Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Routines having to do with the 'struct sk_buff' memory handlers.
4 *
5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
6 * Florian La Roche <rzsfl@rz.uni-sb.de>
7 *
8 * Fixes:
9 * Alan Cox : Fixed the worst of the load
10 * balancer bugs.
11 * Dave Platt : Interrupt stacking fix.
12 * Richard Kooijman : Timestamp fixes.
13 * Alan Cox : Changed buffer format.
14 * Alan Cox : destructor hook for AF_UNIX etc.
15 * Linus Torvalds : Better skb_clone.
16 * Alan Cox : Added skb_copy.
17 * Alan Cox : Added all the changed routines Linus
18 * only put in the headers
19 * Ray VanTassle : Fixed --skb->lock in free
20 * Alan Cox : skb_copy copy arp field
21 * Andi Kleen : slabified it.
22 * Robert Olsson : Removed skb_head_pool
23 *
24 * NOTE:
25 * The __skb_ routines should be called with interrupts
26 * disabled, or you better be *real* sure that the operation is atomic
27 * with respect to whatever list is being frobbed (e.g. via lock_sock()
28 * or via disabling bottom half handlers, etc).
29 */
30
31/*
32 * The functions in this file will not compile correctly with gcc 2.4.x
33 */
34
35#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37#include <linux/module.h>
38#include <linux/types.h>
39#include <linux/kernel.h>
40#include <linux/mm.h>
41#include <linux/interrupt.h>
42#include <linux/in.h>
43#include <linux/inet.h>
44#include <linux/slab.h>
45#include <linux/tcp.h>
46#include <linux/udp.h>
47#include <linux/sctp.h>
48#include <linux/netdevice.h>
49#ifdef CONFIG_NET_CLS_ACT
50#include <net/pkt_sched.h>
51#endif
52#include <linux/string.h>
53#include <linux/skbuff.h>
54#include <linux/splice.h>
55#include <linux/cache.h>
56#include <linux/rtnetlink.h>
57#include <linux/init.h>
58#include <linux/scatterlist.h>
59#include <linux/errqueue.h>
60#include <linux/prefetch.h>
61#include <linux/if_vlan.h>
62#include <linux/mpls.h>
63
64#include <net/protocol.h>
65#include <net/dst.h>
66#include <net/sock.h>
67#include <net/checksum.h>
68#include <net/ip6_checksum.h>
69#include <net/xfrm.h>
70#include <net/mpls.h>
71#include <net/mptcp.h>
72
73#include <linux/uaccess.h>
74#include <trace/events/skb.h>
75#include <linux/highmem.h>
76#include <linux/capability.h>
77#include <linux/user_namespace.h>
78#include <linux/indirect_call_wrapper.h>
79
80#include "datagram.h"
81
82struct kmem_cache *skbuff_head_cache __ro_after_init;
83static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
84#ifdef CONFIG_SKB_EXTENSIONS
85static struct kmem_cache *skbuff_ext_cache __ro_after_init;
86#endif
87int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
88EXPORT_SYMBOL(sysctl_max_skb_frags);
89
90/**
91 * skb_panic - private function for out-of-line support
92 * @skb: buffer
93 * @sz: size
94 * @addr: address
95 * @msg: skb_over_panic or skb_under_panic
96 *
97 * Out-of-line support for skb_put() and skb_push().
98 * Called via the wrapper skb_over_panic() or skb_under_panic().
99 * Keep out of line to prevent kernel bloat.
100 * __builtin_return_address is not used because it is not always reliable.
101 */
102static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
103 const char msg[])
104{
105 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
106 msg, addr, skb->len, sz, skb->head, skb->data,
107 (unsigned long)skb->tail, (unsigned long)skb->end,
108 skb->dev ? skb->dev->name : "<NULL>");
109 BUG();
110}
111
112static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
113{
114 skb_panic(skb, sz, addr, __func__);
115}
116
117static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
118{
119 skb_panic(skb, sz, addr, __func__);
120}
121
122#define NAPI_SKB_CACHE_SIZE 64
123#define NAPI_SKB_CACHE_BULK 16
124#define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2)
125
126struct napi_alloc_cache {
127 struct page_frag_cache page;
128 unsigned int skb_count;
129 void *skb_cache[NAPI_SKB_CACHE_SIZE];
130};
131
132static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
133static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
134
135static void *__alloc_frag_align(unsigned int fragsz, gfp_t gfp_mask,
136 unsigned int align_mask)
137{
138 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
139
140 return page_frag_alloc_align(&nc->page, fragsz, gfp_mask, align_mask);
141}
142
143void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
144{
145 fragsz = SKB_DATA_ALIGN(fragsz);
146
147 return __alloc_frag_align(fragsz, GFP_ATOMIC, align_mask);
148}
149EXPORT_SYMBOL(__napi_alloc_frag_align);
150
151void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
152{
153 struct page_frag_cache *nc;
154 void *data;
155
156 fragsz = SKB_DATA_ALIGN(fragsz);
157 if (in_irq() || irqs_disabled()) {
158 nc = this_cpu_ptr(&netdev_alloc_cache);
159 data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask);
160 } else {
161 local_bh_disable();
162 data = __alloc_frag_align(fragsz, GFP_ATOMIC, align_mask);
163 local_bh_enable();
164 }
165 return data;
166}
167EXPORT_SYMBOL(__netdev_alloc_frag_align);
168
169static struct sk_buff *napi_skb_cache_get(void)
170{
171 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
172 struct sk_buff *skb;
173
174 if (unlikely(!nc->skb_count))
175 nc->skb_count = kmem_cache_alloc_bulk(skbuff_head_cache,
176 GFP_ATOMIC,
177 NAPI_SKB_CACHE_BULK,
178 nc->skb_cache);
179 if (unlikely(!nc->skb_count))
180 return NULL;
181
182 skb = nc->skb_cache[--nc->skb_count];
183 kasan_unpoison_object_data(skbuff_head_cache, skb);
184
185 return skb;
186}
187
188/* Caller must provide SKB that is memset cleared */
189static void __build_skb_around(struct sk_buff *skb, void *data,
190 unsigned int frag_size)
191{
192 struct skb_shared_info *shinfo;
193 unsigned int size = frag_size ? : ksize(data);
194
195 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
196
197 /* Assumes caller memset cleared SKB */
198 skb->truesize = SKB_TRUESIZE(size);
199 refcount_set(&skb->users, 1);
200 skb->head = data;
201 skb->data = data;
202 skb_reset_tail_pointer(skb);
203 skb->end = skb->tail + size;
204 skb->mac_header = (typeof(skb->mac_header))~0U;
205 skb->transport_header = (typeof(skb->transport_header))~0U;
206
207 /* make sure we initialize shinfo sequentially */
208 shinfo = skb_shinfo(skb);
209 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
210 atomic_set(&shinfo->dataref, 1);
211
212 skb_set_kcov_handle(skb, kcov_common_handle());
213}
214
215/**
216 * __build_skb - build a network buffer
217 * @data: data buffer provided by caller
218 * @frag_size: size of data, or 0 if head was kmalloced
219 *
220 * Allocate a new &sk_buff. Caller provides space holding head and
221 * skb_shared_info. @data must have been allocated by kmalloc() only if
222 * @frag_size is 0, otherwise data should come from the page allocator
223 * or vmalloc()
224 * The return is the new skb buffer.
225 * On a failure the return is %NULL, and @data is not freed.
226 * Notes :
227 * Before IO, driver allocates only data buffer where NIC put incoming frame
228 * Driver should add room at head (NET_SKB_PAD) and
229 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
230 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
231 * before giving packet to stack.
232 * RX rings only contains data buffers, not full skbs.
233 */
234struct sk_buff *__build_skb(void *data, unsigned int frag_size)
235{
236 struct sk_buff *skb;
237
238 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
239 if (unlikely(!skb))
240 return NULL;
241
242 memset(skb, 0, offsetof(struct sk_buff, tail));
243 __build_skb_around(skb, data, frag_size);
244
245 return skb;
246}
247
248/* build_skb() is wrapper over __build_skb(), that specifically
249 * takes care of skb->head and skb->pfmemalloc
250 * This means that if @frag_size is not zero, then @data must be backed
251 * by a page fragment, not kmalloc() or vmalloc()
252 */
253struct sk_buff *build_skb(void *data, unsigned int frag_size)
254{
255 struct sk_buff *skb = __build_skb(data, frag_size);
256
257 if (skb && frag_size) {
258 skb->head_frag = 1;
259 if (page_is_pfmemalloc(virt_to_head_page(data)))
260 skb->pfmemalloc = 1;
261 }
262 return skb;
263}
264EXPORT_SYMBOL(build_skb);
265
266/**
267 * build_skb_around - build a network buffer around provided skb
268 * @skb: sk_buff provide by caller, must be memset cleared
269 * @data: data buffer provided by caller
270 * @frag_size: size of data, or 0 if head was kmalloced
271 */
272struct sk_buff *build_skb_around(struct sk_buff *skb,
273 void *data, unsigned int frag_size)
274{
275 if (unlikely(!skb))
276 return NULL;
277
278 __build_skb_around(skb, data, frag_size);
279
280 if (frag_size) {
281 skb->head_frag = 1;
282 if (page_is_pfmemalloc(virt_to_head_page(data)))
283 skb->pfmemalloc = 1;
284 }
285 return skb;
286}
287EXPORT_SYMBOL(build_skb_around);
288
289/**
290 * __napi_build_skb - build a network buffer
291 * @data: data buffer provided by caller
292 * @frag_size: size of data, or 0 if head was kmalloced
293 *
294 * Version of __build_skb() that uses NAPI percpu caches to obtain
295 * skbuff_head instead of inplace allocation.
296 *
297 * Returns a new &sk_buff on success, %NULL on allocation failure.
298 */
299static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
300{
301 struct sk_buff *skb;
302
303 skb = napi_skb_cache_get();
304 if (unlikely(!skb))
305 return NULL;
306
307 memset(skb, 0, offsetof(struct sk_buff, tail));
308 __build_skb_around(skb, data, frag_size);
309
310 return skb;
311}
312
313/**
314 * napi_build_skb - build a network buffer
315 * @data: data buffer provided by caller
316 * @frag_size: size of data, or 0 if head was kmalloced
317 *
318 * Version of __napi_build_skb() that takes care of skb->head_frag
319 * and skb->pfmemalloc when the data is a page or page fragment.
320 *
321 * Returns a new &sk_buff on success, %NULL on allocation failure.
322 */
323struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
324{
325 struct sk_buff *skb = __napi_build_skb(data, frag_size);
326
327 if (likely(skb) && frag_size) {
328 skb->head_frag = 1;
329 skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
330 }
331
332 return skb;
333}
334EXPORT_SYMBOL(napi_build_skb);
335
336/*
337 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
338 * the caller if emergency pfmemalloc reserves are being used. If it is and
339 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
340 * may be used. Otherwise, the packet data may be discarded until enough
341 * memory is free
342 */
343static void *kmalloc_reserve(size_t size, gfp_t flags, int node,
344 bool *pfmemalloc)
345{
346 void *obj;
347 bool ret_pfmemalloc = false;
348
349 /*
350 * Try a regular allocation, when that fails and we're not entitled
351 * to the reserves, fail.
352 */
353 obj = kmalloc_node_track_caller(size,
354 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
355 node);
356 if (obj || !(gfp_pfmemalloc_allowed(flags)))
357 goto out;
358
359 /* Try again but now we are using pfmemalloc reserves */
360 ret_pfmemalloc = true;
361 obj = kmalloc_node_track_caller(size, flags, node);
362
363out:
364 if (pfmemalloc)
365 *pfmemalloc = ret_pfmemalloc;
366
367 return obj;
368}
369
370/* Allocate a new skbuff. We do this ourselves so we can fill in a few
371 * 'private' fields and also do memory statistics to find all the
372 * [BEEP] leaks.
373 *
374 */
375
376/**
377 * __alloc_skb - allocate a network buffer
378 * @size: size to allocate
379 * @gfp_mask: allocation mask
380 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
381 * instead of head cache and allocate a cloned (child) skb.
382 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
383 * allocations in case the data is required for writeback
384 * @node: numa node to allocate memory on
385 *
386 * Allocate a new &sk_buff. The returned buffer has no headroom and a
387 * tail room of at least size bytes. The object has a reference count
388 * of one. The return is the buffer. On a failure the return is %NULL.
389 *
390 * Buffers may only be allocated from interrupts using a @gfp_mask of
391 * %GFP_ATOMIC.
392 */
393struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
394 int flags, int node)
395{
396 struct kmem_cache *cache;
397 struct sk_buff *skb;
398 u8 *data;
399 bool pfmemalloc;
400
401 cache = (flags & SKB_ALLOC_FCLONE)
402 ? skbuff_fclone_cache : skbuff_head_cache;
403
404 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
405 gfp_mask |= __GFP_MEMALLOC;
406
407 /* Get the HEAD */
408 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
409 likely(node == NUMA_NO_NODE || node == numa_mem_id()))
410 skb = napi_skb_cache_get();
411 else
412 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
413 if (unlikely(!skb))
414 return NULL;
415 prefetchw(skb);
416
417 /* We do our best to align skb_shared_info on a separate cache
418 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
419 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
420 * Both skb->head and skb_shared_info are cache line aligned.
421 */
422 size = SKB_DATA_ALIGN(size);
423 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
424 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
425 if (unlikely(!data))
426 goto nodata;
427 /* kmalloc(size) might give us more room than requested.
428 * Put skb_shared_info exactly at the end of allocated zone,
429 * to allow max possible filling before reallocation.
430 */
431 size = SKB_WITH_OVERHEAD(ksize(data));
432 prefetchw(data + size);
433
434 /*
435 * Only clear those fields we need to clear, not those that we will
436 * actually initialise below. Hence, don't put any more fields after
437 * the tail pointer in struct sk_buff!
438 */
439 memset(skb, 0, offsetof(struct sk_buff, tail));
440 __build_skb_around(skb, data, 0);
441 skb->pfmemalloc = pfmemalloc;
442
443 if (flags & SKB_ALLOC_FCLONE) {
444 struct sk_buff_fclones *fclones;
445
446 fclones = container_of(skb, struct sk_buff_fclones, skb1);
447
448 skb->fclone = SKB_FCLONE_ORIG;
449 refcount_set(&fclones->fclone_ref, 1);
450
451 fclones->skb2.fclone = SKB_FCLONE_CLONE;
452 }
453
454 return skb;
455
456nodata:
457 kmem_cache_free(cache, skb);
458 return NULL;
459}
460EXPORT_SYMBOL(__alloc_skb);
461
462/**
463 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
464 * @dev: network device to receive on
465 * @len: length to allocate
466 * @gfp_mask: get_free_pages mask, passed to alloc_skb
467 *
468 * Allocate a new &sk_buff and assign it a usage count of one. The
469 * buffer has NET_SKB_PAD headroom built in. Users should allocate
470 * the headroom they think they need without accounting for the
471 * built in space. The built in space is used for optimisations.
472 *
473 * %NULL is returned if there is no free memory.
474 */
475struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
476 gfp_t gfp_mask)
477{
478 struct page_frag_cache *nc;
479 struct sk_buff *skb;
480 bool pfmemalloc;
481 void *data;
482
483 len += NET_SKB_PAD;
484
485 /* If requested length is either too small or too big,
486 * we use kmalloc() for skb->head allocation.
487 */
488 if (len <= SKB_WITH_OVERHEAD(1024) ||
489 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
490 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
491 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
492 if (!skb)
493 goto skb_fail;
494 goto skb_success;
495 }
496
497 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
498 len = SKB_DATA_ALIGN(len);
499
500 if (sk_memalloc_socks())
501 gfp_mask |= __GFP_MEMALLOC;
502
503 if (in_irq() || irqs_disabled()) {
504 nc = this_cpu_ptr(&netdev_alloc_cache);
505 data = page_frag_alloc(nc, len, gfp_mask);
506 pfmemalloc = nc->pfmemalloc;
507 } else {
508 local_bh_disable();
509 nc = this_cpu_ptr(&napi_alloc_cache.page);
510 data = page_frag_alloc(nc, len, gfp_mask);
511 pfmemalloc = nc->pfmemalloc;
512 local_bh_enable();
513 }
514
515 if (unlikely(!data))
516 return NULL;
517
518 skb = __build_skb(data, len);
519 if (unlikely(!skb)) {
520 skb_free_frag(data);
521 return NULL;
522 }
523
524 if (pfmemalloc)
525 skb->pfmemalloc = 1;
526 skb->head_frag = 1;
527
528skb_success:
529 skb_reserve(skb, NET_SKB_PAD);
530 skb->dev = dev;
531
532skb_fail:
533 return skb;
534}
535EXPORT_SYMBOL(__netdev_alloc_skb);
536
537/**
538 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
539 * @napi: napi instance this buffer was allocated for
540 * @len: length to allocate
541 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
542 *
543 * Allocate a new sk_buff for use in NAPI receive. This buffer will
544 * attempt to allocate the head from a special reserved region used
545 * only for NAPI Rx allocation. By doing this we can save several
546 * CPU cycles by avoiding having to disable and re-enable IRQs.
547 *
548 * %NULL is returned if there is no free memory.
549 */
550struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
551 gfp_t gfp_mask)
552{
553 struct napi_alloc_cache *nc;
554 struct sk_buff *skb;
555 void *data;
556
557 len += NET_SKB_PAD + NET_IP_ALIGN;
558
559 /* If requested length is either too small or too big,
560 * we use kmalloc() for skb->head allocation.
561 */
562 if (len <= SKB_WITH_OVERHEAD(1024) ||
563 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
564 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
565 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
566 NUMA_NO_NODE);
567 if (!skb)
568 goto skb_fail;
569 goto skb_success;
570 }
571
572 nc = this_cpu_ptr(&napi_alloc_cache);
573 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
574 len = SKB_DATA_ALIGN(len);
575
576 if (sk_memalloc_socks())
577 gfp_mask |= __GFP_MEMALLOC;
578
579 data = page_frag_alloc(&nc->page, len, gfp_mask);
580 if (unlikely(!data))
581 return NULL;
582
583 skb = __napi_build_skb(data, len);
584 if (unlikely(!skb)) {
585 skb_free_frag(data);
586 return NULL;
587 }
588
589 if (nc->page.pfmemalloc)
590 skb->pfmemalloc = 1;
591 skb->head_frag = 1;
592
593skb_success:
594 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
595 skb->dev = napi->dev;
596
597skb_fail:
598 return skb;
599}
600EXPORT_SYMBOL(__napi_alloc_skb);
601
602void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
603 int size, unsigned int truesize)
604{
605 skb_fill_page_desc(skb, i, page, off, size);
606 skb->len += size;
607 skb->data_len += size;
608 skb->truesize += truesize;
609}
610EXPORT_SYMBOL(skb_add_rx_frag);
611
612void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
613 unsigned int truesize)
614{
615 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
616
617 skb_frag_size_add(frag, size);
618 skb->len += size;
619 skb->data_len += size;
620 skb->truesize += truesize;
621}
622EXPORT_SYMBOL(skb_coalesce_rx_frag);
623
624static void skb_drop_list(struct sk_buff **listp)
625{
626 kfree_skb_list(*listp);
627 *listp = NULL;
628}
629
630static inline void skb_drop_fraglist(struct sk_buff *skb)
631{
632 skb_drop_list(&skb_shinfo(skb)->frag_list);
633}
634
635static void skb_clone_fraglist(struct sk_buff *skb)
636{
637 struct sk_buff *list;
638
639 skb_walk_frags(skb, list)
640 skb_get(list);
641}
642
643static void skb_free_head(struct sk_buff *skb)
644{
645 unsigned char *head = skb->head;
646
647 if (skb->head_frag)
648 skb_free_frag(head);
649 else
650 kfree(head);
651}
652
653static void skb_release_data(struct sk_buff *skb)
654{
655 struct skb_shared_info *shinfo = skb_shinfo(skb);
656 int i;
657
658 if (skb->cloned &&
659 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
660 &shinfo->dataref))
661 return;
662
663 skb_zcopy_clear(skb, true);
664
665 for (i = 0; i < shinfo->nr_frags; i++)
666 __skb_frag_unref(&shinfo->frags[i]);
667
668 if (shinfo->frag_list)
669 kfree_skb_list(shinfo->frag_list);
670
671 skb_free_head(skb);
672}
673
674/*
675 * Free an skbuff by memory without cleaning the state.
676 */
677static void kfree_skbmem(struct sk_buff *skb)
678{
679 struct sk_buff_fclones *fclones;
680
681 switch (skb->fclone) {
682 case SKB_FCLONE_UNAVAILABLE:
683 kmem_cache_free(skbuff_head_cache, skb);
684 return;
685
686 case SKB_FCLONE_ORIG:
687 fclones = container_of(skb, struct sk_buff_fclones, skb1);
688
689 /* We usually free the clone (TX completion) before original skb
690 * This test would have no chance to be true for the clone,
691 * while here, branch prediction will be good.
692 */
693 if (refcount_read(&fclones->fclone_ref) == 1)
694 goto fastpath;
695 break;
696
697 default: /* SKB_FCLONE_CLONE */
698 fclones = container_of(skb, struct sk_buff_fclones, skb2);
699 break;
700 }
701 if (!refcount_dec_and_test(&fclones->fclone_ref))
702 return;
703fastpath:
704 kmem_cache_free(skbuff_fclone_cache, fclones);
705}
706
707void skb_release_head_state(struct sk_buff *skb)
708{
709 skb_dst_drop(skb);
710 if (skb->destructor) {
711 WARN_ON(in_irq());
712 skb->destructor(skb);
713 }
714#if IS_ENABLED(CONFIG_NF_CONNTRACK)
715 nf_conntrack_put(skb_nfct(skb));
716#endif
717 skb_ext_put(skb);
718}
719
720/* Free everything but the sk_buff shell. */
721static void skb_release_all(struct sk_buff *skb)
722{
723 skb_release_head_state(skb);
724 if (likely(skb->head))
725 skb_release_data(skb);
726}
727
728/**
729 * __kfree_skb - private function
730 * @skb: buffer
731 *
732 * Free an sk_buff. Release anything attached to the buffer.
733 * Clean the state. This is an internal helper function. Users should
734 * always call kfree_skb
735 */
736
737void __kfree_skb(struct sk_buff *skb)
738{
739 skb_release_all(skb);
740 kfree_skbmem(skb);
741}
742EXPORT_SYMBOL(__kfree_skb);
743
744/**
745 * kfree_skb - free an sk_buff
746 * @skb: buffer to free
747 *
748 * Drop a reference to the buffer and free it if the usage count has
749 * hit zero.
750 */
751void kfree_skb(struct sk_buff *skb)
752{
753 if (!skb_unref(skb))
754 return;
755
756 trace_kfree_skb(skb, __builtin_return_address(0));
757 __kfree_skb(skb);
758}
759EXPORT_SYMBOL(kfree_skb);
760
761void kfree_skb_list(struct sk_buff *segs)
762{
763 while (segs) {
764 struct sk_buff *next = segs->next;
765
766 kfree_skb(segs);
767 segs = next;
768 }
769}
770EXPORT_SYMBOL(kfree_skb_list);
771
772/* Dump skb information and contents.
773 *
774 * Must only be called from net_ratelimit()-ed paths.
775 *
776 * Dumps whole packets if full_pkt, only headers otherwise.
777 */
778void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
779{
780 struct skb_shared_info *sh = skb_shinfo(skb);
781 struct net_device *dev = skb->dev;
782 struct sock *sk = skb->sk;
783 struct sk_buff *list_skb;
784 bool has_mac, has_trans;
785 int headroom, tailroom;
786 int i, len, seg_len;
787
788 if (full_pkt)
789 len = skb->len;
790 else
791 len = min_t(int, skb->len, MAX_HEADER + 128);
792
793 headroom = skb_headroom(skb);
794 tailroom = skb_tailroom(skb);
795
796 has_mac = skb_mac_header_was_set(skb);
797 has_trans = skb_transport_header_was_set(skb);
798
799 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
800 "mac=(%d,%d) net=(%d,%d) trans=%d\n"
801 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
802 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
803 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
804 level, skb->len, headroom, skb_headlen(skb), tailroom,
805 has_mac ? skb->mac_header : -1,
806 has_mac ? skb_mac_header_len(skb) : -1,
807 skb->network_header,
808 has_trans ? skb_network_header_len(skb) : -1,
809 has_trans ? skb->transport_header : -1,
810 sh->tx_flags, sh->nr_frags,
811 sh->gso_size, sh->gso_type, sh->gso_segs,
812 skb->csum, skb->ip_summed, skb->csum_complete_sw,
813 skb->csum_valid, skb->csum_level,
814 skb->hash, skb->sw_hash, skb->l4_hash,
815 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
816
817 if (dev)
818 printk("%sdev name=%s feat=0x%pNF\n",
819 level, dev->name, &dev->features);
820 if (sk)
821 printk("%ssk family=%hu type=%u proto=%u\n",
822 level, sk->sk_family, sk->sk_type, sk->sk_protocol);
823
824 if (full_pkt && headroom)
825 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
826 16, 1, skb->head, headroom, false);
827
828 seg_len = min_t(int, skb_headlen(skb), len);
829 if (seg_len)
830 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET,
831 16, 1, skb->data, seg_len, false);
832 len -= seg_len;
833
834 if (full_pkt && tailroom)
835 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
836 16, 1, skb_tail_pointer(skb), tailroom, false);
837
838 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
839 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
840 u32 p_off, p_len, copied;
841 struct page *p;
842 u8 *vaddr;
843
844 skb_frag_foreach_page(frag, skb_frag_off(frag),
845 skb_frag_size(frag), p, p_off, p_len,
846 copied) {
847 seg_len = min_t(int, p_len, len);
848 vaddr = kmap_atomic(p);
849 print_hex_dump(level, "skb frag: ",
850 DUMP_PREFIX_OFFSET,
851 16, 1, vaddr + p_off, seg_len, false);
852 kunmap_atomic(vaddr);
853 len -= seg_len;
854 if (!len)
855 break;
856 }
857 }
858
859 if (full_pkt && skb_has_frag_list(skb)) {
860 printk("skb fraglist:\n");
861 skb_walk_frags(skb, list_skb)
862 skb_dump(level, list_skb, true);
863 }
864}
865EXPORT_SYMBOL(skb_dump);
866
867/**
868 * skb_tx_error - report an sk_buff xmit error
869 * @skb: buffer that triggered an error
870 *
871 * Report xmit error if a device callback is tracking this skb.
872 * skb must be freed afterwards.
873 */
874void skb_tx_error(struct sk_buff *skb)
875{
876 skb_zcopy_clear(skb, true);
877}
878EXPORT_SYMBOL(skb_tx_error);
879
880#ifdef CONFIG_TRACEPOINTS
881/**
882 * consume_skb - free an skbuff
883 * @skb: buffer to free
884 *
885 * Drop a ref to the buffer and free it if the usage count has hit zero
886 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
887 * is being dropped after a failure and notes that
888 */
889void consume_skb(struct sk_buff *skb)
890{
891 if (!skb_unref(skb))
892 return;
893
894 trace_consume_skb(skb);
895 __kfree_skb(skb);
896}
897EXPORT_SYMBOL(consume_skb);
898#endif
899
900/**
901 * __consume_stateless_skb - free an skbuff, assuming it is stateless
902 * @skb: buffer to free
903 *
904 * Alike consume_skb(), but this variant assumes that this is the last
905 * skb reference and all the head states have been already dropped
906 */
907void __consume_stateless_skb(struct sk_buff *skb)
908{
909 trace_consume_skb(skb);
910 skb_release_data(skb);
911 kfree_skbmem(skb);
912}
913
914static void napi_skb_cache_put(struct sk_buff *skb)
915{
916 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
917 u32 i;
918
919 kasan_poison_object_data(skbuff_head_cache, skb);
920 nc->skb_cache[nc->skb_count++] = skb;
921
922 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
923 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
924 kasan_unpoison_object_data(skbuff_head_cache,
925 nc->skb_cache[i]);
926
927 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_HALF,
928 nc->skb_cache + NAPI_SKB_CACHE_HALF);
929 nc->skb_count = NAPI_SKB_CACHE_HALF;
930 }
931}
932
933void __kfree_skb_defer(struct sk_buff *skb)
934{
935 skb_release_all(skb);
936 napi_skb_cache_put(skb);
937}
938
939void napi_skb_free_stolen_head(struct sk_buff *skb)
940{
941 skb_dst_drop(skb);
942 skb_ext_put(skb);
943 napi_skb_cache_put(skb);
944}
945
946void napi_consume_skb(struct sk_buff *skb, int budget)
947{
948 /* Zero budget indicate non-NAPI context called us, like netpoll */
949 if (unlikely(!budget)) {
950 dev_consume_skb_any(skb);
951 return;
952 }
953
954 lockdep_assert_in_softirq();
955
956 if (!skb_unref(skb))
957 return;
958
959 /* if reaching here SKB is ready to free */
960 trace_consume_skb(skb);
961
962 /* if SKB is a clone, don't handle this case */
963 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
964 __kfree_skb(skb);
965 return;
966 }
967
968 skb_release_all(skb);
969 napi_skb_cache_put(skb);
970}
971EXPORT_SYMBOL(napi_consume_skb);
972
973/* Make sure a field is enclosed inside headers_start/headers_end section */
974#define CHECK_SKB_FIELD(field) \
975 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \
976 offsetof(struct sk_buff, headers_start)); \
977 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \
978 offsetof(struct sk_buff, headers_end)); \
979
980static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
981{
982 new->tstamp = old->tstamp;
983 /* We do not copy old->sk */
984 new->dev = old->dev;
985 memcpy(new->cb, old->cb, sizeof(old->cb));
986 skb_dst_copy(new, old);
987 __skb_ext_copy(new, old);
988 __nf_copy(new, old, false);
989
990 /* Note : this field could be in headers_start/headers_end section
991 * It is not yet because we do not want to have a 16 bit hole
992 */
993 new->queue_mapping = old->queue_mapping;
994
995 memcpy(&new->headers_start, &old->headers_start,
996 offsetof(struct sk_buff, headers_end) -
997 offsetof(struct sk_buff, headers_start));
998 CHECK_SKB_FIELD(protocol);
999 CHECK_SKB_FIELD(csum);
1000 CHECK_SKB_FIELD(hash);
1001 CHECK_SKB_FIELD(priority);
1002 CHECK_SKB_FIELD(skb_iif);
1003 CHECK_SKB_FIELD(vlan_proto);
1004 CHECK_SKB_FIELD(vlan_tci);
1005 CHECK_SKB_FIELD(transport_header);
1006 CHECK_SKB_FIELD(network_header);
1007 CHECK_SKB_FIELD(mac_header);
1008 CHECK_SKB_FIELD(inner_protocol);
1009 CHECK_SKB_FIELD(inner_transport_header);
1010 CHECK_SKB_FIELD(inner_network_header);
1011 CHECK_SKB_FIELD(inner_mac_header);
1012 CHECK_SKB_FIELD(mark);
1013#ifdef CONFIG_NETWORK_SECMARK
1014 CHECK_SKB_FIELD(secmark);
1015#endif
1016#ifdef CONFIG_NET_RX_BUSY_POLL
1017 CHECK_SKB_FIELD(napi_id);
1018#endif
1019#ifdef CONFIG_XPS
1020 CHECK_SKB_FIELD(sender_cpu);
1021#endif
1022#ifdef CONFIG_NET_SCHED
1023 CHECK_SKB_FIELD(tc_index);
1024#endif
1025
1026}
1027
1028/*
1029 * You should not add any new code to this function. Add it to
1030 * __copy_skb_header above instead.
1031 */
1032static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1033{
1034#define C(x) n->x = skb->x
1035
1036 n->next = n->prev = NULL;
1037 n->sk = NULL;
1038 __copy_skb_header(n, skb);
1039
1040 C(len);
1041 C(data_len);
1042 C(mac_len);
1043 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1044 n->cloned = 1;
1045 n->nohdr = 0;
1046 n->peeked = 0;
1047 C(pfmemalloc);
1048 n->destructor = NULL;
1049 C(tail);
1050 C(end);
1051 C(head);
1052 C(head_frag);
1053 C(data);
1054 C(truesize);
1055 refcount_set(&n->users, 1);
1056
1057 atomic_inc(&(skb_shinfo(skb)->dataref));
1058 skb->cloned = 1;
1059
1060 return n;
1061#undef C
1062}
1063
1064/**
1065 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1066 * @first: first sk_buff of the msg
1067 */
1068struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1069{
1070 struct sk_buff *n;
1071
1072 n = alloc_skb(0, GFP_ATOMIC);
1073 if (!n)
1074 return NULL;
1075
1076 n->len = first->len;
1077 n->data_len = first->len;
1078 n->truesize = first->truesize;
1079
1080 skb_shinfo(n)->frag_list = first;
1081
1082 __copy_skb_header(n, first);
1083 n->destructor = NULL;
1084
1085 return n;
1086}
1087EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1088
1089/**
1090 * skb_morph - morph one skb into another
1091 * @dst: the skb to receive the contents
1092 * @src: the skb to supply the contents
1093 *
1094 * This is identical to skb_clone except that the target skb is
1095 * supplied by the user.
1096 *
1097 * The target skb is returned upon exit.
1098 */
1099struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1100{
1101 skb_release_all(dst);
1102 return __skb_clone(dst, src);
1103}
1104EXPORT_SYMBOL_GPL(skb_morph);
1105
1106int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1107{
1108 unsigned long max_pg, num_pg, new_pg, old_pg;
1109 struct user_struct *user;
1110
1111 if (capable(CAP_IPC_LOCK) || !size)
1112 return 0;
1113
1114 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */
1115 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1116 user = mmp->user ? : current_user();
1117
1118 do {
1119 old_pg = atomic_long_read(&user->locked_vm);
1120 new_pg = old_pg + num_pg;
1121 if (new_pg > max_pg)
1122 return -ENOBUFS;
1123 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
1124 old_pg);
1125
1126 if (!mmp->user) {
1127 mmp->user = get_uid(user);
1128 mmp->num_pg = num_pg;
1129 } else {
1130 mmp->num_pg += num_pg;
1131 }
1132
1133 return 0;
1134}
1135EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1136
1137void mm_unaccount_pinned_pages(struct mmpin *mmp)
1138{
1139 if (mmp->user) {
1140 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1141 free_uid(mmp->user);
1142 }
1143}
1144EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1145
1146struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1147{
1148 struct ubuf_info *uarg;
1149 struct sk_buff *skb;
1150
1151 WARN_ON_ONCE(!in_task());
1152
1153 skb = sock_omalloc(sk, 0, GFP_KERNEL);
1154 if (!skb)
1155 return NULL;
1156
1157 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1158 uarg = (void *)skb->cb;
1159 uarg->mmp.user = NULL;
1160
1161 if (mm_account_pinned_pages(&uarg->mmp, size)) {
1162 kfree_skb(skb);
1163 return NULL;
1164 }
1165
1166 uarg->callback = msg_zerocopy_callback;
1167 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1168 uarg->len = 1;
1169 uarg->bytelen = size;
1170 uarg->zerocopy = 1;
1171 uarg->flags = SKBFL_ZEROCOPY_FRAG;
1172 refcount_set(&uarg->refcnt, 1);
1173 sock_hold(sk);
1174
1175 return uarg;
1176}
1177EXPORT_SYMBOL_GPL(msg_zerocopy_alloc);
1178
1179static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
1180{
1181 return container_of((void *)uarg, struct sk_buff, cb);
1182}
1183
1184struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1185 struct ubuf_info *uarg)
1186{
1187 if (uarg) {
1188 const u32 byte_limit = 1 << 19; /* limit to a few TSO */
1189 u32 bytelen, next;
1190
1191 /* realloc only when socket is locked (TCP, UDP cork),
1192 * so uarg->len and sk_zckey access is serialized
1193 */
1194 if (!sock_owned_by_user(sk)) {
1195 WARN_ON_ONCE(1);
1196 return NULL;
1197 }
1198
1199 bytelen = uarg->bytelen + size;
1200 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1201 /* TCP can create new skb to attach new uarg */
1202 if (sk->sk_type == SOCK_STREAM)
1203 goto new_alloc;
1204 return NULL;
1205 }
1206
1207 next = (u32)atomic_read(&sk->sk_zckey);
1208 if ((u32)(uarg->id + uarg->len) == next) {
1209 if (mm_account_pinned_pages(&uarg->mmp, size))
1210 return NULL;
1211 uarg->len++;
1212 uarg->bytelen = bytelen;
1213 atomic_set(&sk->sk_zckey, ++next);
1214
1215 /* no extra ref when appending to datagram (MSG_MORE) */
1216 if (sk->sk_type == SOCK_STREAM)
1217 net_zcopy_get(uarg);
1218
1219 return uarg;
1220 }
1221 }
1222
1223new_alloc:
1224 return msg_zerocopy_alloc(sk, size);
1225}
1226EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1227
1228static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1229{
1230 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1231 u32 old_lo, old_hi;
1232 u64 sum_len;
1233
1234 old_lo = serr->ee.ee_info;
1235 old_hi = serr->ee.ee_data;
1236 sum_len = old_hi - old_lo + 1ULL + len;
1237
1238 if (sum_len >= (1ULL << 32))
1239 return false;
1240
1241 if (lo != old_hi + 1)
1242 return false;
1243
1244 serr->ee.ee_data += len;
1245 return true;
1246}
1247
1248static void __msg_zerocopy_callback(struct ubuf_info *uarg)
1249{
1250 struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1251 struct sock_exterr_skb *serr;
1252 struct sock *sk = skb->sk;
1253 struct sk_buff_head *q;
1254 unsigned long flags;
1255 u32 lo, hi;
1256 u16 len;
1257
1258 mm_unaccount_pinned_pages(&uarg->mmp);
1259
1260 /* if !len, there was only 1 call, and it was aborted
1261 * so do not queue a completion notification
1262 */
1263 if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1264 goto release;
1265
1266 len = uarg->len;
1267 lo = uarg->id;
1268 hi = uarg->id + len - 1;
1269
1270 serr = SKB_EXT_ERR(skb);
1271 memset(serr, 0, sizeof(*serr));
1272 serr->ee.ee_errno = 0;
1273 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1274 serr->ee.ee_data = hi;
1275 serr->ee.ee_info = lo;
1276 if (!uarg->zerocopy)
1277 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1278
1279 q = &sk->sk_error_queue;
1280 spin_lock_irqsave(&q->lock, flags);
1281 tail = skb_peek_tail(q);
1282 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1283 !skb_zerocopy_notify_extend(tail, lo, len)) {
1284 __skb_queue_tail(q, skb);
1285 skb = NULL;
1286 }
1287 spin_unlock_irqrestore(&q->lock, flags);
1288
1289 sk->sk_error_report(sk);
1290
1291release:
1292 consume_skb(skb);
1293 sock_put(sk);
1294}
1295
1296void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1297 bool success)
1298{
1299 uarg->zerocopy = uarg->zerocopy & success;
1300
1301 if (refcount_dec_and_test(&uarg->refcnt))
1302 __msg_zerocopy_callback(uarg);
1303}
1304EXPORT_SYMBOL_GPL(msg_zerocopy_callback);
1305
1306void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1307{
1308 struct sock *sk = skb_from_uarg(uarg)->sk;
1309
1310 atomic_dec(&sk->sk_zckey);
1311 uarg->len--;
1312
1313 if (have_uref)
1314 msg_zerocopy_callback(NULL, uarg, true);
1315}
1316EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1317
1318int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len)
1319{
1320 return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len);
1321}
1322EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram);
1323
1324int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1325 struct msghdr *msg, int len,
1326 struct ubuf_info *uarg)
1327{
1328 struct ubuf_info *orig_uarg = skb_zcopy(skb);
1329 struct iov_iter orig_iter = msg->msg_iter;
1330 int err, orig_len = skb->len;
1331
1332 /* An skb can only point to one uarg. This edge case happens when
1333 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1334 */
1335 if (orig_uarg && uarg != orig_uarg)
1336 return -EEXIST;
1337
1338 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1339 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1340 struct sock *save_sk = skb->sk;
1341
1342 /* Streams do not free skb on error. Reset to prev state. */
1343 msg->msg_iter = orig_iter;
1344 skb->sk = sk;
1345 ___pskb_trim(skb, orig_len);
1346 skb->sk = save_sk;
1347 return err;
1348 }
1349
1350 skb_zcopy_set(skb, uarg, NULL);
1351 return skb->len - orig_len;
1352}
1353EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1354
1355static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1356 gfp_t gfp_mask)
1357{
1358 if (skb_zcopy(orig)) {
1359 if (skb_zcopy(nskb)) {
1360 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1361 if (!gfp_mask) {
1362 WARN_ON_ONCE(1);
1363 return -ENOMEM;
1364 }
1365 if (skb_uarg(nskb) == skb_uarg(orig))
1366 return 0;
1367 if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1368 return -EIO;
1369 }
1370 skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1371 }
1372 return 0;
1373}
1374
1375/**
1376 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
1377 * @skb: the skb to modify
1378 * @gfp_mask: allocation priority
1379 *
1380 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1381 * It will copy all frags into kernel and drop the reference
1382 * to userspace pages.
1383 *
1384 * If this function is called from an interrupt gfp_mask() must be
1385 * %GFP_ATOMIC.
1386 *
1387 * Returns 0 on success or a negative error code on failure
1388 * to allocate kernel memory to copy to.
1389 */
1390int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1391{
1392 int num_frags = skb_shinfo(skb)->nr_frags;
1393 struct page *page, *head = NULL;
1394 int i, new_frags;
1395 u32 d_off;
1396
1397 if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1398 return -EINVAL;
1399
1400 if (!num_frags)
1401 goto release;
1402
1403 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1404 for (i = 0; i < new_frags; i++) {
1405 page = alloc_page(gfp_mask);
1406 if (!page) {
1407 while (head) {
1408 struct page *next = (struct page *)page_private(head);
1409 put_page(head);
1410 head = next;
1411 }
1412 return -ENOMEM;
1413 }
1414 set_page_private(page, (unsigned long)head);
1415 head = page;
1416 }
1417
1418 page = head;
1419 d_off = 0;
1420 for (i = 0; i < num_frags; i++) {
1421 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1422 u32 p_off, p_len, copied;
1423 struct page *p;
1424 u8 *vaddr;
1425
1426 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1427 p, p_off, p_len, copied) {
1428 u32 copy, done = 0;
1429 vaddr = kmap_atomic(p);
1430
1431 while (done < p_len) {
1432 if (d_off == PAGE_SIZE) {
1433 d_off = 0;
1434 page = (struct page *)page_private(page);
1435 }
1436 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1437 memcpy(page_address(page) + d_off,
1438 vaddr + p_off + done, copy);
1439 done += copy;
1440 d_off += copy;
1441 }
1442 kunmap_atomic(vaddr);
1443 }
1444 }
1445
1446 /* skb frags release userspace buffers */
1447 for (i = 0; i < num_frags; i++)
1448 skb_frag_unref(skb, i);
1449
1450 /* skb frags point to kernel buffers */
1451 for (i = 0; i < new_frags - 1; i++) {
1452 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1453 head = (struct page *)page_private(head);
1454 }
1455 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1456 skb_shinfo(skb)->nr_frags = new_frags;
1457
1458release:
1459 skb_zcopy_clear(skb, false);
1460 return 0;
1461}
1462EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1463
1464/**
1465 * skb_clone - duplicate an sk_buff
1466 * @skb: buffer to clone
1467 * @gfp_mask: allocation priority
1468 *
1469 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
1470 * copies share the same packet data but not structure. The new
1471 * buffer has a reference count of 1. If the allocation fails the
1472 * function returns %NULL otherwise the new buffer is returned.
1473 *
1474 * If this function is called from an interrupt gfp_mask() must be
1475 * %GFP_ATOMIC.
1476 */
1477
1478struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1479{
1480 struct sk_buff_fclones *fclones = container_of(skb,
1481 struct sk_buff_fclones,
1482 skb1);
1483 struct sk_buff *n;
1484
1485 if (skb_orphan_frags(skb, gfp_mask))
1486 return NULL;
1487
1488 if (skb->fclone == SKB_FCLONE_ORIG &&
1489 refcount_read(&fclones->fclone_ref) == 1) {
1490 n = &fclones->skb2;
1491 refcount_set(&fclones->fclone_ref, 2);
1492 } else {
1493 if (skb_pfmemalloc(skb))
1494 gfp_mask |= __GFP_MEMALLOC;
1495
1496 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1497 if (!n)
1498 return NULL;
1499
1500 n->fclone = SKB_FCLONE_UNAVAILABLE;
1501 }
1502
1503 return __skb_clone(n, skb);
1504}
1505EXPORT_SYMBOL(skb_clone);
1506
1507void skb_headers_offset_update(struct sk_buff *skb, int off)
1508{
1509 /* Only adjust this if it actually is csum_start rather than csum */
1510 if (skb->ip_summed == CHECKSUM_PARTIAL)
1511 skb->csum_start += off;
1512 /* {transport,network,mac}_header and tail are relative to skb->head */
1513 skb->transport_header += off;
1514 skb->network_header += off;
1515 if (skb_mac_header_was_set(skb))
1516 skb->mac_header += off;
1517 skb->inner_transport_header += off;
1518 skb->inner_network_header += off;
1519 skb->inner_mac_header += off;
1520}
1521EXPORT_SYMBOL(skb_headers_offset_update);
1522
1523void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1524{
1525 __copy_skb_header(new, old);
1526
1527 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1528 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1529 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1530}
1531EXPORT_SYMBOL(skb_copy_header);
1532
1533static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1534{
1535 if (skb_pfmemalloc(skb))
1536 return SKB_ALLOC_RX;
1537 return 0;
1538}
1539
1540/**
1541 * skb_copy - create private copy of an sk_buff
1542 * @skb: buffer to copy
1543 * @gfp_mask: allocation priority
1544 *
1545 * Make a copy of both an &sk_buff and its data. This is used when the
1546 * caller wishes to modify the data and needs a private copy of the
1547 * data to alter. Returns %NULL on failure or the pointer to the buffer
1548 * on success. The returned buffer has a reference count of 1.
1549 *
1550 * As by-product this function converts non-linear &sk_buff to linear
1551 * one, so that &sk_buff becomes completely private and caller is allowed
1552 * to modify all the data of returned buffer. This means that this
1553 * function is not recommended for use in circumstances when only
1554 * header is going to be modified. Use pskb_copy() instead.
1555 */
1556
1557struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1558{
1559 int headerlen = skb_headroom(skb);
1560 unsigned int size = skb_end_offset(skb) + skb->data_len;
1561 struct sk_buff *n = __alloc_skb(size, gfp_mask,
1562 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1563
1564 if (!n)
1565 return NULL;
1566
1567 /* Set the data pointer */
1568 skb_reserve(n, headerlen);
1569 /* Set the tail pointer and length */
1570 skb_put(n, skb->len);
1571
1572 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1573
1574 skb_copy_header(n, skb);
1575 return n;
1576}
1577EXPORT_SYMBOL(skb_copy);
1578
1579/**
1580 * __pskb_copy_fclone - create copy of an sk_buff with private head.
1581 * @skb: buffer to copy
1582 * @headroom: headroom of new skb
1583 * @gfp_mask: allocation priority
1584 * @fclone: if true allocate the copy of the skb from the fclone
1585 * cache instead of the head cache; it is recommended to set this
1586 * to true for the cases where the copy will likely be cloned
1587 *
1588 * Make a copy of both an &sk_buff and part of its data, located
1589 * in header. Fragmented data remain shared. This is used when
1590 * the caller wishes to modify only header of &sk_buff and needs
1591 * private copy of the header to alter. Returns %NULL on failure
1592 * or the pointer to the buffer on success.
1593 * The returned buffer has a reference count of 1.
1594 */
1595
1596struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1597 gfp_t gfp_mask, bool fclone)
1598{
1599 unsigned int size = skb_headlen(skb) + headroom;
1600 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1601 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1602
1603 if (!n)
1604 goto out;
1605
1606 /* Set the data pointer */
1607 skb_reserve(n, headroom);
1608 /* Set the tail pointer and length */
1609 skb_put(n, skb_headlen(skb));
1610 /* Copy the bytes */
1611 skb_copy_from_linear_data(skb, n->data, n->len);
1612
1613 n->truesize += skb->data_len;
1614 n->data_len = skb->data_len;
1615 n->len = skb->len;
1616
1617 if (skb_shinfo(skb)->nr_frags) {
1618 int i;
1619
1620 if (skb_orphan_frags(skb, gfp_mask) ||
1621 skb_zerocopy_clone(n, skb, gfp_mask)) {
1622 kfree_skb(n);
1623 n = NULL;
1624 goto out;
1625 }
1626 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1627 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1628 skb_frag_ref(skb, i);
1629 }
1630 skb_shinfo(n)->nr_frags = i;
1631 }
1632
1633 if (skb_has_frag_list(skb)) {
1634 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1635 skb_clone_fraglist(n);
1636 }
1637
1638 skb_copy_header(n, skb);
1639out:
1640 return n;
1641}
1642EXPORT_SYMBOL(__pskb_copy_fclone);
1643
1644/**
1645 * pskb_expand_head - reallocate header of &sk_buff
1646 * @skb: buffer to reallocate
1647 * @nhead: room to add at head
1648 * @ntail: room to add at tail
1649 * @gfp_mask: allocation priority
1650 *
1651 * Expands (or creates identical copy, if @nhead and @ntail are zero)
1652 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1653 * reference count of 1. Returns zero in the case of success or error,
1654 * if expansion failed. In the last case, &sk_buff is not changed.
1655 *
1656 * All the pointers pointing into skb header may change and must be
1657 * reloaded after call to this function.
1658 */
1659
1660int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1661 gfp_t gfp_mask)
1662{
1663 int i, osize = skb_end_offset(skb);
1664 int size = osize + nhead + ntail;
1665 long off;
1666 u8 *data;
1667
1668 BUG_ON(nhead < 0);
1669
1670 BUG_ON(skb_shared(skb));
1671
1672 size = SKB_DATA_ALIGN(size);
1673
1674 if (skb_pfmemalloc(skb))
1675 gfp_mask |= __GFP_MEMALLOC;
1676 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1677 gfp_mask, NUMA_NO_NODE, NULL);
1678 if (!data)
1679 goto nodata;
1680 size = SKB_WITH_OVERHEAD(ksize(data));
1681
1682 /* Copy only real data... and, alas, header. This should be
1683 * optimized for the cases when header is void.
1684 */
1685 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1686
1687 memcpy((struct skb_shared_info *)(data + size),
1688 skb_shinfo(skb),
1689 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1690
1691 /*
1692 * if shinfo is shared we must drop the old head gracefully, but if it
1693 * is not we can just drop the old head and let the existing refcount
1694 * be since all we did is relocate the values
1695 */
1696 if (skb_cloned(skb)) {
1697 if (skb_orphan_frags(skb, gfp_mask))
1698 goto nofrags;
1699 if (skb_zcopy(skb))
1700 refcount_inc(&skb_uarg(skb)->refcnt);
1701 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1702 skb_frag_ref(skb, i);
1703
1704 if (skb_has_frag_list(skb))
1705 skb_clone_fraglist(skb);
1706
1707 skb_release_data(skb);
1708 } else {
1709 skb_free_head(skb);
1710 }
1711 off = (data + nhead) - skb->head;
1712
1713 skb->head = data;
1714 skb->head_frag = 0;
1715 skb->data += off;
1716#ifdef NET_SKBUFF_DATA_USES_OFFSET
1717 skb->end = size;
1718 off = nhead;
1719#else
1720 skb->end = skb->head + size;
1721#endif
1722 skb->tail += off;
1723 skb_headers_offset_update(skb, nhead);
1724 skb->cloned = 0;
1725 skb->hdr_len = 0;
1726 skb->nohdr = 0;
1727 atomic_set(&skb_shinfo(skb)->dataref, 1);
1728
1729 skb_metadata_clear(skb);
1730
1731 /* It is not generally safe to change skb->truesize.
1732 * For the moment, we really care of rx path, or
1733 * when skb is orphaned (not attached to a socket).
1734 */
1735 if (!skb->sk || skb->destructor == sock_edemux)
1736 skb->truesize += size - osize;
1737
1738 return 0;
1739
1740nofrags:
1741 kfree(data);
1742nodata:
1743 return -ENOMEM;
1744}
1745EXPORT_SYMBOL(pskb_expand_head);
1746
1747/* Make private copy of skb with writable head and some headroom */
1748
1749struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1750{
1751 struct sk_buff *skb2;
1752 int delta = headroom - skb_headroom(skb);
1753
1754 if (delta <= 0)
1755 skb2 = pskb_copy(skb, GFP_ATOMIC);
1756 else {
1757 skb2 = skb_clone(skb, GFP_ATOMIC);
1758 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1759 GFP_ATOMIC)) {
1760 kfree_skb(skb2);
1761 skb2 = NULL;
1762 }
1763 }
1764 return skb2;
1765}
1766EXPORT_SYMBOL(skb_realloc_headroom);
1767
1768/**
1769 * skb_copy_expand - copy and expand sk_buff
1770 * @skb: buffer to copy
1771 * @newheadroom: new free bytes at head
1772 * @newtailroom: new free bytes at tail
1773 * @gfp_mask: allocation priority
1774 *
1775 * Make a copy of both an &sk_buff and its data and while doing so
1776 * allocate additional space.
1777 *
1778 * This is used when the caller wishes to modify the data and needs a
1779 * private copy of the data to alter as well as more space for new fields.
1780 * Returns %NULL on failure or the pointer to the buffer
1781 * on success. The returned buffer has a reference count of 1.
1782 *
1783 * You must pass %GFP_ATOMIC as the allocation priority if this function
1784 * is called from an interrupt.
1785 */
1786struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1787 int newheadroom, int newtailroom,
1788 gfp_t gfp_mask)
1789{
1790 /*
1791 * Allocate the copy buffer
1792 */
1793 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1794 gfp_mask, skb_alloc_rx_flag(skb),
1795 NUMA_NO_NODE);
1796 int oldheadroom = skb_headroom(skb);
1797 int head_copy_len, head_copy_off;
1798
1799 if (!n)
1800 return NULL;
1801
1802 skb_reserve(n, newheadroom);
1803
1804 /* Set the tail pointer and length */
1805 skb_put(n, skb->len);
1806
1807 head_copy_len = oldheadroom;
1808 head_copy_off = 0;
1809 if (newheadroom <= head_copy_len)
1810 head_copy_len = newheadroom;
1811 else
1812 head_copy_off = newheadroom - head_copy_len;
1813
1814 /* Copy the linear header and data. */
1815 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1816 skb->len + head_copy_len));
1817
1818 skb_copy_header(n, skb);
1819
1820 skb_headers_offset_update(n, newheadroom - oldheadroom);
1821
1822 return n;
1823}
1824EXPORT_SYMBOL(skb_copy_expand);
1825
1826/**
1827 * __skb_pad - zero pad the tail of an skb
1828 * @skb: buffer to pad
1829 * @pad: space to pad
1830 * @free_on_error: free buffer on error
1831 *
1832 * Ensure that a buffer is followed by a padding area that is zero
1833 * filled. Used by network drivers which may DMA or transfer data
1834 * beyond the buffer end onto the wire.
1835 *
1836 * May return error in out of memory cases. The skb is freed on error
1837 * if @free_on_error is true.
1838 */
1839
1840int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1841{
1842 int err;
1843 int ntail;
1844
1845 /* If the skbuff is non linear tailroom is always zero.. */
1846 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1847 memset(skb->data+skb->len, 0, pad);
1848 return 0;
1849 }
1850
1851 ntail = skb->data_len + pad - (skb->end - skb->tail);
1852 if (likely(skb_cloned(skb) || ntail > 0)) {
1853 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1854 if (unlikely(err))
1855 goto free_skb;
1856 }
1857
1858 /* FIXME: The use of this function with non-linear skb's really needs
1859 * to be audited.
1860 */
1861 err = skb_linearize(skb);
1862 if (unlikely(err))
1863 goto free_skb;
1864
1865 memset(skb->data + skb->len, 0, pad);
1866 return 0;
1867
1868free_skb:
1869 if (free_on_error)
1870 kfree_skb(skb);
1871 return err;
1872}
1873EXPORT_SYMBOL(__skb_pad);
1874
1875/**
1876 * pskb_put - add data to the tail of a potentially fragmented buffer
1877 * @skb: start of the buffer to use
1878 * @tail: tail fragment of the buffer to use
1879 * @len: amount of data to add
1880 *
1881 * This function extends the used data area of the potentially
1882 * fragmented buffer. @tail must be the last fragment of @skb -- or
1883 * @skb itself. If this would exceed the total buffer size the kernel
1884 * will panic. A pointer to the first byte of the extra data is
1885 * returned.
1886 */
1887
1888void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1889{
1890 if (tail != skb) {
1891 skb->data_len += len;
1892 skb->len += len;
1893 }
1894 return skb_put(tail, len);
1895}
1896EXPORT_SYMBOL_GPL(pskb_put);
1897
1898/**
1899 * skb_put - add data to a buffer
1900 * @skb: buffer to use
1901 * @len: amount of data to add
1902 *
1903 * This function extends the used data area of the buffer. If this would
1904 * exceed the total buffer size the kernel will panic. A pointer to the
1905 * first byte of the extra data is returned.
1906 */
1907void *skb_put(struct sk_buff *skb, unsigned int len)
1908{
1909 void *tmp = skb_tail_pointer(skb);
1910 SKB_LINEAR_ASSERT(skb);
1911 skb->tail += len;
1912 skb->len += len;
1913 if (unlikely(skb->tail > skb->end))
1914 skb_over_panic(skb, len, __builtin_return_address(0));
1915 return tmp;
1916}
1917EXPORT_SYMBOL(skb_put);
1918
1919/**
1920 * skb_push - add data to the start of a buffer
1921 * @skb: buffer to use
1922 * @len: amount of data to add
1923 *
1924 * This function extends the used data area of the buffer at the buffer
1925 * start. If this would exceed the total buffer headroom the kernel will
1926 * panic. A pointer to the first byte of the extra data is returned.
1927 */
1928void *skb_push(struct sk_buff *skb, unsigned int len)
1929{
1930 skb->data -= len;
1931 skb->len += len;
1932 if (unlikely(skb->data < skb->head))
1933 skb_under_panic(skb, len, __builtin_return_address(0));
1934 return skb->data;
1935}
1936EXPORT_SYMBOL(skb_push);
1937
1938/**
1939 * skb_pull - remove data from the start of a buffer
1940 * @skb: buffer to use
1941 * @len: amount of data to remove
1942 *
1943 * This function removes data from the start of a buffer, returning
1944 * the memory to the headroom. A pointer to the next data in the buffer
1945 * is returned. Once the data has been pulled future pushes will overwrite
1946 * the old data.
1947 */
1948void *skb_pull(struct sk_buff *skb, unsigned int len)
1949{
1950 return skb_pull_inline(skb, len);
1951}
1952EXPORT_SYMBOL(skb_pull);
1953
1954/**
1955 * skb_trim - remove end from a buffer
1956 * @skb: buffer to alter
1957 * @len: new length
1958 *
1959 * Cut the length of a buffer down by removing data from the tail. If
1960 * the buffer is already under the length specified it is not modified.
1961 * The skb must be linear.
1962 */
1963void skb_trim(struct sk_buff *skb, unsigned int len)
1964{
1965 if (skb->len > len)
1966 __skb_trim(skb, len);
1967}
1968EXPORT_SYMBOL(skb_trim);
1969
1970/* Trims skb to length len. It can change skb pointers.
1971 */
1972
1973int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1974{
1975 struct sk_buff **fragp;
1976 struct sk_buff *frag;
1977 int offset = skb_headlen(skb);
1978 int nfrags = skb_shinfo(skb)->nr_frags;
1979 int i;
1980 int err;
1981
1982 if (skb_cloned(skb) &&
1983 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1984 return err;
1985
1986 i = 0;
1987 if (offset >= len)
1988 goto drop_pages;
1989
1990 for (; i < nfrags; i++) {
1991 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1992
1993 if (end < len) {
1994 offset = end;
1995 continue;
1996 }
1997
1998 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1999
2000drop_pages:
2001 skb_shinfo(skb)->nr_frags = i;
2002
2003 for (; i < nfrags; i++)
2004 skb_frag_unref(skb, i);
2005
2006 if (skb_has_frag_list(skb))
2007 skb_drop_fraglist(skb);
2008 goto done;
2009 }
2010
2011 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2012 fragp = &frag->next) {
2013 int end = offset + frag->len;
2014
2015 if (skb_shared(frag)) {
2016 struct sk_buff *nfrag;
2017
2018 nfrag = skb_clone(frag, GFP_ATOMIC);
2019 if (unlikely(!nfrag))
2020 return -ENOMEM;
2021
2022 nfrag->next = frag->next;
2023 consume_skb(frag);
2024 frag = nfrag;
2025 *fragp = frag;
2026 }
2027
2028 if (end < len) {
2029 offset = end;
2030 continue;
2031 }
2032
2033 if (end > len &&
2034 unlikely((err = pskb_trim(frag, len - offset))))
2035 return err;
2036
2037 if (frag->next)
2038 skb_drop_list(&frag->next);
2039 break;
2040 }
2041
2042done:
2043 if (len > skb_headlen(skb)) {
2044 skb->data_len -= skb->len - len;
2045 skb->len = len;
2046 } else {
2047 skb->len = len;
2048 skb->data_len = 0;
2049 skb_set_tail_pointer(skb, len);
2050 }
2051
2052 if (!skb->sk || skb->destructor == sock_edemux)
2053 skb_condense(skb);
2054 return 0;
2055}
2056EXPORT_SYMBOL(___pskb_trim);
2057
2058/* Note : use pskb_trim_rcsum() instead of calling this directly
2059 */
2060int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2061{
2062 if (skb->ip_summed == CHECKSUM_COMPLETE) {
2063 int delta = skb->len - len;
2064
2065 skb->csum = csum_block_sub(skb->csum,
2066 skb_checksum(skb, len, delta, 0),
2067 len);
2068 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2069 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2070 int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2071
2072 if (offset + sizeof(__sum16) > hdlen)
2073 return -EINVAL;
2074 }
2075 return __pskb_trim(skb, len);
2076}
2077EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2078
2079/**
2080 * __pskb_pull_tail - advance tail of skb header
2081 * @skb: buffer to reallocate
2082 * @delta: number of bytes to advance tail
2083 *
2084 * The function makes a sense only on a fragmented &sk_buff,
2085 * it expands header moving its tail forward and copying necessary
2086 * data from fragmented part.
2087 *
2088 * &sk_buff MUST have reference count of 1.
2089 *
2090 * Returns %NULL (and &sk_buff does not change) if pull failed
2091 * or value of new tail of skb in the case of success.
2092 *
2093 * All the pointers pointing into skb header may change and must be
2094 * reloaded after call to this function.
2095 */
2096
2097/* Moves tail of skb head forward, copying data from fragmented part,
2098 * when it is necessary.
2099 * 1. It may fail due to malloc failure.
2100 * 2. It may change skb pointers.
2101 *
2102 * It is pretty complicated. Luckily, it is called only in exceptional cases.
2103 */
2104void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2105{
2106 /* If skb has not enough free space at tail, get new one
2107 * plus 128 bytes for future expansions. If we have enough
2108 * room at tail, reallocate without expansion only if skb is cloned.
2109 */
2110 int i, k, eat = (skb->tail + delta) - skb->end;
2111
2112 if (eat > 0 || skb_cloned(skb)) {
2113 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2114 GFP_ATOMIC))
2115 return NULL;
2116 }
2117
2118 BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2119 skb_tail_pointer(skb), delta));
2120
2121 /* Optimization: no fragments, no reasons to preestimate
2122 * size of pulled pages. Superb.
2123 */
2124 if (!skb_has_frag_list(skb))
2125 goto pull_pages;
2126
2127 /* Estimate size of pulled pages. */
2128 eat = delta;
2129 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2130 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2131
2132 if (size >= eat)
2133 goto pull_pages;
2134 eat -= size;
2135 }
2136
2137 /* If we need update frag list, we are in troubles.
2138 * Certainly, it is possible to add an offset to skb data,
2139 * but taking into account that pulling is expected to
2140 * be very rare operation, it is worth to fight against
2141 * further bloating skb head and crucify ourselves here instead.
2142 * Pure masohism, indeed. 8)8)
2143 */
2144 if (eat) {
2145 struct sk_buff *list = skb_shinfo(skb)->frag_list;
2146 struct sk_buff *clone = NULL;
2147 struct sk_buff *insp = NULL;
2148
2149 do {
2150 if (list->len <= eat) {
2151 /* Eaten as whole. */
2152 eat -= list->len;
2153 list = list->next;
2154 insp = list;
2155 } else {
2156 /* Eaten partially. */
2157
2158 if (skb_shared(list)) {
2159 /* Sucks! We need to fork list. :-( */
2160 clone = skb_clone(list, GFP_ATOMIC);
2161 if (!clone)
2162 return NULL;
2163 insp = list->next;
2164 list = clone;
2165 } else {
2166 /* This may be pulled without
2167 * problems. */
2168 insp = list;
2169 }
2170 if (!pskb_pull(list, eat)) {
2171 kfree_skb(clone);
2172 return NULL;
2173 }
2174 break;
2175 }
2176 } while (eat);
2177
2178 /* Free pulled out fragments. */
2179 while ((list = skb_shinfo(skb)->frag_list) != insp) {
2180 skb_shinfo(skb)->frag_list = list->next;
2181 kfree_skb(list);
2182 }
2183 /* And insert new clone at head. */
2184 if (clone) {
2185 clone->next = list;
2186 skb_shinfo(skb)->frag_list = clone;
2187 }
2188 }
2189 /* Success! Now we may commit changes to skb data. */
2190
2191pull_pages:
2192 eat = delta;
2193 k = 0;
2194 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2195 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2196
2197 if (size <= eat) {
2198 skb_frag_unref(skb, i);
2199 eat -= size;
2200 } else {
2201 skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2202
2203 *frag = skb_shinfo(skb)->frags[i];
2204 if (eat) {
2205 skb_frag_off_add(frag, eat);
2206 skb_frag_size_sub(frag, eat);
2207 if (!i)
2208 goto end;
2209 eat = 0;
2210 }
2211 k++;
2212 }
2213 }
2214 skb_shinfo(skb)->nr_frags = k;
2215
2216end:
2217 skb->tail += delta;
2218 skb->data_len -= delta;
2219
2220 if (!skb->data_len)
2221 skb_zcopy_clear(skb, false);
2222
2223 return skb_tail_pointer(skb);
2224}
2225EXPORT_SYMBOL(__pskb_pull_tail);
2226
2227/**
2228 * skb_copy_bits - copy bits from skb to kernel buffer
2229 * @skb: source skb
2230 * @offset: offset in source
2231 * @to: destination buffer
2232 * @len: number of bytes to copy
2233 *
2234 * Copy the specified number of bytes from the source skb to the
2235 * destination buffer.
2236 *
2237 * CAUTION ! :
2238 * If its prototype is ever changed,
2239 * check arch/{*}/net/{*}.S files,
2240 * since it is called from BPF assembly code.
2241 */
2242int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2243{
2244 int start = skb_headlen(skb);
2245 struct sk_buff *frag_iter;
2246 int i, copy;
2247
2248 if (offset > (int)skb->len - len)
2249 goto fault;
2250
2251 /* Copy header. */
2252 if ((copy = start - offset) > 0) {
2253 if (copy > len)
2254 copy = len;
2255 skb_copy_from_linear_data_offset(skb, offset, to, copy);
2256 if ((len -= copy) == 0)
2257 return 0;
2258 offset += copy;
2259 to += copy;
2260 }
2261
2262 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2263 int end;
2264 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2265
2266 WARN_ON(start > offset + len);
2267
2268 end = start + skb_frag_size(f);
2269 if ((copy = end - offset) > 0) {
2270 u32 p_off, p_len, copied;
2271 struct page *p;
2272 u8 *vaddr;
2273
2274 if (copy > len)
2275 copy = len;
2276
2277 skb_frag_foreach_page(f,
2278 skb_frag_off(f) + offset - start,
2279 copy, p, p_off, p_len, copied) {
2280 vaddr = kmap_atomic(p);
2281 memcpy(to + copied, vaddr + p_off, p_len);
2282 kunmap_atomic(vaddr);
2283 }
2284
2285 if ((len -= copy) == 0)
2286 return 0;
2287 offset += copy;
2288 to += copy;
2289 }
2290 start = end;
2291 }
2292
2293 skb_walk_frags(skb, frag_iter) {
2294 int end;
2295
2296 WARN_ON(start > offset + len);
2297
2298 end = start + frag_iter->len;
2299 if ((copy = end - offset) > 0) {
2300 if (copy > len)
2301 copy = len;
2302 if (skb_copy_bits(frag_iter, offset - start, to, copy))
2303 goto fault;
2304 if ((len -= copy) == 0)
2305 return 0;
2306 offset += copy;
2307 to += copy;
2308 }
2309 start = end;
2310 }
2311
2312 if (!len)
2313 return 0;
2314
2315fault:
2316 return -EFAULT;
2317}
2318EXPORT_SYMBOL(skb_copy_bits);
2319
2320/*
2321 * Callback from splice_to_pipe(), if we need to release some pages
2322 * at the end of the spd in case we error'ed out in filling the pipe.
2323 */
2324static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2325{
2326 put_page(spd->pages[i]);
2327}
2328
2329static struct page *linear_to_page(struct page *page, unsigned int *len,
2330 unsigned int *offset,
2331 struct sock *sk)
2332{
2333 struct page_frag *pfrag = sk_page_frag(sk);
2334
2335 if (!sk_page_frag_refill(sk, pfrag))
2336 return NULL;
2337
2338 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2339
2340 memcpy(page_address(pfrag->page) + pfrag->offset,
2341 page_address(page) + *offset, *len);
2342 *offset = pfrag->offset;
2343 pfrag->offset += *len;
2344
2345 return pfrag->page;
2346}
2347
2348static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2349 struct page *page,
2350 unsigned int offset)
2351{
2352 return spd->nr_pages &&
2353 spd->pages[spd->nr_pages - 1] == page &&
2354 (spd->partial[spd->nr_pages - 1].offset +
2355 spd->partial[spd->nr_pages - 1].len == offset);
2356}
2357
2358/*
2359 * Fill page/offset/length into spd, if it can hold more pages.
2360 */
2361static bool spd_fill_page(struct splice_pipe_desc *spd,
2362 struct pipe_inode_info *pipe, struct page *page,
2363 unsigned int *len, unsigned int offset,
2364 bool linear,
2365 struct sock *sk)
2366{
2367 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2368 return true;
2369
2370 if (linear) {
2371 page = linear_to_page(page, len, &offset, sk);
2372 if (!page)
2373 return true;
2374 }
2375 if (spd_can_coalesce(spd, page, offset)) {
2376 spd->partial[spd->nr_pages - 1].len += *len;
2377 return false;
2378 }
2379 get_page(page);
2380 spd->pages[spd->nr_pages] = page;
2381 spd->partial[spd->nr_pages].len = *len;
2382 spd->partial[spd->nr_pages].offset = offset;
2383 spd->nr_pages++;
2384
2385 return false;
2386}
2387
2388static bool __splice_segment(struct page *page, unsigned int poff,
2389 unsigned int plen, unsigned int *off,
2390 unsigned int *len,
2391 struct splice_pipe_desc *spd, bool linear,
2392 struct sock *sk,
2393 struct pipe_inode_info *pipe)
2394{
2395 if (!*len)
2396 return true;
2397
2398 /* skip this segment if already processed */
2399 if (*off >= plen) {
2400 *off -= plen;
2401 return false;
2402 }
2403
2404 /* ignore any bits we already processed */
2405 poff += *off;
2406 plen -= *off;
2407 *off = 0;
2408
2409 do {
2410 unsigned int flen = min(*len, plen);
2411
2412 if (spd_fill_page(spd, pipe, page, &flen, poff,
2413 linear, sk))
2414 return true;
2415 poff += flen;
2416 plen -= flen;
2417 *len -= flen;
2418 } while (*len && plen);
2419
2420 return false;
2421}
2422
2423/*
2424 * Map linear and fragment data from the skb to spd. It reports true if the
2425 * pipe is full or if we already spliced the requested length.
2426 */
2427static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2428 unsigned int *offset, unsigned int *len,
2429 struct splice_pipe_desc *spd, struct sock *sk)
2430{
2431 int seg;
2432 struct sk_buff *iter;
2433
2434 /* map the linear part :
2435 * If skb->head_frag is set, this 'linear' part is backed by a
2436 * fragment, and if the head is not shared with any clones then
2437 * we can avoid a copy since we own the head portion of this page.
2438 */
2439 if (__splice_segment(virt_to_page(skb->data),
2440 (unsigned long) skb->data & (PAGE_SIZE - 1),
2441 skb_headlen(skb),
2442 offset, len, spd,
2443 skb_head_is_locked(skb),
2444 sk, pipe))
2445 return true;
2446
2447 /*
2448 * then map the fragments
2449 */
2450 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2451 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2452
2453 if (__splice_segment(skb_frag_page(f),
2454 skb_frag_off(f), skb_frag_size(f),
2455 offset, len, spd, false, sk, pipe))
2456 return true;
2457 }
2458
2459 skb_walk_frags(skb, iter) {
2460 if (*offset >= iter->len) {
2461 *offset -= iter->len;
2462 continue;
2463 }
2464 /* __skb_splice_bits() only fails if the output has no room
2465 * left, so no point in going over the frag_list for the error
2466 * case.
2467 */
2468 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2469 return true;
2470 }
2471
2472 return false;
2473}
2474
2475/*
2476 * Map data from the skb to a pipe. Should handle both the linear part,
2477 * the fragments, and the frag list.
2478 */
2479int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2480 struct pipe_inode_info *pipe, unsigned int tlen,
2481 unsigned int flags)
2482{
2483 struct partial_page partial[MAX_SKB_FRAGS];
2484 struct page *pages[MAX_SKB_FRAGS];
2485 struct splice_pipe_desc spd = {
2486 .pages = pages,
2487 .partial = partial,
2488 .nr_pages_max = MAX_SKB_FRAGS,
2489 .ops = &nosteal_pipe_buf_ops,
2490 .spd_release = sock_spd_release,
2491 };
2492 int ret = 0;
2493
2494 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2495
2496 if (spd.nr_pages)
2497 ret = splice_to_pipe(pipe, &spd);
2498
2499 return ret;
2500}
2501EXPORT_SYMBOL_GPL(skb_splice_bits);
2502
2503/* Send skb data on a socket. Socket must be locked. */
2504int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2505 int len)
2506{
2507 unsigned int orig_len = len;
2508 struct sk_buff *head = skb;
2509 unsigned short fragidx;
2510 int slen, ret;
2511
2512do_frag_list:
2513
2514 /* Deal with head data */
2515 while (offset < skb_headlen(skb) && len) {
2516 struct kvec kv;
2517 struct msghdr msg;
2518
2519 slen = min_t(int, len, skb_headlen(skb) - offset);
2520 kv.iov_base = skb->data + offset;
2521 kv.iov_len = slen;
2522 memset(&msg, 0, sizeof(msg));
2523 msg.msg_flags = MSG_DONTWAIT;
2524
2525 ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen);
2526 if (ret <= 0)
2527 goto error;
2528
2529 offset += ret;
2530 len -= ret;
2531 }
2532
2533 /* All the data was skb head? */
2534 if (!len)
2535 goto out;
2536
2537 /* Make offset relative to start of frags */
2538 offset -= skb_headlen(skb);
2539
2540 /* Find where we are in frag list */
2541 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2542 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2543
2544 if (offset < skb_frag_size(frag))
2545 break;
2546
2547 offset -= skb_frag_size(frag);
2548 }
2549
2550 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2551 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2552
2553 slen = min_t(size_t, len, skb_frag_size(frag) - offset);
2554
2555 while (slen) {
2556 ret = kernel_sendpage_locked(sk, skb_frag_page(frag),
2557 skb_frag_off(frag) + offset,
2558 slen, MSG_DONTWAIT);
2559 if (ret <= 0)
2560 goto error;
2561
2562 len -= ret;
2563 offset += ret;
2564 slen -= ret;
2565 }
2566
2567 offset = 0;
2568 }
2569
2570 if (len) {
2571 /* Process any frag lists */
2572
2573 if (skb == head) {
2574 if (skb_has_frag_list(skb)) {
2575 skb = skb_shinfo(skb)->frag_list;
2576 goto do_frag_list;
2577 }
2578 } else if (skb->next) {
2579 skb = skb->next;
2580 goto do_frag_list;
2581 }
2582 }
2583
2584out:
2585 return orig_len - len;
2586
2587error:
2588 return orig_len == len ? ret : orig_len - len;
2589}
2590EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2591
2592/**
2593 * skb_store_bits - store bits from kernel buffer to skb
2594 * @skb: destination buffer
2595 * @offset: offset in destination
2596 * @from: source buffer
2597 * @len: number of bytes to copy
2598 *
2599 * Copy the specified number of bytes from the source buffer to the
2600 * destination skb. This function handles all the messy bits of
2601 * traversing fragment lists and such.
2602 */
2603
2604int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2605{
2606 int start = skb_headlen(skb);
2607 struct sk_buff *frag_iter;
2608 int i, copy;
2609
2610 if (offset > (int)skb->len - len)
2611 goto fault;
2612
2613 if ((copy = start - offset) > 0) {
2614 if (copy > len)
2615 copy = len;
2616 skb_copy_to_linear_data_offset(skb, offset, from, copy);
2617 if ((len -= copy) == 0)
2618 return 0;
2619 offset += copy;
2620 from += copy;
2621 }
2622
2623 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2624 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2625 int end;
2626
2627 WARN_ON(start > offset + len);
2628
2629 end = start + skb_frag_size(frag);
2630 if ((copy = end - offset) > 0) {
2631 u32 p_off, p_len, copied;
2632 struct page *p;
2633 u8 *vaddr;
2634
2635 if (copy > len)
2636 copy = len;
2637
2638 skb_frag_foreach_page(frag,
2639 skb_frag_off(frag) + offset - start,
2640 copy, p, p_off, p_len, copied) {
2641 vaddr = kmap_atomic(p);
2642 memcpy(vaddr + p_off, from + copied, p_len);
2643 kunmap_atomic(vaddr);
2644 }
2645
2646 if ((len -= copy) == 0)
2647 return 0;
2648 offset += copy;
2649 from += copy;
2650 }
2651 start = end;
2652 }
2653
2654 skb_walk_frags(skb, frag_iter) {
2655 int end;
2656
2657 WARN_ON(start > offset + len);
2658
2659 end = start + frag_iter->len;
2660 if ((copy = end - offset) > 0) {
2661 if (copy > len)
2662 copy = len;
2663 if (skb_store_bits(frag_iter, offset - start,
2664 from, copy))
2665 goto fault;
2666 if ((len -= copy) == 0)
2667 return 0;
2668 offset += copy;
2669 from += copy;
2670 }
2671 start = end;
2672 }
2673 if (!len)
2674 return 0;
2675
2676fault:
2677 return -EFAULT;
2678}
2679EXPORT_SYMBOL(skb_store_bits);
2680
2681/* Checksum skb data. */
2682__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2683 __wsum csum, const struct skb_checksum_ops *ops)
2684{
2685 int start = skb_headlen(skb);
2686 int i, copy = start - offset;
2687 struct sk_buff *frag_iter;
2688 int pos = 0;
2689
2690 /* Checksum header. */
2691 if (copy > 0) {
2692 if (copy > len)
2693 copy = len;
2694 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
2695 skb->data + offset, copy, csum);
2696 if ((len -= copy) == 0)
2697 return csum;
2698 offset += copy;
2699 pos = copy;
2700 }
2701
2702 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2703 int end;
2704 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2705
2706 WARN_ON(start > offset + len);
2707
2708 end = start + skb_frag_size(frag);
2709 if ((copy = end - offset) > 0) {
2710 u32 p_off, p_len, copied;
2711 struct page *p;
2712 __wsum csum2;
2713 u8 *vaddr;
2714
2715 if (copy > len)
2716 copy = len;
2717
2718 skb_frag_foreach_page(frag,
2719 skb_frag_off(frag) + offset - start,
2720 copy, p, p_off, p_len, copied) {
2721 vaddr = kmap_atomic(p);
2722 csum2 = INDIRECT_CALL_1(ops->update,
2723 csum_partial_ext,
2724 vaddr + p_off, p_len, 0);
2725 kunmap_atomic(vaddr);
2726 csum = INDIRECT_CALL_1(ops->combine,
2727 csum_block_add_ext, csum,
2728 csum2, pos, p_len);
2729 pos += p_len;
2730 }
2731
2732 if (!(len -= copy))
2733 return csum;
2734 offset += copy;
2735 }
2736 start = end;
2737 }
2738
2739 skb_walk_frags(skb, frag_iter) {
2740 int end;
2741
2742 WARN_ON(start > offset + len);
2743
2744 end = start + frag_iter->len;
2745 if ((copy = end - offset) > 0) {
2746 __wsum csum2;
2747 if (copy > len)
2748 copy = len;
2749 csum2 = __skb_checksum(frag_iter, offset - start,
2750 copy, 0, ops);
2751 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
2752 csum, csum2, pos, copy);
2753 if ((len -= copy) == 0)
2754 return csum;
2755 offset += copy;
2756 pos += copy;
2757 }
2758 start = end;
2759 }
2760 BUG_ON(len);
2761
2762 return csum;
2763}
2764EXPORT_SYMBOL(__skb_checksum);
2765
2766__wsum skb_checksum(const struct sk_buff *skb, int offset,
2767 int len, __wsum csum)
2768{
2769 const struct skb_checksum_ops ops = {
2770 .update = csum_partial_ext,
2771 .combine = csum_block_add_ext,
2772 };
2773
2774 return __skb_checksum(skb, offset, len, csum, &ops);
2775}
2776EXPORT_SYMBOL(skb_checksum);
2777
2778/* Both of above in one bottle. */
2779
2780__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2781 u8 *to, int len)
2782{
2783 int start = skb_headlen(skb);
2784 int i, copy = start - offset;
2785 struct sk_buff *frag_iter;
2786 int pos = 0;
2787 __wsum csum = 0;
2788
2789 /* Copy header. */
2790 if (copy > 0) {
2791 if (copy > len)
2792 copy = len;
2793 csum = csum_partial_copy_nocheck(skb->data + offset, to,
2794 copy);
2795 if ((len -= copy) == 0)
2796 return csum;
2797 offset += copy;
2798 to += copy;
2799 pos = copy;
2800 }
2801
2802 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2803 int end;
2804
2805 WARN_ON(start > offset + len);
2806
2807 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2808 if ((copy = end - offset) > 0) {
2809 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2810 u32 p_off, p_len, copied;
2811 struct page *p;
2812 __wsum csum2;
2813 u8 *vaddr;
2814
2815 if (copy > len)
2816 copy = len;
2817
2818 skb_frag_foreach_page(frag,
2819 skb_frag_off(frag) + offset - start,
2820 copy, p, p_off, p_len, copied) {
2821 vaddr = kmap_atomic(p);
2822 csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2823 to + copied,
2824 p_len);
2825 kunmap_atomic(vaddr);
2826 csum = csum_block_add(csum, csum2, pos);
2827 pos += p_len;
2828 }
2829
2830 if (!(len -= copy))
2831 return csum;
2832 offset += copy;
2833 to += copy;
2834 }
2835 start = end;
2836 }
2837
2838 skb_walk_frags(skb, frag_iter) {
2839 __wsum csum2;
2840 int end;
2841
2842 WARN_ON(start > offset + len);
2843
2844 end = start + frag_iter->len;
2845 if ((copy = end - offset) > 0) {
2846 if (copy > len)
2847 copy = len;
2848 csum2 = skb_copy_and_csum_bits(frag_iter,
2849 offset - start,
2850 to, copy);
2851 csum = csum_block_add(csum, csum2, pos);
2852 if ((len -= copy) == 0)
2853 return csum;
2854 offset += copy;
2855 to += copy;
2856 pos += copy;
2857 }
2858 start = end;
2859 }
2860 BUG_ON(len);
2861 return csum;
2862}
2863EXPORT_SYMBOL(skb_copy_and_csum_bits);
2864
2865__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
2866{
2867 __sum16 sum;
2868
2869 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
2870 /* See comments in __skb_checksum_complete(). */
2871 if (likely(!sum)) {
2872 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2873 !skb->csum_complete_sw)
2874 netdev_rx_csum_fault(skb->dev, skb);
2875 }
2876 if (!skb_shared(skb))
2877 skb->csum_valid = !sum;
2878 return sum;
2879}
2880EXPORT_SYMBOL(__skb_checksum_complete_head);
2881
2882/* This function assumes skb->csum already holds pseudo header's checksum,
2883 * which has been changed from the hardware checksum, for example, by
2884 * __skb_checksum_validate_complete(). And, the original skb->csum must
2885 * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
2886 *
2887 * It returns non-zero if the recomputed checksum is still invalid, otherwise
2888 * zero. The new checksum is stored back into skb->csum unless the skb is
2889 * shared.
2890 */
2891__sum16 __skb_checksum_complete(struct sk_buff *skb)
2892{
2893 __wsum csum;
2894 __sum16 sum;
2895
2896 csum = skb_checksum(skb, 0, skb->len, 0);
2897
2898 sum = csum_fold(csum_add(skb->csum, csum));
2899 /* This check is inverted, because we already knew the hardware
2900 * checksum is invalid before calling this function. So, if the
2901 * re-computed checksum is valid instead, then we have a mismatch
2902 * between the original skb->csum and skb_checksum(). This means either
2903 * the original hardware checksum is incorrect or we screw up skb->csum
2904 * when moving skb->data around.
2905 */
2906 if (likely(!sum)) {
2907 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2908 !skb->csum_complete_sw)
2909 netdev_rx_csum_fault(skb->dev, skb);
2910 }
2911
2912 if (!skb_shared(skb)) {
2913 /* Save full packet checksum */
2914 skb->csum = csum;
2915 skb->ip_summed = CHECKSUM_COMPLETE;
2916 skb->csum_complete_sw = 1;
2917 skb->csum_valid = !sum;
2918 }
2919
2920 return sum;
2921}
2922EXPORT_SYMBOL(__skb_checksum_complete);
2923
2924static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2925{
2926 net_warn_ratelimited(
2927 "%s: attempt to compute crc32c without libcrc32c.ko\n",
2928 __func__);
2929 return 0;
2930}
2931
2932static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2933 int offset, int len)
2934{
2935 net_warn_ratelimited(
2936 "%s: attempt to compute crc32c without libcrc32c.ko\n",
2937 __func__);
2938 return 0;
2939}
2940
2941static const struct skb_checksum_ops default_crc32c_ops = {
2942 .update = warn_crc32c_csum_update,
2943 .combine = warn_crc32c_csum_combine,
2944};
2945
2946const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2947 &default_crc32c_ops;
2948EXPORT_SYMBOL(crc32c_csum_stub);
2949
2950 /**
2951 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2952 * @from: source buffer
2953 *
2954 * Calculates the amount of linear headroom needed in the 'to' skb passed
2955 * into skb_zerocopy().
2956 */
2957unsigned int
2958skb_zerocopy_headlen(const struct sk_buff *from)
2959{
2960 unsigned int hlen = 0;
2961
2962 if (!from->head_frag ||
2963 skb_headlen(from) < L1_CACHE_BYTES ||
2964 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2965 hlen = skb_headlen(from);
2966
2967 if (skb_has_frag_list(from))
2968 hlen = from->len;
2969
2970 return hlen;
2971}
2972EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2973
2974/**
2975 * skb_zerocopy - Zero copy skb to skb
2976 * @to: destination buffer
2977 * @from: source buffer
2978 * @len: number of bytes to copy from source buffer
2979 * @hlen: size of linear headroom in destination buffer
2980 *
2981 * Copies up to `len` bytes from `from` to `to` by creating references
2982 * to the frags in the source buffer.
2983 *
2984 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2985 * headroom in the `to` buffer.
2986 *
2987 * Return value:
2988 * 0: everything is OK
2989 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
2990 * -EFAULT: skb_copy_bits() found some problem with skb geometry
2991 */
2992int
2993skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2994{
2995 int i, j = 0;
2996 int plen = 0; /* length of skb->head fragment */
2997 int ret;
2998 struct page *page;
2999 unsigned int offset;
3000
3001 BUG_ON(!from->head_frag && !hlen);
3002
3003 /* dont bother with small payloads */
3004 if (len <= skb_tailroom(to))
3005 return skb_copy_bits(from, 0, skb_put(to, len), len);
3006
3007 if (hlen) {
3008 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3009 if (unlikely(ret))
3010 return ret;
3011 len -= hlen;
3012 } else {
3013 plen = min_t(int, skb_headlen(from), len);
3014 if (plen) {
3015 page = virt_to_head_page(from->head);
3016 offset = from->data - (unsigned char *)page_address(page);
3017 __skb_fill_page_desc(to, 0, page, offset, plen);
3018 get_page(page);
3019 j = 1;
3020 len -= plen;
3021 }
3022 }
3023
3024 to->truesize += len + plen;
3025 to->len += len + plen;
3026 to->data_len += len + plen;
3027
3028 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3029 skb_tx_error(from);
3030 return -ENOMEM;
3031 }
3032 skb_zerocopy_clone(to, from, GFP_ATOMIC);
3033
3034 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3035 int size;
3036
3037 if (!len)
3038 break;
3039 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3040 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3041 len);
3042 skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3043 len -= size;
3044 skb_frag_ref(to, j);
3045 j++;
3046 }
3047 skb_shinfo(to)->nr_frags = j;
3048
3049 return 0;
3050}
3051EXPORT_SYMBOL_GPL(skb_zerocopy);
3052
3053void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3054{
3055 __wsum csum;
3056 long csstart;
3057
3058 if (skb->ip_summed == CHECKSUM_PARTIAL)
3059 csstart = skb_checksum_start_offset(skb);
3060 else
3061 csstart = skb_headlen(skb);
3062
3063 BUG_ON(csstart > skb_headlen(skb));
3064
3065 skb_copy_from_linear_data(skb, to, csstart);
3066
3067 csum = 0;
3068 if (csstart != skb->len)
3069 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3070 skb->len - csstart);
3071
3072 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3073 long csstuff = csstart + skb->csum_offset;
3074
3075 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
3076 }
3077}
3078EXPORT_SYMBOL(skb_copy_and_csum_dev);
3079
3080/**
3081 * skb_dequeue - remove from the head of the queue
3082 * @list: list to dequeue from
3083 *
3084 * Remove the head of the list. The list lock is taken so the function
3085 * may be used safely with other locking list functions. The head item is
3086 * returned or %NULL if the list is empty.
3087 */
3088
3089struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3090{
3091 unsigned long flags;
3092 struct sk_buff *result;
3093
3094 spin_lock_irqsave(&list->lock, flags);
3095 result = __skb_dequeue(list);
3096 spin_unlock_irqrestore(&list->lock, flags);
3097 return result;
3098}
3099EXPORT_SYMBOL(skb_dequeue);
3100
3101/**
3102 * skb_dequeue_tail - remove from the tail of the queue
3103 * @list: list to dequeue from
3104 *
3105 * Remove the tail of the list. The list lock is taken so the function
3106 * may be used safely with other locking list functions. The tail item is
3107 * returned or %NULL if the list is empty.
3108 */
3109struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3110{
3111 unsigned long flags;
3112 struct sk_buff *result;
3113
3114 spin_lock_irqsave(&list->lock, flags);
3115 result = __skb_dequeue_tail(list);
3116 spin_unlock_irqrestore(&list->lock, flags);
3117 return result;
3118}
3119EXPORT_SYMBOL(skb_dequeue_tail);
3120
3121/**
3122 * skb_queue_purge - empty a list
3123 * @list: list to empty
3124 *
3125 * Delete all buffers on an &sk_buff list. Each buffer is removed from
3126 * the list and one reference dropped. This function takes the list
3127 * lock and is atomic with respect to other list locking functions.
3128 */
3129void skb_queue_purge(struct sk_buff_head *list)
3130{
3131 struct sk_buff *skb;
3132 while ((skb = skb_dequeue(list)) != NULL)
3133 kfree_skb(skb);
3134}
3135EXPORT_SYMBOL(skb_queue_purge);
3136
3137/**
3138 * skb_rbtree_purge - empty a skb rbtree
3139 * @root: root of the rbtree to empty
3140 * Return value: the sum of truesizes of all purged skbs.
3141 *
3142 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3143 * the list and one reference dropped. This function does not take
3144 * any lock. Synchronization should be handled by the caller (e.g., TCP
3145 * out-of-order queue is protected by the socket lock).
3146 */
3147unsigned int skb_rbtree_purge(struct rb_root *root)
3148{
3149 struct rb_node *p = rb_first(root);
3150 unsigned int sum = 0;
3151
3152 while (p) {
3153 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3154
3155 p = rb_next(p);
3156 rb_erase(&skb->rbnode, root);
3157 sum += skb->truesize;
3158 kfree_skb(skb);
3159 }
3160 return sum;
3161}
3162
3163/**
3164 * skb_queue_head - queue a buffer at the list head
3165 * @list: list to use
3166 * @newsk: buffer to queue
3167 *
3168 * Queue a buffer at the start of the list. This function takes the
3169 * list lock and can be used safely with other locking &sk_buff functions
3170 * safely.
3171 *
3172 * A buffer cannot be placed on two lists at the same time.
3173 */
3174void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3175{
3176 unsigned long flags;
3177
3178 spin_lock_irqsave(&list->lock, flags);
3179 __skb_queue_head(list, newsk);
3180 spin_unlock_irqrestore(&list->lock, flags);
3181}
3182EXPORT_SYMBOL(skb_queue_head);
3183
3184/**
3185 * skb_queue_tail - queue a buffer at the list tail
3186 * @list: list to use
3187 * @newsk: buffer to queue
3188 *
3189 * Queue a buffer at the tail of the list. This function takes the
3190 * list lock and can be used safely with other locking &sk_buff functions
3191 * safely.
3192 *
3193 * A buffer cannot be placed on two lists at the same time.
3194 */
3195void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3196{
3197 unsigned long flags;
3198
3199 spin_lock_irqsave(&list->lock, flags);
3200 __skb_queue_tail(list, newsk);
3201 spin_unlock_irqrestore(&list->lock, flags);
3202}
3203EXPORT_SYMBOL(skb_queue_tail);
3204
3205/**
3206 * skb_unlink - remove a buffer from a list
3207 * @skb: buffer to remove
3208 * @list: list to use
3209 *
3210 * Remove a packet from a list. The list locks are taken and this
3211 * function is atomic with respect to other list locked calls
3212 *
3213 * You must know what list the SKB is on.
3214 */
3215void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3216{
3217 unsigned long flags;
3218
3219 spin_lock_irqsave(&list->lock, flags);
3220 __skb_unlink(skb, list);
3221 spin_unlock_irqrestore(&list->lock, flags);
3222}
3223EXPORT_SYMBOL(skb_unlink);
3224
3225/**
3226 * skb_append - append a buffer
3227 * @old: buffer to insert after
3228 * @newsk: buffer to insert
3229 * @list: list to use
3230 *
3231 * Place a packet after a given packet in a list. The list locks are taken
3232 * and this function is atomic with respect to other list locked calls.
3233 * A buffer cannot be placed on two lists at the same time.
3234 */
3235void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3236{
3237 unsigned long flags;
3238
3239 spin_lock_irqsave(&list->lock, flags);
3240 __skb_queue_after(list, old, newsk);
3241 spin_unlock_irqrestore(&list->lock, flags);
3242}
3243EXPORT_SYMBOL(skb_append);
3244
3245static inline void skb_split_inside_header(struct sk_buff *skb,
3246 struct sk_buff* skb1,
3247 const u32 len, const int pos)
3248{
3249 int i;
3250
3251 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3252 pos - len);
3253 /* And move data appendix as is. */
3254 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3255 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3256
3257 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3258 skb_shinfo(skb)->nr_frags = 0;
3259 skb1->data_len = skb->data_len;
3260 skb1->len += skb1->data_len;
3261 skb->data_len = 0;
3262 skb->len = len;
3263 skb_set_tail_pointer(skb, len);
3264}
3265
3266static inline void skb_split_no_header(struct sk_buff *skb,
3267 struct sk_buff* skb1,
3268 const u32 len, int pos)
3269{
3270 int i, k = 0;
3271 const int nfrags = skb_shinfo(skb)->nr_frags;
3272
3273 skb_shinfo(skb)->nr_frags = 0;
3274 skb1->len = skb1->data_len = skb->len - len;
3275 skb->len = len;
3276 skb->data_len = len - pos;
3277
3278 for (i = 0; i < nfrags; i++) {
3279 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3280
3281 if (pos + size > len) {
3282 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3283
3284 if (pos < len) {
3285 /* Split frag.
3286 * We have two variants in this case:
3287 * 1. Move all the frag to the second
3288 * part, if it is possible. F.e.
3289 * this approach is mandatory for TUX,
3290 * where splitting is expensive.
3291 * 2. Split is accurately. We make this.
3292 */
3293 skb_frag_ref(skb, i);
3294 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3295 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3296 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3297 skb_shinfo(skb)->nr_frags++;
3298 }
3299 k++;
3300 } else
3301 skb_shinfo(skb)->nr_frags++;
3302 pos += size;
3303 }
3304 skb_shinfo(skb1)->nr_frags = k;
3305}
3306
3307/**
3308 * skb_split - Split fragmented skb to two parts at length len.
3309 * @skb: the buffer to split
3310 * @skb1: the buffer to receive the second part
3311 * @len: new length for skb
3312 */
3313void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3314{
3315 int pos = skb_headlen(skb);
3316
3317 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3318 skb_zerocopy_clone(skb1, skb, 0);
3319 if (len < pos) /* Split line is inside header. */
3320 skb_split_inside_header(skb, skb1, len, pos);
3321 else /* Second chunk has no header, nothing to copy. */
3322 skb_split_no_header(skb, skb1, len, pos);
3323}
3324EXPORT_SYMBOL(skb_split);
3325
3326/* Shifting from/to a cloned skb is a no-go.
3327 *
3328 * Caller cannot keep skb_shinfo related pointers past calling here!
3329 */
3330static int skb_prepare_for_shift(struct sk_buff *skb)
3331{
3332 int ret = 0;
3333
3334 if (skb_cloned(skb)) {
3335 /* Save and restore truesize: pskb_expand_head() may reallocate
3336 * memory where ksize(kmalloc(S)) != ksize(kmalloc(S)), but we
3337 * cannot change truesize at this point.
3338 */
3339 unsigned int save_truesize = skb->truesize;
3340
3341 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3342 skb->truesize = save_truesize;
3343 }
3344 return ret;
3345}
3346
3347/**
3348 * skb_shift - Shifts paged data partially from skb to another
3349 * @tgt: buffer into which tail data gets added
3350 * @skb: buffer from which the paged data comes from
3351 * @shiftlen: shift up to this many bytes
3352 *
3353 * Attempts to shift up to shiftlen worth of bytes, which may be less than
3354 * the length of the skb, from skb to tgt. Returns number bytes shifted.
3355 * It's up to caller to free skb if everything was shifted.
3356 *
3357 * If @tgt runs out of frags, the whole operation is aborted.
3358 *
3359 * Skb cannot include anything else but paged data while tgt is allowed
3360 * to have non-paged data as well.
3361 *
3362 * TODO: full sized shift could be optimized but that would need
3363 * specialized skb free'er to handle frags without up-to-date nr_frags.
3364 */
3365int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3366{
3367 int from, to, merge, todo;
3368 skb_frag_t *fragfrom, *fragto;
3369
3370 BUG_ON(shiftlen > skb->len);
3371
3372 if (skb_headlen(skb))
3373 return 0;
3374 if (skb_zcopy(tgt) || skb_zcopy(skb))
3375 return 0;
3376
3377 todo = shiftlen;
3378 from = 0;
3379 to = skb_shinfo(tgt)->nr_frags;
3380 fragfrom = &skb_shinfo(skb)->frags[from];
3381
3382 /* Actual merge is delayed until the point when we know we can
3383 * commit all, so that we don't have to undo partial changes
3384 */
3385 if (!to ||
3386 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3387 skb_frag_off(fragfrom))) {
3388 merge = -1;
3389 } else {
3390 merge = to - 1;
3391
3392 todo -= skb_frag_size(fragfrom);
3393 if (todo < 0) {
3394 if (skb_prepare_for_shift(skb) ||
3395 skb_prepare_for_shift(tgt))
3396 return 0;
3397
3398 /* All previous frag pointers might be stale! */
3399 fragfrom = &skb_shinfo(skb)->frags[from];
3400 fragto = &skb_shinfo(tgt)->frags[merge];
3401
3402 skb_frag_size_add(fragto, shiftlen);
3403 skb_frag_size_sub(fragfrom, shiftlen);
3404 skb_frag_off_add(fragfrom, shiftlen);
3405
3406 goto onlymerged;
3407 }
3408
3409 from++;
3410 }
3411
3412 /* Skip full, not-fitting skb to avoid expensive operations */
3413 if ((shiftlen == skb->len) &&
3414 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3415 return 0;
3416
3417 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3418 return 0;
3419
3420 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3421 if (to == MAX_SKB_FRAGS)
3422 return 0;
3423
3424 fragfrom = &skb_shinfo(skb)->frags[from];
3425 fragto = &skb_shinfo(tgt)->frags[to];
3426
3427 if (todo >= skb_frag_size(fragfrom)) {
3428 *fragto = *fragfrom;
3429 todo -= skb_frag_size(fragfrom);
3430 from++;
3431 to++;
3432
3433 } else {
3434 __skb_frag_ref(fragfrom);
3435 skb_frag_page_copy(fragto, fragfrom);
3436 skb_frag_off_copy(fragto, fragfrom);
3437 skb_frag_size_set(fragto, todo);
3438
3439 skb_frag_off_add(fragfrom, todo);
3440 skb_frag_size_sub(fragfrom, todo);
3441 todo = 0;
3442
3443 to++;
3444 break;
3445 }
3446 }
3447
3448 /* Ready to "commit" this state change to tgt */
3449 skb_shinfo(tgt)->nr_frags = to;
3450
3451 if (merge >= 0) {
3452 fragfrom = &skb_shinfo(skb)->frags[0];
3453 fragto = &skb_shinfo(tgt)->frags[merge];
3454
3455 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3456 __skb_frag_unref(fragfrom);
3457 }
3458
3459 /* Reposition in the original skb */
3460 to = 0;
3461 while (from < skb_shinfo(skb)->nr_frags)
3462 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3463 skb_shinfo(skb)->nr_frags = to;
3464
3465 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3466
3467onlymerged:
3468 /* Most likely the tgt won't ever need its checksum anymore, skb on
3469 * the other hand might need it if it needs to be resent
3470 */
3471 tgt->ip_summed = CHECKSUM_PARTIAL;
3472 skb->ip_summed = CHECKSUM_PARTIAL;
3473
3474 /* Yak, is it really working this way? Some helper please? */
3475 skb->len -= shiftlen;
3476 skb->data_len -= shiftlen;
3477 skb->truesize -= shiftlen;
3478 tgt->len += shiftlen;
3479 tgt->data_len += shiftlen;
3480 tgt->truesize += shiftlen;
3481
3482 return shiftlen;
3483}
3484
3485/**
3486 * skb_prepare_seq_read - Prepare a sequential read of skb data
3487 * @skb: the buffer to read
3488 * @from: lower offset of data to be read
3489 * @to: upper offset of data to be read
3490 * @st: state variable
3491 *
3492 * Initializes the specified state variable. Must be called before
3493 * invoking skb_seq_read() for the first time.
3494 */
3495void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3496 unsigned int to, struct skb_seq_state *st)
3497{
3498 st->lower_offset = from;
3499 st->upper_offset = to;
3500 st->root_skb = st->cur_skb = skb;
3501 st->frag_idx = st->stepped_offset = 0;
3502 st->frag_data = NULL;
3503 st->frag_off = 0;
3504}
3505EXPORT_SYMBOL(skb_prepare_seq_read);
3506
3507/**
3508 * skb_seq_read - Sequentially read skb data
3509 * @consumed: number of bytes consumed by the caller so far
3510 * @data: destination pointer for data to be returned
3511 * @st: state variable
3512 *
3513 * Reads a block of skb data at @consumed relative to the
3514 * lower offset specified to skb_prepare_seq_read(). Assigns
3515 * the head of the data block to @data and returns the length
3516 * of the block or 0 if the end of the skb data or the upper
3517 * offset has been reached.
3518 *
3519 * The caller is not required to consume all of the data
3520 * returned, i.e. @consumed is typically set to the number
3521 * of bytes already consumed and the next call to
3522 * skb_seq_read() will return the remaining part of the block.
3523 *
3524 * Note 1: The size of each block of data returned can be arbitrary,
3525 * this limitation is the cost for zerocopy sequential
3526 * reads of potentially non linear data.
3527 *
3528 * Note 2: Fragment lists within fragments are not implemented
3529 * at the moment, state->root_skb could be replaced with
3530 * a stack for this purpose.
3531 */
3532unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3533 struct skb_seq_state *st)
3534{
3535 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3536 skb_frag_t *frag;
3537
3538 if (unlikely(abs_offset >= st->upper_offset)) {
3539 if (st->frag_data) {
3540 kunmap_atomic(st->frag_data);
3541 st->frag_data = NULL;
3542 }
3543 return 0;
3544 }
3545
3546next_skb:
3547 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3548
3549 if (abs_offset < block_limit && !st->frag_data) {
3550 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3551 return block_limit - abs_offset;
3552 }
3553
3554 if (st->frag_idx == 0 && !st->frag_data)
3555 st->stepped_offset += skb_headlen(st->cur_skb);
3556
3557 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3558 unsigned int pg_idx, pg_off, pg_sz;
3559
3560 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3561
3562 pg_idx = 0;
3563 pg_off = skb_frag_off(frag);
3564 pg_sz = skb_frag_size(frag);
3565
3566 if (skb_frag_must_loop(skb_frag_page(frag))) {
3567 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
3568 pg_off = offset_in_page(pg_off + st->frag_off);
3569 pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
3570 PAGE_SIZE - pg_off);
3571 }
3572
3573 block_limit = pg_sz + st->stepped_offset;
3574 if (abs_offset < block_limit) {
3575 if (!st->frag_data)
3576 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
3577
3578 *data = (u8 *)st->frag_data + pg_off +
3579 (abs_offset - st->stepped_offset);
3580
3581 return block_limit - abs_offset;
3582 }
3583
3584 if (st->frag_data) {
3585 kunmap_atomic(st->frag_data);
3586 st->frag_data = NULL;
3587 }
3588
3589 st->stepped_offset += pg_sz;
3590 st->frag_off += pg_sz;
3591 if (st->frag_off == skb_frag_size(frag)) {
3592 st->frag_off = 0;
3593 st->frag_idx++;
3594 }
3595 }
3596
3597 if (st->frag_data) {
3598 kunmap_atomic(st->frag_data);
3599 st->frag_data = NULL;
3600 }
3601
3602 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3603 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3604 st->frag_idx = 0;
3605 goto next_skb;
3606 } else if (st->cur_skb->next) {
3607 st->cur_skb = st->cur_skb->next;
3608 st->frag_idx = 0;
3609 goto next_skb;
3610 }
3611
3612 return 0;
3613}
3614EXPORT_SYMBOL(skb_seq_read);
3615
3616/**
3617 * skb_abort_seq_read - Abort a sequential read of skb data
3618 * @st: state variable
3619 *
3620 * Must be called if skb_seq_read() was not called until it
3621 * returned 0.
3622 */
3623void skb_abort_seq_read(struct skb_seq_state *st)
3624{
3625 if (st->frag_data)
3626 kunmap_atomic(st->frag_data);
3627}
3628EXPORT_SYMBOL(skb_abort_seq_read);
3629
3630#define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
3631
3632static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3633 struct ts_config *conf,
3634 struct ts_state *state)
3635{
3636 return skb_seq_read(offset, text, TS_SKB_CB(state));
3637}
3638
3639static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3640{
3641 skb_abort_seq_read(TS_SKB_CB(state));
3642}
3643
3644/**
3645 * skb_find_text - Find a text pattern in skb data
3646 * @skb: the buffer to look in
3647 * @from: search offset
3648 * @to: search limit
3649 * @config: textsearch configuration
3650 *
3651 * Finds a pattern in the skb data according to the specified
3652 * textsearch configuration. Use textsearch_next() to retrieve
3653 * subsequent occurrences of the pattern. Returns the offset
3654 * to the first occurrence or UINT_MAX if no match was found.
3655 */
3656unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3657 unsigned int to, struct ts_config *config)
3658{
3659 struct ts_state state;
3660 unsigned int ret;
3661
3662 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
3663
3664 config->get_next_block = skb_ts_get_next_block;
3665 config->finish = skb_ts_finish;
3666
3667 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3668
3669 ret = textsearch_find(config, &state);
3670 return (ret <= to - from ? ret : UINT_MAX);
3671}
3672EXPORT_SYMBOL(skb_find_text);
3673
3674int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3675 int offset, size_t size)
3676{
3677 int i = skb_shinfo(skb)->nr_frags;
3678
3679 if (skb_can_coalesce(skb, i, page, offset)) {
3680 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3681 } else if (i < MAX_SKB_FRAGS) {
3682 get_page(page);
3683 skb_fill_page_desc(skb, i, page, offset, size);
3684 } else {
3685 return -EMSGSIZE;
3686 }
3687
3688 return 0;
3689}
3690EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3691
3692/**
3693 * skb_pull_rcsum - pull skb and update receive checksum
3694 * @skb: buffer to update
3695 * @len: length of data pulled
3696 *
3697 * This function performs an skb_pull on the packet and updates
3698 * the CHECKSUM_COMPLETE checksum. It should be used on
3699 * receive path processing instead of skb_pull unless you know
3700 * that the checksum difference is zero (e.g., a valid IP header)
3701 * or you are setting ip_summed to CHECKSUM_NONE.
3702 */
3703void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3704{
3705 unsigned char *data = skb->data;
3706
3707 BUG_ON(len > skb->len);
3708 __skb_pull(skb, len);
3709 skb_postpull_rcsum(skb, data, len);
3710 return skb->data;
3711}
3712EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3713
3714static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3715{
3716 skb_frag_t head_frag;
3717 struct page *page;
3718
3719 page = virt_to_head_page(frag_skb->head);
3720 __skb_frag_set_page(&head_frag, page);
3721 skb_frag_off_set(&head_frag, frag_skb->data -
3722 (unsigned char *)page_address(page));
3723 skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
3724 return head_frag;
3725}
3726
3727struct sk_buff *skb_segment_list(struct sk_buff *skb,
3728 netdev_features_t features,
3729 unsigned int offset)
3730{
3731 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
3732 unsigned int tnl_hlen = skb_tnl_header_len(skb);
3733 unsigned int delta_truesize = 0;
3734 unsigned int delta_len = 0;
3735 struct sk_buff *tail = NULL;
3736 struct sk_buff *nskb, *tmp;
3737 int err;
3738
3739 skb_push(skb, -skb_network_offset(skb) + offset);
3740
3741 skb_shinfo(skb)->frag_list = NULL;
3742
3743 do {
3744 nskb = list_skb;
3745 list_skb = list_skb->next;
3746
3747 err = 0;
3748 if (skb_shared(nskb)) {
3749 tmp = skb_clone(nskb, GFP_ATOMIC);
3750 if (tmp) {
3751 consume_skb(nskb);
3752 nskb = tmp;
3753 err = skb_unclone(nskb, GFP_ATOMIC);
3754 } else {
3755 err = -ENOMEM;
3756 }
3757 }
3758
3759 if (!tail)
3760 skb->next = nskb;
3761 else
3762 tail->next = nskb;
3763
3764 if (unlikely(err)) {
3765 nskb->next = list_skb;
3766 goto err_linearize;
3767 }
3768
3769 tail = nskb;
3770
3771 delta_len += nskb->len;
3772 delta_truesize += nskb->truesize;
3773
3774 skb_push(nskb, -skb_network_offset(nskb) + offset);
3775
3776 skb_release_head_state(nskb);
3777 __copy_skb_header(nskb, skb);
3778
3779 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
3780 skb_copy_from_linear_data_offset(skb, -tnl_hlen,
3781 nskb->data - tnl_hlen,
3782 offset + tnl_hlen);
3783
3784 if (skb_needs_linearize(nskb, features) &&
3785 __skb_linearize(nskb))
3786 goto err_linearize;
3787
3788 } while (list_skb);
3789
3790 skb->truesize = skb->truesize - delta_truesize;
3791 skb->data_len = skb->data_len - delta_len;
3792 skb->len = skb->len - delta_len;
3793
3794 skb_gso_reset(skb);
3795
3796 skb->prev = tail;
3797
3798 if (skb_needs_linearize(skb, features) &&
3799 __skb_linearize(skb))
3800 goto err_linearize;
3801
3802 skb_get(skb);
3803
3804 return skb;
3805
3806err_linearize:
3807 kfree_skb_list(skb->next);
3808 skb->next = NULL;
3809 return ERR_PTR(-ENOMEM);
3810}
3811EXPORT_SYMBOL_GPL(skb_segment_list);
3812
3813int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb)
3814{
3815 if (unlikely(p->len + skb->len >= 65536))
3816 return -E2BIG;
3817
3818 if (NAPI_GRO_CB(p)->last == p)
3819 skb_shinfo(p)->frag_list = skb;
3820 else
3821 NAPI_GRO_CB(p)->last->next = skb;
3822
3823 skb_pull(skb, skb_gro_offset(skb));
3824
3825 NAPI_GRO_CB(p)->last = skb;
3826 NAPI_GRO_CB(p)->count++;
3827 p->data_len += skb->len;
3828 p->truesize += skb->truesize;
3829 p->len += skb->len;
3830
3831 NAPI_GRO_CB(skb)->same_flow = 1;
3832
3833 return 0;
3834}
3835
3836/**
3837 * skb_segment - Perform protocol segmentation on skb.
3838 * @head_skb: buffer to segment
3839 * @features: features for the output path (see dev->features)
3840 *
3841 * This function performs segmentation on the given skb. It returns
3842 * a pointer to the first in a list of new skbs for the segments.
3843 * In case of error it returns ERR_PTR(err).
3844 */
3845struct sk_buff *skb_segment(struct sk_buff *head_skb,
3846 netdev_features_t features)
3847{
3848 struct sk_buff *segs = NULL;
3849 struct sk_buff *tail = NULL;
3850 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3851 skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3852 unsigned int mss = skb_shinfo(head_skb)->gso_size;
3853 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3854 struct sk_buff *frag_skb = head_skb;
3855 unsigned int offset = doffset;
3856 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3857 unsigned int partial_segs = 0;
3858 unsigned int headroom;
3859 unsigned int len = head_skb->len;
3860 __be16 proto;
3861 bool csum, sg;
3862 int nfrags = skb_shinfo(head_skb)->nr_frags;
3863 int err = -ENOMEM;
3864 int i = 0;
3865 int pos;
3866
3867 if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) &&
3868 (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) {
3869 /* gso_size is untrusted, and we have a frag_list with a linear
3870 * non head_frag head.
3871 *
3872 * (we assume checking the first list_skb member suffices;
3873 * i.e if either of the list_skb members have non head_frag
3874 * head, then the first one has too).
3875 *
3876 * If head_skb's headlen does not fit requested gso_size, it
3877 * means that the frag_list members do NOT terminate on exact
3878 * gso_size boundaries. Hence we cannot perform skb_frag_t page
3879 * sharing. Therefore we must fallback to copying the frag_list
3880 * skbs; we do so by disabling SG.
3881 */
3882 if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb))
3883 features &= ~NETIF_F_SG;
3884 }
3885
3886 __skb_push(head_skb, doffset);
3887 proto = skb_network_protocol(head_skb, NULL);
3888 if (unlikely(!proto))
3889 return ERR_PTR(-EINVAL);
3890
3891 sg = !!(features & NETIF_F_SG);
3892 csum = !!can_checksum_protocol(features, proto);
3893
3894 if (sg && csum && (mss != GSO_BY_FRAGS)) {
3895 if (!(features & NETIF_F_GSO_PARTIAL)) {
3896 struct sk_buff *iter;
3897 unsigned int frag_len;
3898
3899 if (!list_skb ||
3900 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3901 goto normal;
3902
3903 /* If we get here then all the required
3904 * GSO features except frag_list are supported.
3905 * Try to split the SKB to multiple GSO SKBs
3906 * with no frag_list.
3907 * Currently we can do that only when the buffers don't
3908 * have a linear part and all the buffers except
3909 * the last are of the same length.
3910 */
3911 frag_len = list_skb->len;
3912 skb_walk_frags(head_skb, iter) {
3913 if (frag_len != iter->len && iter->next)
3914 goto normal;
3915 if (skb_headlen(iter) && !iter->head_frag)
3916 goto normal;
3917
3918 len -= iter->len;
3919 }
3920
3921 if (len != frag_len)
3922 goto normal;
3923 }
3924
3925 /* GSO partial only requires that we trim off any excess that
3926 * doesn't fit into an MSS sized block, so take care of that
3927 * now.
3928 */
3929 partial_segs = len / mss;
3930 if (partial_segs > 1)
3931 mss *= partial_segs;
3932 else
3933 partial_segs = 0;
3934 }
3935
3936normal:
3937 headroom = skb_headroom(head_skb);
3938 pos = skb_headlen(head_skb);
3939
3940 do {
3941 struct sk_buff *nskb;
3942 skb_frag_t *nskb_frag;
3943 int hsize;
3944 int size;
3945
3946 if (unlikely(mss == GSO_BY_FRAGS)) {
3947 len = list_skb->len;
3948 } else {
3949 len = head_skb->len - offset;
3950 if (len > mss)
3951 len = mss;
3952 }
3953
3954 hsize = skb_headlen(head_skb) - offset;
3955
3956 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
3957 (skb_headlen(list_skb) == len || sg)) {
3958 BUG_ON(skb_headlen(list_skb) > len);
3959
3960 i = 0;
3961 nfrags = skb_shinfo(list_skb)->nr_frags;
3962 frag = skb_shinfo(list_skb)->frags;
3963 frag_skb = list_skb;
3964 pos += skb_headlen(list_skb);
3965
3966 while (pos < offset + len) {
3967 BUG_ON(i >= nfrags);
3968
3969 size = skb_frag_size(frag);
3970 if (pos + size > offset + len)
3971 break;
3972
3973 i++;
3974 pos += size;
3975 frag++;
3976 }
3977
3978 nskb = skb_clone(list_skb, GFP_ATOMIC);
3979 list_skb = list_skb->next;
3980
3981 if (unlikely(!nskb))
3982 goto err;
3983
3984 if (unlikely(pskb_trim(nskb, len))) {
3985 kfree_skb(nskb);
3986 goto err;
3987 }
3988
3989 hsize = skb_end_offset(nskb);
3990 if (skb_cow_head(nskb, doffset + headroom)) {
3991 kfree_skb(nskb);
3992 goto err;
3993 }
3994
3995 nskb->truesize += skb_end_offset(nskb) - hsize;
3996 skb_release_head_state(nskb);
3997 __skb_push(nskb, doffset);
3998 } else {
3999 if (hsize < 0)
4000 hsize = 0;
4001 if (hsize > len || !sg)
4002 hsize = len;
4003
4004 nskb = __alloc_skb(hsize + doffset + headroom,
4005 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4006 NUMA_NO_NODE);
4007
4008 if (unlikely(!nskb))
4009 goto err;
4010
4011 skb_reserve(nskb, headroom);
4012 __skb_put(nskb, doffset);
4013 }
4014
4015 if (segs)
4016 tail->next = nskb;
4017 else
4018 segs = nskb;
4019 tail = nskb;
4020
4021 __copy_skb_header(nskb, head_skb);
4022
4023 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4024 skb_reset_mac_len(nskb);
4025
4026 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4027 nskb->data - tnl_hlen,
4028 doffset + tnl_hlen);
4029
4030 if (nskb->len == len + doffset)
4031 goto perform_csum_check;
4032
4033 if (!sg) {
4034 if (!csum) {
4035 if (!nskb->remcsum_offload)
4036 nskb->ip_summed = CHECKSUM_NONE;
4037 SKB_GSO_CB(nskb)->csum =
4038 skb_copy_and_csum_bits(head_skb, offset,
4039 skb_put(nskb,
4040 len),
4041 len);
4042 SKB_GSO_CB(nskb)->csum_start =
4043 skb_headroom(nskb) + doffset;
4044 } else {
4045 skb_copy_bits(head_skb, offset,
4046 skb_put(nskb, len),
4047 len);
4048 }
4049 continue;
4050 }
4051
4052 nskb_frag = skb_shinfo(nskb)->frags;
4053
4054 skb_copy_from_linear_data_offset(head_skb, offset,
4055 skb_put(nskb, hsize), hsize);
4056
4057 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4058 SKBFL_SHARED_FRAG;
4059
4060 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4061 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4062 goto err;
4063
4064 while (pos < offset + len) {
4065 if (i >= nfrags) {
4066 i = 0;
4067 nfrags = skb_shinfo(list_skb)->nr_frags;
4068 frag = skb_shinfo(list_skb)->frags;
4069 frag_skb = list_skb;
4070 if (!skb_headlen(list_skb)) {
4071 BUG_ON(!nfrags);
4072 } else {
4073 BUG_ON(!list_skb->head_frag);
4074
4075 /* to make room for head_frag. */
4076 i--;
4077 frag--;
4078 }
4079 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4080 skb_zerocopy_clone(nskb, frag_skb,
4081 GFP_ATOMIC))
4082 goto err;
4083
4084 list_skb = list_skb->next;
4085 }
4086
4087 if (unlikely(skb_shinfo(nskb)->nr_frags >=
4088 MAX_SKB_FRAGS)) {
4089 net_warn_ratelimited(
4090 "skb_segment: too many frags: %u %u\n",
4091 pos, mss);
4092 err = -EINVAL;
4093 goto err;
4094 }
4095
4096 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4097 __skb_frag_ref(nskb_frag);
4098 size = skb_frag_size(nskb_frag);
4099
4100 if (pos < offset) {
4101 skb_frag_off_add(nskb_frag, offset - pos);
4102 skb_frag_size_sub(nskb_frag, offset - pos);
4103 }
4104
4105 skb_shinfo(nskb)->nr_frags++;
4106
4107 if (pos + size <= offset + len) {
4108 i++;
4109 frag++;
4110 pos += size;
4111 } else {
4112 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4113 goto skip_fraglist;
4114 }
4115
4116 nskb_frag++;
4117 }
4118
4119skip_fraglist:
4120 nskb->data_len = len - hsize;
4121 nskb->len += nskb->data_len;
4122 nskb->truesize += nskb->data_len;
4123
4124perform_csum_check:
4125 if (!csum) {
4126 if (skb_has_shared_frag(nskb) &&
4127 __skb_linearize(nskb))
4128 goto err;
4129
4130 if (!nskb->remcsum_offload)
4131 nskb->ip_summed = CHECKSUM_NONE;
4132 SKB_GSO_CB(nskb)->csum =
4133 skb_checksum(nskb, doffset,
4134 nskb->len - doffset, 0);
4135 SKB_GSO_CB(nskb)->csum_start =
4136 skb_headroom(nskb) + doffset;
4137 }
4138 } while ((offset += len) < head_skb->len);
4139
4140 /* Some callers want to get the end of the list.
4141 * Put it in segs->prev to avoid walking the list.
4142 * (see validate_xmit_skb_list() for example)
4143 */
4144 segs->prev = tail;
4145
4146 if (partial_segs) {
4147 struct sk_buff *iter;
4148 int type = skb_shinfo(head_skb)->gso_type;
4149 unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4150
4151 /* Update type to add partial and then remove dodgy if set */
4152 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4153 type &= ~SKB_GSO_DODGY;
4154
4155 /* Update GSO info and prepare to start updating headers on
4156 * our way back down the stack of protocols.
4157 */
4158 for (iter = segs; iter; iter = iter->next) {
4159 skb_shinfo(iter)->gso_size = gso_size;
4160 skb_shinfo(iter)->gso_segs = partial_segs;
4161 skb_shinfo(iter)->gso_type = type;
4162 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4163 }
4164
4165 if (tail->len - doffset <= gso_size)
4166 skb_shinfo(tail)->gso_size = 0;
4167 else if (tail != segs)
4168 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4169 }
4170
4171 /* Following permits correct backpressure, for protocols
4172 * using skb_set_owner_w().
4173 * Idea is to tranfert ownership from head_skb to last segment.
4174 */
4175 if (head_skb->destructor == sock_wfree) {
4176 swap(tail->truesize, head_skb->truesize);
4177 swap(tail->destructor, head_skb->destructor);
4178 swap(tail->sk, head_skb->sk);
4179 }
4180 return segs;
4181
4182err:
4183 kfree_skb_list(segs);
4184 return ERR_PTR(err);
4185}
4186EXPORT_SYMBOL_GPL(skb_segment);
4187
4188int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb)
4189{
4190 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
4191 unsigned int offset = skb_gro_offset(skb);
4192 unsigned int headlen = skb_headlen(skb);
4193 unsigned int len = skb_gro_len(skb);
4194 unsigned int delta_truesize;
4195 struct sk_buff *lp;
4196
4197 if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush))
4198 return -E2BIG;
4199
4200 lp = NAPI_GRO_CB(p)->last;
4201 pinfo = skb_shinfo(lp);
4202
4203 if (headlen <= offset) {
4204 skb_frag_t *frag;
4205 skb_frag_t *frag2;
4206 int i = skbinfo->nr_frags;
4207 int nr_frags = pinfo->nr_frags + i;
4208
4209 if (nr_frags > MAX_SKB_FRAGS)
4210 goto merge;
4211
4212 offset -= headlen;
4213 pinfo->nr_frags = nr_frags;
4214 skbinfo->nr_frags = 0;
4215
4216 frag = pinfo->frags + nr_frags;
4217 frag2 = skbinfo->frags + i;
4218 do {
4219 *--frag = *--frag2;
4220 } while (--i);
4221
4222 skb_frag_off_add(frag, offset);
4223 skb_frag_size_sub(frag, offset);
4224
4225 /* all fragments truesize : remove (head size + sk_buff) */
4226 delta_truesize = skb->truesize -
4227 SKB_TRUESIZE(skb_end_offset(skb));
4228
4229 skb->truesize -= skb->data_len;
4230 skb->len -= skb->data_len;
4231 skb->data_len = 0;
4232
4233 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
4234 goto done;
4235 } else if (skb->head_frag) {
4236 int nr_frags = pinfo->nr_frags;
4237 skb_frag_t *frag = pinfo->frags + nr_frags;
4238 struct page *page = virt_to_head_page(skb->head);
4239 unsigned int first_size = headlen - offset;
4240 unsigned int first_offset;
4241
4242 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
4243 goto merge;
4244
4245 first_offset = skb->data -
4246 (unsigned char *)page_address(page) +
4247 offset;
4248
4249 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
4250
4251 __skb_frag_set_page(frag, page);
4252 skb_frag_off_set(frag, first_offset);
4253 skb_frag_size_set(frag, first_size);
4254
4255 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
4256 /* We dont need to clear skbinfo->nr_frags here */
4257
4258 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4259 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
4260 goto done;
4261 }
4262
4263merge:
4264 delta_truesize = skb->truesize;
4265 if (offset > headlen) {
4266 unsigned int eat = offset - headlen;
4267
4268 skb_frag_off_add(&skbinfo->frags[0], eat);
4269 skb_frag_size_sub(&skbinfo->frags[0], eat);
4270 skb->data_len -= eat;
4271 skb->len -= eat;
4272 offset = headlen;
4273 }
4274
4275 __skb_pull(skb, offset);
4276
4277 if (NAPI_GRO_CB(p)->last == p)
4278 skb_shinfo(p)->frag_list = skb;
4279 else
4280 NAPI_GRO_CB(p)->last->next = skb;
4281 NAPI_GRO_CB(p)->last = skb;
4282 __skb_header_release(skb);
4283 lp = p;
4284
4285done:
4286 NAPI_GRO_CB(p)->count++;
4287 p->data_len += len;
4288 p->truesize += delta_truesize;
4289 p->len += len;
4290 if (lp != p) {
4291 lp->data_len += len;
4292 lp->truesize += delta_truesize;
4293 lp->len += len;
4294 }
4295 NAPI_GRO_CB(skb)->same_flow = 1;
4296 return 0;
4297}
4298
4299#ifdef CONFIG_SKB_EXTENSIONS
4300#define SKB_EXT_ALIGN_VALUE 8
4301#define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4302
4303static const u8 skb_ext_type_len[] = {
4304#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4305 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4306#endif
4307#ifdef CONFIG_XFRM
4308 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4309#endif
4310#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4311 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4312#endif
4313#if IS_ENABLED(CONFIG_MPTCP)
4314 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4315#endif
4316};
4317
4318static __always_inline unsigned int skb_ext_total_length(void)
4319{
4320 return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4321#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4322 skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4323#endif
4324#ifdef CONFIG_XFRM
4325 skb_ext_type_len[SKB_EXT_SEC_PATH] +
4326#endif
4327#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4328 skb_ext_type_len[TC_SKB_EXT] +
4329#endif
4330#if IS_ENABLED(CONFIG_MPTCP)
4331 skb_ext_type_len[SKB_EXT_MPTCP] +
4332#endif
4333 0;
4334}
4335
4336static void skb_extensions_init(void)
4337{
4338 BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4339 BUILD_BUG_ON(skb_ext_total_length() > 255);
4340
4341 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4342 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4343 0,
4344 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4345 NULL);
4346}
4347#else
4348static void skb_extensions_init(void) {}
4349#endif
4350
4351void __init skb_init(void)
4352{
4353 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4354 sizeof(struct sk_buff),
4355 0,
4356 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4357 offsetof(struct sk_buff, cb),
4358 sizeof_field(struct sk_buff, cb),
4359 NULL);
4360 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4361 sizeof(struct sk_buff_fclones),
4362 0,
4363 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4364 NULL);
4365 skb_extensions_init();
4366}
4367
4368static int
4369__skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4370 unsigned int recursion_level)
4371{
4372 int start = skb_headlen(skb);
4373 int i, copy = start - offset;
4374 struct sk_buff *frag_iter;
4375 int elt = 0;
4376
4377 if (unlikely(recursion_level >= 24))
4378 return -EMSGSIZE;
4379
4380 if (copy > 0) {
4381 if (copy > len)
4382 copy = len;
4383 sg_set_buf(sg, skb->data + offset, copy);
4384 elt++;
4385 if ((len -= copy) == 0)
4386 return elt;
4387 offset += copy;
4388 }
4389
4390 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4391 int end;
4392
4393 WARN_ON(start > offset + len);
4394
4395 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4396 if ((copy = end - offset) > 0) {
4397 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4398 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4399 return -EMSGSIZE;
4400
4401 if (copy > len)
4402 copy = len;
4403 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4404 skb_frag_off(frag) + offset - start);
4405 elt++;
4406 if (!(len -= copy))
4407 return elt;
4408 offset += copy;
4409 }
4410 start = end;
4411 }
4412
4413 skb_walk_frags(skb, frag_iter) {
4414 int end, ret;
4415
4416 WARN_ON(start > offset + len);
4417
4418 end = start + frag_iter->len;
4419 if ((copy = end - offset) > 0) {
4420 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4421 return -EMSGSIZE;
4422
4423 if (copy > len)
4424 copy = len;
4425 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4426 copy, recursion_level + 1);
4427 if (unlikely(ret < 0))
4428 return ret;
4429 elt += ret;
4430 if ((len -= copy) == 0)
4431 return elt;
4432 offset += copy;
4433 }
4434 start = end;
4435 }
4436 BUG_ON(len);
4437 return elt;
4438}
4439
4440/**
4441 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4442 * @skb: Socket buffer containing the buffers to be mapped
4443 * @sg: The scatter-gather list to map into
4444 * @offset: The offset into the buffer's contents to start mapping
4445 * @len: Length of buffer space to be mapped
4446 *
4447 * Fill the specified scatter-gather list with mappings/pointers into a
4448 * region of the buffer space attached to a socket buffer. Returns either
4449 * the number of scatterlist items used, or -EMSGSIZE if the contents
4450 * could not fit.
4451 */
4452int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4453{
4454 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4455
4456 if (nsg <= 0)
4457 return nsg;
4458
4459 sg_mark_end(&sg[nsg - 1]);
4460
4461 return nsg;
4462}
4463EXPORT_SYMBOL_GPL(skb_to_sgvec);
4464
4465/* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4466 * sglist without mark the sg which contain last skb data as the end.
4467 * So the caller can mannipulate sg list as will when padding new data after
4468 * the first call without calling sg_unmark_end to expend sg list.
4469 *
4470 * Scenario to use skb_to_sgvec_nomark:
4471 * 1. sg_init_table
4472 * 2. skb_to_sgvec_nomark(payload1)
4473 * 3. skb_to_sgvec_nomark(payload2)
4474 *
4475 * This is equivalent to:
4476 * 1. sg_init_table
4477 * 2. skb_to_sgvec(payload1)
4478 * 3. sg_unmark_end
4479 * 4. skb_to_sgvec(payload2)
4480 *
4481 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4482 * is more preferable.
4483 */
4484int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4485 int offset, int len)
4486{
4487 return __skb_to_sgvec(skb, sg, offset, len, 0);
4488}
4489EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4490
4491
4492
4493/**
4494 * skb_cow_data - Check that a socket buffer's data buffers are writable
4495 * @skb: The socket buffer to check.
4496 * @tailbits: Amount of trailing space to be added
4497 * @trailer: Returned pointer to the skb where the @tailbits space begins
4498 *
4499 * Make sure that the data buffers attached to a socket buffer are
4500 * writable. If they are not, private copies are made of the data buffers
4501 * and the socket buffer is set to use these instead.
4502 *
4503 * If @tailbits is given, make sure that there is space to write @tailbits
4504 * bytes of data beyond current end of socket buffer. @trailer will be
4505 * set to point to the skb in which this space begins.
4506 *
4507 * The number of scatterlist elements required to completely map the
4508 * COW'd and extended socket buffer will be returned.
4509 */
4510int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4511{
4512 int copyflag;
4513 int elt;
4514 struct sk_buff *skb1, **skb_p;
4515
4516 /* If skb is cloned or its head is paged, reallocate
4517 * head pulling out all the pages (pages are considered not writable
4518 * at the moment even if they are anonymous).
4519 */
4520 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4521 !__pskb_pull_tail(skb, __skb_pagelen(skb)))
4522 return -ENOMEM;
4523
4524 /* Easy case. Most of packets will go this way. */
4525 if (!skb_has_frag_list(skb)) {
4526 /* A little of trouble, not enough of space for trailer.
4527 * This should not happen, when stack is tuned to generate
4528 * good frames. OK, on miss we reallocate and reserve even more
4529 * space, 128 bytes is fair. */
4530
4531 if (skb_tailroom(skb) < tailbits &&
4532 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4533 return -ENOMEM;
4534
4535 /* Voila! */
4536 *trailer = skb;
4537 return 1;
4538 }
4539
4540 /* Misery. We are in troubles, going to mincer fragments... */
4541
4542 elt = 1;
4543 skb_p = &skb_shinfo(skb)->frag_list;
4544 copyflag = 0;
4545
4546 while ((skb1 = *skb_p) != NULL) {
4547 int ntail = 0;
4548
4549 /* The fragment is partially pulled by someone,
4550 * this can happen on input. Copy it and everything
4551 * after it. */
4552
4553 if (skb_shared(skb1))
4554 copyflag = 1;
4555
4556 /* If the skb is the last, worry about trailer. */
4557
4558 if (skb1->next == NULL && tailbits) {
4559 if (skb_shinfo(skb1)->nr_frags ||
4560 skb_has_frag_list(skb1) ||
4561 skb_tailroom(skb1) < tailbits)
4562 ntail = tailbits + 128;
4563 }
4564
4565 if (copyflag ||
4566 skb_cloned(skb1) ||
4567 ntail ||
4568 skb_shinfo(skb1)->nr_frags ||
4569 skb_has_frag_list(skb1)) {
4570 struct sk_buff *skb2;
4571
4572 /* Fuck, we are miserable poor guys... */
4573 if (ntail == 0)
4574 skb2 = skb_copy(skb1, GFP_ATOMIC);
4575 else
4576 skb2 = skb_copy_expand(skb1,
4577 skb_headroom(skb1),
4578 ntail,
4579 GFP_ATOMIC);
4580 if (unlikely(skb2 == NULL))
4581 return -ENOMEM;
4582
4583 if (skb1->sk)
4584 skb_set_owner_w(skb2, skb1->sk);
4585
4586 /* Looking around. Are we still alive?
4587 * OK, link new skb, drop old one */
4588
4589 skb2->next = skb1->next;
4590 *skb_p = skb2;
4591 kfree_skb(skb1);
4592 skb1 = skb2;
4593 }
4594 elt++;
4595 *trailer = skb1;
4596 skb_p = &skb1->next;
4597 }
4598
4599 return elt;
4600}
4601EXPORT_SYMBOL_GPL(skb_cow_data);
4602
4603static void sock_rmem_free(struct sk_buff *skb)
4604{
4605 struct sock *sk = skb->sk;
4606
4607 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4608}
4609
4610static void skb_set_err_queue(struct sk_buff *skb)
4611{
4612 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4613 * So, it is safe to (mis)use it to mark skbs on the error queue.
4614 */
4615 skb->pkt_type = PACKET_OUTGOING;
4616 BUILD_BUG_ON(PACKET_OUTGOING == 0);
4617}
4618
4619/*
4620 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4621 */
4622int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4623{
4624 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4625 (unsigned int)READ_ONCE(sk->sk_rcvbuf))
4626 return -ENOMEM;
4627
4628 skb_orphan(skb);
4629 skb->sk = sk;
4630 skb->destructor = sock_rmem_free;
4631 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4632 skb_set_err_queue(skb);
4633
4634 /* before exiting rcu section, make sure dst is refcounted */
4635 skb_dst_force(skb);
4636
4637 skb_queue_tail(&sk->sk_error_queue, skb);
4638 if (!sock_flag(sk, SOCK_DEAD))
4639 sk->sk_error_report(sk);
4640 return 0;
4641}
4642EXPORT_SYMBOL(sock_queue_err_skb);
4643
4644static bool is_icmp_err_skb(const struct sk_buff *skb)
4645{
4646 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4647 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4648}
4649
4650struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4651{
4652 struct sk_buff_head *q = &sk->sk_error_queue;
4653 struct sk_buff *skb, *skb_next = NULL;
4654 bool icmp_next = false;
4655 unsigned long flags;
4656
4657 spin_lock_irqsave(&q->lock, flags);
4658 skb = __skb_dequeue(q);
4659 if (skb && (skb_next = skb_peek(q))) {
4660 icmp_next = is_icmp_err_skb(skb_next);
4661 if (icmp_next)
4662 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
4663 }
4664 spin_unlock_irqrestore(&q->lock, flags);
4665
4666 if (is_icmp_err_skb(skb) && !icmp_next)
4667 sk->sk_err = 0;
4668
4669 if (skb_next)
4670 sk->sk_error_report(sk);
4671
4672 return skb;
4673}
4674EXPORT_SYMBOL(sock_dequeue_err_skb);
4675
4676/**
4677 * skb_clone_sk - create clone of skb, and take reference to socket
4678 * @skb: the skb to clone
4679 *
4680 * This function creates a clone of a buffer that holds a reference on
4681 * sk_refcnt. Buffers created via this function are meant to be
4682 * returned using sock_queue_err_skb, or free via kfree_skb.
4683 *
4684 * When passing buffers allocated with this function to sock_queue_err_skb
4685 * it is necessary to wrap the call with sock_hold/sock_put in order to
4686 * prevent the socket from being released prior to being enqueued on
4687 * the sk_error_queue.
4688 */
4689struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4690{
4691 struct sock *sk = skb->sk;
4692 struct sk_buff *clone;
4693
4694 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4695 return NULL;
4696
4697 clone = skb_clone(skb, GFP_ATOMIC);
4698 if (!clone) {
4699 sock_put(sk);
4700 return NULL;
4701 }
4702
4703 clone->sk = sk;
4704 clone->destructor = sock_efree;
4705
4706 return clone;
4707}
4708EXPORT_SYMBOL(skb_clone_sk);
4709
4710static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4711 struct sock *sk,
4712 int tstype,
4713 bool opt_stats)
4714{
4715 struct sock_exterr_skb *serr;
4716 int err;
4717
4718 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4719
4720 serr = SKB_EXT_ERR(skb);
4721 memset(serr, 0, sizeof(*serr));
4722 serr->ee.ee_errno = ENOMSG;
4723 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4724 serr->ee.ee_info = tstype;
4725 serr->opt_stats = opt_stats;
4726 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4727 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4728 serr->ee.ee_data = skb_shinfo(skb)->tskey;
4729 if (sk->sk_protocol == IPPROTO_TCP &&
4730 sk->sk_type == SOCK_STREAM)
4731 serr->ee.ee_data -= sk->sk_tskey;
4732 }
4733
4734 err = sock_queue_err_skb(sk, skb);
4735
4736 if (err)
4737 kfree_skb(skb);
4738}
4739
4740static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4741{
4742 bool ret;
4743
4744 if (likely(sysctl_tstamp_allow_data || tsonly))
4745 return true;
4746
4747 read_lock_bh(&sk->sk_callback_lock);
4748 ret = sk->sk_socket && sk->sk_socket->file &&
4749 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4750 read_unlock_bh(&sk->sk_callback_lock);
4751 return ret;
4752}
4753
4754void skb_complete_tx_timestamp(struct sk_buff *skb,
4755 struct skb_shared_hwtstamps *hwtstamps)
4756{
4757 struct sock *sk = skb->sk;
4758
4759 if (!skb_may_tx_timestamp(sk, false))
4760 goto err;
4761
4762 /* Take a reference to prevent skb_orphan() from freeing the socket,
4763 * but only if the socket refcount is not zero.
4764 */
4765 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4766 *skb_hwtstamps(skb) = *hwtstamps;
4767 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4768 sock_put(sk);
4769 return;
4770 }
4771
4772err:
4773 kfree_skb(skb);
4774}
4775EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4776
4777void __skb_tstamp_tx(struct sk_buff *orig_skb,
4778 const struct sk_buff *ack_skb,
4779 struct skb_shared_hwtstamps *hwtstamps,
4780 struct sock *sk, int tstype)
4781{
4782 struct sk_buff *skb;
4783 bool tsonly, opt_stats = false;
4784
4785 if (!sk)
4786 return;
4787
4788 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4789 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4790 return;
4791
4792 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4793 if (!skb_may_tx_timestamp(sk, tsonly))
4794 return;
4795
4796 if (tsonly) {
4797#ifdef CONFIG_INET
4798 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4799 sk->sk_protocol == IPPROTO_TCP &&
4800 sk->sk_type == SOCK_STREAM) {
4801 skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
4802 ack_skb);
4803 opt_stats = true;
4804 } else
4805#endif
4806 skb = alloc_skb(0, GFP_ATOMIC);
4807 } else {
4808 skb = skb_clone(orig_skb, GFP_ATOMIC);
4809 }
4810 if (!skb)
4811 return;
4812
4813 if (tsonly) {
4814 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4815 SKBTX_ANY_TSTAMP;
4816 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4817 }
4818
4819 if (hwtstamps)
4820 *skb_hwtstamps(skb) = *hwtstamps;
4821 else
4822 skb->tstamp = ktime_get_real();
4823
4824 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4825}
4826EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4827
4828void skb_tstamp_tx(struct sk_buff *orig_skb,
4829 struct skb_shared_hwtstamps *hwtstamps)
4830{
4831 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
4832 SCM_TSTAMP_SND);
4833}
4834EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4835
4836void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4837{
4838 struct sock *sk = skb->sk;
4839 struct sock_exterr_skb *serr;
4840 int err = 1;
4841
4842 skb->wifi_acked_valid = 1;
4843 skb->wifi_acked = acked;
4844
4845 serr = SKB_EXT_ERR(skb);
4846 memset(serr, 0, sizeof(*serr));
4847 serr->ee.ee_errno = ENOMSG;
4848 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4849
4850 /* Take a reference to prevent skb_orphan() from freeing the socket,
4851 * but only if the socket refcount is not zero.
4852 */
4853 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4854 err = sock_queue_err_skb(sk, skb);
4855 sock_put(sk);
4856 }
4857 if (err)
4858 kfree_skb(skb);
4859}
4860EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4861
4862/**
4863 * skb_partial_csum_set - set up and verify partial csum values for packet
4864 * @skb: the skb to set
4865 * @start: the number of bytes after skb->data to start checksumming.
4866 * @off: the offset from start to place the checksum.
4867 *
4868 * For untrusted partially-checksummed packets, we need to make sure the values
4869 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4870 *
4871 * This function checks and sets those values and skb->ip_summed: if this
4872 * returns false you should drop the packet.
4873 */
4874bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4875{
4876 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
4877 u32 csum_start = skb_headroom(skb) + (u32)start;
4878
4879 if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
4880 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
4881 start, off, skb_headroom(skb), skb_headlen(skb));
4882 return false;
4883 }
4884 skb->ip_summed = CHECKSUM_PARTIAL;
4885 skb->csum_start = csum_start;
4886 skb->csum_offset = off;
4887 skb_set_transport_header(skb, start);
4888 return true;
4889}
4890EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4891
4892static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4893 unsigned int max)
4894{
4895 if (skb_headlen(skb) >= len)
4896 return 0;
4897
4898 /* If we need to pullup then pullup to the max, so we
4899 * won't need to do it again.
4900 */
4901 if (max > skb->len)
4902 max = skb->len;
4903
4904 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4905 return -ENOMEM;
4906
4907 if (skb_headlen(skb) < len)
4908 return -EPROTO;
4909
4910 return 0;
4911}
4912
4913#define MAX_TCP_HDR_LEN (15 * 4)
4914
4915static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4916 typeof(IPPROTO_IP) proto,
4917 unsigned int off)
4918{
4919 int err;
4920
4921 switch (proto) {
4922 case IPPROTO_TCP:
4923 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4924 off + MAX_TCP_HDR_LEN);
4925 if (!err && !skb_partial_csum_set(skb, off,
4926 offsetof(struct tcphdr,
4927 check)))
4928 err = -EPROTO;
4929 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4930
4931 case IPPROTO_UDP:
4932 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4933 off + sizeof(struct udphdr));
4934 if (!err && !skb_partial_csum_set(skb, off,
4935 offsetof(struct udphdr,
4936 check)))
4937 err = -EPROTO;
4938 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4939 }
4940
4941 return ERR_PTR(-EPROTO);
4942}
4943
4944/* This value should be large enough to cover a tagged ethernet header plus
4945 * maximally sized IP and TCP or UDP headers.
4946 */
4947#define MAX_IP_HDR_LEN 128
4948
4949static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4950{
4951 unsigned int off;
4952 bool fragment;
4953 __sum16 *csum;
4954 int err;
4955
4956 fragment = false;
4957
4958 err = skb_maybe_pull_tail(skb,
4959 sizeof(struct iphdr),
4960 MAX_IP_HDR_LEN);
4961 if (err < 0)
4962 goto out;
4963
4964 if (ip_is_fragment(ip_hdr(skb)))
4965 fragment = true;
4966
4967 off = ip_hdrlen(skb);
4968
4969 err = -EPROTO;
4970
4971 if (fragment)
4972 goto out;
4973
4974 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4975 if (IS_ERR(csum))
4976 return PTR_ERR(csum);
4977
4978 if (recalculate)
4979 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4980 ip_hdr(skb)->daddr,
4981 skb->len - off,
4982 ip_hdr(skb)->protocol, 0);
4983 err = 0;
4984
4985out:
4986 return err;
4987}
4988
4989/* This value should be large enough to cover a tagged ethernet header plus
4990 * an IPv6 header, all options, and a maximal TCP or UDP header.
4991 */
4992#define MAX_IPV6_HDR_LEN 256
4993
4994#define OPT_HDR(type, skb, off) \
4995 (type *)(skb_network_header(skb) + (off))
4996
4997static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4998{
4999 int err;
5000 u8 nexthdr;
5001 unsigned int off;
5002 unsigned int len;
5003 bool fragment;
5004 bool done;
5005 __sum16 *csum;
5006
5007 fragment = false;
5008 done = false;
5009
5010 off = sizeof(struct ipv6hdr);
5011
5012 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5013 if (err < 0)
5014 goto out;
5015
5016 nexthdr = ipv6_hdr(skb)->nexthdr;
5017
5018 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5019 while (off <= len && !done) {
5020 switch (nexthdr) {
5021 case IPPROTO_DSTOPTS:
5022 case IPPROTO_HOPOPTS:
5023 case IPPROTO_ROUTING: {
5024 struct ipv6_opt_hdr *hp;
5025
5026 err = skb_maybe_pull_tail(skb,
5027 off +
5028 sizeof(struct ipv6_opt_hdr),
5029 MAX_IPV6_HDR_LEN);
5030 if (err < 0)
5031 goto out;
5032
5033 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5034 nexthdr = hp->nexthdr;
5035 off += ipv6_optlen(hp);
5036 break;
5037 }
5038 case IPPROTO_AH: {
5039 struct ip_auth_hdr *hp;
5040
5041 err = skb_maybe_pull_tail(skb,
5042 off +
5043 sizeof(struct ip_auth_hdr),
5044 MAX_IPV6_HDR_LEN);
5045 if (err < 0)
5046 goto out;
5047
5048 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5049 nexthdr = hp->nexthdr;
5050 off += ipv6_authlen(hp);
5051 break;
5052 }
5053 case IPPROTO_FRAGMENT: {
5054 struct frag_hdr *hp;
5055
5056 err = skb_maybe_pull_tail(skb,
5057 off +
5058 sizeof(struct frag_hdr),
5059 MAX_IPV6_HDR_LEN);
5060 if (err < 0)
5061 goto out;
5062
5063 hp = OPT_HDR(struct frag_hdr, skb, off);
5064
5065 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5066 fragment = true;
5067
5068 nexthdr = hp->nexthdr;
5069 off += sizeof(struct frag_hdr);
5070 break;
5071 }
5072 default:
5073 done = true;
5074 break;
5075 }
5076 }
5077
5078 err = -EPROTO;
5079
5080 if (!done || fragment)
5081 goto out;
5082
5083 csum = skb_checksum_setup_ip(skb, nexthdr, off);
5084 if (IS_ERR(csum))
5085 return PTR_ERR(csum);
5086
5087 if (recalculate)
5088 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5089 &ipv6_hdr(skb)->daddr,
5090 skb->len - off, nexthdr, 0);
5091 err = 0;
5092
5093out:
5094 return err;
5095}
5096
5097/**
5098 * skb_checksum_setup - set up partial checksum offset
5099 * @skb: the skb to set up
5100 * @recalculate: if true the pseudo-header checksum will be recalculated
5101 */
5102int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5103{
5104 int err;
5105
5106 switch (skb->protocol) {
5107 case htons(ETH_P_IP):
5108 err = skb_checksum_setup_ipv4(skb, recalculate);
5109 break;
5110
5111 case htons(ETH_P_IPV6):
5112 err = skb_checksum_setup_ipv6(skb, recalculate);
5113 break;
5114
5115 default:
5116 err = -EPROTO;
5117 break;
5118 }
5119
5120 return err;
5121}
5122EXPORT_SYMBOL(skb_checksum_setup);
5123
5124/**
5125 * skb_checksum_maybe_trim - maybe trims the given skb
5126 * @skb: the skb to check
5127 * @transport_len: the data length beyond the network header
5128 *
5129 * Checks whether the given skb has data beyond the given transport length.
5130 * If so, returns a cloned skb trimmed to this transport length.
5131 * Otherwise returns the provided skb. Returns NULL in error cases
5132 * (e.g. transport_len exceeds skb length or out-of-memory).
5133 *
5134 * Caller needs to set the skb transport header and free any returned skb if it
5135 * differs from the provided skb.
5136 */
5137static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5138 unsigned int transport_len)
5139{
5140 struct sk_buff *skb_chk;
5141 unsigned int len = skb_transport_offset(skb) + transport_len;
5142 int ret;
5143
5144 if (skb->len < len)
5145 return NULL;
5146 else if (skb->len == len)
5147 return skb;
5148
5149 skb_chk = skb_clone(skb, GFP_ATOMIC);
5150 if (!skb_chk)
5151 return NULL;
5152
5153 ret = pskb_trim_rcsum(skb_chk, len);
5154 if (ret) {
5155 kfree_skb(skb_chk);
5156 return NULL;
5157 }
5158
5159 return skb_chk;
5160}
5161
5162/**
5163 * skb_checksum_trimmed - validate checksum of an skb
5164 * @skb: the skb to check
5165 * @transport_len: the data length beyond the network header
5166 * @skb_chkf: checksum function to use
5167 *
5168 * Applies the given checksum function skb_chkf to the provided skb.
5169 * Returns a checked and maybe trimmed skb. Returns NULL on error.
5170 *
5171 * If the skb has data beyond the given transport length, then a
5172 * trimmed & cloned skb is checked and returned.
5173 *
5174 * Caller needs to set the skb transport header and free any returned skb if it
5175 * differs from the provided skb.
5176 */
5177struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5178 unsigned int transport_len,
5179 __sum16(*skb_chkf)(struct sk_buff *skb))
5180{
5181 struct sk_buff *skb_chk;
5182 unsigned int offset = skb_transport_offset(skb);
5183 __sum16 ret;
5184
5185 skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5186 if (!skb_chk)
5187 goto err;
5188
5189 if (!pskb_may_pull(skb_chk, offset))
5190 goto err;
5191
5192 skb_pull_rcsum(skb_chk, offset);
5193 ret = skb_chkf(skb_chk);
5194 skb_push_rcsum(skb_chk, offset);
5195
5196 if (ret)
5197 goto err;
5198
5199 return skb_chk;
5200
5201err:
5202 if (skb_chk && skb_chk != skb)
5203 kfree_skb(skb_chk);
5204
5205 return NULL;
5206
5207}
5208EXPORT_SYMBOL(skb_checksum_trimmed);
5209
5210void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5211{
5212 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5213 skb->dev->name);
5214}
5215EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5216
5217void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5218{
5219 if (head_stolen) {
5220 skb_release_head_state(skb);
5221 kmem_cache_free(skbuff_head_cache, skb);
5222 } else {
5223 __kfree_skb(skb);
5224 }
5225}
5226EXPORT_SYMBOL(kfree_skb_partial);
5227
5228/**
5229 * skb_try_coalesce - try to merge skb to prior one
5230 * @to: prior buffer
5231 * @from: buffer to add
5232 * @fragstolen: pointer to boolean
5233 * @delta_truesize: how much more was allocated than was requested
5234 */
5235bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5236 bool *fragstolen, int *delta_truesize)
5237{
5238 struct skb_shared_info *to_shinfo, *from_shinfo;
5239 int i, delta, len = from->len;
5240
5241 *fragstolen = false;
5242
5243 if (skb_cloned(to))
5244 return false;
5245
5246 if (len <= skb_tailroom(to)) {
5247 if (len)
5248 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5249 *delta_truesize = 0;
5250 return true;
5251 }
5252
5253 to_shinfo = skb_shinfo(to);
5254 from_shinfo = skb_shinfo(from);
5255 if (to_shinfo->frag_list || from_shinfo->frag_list)
5256 return false;
5257 if (skb_zcopy(to) || skb_zcopy(from))
5258 return false;
5259
5260 if (skb_headlen(from) != 0) {
5261 struct page *page;
5262 unsigned int offset;
5263
5264 if (to_shinfo->nr_frags +
5265 from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5266 return false;
5267
5268 if (skb_head_is_locked(from))
5269 return false;
5270
5271 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5272
5273 page = virt_to_head_page(from->head);
5274 offset = from->data - (unsigned char *)page_address(page);
5275
5276 skb_fill_page_desc(to, to_shinfo->nr_frags,
5277 page, offset, skb_headlen(from));
5278 *fragstolen = true;
5279 } else {
5280 if (to_shinfo->nr_frags +
5281 from_shinfo->nr_frags > MAX_SKB_FRAGS)
5282 return false;
5283
5284 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5285 }
5286
5287 WARN_ON_ONCE(delta < len);
5288
5289 memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5290 from_shinfo->frags,
5291 from_shinfo->nr_frags * sizeof(skb_frag_t));
5292 to_shinfo->nr_frags += from_shinfo->nr_frags;
5293
5294 if (!skb_cloned(from))
5295 from_shinfo->nr_frags = 0;
5296
5297 /* if the skb is not cloned this does nothing
5298 * since we set nr_frags to 0.
5299 */
5300 for (i = 0; i < from_shinfo->nr_frags; i++)
5301 __skb_frag_ref(&from_shinfo->frags[i]);
5302
5303 to->truesize += delta;
5304 to->len += len;
5305 to->data_len += len;
5306
5307 *delta_truesize = delta;
5308 return true;
5309}
5310EXPORT_SYMBOL(skb_try_coalesce);
5311
5312/**
5313 * skb_scrub_packet - scrub an skb
5314 *
5315 * @skb: buffer to clean
5316 * @xnet: packet is crossing netns
5317 *
5318 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5319 * into/from a tunnel. Some information have to be cleared during these
5320 * operations.
5321 * skb_scrub_packet can also be used to clean a skb before injecting it in
5322 * another namespace (@xnet == true). We have to clear all information in the
5323 * skb that could impact namespace isolation.
5324 */
5325void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5326{
5327 skb->pkt_type = PACKET_HOST;
5328 skb->skb_iif = 0;
5329 skb->ignore_df = 0;
5330 skb_dst_drop(skb);
5331 skb_ext_reset(skb);
5332 nf_reset_ct(skb);
5333 nf_reset_trace(skb);
5334
5335#ifdef CONFIG_NET_SWITCHDEV
5336 skb->offload_fwd_mark = 0;
5337 skb->offload_l3_fwd_mark = 0;
5338#endif
5339
5340 if (!xnet)
5341 return;
5342
5343 ipvs_reset(skb);
5344 skb->mark = 0;
5345 skb->tstamp = 0;
5346}
5347EXPORT_SYMBOL_GPL(skb_scrub_packet);
5348
5349/**
5350 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5351 *
5352 * @skb: GSO skb
5353 *
5354 * skb_gso_transport_seglen is used to determine the real size of the
5355 * individual segments, including Layer4 headers (TCP/UDP).
5356 *
5357 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5358 */
5359static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5360{
5361 const struct skb_shared_info *shinfo = skb_shinfo(skb);
5362 unsigned int thlen = 0;
5363
5364 if (skb->encapsulation) {
5365 thlen = skb_inner_transport_header(skb) -
5366 skb_transport_header(skb);
5367
5368 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5369 thlen += inner_tcp_hdrlen(skb);
5370 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5371 thlen = tcp_hdrlen(skb);
5372 } else if (unlikely(skb_is_gso_sctp(skb))) {
5373 thlen = sizeof(struct sctphdr);
5374 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5375 thlen = sizeof(struct udphdr);
5376 }
5377 /* UFO sets gso_size to the size of the fragmentation
5378 * payload, i.e. the size of the L4 (UDP) header is already
5379 * accounted for.
5380 */
5381 return thlen + shinfo->gso_size;
5382}
5383
5384/**
5385 * skb_gso_network_seglen - Return length of individual segments of a gso packet
5386 *
5387 * @skb: GSO skb
5388 *
5389 * skb_gso_network_seglen is used to determine the real size of the
5390 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5391 *
5392 * The MAC/L2 header is not accounted for.
5393 */
5394static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5395{
5396 unsigned int hdr_len = skb_transport_header(skb) -
5397 skb_network_header(skb);
5398
5399 return hdr_len + skb_gso_transport_seglen(skb);
5400}
5401
5402/**
5403 * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5404 *
5405 * @skb: GSO skb
5406 *
5407 * skb_gso_mac_seglen is used to determine the real size of the
5408 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5409 * headers (TCP/UDP).
5410 */
5411static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5412{
5413 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5414
5415 return hdr_len + skb_gso_transport_seglen(skb);
5416}
5417
5418/**
5419 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5420 *
5421 * There are a couple of instances where we have a GSO skb, and we
5422 * want to determine what size it would be after it is segmented.
5423 *
5424 * We might want to check:
5425 * - L3+L4+payload size (e.g. IP forwarding)
5426 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5427 *
5428 * This is a helper to do that correctly considering GSO_BY_FRAGS.
5429 *
5430 * @skb: GSO skb
5431 *
5432 * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5433 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5434 *
5435 * @max_len: The maximum permissible length.
5436 *
5437 * Returns true if the segmented length <= max length.
5438 */
5439static inline bool skb_gso_size_check(const struct sk_buff *skb,
5440 unsigned int seg_len,
5441 unsigned int max_len) {
5442 const struct skb_shared_info *shinfo = skb_shinfo(skb);
5443 const struct sk_buff *iter;
5444
5445 if (shinfo->gso_size != GSO_BY_FRAGS)
5446 return seg_len <= max_len;
5447
5448 /* Undo this so we can re-use header sizes */
5449 seg_len -= GSO_BY_FRAGS;
5450
5451 skb_walk_frags(skb, iter) {
5452 if (seg_len + skb_headlen(iter) > max_len)
5453 return false;
5454 }
5455
5456 return true;
5457}
5458
5459/**
5460 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5461 *
5462 * @skb: GSO skb
5463 * @mtu: MTU to validate against
5464 *
5465 * skb_gso_validate_network_len validates if a given skb will fit a
5466 * wanted MTU once split. It considers L3 headers, L4 headers, and the
5467 * payload.
5468 */
5469bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5470{
5471 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5472}
5473EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5474
5475/**
5476 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5477 *
5478 * @skb: GSO skb
5479 * @len: length to validate against
5480 *
5481 * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5482 * length once split, including L2, L3 and L4 headers and the payload.
5483 */
5484bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5485{
5486 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5487}
5488EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5489
5490static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5491{
5492 int mac_len, meta_len;
5493 void *meta;
5494
5495 if (skb_cow(skb, skb_headroom(skb)) < 0) {
5496 kfree_skb(skb);
5497 return NULL;
5498 }
5499
5500 mac_len = skb->data - skb_mac_header(skb);
5501 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5502 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5503 mac_len - VLAN_HLEN - ETH_TLEN);
5504 }
5505
5506 meta_len = skb_metadata_len(skb);
5507 if (meta_len) {
5508 meta = skb_metadata_end(skb) - meta_len;
5509 memmove(meta + VLAN_HLEN, meta, meta_len);
5510 }
5511
5512 skb->mac_header += VLAN_HLEN;
5513 return skb;
5514}
5515
5516struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5517{
5518 struct vlan_hdr *vhdr;
5519 u16 vlan_tci;
5520
5521 if (unlikely(skb_vlan_tag_present(skb))) {
5522 /* vlan_tci is already set-up so leave this for another time */
5523 return skb;
5524 }
5525
5526 skb = skb_share_check(skb, GFP_ATOMIC);
5527 if (unlikely(!skb))
5528 goto err_free;
5529 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5530 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5531 goto err_free;
5532
5533 vhdr = (struct vlan_hdr *)skb->data;
5534 vlan_tci = ntohs(vhdr->h_vlan_TCI);
5535 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5536
5537 skb_pull_rcsum(skb, VLAN_HLEN);
5538 vlan_set_encap_proto(skb, vhdr);
5539
5540 skb = skb_reorder_vlan_header(skb);
5541 if (unlikely(!skb))
5542 goto err_free;
5543
5544 skb_reset_network_header(skb);
5545 if (!skb_transport_header_was_set(skb))
5546 skb_reset_transport_header(skb);
5547 skb_reset_mac_len(skb);
5548
5549 return skb;
5550
5551err_free:
5552 kfree_skb(skb);
5553 return NULL;
5554}
5555EXPORT_SYMBOL(skb_vlan_untag);
5556
5557int skb_ensure_writable(struct sk_buff *skb, int write_len)
5558{
5559 if (!pskb_may_pull(skb, write_len))
5560 return -ENOMEM;
5561
5562 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5563 return 0;
5564
5565 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5566}
5567EXPORT_SYMBOL(skb_ensure_writable);
5568
5569/* remove VLAN header from packet and update csum accordingly.
5570 * expects a non skb_vlan_tag_present skb with a vlan tag payload
5571 */
5572int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5573{
5574 struct vlan_hdr *vhdr;
5575 int offset = skb->data - skb_mac_header(skb);
5576 int err;
5577
5578 if (WARN_ONCE(offset,
5579 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5580 offset)) {
5581 return -EINVAL;
5582 }
5583
5584 err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5585 if (unlikely(err))
5586 return err;
5587
5588 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5589
5590 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5591 *vlan_tci = ntohs(vhdr->h_vlan_TCI);
5592
5593 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5594 __skb_pull(skb, VLAN_HLEN);
5595
5596 vlan_set_encap_proto(skb, vhdr);
5597 skb->mac_header += VLAN_HLEN;
5598
5599 if (skb_network_offset(skb) < ETH_HLEN)
5600 skb_set_network_header(skb, ETH_HLEN);
5601
5602 skb_reset_mac_len(skb);
5603
5604 return err;
5605}
5606EXPORT_SYMBOL(__skb_vlan_pop);
5607
5608/* Pop a vlan tag either from hwaccel or from payload.
5609 * Expects skb->data at mac header.
5610 */
5611int skb_vlan_pop(struct sk_buff *skb)
5612{
5613 u16 vlan_tci;
5614 __be16 vlan_proto;
5615 int err;
5616
5617 if (likely(skb_vlan_tag_present(skb))) {
5618 __vlan_hwaccel_clear_tag(skb);
5619 } else {
5620 if (unlikely(!eth_type_vlan(skb->protocol)))
5621 return 0;
5622
5623 err = __skb_vlan_pop(skb, &vlan_tci);
5624 if (err)
5625 return err;
5626 }
5627 /* move next vlan tag to hw accel tag */
5628 if (likely(!eth_type_vlan(skb->protocol)))
5629 return 0;
5630
5631 vlan_proto = skb->protocol;
5632 err = __skb_vlan_pop(skb, &vlan_tci);
5633 if (unlikely(err))
5634 return err;
5635
5636 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5637 return 0;
5638}
5639EXPORT_SYMBOL(skb_vlan_pop);
5640
5641/* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5642 * Expects skb->data at mac header.
5643 */
5644int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5645{
5646 if (skb_vlan_tag_present(skb)) {
5647 int offset = skb->data - skb_mac_header(skb);
5648 int err;
5649
5650 if (WARN_ONCE(offset,
5651 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5652 offset)) {
5653 return -EINVAL;
5654 }
5655
5656 err = __vlan_insert_tag(skb, skb->vlan_proto,
5657 skb_vlan_tag_get(skb));
5658 if (err)
5659 return err;
5660
5661 skb->protocol = skb->vlan_proto;
5662 skb->mac_len += VLAN_HLEN;
5663
5664 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5665 }
5666 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5667 return 0;
5668}
5669EXPORT_SYMBOL(skb_vlan_push);
5670
5671/**
5672 * skb_eth_pop() - Drop the Ethernet header at the head of a packet
5673 *
5674 * @skb: Socket buffer to modify
5675 *
5676 * Drop the Ethernet header of @skb.
5677 *
5678 * Expects that skb->data points to the mac header and that no VLAN tags are
5679 * present.
5680 *
5681 * Returns 0 on success, -errno otherwise.
5682 */
5683int skb_eth_pop(struct sk_buff *skb)
5684{
5685 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
5686 skb_network_offset(skb) < ETH_HLEN)
5687 return -EPROTO;
5688
5689 skb_pull_rcsum(skb, ETH_HLEN);
5690 skb_reset_mac_header(skb);
5691 skb_reset_mac_len(skb);
5692
5693 return 0;
5694}
5695EXPORT_SYMBOL(skb_eth_pop);
5696
5697/**
5698 * skb_eth_push() - Add a new Ethernet header at the head of a packet
5699 *
5700 * @skb: Socket buffer to modify
5701 * @dst: Destination MAC address of the new header
5702 * @src: Source MAC address of the new header
5703 *
5704 * Prepend @skb with a new Ethernet header.
5705 *
5706 * Expects that skb->data points to the mac header, which must be empty.
5707 *
5708 * Returns 0 on success, -errno otherwise.
5709 */
5710int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
5711 const unsigned char *src)
5712{
5713 struct ethhdr *eth;
5714 int err;
5715
5716 if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
5717 return -EPROTO;
5718
5719 err = skb_cow_head(skb, sizeof(*eth));
5720 if (err < 0)
5721 return err;
5722
5723 skb_push(skb, sizeof(*eth));
5724 skb_reset_mac_header(skb);
5725 skb_reset_mac_len(skb);
5726
5727 eth = eth_hdr(skb);
5728 ether_addr_copy(eth->h_dest, dst);
5729 ether_addr_copy(eth->h_source, src);
5730 eth->h_proto = skb->protocol;
5731
5732 skb_postpush_rcsum(skb, eth, sizeof(*eth));
5733
5734 return 0;
5735}
5736EXPORT_SYMBOL(skb_eth_push);
5737
5738/* Update the ethertype of hdr and the skb csum value if required. */
5739static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
5740 __be16 ethertype)
5741{
5742 if (skb->ip_summed == CHECKSUM_COMPLETE) {
5743 __be16 diff[] = { ~hdr->h_proto, ethertype };
5744
5745 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5746 }
5747
5748 hdr->h_proto = ethertype;
5749}
5750
5751/**
5752 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
5753 * the packet
5754 *
5755 * @skb: buffer
5756 * @mpls_lse: MPLS label stack entry to push
5757 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
5758 * @mac_len: length of the MAC header
5759 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
5760 * ethernet
5761 *
5762 * Expects skb->data at mac header.
5763 *
5764 * Returns 0 on success, -errno otherwise.
5765 */
5766int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
5767 int mac_len, bool ethernet)
5768{
5769 struct mpls_shim_hdr *lse;
5770 int err;
5771
5772 if (unlikely(!eth_p_mpls(mpls_proto)))
5773 return -EINVAL;
5774
5775 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
5776 if (skb->encapsulation)
5777 return -EINVAL;
5778
5779 err = skb_cow_head(skb, MPLS_HLEN);
5780 if (unlikely(err))
5781 return err;
5782
5783 if (!skb->inner_protocol) {
5784 skb_set_inner_network_header(skb, skb_network_offset(skb));
5785 skb_set_inner_protocol(skb, skb->protocol);
5786 }
5787
5788 skb_push(skb, MPLS_HLEN);
5789 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
5790 mac_len);
5791 skb_reset_mac_header(skb);
5792 skb_set_network_header(skb, mac_len);
5793 skb_reset_mac_len(skb);
5794
5795 lse = mpls_hdr(skb);
5796 lse->label_stack_entry = mpls_lse;
5797 skb_postpush_rcsum(skb, lse, MPLS_HLEN);
5798
5799 if (ethernet && mac_len >= ETH_HLEN)
5800 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
5801 skb->protocol = mpls_proto;
5802
5803 return 0;
5804}
5805EXPORT_SYMBOL_GPL(skb_mpls_push);
5806
5807/**
5808 * skb_mpls_pop() - pop the outermost MPLS header
5809 *
5810 * @skb: buffer
5811 * @next_proto: ethertype of header after popped MPLS header
5812 * @mac_len: length of the MAC header
5813 * @ethernet: flag to indicate if the packet is ethernet
5814 *
5815 * Expects skb->data at mac header.
5816 *
5817 * Returns 0 on success, -errno otherwise.
5818 */
5819int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
5820 bool ethernet)
5821{
5822 int err;
5823
5824 if (unlikely(!eth_p_mpls(skb->protocol)))
5825 return 0;
5826
5827 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
5828 if (unlikely(err))
5829 return err;
5830
5831 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
5832 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
5833 mac_len);
5834
5835 __skb_pull(skb, MPLS_HLEN);
5836 skb_reset_mac_header(skb);
5837 skb_set_network_header(skb, mac_len);
5838
5839 if (ethernet && mac_len >= ETH_HLEN) {
5840 struct ethhdr *hdr;
5841
5842 /* use mpls_hdr() to get ethertype to account for VLANs. */
5843 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
5844 skb_mod_eth_type(skb, hdr, next_proto);
5845 }
5846 skb->protocol = next_proto;
5847
5848 return 0;
5849}
5850EXPORT_SYMBOL_GPL(skb_mpls_pop);
5851
5852/**
5853 * skb_mpls_update_lse() - modify outermost MPLS header and update csum
5854 *
5855 * @skb: buffer
5856 * @mpls_lse: new MPLS label stack entry to update to
5857 *
5858 * Expects skb->data at mac header.
5859 *
5860 * Returns 0 on success, -errno otherwise.
5861 */
5862int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
5863{
5864 int err;
5865
5866 if (unlikely(!eth_p_mpls(skb->protocol)))
5867 return -EINVAL;
5868
5869 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
5870 if (unlikely(err))
5871 return err;
5872
5873 if (skb->ip_summed == CHECKSUM_COMPLETE) {
5874 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
5875
5876 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5877 }
5878
5879 mpls_hdr(skb)->label_stack_entry = mpls_lse;
5880
5881 return 0;
5882}
5883EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
5884
5885/**
5886 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
5887 *
5888 * @skb: buffer
5889 *
5890 * Expects skb->data at mac header.
5891 *
5892 * Returns 0 on success, -errno otherwise.
5893 */
5894int skb_mpls_dec_ttl(struct sk_buff *skb)
5895{
5896 u32 lse;
5897 u8 ttl;
5898
5899 if (unlikely(!eth_p_mpls(skb->protocol)))
5900 return -EINVAL;
5901
5902 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
5903 return -ENOMEM;
5904
5905 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
5906 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
5907 if (!--ttl)
5908 return -EINVAL;
5909
5910 lse &= ~MPLS_LS_TTL_MASK;
5911 lse |= ttl << MPLS_LS_TTL_SHIFT;
5912
5913 return skb_mpls_update_lse(skb, cpu_to_be32(lse));
5914}
5915EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
5916
5917/**
5918 * alloc_skb_with_frags - allocate skb with page frags
5919 *
5920 * @header_len: size of linear part
5921 * @data_len: needed length in frags
5922 * @max_page_order: max page order desired.
5923 * @errcode: pointer to error code if any
5924 * @gfp_mask: allocation mask
5925 *
5926 * This can be used to allocate a paged skb, given a maximal order for frags.
5927 */
5928struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5929 unsigned long data_len,
5930 int max_page_order,
5931 int *errcode,
5932 gfp_t gfp_mask)
5933{
5934 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5935 unsigned long chunk;
5936 struct sk_buff *skb;
5937 struct page *page;
5938 int i;
5939
5940 *errcode = -EMSGSIZE;
5941 /* Note this test could be relaxed, if we succeed to allocate
5942 * high order pages...
5943 */
5944 if (npages > MAX_SKB_FRAGS)
5945 return NULL;
5946
5947 *errcode = -ENOBUFS;
5948 skb = alloc_skb(header_len, gfp_mask);
5949 if (!skb)
5950 return NULL;
5951
5952 skb->truesize += npages << PAGE_SHIFT;
5953
5954 for (i = 0; npages > 0; i++) {
5955 int order = max_page_order;
5956
5957 while (order) {
5958 if (npages >= 1 << order) {
5959 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
5960 __GFP_COMP |
5961 __GFP_NOWARN,
5962 order);
5963 if (page)
5964 goto fill_page;
5965 /* Do not retry other high order allocations */
5966 order = 1;
5967 max_page_order = 0;
5968 }
5969 order--;
5970 }
5971 page = alloc_page(gfp_mask);
5972 if (!page)
5973 goto failure;
5974fill_page:
5975 chunk = min_t(unsigned long, data_len,
5976 PAGE_SIZE << order);
5977 skb_fill_page_desc(skb, i, page, 0, chunk);
5978 data_len -= chunk;
5979 npages -= 1 << order;
5980 }
5981 return skb;
5982
5983failure:
5984 kfree_skb(skb);
5985 return NULL;
5986}
5987EXPORT_SYMBOL(alloc_skb_with_frags);
5988
5989/* carve out the first off bytes from skb when off < headlen */
5990static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
5991 const int headlen, gfp_t gfp_mask)
5992{
5993 int i;
5994 int size = skb_end_offset(skb);
5995 int new_hlen = headlen - off;
5996 u8 *data;
5997
5998 size = SKB_DATA_ALIGN(size);
5999
6000 if (skb_pfmemalloc(skb))
6001 gfp_mask |= __GFP_MEMALLOC;
6002 data = kmalloc_reserve(size +
6003 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6004 gfp_mask, NUMA_NO_NODE, NULL);
6005 if (!data)
6006 return -ENOMEM;
6007
6008 size = SKB_WITH_OVERHEAD(ksize(data));
6009
6010 /* Copy real data, and all frags */
6011 skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6012 skb->len -= off;
6013
6014 memcpy((struct skb_shared_info *)(data + size),
6015 skb_shinfo(skb),
6016 offsetof(struct skb_shared_info,
6017 frags[skb_shinfo(skb)->nr_frags]));
6018 if (skb_cloned(skb)) {
6019 /* drop the old head gracefully */
6020 if (skb_orphan_frags(skb, gfp_mask)) {
6021 kfree(data);
6022 return -ENOMEM;
6023 }
6024 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6025 skb_frag_ref(skb, i);
6026 if (skb_has_frag_list(skb))
6027 skb_clone_fraglist(skb);
6028 skb_release_data(skb);
6029 } else {
6030 /* we can reuse existing recount- all we did was
6031 * relocate values
6032 */
6033 skb_free_head(skb);
6034 }
6035
6036 skb->head = data;
6037 skb->data = data;
6038 skb->head_frag = 0;
6039#ifdef NET_SKBUFF_DATA_USES_OFFSET
6040 skb->end = size;
6041#else
6042 skb->end = skb->head + size;
6043#endif
6044 skb_set_tail_pointer(skb, skb_headlen(skb));
6045 skb_headers_offset_update(skb, 0);
6046 skb->cloned = 0;
6047 skb->hdr_len = 0;
6048 skb->nohdr = 0;
6049 atomic_set(&skb_shinfo(skb)->dataref, 1);
6050
6051 return 0;
6052}
6053
6054static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6055
6056/* carve out the first eat bytes from skb's frag_list. May recurse into
6057 * pskb_carve()
6058 */
6059static int pskb_carve_frag_list(struct sk_buff *skb,
6060 struct skb_shared_info *shinfo, int eat,
6061 gfp_t gfp_mask)
6062{
6063 struct sk_buff *list = shinfo->frag_list;
6064 struct sk_buff *clone = NULL;
6065 struct sk_buff *insp = NULL;
6066
6067 do {
6068 if (!list) {
6069 pr_err("Not enough bytes to eat. Want %d\n", eat);
6070 return -EFAULT;
6071 }
6072 if (list->len <= eat) {
6073 /* Eaten as whole. */
6074 eat -= list->len;
6075 list = list->next;
6076 insp = list;
6077 } else {
6078 /* Eaten partially. */
6079 if (skb_shared(list)) {
6080 clone = skb_clone(list, gfp_mask);
6081 if (!clone)
6082 return -ENOMEM;
6083 insp = list->next;
6084 list = clone;
6085 } else {
6086 /* This may be pulled without problems. */
6087 insp = list;
6088 }
6089 if (pskb_carve(list, eat, gfp_mask) < 0) {
6090 kfree_skb(clone);
6091 return -ENOMEM;
6092 }
6093 break;
6094 }
6095 } while (eat);
6096
6097 /* Free pulled out fragments. */
6098 while ((list = shinfo->frag_list) != insp) {
6099 shinfo->frag_list = list->next;
6100 kfree_skb(list);
6101 }
6102 /* And insert new clone at head. */
6103 if (clone) {
6104 clone->next = list;
6105 shinfo->frag_list = clone;
6106 }
6107 return 0;
6108}
6109
6110/* carve off first len bytes from skb. Split line (off) is in the
6111 * non-linear part of skb
6112 */
6113static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6114 int pos, gfp_t gfp_mask)
6115{
6116 int i, k = 0;
6117 int size = skb_end_offset(skb);
6118 u8 *data;
6119 const int nfrags = skb_shinfo(skb)->nr_frags;
6120 struct skb_shared_info *shinfo;
6121
6122 size = SKB_DATA_ALIGN(size);
6123
6124 if (skb_pfmemalloc(skb))
6125 gfp_mask |= __GFP_MEMALLOC;
6126 data = kmalloc_reserve(size +
6127 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6128 gfp_mask, NUMA_NO_NODE, NULL);
6129 if (!data)
6130 return -ENOMEM;
6131
6132 size = SKB_WITH_OVERHEAD(ksize(data));
6133
6134 memcpy((struct skb_shared_info *)(data + size),
6135 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6136 if (skb_orphan_frags(skb, gfp_mask)) {
6137 kfree(data);
6138 return -ENOMEM;
6139 }
6140 shinfo = (struct skb_shared_info *)(data + size);
6141 for (i = 0; i < nfrags; i++) {
6142 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6143
6144 if (pos + fsize > off) {
6145 shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6146
6147 if (pos < off) {
6148 /* Split frag.
6149 * We have two variants in this case:
6150 * 1. Move all the frag to the second
6151 * part, if it is possible. F.e.
6152 * this approach is mandatory for TUX,
6153 * where splitting is expensive.
6154 * 2. Split is accurately. We make this.
6155 */
6156 skb_frag_off_add(&shinfo->frags[0], off - pos);
6157 skb_frag_size_sub(&shinfo->frags[0], off - pos);
6158 }
6159 skb_frag_ref(skb, i);
6160 k++;
6161 }
6162 pos += fsize;
6163 }
6164 shinfo->nr_frags = k;
6165 if (skb_has_frag_list(skb))
6166 skb_clone_fraglist(skb);
6167
6168 /* split line is in frag list */
6169 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6170 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6171 if (skb_has_frag_list(skb))
6172 kfree_skb_list(skb_shinfo(skb)->frag_list);
6173 kfree(data);
6174 return -ENOMEM;
6175 }
6176 skb_release_data(skb);
6177
6178 skb->head = data;
6179 skb->head_frag = 0;
6180 skb->data = data;
6181#ifdef NET_SKBUFF_DATA_USES_OFFSET
6182 skb->end = size;
6183#else
6184 skb->end = skb->head + size;
6185#endif
6186 skb_reset_tail_pointer(skb);
6187 skb_headers_offset_update(skb, 0);
6188 skb->cloned = 0;
6189 skb->hdr_len = 0;
6190 skb->nohdr = 0;
6191 skb->len -= off;
6192 skb->data_len = skb->len;
6193 atomic_set(&skb_shinfo(skb)->dataref, 1);
6194 return 0;
6195}
6196
6197/* remove len bytes from the beginning of the skb */
6198static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6199{
6200 int headlen = skb_headlen(skb);
6201
6202 if (len < headlen)
6203 return pskb_carve_inside_header(skb, len, headlen, gfp);
6204 else
6205 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6206}
6207
6208/* Extract to_copy bytes starting at off from skb, and return this in
6209 * a new skb
6210 */
6211struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6212 int to_copy, gfp_t gfp)
6213{
6214 struct sk_buff *clone = skb_clone(skb, gfp);
6215
6216 if (!clone)
6217 return NULL;
6218
6219 if (pskb_carve(clone, off, gfp) < 0 ||
6220 pskb_trim(clone, to_copy)) {
6221 kfree_skb(clone);
6222 return NULL;
6223 }
6224 return clone;
6225}
6226EXPORT_SYMBOL(pskb_extract);
6227
6228/**
6229 * skb_condense - try to get rid of fragments/frag_list if possible
6230 * @skb: buffer
6231 *
6232 * Can be used to save memory before skb is added to a busy queue.
6233 * If packet has bytes in frags and enough tail room in skb->head,
6234 * pull all of them, so that we can free the frags right now and adjust
6235 * truesize.
6236 * Notes:
6237 * We do not reallocate skb->head thus can not fail.
6238 * Caller must re-evaluate skb->truesize if needed.
6239 */
6240void skb_condense(struct sk_buff *skb)
6241{
6242 if (skb->data_len) {
6243 if (skb->data_len > skb->end - skb->tail ||
6244 skb_cloned(skb))
6245 return;
6246
6247 /* Nice, we can free page frag(s) right now */
6248 __pskb_pull_tail(skb, skb->data_len);
6249 }
6250 /* At this point, skb->truesize might be over estimated,
6251 * because skb had a fragment, and fragments do not tell
6252 * their truesize.
6253 * When we pulled its content into skb->head, fragment
6254 * was freed, but __pskb_pull_tail() could not possibly
6255 * adjust skb->truesize, not knowing the frag truesize.
6256 */
6257 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6258}
6259
6260#ifdef CONFIG_SKB_EXTENSIONS
6261static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6262{
6263 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6264}
6265
6266/**
6267 * __skb_ext_alloc - allocate a new skb extensions storage
6268 *
6269 * @flags: See kmalloc().
6270 *
6271 * Returns the newly allocated pointer. The pointer can later attached to a
6272 * skb via __skb_ext_set().
6273 * Note: caller must handle the skb_ext as an opaque data.
6274 */
6275struct skb_ext *__skb_ext_alloc(gfp_t flags)
6276{
6277 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6278
6279 if (new) {
6280 memset(new->offset, 0, sizeof(new->offset));
6281 refcount_set(&new->refcnt, 1);
6282 }
6283
6284 return new;
6285}
6286
6287static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6288 unsigned int old_active)
6289{
6290 struct skb_ext *new;
6291
6292 if (refcount_read(&old->refcnt) == 1)
6293 return old;
6294
6295 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6296 if (!new)
6297 return NULL;
6298
6299 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6300 refcount_set(&new->refcnt, 1);
6301
6302#ifdef CONFIG_XFRM
6303 if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6304 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6305 unsigned int i;
6306
6307 for (i = 0; i < sp->len; i++)
6308 xfrm_state_hold(sp->xvec[i]);
6309 }
6310#endif
6311 __skb_ext_put(old);
6312 return new;
6313}
6314
6315/**
6316 * __skb_ext_set - attach the specified extension storage to this skb
6317 * @skb: buffer
6318 * @id: extension id
6319 * @ext: extension storage previously allocated via __skb_ext_alloc()
6320 *
6321 * Existing extensions, if any, are cleared.
6322 *
6323 * Returns the pointer to the extension.
6324 */
6325void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6326 struct skb_ext *ext)
6327{
6328 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6329
6330 skb_ext_put(skb);
6331 newlen = newoff + skb_ext_type_len[id];
6332 ext->chunks = newlen;
6333 ext->offset[id] = newoff;
6334 skb->extensions = ext;
6335 skb->active_extensions = 1 << id;
6336 return skb_ext_get_ptr(ext, id);
6337}
6338
6339/**
6340 * skb_ext_add - allocate space for given extension, COW if needed
6341 * @skb: buffer
6342 * @id: extension to allocate space for
6343 *
6344 * Allocates enough space for the given extension.
6345 * If the extension is already present, a pointer to that extension
6346 * is returned.
6347 *
6348 * If the skb was cloned, COW applies and the returned memory can be
6349 * modified without changing the extension space of clones buffers.
6350 *
6351 * Returns pointer to the extension or NULL on allocation failure.
6352 */
6353void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6354{
6355 struct skb_ext *new, *old = NULL;
6356 unsigned int newlen, newoff;
6357
6358 if (skb->active_extensions) {
6359 old = skb->extensions;
6360
6361 new = skb_ext_maybe_cow(old, skb->active_extensions);
6362 if (!new)
6363 return NULL;
6364
6365 if (__skb_ext_exist(new, id))
6366 goto set_active;
6367
6368 newoff = new->chunks;
6369 } else {
6370 newoff = SKB_EXT_CHUNKSIZEOF(*new);
6371
6372 new = __skb_ext_alloc(GFP_ATOMIC);
6373 if (!new)
6374 return NULL;
6375 }
6376
6377 newlen = newoff + skb_ext_type_len[id];
6378 new->chunks = newlen;
6379 new->offset[id] = newoff;
6380set_active:
6381 skb->extensions = new;
6382 skb->active_extensions |= 1 << id;
6383 return skb_ext_get_ptr(new, id);
6384}
6385EXPORT_SYMBOL(skb_ext_add);
6386
6387#ifdef CONFIG_XFRM
6388static void skb_ext_put_sp(struct sec_path *sp)
6389{
6390 unsigned int i;
6391
6392 for (i = 0; i < sp->len; i++)
6393 xfrm_state_put(sp->xvec[i]);
6394}
6395#endif
6396
6397void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6398{
6399 struct skb_ext *ext = skb->extensions;
6400
6401 skb->active_extensions &= ~(1 << id);
6402 if (skb->active_extensions == 0) {
6403 skb->extensions = NULL;
6404 __skb_ext_put(ext);
6405#ifdef CONFIG_XFRM
6406 } else if (id == SKB_EXT_SEC_PATH &&
6407 refcount_read(&ext->refcnt) == 1) {
6408 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6409
6410 skb_ext_put_sp(sp);
6411 sp->len = 0;
6412#endif
6413 }
6414}
6415EXPORT_SYMBOL(__skb_ext_del);
6416
6417void __skb_ext_put(struct skb_ext *ext)
6418{
6419 /* If this is last clone, nothing can increment
6420 * it after check passes. Avoids one atomic op.
6421 */
6422 if (refcount_read(&ext->refcnt) == 1)
6423 goto free_now;
6424
6425 if (!refcount_dec_and_test(&ext->refcnt))
6426 return;
6427free_now:
6428#ifdef CONFIG_XFRM
6429 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6430 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6431#endif
6432
6433 kmem_cache_free(skbuff_ext_cache, ext);
6434}
6435EXPORT_SYMBOL(__skb_ext_put);
6436#endif /* CONFIG_SKB_EXTENSIONS */