-date and significantly shorter than
4665 * dirty_expire_interval as that's what expires the record.
4666 * Use the shorter of 1s and dirty_expire_interval / 8.
4667 */
4668 unsigned long update_intv =
4669 min_t(unsigned long, HZ,
4670 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4671
4672 if (time_before64(frn->at, now - update_intv))
4673 frn->at = now;
4674 } else if (oldest >= 0) {
4675 /* replace the oldest free one */
4676 frn = &memcg->cgwb_frn[oldest];
4677 frn->bdi_id = wb->bdi->id;
4678 frn->memcg_id = wb->memcg_css->id;
4679 frn->at = now;
4680 }
4681}
4682
4683/* issue foreign writeback flushes for recorded foreign dirtying events */
4684void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4685{
4686 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4687 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4688 u64 now = jiffies_64;
4689 int i;
4690
4691 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4692 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4693
4694 /*
4695 * If the record is older than dirty_expire_interval,
4696 * writeback on it has already started. No need to kick it
4697 * off again. Also, don't start a new one if there's
4698 * already one in flight.
4699 */
4700 if (time_after64(frn->at, now - intv) &&
4701 atomic_read(&frn->done.cnt) == 1) {
4702 frn->at = 0;
4703 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4704 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4705 WB_REASON_FOREIGN_FLUSH,
4706 &frn->done);
4707 }
4708 }
4709}
4710
4711#else /* CONFIG_CGROUP_WRITEBACK */
4712
4713static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4714{
4715 return 0;
4716}
4717
4718static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4719{
4720}
4721
4722static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4723{
4724}
4725
4726#endif /* CONFIG_CGROUP_WRITEBACK */
4727
4728/*
4729 * DO NOT USE IN NEW FILES.
4730 *
4731 * "cgroup.event_control" implementation.
4732 *
4733 * This is way over-engineered. It tries to support fully configurable
4734 * events for each user. Such level of flexibility is completely
4735 * unnecessary especially in the light of the planned unified hierarchy.
4736 *
4737 * Please deprecate this and replace with something simpler if at all
4738 * possible.
4739 */
4740
4741/*
4742 * Unregister event and free resources.
4743 *
4744 * Gets called from workqueue.
4745 */
4746static void memcg_event_remove(struct work_struct *work)
4747{
4748 struct mem_cgroup_event *event =
4749 container_of(work, struct mem_cgroup_event, remove);
4750 struct mem_cgroup *memcg = event->memcg;
4751
4752 remove_wait_queue(event->wqh, &event->wait);
4753
4754 event->unregister_event(memcg, event->eventfd);
4755
4756 /* Notify userspace the event is going away. */
4757 eventfd_signal(event->eventfd, 1);
4758
4759 eventfd_ctx_put(event->eventfd);
4760 kfree(event);
4761 css_put(&memcg->css);
4762}
4763
4764/*
4765 * Gets called on EPOLLHUP on eventfd when user closes it.
4766 *
4767 * Called with wqh->lock held and interrupts disabled.
4768 */
4769static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4770 int sync, void *key)
4771{
4772 struct mem_cgroup_event *event =
4773 container_of(wait, struct mem_cgroup_event, wait);
4774 struct mem_cgroup *memcg = event->memcg;
4775 __poll_t flags = key_to_poll(key);
4776
4777 if (flags & EPOLLHUP) {
4778 /*
4779 * If the event has been detached at cgroup removal, we
4780 * can simply return knowing the other side will cleanup
4781 * for us.
4782 *
4783 * We can't race against event freeing since the other
4784 * side will require wqh->lock via remove_wait_queue(),
4785 * which we hold.
4786 */
4787 spin_lock(&memcg->event_list_lock);
4788 if (!list_empty(&event->list)) {
4789 list_del_init(&event->list);
4790 /*
4791 * We are in atomic context, but cgroup_event_remove()
4792 * may sleep, so we have to call it in workqueue.
4793 */
4794 schedule_work(&event->remove);
4795 }
4796 spin_unlock(&memcg->event_list_lock);
4797 }
4798
4799 return 0;
4800}
4801
4802static void memcg_event_ptable_queue_proc(struct file *file,
4803 wait_queue_head_t *wqh, poll_table *pt)
4804{
4805 struct mem_cgroup_event *event =
4806 container_of(pt, struct mem_cgroup_event, pt);
4807
4808 event->wqh = wqh;
4809 add_wait_queue(wqh, &event->wait);
4810}
4811
4812/*
4813 * DO NOT USE IN NEW FILES.
4814 *
4815 * Parse input and register new cgroup event handler.
4816 *
4817 * Input must be in format '<event_fd> <control_fd> <args>'.
4818 * Interpretation of args is defined by control file implementation.
4819 */
4820static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4821 char *buf, size_t nbytes, loff_t off)
4822{
4823 struct cgroup_subsys_state *css = of_css(of);
4824 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4825 struct mem_cgroup_event *event;
4826 struct cgroup_subsys_state *cfile_css;
4827 unsigned int efd, cfd;
4828 struct fd efile;
4829 struct fd cfile;
4830 const char *name;
4831 char *endp;
4832 int ret;
4833
4834 buf = strstrip(buf);
4835
4836 efd = simple_strtoul(buf, &endp, 10);
4837 if (*endp != ' ')
4838 return -EINVAL;
4839 buf = endp + 1;
4840
4841 cfd = simple_strtoul(buf, &endp, 10);
4842 if ((*endp != ' ') && (*endp != '\0'))
4843 return -EINVAL;
4844 buf = endp + 1;
4845
4846 event = kzalloc(sizeof(*event), GFP_KERNEL);
4847 if (!event)
4848 return -ENOMEM;
4849
4850 event->memcg = memcg;
4851 INIT_LIST_HEAD(&event->list);
4852 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4853 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4854 INIT_WORK(&event->remove, memcg_event_remove);
4855
4856 efile = fdget(efd);
4857 if (!efile.file) {
4858 ret = -EBADF;
4859 goto out_kfree;
4860 }
4861
4862 event->eventfd = eventfd_ctx_fileget(efile.file);
4863 if (IS_ERR(event->eventfd)) {
4864 ret = PTR_ERR(event->eventfd);
4865 goto out_put_efile;
4866 }
4867
4868 cfile = fdget(cfd);
4869 if (!cfile.file) {
4870 ret = -EBADF;
4871 goto out_put_eventfd;
4872 }
4873
4874 /* the process need read permission on control file */
4875 /* AV: shouldn't we check that it's been opened for read instead? */
4876 ret = file_permission(cfile.file, MAY_READ);
4877 if (ret < 0)
4878 goto out_put_cfile;
4879
4880 /*
4881 * Determine the event callbacks and set them in @event. This used
4882 * to be done via struct cftype but cgroup core no longer knows
4883 * about these events. The following is crude but the whole thing
4884 * is for compatibility anyway.
4885 *
4886 * DO NOT ADD NEW FILES.
4887 */
4888 name = cfile.file->f_path.dentry->d_name.name;
4889
4890 if (!strcmp(name, "memory.usage_in_bytes")) {
4891 event->register_event = mem_cgroup_usage_register_event;
4892 event->unregister_event = mem_cgroup_usage_unregister_event;
4893 } else if (!strcmp(name, "memory.oom_control")) {
4894 event->register_event = mem_cgroup_oom_register_event;
4895 event->unregister_event = mem_cgroup_oom_unregister_event;
4896 } else if (!strcmp(name, "memory.pressure_level")) {
4897 event->register_event = vmpressure_register_event;
4898 event->unregister_event = vmpressure_unregister_event;
4899 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4900 event->register_event = memsw_cgroup_usage_register_event;
4901 event->unregister_event = memsw_cgroup_usage_unregister_event;
4902 } else {
4903 ret = -EINVAL;
4904 goto out_put_cfile;
4905 }
4906
4907 /*
4908 * Verify @cfile should belong to @css. Also, remaining events are
4909 * automatically removed on cgroup destruction but the removal is
4910 * asynchronous, so take an extra ref on @css.
4911 */
4912 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4913 &memory_cgrp_subsys);
4914 ret = -EINVAL;
4915 if (IS_ERR(cfile_css))
4916 goto out_put_cfile;
4917 if (cfile_css != css) {
4918 css_put(cfile_css);
4919 goto out_put_cfile;
4920 }
4921
4922 ret = event->register_event(memcg, event->eventfd, buf);
4923 if (ret)
4924 goto out_put_css;
4925
4926 vfs_poll(efile.file, &event->pt);
4927
4928 spin_lock(&memcg->event_list_lock);
4929 list_add(&event->list, &memcg->event_list);
4930 spin_unlock(&memcg->event_list_lock);
4931
4932 fdput(cfile);
4933 fdput(efile);
4934
4935 return nbytes;
4936
4937out_put_css:
4938 css_put(css);
4939out_put_cfile:
4940 fdput(cfile);
4941out_put_eventfd:
4942 eventfd_ctx_put(event->eventfd);
4943out_put_efile:
4944 fdput(efile);
4945out_kfree:
4946 kfree(event);
4947
4948 return ret;
4949}
4950
4951static struct cftype mem_cgroup_legacy_files[] = {
4952 {
4953 .name = "usage_in_bytes",
4954 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4955 .read_u64 = mem_cgroup_read_u64,
4956 },
4957 {
4958 .name = "max_usage_in_bytes",
4959 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4960 .write = mem_cgroup_reset,
4961 .read_u64 = mem_cgroup_read_u64,
4962 },
4963 {
4964 .name = "limit_in_bytes",
4965 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4966 .write = mem_cgroup_write,
4967 .read_u64 = mem_cgroup_read_u64,
4968 },
4969 {
4970 .name = "soft_limit_in_bytes",
4971 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4972 .write = mem_cgroup_write,
4973 .read_u64 = mem_cgroup_read_u64,
4974 },
4975 {
4976 .name = "failcnt",
4977 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4978 .write = mem_cgroup_reset,
4979 .read_u64 = mem_cgroup_read_u64,
4980 },
4981 {
4982 .name = "stat",
4983 .seq_show = memcg_stat_show,
4984 },
4985 {
4986 .name = "force_empty",
4987 .write = mem_cgroup_force_empty_write,
4988 },
4989 {
4990 .name = "use_hierarchy",
4991 .write_u64 = mem_cgroup_hierarchy_write,
4992 .read_u64 = mem_cgroup_hierarchy_read,
4993 },
4994 {
4995 .name = "cgroup.event_control", /* XXX: for compat */
4996 .write = memcg_write_event_control,
4997 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4998 },
4999 {
5000 .name = "swappiness",
5001 .read_u64 = mem_cgroup_swappiness_read,
5002 .write_u64 = mem_cgroup_swappiness_write,
5003 },
5004 {
5005 .name = "move_charge_at_immigrate",
5006 .read_u64 = mem_cgroup_move_charge_read,
5007 .write_u64 = mem_cgroup_move_charge_write,
5008 },
5009 {
5010 .name = "oom_control",
5011 .seq_show = mem_cgroup_oom_control_read,
5012 .write_u64 = mem_cgroup_oom_control_write,
5013 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5014 },
5015 {
5016 .name = "pressure_level",
5017 },
5018#ifdef CONFIG_NUMA
5019 {
5020 .name = "numa_stat",
5021 .seq_show = memcg_numa_stat_show,
5022 },
5023#endif
5024 {
5025 .name = "kmem.limit_in_bytes",
5026 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5027 .write = mem_cgroup_write,
5028 .read_u64 = mem_cgroup_read_u64,
5029 },
5030 {
5031 .name = "kmem.usage_in_bytes",
5032 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5033 .read_u64 = mem_cgroup_read_u64,
5034 },
5035 {
5036 .name = "kmem.failcnt",
5037 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5038 .write = mem_cgroup_reset,
5039 .read_u64 = mem_cgroup_read_u64,
5040 },
5041 {
5042 .name = "kmem.max_usage_in_bytes",
5043 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5044 .write = mem_cgroup_reset,
5045 .read_u64 = mem_cgroup_read_u64,
5046 },
5047#if defined(CONFIG_MEMCG_KMEM) && \
5048 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5049 {
5050 .name = "kmem.slabinfo",
5051 .seq_show = memcg_slab_show,
5052 },
5053#endif
5054 {
5055 .name = "kmem.tcp.limit_in_bytes",
5056 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5057 .write = mem_cgroup_write,
5058 .read_u64 = mem_cgroup_read_u64,
5059 },
5060 {
5061 .name = "kmem.tcp.usage_in_bytes",
5062 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5063 .read_u64 = mem_cgroup_read_u64,
5064 },
5065 {
5066 .name = "kmem.tcp.failcnt",
5067 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5068 .write = mem_cgroup_reset,
5069 .read_u64 = mem_cgroup_read_u64,
5070 },
5071 {
5072 .name = "kmem.tcp.max_usage_in_bytes",
5073 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5074 .write = mem_cgroup_reset,
5075 .read_u64 = mem_cgroup_read_u64,
5076 },
5077 { }, /* terminate */
5078};
5079
5080/*
5081 * Private memory cgroup IDR
5082 *
5083 * Swap-out records and page cache shadow entries need to store memcg
5084 * references in constrained space, so we maintain an ID space that is
5085 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5086 * memory-controlled cgroups to 64k.
5087 *
5088 * However, there usually are many references to the offline CSS after
5089 * the cgroup has been destroyed, such as page cache or reclaimable
5090 * slab objects, that don't need to hang on to the ID. We want to keep
5091 * those dead CSS from occupying IDs, or we might quickly exhaust the
5092 * relatively small ID space and prevent the creation of new cgroups
5093 * even when there are much fewer than 64k cgroups - possibly none.
5094 *
5095 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5096 * be freed and recycled when it's no longer needed, which is usually
5097 * when the CSS is offlined.
5098 *
5099 * The only exception to that are records of swapped out tmpfs/shmem
5100 * pages that need to be attributed to live ancestors on swapin. But
5101 * those references are manageable from userspace.
5102 */
5103
5104static DEFINE_IDR(mem_cgroup_idr);
5105
5106static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5107{
5108 if (memcg->id.id > 0) {
5109 idr_remove(&mem_cgroup_idr, memcg->id.id);
5110 memcg->id.id = 0;
5111 }
5112}
5113
5114static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5115 unsigned int n)
5116{
5117 refcount_add(n, &memcg->id.ref);
5118}
5119
5120static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5121{
5122 if (refcount_sub_and_test(n, &memcg->id.ref)) {
5123 mem_cgroup_id_remove(memcg);
5124
5125 /* Memcg ID pins CSS */
5126 css_put(&memcg->css);
5127 }
5128}
5129
5130static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5131{
5132 mem_cgroup_id_put_many(memcg, 1);
5133}
5134
5135/**
5136 * mem_cgroup_from_id - look up a memcg from a memcg id
5137 * @id: the memcg id to look up
5138 *
5139 * Caller must hold rcu_read_lock().
5140 */
5141struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5142{
5143 WARN_ON_ONCE(!rcu_read_lock_held());
5144 return idr_find(&mem_cgroup_idr, id);
5145}
5146
5147static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5148{
5149 struct mem_cgroup_per_node *pn;
5150 int tmp = node;
5151 /*
5152 * This routine is called against possible nodes.
5153 * But it's BUG to call kmalloc() against offline node.
5154 *
5155 * TODO: this routine can waste much memory for nodes which will
5156 * never be onlined. It's better to use memory hotplug callback
5157 * function.
5158 */
5159 if (!node_state(node, N_NORMAL_MEMORY))
5160 tmp = -1;
5161 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5162 if (!pn)
5163 return 1;
5164
5165 pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
5166 GFP_KERNEL_ACCOUNT);
5167 if (!pn->lruvec_stat_local) {
5168 kfree(pn);
5169 return 1;
5170 }
5171
5172 pn->lruvec_stat_cpu = alloc_percpu_gfp(struct batched_lruvec_stat,
5173 GFP_KERNEL_ACCOUNT);
5174 if (!pn->lruvec_stat_cpu) {
5175 free_percpu(pn->lruvec_stat_local);
5176 kfree(pn);
5177 return 1;
5178 }
5179
5180 lruvec_init(&pn->lruvec);
5181 pn->usage_in_excess = 0;
5182 pn->on_tree = false;
5183 pn->memcg = memcg;
5184
5185 memcg->nodeinfo[node] = pn;
5186 return 0;
5187}
5188
5189static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5190{
5191 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5192
5193 if (!pn)
5194 return;
5195
5196 free_percpu(pn->lruvec_stat_cpu);
5197 free_percpu(pn->lruvec_stat_local);
5198 kfree(pn);
5199}
5200
5201static void __mem_cgroup_free(struct mem_cgroup *memcg)
5202{
5203 int node;
5204
5205 for_each_node(node)
5206 free_mem_cgroup_per_node_info(memcg, node);
5207 free_percpu(memcg->vmstats_percpu);
5208 free_percpu(memcg->vmstats_local);
5209 kfree(memcg);
5210}
5211
5212static void mem_cgroup_free(struct mem_cgroup *memcg)
5213{
5214 memcg_wb_domain_exit(memcg);
5215 /*
5216 * Flush percpu vmstats and vmevents to guarantee the value correctness
5217 * on parent's and all ancestor levels.
5218 */
5219 memcg_flush_percpu_vmstats(memcg);
5220 memcg_flush_percpu_vmevents(memcg);
5221 __mem_cgroup_free(memcg);
5222}
5223
5224static struct mem_cgroup *mem_cgroup_alloc(void)
5225{
5226 struct mem_cgroup *memcg;
5227 unsigned int size;
5228 int node;
5229 int __maybe_unused i;
5230 long error = -ENOMEM;
5231
5232 size = sizeof(struct mem_cgroup);
5233 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5234
5235 memcg = kzalloc(size, GFP_KERNEL);
5236 if (!memcg)
5237 return ERR_PTR(error);
5238
5239 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5240 1, MEM_CGROUP_ID_MAX,
5241 GFP_KERNEL);
5242 if (memcg->id.id < 0) {
5243 error = memcg->id.id;
5244 goto fail;
5245 }
5246
5247 memcg->vmstats_local = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5248 GFP_KERNEL_ACCOUNT);
5249 if (!memcg->vmstats_local)
5250 goto fail;
5251
5252 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5253 GFP_KERNEL_ACCOUNT);
5254 if (!memcg->vmstats_percpu)
5255 goto fail;
5256
5257 for_each_node(node)
5258 if (alloc_mem_cgroup_per_node_info(memcg, node))
5259 goto fail;
5260
5261 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5262 goto fail;
5263
5264 INIT_WORK(&memcg->high_work, high_work_func);
5265 INIT_LIST_HEAD(&memcg->oom_notify);
5266 mutex_init(&memcg->thresholds_lock);
5267 spin_lock_init(&memcg->move_lock);
5268 vmpressure_init(&memcg->vmpressure);
5269 INIT_LIST_HEAD(&memcg->event_list);
5270 spin_lock_init(&memcg->event_list_lock);
5271 memcg->socket_pressure = jiffies;
5272#ifdef CONFIG_MEMCG_KMEM
5273 memcg->kmemcg_id = -1;
5274 INIT_LIST_HEAD(&memcg->objcg_list);
5275#endif
5276#ifdef CONFIG_CGROUP_WRITEBACK
5277 INIT_LIST_HEAD(&memcg->cgwb_list);
5278 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5279 memcg->cgwb_frn[i].done =
5280 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5281#endif
5282#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5283 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5284 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5285 memcg->deferred_split_queue.split_queue_len = 0;
5286#endif
5287 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5288 return memcg;
5289fail:
5290 mem_cgroup_id_remove(memcg);
5291 __mem_cgroup_free(memcg);
5292 return ERR_PTR(error);
5293}
5294
5295static struct cgroup_subsys_state * __ref
5296mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5297{
5298 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5299 struct mem_cgroup *memcg, *old_memcg;
5300 long error = -ENOMEM;
5301
5302 old_memcg = set_active_memcg(parent);
5303 memcg = mem_cgroup_alloc();
5304 set_active_memcg(old_memcg);
5305 if (IS_ERR(memcg))
5306 return ERR_CAST(memcg);
5307
5308 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5309 memcg->soft_limit = PAGE_COUNTER_MAX;
5310 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5311 if (parent) {
5312 memcg->swappiness = mem_cgroup_swappiness(parent);
5313 memcg->oom_kill_disable = parent->oom_kill_disable;
5314
5315 page_counter_init(&memcg->memory, &parent->memory);
5316 page_counter_init(&memcg->swap, &parent->swap);
5317 page_counter_init(&memcg->kmem, &parent->kmem);
5318 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5319 } else {
5320 page_counter_init(&memcg->memory, NULL);
5321 page_counter_init(&memcg->swap, NULL);
5322 page_counter_init(&memcg->kmem, NULL);
5323 page_counter_init(&memcg->tcpmem, NULL);
5324
5325 root_mem_cgroup = memcg;
5326 return &memcg->css;
5327 }
5328
5329 /* The following stuff does not apply to the root */
5330 error = memcg_online_kmem(memcg);
5331 if (error)
5332 goto fail;
5333
5334 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5335 static_branch_inc(&memcg_sockets_enabled_key);
5336
5337 return &memcg->css;
5338fail:
5339 mem_cgroup_id_remove(memcg);
5340 mem_cgroup_free(memcg);
5341 return ERR_PTR(error);
5342}
5343
5344static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5345{
5346 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5347
5348 /*
5349 * A memcg must be visible for memcg_expand_shrinker_maps()
5350 * by the time the maps are allocated. So, we allocate maps
5351 * here, when for_each_mem_cgroup() can't skip it.
5352 */
5353 if (memcg_alloc_shrinker_maps(memcg)) {
5354 mem_cgroup_id_remove(memcg);
5355 return -ENOMEM;
5356 }
5357
5358 /* Online state pins memcg ID, memcg ID pins CSS */
5359 refcount_set(&memcg->id.ref, 1);
5360 css_get(css);
5361 return 0;
5362}
5363
5364static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5365{
5366 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5367 struct mem_cgroup_event *event, *tmp;
5368
5369 /*
5370 * Unregister events and notify userspace.
5371 * Notify userspace about cgroup removing only after rmdir of cgroup
5372 * directory to avoid race between userspace and kernelspace.
5373 */
5374 spin_lock(&memcg->event_list_lock);
5375 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5376 list_del_init(&event->list);
5377 schedule_work(&event->remove);
5378 }
5379 spin_unlock(&memcg->event_list_lock);
5380
5381 page_counter_set_min(&memcg->memory, 0);
5382 page_counter_set_low(&memcg->memory, 0);
5383
5384 memcg_offline_kmem(memcg);
5385 wb_memcg_offline(memcg);
5386
5387 drain_all_stock(memcg);
5388
5389 mem_cgroup_id_put(memcg);
5390}
5391
5392static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5393{
5394 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5395
5396 invalidate_reclaim_iterators(memcg);
5397}
5398
5399static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5400{
5401 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5402 int __maybe_unused i;
5403
5404#ifdef CONFIG_CGROUP_WRITEBACK
5405 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5406 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5407#endif
5408 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5409 static_branch_dec(&memcg_sockets_enabled_key);
5410
5411 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5412 static_branch_dec(&memcg_sockets_enabled_key);
5413
5414 vmpressure_cleanup(&memcg->vmpressure);
5415 cancel_work_sync(&memcg->high_work);
5416 mem_cgroup_remove_from_trees(memcg);
5417 memcg_free_shrinker_maps(memcg);
5418 memcg_free_kmem(memcg);
5419 mem_cgroup_free(memcg);
5420}
5421
5422/**
5423 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5424 * @css: the target css
5425 *
5426 * Reset the states of the mem_cgroup associated with @css. This is
5427 * invoked when the userland requests disabling on the default hierarchy
5428 * but the memcg is pinned through dependency. The memcg should stop
5429 * applying policies and should revert to the vanilla state as it may be
5430 * made visible again.
5431 *
5432 * The current implementation only resets the essential configurations.
5433 * This needs to be expanded to cover all the visible parts.
5434 */
5435static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5436{
5437 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5438
5439 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5440 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5441 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5442 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5443 page_counter_set_min(&memcg->memory, 0);
5444 page_counter_set_low(&memcg->memory, 0);
5445 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5446 memcg->soft_limit = PAGE_COUNTER_MAX;
5447 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5448 memcg_wb_domain_size_changed(memcg);
5449}
5450
5451#ifdef CONFIG_MMU
5452/* Handlers for move charge at task migration. */
5453static int mem_cgroup_do_precharge(unsigned long count)
5454{
5455 int ret;
5456
5457 /* Try a single bulk charge without reclaim first, kswapd may wake */
5458 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5459 if (!ret) {
5460 mc.precharge += count;
5461 return ret;
5462 }
5463
5464 /* Try charges one by one with reclaim, but do not retry */
5465 while (count--) {
5466 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5467 if (ret)
5468 return ret;
5469 mc.precharge++;
5470 cond_resched();
5471 }
5472 return 0;
5473}
5474
5475union mc_target {
5476 struct page *page;
5477 swp_entry_t ent;
5478};
5479
5480enum mc_target_type {
5481 MC_TARGET_NONE = 0,
5482 MC_TARGET_PAGE,
5483 MC_TARGET_SWAP,
5484 MC_TARGET_DEVICE,
5485};
5486
5487static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5488 unsigned long addr, pte_t ptent)
5489{
5490 struct page *page = vm_normal_page(vma, addr, ptent);
5491
5492 if (!page || !page_mapped(page))
5493 return NULL;
5494 if (PageAnon(page)) {
5495 if (!(mc.flags & MOVE_ANON))
5496 return NULL;
5497 } else {
5498 if (!(mc.flags & MOVE_FILE))
5499 return NULL;
5500 }
5501 if (!get_page_unless_zero(page))
5502 return NULL;
5503
5504 return page;
5505}
5506
5507#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5508static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5509 pte_t ptent, swp_entry_t *entry)
5510{
5511 struct page *page = NULL;
5512 swp_entry_t ent = pte_to_swp_entry(ptent);
5513
5514 if (!(mc.flags & MOVE_ANON))
5515 return NULL;
5516
5517 /*
5518 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5519 * a device and because they are not accessible by CPU they are store
5520 * as special swap entry in the CPU page table.
5521 */
5522 if (is_device_private_entry(ent)) {
5523 page = device_private_entry_to_page(ent);
5524 /*
5525 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5526 * a refcount of 1 when free (unlike normal page)
5527 */
5528 if (!page_ref_add_unless(page, 1, 1))
5529 return NULL;
5530 return page;
5531 }
5532
5533 if (non_swap_entry(ent))
5534 return NULL;
5535
5536 /*
5537 * Because lookup_swap_cache() updates some statistics counter,
5538 * we call find_get_page() with swapper_space directly.
5539 */
5540 page = find_get_page(swap_address_space(ent), swp_offset(ent));
5541 entry->val = ent.val;
5542
5543 return page;
5544}
5545#else
5546static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5547 pte_t ptent, swp_entry_t *entry)
5548{
5549 return NULL;
5550}
5551#endif
5552
5553static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5554 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5555{
5556 if (!vma->vm_file) /* anonymous vma */
5557 return NULL;
5558 if (!(mc.flags & MOVE_FILE))
5559 return NULL;
5560
5561 /* page is moved even if it's not RSS of this task(page-faulted). */
5562 /* shmem/tmpfs may report page out on swap: account for that too. */
5563 return find_get_incore_page(vma->vm_file->f_mapping,
5564 linear_page_index(vma, addr));
5565}
5566
5567/**
5568 * mem_cgroup_move_account - move account of the page
5569 * @page: the page
5570 * @compound: charge the page as compound or small page
5571 * @from: mem_cgroup which the page is moved from.
5572 * @to: mem_cgroup which the page is moved to. @from != @to.
5573 *
5574 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5575 *
5576 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5577 * from old cgroup.
5578 */
5579static int mem_cgroup_move_account(struct page *page,
5580 bool compound,
5581 struct mem_cgroup *from,
5582 struct mem_cgroup *to)
5583{
5584 struct lruvec *from_vec, *to_vec;
5585 struct pglist_data *pgdat;
5586 unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
5587 int ret;
5588
5589 VM_BUG_ON(from == to);
5590 VM_BUG_ON_PAGE(PageLRU(page), page);
5591 VM_BUG_ON(compound && !PageTransHuge(page));
5592
5593 /*
5594 * Prevent mem_cgroup_migrate() from looking at
5595 * page's memory cgroup of its source page while we change it.
5596 */
5597 ret = -EBUSY;
5598 if (!trylock_page(page))
5599 goto out;
5600
5601 ret = -EINVAL;
5602 if (page_memcg(page) != from)
5603 goto out_unlock;
5604
5605 pgdat = page_pgdat(page);
5606 from_vec = mem_cgroup_lruvec(from, pgdat);
5607 to_vec = mem_cgroup_lruvec(to, pgdat);
5608
5609 lock_page_memcg(page);
5610
5611 if (PageAnon(page)) {
5612 if (page_mapped(page)) {
5613 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5614 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5615 if (PageTransHuge(page)) {
5616 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5617 -nr_pages);
5618 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5619 nr_pages);
5620 }
5621 }
5622 } else {
5623 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5624 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5625
5626 if (PageSwapBacked(page)) {
5627 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5628 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5629 }
5630
5631 if (page_mapped(page)) {
5632 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5633 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5634 }
5635
5636 if (PageDirty(page)) {
5637 struct address_space *mapping = page_mapping(page);
5638
5639 if (mapping_can_writeback(mapping)) {
5640 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5641 -nr_pages);
5642 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5643 nr_pages);
5644 }
5645 }
5646 }
5647
5648 if (PageWriteback(page)) {
5649 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5650 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5651 }
5652
5653 /*
5654 * All state has been migrated, let's switch to the new memcg.
5655 *
5656 * It is safe to change page's memcg here because the page
5657 * is referenced, charged, isolated, and locked: we can't race
5658 * with (un)charging, migration, LRU putback, or anything else
5659 * that would rely on a stable page's memory cgroup.
5660 *
5661 * Note that lock_page_memcg is a memcg lock, not a page lock,
5662 * to save space. As soon as we switch page's memory cgroup to a
5663 * new memcg that isn't locked, the above state can change
5664 * concurrently again. Make sure we're truly done with it.
5665 */
5666 smp_mb();
5667
5668 css_get(&to->css);
5669 css_put(&from->css);
5670
5671 page->memcg_data = (unsigned long)to;
5672
5673 __unlock_page_memcg(from);
5674
5675 ret = 0;
5676
5677 local_irq_disable();
5678 mem_cgroup_charge_statistics(to, page, nr_pages);
5679 memcg_check_events(to, page);
5680 mem_cgroup_charge_statistics(from, page, -nr_pages);
5681 memcg_check_events(from, page);
5682 local_irq_enable();
5683out_unlock:
5684 unlock_page(page);
5685out:
5686 return ret;
5687}
5688
5689/**
5690 * get_mctgt_type - get target type of moving charge
5691 * @vma: the vma the pte to be checked belongs
5692 * @addr: the address corresponding to the pte to be checked
5693 * @ptent: the pte to be checked
5694 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5695 *
5696 * Returns
5697 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5698 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5699 * move charge. if @target is not NULL, the page is stored in target->page
5700 * with extra refcnt got(Callers should handle it).
5701 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5702 * target for charge migration. if @target is not NULL, the entry is stored
5703 * in target->ent.
5704 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5705 * (so ZONE_DEVICE page and thus not on the lru).
5706 * For now we such page is charge like a regular page would be as for all
5707 * intent and purposes it is just special memory taking the place of a
5708 * regular page.
5709 *
5710 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5711 *
5712 * Called with pte lock held.
5713 */
5714
5715static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5716 unsigned long addr, pte_t ptent, union mc_target *target)
5717{
5718 struct page *page = NULL;
5719 enum mc_target_type ret = MC_TARGET_NONE;
5720 swp_entry_t ent = { .val = 0 };
5721
5722 if (pte_present(ptent))
5723 page = mc_handle_present_pte(vma, addr, ptent);
5724 else if (is_swap_pte(ptent))
5725 page = mc_handle_swap_pte(vma, ptent, &ent);
5726 else if (pte_none(ptent))
5727 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5728
5729 if (!page && !ent.val)
5730 return ret;
5731 if (page) {
5732 /*
5733 * Do only loose check w/o serialization.
5734 * mem_cgroup_move_account() checks the page is valid or
5735 * not under LRU exclusion.
5736 */
5737 if (page_memcg(page) == mc.from) {
5738 ret = MC_TARGET_PAGE;
5739 if (is_device_private_page(page))
5740 ret = MC_TARGET_DEVICE;
5741 if (target)
5742 target->page = page;
5743 }
5744 if (!ret || !target)
5745 put_page(page);
5746 }
5747 /*
5748 * There is a swap entry and a page doesn't exist or isn't charged.
5749 * But we cannot move a tail-page in a THP.
5750 */
5751 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5752 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5753 ret = MC_TARGET_SWAP;
5754 if (target)
5755 target->ent = ent;
5756 }
5757 return ret;
5758}
5759
5760#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5761/*
5762 * We don't consider PMD mapped swapping or file mapped pages because THP does
5763 * not support them for now.
5764 * Caller should make sure that pmd_trans_huge(pmd) is true.
5765 */
5766static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5767 unsigned long addr, pmd_t pmd, union mc_target *target)
5768{
5769 struct page *page = NULL;
5770 enum mc_target_type ret = MC_TARGET_NONE;
5771
5772 if (unlikely(is_swap_pmd(pmd))) {
5773 VM_BUG_ON(thp_migration_supported() &&
5774 !is_pmd_migration_entry(pmd));
5775 return ret;
5776 }
5777 page = pmd_page(pmd);
5778 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5779 if (!(mc.flags & MOVE_ANON))
5780 return ret;
5781 if (page_memcg(page) == mc.from) {
5782 ret = MC_TARGET_PAGE;
5783 if (target) {
5784 get_page(page);
5785 target->page = page;
5786 }
5787 }
5788 return ret;
5789}
5790#else
5791static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5792 unsigned long addr, pmd_t pmd, union mc_target *target)
5793{
5794 return MC_TARGET_NONE;
5795}
5796#endif
5797
5798static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5799 unsigned long addr, unsigned long end,
5800 struct mm_walk *walk)
5801{
5802 struct vm_area_struct *vma = walk->vma;
5803 pte_t *pte;
5804 spinlock_t *ptl;
5805
5806 ptl = pmd_trans_huge_lock(pmd, vma);
5807 if (ptl) {
5808 /*
5809 * Note their can not be MC_TARGET_DEVICE for now as we do not
5810 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5811 * this might change.
5812 */
5813 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5814 mc.precharge += HPAGE_PMD_NR;
5815 spin_unlock(ptl);
5816 return 0;
5817 }
5818
5819 if (pmd_trans_unstable(pmd))
5820 return 0;
5821 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5822 for (; addr != end; pte++, addr += PAGE_SIZE)
5823 if (get_mctgt_type(vma, addr, *pte, NULL))
5824 mc.precharge++; /* increment precharge temporarily */
5825 pte_unmap_unlock(pte - 1, ptl);
5826 cond_resched();
5827
5828 return 0;
5829}
5830
5831static const struct mm_walk_ops precharge_walk_ops = {
5832 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5833};
5834
5835static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5836{
5837 unsigned long precharge;
5838
5839 mmap_read_lock(mm);
5840 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5841 mmap_read_unlock(mm);
5842
5843 precharge = mc.precharge;
5844 mc.precharge = 0;
5845
5846 return precharge;
5847}
5848
5849static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5850{
5851 unsigned long precharge = mem_cgroup_count_precharge(mm);
5852
5853 VM_BUG_ON(mc.moving_task);
5854 mc.moving_task = current;
5855 return mem_cgroup_do_precharge(precharge);
5856}
5857
5858/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5859static void __mem_cgroup_clear_mc(void)
5860{
5861 struct mem_cgroup *from = mc.from;
5862 struct mem_cgroup *to = mc.to;
5863
5864 /* we must uncharge all the leftover precharges from mc.to */
5865 if (mc.precharge) {
5866 cancel_charge(mc.to, mc.precharge);
5867 mc.precharge = 0;
5868 }
5869 /*
5870 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5871 * we must uncharge here.
5872 */
5873 if (mc.moved_charge) {
5874 cancel_charge(mc.from, mc.moved_charge);
5875 mc.moved_charge = 0;
5876 }
5877 /* we must fixup refcnts and charges */
5878 if (mc.moved_swap) {
5879 /* uncharge swap account from the old cgroup */
5880 if (!mem_cgroup_is_root(mc.from))
5881 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5882
5883 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5884
5885 /*
5886 * we charged both to->memory and to->memsw, so we
5887 * should uncharge to->memory.
5888 */
5889 if (!mem_cgroup_is_root(mc.to))
5890 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5891
5892 mc.moved_swap = 0;
5893 }
5894 memcg_oom_recover(from);
5895 memcg_oom_recover(to);
5896 wake_up_all(&mc.waitq);
5897}
5898
5899static void mem_cgroup_clear_mc(void)
5900{
5901 struct mm_struct *mm = mc.mm;
5902
5903 /*
5904 * we must clear moving_task before waking up waiters at the end of
5905 * task migration.
5906 */
5907 mc.moving_task = NULL;
5908 __mem_cgroup_clear_mc();
5909 spin_lock(&mc.lock);
5910 mc.from = NULL;
5911 mc.to = NULL;
5912 mc.mm = NULL;
5913 spin_unlock(&mc.lock);
5914
5915 mmput(mm);
5916}
5917
5918static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5919{
5920 struct cgroup_subsys_state *css;
5921 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5922 struct mem_cgroup *from;
5923 struct task_struct *leader, *p;
5924 struct mm_struct *mm;
5925 unsigned long move_flags;
5926 int ret = 0;
5927
5928 /* charge immigration isn't supported on the default hierarchy */
5929 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5930 return 0;
5931
5932 /*
5933 * Multi-process migrations only happen on the default hierarchy
5934 * where charge immigration is not used. Perform charge
5935 * immigration if @tset contains a leader and whine if there are
5936 * multiple.
5937 */
5938 p = NULL;
5939 cgroup_taskset_for_each_leader(leader, css, tset) {
5940 WARN_ON_ONCE(p);
5941 p = leader;
5942 memcg = mem_cgroup_from_css(css);
5943 }
5944 if (!p)
5945 return 0;
5946
5947 /*
5948 * We are now commited to this value whatever it is. Changes in this
5949 * tunable will only affect upcoming migrations, not the current one.
5950 * So we need to save it, and keep it going.
5951 */
5952 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5953 if (!move_flags)
5954 return 0;
5955
5956 from = mem_cgroup_from_task(p);
5957
5958 VM_BUG_ON(from == memcg);
5959
5960 mm = get_task_mm(p);
5961 if (!mm)
5962 return 0;
5963 /* We move charges only when we move a owner of the mm */
5964 if (mm->owner == p) {
5965 VM_BUG_ON(mc.from);
5966 VM_BUG_ON(mc.to);
5967 VM_BUG_ON(mc.precharge);
5968 VM_BUG_ON(mc.moved_charge);
5969 VM_BUG_ON(mc.moved_swap);
5970
5971 spin_lock(&mc.lock);
5972 mc.mm = mm;
5973 mc.from = from;
5974 mc.to = memcg;
5975 mc.flags = move_flags;
5976 spin_unlock(&mc.lock);
5977 /* We set mc.moving_task later */
5978
5979 ret = mem_cgroup_precharge_mc(mm);
5980 if (ret)
5981 mem_cgroup_clear_mc();
5982 } else {
5983 mmput(mm);
5984 }
5985 return ret;
5986}
5987
5988static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5989{
5990 if (mc.to)
5991 mem_cgroup_clear_mc();
5992}
5993
5994static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5995 unsigned long addr, unsigned long end,
5996 struct mm_walk *walk)
5997{
5998 int ret = 0;
5999 struct vm_area_struct *vma = walk->vma;
6000 pte_t *pte;
6001 spinlock_t *ptl;
6002 enum mc_target_type target_type;
6003 union mc_target target;
6004 struct page *page;
6005
6006 ptl = pmd_trans_huge_lock(pmd, vma);
6007 if (ptl) {
6008 if (mc.precharge < HPAGE_PMD_NR) {
6009 spin_unlock(ptl);
6010 return 0;
6011 }
6012 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6013 if (target_type == MC_TARGET_PAGE) {
6014 page = target.page;
6015 if (!isolate_lru_page(page)) {
6016 if (!mem_cgroup_move_account(page, true,
6017 mc.from, mc.to)) {
6018 mc.precharge -= HPAGE_PMD_NR;
6019 mc.moved_charge += HPAGE_PMD_NR;
6020 }
6021 putback_lru_page(page);
6022 }
6023 put_page(page);
6024 } else if (target_type == MC_TARGET_DEVICE) {
6025 page = target.page;
6026 if (!mem_cgroup_move_account(page, true,
6027 mc.from, mc.to)) {
6028 mc.precharge -= HPAGE_PMD_NR;
6029 mc.moved_charge += HPAGE_PMD_NR;
6030 }
6031 put_page(page);
6032 }
6033 spin_unlock(ptl);
6034 return 0;
6035 }
6036
6037 if (pmd_trans_unstable(pmd))
6038 return 0;
6039retry:
6040 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6041 for (; addr != end; addr += PAGE_SIZE) {
6042 pte_t ptent = *(pte++);
6043 bool device = false;
6044 swp_entry_t ent;
6045
6046 if (!mc.precharge)
6047 break;
6048
6049 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6050 case MC_TARGET_DEVICE:
6051 device = true;
6052 fallthrough;
6053 case MC_TARGET_PAGE:
6054 page = target.page;
6055 /*
6056 * We can have a part of the split pmd here. Moving it
6057 * can be done but it would be too convoluted so simply
6058 * ignore such a partial THP and keep it in original
6059 * memcg. There should be somebody mapping the head.
6060 */
6061 if (PageTransCompound(page))
6062 goto put;
6063 if (!device && isolate_lru_page(page))
6064 goto put;
6065 if (!mem_cgroup_move_account(page, false,
6066 mc.from, mc.to)) {
6067 mc.precharge--;
6068 /* we uncharge from mc.from later. */
6069 mc.moved_charge++;
6070 }
6071 if (!device)
6072 putback_lru_page(page);
6073put: /* get_mctgt_type() gets the page */
6074 put_page(page);
6075 break;
6076 case MC_TARGET_SWAP:
6077 ent = target.ent;
6078 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6079 mc.precharge--;
6080 mem_cgroup_id_get_many(mc.to, 1);
6081 /* we fixup other refcnts and charges later. */
6082 mc.moved_swap++;
6083 }
6084 break;
6085 default:
6086 break;
6087 }
6088 }
6089 pte_unmap_unlock(pte - 1, ptl);
6090 cond_resched();
6091
6092 if (addr != end) {
6093 /*
6094 * We have consumed all precharges we got in can_attach().
6095 * We try charge one by one, but don't do any additional
6096 * charges to mc.to if we have failed in charge once in attach()
6097 * phase.
6098 */
6099 ret = mem_cgroup_do_precharge(1);
6100 if (!ret)
6101 goto retry;
6102 }
6103
6104 return ret;
6105}
6106
6107static const struct mm_walk_ops charge_walk_ops = {
6108 .pmd_entry = mem_cgroup_move_charge_pte_range,
6109};
6110
6111static void mem_cgroup_move_charge(void)
6112{
6113 lru_add_drain_all();
6114 /*
6115 * Signal lock_page_memcg() to take the memcg's move_lock
6116 * while we're moving its pages to another memcg. Then wait
6117 * for already started RCU-only updates to finish.
6118 */
6119 atomic_inc(&mc.from->moving_account);
6120 synchronize_rcu();
6121retry:
6122 if (unlikely(!mmap_read_trylock(mc.mm))) {
6123 /*
6124 * Someone who are holding the mmap_lock might be waiting in
6125 * waitq. So we cancel all extra charges, wake up all waiters,
6126 * and retry. Because we cancel precharges, we might not be able
6127 * to move enough charges, but moving charge is a best-effort
6128 * feature anyway, so it wouldn't be a big problem.
6129 */
6130 __mem_cgroup_clear_mc();
6131 cond_resched();
6132 goto retry;
6133 }
6134 /*
6135 * When we have consumed all precharges and failed in doing
6136 * additional charge, the page walk just aborts.
6137 */
6138 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6139 NULL);
6140
6141 mmap_read_unlock(mc.mm);
6142 atomic_dec(&mc.from->moving_account);
6143}
6144
6145static void mem_cgroup_move_task(void)
6146{
6147 if (mc.to) {
6148 mem_cgroup_move_charge();
6149 mem_cgroup_clear_mc();
6150 }
6151}
6152#else /* !CONFIG_MMU */
6153static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6154{
6155 return 0;
6156}
6157static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6158{
6159}
6160static void mem_cgroup_move_task(void)
6161{
6162}
6163#endif
6164
6165static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6166{
6167 if (value == PAGE_COUNTER_MAX)
6168 seq_puts(m, "max\n");
6169 else
6170 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6171
6172 return 0;
6173}
6174
6175static u64 memory_current_read(struct cgroup_subsys_state *css,
6176 struct cftype *cft)
6177{
6178 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6179
6180 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6181}
6182
6183static int memory_min_show(struct seq_file *m, void *v)
6184{
6185 return seq_puts_memcg_tunable(m,
6186 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6187}
6188
6189static ssize_t memory_min_write(struct kernfs_open_file *of,
6190 char *buf, size_t nbytes, loff_t off)
6191{
6192 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6193 unsigned long min;
6194 int err;
6195
6196 buf = strstrip(buf);
6197 err = page_counter_memparse(buf, "max", &min);
6198 if (err)
6199 return err;
6200
6201 page_counter_set_min(&memcg->memory, min);
6202
6203 return nbytes;
6204}
6205
6206static int memory_low_show(struct seq_file *m, void *v)
6207{
6208 return seq_puts_memcg_tunable(m,
6209 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6210}
6211
6212static ssize_t memory_low_write(struct kernfs_open_file *of,
6213 char *buf, size_t nbytes, loff_t off)
6214{
6215 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6216 unsigned long low;
6217 int err;
6218
6219 buf = strstrip(buf);
6220 err = page_counter_memparse(buf, "max", &low);
6221 if (err)
6222 return err;
6223
6224 page_counter_set_low(&memcg->memory, low);
6225
6226 return nbytes;
6227}
6228
6229static int memory_high_show(struct seq_file *m, void *v)
6230{
6231 return seq_puts_memcg_tunable(m,
6232 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6233}
6234
6235static ssize_t memory_high_write(struct kernfs_open_file *of,
6236 char *buf, size_t nbytes, loff_t off)
6237{
6238 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6239 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6240 bool drained = false;
6241 unsigned long high;
6242 int err;
6243
6244 buf = strstrip(buf);
6245 err = page_counter_memparse(buf, "max", &high);
6246 if (err)
6247 return err;
6248
6249 page_counter_set_high(&memcg->memory, high);
6250
6251 for (;;) {
6252 unsigned long nr_pages = page_counter_read(&memcg->memory);
6253 unsigned long reclaimed;
6254
6255 if (nr_pages <= high)
6256 break;
6257
6258 if (signal_pending(current))
6259 break;
6260
6261 if (!drained) {
6262 drain_all_stock(memcg);
6263 drained = true;
6264 continue;
6265 }
6266
6267 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6268 GFP_KERNEL, true);
6269
6270 if (!reclaimed && !nr_retries--)
6271 break;
6272 }
6273
6274 memcg_wb_domain_size_changed(memcg);
6275 return nbytes;
6276}
6277
6278static int memory_max_show(struct seq_file *m, void *v)
6279{
6280 return seq_puts_memcg_tunable(m,
6281 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6282}
6283
6284static ssize_t memory_max_write(struct kernfs_open_file *of,
6285 char *buf, size_t nbytes, loff_t off)
6286{
6287 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6288 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6289 bool drained = false;
6290 unsigned long max;
6291 int err;
6292
6293 buf = strstrip(buf);
6294 err = page_counter_memparse(buf, "max", &max);
6295 if (err)
6296 return err;
6297
6298 xchg(&memcg->memory.max, max);
6299
6300 for (;;) {
6301 unsigned long nr_pages = page_counter_read(&memcg->memory);
6302
6303 if (nr_pages <= max)
6304 break;
6305
6306 if (signal_pending(current))
6307 break;
6308
6309 if (!drained) {
6310 drain_all_stock(memcg);
6311 drained = true;
6312 continue;
6313 }
6314
6315 if (nr_reclaims) {
6316 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6317 GFP_KERNEL, true))
6318 nr_reclaims--;
6319 continue;
6320 }
6321
6322 memcg_memory_event(memcg, MEMCG_OOM);
6323 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6324 break;
6325 }
6326
6327 memcg_wb_domain_size_changed(memcg);
6328 return nbytes;
6329}
6330
6331static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6332{
6333 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6334 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6335 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6336 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6337 seq_printf(m, "oom_kill %lu\n",
6338 atomic_long_read(&events[MEMCG_OOM_KILL]));
6339}
6340
6341static int memory_events_show(struct seq_file *m, void *v)
6342{
6343 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6344
6345 __memory_events_show(m, memcg->memory_events);
6346 return 0;
6347}
6348
6349static int memory_events_local_show(struct seq_file *m, void *v)
6350{
6351 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6352
6353 __memory_events_show(m, memcg->memory_events_local);
6354 return 0;
6355}
6356
6357static int memory_stat_show(struct seq_file *m, void *v)
6358{
6359 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6360 char *buf;
6361
6362 buf = memory_stat_format(memcg);
6363 if (!buf)
6364 return -ENOMEM;
6365 seq_puts(m, buf);
6366 kfree(buf);
6367 return 0;
6368}
6369
6370#ifdef CONFIG_NUMA
6371static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6372 int item)
6373{
6374 return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6375}
6376
6377static int memory_numa_stat_show(struct seq_file *m, void *v)
6378{
6379 int i;
6380 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6381
6382 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6383 int nid;
6384
6385 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6386 continue;
6387
6388 seq_printf(m, "%s", memory_stats[i].name);
6389 for_each_node_state(nid, N_MEMORY) {
6390 u64 size;
6391 struct lruvec *lruvec;
6392
6393 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6394 size = lruvec_page_state_output(lruvec,
6395 memory_stats[i].idx);
6396 seq_printf(m, " N%d=%llu", nid, size);
6397 }
6398 seq_putc(m, '\n');
6399 }
6400
6401 return 0;
6402}
6403#endif
6404
6405static int memory_oom_group_show(struct seq_file *m, void *v)
6406{
6407 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6408
6409 seq_printf(m, "%d\n", memcg->oom_group);
6410
6411 return 0;
6412}
6413
6414static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6415 char *buf, size_t nbytes, loff_t off)
6416{
6417 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6418 int ret, oom_group;
6419
6420 buf = strstrip(buf);
6421 if (!buf)
6422 return -EINVAL;
6423
6424 ret = kstrtoint(buf, 0, &oom_group);
6425 if (ret)
6426 return ret;
6427
6428 if (oom_group != 0 && oom_group != 1)
6429 return -EINVAL;
6430
6431 memcg->oom_group = oom_group;
6432
6433 return nbytes;
6434}
6435
6436static struct cftype memory_files[] = {
6437 {
6438 .name = "current",
6439 .flags = CFTYPE_NOT_ON_ROOT,
6440 .read_u64 = memory_current_read,
6441 },
6442 {
6443 .name = "min",
6444 .flags = CFTYPE_NOT_ON_ROOT,
6445 .seq_show = memory_min_show,
6446 .write = memory_min_write,
6447 },
6448 {
6449 .name = "low",
6450 .flags = CFTYPE_NOT_ON_ROOT,
6451 .seq_show = memory_low_show,
6452 .write = memory_low_write,
6453 },
6454 {
6455 .name = "high",
6456 .flags = CFTYPE_NOT_ON_ROOT,
6457 .seq_show = memory_high_show,
6458 .write = memory_high_write,
6459 },
6460 {
6461 .name = "max",
6462 .flags = CFTYPE_NOT_ON_ROOT,
6463 .seq_show = memory_max_show,
6464 .write = memory_max_write,
6465 },
6466 {
6467 .name = "events",
6468 .flags = CFTYPE_NOT_ON_ROOT,
6469 .file_offset = offsetof(struct mem_cgroup, events_file),
6470 .seq_show = memory_events_show,
6471 },
6472 {
6473 .name = "events.local",
6474 .flags = CFTYPE_NOT_ON_ROOT,
6475 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6476 .seq_show = memory_events_local_show,
6477 },
6478 {
6479 .name = "stat",
6480 .seq_show = memory_stat_show,
6481 },
6482#ifdef CONFIG_NUMA
6483 {
6484 .name = "numa_stat",
6485 .seq_show = memory_numa_stat_show,
6486 },
6487#endif
6488 {
6489 .name = "oom.group",
6490 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6491 .seq_show = memory_oom_group_show,
6492 .write = memory_oom_group_write,
6493 },
6494 { } /* terminate */
6495};
6496
6497struct cgroup_subsys memory_cgrp_subsys = {
6498 .css_alloc = mem_cgroup_css_alloc,
6499 .css_online = mem_cgroup_css_online,
6500 .css_offline = mem_cgroup_css_offline,
6501 .css_released = mem_cgroup_css_released,
6502 .css_free = mem_cgroup_css_free,
6503 .css_reset = mem_cgroup_css_reset,
6504 .can_attach = mem_cgroup_can_attach,
6505 .cancel_attach = mem_cgroup_cancel_attach,
6506 .post_attach = mem_cgroup_move_task,
6507 .dfl_cftypes = memory_files,
6508 .legacy_cftypes = mem_cgroup_legacy_files,
6509 .early_init = 0,
6510};
6511
6512/*
6513 * This function calculates an individual cgroup's effective
6514 * protection which is derived from its own memory.min/low, its
6515 * parent's and siblings' settings, as well as the actual memory
6516 * distribution in the tree.
6517 *
6518 * The following rules apply to the effective protection values:
6519 *
6520 * 1. At the first level of reclaim, effective protection is equal to
6521 * the declared protection in memory.min and memory.low.
6522 *
6523 * 2. To enable safe delegation of the protection configuration, at
6524 * subsequent levels the effective protection is capped to the
6525 * parent's effective protection.
6526 *
6527 * 3. To make complex and dynamic subtrees easier to configure, the
6528 * user is allowed to overcommit the declared protection at a given
6529 * level. If that is the case, the parent's effective protection is
6530 * distributed to the children in proportion to how much protection
6531 * they have declared and how much of it they are utilizing.
6532 *
6533 * This makes distribution proportional, but also work-conserving:
6534 * if one cgroup claims much more protection than it uses memory,
6535 * the unused remainder is available to its siblings.
6536 *
6537 * 4. Conversely, when the declared protection is undercommitted at a
6538 * given level, the distribution of the larger parental protection
6539 * budget is NOT proportional. A cgroup's protection from a sibling
6540 * is capped to its own memory.min/low setting.
6541 *
6542 * 5. However, to allow protecting recursive subtrees from each other
6543 * without having to declare each individual cgroup's fixed share
6544 * of the ancestor's claim to protection, any unutilized -
6545 * "floating" - protection from up the tree is distributed in
6546 * proportion to each cgroup's *usage*. This makes the protection
6547 * neutral wrt sibling cgroups and lets them compete freely over
6548 * the shared parental protection budget, but it protects the
6549 * subtree as a whole from neighboring subtrees.
6550 *
6551 * Note that 4. and 5. are not in conflict: 4. is about protecting
6552 * against immediate siblings whereas 5. is about protecting against
6553 * neighboring subtrees.
6554 */
6555static unsigned long effective_protection(unsigned long usage,
6556 unsigned long parent_usage,
6557 unsigned long setting,
6558 unsigned long parent_effective,
6559 unsigned long siblings_protected)
6560{
6561 unsigned long protected;
6562 unsigned long ep;
6563
6564 protected = min(usage, setting);
6565 /*
6566 * If all cgroups at this level combined claim and use more
6567 * protection then what the parent affords them, distribute
6568 * shares in proportion to utilization.
6569 *
6570 * We are using actual utilization rather than the statically
6571 * claimed protection in order to be work-conserving: claimed
6572 * but unused protection is available to siblings that would
6573 * otherwise get a smaller chunk than what they claimed.
6574 */
6575 if (siblings_protected > parent_effective)
6576 return protected * parent_effective / siblings_protected;
6577
6578 /*
6579 * Ok, utilized protection of all children is within what the
6580 * parent affords them, so we know whatever this child claims
6581 * and utilizes is effectively protected.
6582 *
6583 * If there is unprotected usage beyond this value, reclaim
6584 * will apply pressure in proportion to that amount.
6585 *
6586 * If there is unutilized protection, the cgroup will be fully
6587 * shielded from reclaim, but we do return a smaller value for
6588 * protection than what the group could enjoy in theory. This
6589 * is okay. With the overcommit distribution above, effective
6590 * protection is always dependent on how memory is actually
6591 * consumed among the siblings anyway.
6592 */
6593 ep = protected;
6594
6595 /*
6596 * If the children aren't claiming (all of) the protection
6597 * afforded to them by the parent, distribute the remainder in
6598 * proportion to the (unprotected) memory of each cgroup. That
6599 * way, cgroups that aren't explicitly prioritized wrt each
6600 * other compete freely over the allowance, but they are
6601 * collectively protected from neighboring trees.
6602 *
6603 * We're using unprotected memory for the weight so that if
6604 * some cgroups DO claim explicit protection, we don't protect
6605 * the same bytes twice.
6606 *
6607 * Check both usage and parent_usage against the respective
6608 * protected values. One should imply the other, but they
6609 * aren't read atomically - make sure the division is sane.
6610 */
6611 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6612 return ep;
6613 if (parent_effective > siblings_protected &&
6614 parent_usage > siblings_protected &&
6615 usage > protected) {
6616 unsigned long unclaimed;
6617
6618 unclaimed = parent_effective - siblings_protected;
6619 unclaimed *= usage - protected;
6620 unclaimed /= parent_usage - siblings_protected;
6621
6622 ep += unclaimed;
6623 }
6624
6625 return ep;
6626}
6627
6628/**
6629 * mem_cgroup_protected - check if memory consumption is in the normal range
6630 * @root: the top ancestor of the sub-tree being checked
6631 * @memcg: the memory cgroup to check
6632 *
6633 * WARNING: This function is not stateless! It can only be used as part
6634 * of a top-down tree iteration, not for isolated queries.
6635 */
6636void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6637 struct mem_cgroup *memcg)
6638{
6639 unsigned long usage, parent_usage;
6640 struct mem_cgroup *parent;
6641
6642 if (mem_cgroup_disabled())
6643 return;
6644
6645 if (!root)
6646 root = root_mem_cgroup;
6647
6648 /*
6649 * Effective values of the reclaim targets are ignored so they
6650 * can be stale. Have a look at mem_cgroup_protection for more
6651 * details.
6652 * TODO: calculation should be more robust so that we do not need
6653 * that special casing.
6654 */
6655 if (memcg == root)
6656 return;
6657
6658 usage = page_counter_read(&memcg->memory);
6659 if (!usage)
6660 return;
6661
6662 parent = parent_mem_cgroup(memcg);
6663 /* No parent means a non-hierarchical mode on v1 memcg */
6664 if (!parent)
6665 return;
6666
6667 if (parent == root) {
6668 memcg->memory.emin = READ_ONCE(memcg->memory.min);
6669 memcg->memory.elow = READ_ONCE(memcg->memory.low);
6670 return;
6671 }
6672
6673 parent_usage = page_counter_read(&parent->memory);
6674
6675 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6676 READ_ONCE(memcg->memory.min),
6677 READ_ONCE(parent->memory.emin),
6678 atomic_long_read(&parent->memory.children_min_usage)));
6679
6680 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6681 READ_ONCE(memcg->memory.low),
6682 READ_ONCE(parent->memory.elow),
6683 atomic_long_read(&parent->memory.children_low_usage)));
6684}
6685
6686/**
6687 * mem_cgroup_charge - charge a newly allocated page to a cgroup
6688 * @page: page to charge
6689 * @mm: mm context of the victim
6690 * @gfp_mask: reclaim mode
6691 *
6692 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6693 * pages according to @gfp_mask if necessary.
6694 *
6695 * Returns 0 on success. Otherwise, an error code is returned.
6696 */
6697int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
6698{
6699 unsigned int nr_pages = thp_nr_pages(page);
6700 struct mem_cgroup *memcg = NULL;
6701 int ret = 0;
6702
6703 if (mem_cgroup_disabled())
6704 goto out;
6705
6706 if (PageSwapCache(page)) {
6707 swp_entry_t ent = { .val = page_private(page), };
6708 unsigned short id;
6709
6710 /*
6711 * Every swap fault against a single page tries to charge the
6712 * page, bail as early as possible. shmem_unuse() encounters
6713 * already charged pages, too. page and memcg binding is
6714 * protected by the page lock, which serializes swap cache
6715 * removal, which in turn serializes uncharging.
6716 */
6717 VM_BUG_ON_PAGE(!PageLocked(page), page);
6718 if (page_memcg(compound_head(page)))
6719 goto out;
6720
6721 id = lookup_swap_cgroup_id(ent);
6722 rcu_read_lock();
6723 memcg = mem_cgroup_from_id(id);
6724 if (memcg && !css_tryget_online(&memcg->css))
6725 memcg = NULL;
6726 rcu_read_unlock();
6727 }
6728
6729 if (!memcg)
6730 memcg = get_mem_cgroup_from_mm(mm);
6731
6732 ret = try_charge(memcg, gfp_mask, nr_pages);
6733 if (ret)
6734 goto out_put;
6735
6736 css_get(&memcg->css);
6737 commit_charge(page, memcg);
6738
6739 local_irq_disable();
6740 mem_cgroup_charge_statistics(memcg, page, nr_pages);
6741 memcg_check_events(memcg, page);
6742 local_irq_enable();
6743
6744 /*
6745 * Cgroup1's unified memory+swap counter has been charged with the
6746 * new swapcache page, finish the transfer by uncharging the swap
6747 * slot. The swap slot would also get uncharged when it dies, but
6748 * it can stick around indefinitely and we'd count the page twice
6749 * the entire time.
6750 *
6751 * Cgroup2 has separate resource counters for memory and swap,
6752 * so this is a non-issue here. Memory and swap charge lifetimes
6753 * correspond 1:1 to page and swap slot lifetimes: we charge the
6754 * page to memory here, and uncharge swap when the slot is freed.
6755 */
6756 if (do_memsw_account() && PageSwapCache(page)) {
6757 swp_entry_t entry = { .val = page_private(page) };
6758 /*
6759 * The swap entry might not get freed for a long time,
6760 * let's not wait for it. The page already received a
6761 * memory+swap charge, drop the swap entry duplicate.
6762 */
6763 mem_cgroup_uncharge_swap(entry, nr_pages);
6764 }
6765
6766out_put:
6767 css_put(&memcg->css);
6768out:
6769 return ret;
6770}
6771
6772struct uncharge_gather {
6773 struct mem_cgroup *memcg;
6774 unsigned long nr_pages;
6775 unsigned long pgpgout;
6776 unsigned long nr_kmem;
6777 struct page *dummy_page;
6778};
6779
6780static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6781{
6782 memset(ug, 0, sizeof(*ug));
6783}
6784
6785static void uncharge_batch(const struct uncharge_gather *ug)
6786{
6787 unsigned long flags;
6788
6789 if (!mem_cgroup_is_root(ug->memcg)) {
6790 page_counter_uncharge(&ug->memcg->memory, ug->nr_pages);
6791 if (do_memsw_account())
6792 page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages);
6793 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6794 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6795 memcg_oom_recover(ug->memcg);
6796 }
6797
6798 local_irq_save(flags);
6799 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6800 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages);
6801 memcg_check_events(ug->memcg, ug->dummy_page);
6802 local_irq_restore(flags);
6803
6804 /* drop reference from uncharge_page */
6805 css_put(&ug->memcg->css);
6806}
6807
6808static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6809{
6810 unsigned long nr_pages;
6811
6812 VM_BUG_ON_PAGE(PageLRU(page), page);
6813
6814 if (!page_memcg(page))
6815 return;
6816
6817 /*
6818 * Nobody should be changing or seriously looking at
6819 * page_memcg(page) at this point, we have fully
6820 * exclusive access to the page.
6821 */
6822
6823 if (ug->memcg != page_memcg(page)) {
6824 if (ug->memcg) {
6825 uncharge_batch(ug);
6826 uncharge_gather_clear(ug);
6827 }
6828 ug->memcg = page_memcg(page);
6829
6830 /* pairs with css_put in uncharge_batch */
6831 css_get(&ug->memcg->css);
6832 }
6833
6834 nr_pages = compound_nr(page);
6835 ug->nr_pages += nr_pages;
6836
6837 if (PageMemcgKmem(page))
6838 ug->nr_kmem += nr_pages;
6839 else
6840 ug->pgpgout++;
6841
6842 ug->dummy_page = page;
6843 page->memcg_data = 0;
6844 css_put(&ug->memcg->css);
6845}
6846
6847/**
6848 * mem_cgroup_uncharge - uncharge a page
6849 * @page: page to uncharge
6850 *
6851 * Uncharge a page previously charged with mem_cgroup_charge().
6852 */
6853void mem_cgroup_uncharge(struct page *page)
6854{
6855 struct uncharge_gather ug;
6856
6857 if (mem_cgroup_disabled())
6858 return;
6859
6860 /* Don't touch page->lru of any random page, pre-check: */
6861 if (!page_memcg(page))
6862 return;
6863
6864 uncharge_gather_clear(&ug);
6865 uncharge_page(page, &ug);
6866 uncharge_batch(&ug);
6867}
6868
6869/**
6870 * mem_cgroup_uncharge_list - uncharge a list of page
6871 * @page_list: list of pages to uncharge
6872 *
6873 * Uncharge a list of pages previously charged with
6874 * mem_cgroup_charge().
6875 */
6876void mem_cgroup_uncharge_list(struct list_head *page_list)
6877{
6878 struct uncharge_gather ug;
6879 struct page *page;
6880
6881 if (mem_cgroup_disabled())
6882 return;
6883
6884 uncharge_gather_clear(&ug);
6885 list_for_each_entry(page, page_list, lru)
6886 uncharge_page(page, &ug);
6887 if (ug.memcg)
6888 uncharge_batch(&ug);
6889}
6890
6891/**
6892 * mem_cgroup_migrate - charge a page's replacement
6893 * @oldpage: currently circulating page
6894 * @newpage: replacement page
6895 *
6896 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6897 * be uncharged upon free.
6898 *
6899 * Both pages must be locked, @newpage->mapping must be set up.
6900 */
6901void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6902{
6903 struct mem_cgroup *memcg;
6904 unsigned int nr_pages;
6905 unsigned long flags;
6906
6907 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6908 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6909 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6910 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6911 newpage);
6912
6913 if (mem_cgroup_disabled())
6914 return;
6915
6916 /* Page cache replacement: new page already charged? */
6917 if (page_memcg(newpage))
6918 return;
6919
6920 memcg = page_memcg(oldpage);
6921 VM_WARN_ON_ONCE_PAGE(!memcg, oldpage);
6922 if (!memcg)
6923 return;
6924
6925 /* Force-charge the new page. The old one will be freed soon */
6926 nr_pages = thp_nr_pages(newpage);
6927
6928 page_counter_charge(&memcg->memory, nr_pages);
6929 if (do_memsw_account())
6930 page_counter_charge(&memcg->memsw, nr_pages);
6931
6932 css_get(&memcg->css);
6933 commit_charge(newpage, memcg);
6934
6935 local_irq_save(flags);
6936 mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
6937 memcg_check_events(memcg, newpage);
6938 local_irq_restore(flags);
6939}
6940
6941DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6942EXPORT_SYMBOL(memcg_sockets_enabled_key);
6943
6944void mem_cgroup_sk_alloc(struct sock *sk)
6945{
6946 struct mem_cgroup *memcg;
6947
6948 if (!mem_cgroup_sockets_enabled)
6949 return;
6950
6951 /* Do not associate the sock with unrelated interrupted task's memcg. */
6952 if (in_interrupt())
6953 return;
6954
6955 rcu_read_lock();
6956 memcg = mem_cgroup_from_task(current);
6957 if (memcg == root_mem_cgroup)
6958 goto out;
6959 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6960 goto out;
6961 if (css_tryget(&memcg->css))
6962 sk->sk_memcg = memcg;
6963out:
6964 rcu_read_unlock();
6965}
6966
6967void mem_cgroup_sk_free(struct sock *sk)
6968{
6969 if (sk->sk_memcg)
6970 css_put(&sk->sk_memcg->css);
6971}
6972
6973/**
6974 * mem_cgroup_charge_skmem - charge socket memory
6975 * @memcg: memcg to charge
6976 * @nr_pages: number of pages to charge
6977 *
6978 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6979 * @memcg's configured limit, %false if the charge had to be forced.
6980 */
6981bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6982{
6983 gfp_t gfp_mask = GFP_KERNEL;
6984
6985 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6986 struct page_counter *fail;
6987
6988 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6989 memcg->tcpmem_pressure = 0;
6990 return true;
6991 }
6992 page_counter_charge(&memcg->tcpmem, nr_pages);
6993 memcg->tcpmem_pressure = 1;
6994 return false;
6995 }
6996
6997 /* Don't block in the packet receive path */
6998 if (in_softirq())
6999 gfp_mask = GFP_NOWAIT;
7000
7001 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7002
7003 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
7004 return true;
7005
7006 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
7007 return false;
7008}
7009
7010/**
7011 * mem_cgroup_uncharge_skmem - uncharge socket memory
7012 * @memcg: memcg to uncharge
7013 * @nr_pages: number of pages to uncharge
7014 */
7015void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7016{
7017 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7018 page_counter_uncharge(&memcg->tcpmem, nr_pages);
7019 return;
7020 }
7021
7022 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7023
7024 refill_stock(memcg, nr_pages);
7025}
7026
7027static int __init cgroup_memory(char *s)
7028{
7029 char *token;
7030
7031 while ((token = strsep(&s, ",")) != NULL) {
7032 if (!*token)
7033 continue;
7034 if (!strcmp(token, "nosocket"))
7035 cgroup_memory_nosocket = true;
7036 if (!strcmp(token, "nokmem"))
7037 cgroup_memory_nokmem = true;
7038 }
7039 return 0;
7040}
7041__setup("cgroup.memory=", cgroup_memory);
7042
7043/*
7044 * subsys_initcall() for memory controller.
7045 *
7046 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7047 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7048 * basically everything that doesn't depend on a specific mem_cgroup structure
7049 * should be initialized from here.
7050 */
7051static int __init mem_cgroup_init(void)
7052{
7053 int cpu, node;
7054
7055 /*
7056 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7057 * used for per-memcg-per-cpu caching of per-node statistics. In order
7058 * to work fine, we should make sure that the overfill threshold can't
7059 * exceed S32_MAX / PAGE_SIZE.
7060 */
7061 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7062
7063 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7064 memcg_hotplug_cpu_dead);
7065
7066 for_each_possible_cpu(cpu)
7067 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7068 drain_local_stock);
7069
7070 for_each_node(node) {
7071 struct mem_cgroup_tree_per_node *rtpn;
7072
7073 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7074 node_online(node) ? node : NUMA_NO_NODE);
7075
7076 rtpn->rb_root = RB_ROOT;
7077 rtpn->rb_rightmost = NULL;
7078 spin_lock_init(&rtpn->lock);
7079 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7080 }
7081
7082 return 0;
7083}
7084subsys_initcall(mem_cgroup_init);
7085
7086#ifdef CONFIG_MEMCG_SWAP
7087static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7088{
7089 while (!refcount_inc_not_zero(&memcg->id.ref)) {
7090 /*
7091 * The root cgroup cannot be destroyed, so it's refcount must
7092 * always be >= 1.
7093 */
7094 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7095 VM_BUG_ON(1);
7096 break;
7097 }
7098 memcg = parent_mem_cgroup(memcg);
7099 if (!memcg)
7100 memcg = root_mem_cgroup;
7101 }
7102 return memcg;
7103}
7104
7105/**
7106 * mem_cgroup_swapout - transfer a memsw charge to swap
7107 * @page: page whose memsw charge to transfer
7108 * @entry: swap entry to move the charge to
7109 *
7110 * Transfer the memsw charge of @page to @entry.
7111 */
7112void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7113{
7114 struct mem_cgroup *memcg, *swap_memcg;
7115 unsigned int nr_entries;
7116 unsigned short oldid;
7117
7118 VM_BUG_ON_PAGE(PageLRU(page), page);
7119 VM_BUG_ON_PAGE(page_count(page), page);
7120
7121 if (mem_cgroup_disabled())
7122 return;
7123
7124 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7125 return;
7126
7127 memcg = page_memcg(page);
7128
7129 VM_WARN_ON_ONCE_PAGE(!memcg, page);
7130 if (!memcg)
7131 return;
7132
7133 /*
7134 * In case the memcg owning these pages has been offlined and doesn't
7135 * have an ID allocated to it anymore, charge the closest online
7136 * ancestor for the swap instead and transfer the memory+swap charge.
7137 */
7138 swap_memcg = mem_cgroup_id_get_online(memcg);
7139 nr_entries = thp_nr_pages(page);
7140 /* Get references for the tail pages, too */
7141 if (nr_entries > 1)
7142 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7143 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7144 nr_entries);
7145 VM_BUG_ON_PAGE(oldid, page);
7146 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7147
7148 page->memcg_data = 0;
7149
7150 if (!mem_cgroup_is_root(memcg))
7151 page_counter_uncharge(&memcg->memory, nr_entries);
7152
7153 if (!cgroup_memory_noswap && memcg != swap_memcg) {
7154 if (!mem_cgroup_is_root(swap_memcg))
7155 page_counter_charge(&swap_memcg->memsw, nr_entries);
7156 page_counter_uncharge(&memcg->memsw, nr_entries);
7157 }
7158
7159 /*
7160 * Interrupts should be disabled here because the caller holds the
7161 * i_pages lock which is taken with interrupts-off. It is
7162 * important here to have the interrupts disabled because it is the
7163 * only synchronisation we have for updating the per-CPU variables.
7164 */
7165 VM_BUG_ON(!irqs_disabled());
7166 mem_cgroup_charge_statistics(memcg, page, -nr_entries);
7167 memcg_check_events(memcg, page);
7168
7169 css_put(&memcg->css);
7170}
7171
7172/**
7173 * mem_cgroup_try_charge_swap - try charging swap space for a page
7174 * @page: page being added to swap
7175 * @entry: swap entry to charge
7176 *
7177 * Try to charge @page's memcg for the swap space at @entry.
7178 *
7179 * Returns 0 on success, -ENOMEM on failure.
7180 */
7181int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7182{
7183 unsigned int nr_pages = thp_nr_pages(page);
7184 struct page_counter *counter;
7185 struct mem_cgroup *memcg;
7186 unsigned short oldid;
7187
7188 if (mem_cgroup_disabled())
7189 return 0;
7190
7191 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7192 return 0;
7193
7194 memcg = page_memcg(page);
7195
7196 VM_WARN_ON_ONCE_PAGE(!memcg, page);
7197 if (!memcg)
7198 return 0;
7199
7200 if (!entry.val) {
7201 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7202 return 0;
7203 }
7204
7205 memcg = mem_cgroup_id_get_online(memcg);
7206
7207 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7208 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7209 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7210 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7211 mem_cgroup_id_put(memcg);
7212 return -ENOMEM;
7213 }
7214
7215 /* Get references for the tail pages, too */
7216 if (nr_pages > 1)
7217 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7218 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7219 VM_BUG_ON_PAGE(oldid, page);
7220 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7221
7222 return 0;
7223}
7224
7225/**
7226 * mem_cgroup_uncharge_swap - uncharge swap space
7227 * @entry: swap entry to uncharge
7228 * @nr_pages: the amount of swap space to uncharge
7229 */
7230void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7231{
7232 struct mem_cgroup *memcg;
7233 unsigned short id;
7234
7235 id = swap_cgroup_record(entry, 0, nr_pages);
7236 rcu_read_lock();
7237 memcg = mem_cgroup_from_id(id);
7238 if (memcg) {
7239 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7240 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7241 page_counter_uncharge(&memcg->swap, nr_pages);
7242 else
7243 page_counter_uncharge(&memcg->memsw, nr_pages);
7244 }
7245 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7246 mem_cgroup_id_put_many(memcg, nr_pages);
7247 }
7248 rcu_read_unlock();
7249}
7250
7251long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7252{
7253 long nr_swap_pages = get_nr_swap_pages();
7254
7255 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7256 return nr_swap_pages;
7257 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7258 nr_swap_pages = min_t(long, nr_swap_pages,
7259 READ_ONCE(memcg->swap.max) -
7260 page_counter_read(&memcg->swap));
7261 return nr_swap_pages;
7262}
7263
7264bool mem_cgroup_swap_full(struct page *page)
7265{
7266 struct mem_cgroup *memcg;
7267
7268 VM_BUG_ON_PAGE(!PageLocked(page), page);
7269
7270 if (vm_swap_full())
7271 return true;
7272 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7273 return false;
7274
7275 memcg = page_memcg(page);
7276 if (!memcg)
7277 return false;
7278
7279 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7280 unsigned long usage = page_counter_read(&memcg->swap);
7281
7282 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7283 usage * 2 >= READ_ONCE(memcg->swap.max))
7284 return true;
7285 }
7286
7287 return false;
7288}
7289
7290static int __init setup_swap_account(char *s)
7291{
7292 if (!strcmp(s, "1"))
7293 cgroup_memory_noswap = false;
7294 else if (!strcmp(s, "0"))
7295 cgroup_memory_noswap = true;
7296 return 1;
7297}
7298__setup("swapaccount=", setup_swap_account);
7299
7300static u64 swap_current_read(struct cgroup_subsys_state *css,
7301 struct cftype *cft)
7302{
7303 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7304
7305 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7306}
7307
7308static int swap_high_show(struct seq_file *m, void *v)
7309{
7310 return seq_puts_memcg_tunable(m,
7311 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7312}
7313
7314static ssize_t swap_high_write(struct kernfs_open_file *of,
7315 char *buf, size_t nbytes, loff_t off)
7316{
7317 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7318 unsigned long high;
7319 int err;
7320
7321 buf = strstrip(buf);
7322 err = page_counter_memparse(buf, "max", &high);
7323 if (err)
7324 return err;
7325
7326 page_counter_set_high(&memcg->swap, high);
7327
7328 return nbytes;
7329}
7330
7331static int swap_max_show(struct seq_file *m, void *v)
7332{
7333 return seq_puts_memcg_tunable(m,
7334 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7335}
7336
7337static ssize_t swap_max_write(struct kernfs_open_file *of,
7338 char *buf, size_t nbytes, loff_t off)
7339{
7340 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7341 unsigned long max;
7342 int err;
7343
7344 buf = strstrip(buf);
7345 err = page_counter_memparse(buf, "max", &max);
7346 if (err)
7347 return err;
7348
7349 xchg(&memcg->swap.max, max);
7350
7351 return nbytes;
7352}
7353
7354static int swap_events_show(struct seq_file *m, void *v)
7355{
7356 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7357
7358 seq_printf(m, "high %lu\n",
7359 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7360 seq_printf(m, "max %lu\n",
7361 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7362 seq_printf(m, "fail %lu\n",
7363 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7364
7365 return 0;
7366}
7367
7368static struct cftype swap_files[] = {
7369 {
7370 .name = "swap.current",
7371 .flags = CFTYPE_NOT_ON_ROOT,
7372 .read_u64 = swap_current_read,
7373 },
7374 {
7375 .name = "swap.high",
7376 .flags = CFTYPE_NOT_ON_ROOT,
7377 .seq_show = swap_high_show,
7378 .write = swap_high_write,
7379 },
7380 {
7381 .name = "swap.max",
7382 .flags = CFTYPE_NOT_ON_ROOT,
7383 .seq_show = swap_max_show,
7384 .write = swap_max_write,
7385 },
7386 {
7387 .name = "swap.events",
7388 .flags = CFTYPE_NOT_ON_ROOT,
7389 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7390 .seq_show = swap_events_show,
7391 },
7392 { } /* terminate */
7393};
7394
7395static struct cftype memsw_files[] = {
7396 {
7397 .name = "memsw.usage_in_bytes",
7398 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7399 .read_u64 = mem_cgroup_read_u64,
7400 },
7401 {
7402 .name = "memsw.max_usage_in_bytes",
7403 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7404 .write = mem_cgroup_reset,
7405 .read_u64 = mem_cgroup_read_u64,
7406 },
7407 {
7408 .name = "memsw.limit_in_bytes",
7409 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7410 .write = mem_cgroup_write,
7411 .read_u64 = mem_cgroup_read_u64,
7412 },
7413 {
7414 .name = "memsw.failcnt",
7415 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7416 .write = mem_cgroup_reset,
7417 .read_u64 = mem_cgroup_read_u64,
7418 },
7419 { }, /* terminate */
7420};
7421
7422/*
7423 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7424 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7425 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7426 * boot parameter. This may result in premature OOPS inside
7427 * mem_cgroup_get_nr_swap_pages() function in corner cases.
7428 */
7429static int __init mem_cgroup_swap_init(void)
7430{
7431 /* No memory control -> no swap control */
7432 if (mem_cgroup_disabled())
7433 cgroup_memory_noswap = true;
7434
7435 if (cgroup_memory_noswap)
7436 return 0;
7437
7438 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7439 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7440
7441 return 0;
7442}
7443core_initcall(mem_cgroup_swap_init);
7444
7445#endif /* CONFIG_MEMCG_SWAP */