Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * NET3 Protocol independent device support routines.
4 *
5 * Derived from the non IP parts of dev.c 1.0.19
6 * Authors: Ross Biro
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
69 */
70
71#include <linux/uaccess.h>
72#include <linux/bitops.h>
73#include <linux/capability.h>
74#include <linux/cpu.h>
75#include <linux/types.h>
76#include <linux/kernel.h>
77#include <linux/hash.h>
78#include <linux/slab.h>
79#include <linux/sched.h>
80#include <linux/sched/mm.h>
81#include <linux/mutex.h>
82#include <linux/rwsem.h>
83#include <linux/string.h>
84#include <linux/mm.h>
85#include <linux/socket.h>
86#include <linux/sockios.h>
87#include <linux/errno.h>
88#include <linux/interrupt.h>
89#include <linux/if_ether.h>
90#include <linux/netdevice.h>
91#include <linux/etherdevice.h>
92#include <linux/ethtool.h>
93#include <linux/skbuff.h>
94#include <linux/kthread.h>
95#include <linux/bpf.h>
96#include <linux/bpf_trace.h>
97#include <net/net_namespace.h>
98#include <net/sock.h>
99#include <net/busy_poll.h>
100#include <linux/rtnetlink.h>
101#include <linux/stat.h>
102#include <net/dsa.h>
103#include <net/dst.h>
104#include <net/dst_metadata.h>
105#include <net/gro.h>
106#include <net/pkt_sched.h>
107#include <net/pkt_cls.h>
108#include <net/checksum.h>
109#include <net/xfrm.h>
110#include <linux/highmem.h>
111#include <linux/init.h>
112#include <linux/module.h>
113#include <linux/netpoll.h>
114#include <linux/rcupdate.h>
115#include <linux/delay.h>
116#include <net/iw_handler.h>
117#include <asm/current.h>
118#include <linux/audit.h>
119#include <linux/dmaengine.h>
120#include <linux/err.h>
121#include <linux/ctype.h>
122#include <linux/if_arp.h>
123#include <linux/if_vlan.h>
124#include <linux/ip.h>
125#include <net/ip.h>
126#include <net/mpls.h>
127#include <linux/ipv6.h>
128#include <linux/in.h>
129#include <linux/jhash.h>
130#include <linux/random.h>
131#include <trace/events/napi.h>
132#include <trace/events/net.h>
133#include <trace/events/skb.h>
134#include <linux/inetdevice.h>
135#include <linux/cpu_rmap.h>
136#include <linux/static_key.h>
137#include <linux/hashtable.h>
138#include <linux/vmalloc.h>
139#include <linux/if_macvlan.h>
140#include <linux/errqueue.h>
141#include <linux/hrtimer.h>
142#include <linux/netfilter_ingress.h>
143#include <linux/crash_dump.h>
144#include <linux/sctp.h>
145#include <net/udp_tunnel.h>
146#include <linux/net_namespace.h>
147#include <linux/indirect_call_wrapper.h>
148#include <net/devlink.h>
149#include <linux/pm_runtime.h>
150#include <linux/prandom.h>
151
152#include "net-sysfs.h"
153
154#define MAX_GRO_SKBS 8
155
156/* This should be increased if a protocol with a bigger head is added. */
157#define GRO_MAX_HEAD (MAX_HEADER + 128)
158
159static DEFINE_SPINLOCK(ptype_lock);
160static DEFINE_SPINLOCK(offload_lock);
161struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
162struct list_head ptype_all __read_mostly; /* Taps */
163static struct list_head offload_base __read_mostly;
164
165static int netif_rx_internal(struct sk_buff *skb);
166static int call_netdevice_notifiers_info(unsigned long val,
167 struct netdev_notifier_info *info);
168static int call_netdevice_notifiers_extack(unsigned long val,
169 struct net_device *dev,
170 struct netlink_ext_ack *extack);
171static struct napi_struct *napi_by_id(unsigned int napi_id);
172
173/*
174 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
175 * semaphore.
176 *
177 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
178 *
179 * Writers must hold the rtnl semaphore while they loop through the
180 * dev_base_head list, and hold dev_base_lock for writing when they do the
181 * actual updates. This allows pure readers to access the list even
182 * while a writer is preparing to update it.
183 *
184 * To put it another way, dev_base_lock is held for writing only to
185 * protect against pure readers; the rtnl semaphore provides the
186 * protection against other writers.
187 *
188 * See, for example usages, register_netdevice() and
189 * unregister_netdevice(), which must be called with the rtnl
190 * semaphore held.
191 */
192DEFINE_RWLOCK(dev_base_lock);
193EXPORT_SYMBOL(dev_base_lock);
194
195static DEFINE_MUTEX(ifalias_mutex);
196
197/* protects napi_hash addition/deletion and napi_gen_id */
198static DEFINE_SPINLOCK(napi_hash_lock);
199
200static unsigned int napi_gen_id = NR_CPUS;
201static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
202
203static DECLARE_RWSEM(devnet_rename_sem);
204
205static inline void dev_base_seq_inc(struct net *net)
206{
207 while (++net->dev_base_seq == 0)
208 ;
209}
210
211static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
212{
213 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
214
215 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
216}
217
218static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
219{
220 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
221}
222
223static inline void rps_lock(struct softnet_data *sd)
224{
225#ifdef CONFIG_RPS
226 spin_lock(&sd->input_pkt_queue.lock);
227#endif
228}
229
230static inline void rps_unlock(struct softnet_data *sd)
231{
232#ifdef CONFIG_RPS
233 spin_unlock(&sd->input_pkt_queue.lock);
234#endif
235}
236
237static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
238 const char *name)
239{
240 struct netdev_name_node *name_node;
241
242 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
243 if (!name_node)
244 return NULL;
245 INIT_HLIST_NODE(&name_node->hlist);
246 name_node->dev = dev;
247 name_node->name = name;
248 return name_node;
249}
250
251static struct netdev_name_node *
252netdev_name_node_head_alloc(struct net_device *dev)
253{
254 struct netdev_name_node *name_node;
255
256 name_node = netdev_name_node_alloc(dev, dev->name);
257 if (!name_node)
258 return NULL;
259 INIT_LIST_HEAD(&name_node->list);
260 return name_node;
261}
262
263static void netdev_name_node_free(struct netdev_name_node *name_node)
264{
265 kfree(name_node);
266}
267
268static void netdev_name_node_add(struct net *net,
269 struct netdev_name_node *name_node)
270{
271 hlist_add_head_rcu(&name_node->hlist,
272 dev_name_hash(net, name_node->name));
273}
274
275static void netdev_name_node_del(struct netdev_name_node *name_node)
276{
277 hlist_del_rcu(&name_node->hlist);
278}
279
280static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
281 const char *name)
282{
283 struct hlist_head *head = dev_name_hash(net, name);
284 struct netdev_name_node *name_node;
285
286 hlist_for_each_entry(name_node, head, hlist)
287 if (!strcmp(name_node->name, name))
288 return name_node;
289 return NULL;
290}
291
292static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
293 const char *name)
294{
295 struct hlist_head *head = dev_name_hash(net, name);
296 struct netdev_name_node *name_node;
297
298 hlist_for_each_entry_rcu(name_node, head, hlist)
299 if (!strcmp(name_node->name, name))
300 return name_node;
301 return NULL;
302}
303
304int netdev_name_node_alt_create(struct net_device *dev, const char *name)
305{
306 struct netdev_name_node *name_node;
307 struct net *net = dev_net(dev);
308
309 name_node = netdev_name_node_lookup(net, name);
310 if (name_node)
311 return -EEXIST;
312 name_node = netdev_name_node_alloc(dev, name);
313 if (!name_node)
314 return -ENOMEM;
315 netdev_name_node_add(net, name_node);
316 /* The node that holds dev->name acts as a head of per-device list. */
317 list_add_tail(&name_node->list, &dev->name_node->list);
318
319 return 0;
320}
321EXPORT_SYMBOL(netdev_name_node_alt_create);
322
323static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
324{
325 list_del(&name_node->list);
326 netdev_name_node_del(name_node);
327 kfree(name_node->name);
328 netdev_name_node_free(name_node);
329}
330
331int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
332{
333 struct netdev_name_node *name_node;
334 struct net *net = dev_net(dev);
335
336 name_node = netdev_name_node_lookup(net, name);
337 if (!name_node)
338 return -ENOENT;
339 /* lookup might have found our primary name or a name belonging
340 * to another device.
341 */
342 if (name_node == dev->name_node || name_node->dev != dev)
343 return -EINVAL;
344
345 __netdev_name_node_alt_destroy(name_node);
346
347 return 0;
348}
349EXPORT_SYMBOL(netdev_name_node_alt_destroy);
350
351static void netdev_name_node_alt_flush(struct net_device *dev)
352{
353 struct netdev_name_node *name_node, *tmp;
354
355 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
356 __netdev_name_node_alt_destroy(name_node);
357}
358
359/* Device list insertion */
360static void list_netdevice(struct net_device *dev)
361{
362 struct net *net = dev_net(dev);
363
364 ASSERT_RTNL();
365
366 write_lock_bh(&dev_base_lock);
367 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
368 netdev_name_node_add(net, dev->name_node);
369 hlist_add_head_rcu(&dev->index_hlist,
370 dev_index_hash(net, dev->ifindex));
371 write_unlock_bh(&dev_base_lock);
372
373 dev_base_seq_inc(net);
374}
375
376/* Device list removal
377 * caller must respect a RCU grace period before freeing/reusing dev
378 */
379static void unlist_netdevice(struct net_device *dev)
380{
381 ASSERT_RTNL();
382
383 /* Unlink dev from the device chain */
384 write_lock_bh(&dev_base_lock);
385 list_del_rcu(&dev->dev_list);
386 netdev_name_node_del(dev->name_node);
387 hlist_del_rcu(&dev->index_hlist);
388 write_unlock_bh(&dev_base_lock);
389
390 dev_base_seq_inc(dev_net(dev));
391}
392
393/*
394 * Our notifier list
395 */
396
397static RAW_NOTIFIER_HEAD(netdev_chain);
398
399/*
400 * Device drivers call our routines to queue packets here. We empty the
401 * queue in the local softnet handler.
402 */
403
404DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
405EXPORT_PER_CPU_SYMBOL(softnet_data);
406
407#ifdef CONFIG_LOCKDEP
408/*
409 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
410 * according to dev->type
411 */
412static const unsigned short netdev_lock_type[] = {
413 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
414 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
415 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
416 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
417 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
418 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
419 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
420 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
421 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
422 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
423 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
424 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
425 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
426 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
427 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
428
429static const char *const netdev_lock_name[] = {
430 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
431 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
432 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
433 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
434 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
435 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
436 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
437 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
438 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
439 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
440 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
441 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
442 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
443 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
444 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
445
446static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
447static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
448
449static inline unsigned short netdev_lock_pos(unsigned short dev_type)
450{
451 int i;
452
453 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
454 if (netdev_lock_type[i] == dev_type)
455 return i;
456 /* the last key is used by default */
457 return ARRAY_SIZE(netdev_lock_type) - 1;
458}
459
460static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
461 unsigned short dev_type)
462{
463 int i;
464
465 i = netdev_lock_pos(dev_type);
466 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
467 netdev_lock_name[i]);
468}
469
470static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
471{
472 int i;
473
474 i = netdev_lock_pos(dev->type);
475 lockdep_set_class_and_name(&dev->addr_list_lock,
476 &netdev_addr_lock_key[i],
477 netdev_lock_name[i]);
478}
479#else
480static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
481 unsigned short dev_type)
482{
483}
484
485static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
486{
487}
488#endif
489
490/*******************************************************************************
491 *
492 * Protocol management and registration routines
493 *
494 *******************************************************************************/
495
496
497/*
498 * Add a protocol ID to the list. Now that the input handler is
499 * smarter we can dispense with all the messy stuff that used to be
500 * here.
501 *
502 * BEWARE!!! Protocol handlers, mangling input packets,
503 * MUST BE last in hash buckets and checking protocol handlers
504 * MUST start from promiscuous ptype_all chain in net_bh.
505 * It is true now, do not change it.
506 * Explanation follows: if protocol handler, mangling packet, will
507 * be the first on list, it is not able to sense, that packet
508 * is cloned and should be copied-on-write, so that it will
509 * change it and subsequent readers will get broken packet.
510 * --ANK (980803)
511 */
512
513static inline struct list_head *ptype_head(const struct packet_type *pt)
514{
515 if (pt->type == htons(ETH_P_ALL))
516 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
517 else
518 return pt->dev ? &pt->dev->ptype_specific :
519 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
520}
521
522/**
523 * dev_add_pack - add packet handler
524 * @pt: packet type declaration
525 *
526 * Add a protocol handler to the networking stack. The passed &packet_type
527 * is linked into kernel lists and may not be freed until it has been
528 * removed from the kernel lists.
529 *
530 * This call does not sleep therefore it can not
531 * guarantee all CPU's that are in middle of receiving packets
532 * will see the new packet type (until the next received packet).
533 */
534
535void dev_add_pack(struct packet_type *pt)
536{
537 struct list_head *head = ptype_head(pt);
538
539 spin_lock(&ptype_lock);
540 list_add_rcu(&pt->list, head);
541 spin_unlock(&ptype_lock);
542}
543EXPORT_SYMBOL(dev_add_pack);
544
545/**
546 * __dev_remove_pack - remove packet handler
547 * @pt: packet type declaration
548 *
549 * Remove a protocol handler that was previously added to the kernel
550 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
551 * from the kernel lists and can be freed or reused once this function
552 * returns.
553 *
554 * The packet type might still be in use by receivers
555 * and must not be freed until after all the CPU's have gone
556 * through a quiescent state.
557 */
558void __dev_remove_pack(struct packet_type *pt)
559{
560 struct list_head *head = ptype_head(pt);
561 struct packet_type *pt1;
562
563 spin_lock(&ptype_lock);
564
565 list_for_each_entry(pt1, head, list) {
566 if (pt == pt1) {
567 list_del_rcu(&pt->list);
568 goto out;
569 }
570 }
571
572 pr_warn("dev_remove_pack: %p not found\n", pt);
573out:
574 spin_unlock(&ptype_lock);
575}
576EXPORT_SYMBOL(__dev_remove_pack);
577
578/**
579 * dev_remove_pack - remove packet handler
580 * @pt: packet type declaration
581 *
582 * Remove a protocol handler that was previously added to the kernel
583 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
584 * from the kernel lists and can be freed or reused once this function
585 * returns.
586 *
587 * This call sleeps to guarantee that no CPU is looking at the packet
588 * type after return.
589 */
590void dev_remove_pack(struct packet_type *pt)
591{
592 __dev_remove_pack(pt);
593
594 synchronize_net();
595}
596EXPORT_SYMBOL(dev_remove_pack);
597
598
599/**
600 * dev_add_offload - register offload handlers
601 * @po: protocol offload declaration
602 *
603 * Add protocol offload handlers to the networking stack. The passed
604 * &proto_offload is linked into kernel lists and may not be freed until
605 * it has been removed from the kernel lists.
606 *
607 * This call does not sleep therefore it can not
608 * guarantee all CPU's that are in middle of receiving packets
609 * will see the new offload handlers (until the next received packet).
610 */
611void dev_add_offload(struct packet_offload *po)
612{
613 struct packet_offload *elem;
614
615 spin_lock(&offload_lock);
616 list_for_each_entry(elem, &offload_base, list) {
617 if (po->priority < elem->priority)
618 break;
619 }
620 list_add_rcu(&po->list, elem->list.prev);
621 spin_unlock(&offload_lock);
622}
623EXPORT_SYMBOL(dev_add_offload);
624
625/**
626 * __dev_remove_offload - remove offload handler
627 * @po: packet offload declaration
628 *
629 * Remove a protocol offload handler that was previously added to the
630 * kernel offload handlers by dev_add_offload(). The passed &offload_type
631 * is removed from the kernel lists and can be freed or reused once this
632 * function returns.
633 *
634 * The packet type might still be in use by receivers
635 * and must not be freed until after all the CPU's have gone
636 * through a quiescent state.
637 */
638static void __dev_remove_offload(struct packet_offload *po)
639{
640 struct list_head *head = &offload_base;
641 struct packet_offload *po1;
642
643 spin_lock(&offload_lock);
644
645 list_for_each_entry(po1, head, list) {
646 if (po == po1) {
647 list_del_rcu(&po->list);
648 goto out;
649 }
650 }
651
652 pr_warn("dev_remove_offload: %p not found\n", po);
653out:
654 spin_unlock(&offload_lock);
655}
656
657/**
658 * dev_remove_offload - remove packet offload handler
659 * @po: packet offload declaration
660 *
661 * Remove a packet offload handler that was previously added to the kernel
662 * offload handlers by dev_add_offload(). The passed &offload_type is
663 * removed from the kernel lists and can be freed or reused once this
664 * function returns.
665 *
666 * This call sleeps to guarantee that no CPU is looking at the packet
667 * type after return.
668 */
669void dev_remove_offload(struct packet_offload *po)
670{
671 __dev_remove_offload(po);
672
673 synchronize_net();
674}
675EXPORT_SYMBOL(dev_remove_offload);
676
677/******************************************************************************
678 *
679 * Device Boot-time Settings Routines
680 *
681 ******************************************************************************/
682
683/* Boot time configuration table */
684static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
685
686/**
687 * netdev_boot_setup_add - add new setup entry
688 * @name: name of the device
689 * @map: configured settings for the device
690 *
691 * Adds new setup entry to the dev_boot_setup list. The function
692 * returns 0 on error and 1 on success. This is a generic routine to
693 * all netdevices.
694 */
695static int netdev_boot_setup_add(char *name, struct ifmap *map)
696{
697 struct netdev_boot_setup *s;
698 int i;
699
700 s = dev_boot_setup;
701 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
702 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
703 memset(s[i].name, 0, sizeof(s[i].name));
704 strlcpy(s[i].name, name, IFNAMSIZ);
705 memcpy(&s[i].map, map, sizeof(s[i].map));
706 break;
707 }
708 }
709
710 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
711}
712
713/**
714 * netdev_boot_setup_check - check boot time settings
715 * @dev: the netdevice
716 *
717 * Check boot time settings for the device.
718 * The found settings are set for the device to be used
719 * later in the device probing.
720 * Returns 0 if no settings found, 1 if they are.
721 */
722int netdev_boot_setup_check(struct net_device *dev)
723{
724 struct netdev_boot_setup *s = dev_boot_setup;
725 int i;
726
727 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
728 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
729 !strcmp(dev->name, s[i].name)) {
730 dev->irq = s[i].map.irq;
731 dev->base_addr = s[i].map.base_addr;
732 dev->mem_start = s[i].map.mem_start;
733 dev->mem_end = s[i].map.mem_end;
734 return 1;
735 }
736 }
737 return 0;
738}
739EXPORT_SYMBOL(netdev_boot_setup_check);
740
741
742/**
743 * netdev_boot_base - get address from boot time settings
744 * @prefix: prefix for network device
745 * @unit: id for network device
746 *
747 * Check boot time settings for the base address of device.
748 * The found settings are set for the device to be used
749 * later in the device probing.
750 * Returns 0 if no settings found.
751 */
752unsigned long netdev_boot_base(const char *prefix, int unit)
753{
754 const struct netdev_boot_setup *s = dev_boot_setup;
755 char name[IFNAMSIZ];
756 int i;
757
758 sprintf(name, "%s%d", prefix, unit);
759
760 /*
761 * If device already registered then return base of 1
762 * to indicate not to probe for this interface
763 */
764 if (__dev_get_by_name(&init_net, name))
765 return 1;
766
767 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
768 if (!strcmp(name, s[i].name))
769 return s[i].map.base_addr;
770 return 0;
771}
772
773/*
774 * Saves at boot time configured settings for any netdevice.
775 */
776int __init netdev_boot_setup(char *str)
777{
778 int ints[5];
779 struct ifmap map;
780
781 str = get_options(str, ARRAY_SIZE(ints), ints);
782 if (!str || !*str)
783 return 0;
784
785 /* Save settings */
786 memset(&map, 0, sizeof(map));
787 if (ints[0] > 0)
788 map.irq = ints[1];
789 if (ints[0] > 1)
790 map.base_addr = ints[2];
791 if (ints[0] > 2)
792 map.mem_start = ints[3];
793 if (ints[0] > 3)
794 map.mem_end = ints[4];
795
796 /* Add new entry to the list */
797 return netdev_boot_setup_add(str, &map);
798}
799
800__setup("netdev=", netdev_boot_setup);
801
802/*******************************************************************************
803 *
804 * Device Interface Subroutines
805 *
806 *******************************************************************************/
807
808/**
809 * dev_get_iflink - get 'iflink' value of a interface
810 * @dev: targeted interface
811 *
812 * Indicates the ifindex the interface is linked to.
813 * Physical interfaces have the same 'ifindex' and 'iflink' values.
814 */
815
816int dev_get_iflink(const struct net_device *dev)
817{
818 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
819 return dev->netdev_ops->ndo_get_iflink(dev);
820
821 return dev->ifindex;
822}
823EXPORT_SYMBOL(dev_get_iflink);
824
825/**
826 * dev_fill_metadata_dst - Retrieve tunnel egress information.
827 * @dev: targeted interface
828 * @skb: The packet.
829 *
830 * For better visibility of tunnel traffic OVS needs to retrieve
831 * egress tunnel information for a packet. Following API allows
832 * user to get this info.
833 */
834int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
835{
836 struct ip_tunnel_info *info;
837
838 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
839 return -EINVAL;
840
841 info = skb_tunnel_info_unclone(skb);
842 if (!info)
843 return -ENOMEM;
844 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
845 return -EINVAL;
846
847 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
848}
849EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
850
851/**
852 * __dev_get_by_name - find a device by its name
853 * @net: the applicable net namespace
854 * @name: name to find
855 *
856 * Find an interface by name. Must be called under RTNL semaphore
857 * or @dev_base_lock. If the name is found a pointer to the device
858 * is returned. If the name is not found then %NULL is returned. The
859 * reference counters are not incremented so the caller must be
860 * careful with locks.
861 */
862
863struct net_device *__dev_get_by_name(struct net *net, const char *name)
864{
865 struct netdev_name_node *node_name;
866
867 node_name = netdev_name_node_lookup(net, name);
868 return node_name ? node_name->dev : NULL;
869}
870EXPORT_SYMBOL(__dev_get_by_name);
871
872/**
873 * dev_get_by_name_rcu - find a device by its name
874 * @net: the applicable net namespace
875 * @name: name to find
876 *
877 * Find an interface by name.
878 * If the name is found a pointer to the device is returned.
879 * If the name is not found then %NULL is returned.
880 * The reference counters are not incremented so the caller must be
881 * careful with locks. The caller must hold RCU lock.
882 */
883
884struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
885{
886 struct netdev_name_node *node_name;
887
888 node_name = netdev_name_node_lookup_rcu(net, name);
889 return node_name ? node_name->dev : NULL;
890}
891EXPORT_SYMBOL(dev_get_by_name_rcu);
892
893/**
894 * dev_get_by_name - find a device by its name
895 * @net: the applicable net namespace
896 * @name: name to find
897 *
898 * Find an interface by name. This can be called from any
899 * context and does its own locking. The returned handle has
900 * the usage count incremented and the caller must use dev_put() to
901 * release it when it is no longer needed. %NULL is returned if no
902 * matching device is found.
903 */
904
905struct net_device *dev_get_by_name(struct net *net, const char *name)
906{
907 struct net_device *dev;
908
909 rcu_read_lock();
910 dev = dev_get_by_name_rcu(net, name);
911 if (dev)
912 dev_hold(dev);
913 rcu_read_unlock();
914 return dev;
915}
916EXPORT_SYMBOL(dev_get_by_name);
917
918/**
919 * __dev_get_by_index - find a device by its ifindex
920 * @net: the applicable net namespace
921 * @ifindex: index of device
922 *
923 * Search for an interface by index. Returns %NULL if the device
924 * is not found or a pointer to the device. The device has not
925 * had its reference counter increased so the caller must be careful
926 * about locking. The caller must hold either the RTNL semaphore
927 * or @dev_base_lock.
928 */
929
930struct net_device *__dev_get_by_index(struct net *net, int ifindex)
931{
932 struct net_device *dev;
933 struct hlist_head *head = dev_index_hash(net, ifindex);
934
935 hlist_for_each_entry(dev, head, index_hlist)
936 if (dev->ifindex == ifindex)
937 return dev;
938
939 return NULL;
940}
941EXPORT_SYMBOL(__dev_get_by_index);
942
943/**
944 * dev_get_by_index_rcu - find a device by its ifindex
945 * @net: the applicable net namespace
946 * @ifindex: index of device
947 *
948 * Search for an interface by index. Returns %NULL if the device
949 * is not found or a pointer to the device. The device has not
950 * had its reference counter increased so the caller must be careful
951 * about locking. The caller must hold RCU lock.
952 */
953
954struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
955{
956 struct net_device *dev;
957 struct hlist_head *head = dev_index_hash(net, ifindex);
958
959 hlist_for_each_entry_rcu(dev, head, index_hlist)
960 if (dev->ifindex == ifindex)
961 return dev;
962
963 return NULL;
964}
965EXPORT_SYMBOL(dev_get_by_index_rcu);
966
967
968/**
969 * dev_get_by_index - find a device by its ifindex
970 * @net: the applicable net namespace
971 * @ifindex: index of device
972 *
973 * Search for an interface by index. Returns NULL if the device
974 * is not found or a pointer to the device. The device returned has
975 * had a reference added and the pointer is safe until the user calls
976 * dev_put to indicate they have finished with it.
977 */
978
979struct net_device *dev_get_by_index(struct net *net, int ifindex)
980{
981 struct net_device *dev;
982
983 rcu_read_lock();
984 dev = dev_get_by_index_rcu(net, ifindex);
985 if (dev)
986 dev_hold(dev);
987 rcu_read_unlock();
988 return dev;
989}
990EXPORT_SYMBOL(dev_get_by_index);
991
992/**
993 * dev_get_by_napi_id - find a device by napi_id
994 * @napi_id: ID of the NAPI struct
995 *
996 * Search for an interface by NAPI ID. Returns %NULL if the device
997 * is not found or a pointer to the device. The device has not had
998 * its reference counter increased so the caller must be careful
999 * about locking. The caller must hold RCU lock.
1000 */
1001
1002struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1003{
1004 struct napi_struct *napi;
1005
1006 WARN_ON_ONCE(!rcu_read_lock_held());
1007
1008 if (napi_id < MIN_NAPI_ID)
1009 return NULL;
1010
1011 napi = napi_by_id(napi_id);
1012
1013 return napi ? napi->dev : NULL;
1014}
1015EXPORT_SYMBOL(dev_get_by_napi_id);
1016
1017/**
1018 * netdev_get_name - get a netdevice name, knowing its ifindex.
1019 * @net: network namespace
1020 * @name: a pointer to the buffer where the name will be stored.
1021 * @ifindex: the ifindex of the interface to get the name from.
1022 */
1023int netdev_get_name(struct net *net, char *name, int ifindex)
1024{
1025 struct net_device *dev;
1026 int ret;
1027
1028 down_read(&devnet_rename_sem);
1029 rcu_read_lock();
1030
1031 dev = dev_get_by_index_rcu(net, ifindex);
1032 if (!dev) {
1033 ret = -ENODEV;
1034 goto out;
1035 }
1036
1037 strcpy(name, dev->name);
1038
1039 ret = 0;
1040out:
1041 rcu_read_unlock();
1042 up_read(&devnet_rename_sem);
1043 return ret;
1044}
1045
1046/**
1047 * dev_getbyhwaddr_rcu - find a device by its hardware address
1048 * @net: the applicable net namespace
1049 * @type: media type of device
1050 * @ha: hardware address
1051 *
1052 * Search for an interface by MAC address. Returns NULL if the device
1053 * is not found or a pointer to the device.
1054 * The caller must hold RCU or RTNL.
1055 * The returned device has not had its ref count increased
1056 * and the caller must therefore be careful about locking
1057 *
1058 */
1059
1060struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1061 const char *ha)
1062{
1063 struct net_device *dev;
1064
1065 for_each_netdev_rcu(net, dev)
1066 if (dev->type == type &&
1067 !memcmp(dev->dev_addr, ha, dev->addr_len))
1068 return dev;
1069
1070 return NULL;
1071}
1072EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1073
1074struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1075{
1076 struct net_device *dev, *ret = NULL;
1077
1078 rcu_read_lock();
1079 for_each_netdev_rcu(net, dev)
1080 if (dev->type == type) {
1081 dev_hold(dev);
1082 ret = dev;
1083 break;
1084 }
1085 rcu_read_unlock();
1086 return ret;
1087}
1088EXPORT_SYMBOL(dev_getfirstbyhwtype);
1089
1090/**
1091 * __dev_get_by_flags - find any device with given flags
1092 * @net: the applicable net namespace
1093 * @if_flags: IFF_* values
1094 * @mask: bitmask of bits in if_flags to check
1095 *
1096 * Search for any interface with the given flags. Returns NULL if a device
1097 * is not found or a pointer to the device. Must be called inside
1098 * rtnl_lock(), and result refcount is unchanged.
1099 */
1100
1101struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1102 unsigned short mask)
1103{
1104 struct net_device *dev, *ret;
1105
1106 ASSERT_RTNL();
1107
1108 ret = NULL;
1109 for_each_netdev(net, dev) {
1110 if (((dev->flags ^ if_flags) & mask) == 0) {
1111 ret = dev;
1112 break;
1113 }
1114 }
1115 return ret;
1116}
1117EXPORT_SYMBOL(__dev_get_by_flags);
1118
1119/**
1120 * dev_valid_name - check if name is okay for network device
1121 * @name: name string
1122 *
1123 * Network device names need to be valid file names to
1124 * allow sysfs to work. We also disallow any kind of
1125 * whitespace.
1126 */
1127bool dev_valid_name(const char *name)
1128{
1129 if (*name == '\0')
1130 return false;
1131 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1132 return false;
1133 if (!strcmp(name, ".") || !strcmp(name, ".."))
1134 return false;
1135
1136 while (*name) {
1137 if (*name == '/' || *name == ':' || isspace(*name))
1138 return false;
1139 name++;
1140 }
1141 return true;
1142}
1143EXPORT_SYMBOL(dev_valid_name);
1144
1145/**
1146 * __dev_alloc_name - allocate a name for a device
1147 * @net: network namespace to allocate the device name in
1148 * @name: name format string
1149 * @buf: scratch buffer and result name string
1150 *
1151 * Passed a format string - eg "lt%d" it will try and find a suitable
1152 * id. It scans list of devices to build up a free map, then chooses
1153 * the first empty slot. The caller must hold the dev_base or rtnl lock
1154 * while allocating the name and adding the device in order to avoid
1155 * duplicates.
1156 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1157 * Returns the number of the unit assigned or a negative errno code.
1158 */
1159
1160static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1161{
1162 int i = 0;
1163 const char *p;
1164 const int max_netdevices = 8*PAGE_SIZE;
1165 unsigned long *inuse;
1166 struct net_device *d;
1167
1168 if (!dev_valid_name(name))
1169 return -EINVAL;
1170
1171 p = strchr(name, '%');
1172 if (p) {
1173 /*
1174 * Verify the string as this thing may have come from
1175 * the user. There must be either one "%d" and no other "%"
1176 * characters.
1177 */
1178 if (p[1] != 'd' || strchr(p + 2, '%'))
1179 return -EINVAL;
1180
1181 /* Use one page as a bit array of possible slots */
1182 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1183 if (!inuse)
1184 return -ENOMEM;
1185
1186 for_each_netdev(net, d) {
1187 struct netdev_name_node *name_node;
1188 list_for_each_entry(name_node, &d->name_node->list, list) {
1189 if (!sscanf(name_node->name, name, &i))
1190 continue;
1191 if (i < 0 || i >= max_netdevices)
1192 continue;
1193
1194 /* avoid cases where sscanf is not exact inverse of printf */
1195 snprintf(buf, IFNAMSIZ, name, i);
1196 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1197 set_bit(i, inuse);
1198 }
1199 if (!sscanf(d->name, name, &i))
1200 continue;
1201 if (i < 0 || i >= max_netdevices)
1202 continue;
1203
1204 /* avoid cases where sscanf is not exact inverse of printf */
1205 snprintf(buf, IFNAMSIZ, name, i);
1206 if (!strncmp(buf, d->name, IFNAMSIZ))
1207 set_bit(i, inuse);
1208 }
1209
1210 i = find_first_zero_bit(inuse, max_netdevices);
1211 free_page((unsigned long) inuse);
1212 }
1213
1214 snprintf(buf, IFNAMSIZ, name, i);
1215 if (!__dev_get_by_name(net, buf))
1216 return i;
1217
1218 /* It is possible to run out of possible slots
1219 * when the name is long and there isn't enough space left
1220 * for the digits, or if all bits are used.
1221 */
1222 return -ENFILE;
1223}
1224
1225static int dev_alloc_name_ns(struct net *net,
1226 struct net_device *dev,
1227 const char *name)
1228{
1229 char buf[IFNAMSIZ];
1230 int ret;
1231
1232 BUG_ON(!net);
1233 ret = __dev_alloc_name(net, name, buf);
1234 if (ret >= 0)
1235 strlcpy(dev->name, buf, IFNAMSIZ);
1236 return ret;
1237}
1238
1239/**
1240 * dev_alloc_name - allocate a name for a device
1241 * @dev: device
1242 * @name: name format string
1243 *
1244 * Passed a format string - eg "lt%d" it will try and find a suitable
1245 * id. It scans list of devices to build up a free map, then chooses
1246 * the first empty slot. The caller must hold the dev_base or rtnl lock
1247 * while allocating the name and adding the device in order to avoid
1248 * duplicates.
1249 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1250 * Returns the number of the unit assigned or a negative errno code.
1251 */
1252
1253int dev_alloc_name(struct net_device *dev, const char *name)
1254{
1255 return dev_alloc_name_ns(dev_net(dev), dev, name);
1256}
1257EXPORT_SYMBOL(dev_alloc_name);
1258
1259static int dev_get_valid_name(struct net *net, struct net_device *dev,
1260 const char *name)
1261{
1262 BUG_ON(!net);
1263
1264 if (!dev_valid_name(name))
1265 return -EINVAL;
1266
1267 if (strchr(name, '%'))
1268 return dev_alloc_name_ns(net, dev, name);
1269 else if (__dev_get_by_name(net, name))
1270 return -EEXIST;
1271 else if (dev->name != name)
1272 strlcpy(dev->name, name, IFNAMSIZ);
1273
1274 return 0;
1275}
1276
1277/**
1278 * dev_change_name - change name of a device
1279 * @dev: device
1280 * @newname: name (or format string) must be at least IFNAMSIZ
1281 *
1282 * Change name of a device, can pass format strings "eth%d".
1283 * for wildcarding.
1284 */
1285int dev_change_name(struct net_device *dev, const char *newname)
1286{
1287 unsigned char old_assign_type;
1288 char oldname[IFNAMSIZ];
1289 int err = 0;
1290 int ret;
1291 struct net *net;
1292
1293 ASSERT_RTNL();
1294 BUG_ON(!dev_net(dev));
1295
1296 net = dev_net(dev);
1297
1298 /* Some auto-enslaved devices e.g. failover slaves are
1299 * special, as userspace might rename the device after
1300 * the interface had been brought up and running since
1301 * the point kernel initiated auto-enslavement. Allow
1302 * live name change even when these slave devices are
1303 * up and running.
1304 *
1305 * Typically, users of these auto-enslaving devices
1306 * don't actually care about slave name change, as
1307 * they are supposed to operate on master interface
1308 * directly.
1309 */
1310 if (dev->flags & IFF_UP &&
1311 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1312 return -EBUSY;
1313
1314 down_write(&devnet_rename_sem);
1315
1316 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1317 up_write(&devnet_rename_sem);
1318 return 0;
1319 }
1320
1321 memcpy(oldname, dev->name, IFNAMSIZ);
1322
1323 err = dev_get_valid_name(net, dev, newname);
1324 if (err < 0) {
1325 up_write(&devnet_rename_sem);
1326 return err;
1327 }
1328
1329 if (oldname[0] && !strchr(oldname, '%'))
1330 netdev_info(dev, "renamed from %s\n", oldname);
1331
1332 old_assign_type = dev->name_assign_type;
1333 dev->name_assign_type = NET_NAME_RENAMED;
1334
1335rollback:
1336 ret = device_rename(&dev->dev, dev->name);
1337 if (ret) {
1338 memcpy(dev->name, oldname, IFNAMSIZ);
1339 dev->name_assign_type = old_assign_type;
1340 up_write(&devnet_rename_sem);
1341 return ret;
1342 }
1343
1344 up_write(&devnet_rename_sem);
1345
1346 netdev_adjacent_rename_links(dev, oldname);
1347
1348 write_lock_bh(&dev_base_lock);
1349 netdev_name_node_del(dev->name_node);
1350 write_unlock_bh(&dev_base_lock);
1351
1352 synchronize_rcu();
1353
1354 write_lock_bh(&dev_base_lock);
1355 netdev_name_node_add(net, dev->name_node);
1356 write_unlock_bh(&dev_base_lock);
1357
1358 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1359 ret = notifier_to_errno(ret);
1360
1361 if (ret) {
1362 /* err >= 0 after dev_alloc_name() or stores the first errno */
1363 if (err >= 0) {
1364 err = ret;
1365 down_write(&devnet_rename_sem);
1366 memcpy(dev->name, oldname, IFNAMSIZ);
1367 memcpy(oldname, newname, IFNAMSIZ);
1368 dev->name_assign_type = old_assign_type;
1369 old_assign_type = NET_NAME_RENAMED;
1370 goto rollback;
1371 } else {
1372 pr_err("%s: name change rollback failed: %d\n",
1373 dev->name, ret);
1374 }
1375 }
1376
1377 return err;
1378}
1379
1380/**
1381 * dev_set_alias - change ifalias of a device
1382 * @dev: device
1383 * @alias: name up to IFALIASZ
1384 * @len: limit of bytes to copy from info
1385 *
1386 * Set ifalias for a device,
1387 */
1388int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1389{
1390 struct dev_ifalias *new_alias = NULL;
1391
1392 if (len >= IFALIASZ)
1393 return -EINVAL;
1394
1395 if (len) {
1396 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1397 if (!new_alias)
1398 return -ENOMEM;
1399
1400 memcpy(new_alias->ifalias, alias, len);
1401 new_alias->ifalias[len] = 0;
1402 }
1403
1404 mutex_lock(&ifalias_mutex);
1405 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1406 mutex_is_locked(&ifalias_mutex));
1407 mutex_unlock(&ifalias_mutex);
1408
1409 if (new_alias)
1410 kfree_rcu(new_alias, rcuhead);
1411
1412 return len;
1413}
1414EXPORT_SYMBOL(dev_set_alias);
1415
1416/**
1417 * dev_get_alias - get ifalias of a device
1418 * @dev: device
1419 * @name: buffer to store name of ifalias
1420 * @len: size of buffer
1421 *
1422 * get ifalias for a device. Caller must make sure dev cannot go
1423 * away, e.g. rcu read lock or own a reference count to device.
1424 */
1425int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1426{
1427 const struct dev_ifalias *alias;
1428 int ret = 0;
1429
1430 rcu_read_lock();
1431 alias = rcu_dereference(dev->ifalias);
1432 if (alias)
1433 ret = snprintf(name, len, "%s", alias->ifalias);
1434 rcu_read_unlock();
1435
1436 return ret;
1437}
1438
1439/**
1440 * netdev_features_change - device changes features
1441 * @dev: device to cause notification
1442 *
1443 * Called to indicate a device has changed features.
1444 */
1445void netdev_features_change(struct net_device *dev)
1446{
1447 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1448}
1449EXPORT_SYMBOL(netdev_features_change);
1450
1451/**
1452 * netdev_state_change - device changes state
1453 * @dev: device to cause notification
1454 *
1455 * Called to indicate a device has changed state. This function calls
1456 * the notifier chains for netdev_chain and sends a NEWLINK message
1457 * to the routing socket.
1458 */
1459void netdev_state_change(struct net_device *dev)
1460{
1461 if (dev->flags & IFF_UP) {
1462 struct netdev_notifier_change_info change_info = {
1463 .info.dev = dev,
1464 };
1465
1466 call_netdevice_notifiers_info(NETDEV_CHANGE,
1467 &change_info.info);
1468 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1469 }
1470}
1471EXPORT_SYMBOL(netdev_state_change);
1472
1473/**
1474 * __netdev_notify_peers - notify network peers about existence of @dev,
1475 * to be called when rtnl lock is already held.
1476 * @dev: network device
1477 *
1478 * Generate traffic such that interested network peers are aware of
1479 * @dev, such as by generating a gratuitous ARP. This may be used when
1480 * a device wants to inform the rest of the network about some sort of
1481 * reconfiguration such as a failover event or virtual machine
1482 * migration.
1483 */
1484void __netdev_notify_peers(struct net_device *dev)
1485{
1486 ASSERT_RTNL();
1487 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1488 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1489}
1490EXPORT_SYMBOL(__netdev_notify_peers);
1491
1492/**
1493 * netdev_notify_peers - notify network peers about existence of @dev
1494 * @dev: network device
1495 *
1496 * Generate traffic such that interested network peers are aware of
1497 * @dev, such as by generating a gratuitous ARP. This may be used when
1498 * a device wants to inform the rest of the network about some sort of
1499 * reconfiguration such as a failover event or virtual machine
1500 * migration.
1501 */
1502void netdev_notify_peers(struct net_device *dev)
1503{
1504 rtnl_lock();
1505 __netdev_notify_peers(dev);
1506 rtnl_unlock();
1507}
1508EXPORT_SYMBOL(netdev_notify_peers);
1509
1510static int napi_threaded_poll(void *data);
1511
1512static int napi_kthread_create(struct napi_struct *n)
1513{
1514 int err = 0;
1515
1516 /* Create and wake up the kthread once to put it in
1517 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1518 * warning and work with loadavg.
1519 */
1520 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1521 n->dev->name, n->napi_id);
1522 if (IS_ERR(n->thread)) {
1523 err = PTR_ERR(n->thread);
1524 pr_err("kthread_run failed with err %d\n", err);
1525 n->thread = NULL;
1526 }
1527
1528 return err;
1529}
1530
1531static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1532{
1533 const struct net_device_ops *ops = dev->netdev_ops;
1534 int ret;
1535
1536 ASSERT_RTNL();
1537
1538 if (!netif_device_present(dev)) {
1539 /* may be detached because parent is runtime-suspended */
1540 if (dev->dev.parent)
1541 pm_runtime_resume(dev->dev.parent);
1542 if (!netif_device_present(dev))
1543 return -ENODEV;
1544 }
1545
1546 /* Block netpoll from trying to do any rx path servicing.
1547 * If we don't do this there is a chance ndo_poll_controller
1548 * or ndo_poll may be running while we open the device
1549 */
1550 netpoll_poll_disable(dev);
1551
1552 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1553 ret = notifier_to_errno(ret);
1554 if (ret)
1555 return ret;
1556
1557 set_bit(__LINK_STATE_START, &dev->state);
1558
1559 if (ops->ndo_validate_addr)
1560 ret = ops->ndo_validate_addr(dev);
1561
1562 if (!ret && ops->ndo_open)
1563 ret = ops->ndo_open(dev);
1564
1565 netpoll_poll_enable(dev);
1566
1567 if (ret)
1568 clear_bit(__LINK_STATE_START, &dev->state);
1569 else {
1570 dev->flags |= IFF_UP;
1571 dev_set_rx_mode(dev);
1572 dev_activate(dev);
1573 add_device_randomness(dev->dev_addr, dev->addr_len);
1574 }
1575
1576 return ret;
1577}
1578
1579/**
1580 * dev_open - prepare an interface for use.
1581 * @dev: device to open
1582 * @extack: netlink extended ack
1583 *
1584 * Takes a device from down to up state. The device's private open
1585 * function is invoked and then the multicast lists are loaded. Finally
1586 * the device is moved into the up state and a %NETDEV_UP message is
1587 * sent to the netdev notifier chain.
1588 *
1589 * Calling this function on an active interface is a nop. On a failure
1590 * a negative errno code is returned.
1591 */
1592int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1593{
1594 int ret;
1595
1596 if (dev->flags & IFF_UP)
1597 return 0;
1598
1599 ret = __dev_open(dev, extack);
1600 if (ret < 0)
1601 return ret;
1602
1603 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1604 call_netdevice_notifiers(NETDEV_UP, dev);
1605
1606 return ret;
1607}
1608EXPORT_SYMBOL(dev_open);
1609
1610static void __dev_close_many(struct list_head *head)
1611{
1612 struct net_device *dev;
1613
1614 ASSERT_RTNL();
1615 might_sleep();
1616
1617 list_for_each_entry(dev, head, close_list) {
1618 /* Temporarily disable netpoll until the interface is down */
1619 netpoll_poll_disable(dev);
1620
1621 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1622
1623 clear_bit(__LINK_STATE_START, &dev->state);
1624
1625 /* Synchronize to scheduled poll. We cannot touch poll list, it
1626 * can be even on different cpu. So just clear netif_running().
1627 *
1628 * dev->stop() will invoke napi_disable() on all of it's
1629 * napi_struct instances on this device.
1630 */
1631 smp_mb__after_atomic(); /* Commit netif_running(). */
1632 }
1633
1634 dev_deactivate_many(head);
1635
1636 list_for_each_entry(dev, head, close_list) {
1637 const struct net_device_ops *ops = dev->netdev_ops;
1638
1639 /*
1640 * Call the device specific close. This cannot fail.
1641 * Only if device is UP
1642 *
1643 * We allow it to be called even after a DETACH hot-plug
1644 * event.
1645 */
1646 if (ops->ndo_stop)
1647 ops->ndo_stop(dev);
1648
1649 dev->flags &= ~IFF_UP;
1650 netpoll_poll_enable(dev);
1651 }
1652}
1653
1654static void __dev_close(struct net_device *dev)
1655{
1656 LIST_HEAD(single);
1657
1658 list_add(&dev->close_list, &single);
1659 __dev_close_many(&single);
1660 list_del(&single);
1661}
1662
1663void dev_close_many(struct list_head *head, bool unlink)
1664{
1665 struct net_device *dev, *tmp;
1666
1667 /* Remove the devices that don't need to be closed */
1668 list_for_each_entry_safe(dev, tmp, head, close_list)
1669 if (!(dev->flags & IFF_UP))
1670 list_del_init(&dev->close_list);
1671
1672 __dev_close_many(head);
1673
1674 list_for_each_entry_safe(dev, tmp, head, close_list) {
1675 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1676 call_netdevice_notifiers(NETDEV_DOWN, dev);
1677 if (unlink)
1678 list_del_init(&dev->close_list);
1679 }
1680}
1681EXPORT_SYMBOL(dev_close_many);
1682
1683/**
1684 * dev_close - shutdown an interface.
1685 * @dev: device to shutdown
1686 *
1687 * This function moves an active device into down state. A
1688 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1689 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1690 * chain.
1691 */
1692void dev_close(struct net_device *dev)
1693{
1694 if (dev->flags & IFF_UP) {
1695 LIST_HEAD(single);
1696
1697 list_add(&dev->close_list, &single);
1698 dev_close_many(&single, true);
1699 list_del(&single);
1700 }
1701}
1702EXPORT_SYMBOL(dev_close);
1703
1704
1705/**
1706 * dev_disable_lro - disable Large Receive Offload on a device
1707 * @dev: device
1708 *
1709 * Disable Large Receive Offload (LRO) on a net device. Must be
1710 * called under RTNL. This is needed if received packets may be
1711 * forwarded to another interface.
1712 */
1713void dev_disable_lro(struct net_device *dev)
1714{
1715 struct net_device *lower_dev;
1716 struct list_head *iter;
1717
1718 dev->wanted_features &= ~NETIF_F_LRO;
1719 netdev_update_features(dev);
1720
1721 if (unlikely(dev->features & NETIF_F_LRO))
1722 netdev_WARN(dev, "failed to disable LRO!\n");
1723
1724 netdev_for_each_lower_dev(dev, lower_dev, iter)
1725 dev_disable_lro(lower_dev);
1726}
1727EXPORT_SYMBOL(dev_disable_lro);
1728
1729/**
1730 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1731 * @dev: device
1732 *
1733 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1734 * called under RTNL. This is needed if Generic XDP is installed on
1735 * the device.
1736 */
1737static void dev_disable_gro_hw(struct net_device *dev)
1738{
1739 dev->wanted_features &= ~NETIF_F_GRO_HW;
1740 netdev_update_features(dev);
1741
1742 if (unlikely(dev->features & NETIF_F_GRO_HW))
1743 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1744}
1745
1746const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1747{
1748#define N(val) \
1749 case NETDEV_##val: \
1750 return "NETDEV_" __stringify(val);
1751 switch (cmd) {
1752 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1753 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1754 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1755 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1756 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1757 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1758 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1759 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1760 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1761 N(PRE_CHANGEADDR)
1762 }
1763#undef N
1764 return "UNKNOWN_NETDEV_EVENT";
1765}
1766EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1767
1768static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1769 struct net_device *dev)
1770{
1771 struct netdev_notifier_info info = {
1772 .dev = dev,
1773 };
1774
1775 return nb->notifier_call(nb, val, &info);
1776}
1777
1778static int call_netdevice_register_notifiers(struct notifier_block *nb,
1779 struct net_device *dev)
1780{
1781 int err;
1782
1783 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1784 err = notifier_to_errno(err);
1785 if (err)
1786 return err;
1787
1788 if (!(dev->flags & IFF_UP))
1789 return 0;
1790
1791 call_netdevice_notifier(nb, NETDEV_UP, dev);
1792 return 0;
1793}
1794
1795static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1796 struct net_device *dev)
1797{
1798 if (dev->flags & IFF_UP) {
1799 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1800 dev);
1801 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1802 }
1803 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1804}
1805
1806static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1807 struct net *net)
1808{
1809 struct net_device *dev;
1810 int err;
1811
1812 for_each_netdev(net, dev) {
1813 err = call_netdevice_register_notifiers(nb, dev);
1814 if (err)
1815 goto rollback;
1816 }
1817 return 0;
1818
1819rollback:
1820 for_each_netdev_continue_reverse(net, dev)
1821 call_netdevice_unregister_notifiers(nb, dev);
1822 return err;
1823}
1824
1825static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1826 struct net *net)
1827{
1828 struct net_device *dev;
1829
1830 for_each_netdev(net, dev)
1831 call_netdevice_unregister_notifiers(nb, dev);
1832}
1833
1834static int dev_boot_phase = 1;
1835
1836/**
1837 * register_netdevice_notifier - register a network notifier block
1838 * @nb: notifier
1839 *
1840 * Register a notifier to be called when network device events occur.
1841 * The notifier passed is linked into the kernel structures and must
1842 * not be reused until it has been unregistered. A negative errno code
1843 * is returned on a failure.
1844 *
1845 * When registered all registration and up events are replayed
1846 * to the new notifier to allow device to have a race free
1847 * view of the network device list.
1848 */
1849
1850int register_netdevice_notifier(struct notifier_block *nb)
1851{
1852 struct net *net;
1853 int err;
1854
1855 /* Close race with setup_net() and cleanup_net() */
1856 down_write(&pernet_ops_rwsem);
1857 rtnl_lock();
1858 err = raw_notifier_chain_register(&netdev_chain, nb);
1859 if (err)
1860 goto unlock;
1861 if (dev_boot_phase)
1862 goto unlock;
1863 for_each_net(net) {
1864 err = call_netdevice_register_net_notifiers(nb, net);
1865 if (err)
1866 goto rollback;
1867 }
1868
1869unlock:
1870 rtnl_unlock();
1871 up_write(&pernet_ops_rwsem);
1872 return err;
1873
1874rollback:
1875 for_each_net_continue_reverse(net)
1876 call_netdevice_unregister_net_notifiers(nb, net);
1877
1878 raw_notifier_chain_unregister(&netdev_chain, nb);
1879 goto unlock;
1880}
1881EXPORT_SYMBOL(register_netdevice_notifier);
1882
1883/**
1884 * unregister_netdevice_notifier - unregister a network notifier block
1885 * @nb: notifier
1886 *
1887 * Unregister a notifier previously registered by
1888 * register_netdevice_notifier(). The notifier is unlinked into the
1889 * kernel structures and may then be reused. A negative errno code
1890 * is returned on a failure.
1891 *
1892 * After unregistering unregister and down device events are synthesized
1893 * for all devices on the device list to the removed notifier to remove
1894 * the need for special case cleanup code.
1895 */
1896
1897int unregister_netdevice_notifier(struct notifier_block *nb)
1898{
1899 struct net *net;
1900 int err;
1901
1902 /* Close race with setup_net() and cleanup_net() */
1903 down_write(&pernet_ops_rwsem);
1904 rtnl_lock();
1905 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1906 if (err)
1907 goto unlock;
1908
1909 for_each_net(net)
1910 call_netdevice_unregister_net_notifiers(nb, net);
1911
1912unlock:
1913 rtnl_unlock();
1914 up_write(&pernet_ops_rwsem);
1915 return err;
1916}
1917EXPORT_SYMBOL(unregister_netdevice_notifier);
1918
1919static int __register_netdevice_notifier_net(struct net *net,
1920 struct notifier_block *nb,
1921 bool ignore_call_fail)
1922{
1923 int err;
1924
1925 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1926 if (err)
1927 return err;
1928 if (dev_boot_phase)
1929 return 0;
1930
1931 err = call_netdevice_register_net_notifiers(nb, net);
1932 if (err && !ignore_call_fail)
1933 goto chain_unregister;
1934
1935 return 0;
1936
1937chain_unregister:
1938 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1939 return err;
1940}
1941
1942static int __unregister_netdevice_notifier_net(struct net *net,
1943 struct notifier_block *nb)
1944{
1945 int err;
1946
1947 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1948 if (err)
1949 return err;
1950
1951 call_netdevice_unregister_net_notifiers(nb, net);
1952 return 0;
1953}
1954
1955/**
1956 * register_netdevice_notifier_net - register a per-netns network notifier block
1957 * @net: network namespace
1958 * @nb: notifier
1959 *
1960 * Register a notifier to be called when network device events occur.
1961 * The notifier passed is linked into the kernel structures and must
1962 * not be reused until it has been unregistered. A negative errno code
1963 * is returned on a failure.
1964 *
1965 * When registered all registration and up events are replayed
1966 * to the new notifier to allow device to have a race free
1967 * view of the network device list.
1968 */
1969
1970int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1971{
1972 int err;
1973
1974 rtnl_lock();
1975 err = __register_netdevice_notifier_net(net, nb, false);
1976 rtnl_unlock();
1977 return err;
1978}
1979EXPORT_SYMBOL(register_netdevice_notifier_net);
1980
1981/**
1982 * unregister_netdevice_notifier_net - unregister a per-netns
1983 * network notifier block
1984 * @net: network namespace
1985 * @nb: notifier
1986 *
1987 * Unregister a notifier previously registered by
1988 * register_netdevice_notifier(). The notifier is unlinked into the
1989 * kernel structures and may then be reused. A negative errno code
1990 * is returned on a failure.
1991 *
1992 * After unregistering unregister and down device events are synthesized
1993 * for all devices on the device list to the removed notifier to remove
1994 * the need for special case cleanup code.
1995 */
1996
1997int unregister_netdevice_notifier_net(struct net *net,
1998 struct notifier_block *nb)
1999{
2000 int err;
2001
2002 rtnl_lock();
2003 err = __unregister_netdevice_notifier_net(net, nb);
2004 rtnl_unlock();
2005 return err;
2006}
2007EXPORT_SYMBOL(unregister_netdevice_notifier_net);
2008
2009int register_netdevice_notifier_dev_net(struct net_device *dev,
2010 struct notifier_block *nb,
2011 struct netdev_net_notifier *nn)
2012{
2013 int err;
2014
2015 rtnl_lock();
2016 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
2017 if (!err) {
2018 nn->nb = nb;
2019 list_add(&nn->list, &dev->net_notifier_list);
2020 }
2021 rtnl_unlock();
2022 return err;
2023}
2024EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2025
2026int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2027 struct notifier_block *nb,
2028 struct netdev_net_notifier *nn)
2029{
2030 int err;
2031
2032 rtnl_lock();
2033 list_del(&nn->list);
2034 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2035 rtnl_unlock();
2036 return err;
2037}
2038EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2039
2040static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2041 struct net *net)
2042{
2043 struct netdev_net_notifier *nn;
2044
2045 list_for_each_entry(nn, &dev->net_notifier_list, list) {
2046 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2047 __register_netdevice_notifier_net(net, nn->nb, true);
2048 }
2049}
2050
2051/**
2052 * call_netdevice_notifiers_info - call all network notifier blocks
2053 * @val: value passed unmodified to notifier function
2054 * @info: notifier information data
2055 *
2056 * Call all network notifier blocks. Parameters and return value
2057 * are as for raw_notifier_call_chain().
2058 */
2059
2060static int call_netdevice_notifiers_info(unsigned long val,
2061 struct netdev_notifier_info *info)
2062{
2063 struct net *net = dev_net(info->dev);
2064 int ret;
2065
2066 ASSERT_RTNL();
2067
2068 /* Run per-netns notifier block chain first, then run the global one.
2069 * Hopefully, one day, the global one is going to be removed after
2070 * all notifier block registrators get converted to be per-netns.
2071 */
2072 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2073 if (ret & NOTIFY_STOP_MASK)
2074 return ret;
2075 return raw_notifier_call_chain(&netdev_chain, val, info);
2076}
2077
2078static int call_netdevice_notifiers_extack(unsigned long val,
2079 struct net_device *dev,
2080 struct netlink_ext_ack *extack)
2081{
2082 struct netdev_notifier_info info = {
2083 .dev = dev,
2084 .extack = extack,
2085 };
2086
2087 return call_netdevice_notifiers_info(val, &info);
2088}
2089
2090/**
2091 * call_netdevice_notifiers - call all network notifier blocks
2092 * @val: value passed unmodified to notifier function
2093 * @dev: net_device pointer passed unmodified to notifier function
2094 *
2095 * Call all network notifier blocks. Parameters and return value
2096 * are as for raw_notifier_call_chain().
2097 */
2098
2099int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2100{
2101 return call_netdevice_notifiers_extack(val, dev, NULL);
2102}
2103EXPORT_SYMBOL(call_netdevice_notifiers);
2104
2105/**
2106 * call_netdevice_notifiers_mtu - call all network notifier blocks
2107 * @val: value passed unmodified to notifier function
2108 * @dev: net_device pointer passed unmodified to notifier function
2109 * @arg: additional u32 argument passed to the notifier function
2110 *
2111 * Call all network notifier blocks. Parameters and return value
2112 * are as for raw_notifier_call_chain().
2113 */
2114static int call_netdevice_notifiers_mtu(unsigned long val,
2115 struct net_device *dev, u32 arg)
2116{
2117 struct netdev_notifier_info_ext info = {
2118 .info.dev = dev,
2119 .ext.mtu = arg,
2120 };
2121
2122 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2123
2124 return call_netdevice_notifiers_info(val, &info.info);
2125}
2126
2127#ifdef CONFIG_NET_INGRESS
2128static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2129
2130void net_inc_ingress_queue(void)
2131{
2132 static_branch_inc(&ingress_needed_key);
2133}
2134EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2135
2136void net_dec_ingress_queue(void)
2137{
2138 static_branch_dec(&ingress_needed_key);
2139}
2140EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2141#endif
2142
2143#ifdef CONFIG_NET_EGRESS
2144static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2145
2146void net_inc_egress_queue(void)
2147{
2148 static_branch_inc(&egress_needed_key);
2149}
2150EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2151
2152void net_dec_egress_queue(void)
2153{
2154 static_branch_dec(&egress_needed_key);
2155}
2156EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2157#endif
2158
2159static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2160#ifdef CONFIG_JUMP_LABEL
2161static atomic_t netstamp_needed_deferred;
2162static atomic_t netstamp_wanted;
2163static void netstamp_clear(struct work_struct *work)
2164{
2165 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2166 int wanted;
2167
2168 wanted = atomic_add_return(deferred, &netstamp_wanted);
2169 if (wanted > 0)
2170 static_branch_enable(&netstamp_needed_key);
2171 else
2172 static_branch_disable(&netstamp_needed_key);
2173}
2174static DECLARE_WORK(netstamp_work, netstamp_clear);
2175#endif
2176
2177void net_enable_timestamp(void)
2178{
2179#ifdef CONFIG_JUMP_LABEL
2180 int wanted;
2181
2182 while (1) {
2183 wanted = atomic_read(&netstamp_wanted);
2184 if (wanted <= 0)
2185 break;
2186 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2187 return;
2188 }
2189 atomic_inc(&netstamp_needed_deferred);
2190 schedule_work(&netstamp_work);
2191#else
2192 static_branch_inc(&netstamp_needed_key);
2193#endif
2194}
2195EXPORT_SYMBOL(net_enable_timestamp);
2196
2197void net_disable_timestamp(void)
2198{
2199#ifdef CONFIG_JUMP_LABEL
2200 int wanted;
2201
2202 while (1) {
2203 wanted = atomic_read(&netstamp_wanted);
2204 if (wanted <= 1)
2205 break;
2206 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2207 return;
2208 }
2209 atomic_dec(&netstamp_needed_deferred);
2210 schedule_work(&netstamp_work);
2211#else
2212 static_branch_dec(&netstamp_needed_key);
2213#endif
2214}
2215EXPORT_SYMBOL(net_disable_timestamp);
2216
2217static inline void net_timestamp_set(struct sk_buff *skb)
2218{
2219 skb->tstamp = 0;
2220 if (static_branch_unlikely(&netstamp_needed_key))
2221 __net_timestamp(skb);
2222}
2223
2224#define net_timestamp_check(COND, SKB) \
2225 if (static_branch_unlikely(&netstamp_needed_key)) { \
2226 if ((COND) && !(SKB)->tstamp) \
2227 __net_timestamp(SKB); \
2228 } \
2229
2230bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2231{
2232 return __is_skb_forwardable(dev, skb, true);
2233}
2234EXPORT_SYMBOL_GPL(is_skb_forwardable);
2235
2236static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2237 bool check_mtu)
2238{
2239 int ret = ____dev_forward_skb(dev, skb, check_mtu);
2240
2241 if (likely(!ret)) {
2242 skb->protocol = eth_type_trans(skb, dev);
2243 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2244 }
2245
2246 return ret;
2247}
2248
2249int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2250{
2251 return __dev_forward_skb2(dev, skb, true);
2252}
2253EXPORT_SYMBOL_GPL(__dev_forward_skb);
2254
2255/**
2256 * dev_forward_skb - loopback an skb to another netif
2257 *
2258 * @dev: destination network device
2259 * @skb: buffer to forward
2260 *
2261 * return values:
2262 * NET_RX_SUCCESS (no congestion)
2263 * NET_RX_DROP (packet was dropped, but freed)
2264 *
2265 * dev_forward_skb can be used for injecting an skb from the
2266 * start_xmit function of one device into the receive queue
2267 * of another device.
2268 *
2269 * The receiving device may be in another namespace, so
2270 * we have to clear all information in the skb that could
2271 * impact namespace isolation.
2272 */
2273int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2274{
2275 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2276}
2277EXPORT_SYMBOL_GPL(dev_forward_skb);
2278
2279int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2280{
2281 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2282}
2283
2284static inline int deliver_skb(struct sk_buff *skb,
2285 struct packet_type *pt_prev,
2286 struct net_device *orig_dev)
2287{
2288 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2289 return -ENOMEM;
2290 refcount_inc(&skb->users);
2291 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2292}
2293
2294static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2295 struct packet_type **pt,
2296 struct net_device *orig_dev,
2297 __be16 type,
2298 struct list_head *ptype_list)
2299{
2300 struct packet_type *ptype, *pt_prev = *pt;
2301
2302 list_for_each_entry_rcu(ptype, ptype_list, list) {
2303 if (ptype->type != type)
2304 continue;
2305 if (pt_prev)
2306 deliver_skb(skb, pt_prev, orig_dev);
2307 pt_prev = ptype;
2308 }
2309 *pt = pt_prev;
2310}
2311
2312static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2313{
2314 if (!ptype->af_packet_priv || !skb->sk)
2315 return false;
2316
2317 if (ptype->id_match)
2318 return ptype->id_match(ptype, skb->sk);
2319 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2320 return true;
2321
2322 return false;
2323}
2324
2325/**
2326 * dev_nit_active - return true if any network interface taps are in use
2327 *
2328 * @dev: network device to check for the presence of taps
2329 */
2330bool dev_nit_active(struct net_device *dev)
2331{
2332 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2333}
2334EXPORT_SYMBOL_GPL(dev_nit_active);
2335
2336/*
2337 * Support routine. Sends outgoing frames to any network
2338 * taps currently in use.
2339 */
2340
2341void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2342{
2343 struct packet_type *ptype;
2344 struct sk_buff *skb2 = NULL;
2345 struct packet_type *pt_prev = NULL;
2346 struct list_head *ptype_list = &ptype_all;
2347
2348 rcu_read_lock();
2349again:
2350 list_for_each_entry_rcu(ptype, ptype_list, list) {
2351 if (ptype->ignore_outgoing)
2352 continue;
2353
2354 /* Never send packets back to the socket
2355 * they originated from - MvS (miquels@drinkel.ow.org)
2356 */
2357 if (skb_loop_sk(ptype, skb))
2358 continue;
2359
2360 if (pt_prev) {
2361 deliver_skb(skb2, pt_prev, skb->dev);
2362 pt_prev = ptype;
2363 continue;
2364 }
2365
2366 /* need to clone skb, done only once */
2367 skb2 = skb_clone(skb, GFP_ATOMIC);
2368 if (!skb2)
2369 goto out_unlock;
2370
2371 net_timestamp_set(skb2);
2372
2373 /* skb->nh should be correctly
2374 * set by sender, so that the second statement is
2375 * just protection against buggy protocols.
2376 */
2377 skb_reset_mac_header(skb2);
2378
2379 if (skb_network_header(skb2) < skb2->data ||
2380 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2381 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2382 ntohs(skb2->protocol),
2383 dev->name);
2384 skb_reset_network_header(skb2);
2385 }
2386
2387 skb2->transport_header = skb2->network_header;
2388 skb2->pkt_type = PACKET_OUTGOING;
2389 pt_prev = ptype;
2390 }
2391
2392 if (ptype_list == &ptype_all) {
2393 ptype_list = &dev->ptype_all;
2394 goto again;
2395 }
2396out_unlock:
2397 if (pt_prev) {
2398 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2399 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2400 else
2401 kfree_skb(skb2);
2402 }
2403 rcu_read_unlock();
2404}
2405EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2406
2407/**
2408 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2409 * @dev: Network device
2410 * @txq: number of queues available
2411 *
2412 * If real_num_tx_queues is changed the tc mappings may no longer be
2413 * valid. To resolve this verify the tc mapping remains valid and if
2414 * not NULL the mapping. With no priorities mapping to this
2415 * offset/count pair it will no longer be used. In the worst case TC0
2416 * is invalid nothing can be done so disable priority mappings. If is
2417 * expected that drivers will fix this mapping if they can before
2418 * calling netif_set_real_num_tx_queues.
2419 */
2420static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2421{
2422 int i;
2423 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2424
2425 /* If TC0 is invalidated disable TC mapping */
2426 if (tc->offset + tc->count > txq) {
2427 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2428 dev->num_tc = 0;
2429 return;
2430 }
2431
2432 /* Invalidated prio to tc mappings set to TC0 */
2433 for (i = 1; i < TC_BITMASK + 1; i++) {
2434 int q = netdev_get_prio_tc_map(dev, i);
2435
2436 tc = &dev->tc_to_txq[q];
2437 if (tc->offset + tc->count > txq) {
2438 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2439 i, q);
2440 netdev_set_prio_tc_map(dev, i, 0);
2441 }
2442 }
2443}
2444
2445int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2446{
2447 if (dev->num_tc) {
2448 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2449 int i;
2450
2451 /* walk through the TCs and see if it falls into any of them */
2452 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2453 if ((txq - tc->offset) < tc->count)
2454 return i;
2455 }
2456
2457 /* didn't find it, just return -1 to indicate no match */
2458 return -1;
2459 }
2460
2461 return 0;
2462}
2463EXPORT_SYMBOL(netdev_txq_to_tc);
2464
2465#ifdef CONFIG_XPS
2466struct static_key xps_needed __read_mostly;
2467EXPORT_SYMBOL(xps_needed);
2468struct static_key xps_rxqs_needed __read_mostly;
2469EXPORT_SYMBOL(xps_rxqs_needed);
2470static DEFINE_MUTEX(xps_map_mutex);
2471#define xmap_dereference(P) \
2472 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2473
2474static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2475 int tci, u16 index)
2476{
2477 struct xps_map *map = NULL;
2478 int pos;
2479
2480 if (dev_maps)
2481 map = xmap_dereference(dev_maps->attr_map[tci]);
2482 if (!map)
2483 return false;
2484
2485 for (pos = map->len; pos--;) {
2486 if (map->queues[pos] != index)
2487 continue;
2488
2489 if (map->len > 1) {
2490 map->queues[pos] = map->queues[--map->len];
2491 break;
2492 }
2493
2494 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2495 kfree_rcu(map, rcu);
2496 return false;
2497 }
2498
2499 return true;
2500}
2501
2502static bool remove_xps_queue_cpu(struct net_device *dev,
2503 struct xps_dev_maps *dev_maps,
2504 int cpu, u16 offset, u16 count)
2505{
2506 int num_tc = dev->num_tc ? : 1;
2507 bool active = false;
2508 int tci;
2509
2510 for (tci = cpu * num_tc; num_tc--; tci++) {
2511 int i, j;
2512
2513 for (i = count, j = offset; i--; j++) {
2514 if (!remove_xps_queue(dev_maps, tci, j))
2515 break;
2516 }
2517
2518 active |= i < 0;
2519 }
2520
2521 return active;
2522}
2523
2524static void reset_xps_maps(struct net_device *dev,
2525 struct xps_dev_maps *dev_maps,
2526 bool is_rxqs_map)
2527{
2528 if (is_rxqs_map) {
2529 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2530 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2531 } else {
2532 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2533 }
2534 static_key_slow_dec_cpuslocked(&xps_needed);
2535 kfree_rcu(dev_maps, rcu);
2536}
2537
2538static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2539 struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2540 u16 offset, u16 count, bool is_rxqs_map)
2541{
2542 bool active = false;
2543 int i, j;
2544
2545 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2546 j < nr_ids;)
2547 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2548 count);
2549 if (!active)
2550 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2551
2552 if (!is_rxqs_map) {
2553 for (i = offset + (count - 1); count--; i--) {
2554 netdev_queue_numa_node_write(
2555 netdev_get_tx_queue(dev, i),
2556 NUMA_NO_NODE);
2557 }
2558 }
2559}
2560
2561static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2562 u16 count)
2563{
2564 const unsigned long *possible_mask = NULL;
2565 struct xps_dev_maps *dev_maps;
2566 unsigned int nr_ids;
2567
2568 if (!static_key_false(&xps_needed))
2569 return;
2570
2571 cpus_read_lock();
2572 mutex_lock(&xps_map_mutex);
2573
2574 if (static_key_false(&xps_rxqs_needed)) {
2575 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2576 if (dev_maps) {
2577 nr_ids = dev->num_rx_queues;
2578 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2579 offset, count, true);
2580 }
2581 }
2582
2583 dev_maps = xmap_dereference(dev->xps_cpus_map);
2584 if (!dev_maps)
2585 goto out_no_maps;
2586
2587 if (num_possible_cpus() > 1)
2588 possible_mask = cpumask_bits(cpu_possible_mask);
2589 nr_ids = nr_cpu_ids;
2590 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2591 false);
2592
2593out_no_maps:
2594 mutex_unlock(&xps_map_mutex);
2595 cpus_read_unlock();
2596}
2597
2598static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2599{
2600 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2601}
2602
2603static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2604 u16 index, bool is_rxqs_map)
2605{
2606 struct xps_map *new_map;
2607 int alloc_len = XPS_MIN_MAP_ALLOC;
2608 int i, pos;
2609
2610 for (pos = 0; map && pos < map->len; pos++) {
2611 if (map->queues[pos] != index)
2612 continue;
2613 return map;
2614 }
2615
2616 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2617 if (map) {
2618 if (pos < map->alloc_len)
2619 return map;
2620
2621 alloc_len = map->alloc_len * 2;
2622 }
2623
2624 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2625 * map
2626 */
2627 if (is_rxqs_map)
2628 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2629 else
2630 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2631 cpu_to_node(attr_index));
2632 if (!new_map)
2633 return NULL;
2634
2635 for (i = 0; i < pos; i++)
2636 new_map->queues[i] = map->queues[i];
2637 new_map->alloc_len = alloc_len;
2638 new_map->len = pos;
2639
2640 return new_map;
2641}
2642
2643/* Must be called under cpus_read_lock */
2644int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2645 u16 index, bool is_rxqs_map)
2646{
2647 const unsigned long *online_mask = NULL, *possible_mask = NULL;
2648 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2649 int i, j, tci, numa_node_id = -2;
2650 int maps_sz, num_tc = 1, tc = 0;
2651 struct xps_map *map, *new_map;
2652 bool active = false;
2653 unsigned int nr_ids;
2654
2655 if (dev->num_tc) {
2656 /* Do not allow XPS on subordinate device directly */
2657 num_tc = dev->num_tc;
2658 if (num_tc < 0)
2659 return -EINVAL;
2660
2661 /* If queue belongs to subordinate dev use its map */
2662 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2663
2664 tc = netdev_txq_to_tc(dev, index);
2665 if (tc < 0)
2666 return -EINVAL;
2667 }
2668
2669 mutex_lock(&xps_map_mutex);
2670 if (is_rxqs_map) {
2671 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2672 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2673 nr_ids = dev->num_rx_queues;
2674 } else {
2675 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2676 if (num_possible_cpus() > 1) {
2677 online_mask = cpumask_bits(cpu_online_mask);
2678 possible_mask = cpumask_bits(cpu_possible_mask);
2679 }
2680 dev_maps = xmap_dereference(dev->xps_cpus_map);
2681 nr_ids = nr_cpu_ids;
2682 }
2683
2684 if (maps_sz < L1_CACHE_BYTES)
2685 maps_sz = L1_CACHE_BYTES;
2686
2687 /* allocate memory for queue storage */
2688 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2689 j < nr_ids;) {
2690 if (!new_dev_maps)
2691 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2692 if (!new_dev_maps) {
2693 mutex_unlock(&xps_map_mutex);
2694 return -ENOMEM;
2695 }
2696
2697 tci = j * num_tc + tc;
2698 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2699 NULL;
2700
2701 map = expand_xps_map(map, j, index, is_rxqs_map);
2702 if (!map)
2703 goto error;
2704
2705 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2706 }
2707
2708 if (!new_dev_maps)
2709 goto out_no_new_maps;
2710
2711 if (!dev_maps) {
2712 /* Increment static keys at most once per type */
2713 static_key_slow_inc_cpuslocked(&xps_needed);
2714 if (is_rxqs_map)
2715 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2716 }
2717
2718 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2719 j < nr_ids;) {
2720 /* copy maps belonging to foreign traffic classes */
2721 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2722 /* fill in the new device map from the old device map */
2723 map = xmap_dereference(dev_maps->attr_map[tci]);
2724 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2725 }
2726
2727 /* We need to explicitly update tci as prevous loop
2728 * could break out early if dev_maps is NULL.
2729 */
2730 tci = j * num_tc + tc;
2731
2732 if (netif_attr_test_mask(j, mask, nr_ids) &&
2733 netif_attr_test_online(j, online_mask, nr_ids)) {
2734 /* add tx-queue to CPU/rx-queue maps */
2735 int pos = 0;
2736
2737 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2738 while ((pos < map->len) && (map->queues[pos] != index))
2739 pos++;
2740
2741 if (pos == map->len)
2742 map->queues[map->len++] = index;
2743#ifdef CONFIG_NUMA
2744 if (!is_rxqs_map) {
2745 if (numa_node_id == -2)
2746 numa_node_id = cpu_to_node(j);
2747 else if (numa_node_id != cpu_to_node(j))
2748 numa_node_id = -1;
2749 }
2750#endif
2751 } else if (dev_maps) {
2752 /* fill in the new device map from the old device map */
2753 map = xmap_dereference(dev_maps->attr_map[tci]);
2754 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2755 }
2756
2757 /* copy maps belonging to foreign traffic classes */
2758 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2759 /* fill in the new device map from the old device map */
2760 map = xmap_dereference(dev_maps->attr_map[tci]);
2761 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2762 }
2763 }
2764
2765 if (is_rxqs_map)
2766 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2767 else
2768 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2769
2770 /* Cleanup old maps */
2771 if (!dev_maps)
2772 goto out_no_old_maps;
2773
2774 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2775 j < nr_ids;) {
2776 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2777 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2778 map = xmap_dereference(dev_maps->attr_map[tci]);
2779 if (map && map != new_map)
2780 kfree_rcu(map, rcu);
2781 }
2782 }
2783
2784 kfree_rcu(dev_maps, rcu);
2785
2786out_no_old_maps:
2787 dev_maps = new_dev_maps;
2788 active = true;
2789
2790out_no_new_maps:
2791 if (!is_rxqs_map) {
2792 /* update Tx queue numa node */
2793 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2794 (numa_node_id >= 0) ?
2795 numa_node_id : NUMA_NO_NODE);
2796 }
2797
2798 if (!dev_maps)
2799 goto out_no_maps;
2800
2801 /* removes tx-queue from unused CPUs/rx-queues */
2802 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2803 j < nr_ids;) {
2804 for (i = tc, tci = j * num_tc; i--; tci++)
2805 active |= remove_xps_queue(dev_maps, tci, index);
2806 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2807 !netif_attr_test_online(j, online_mask, nr_ids))
2808 active |= remove_xps_queue(dev_maps, tci, index);
2809 for (i = num_tc - tc, tci++; --i; tci++)
2810 active |= remove_xps_queue(dev_maps, tci, index);
2811 }
2812
2813 /* free map if not active */
2814 if (!active)
2815 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2816
2817out_no_maps:
2818 mutex_unlock(&xps_map_mutex);
2819
2820 return 0;
2821error:
2822 /* remove any maps that we added */
2823 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2824 j < nr_ids;) {
2825 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2826 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2827 map = dev_maps ?
2828 xmap_dereference(dev_maps->attr_map[tci]) :
2829 NULL;
2830 if (new_map && new_map != map)
2831 kfree(new_map);
2832 }
2833 }
2834
2835 mutex_unlock(&xps_map_mutex);
2836
2837 kfree(new_dev_maps);
2838 return -ENOMEM;
2839}
2840EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2841
2842int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2843 u16 index)
2844{
2845 int ret;
2846
2847 cpus_read_lock();
2848 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2849 cpus_read_unlock();
2850
2851 return ret;
2852}
2853EXPORT_SYMBOL(netif_set_xps_queue);
2854
2855#endif
2856static void netdev_unbind_all_sb_channels(struct net_device *dev)
2857{
2858 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2859
2860 /* Unbind any subordinate channels */
2861 while (txq-- != &dev->_tx[0]) {
2862 if (txq->sb_dev)
2863 netdev_unbind_sb_channel(dev, txq->sb_dev);
2864 }
2865}
2866
2867void netdev_reset_tc(struct net_device *dev)
2868{
2869#ifdef CONFIG_XPS
2870 netif_reset_xps_queues_gt(dev, 0);
2871#endif
2872 netdev_unbind_all_sb_channels(dev);
2873
2874 /* Reset TC configuration of device */
2875 dev->num_tc = 0;
2876 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2877 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2878}
2879EXPORT_SYMBOL(netdev_reset_tc);
2880
2881int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2882{
2883 if (tc >= dev->num_tc)
2884 return -EINVAL;
2885
2886#ifdef CONFIG_XPS
2887 netif_reset_xps_queues(dev, offset, count);
2888#endif
2889 dev->tc_to_txq[tc].count = count;
2890 dev->tc_to_txq[tc].offset = offset;
2891 return 0;
2892}
2893EXPORT_SYMBOL(netdev_set_tc_queue);
2894
2895int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2896{
2897 if (num_tc > TC_MAX_QUEUE)
2898 return -EINVAL;
2899
2900#ifdef CONFIG_XPS
2901 netif_reset_xps_queues_gt(dev, 0);
2902#endif
2903 netdev_unbind_all_sb_channels(dev);
2904
2905 dev->num_tc = num_tc;
2906 return 0;
2907}
2908EXPORT_SYMBOL(netdev_set_num_tc);
2909
2910void netdev_unbind_sb_channel(struct net_device *dev,
2911 struct net_device *sb_dev)
2912{
2913 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2914
2915#ifdef CONFIG_XPS
2916 netif_reset_xps_queues_gt(sb_dev, 0);
2917#endif
2918 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2919 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2920
2921 while (txq-- != &dev->_tx[0]) {
2922 if (txq->sb_dev == sb_dev)
2923 txq->sb_dev = NULL;
2924 }
2925}
2926EXPORT_SYMBOL(netdev_unbind_sb_channel);
2927
2928int netdev_bind_sb_channel_queue(struct net_device *dev,
2929 struct net_device *sb_dev,
2930 u8 tc, u16 count, u16 offset)
2931{
2932 /* Make certain the sb_dev and dev are already configured */
2933 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2934 return -EINVAL;
2935
2936 /* We cannot hand out queues we don't have */
2937 if ((offset + count) > dev->real_num_tx_queues)
2938 return -EINVAL;
2939
2940 /* Record the mapping */
2941 sb_dev->tc_to_txq[tc].count = count;
2942 sb_dev->tc_to_txq[tc].offset = offset;
2943
2944 /* Provide a way for Tx queue to find the tc_to_txq map or
2945 * XPS map for itself.
2946 */
2947 while (count--)
2948 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2949
2950 return 0;
2951}
2952EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2953
2954int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2955{
2956 /* Do not use a multiqueue device to represent a subordinate channel */
2957 if (netif_is_multiqueue(dev))
2958 return -ENODEV;
2959
2960 /* We allow channels 1 - 32767 to be used for subordinate channels.
2961 * Channel 0 is meant to be "native" mode and used only to represent
2962 * the main root device. We allow writing 0 to reset the device back
2963 * to normal mode after being used as a subordinate channel.
2964 */
2965 if (channel > S16_MAX)
2966 return -EINVAL;
2967
2968 dev->num_tc = -channel;
2969
2970 return 0;
2971}
2972EXPORT_SYMBOL(netdev_set_sb_channel);
2973
2974/*
2975 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2976 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2977 */
2978int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2979{
2980 bool disabling;
2981 int rc;
2982
2983 disabling = txq < dev->real_num_tx_queues;
2984
2985 if (txq < 1 || txq > dev->num_tx_queues)
2986 return -EINVAL;
2987
2988 if (dev->reg_state == NETREG_REGISTERED ||
2989 dev->reg_state == NETREG_UNREGISTERING) {
2990 ASSERT_RTNL();
2991
2992 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2993 txq);
2994 if (rc)
2995 return rc;
2996
2997 if (dev->num_tc)
2998 netif_setup_tc(dev, txq);
2999
3000 dev->real_num_tx_queues = txq;
3001
3002 if (disabling) {
3003 synchronize_net();
3004 qdisc_reset_all_tx_gt(dev, txq);
3005#ifdef CONFIG_XPS
3006 netif_reset_xps_queues_gt(dev, txq);
3007#endif
3008 }
3009 } else {
3010 dev->real_num_tx_queues = txq;
3011 }
3012
3013 return 0;
3014}
3015EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3016
3017#ifdef CONFIG_SYSFS
3018/**
3019 * netif_set_real_num_rx_queues - set actual number of RX queues used
3020 * @dev: Network device
3021 * @rxq: Actual number of RX queues
3022 *
3023 * This must be called either with the rtnl_lock held or before
3024 * registration of the net device. Returns 0 on success, or a
3025 * negative error code. If called before registration, it always
3026 * succeeds.
3027 */
3028int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3029{
3030 int rc;
3031
3032 if (rxq < 1 || rxq > dev->num_rx_queues)
3033 return -EINVAL;
3034
3035 if (dev->reg_state == NETREG_REGISTERED) {
3036 ASSERT_RTNL();
3037
3038 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3039 rxq);
3040 if (rc)
3041 return rc;
3042 }
3043
3044 dev->real_num_rx_queues = rxq;
3045 return 0;
3046}
3047EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3048#endif
3049
3050/**
3051 * netif_get_num_default_rss_queues - default number of RSS queues
3052 *
3053 * This routine should set an upper limit on the number of RSS queues
3054 * used by default by multiqueue devices.
3055 */
3056int netif_get_num_default_rss_queues(void)
3057{
3058 return is_kdump_kernel() ?
3059 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3060}
3061EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3062
3063static void __netif_reschedule(struct Qdisc *q)
3064{
3065 struct softnet_data *sd;
3066 unsigned long flags;
3067
3068 local_irq_save(flags);
3069 sd = this_cpu_ptr(&softnet_data);
3070 q->next_sched = NULL;
3071 *sd->output_queue_tailp = q;
3072 sd->output_queue_tailp = &q->next_sched;
3073 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3074 local_irq_restore(flags);
3075}
3076
3077void __netif_schedule(struct Qdisc *q)
3078{
3079 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3080 __netif_reschedule(q);
3081}
3082EXPORT_SYMBOL(__netif_schedule);
3083
3084struct dev_kfree_skb_cb {
3085 enum skb_free_reason reason;
3086};
3087
3088static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3089{
3090 return (struct dev_kfree_skb_cb *)skb->cb;
3091}
3092
3093void netif_schedule_queue(struct netdev_queue *txq)
3094{
3095 rcu_read_lock();
3096 if (!netif_xmit_stopped(txq)) {
3097 struct Qdisc *q = rcu_dereference(txq->qdisc);
3098
3099 __netif_schedule(q);
3100 }
3101 rcu_read_unlock();
3102}
3103EXPORT_SYMBOL(netif_schedule_queue);
3104
3105void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3106{
3107 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3108 struct Qdisc *q;
3109
3110 rcu_read_lock();
3111 q = rcu_dereference(dev_queue->qdisc);
3112 __netif_schedule(q);
3113 rcu_read_unlock();
3114 }
3115}
3116EXPORT_SYMBOL(netif_tx_wake_queue);
3117
3118void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3119{
3120 unsigned long flags;
3121
3122 if (unlikely(!skb))
3123 return;
3124
3125 if (likely(refcount_read(&skb->users) == 1)) {
3126 smp_rmb();
3127 refcount_set(&skb->users, 0);
3128 } else if (likely(!refcount_dec_and_test(&skb->users))) {
3129 return;
3130 }
3131 get_kfree_skb_cb(skb)->reason = reason;
3132 local_irq_save(flags);
3133 skb->next = __this_cpu_read(softnet_data.completion_queue);
3134 __this_cpu_write(softnet_data.completion_queue, skb);
3135 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3136 local_irq_restore(flags);
3137}
3138EXPORT_SYMBOL(__dev_kfree_skb_irq);
3139
3140void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3141{
3142 if (in_irq() || irqs_disabled())
3143 __dev_kfree_skb_irq(skb, reason);
3144 else
3145 dev_kfree_skb(skb);
3146}
3147EXPORT_SYMBOL(__dev_kfree_skb_any);
3148
3149
3150/**
3151 * netif_device_detach - mark device as removed
3152 * @dev: network device
3153 *
3154 * Mark device as removed from system and therefore no longer available.
3155 */
3156void netif_device_detach(struct net_device *dev)
3157{
3158 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3159 netif_running(dev)) {
3160 netif_tx_stop_all_queues(dev);
3161 }
3162}
3163EXPORT_SYMBOL(netif_device_detach);
3164
3165/**
3166 * netif_device_attach - mark device as attached
3167 * @dev: network device
3168 *
3169 * Mark device as attached from system and restart if needed.
3170 */
3171void netif_device_attach(struct net_device *dev)
3172{
3173 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3174 netif_running(dev)) {
3175 netif_tx_wake_all_queues(dev);
3176 __netdev_watchdog_up(dev);
3177 }
3178}
3179EXPORT_SYMBOL(netif_device_attach);
3180
3181/*
3182 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3183 * to be used as a distribution range.
3184 */
3185static u16 skb_tx_hash(const struct net_device *dev,
3186 const struct net_device *sb_dev,
3187 struct sk_buff *skb)
3188{
3189 u32 hash;
3190 u16 qoffset = 0;
3191 u16 qcount = dev->real_num_tx_queues;
3192
3193 if (dev->num_tc) {
3194 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3195
3196 qoffset = sb_dev->tc_to_txq[tc].offset;
3197 qcount = sb_dev->tc_to_txq[tc].count;
3198 }
3199
3200 if (skb_rx_queue_recorded(skb)) {
3201 hash = skb_get_rx_queue(skb);
3202 if (hash >= qoffset)
3203 hash -= qoffset;
3204 while (unlikely(hash >= qcount))
3205 hash -= qcount;
3206 return hash + qoffset;
3207 }
3208
3209 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3210}
3211
3212static void skb_warn_bad_offload(const struct sk_buff *skb)
3213{
3214 static const netdev_features_t null_features;
3215 struct net_device *dev = skb->dev;
3216 const char *name = "";
3217
3218 if (!net_ratelimit())
3219 return;
3220
3221 if (dev) {
3222 if (dev->dev.parent)
3223 name = dev_driver_string(dev->dev.parent);
3224 else
3225 name = netdev_name(dev);
3226 }
3227 skb_dump(KERN_WARNING, skb, false);
3228 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3229 name, dev ? &dev->features : &null_features,
3230 skb->sk ? &skb->sk->sk_route_caps : &null_features);
3231}
3232
3233/*
3234 * Invalidate hardware checksum when packet is to be mangled, and
3235 * complete checksum manually on outgoing path.
3236 */
3237int skb_checksum_help(struct sk_buff *skb)
3238{
3239 __wsum csum;
3240 int ret = 0, offset;
3241
3242 if (skb->ip_summed == CHECKSUM_COMPLETE)
3243 goto out_set_summed;
3244
3245 if (unlikely(skb_is_gso(skb))) {
3246 skb_warn_bad_offload(skb);
3247 return -EINVAL;
3248 }
3249
3250 /* Before computing a checksum, we should make sure no frag could
3251 * be modified by an external entity : checksum could be wrong.
3252 */
3253 if (skb_has_shared_frag(skb)) {
3254 ret = __skb_linearize(skb);
3255 if (ret)
3256 goto out;
3257 }
3258
3259 offset = skb_checksum_start_offset(skb);
3260 BUG_ON(offset >= skb_headlen(skb));
3261 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3262
3263 offset += skb->csum_offset;
3264 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3265
3266 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3267 if (ret)
3268 goto out;
3269
3270 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3271out_set_summed:
3272 skb->ip_summed = CHECKSUM_NONE;
3273out:
3274 return ret;
3275}
3276EXPORT_SYMBOL(skb_checksum_help);
3277
3278int skb_crc32c_csum_help(struct sk_buff *skb)
3279{
3280 __le32 crc32c_csum;
3281 int ret = 0, offset, start;
3282
3283 if (skb->ip_summed != CHECKSUM_PARTIAL)
3284 goto out;
3285
3286 if (unlikely(skb_is_gso(skb)))
3287 goto out;
3288
3289 /* Before computing a checksum, we should make sure no frag could
3290 * be modified by an external entity : checksum could be wrong.
3291 */
3292 if (unlikely(skb_has_shared_frag(skb))) {
3293 ret = __skb_linearize(skb);
3294 if (ret)
3295 goto out;
3296 }
3297 start = skb_checksum_start_offset(skb);
3298 offset = start + offsetof(struct sctphdr, checksum);
3299 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3300 ret = -EINVAL;
3301 goto out;
3302 }
3303
3304 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3305 if (ret)
3306 goto out;
3307
3308 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3309 skb->len - start, ~(__u32)0,
3310 crc32c_csum_stub));
3311 *(__le32 *)(skb->data + offset) = crc32c_csum;
3312 skb->ip_summed = CHECKSUM_NONE;
3313 skb->csum_not_inet = 0;
3314out:
3315 return ret;
3316}
3317
3318__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3319{
3320 __be16 type = skb->protocol;
3321
3322 /* Tunnel gso handlers can set protocol to ethernet. */
3323 if (type == htons(ETH_P_TEB)) {
3324 struct ethhdr *eth;
3325
3326 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3327 return 0;
3328
3329 eth = (struct ethhdr *)skb->data;
3330 type = eth->h_proto;
3331 }
3332
3333 return __vlan_get_protocol(skb, type, depth);
3334}
3335
3336/**
3337 * skb_mac_gso_segment - mac layer segmentation handler.
3338 * @skb: buffer to segment
3339 * @features: features for the output path (see dev->features)
3340 */
3341struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3342 netdev_features_t features)
3343{
3344 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3345 struct packet_offload *ptype;
3346 int vlan_depth = skb->mac_len;
3347 __be16 type = skb_network_protocol(skb, &vlan_depth);
3348
3349 if (unlikely(!type))
3350 return ERR_PTR(-EINVAL);
3351
3352 __skb_pull(skb, vlan_depth);
3353
3354 rcu_read_lock();
3355 list_for_each_entry_rcu(ptype, &offload_base, list) {
3356 if (ptype->type == type && ptype->callbacks.gso_segment) {
3357 segs = ptype->callbacks.gso_segment(skb, features);
3358 break;
3359 }
3360 }
3361 rcu_read_unlock();
3362
3363 __skb_push(skb, skb->data - skb_mac_header(skb));
3364
3365 return segs;
3366}
3367EXPORT_SYMBOL(skb_mac_gso_segment);
3368
3369
3370/* openvswitch calls this on rx path, so we need a different check.
3371 */
3372static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3373{
3374 if (tx_path)
3375 return skb->ip_summed != CHECKSUM_PARTIAL &&
3376 skb->ip_summed != CHECKSUM_UNNECESSARY;
3377
3378 return skb->ip_summed == CHECKSUM_NONE;
3379}
3380
3381/**
3382 * __skb_gso_segment - Perform segmentation on skb.
3383 * @skb: buffer to segment
3384 * @features: features for the output path (see dev->features)
3385 * @tx_path: whether it is called in TX path
3386 *
3387 * This function segments the given skb and returns a list of segments.
3388 *
3389 * It may return NULL if the skb requires no segmentation. This is
3390 * only possible when GSO is used for verifying header integrity.
3391 *
3392 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3393 */
3394struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3395 netdev_features_t features, bool tx_path)
3396{
3397 struct sk_buff *segs;
3398
3399 if (unlikely(skb_needs_check(skb, tx_path))) {
3400 int err;
3401
3402 /* We're going to init ->check field in TCP or UDP header */
3403 err = skb_cow_head(skb, 0);
3404 if (err < 0)
3405 return ERR_PTR(err);
3406 }
3407
3408 /* Only report GSO partial support if it will enable us to
3409 * support segmentation on this frame without needing additional
3410 * work.
3411 */
3412 if (features & NETIF_F_GSO_PARTIAL) {
3413 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3414 struct net_device *dev = skb->dev;
3415
3416 partial_features |= dev->features & dev->gso_partial_features;
3417 if (!skb_gso_ok(skb, features | partial_features))
3418 features &= ~NETIF_F_GSO_PARTIAL;
3419 }
3420
3421 BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3422 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3423
3424 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3425 SKB_GSO_CB(skb)->encap_level = 0;
3426
3427 skb_reset_mac_header(skb);
3428 skb_reset_mac_len(skb);
3429
3430 segs = skb_mac_gso_segment(skb, features);
3431
3432 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3433 skb_warn_bad_offload(skb);
3434
3435 return segs;
3436}
3437EXPORT_SYMBOL(__skb_gso_segment);
3438
3439/* Take action when hardware reception checksum errors are detected. */
3440#ifdef CONFIG_BUG
3441void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3442{
3443 if (net_ratelimit()) {
3444 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3445 skb_dump(KERN_ERR, skb, true);
3446 dump_stack();
3447 }
3448}
3449EXPORT_SYMBOL(netdev_rx_csum_fault);
3450#endif
3451
3452/* XXX: check that highmem exists at all on the given machine. */
3453static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3454{
3455#ifdef CONFIG_HIGHMEM
3456 int i;
3457
3458 if (!(dev->features & NETIF_F_HIGHDMA)) {
3459 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3460 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3461
3462 if (PageHighMem(skb_frag_page(frag)))
3463 return 1;
3464 }
3465 }
3466#endif
3467 return 0;
3468}
3469
3470/* If MPLS offload request, verify we are testing hardware MPLS features
3471 * instead of standard features for the netdev.
3472 */
3473#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3474static netdev_features_t net_mpls_features(struct sk_buff *skb,
3475 netdev_features_t features,
3476 __be16 type)
3477{
3478 if (eth_p_mpls(type))
3479 features &= skb->dev->mpls_features;
3480
3481 return features;
3482}
3483#else
3484static netdev_features_t net_mpls_features(struct sk_buff *skb,
3485 netdev_features_t features,
3486 __be16 type)
3487{
3488 return features;
3489}
3490#endif
3491
3492static netdev_features_t harmonize_features(struct sk_buff *skb,
3493 netdev_features_t features)
3494{
3495 __be16 type;
3496
3497 type = skb_network_protocol(skb, NULL);
3498 features = net_mpls_features(skb, features, type);
3499
3500 if (skb->ip_summed != CHECKSUM_NONE &&
3501 !can_checksum_protocol(features, type)) {
3502 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3503 }
3504 if (illegal_highdma(skb->dev, skb))
3505 features &= ~NETIF_F_SG;
3506
3507 return features;
3508}
3509
3510netdev_features_t passthru_features_check(struct sk_buff *skb,
3511 struct net_device *dev,
3512 netdev_features_t features)
3513{
3514 return features;
3515}
3516EXPORT_SYMBOL(passthru_features_check);
3517
3518static netdev_features_t dflt_features_check(struct sk_buff *skb,
3519 struct net_device *dev,
3520 netdev_features_t features)
3521{
3522 return vlan_features_check(skb, features);
3523}
3524
3525static netdev_features_t gso_features_check(const struct sk_buff *skb,
3526 struct net_device *dev,
3527 netdev_features_t features)
3528{
3529 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3530
3531 if (gso_segs > dev->gso_max_segs)
3532 return features & ~NETIF_F_GSO_MASK;
3533
3534 if (!skb_shinfo(skb)->gso_type) {
3535 skb_warn_bad_offload(skb);
3536 return features & ~NETIF_F_GSO_MASK;
3537 }
3538
3539 /* Support for GSO partial features requires software
3540 * intervention before we can actually process the packets
3541 * so we need to strip support for any partial features now
3542 * and we can pull them back in after we have partially
3543 * segmented the frame.
3544 */
3545 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3546 features &= ~dev->gso_partial_features;
3547
3548 /* Make sure to clear the IPv4 ID mangling feature if the
3549 * IPv4 header has the potential to be fragmented.
3550 */
3551 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3552 struct iphdr *iph = skb->encapsulation ?
3553 inner_ip_hdr(skb) : ip_hdr(skb);
3554
3555 if (!(iph->frag_off & htons(IP_DF)))
3556 features &= ~NETIF_F_TSO_MANGLEID;
3557 }
3558
3559 return features;
3560}
3561
3562netdev_features_t netif_skb_features(struct sk_buff *skb)
3563{
3564 struct net_device *dev = skb->dev;
3565 netdev_features_t features = dev->features;
3566
3567 if (skb_is_gso(skb))
3568 features = gso_features_check(skb, dev, features);
3569
3570 /* If encapsulation offload request, verify we are testing
3571 * hardware encapsulation features instead of standard
3572 * features for the netdev
3573 */
3574 if (skb->encapsulation)
3575 features &= dev->hw_enc_features;
3576
3577 if (skb_vlan_tagged(skb))
3578 features = netdev_intersect_features(features,
3579 dev->vlan_features |
3580 NETIF_F_HW_VLAN_CTAG_TX |
3581 NETIF_F_HW_VLAN_STAG_TX);
3582
3583 if (dev->netdev_ops->ndo_features_check)
3584 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3585 features);
3586 else
3587 features &= dflt_features_check(skb, dev, features);
3588
3589 return harmonize_features(skb, features);
3590}
3591EXPORT_SYMBOL(netif_skb_features);
3592
3593static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3594 struct netdev_queue *txq, bool more)
3595{
3596 unsigned int len;
3597 int rc;
3598
3599 if (dev_nit_active(dev))
3600 dev_queue_xmit_nit(skb, dev);
3601
3602 len = skb->len;
3603 PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3604 trace_net_dev_start_xmit(skb, dev);
3605 rc = netdev_start_xmit(skb, dev, txq, more);
3606 trace_net_dev_xmit(skb, rc, dev, len);
3607
3608 return rc;
3609}
3610
3611struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3612 struct netdev_queue *txq, int *ret)
3613{
3614 struct sk_buff *skb = first;
3615 int rc = NETDEV_TX_OK;
3616
3617 while (skb) {
3618 struct sk_buff *next = skb->next;
3619
3620 skb_mark_not_on_list(skb);
3621 rc = xmit_one(skb, dev, txq, next != NULL);
3622 if (unlikely(!dev_xmit_complete(rc))) {
3623 skb->next = next;
3624 goto out;
3625 }
3626
3627 skb = next;
3628 if (netif_tx_queue_stopped(txq) && skb) {
3629 rc = NETDEV_TX_BUSY;
3630 break;
3631 }
3632 }
3633
3634out:
3635 *ret = rc;
3636 return skb;
3637}
3638
3639static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3640 netdev_features_t features)
3641{
3642 if (skb_vlan_tag_present(skb) &&
3643 !vlan_hw_offload_capable(features, skb->vlan_proto))
3644 skb = __vlan_hwaccel_push_inside(skb);
3645 return skb;
3646}
3647
3648int skb_csum_hwoffload_help(struct sk_buff *skb,
3649 const netdev_features_t features)
3650{
3651 if (unlikely(skb_csum_is_sctp(skb)))
3652 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3653 skb_crc32c_csum_help(skb);
3654
3655 if (features & NETIF_F_HW_CSUM)
3656 return 0;
3657
3658 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3659 switch (skb->csum_offset) {
3660 case offsetof(struct tcphdr, check):
3661 case offsetof(struct udphdr, check):
3662 return 0;
3663 }
3664 }
3665
3666 return skb_checksum_help(skb);
3667}
3668EXPORT_SYMBOL(skb_csum_hwoffload_help);
3669
3670static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3671{
3672 netdev_features_t features;
3673
3674 features = netif_skb_features(skb);
3675 skb = validate_xmit_vlan(skb, features);
3676 if (unlikely(!skb))
3677 goto out_null;
3678
3679 skb = sk_validate_xmit_skb(skb, dev);
3680 if (unlikely(!skb))
3681 goto out_null;
3682
3683 if (netif_needs_gso(skb, features)) {
3684 struct sk_buff *segs;
3685
3686 segs = skb_gso_segment(skb, features);
3687 if (IS_ERR(segs)) {
3688 goto out_kfree_skb;
3689 } else if (segs) {
3690 consume_skb(skb);
3691 skb = segs;
3692 }
3693 } else {
3694 if (skb_needs_linearize(skb, features) &&
3695 __skb_linearize(skb))
3696 goto out_kfree_skb;
3697
3698 /* If packet is not checksummed and device does not
3699 * support checksumming for this protocol, complete
3700 * checksumming here.
3701 */
3702 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3703 if (skb->encapsulation)
3704 skb_set_inner_transport_header(skb,
3705 skb_checksum_start_offset(skb));
3706 else
3707 skb_set_transport_header(skb,
3708 skb_checksum_start_offset(skb));
3709 if (skb_csum_hwoffload_help(skb, features))
3710 goto out_kfree_skb;
3711 }
3712 }
3713
3714 skb = validate_xmit_xfrm(skb, features, again);
3715
3716 return skb;
3717
3718out_kfree_skb:
3719 kfree_skb(skb);
3720out_null:
3721 atomic_long_inc(&dev->tx_dropped);
3722 return NULL;
3723}
3724
3725struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3726{
3727 struct sk_buff *next, *head = NULL, *tail;
3728
3729 for (; skb != NULL; skb = next) {
3730 next = skb->next;
3731 skb_mark_not_on_list(skb);
3732
3733 /* in case skb wont be segmented, point to itself */
3734 skb->prev = skb;
3735
3736 skb = validate_xmit_skb(skb, dev, again);
3737 if (!skb)
3738 continue;
3739
3740 if (!head)
3741 head = skb;
3742 else
3743 tail->next = skb;
3744 /* If skb was segmented, skb->prev points to
3745 * the last segment. If not, it still contains skb.
3746 */
3747 tail = skb->prev;
3748 }
3749 return head;
3750}
3751EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3752
3753static void qdisc_pkt_len_init(struct sk_buff *skb)
3754{
3755 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3756
3757 qdisc_skb_cb(skb)->pkt_len = skb->len;
3758
3759 /* To get more precise estimation of bytes sent on wire,
3760 * we add to pkt_len the headers size of all segments
3761 */
3762 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3763 unsigned int hdr_len;
3764 u16 gso_segs = shinfo->gso_segs;
3765
3766 /* mac layer + network layer */
3767 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3768
3769 /* + transport layer */
3770 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3771 const struct tcphdr *th;
3772 struct tcphdr _tcphdr;
3773
3774 th = skb_header_pointer(skb, skb_transport_offset(skb),
3775 sizeof(_tcphdr), &_tcphdr);
3776 if (likely(th))
3777 hdr_len += __tcp_hdrlen(th);
3778 } else {
3779 struct udphdr _udphdr;
3780
3781 if (skb_header_pointer(skb, skb_transport_offset(skb),
3782 sizeof(_udphdr), &_udphdr))
3783 hdr_len += sizeof(struct udphdr);
3784 }
3785
3786 if (shinfo->gso_type & SKB_GSO_DODGY)
3787 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3788 shinfo->gso_size);
3789
3790 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3791 }
3792}
3793
3794static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3795 struct net_device *dev,
3796 struct netdev_queue *txq)
3797{
3798 spinlock_t *root_lock = qdisc_lock(q);
3799 struct sk_buff *to_free = NULL;
3800 bool contended;
3801 int rc;
3802
3803 qdisc_calculate_pkt_len(skb, q);
3804
3805 if (q->flags & TCQ_F_NOLOCK) {
3806 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3807 qdisc_run(q);
3808
3809 if (unlikely(to_free))
3810 kfree_skb_list(to_free);
3811 return rc;
3812 }
3813
3814 /*
3815 * Heuristic to force contended enqueues to serialize on a
3816 * separate lock before trying to get qdisc main lock.
3817 * This permits qdisc->running owner to get the lock more
3818 * often and dequeue packets faster.
3819 */
3820 contended = qdisc_is_running(q);
3821 if (unlikely(contended))
3822 spin_lock(&q->busylock);
3823
3824 spin_lock(root_lock);
3825 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3826 __qdisc_drop(skb, &to_free);
3827 rc = NET_XMIT_DROP;
3828 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3829 qdisc_run_begin(q)) {
3830 /*
3831 * This is a work-conserving queue; there are no old skbs
3832 * waiting to be sent out; and the qdisc is not running -
3833 * xmit the skb directly.
3834 */
3835
3836 qdisc_bstats_update(q, skb);
3837
3838 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3839 if (unlikely(contended)) {
3840 spin_unlock(&q->busylock);
3841 contended = false;
3842 }
3843 __qdisc_run(q);
3844 }
3845
3846 qdisc_run_end(q);
3847 rc = NET_XMIT_SUCCESS;
3848 } else {
3849 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3850 if (qdisc_run_begin(q)) {
3851 if (unlikely(contended)) {
3852 spin_unlock(&q->busylock);
3853 contended = false;
3854 }
3855 __qdisc_run(q);
3856 qdisc_run_end(q);
3857 }
3858 }
3859 spin_unlock(root_lock);
3860 if (unlikely(to_free))
3861 kfree_skb_list(to_free);
3862 if (unlikely(contended))
3863 spin_unlock(&q->busylock);
3864 return rc;
3865}
3866
3867#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3868static void skb_update_prio(struct sk_buff *skb)
3869{
3870 const struct netprio_map *map;
3871 const struct sock *sk;
3872 unsigned int prioidx;
3873
3874 if (skb->priority)
3875 return;
3876 map = rcu_dereference_bh(skb->dev->priomap);
3877 if (!map)
3878 return;
3879 sk = skb_to_full_sk(skb);
3880 if (!sk)
3881 return;
3882
3883 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3884
3885 if (prioidx < map->priomap_len)
3886 skb->priority = map->priomap[prioidx];
3887}
3888#else
3889#define skb_update_prio(skb)
3890#endif
3891
3892/**
3893 * dev_loopback_xmit - loop back @skb
3894 * @net: network namespace this loopback is happening in
3895 * @sk: sk needed to be a netfilter okfn
3896 * @skb: buffer to transmit
3897 */
3898int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3899{
3900 skb_reset_mac_header(skb);
3901 __skb_pull(skb, skb_network_offset(skb));
3902 skb->pkt_type = PACKET_LOOPBACK;
3903 skb->ip_summed = CHECKSUM_UNNECESSARY;
3904 WARN_ON(!skb_dst(skb));
3905 skb_dst_force(skb);
3906 netif_rx_ni(skb);
3907 return 0;
3908}
3909EXPORT_SYMBOL(dev_loopback_xmit);
3910
3911#ifdef CONFIG_NET_EGRESS
3912static struct sk_buff *
3913sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3914{
3915 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3916 struct tcf_result cl_res;
3917
3918 if (!miniq)
3919 return skb;
3920
3921 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3922 qdisc_skb_cb(skb)->mru = 0;
3923 qdisc_skb_cb(skb)->post_ct = false;
3924 mini_qdisc_bstats_cpu_update(miniq, skb);
3925
3926 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3927 case TC_ACT_OK:
3928 case TC_ACT_RECLASSIFY:
3929 skb->tc_index = TC_H_MIN(cl_res.classid);
3930 break;
3931 case TC_ACT_SHOT:
3932 mini_qdisc_qstats_cpu_drop(miniq);
3933 *ret = NET_XMIT_DROP;
3934 kfree_skb(skb);
3935 return NULL;
3936 case TC_ACT_STOLEN:
3937 case TC_ACT_QUEUED:
3938 case TC_ACT_TRAP:
3939 *ret = NET_XMIT_SUCCESS;
3940 consume_skb(skb);
3941 return NULL;
3942 case TC_ACT_REDIRECT:
3943 /* No need to push/pop skb's mac_header here on egress! */
3944 skb_do_redirect(skb);
3945 *ret = NET_XMIT_SUCCESS;
3946 return NULL;
3947 default:
3948 break;
3949 }
3950
3951 return skb;
3952}
3953#endif /* CONFIG_NET_EGRESS */
3954
3955#ifdef CONFIG_XPS
3956static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3957 struct xps_dev_maps *dev_maps, unsigned int tci)
3958{
3959 struct xps_map *map;
3960 int queue_index = -1;
3961
3962 if (dev->num_tc) {
3963 tci *= dev->num_tc;
3964 tci += netdev_get_prio_tc_map(dev, skb->priority);
3965 }
3966
3967 map = rcu_dereference(dev_maps->attr_map[tci]);
3968 if (map) {
3969 if (map->len == 1)
3970 queue_index = map->queues[0];
3971 else
3972 queue_index = map->queues[reciprocal_scale(
3973 skb_get_hash(skb), map->len)];
3974 if (unlikely(queue_index >= dev->real_num_tx_queues))
3975 queue_index = -1;
3976 }
3977 return queue_index;
3978}
3979#endif
3980
3981static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3982 struct sk_buff *skb)
3983{
3984#ifdef CONFIG_XPS
3985 struct xps_dev_maps *dev_maps;
3986 struct sock *sk = skb->sk;
3987 int queue_index = -1;
3988
3989 if (!static_key_false(&xps_needed))
3990 return -1;
3991
3992 rcu_read_lock();
3993 if (!static_key_false(&xps_rxqs_needed))
3994 goto get_cpus_map;
3995
3996 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3997 if (dev_maps) {
3998 int tci = sk_rx_queue_get(sk);
3999
4000 if (tci >= 0 && tci < dev->num_rx_queues)
4001 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4002 tci);
4003 }
4004
4005get_cpus_map:
4006 if (queue_index < 0) {
4007 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
4008 if (dev_maps) {
4009 unsigned int tci = skb->sender_cpu - 1;
4010
4011 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4012 tci);
4013 }
4014 }
4015 rcu_read_unlock();
4016
4017 return queue_index;
4018#else
4019 return -1;
4020#endif
4021}
4022
4023u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4024 struct net_device *sb_dev)
4025{
4026 return 0;
4027}
4028EXPORT_SYMBOL(dev_pick_tx_zero);
4029
4030u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4031 struct net_device *sb_dev)
4032{
4033 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4034}
4035EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4036
4037u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4038 struct net_device *sb_dev)
4039{
4040 struct sock *sk = skb->sk;
4041 int queue_index = sk_tx_queue_get(sk);
4042
4043 sb_dev = sb_dev ? : dev;
4044
4045 if (queue_index < 0 || skb->ooo_okay ||
4046 queue_index >= dev->real_num_tx_queues) {
4047 int new_index = get_xps_queue(dev, sb_dev, skb);
4048
4049 if (new_index < 0)
4050 new_index = skb_tx_hash(dev, sb_dev, skb);
4051
4052 if (queue_index != new_index && sk &&
4053 sk_fullsock(sk) &&
4054 rcu_access_pointer(sk->sk_dst_cache))
4055 sk_tx_queue_set(sk, new_index);
4056
4057 queue_index = new_index;
4058 }
4059
4060 return queue_index;
4061}
4062EXPORT_SYMBOL(netdev_pick_tx);
4063
4064struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4065 struct sk_buff *skb,
4066 struct net_device *sb_dev)
4067{
4068 int queue_index = 0;
4069
4070#ifdef CONFIG_XPS
4071 u32 sender_cpu = skb->sender_cpu - 1;
4072
4073 if (sender_cpu >= (u32)NR_CPUS)
4074 skb->sender_cpu = raw_smp_processor_id() + 1;
4075#endif
4076
4077 if (dev->real_num_tx_queues != 1) {
4078 const struct net_device_ops *ops = dev->netdev_ops;
4079
4080 if (ops->ndo_select_queue)
4081 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4082 else
4083 queue_index = netdev_pick_tx(dev, skb, sb_dev);
4084
4085 queue_index = netdev_cap_txqueue(dev, queue_index);
4086 }
4087
4088 skb_set_queue_mapping(skb, queue_index);
4089 return netdev_get_tx_queue(dev, queue_index);
4090}
4091
4092/**
4093 * __dev_queue_xmit - transmit a buffer
4094 * @skb: buffer to transmit
4095 * @sb_dev: suboordinate device used for L2 forwarding offload
4096 *
4097 * Queue a buffer for transmission to a network device. The caller must
4098 * have set the device and priority and built the buffer before calling
4099 * this function. The function can be called from an interrupt.
4100 *
4101 * A negative errno code is returned on a failure. A success does not
4102 * guarantee the frame will be transmitted as it may be dropped due
4103 * to congestion or traffic shaping.
4104 *
4105 * -----------------------------------------------------------------------------------
4106 * I notice this method can also return errors from the queue disciplines,
4107 * including NET_XMIT_DROP, which is a positive value. So, errors can also
4108 * be positive.
4109 *
4110 * Regardless of the return value, the skb is consumed, so it is currently
4111 * difficult to retry a send to this method. (You can bump the ref count
4112 * before sending to hold a reference for retry if you are careful.)
4113 *
4114 * When calling this method, interrupts MUST be enabled. This is because
4115 * the BH enable code must have IRQs enabled so that it will not deadlock.
4116 * --BLG
4117 */
4118static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4119{
4120 struct net_device *dev = skb->dev;
4121 struct netdev_queue *txq;
4122 struct Qdisc *q;
4123 int rc = -ENOMEM;
4124 bool again = false;
4125
4126 skb_reset_mac_header(skb);
4127
4128 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4129 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4130
4131 /* Disable soft irqs for various locks below. Also
4132 * stops preemption for RCU.
4133 */
4134 rcu_read_lock_bh();
4135
4136 skb_update_prio(skb);
4137
4138 qdisc_pkt_len_init(skb);
4139#ifdef CONFIG_NET_CLS_ACT
4140 skb->tc_at_ingress = 0;
4141# ifdef CONFIG_NET_EGRESS
4142 if (static_branch_unlikely(&egress_needed_key)) {
4143 skb = sch_handle_egress(skb, &rc, dev);
4144 if (!skb)
4145 goto out;
4146 }
4147# endif
4148#endif
4149 /* If device/qdisc don't need skb->dst, release it right now while
4150 * its hot in this cpu cache.
4151 */
4152 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4153 skb_dst_drop(skb);
4154 else
4155 skb_dst_force(skb);
4156
4157 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4158 q = rcu_dereference_bh(txq->qdisc);
4159
4160 trace_net_dev_queue(skb);
4161 if (q->enqueue) {
4162 rc = __dev_xmit_skb(skb, q, dev, txq);
4163 goto out;
4164 }
4165
4166 /* The device has no queue. Common case for software devices:
4167 * loopback, all the sorts of tunnels...
4168
4169 * Really, it is unlikely that netif_tx_lock protection is necessary
4170 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4171 * counters.)
4172 * However, it is possible, that they rely on protection
4173 * made by us here.
4174
4175 * Check this and shot the lock. It is not prone from deadlocks.
4176 *Either shot noqueue qdisc, it is even simpler 8)
4177 */
4178 if (dev->flags & IFF_UP) {
4179 int cpu = smp_processor_id(); /* ok because BHs are off */
4180
4181 if (txq->xmit_lock_owner != cpu) {
4182 if (dev_xmit_recursion())
4183 goto recursion_alert;
4184
4185 skb = validate_xmit_skb(skb, dev, &again);
4186 if (!skb)
4187 goto out;
4188
4189 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4190 HARD_TX_LOCK(dev, txq, cpu);
4191
4192 if (!netif_xmit_stopped(txq)) {
4193 dev_xmit_recursion_inc();
4194 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4195 dev_xmit_recursion_dec();
4196 if (dev_xmit_complete(rc)) {
4197 HARD_TX_UNLOCK(dev, txq);
4198 goto out;
4199 }
4200 }
4201 HARD_TX_UNLOCK(dev, txq);
4202 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4203 dev->name);
4204 } else {
4205 /* Recursion is detected! It is possible,
4206 * unfortunately
4207 */
4208recursion_alert:
4209 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4210 dev->name);
4211 }
4212 }
4213
4214 rc = -ENETDOWN;
4215 rcu_read_unlock_bh();
4216
4217 atomic_long_inc(&dev->tx_dropped);
4218 kfree_skb_list(skb);
4219 return rc;
4220out:
4221 rcu_read_unlock_bh();
4222 return rc;
4223}
4224
4225int dev_queue_xmit(struct sk_buff *skb)
4226{
4227 return __dev_queue_xmit(skb, NULL);
4228}
4229EXPORT_SYMBOL(dev_queue_xmit);
4230
4231int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4232{
4233 return __dev_queue_xmit(skb, sb_dev);
4234}
4235EXPORT_SYMBOL(dev_queue_xmit_accel);
4236
4237int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4238{
4239 struct net_device *dev = skb->dev;
4240 struct sk_buff *orig_skb = skb;
4241 struct netdev_queue *txq;
4242 int ret = NETDEV_TX_BUSY;
4243 bool again = false;
4244
4245 if (unlikely(!netif_running(dev) ||
4246 !netif_carrier_ok(dev)))
4247 goto drop;
4248
4249 skb = validate_xmit_skb_list(skb, dev, &again);
4250 if (skb != orig_skb)
4251 goto drop;
4252
4253 skb_set_queue_mapping(skb, queue_id);
4254 txq = skb_get_tx_queue(dev, skb);
4255 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4256
4257 local_bh_disable();
4258
4259 dev_xmit_recursion_inc();
4260 HARD_TX_LOCK(dev, txq, smp_processor_id());
4261 if (!netif_xmit_frozen_or_drv_stopped(txq))
4262 ret = netdev_start_xmit(skb, dev, txq, false);
4263 HARD_TX_UNLOCK(dev, txq);
4264 dev_xmit_recursion_dec();
4265
4266 local_bh_enable();
4267 return ret;
4268drop:
4269 atomic_long_inc(&dev->tx_dropped);
4270 kfree_skb_list(skb);
4271 return NET_XMIT_DROP;
4272}
4273EXPORT_SYMBOL(__dev_direct_xmit);
4274
4275/*************************************************************************
4276 * Receiver routines
4277 *************************************************************************/
4278
4279int netdev_max_backlog __read_mostly = 1000;
4280EXPORT_SYMBOL(netdev_max_backlog);
4281
4282int netdev_tstamp_prequeue __read_mostly = 1;
4283int netdev_budget __read_mostly = 300;
4284/* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4285unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4286int weight_p __read_mostly = 64; /* old backlog weight */
4287int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4288int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4289int dev_rx_weight __read_mostly = 64;
4290int dev_tx_weight __read_mostly = 64;
4291/* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4292int gro_normal_batch __read_mostly = 8;
4293
4294/* Called with irq disabled */
4295static inline void ____napi_schedule(struct softnet_data *sd,
4296 struct napi_struct *napi)
4297{
4298 struct task_struct *thread;
4299
4300 if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4301 /* Paired with smp_mb__before_atomic() in
4302 * napi_enable()/dev_set_threaded().
4303 * Use READ_ONCE() to guarantee a complete
4304 * read on napi->thread. Only call
4305 * wake_up_process() when it's not NULL.
4306 */
4307 thread = READ_ONCE(napi->thread);
4308 if (thread) {
4309 /* Avoid doing set_bit() if the thread is in
4310 * INTERRUPTIBLE state, cause napi_thread_wait()
4311 * makes sure to proceed with napi polling
4312 * if the thread is explicitly woken from here.
4313 */
4314 if (READ_ONCE(thread->state) != TASK_INTERRUPTIBLE)
4315 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4316 wake_up_process(thread);
4317 return;
4318 }
4319 }
4320
4321 list_add_tail(&napi->poll_list, &sd->poll_list);
4322 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4323}
4324
4325#ifdef CONFIG_RPS
4326
4327/* One global table that all flow-based protocols share. */
4328struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4329EXPORT_SYMBOL(rps_sock_flow_table);
4330u32 rps_cpu_mask __read_mostly;
4331EXPORT_SYMBOL(rps_cpu_mask);
4332
4333struct static_key_false rps_needed __read_mostly;
4334EXPORT_SYMBOL(rps_needed);
4335struct static_key_false rfs_needed __read_mostly;
4336EXPORT_SYMBOL(rfs_needed);
4337
4338static struct rps_dev_flow *
4339set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4340 struct rps_dev_flow *rflow, u16 next_cpu)
4341{
4342 if (next_cpu < nr_cpu_ids) {
4343#ifdef CONFIG_RFS_ACCEL
4344 struct netdev_rx_queue *rxqueue;
4345 struct rps_dev_flow_table *flow_table;
4346 struct rps_dev_flow *old_rflow;
4347 u32 flow_id;
4348 u16 rxq_index;
4349 int rc;
4350
4351 /* Should we steer this flow to a different hardware queue? */
4352 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4353 !(dev->features & NETIF_F_NTUPLE))
4354 goto out;
4355 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4356 if (rxq_index == skb_get_rx_queue(skb))
4357 goto out;
4358
4359 rxqueue = dev->_rx + rxq_index;
4360 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4361 if (!flow_table)
4362 goto out;
4363 flow_id = skb_get_hash(skb) & flow_table->mask;
4364 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4365 rxq_index, flow_id);
4366 if (rc < 0)
4367 goto out;
4368 old_rflow = rflow;
4369 rflow = &flow_table->flows[flow_id];
4370 rflow->filter = rc;
4371 if (old_rflow->filter == rflow->filter)
4372 old_rflow->filter = RPS_NO_FILTER;
4373 out:
4374#endif
4375 rflow->last_qtail =
4376 per_cpu(softnet_data, next_cpu).input_queue_head;
4377 }
4378
4379 rflow->cpu = next_cpu;
4380 return rflow;
4381}
4382
4383/*
4384 * get_rps_cpu is called from netif_receive_skb and returns the target
4385 * CPU from the RPS map of the receiving queue for a given skb.
4386 * rcu_read_lock must be held on entry.
4387 */
4388static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4389 struct rps_dev_flow **rflowp)
4390{
4391 const struct rps_sock_flow_table *sock_flow_table;
4392 struct netdev_rx_queue *rxqueue = dev->_rx;
4393 struct rps_dev_flow_table *flow_table;
4394 struct rps_map *map;
4395 int cpu = -1;
4396 u32 tcpu;
4397 u32 hash;
4398
4399 if (skb_rx_queue_recorded(skb)) {
4400 u16 index = skb_get_rx_queue(skb);
4401
4402 if (unlikely(index >= dev->real_num_rx_queues)) {
4403 WARN_ONCE(dev->real_num_rx_queues > 1,
4404 "%s received packet on queue %u, but number "
4405 "of RX queues is %u\n",
4406 dev->name, index, dev->real_num_rx_queues);
4407 goto done;
4408 }
4409 rxqueue += index;
4410 }
4411
4412 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4413
4414 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4415 map = rcu_dereference(rxqueue->rps_map);
4416 if (!flow_table && !map)
4417 goto done;
4418
4419 skb_reset_network_header(skb);
4420 hash = skb_get_hash(skb);
4421 if (!hash)
4422 goto done;
4423
4424 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4425 if (flow_table && sock_flow_table) {
4426 struct rps_dev_flow *rflow;
4427 u32 next_cpu;
4428 u32 ident;
4429
4430 /* First check into global flow table if there is a match */
4431 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4432 if ((ident ^ hash) & ~rps_cpu_mask)
4433 goto try_rps;
4434
4435 next_cpu = ident & rps_cpu_mask;
4436
4437 /* OK, now we know there is a match,
4438 * we can look at the local (per receive queue) flow table
4439 */
4440 rflow = &flow_table->flows[hash & flow_table->mask];
4441 tcpu = rflow->cpu;
4442
4443 /*
4444 * If the desired CPU (where last recvmsg was done) is
4445 * different from current CPU (one in the rx-queue flow
4446 * table entry), switch if one of the following holds:
4447 * - Current CPU is unset (>= nr_cpu_ids).
4448 * - Current CPU is offline.
4449 * - The current CPU's queue tail has advanced beyond the
4450 * last packet that was enqueued using this table entry.
4451 * This guarantees that all previous packets for the flow
4452 * have been dequeued, thus preserving in order delivery.
4453 */
4454 if (unlikely(tcpu != next_cpu) &&
4455 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4456 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4457 rflow->last_qtail)) >= 0)) {
4458 tcpu = next_cpu;
4459 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4460 }
4461
4462 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4463 *rflowp = rflow;
4464 cpu = tcpu;
4465 goto done;
4466 }
4467 }
4468
4469try_rps:
4470
4471 if (map) {
4472 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4473 if (cpu_online(tcpu)) {
4474 cpu = tcpu;
4475 goto done;
4476 }
4477 }
4478
4479done:
4480 return cpu;
4481}
4482
4483#ifdef CONFIG_RFS_ACCEL
4484
4485/**
4486 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4487 * @dev: Device on which the filter was set
4488 * @rxq_index: RX queue index
4489 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4490 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4491 *
4492 * Drivers that implement ndo_rx_flow_steer() should periodically call
4493 * this function for each installed filter and remove the filters for
4494 * which it returns %true.
4495 */
4496bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4497 u32 flow_id, u16 filter_id)
4498{
4499 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4500 struct rps_dev_flow_table *flow_table;
4501 struct rps_dev_flow *rflow;
4502 bool expire = true;
4503 unsigned int cpu;
4504
4505 rcu_read_lock();
4506 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4507 if (flow_table && flow_id <= flow_table->mask) {
4508 rflow = &flow_table->flows[flow_id];
4509 cpu = READ_ONCE(rflow->cpu);
4510 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4511 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4512 rflow->last_qtail) <
4513 (int)(10 * flow_table->mask)))
4514 expire = false;
4515 }
4516 rcu_read_unlock();
4517 return expire;
4518}
4519EXPORT_SYMBOL(rps_may_expire_flow);
4520
4521#endif /* CONFIG_RFS_ACCEL */
4522
4523/* Called from hardirq (IPI) context */
4524static void rps_trigger_softirq(void *data)
4525{
4526 struct softnet_data *sd = data;
4527
4528 ____napi_schedule(sd, &sd->backlog);
4529 sd->received_rps++;
4530}
4531
4532#endif /* CONFIG_RPS */
4533
4534/*
4535 * Check if this softnet_data structure is another cpu one
4536 * If yes, queue it to our IPI list and return 1
4537 * If no, return 0
4538 */
4539static int rps_ipi_queued(struct softnet_data *sd)
4540{
4541#ifdef CONFIG_RPS
4542 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4543
4544 if (sd != mysd) {
4545 sd->rps_ipi_next = mysd->rps_ipi_list;
4546 mysd->rps_ipi_list = sd;
4547
4548 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4549 return 1;
4550 }
4551#endif /* CONFIG_RPS */
4552 return 0;
4553}
4554
4555#ifdef CONFIG_NET_FLOW_LIMIT
4556int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4557#endif
4558
4559static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4560{
4561#ifdef CONFIG_NET_FLOW_LIMIT
4562 struct sd_flow_limit *fl;
4563 struct softnet_data *sd;
4564 unsigned int old_flow, new_flow;
4565
4566 if (qlen < (netdev_max_backlog >> 1))
4567 return false;
4568
4569 sd = this_cpu_ptr(&softnet_data);
4570
4571 rcu_read_lock();
4572 fl = rcu_dereference(sd->flow_limit);
4573 if (fl) {
4574 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4575 old_flow = fl->history[fl->history_head];
4576 fl->history[fl->history_head] = new_flow;
4577
4578 fl->history_head++;
4579 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4580
4581 if (likely(fl->buckets[old_flow]))
4582 fl->buckets[old_flow]--;
4583
4584 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4585 fl->count++;
4586 rcu_read_unlock();
4587 return true;
4588 }
4589 }
4590 rcu_read_unlock();
4591#endif
4592 return false;
4593}
4594
4595/*
4596 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4597 * queue (may be a remote CPU queue).
4598 */
4599static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4600 unsigned int *qtail)
4601{
4602 struct softnet_data *sd;
4603 unsigned long flags;
4604 unsigned int qlen;
4605
4606 sd = &per_cpu(softnet_data, cpu);
4607
4608 local_irq_save(flags);
4609
4610 rps_lock(sd);
4611 if (!netif_running(skb->dev))
4612 goto drop;
4613 qlen = skb_queue_len(&sd->input_pkt_queue);
4614 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4615 if (qlen) {
4616enqueue:
4617 __skb_queue_tail(&sd->input_pkt_queue, skb);
4618 input_queue_tail_incr_save(sd, qtail);
4619 rps_unlock(sd);
4620 local_irq_restore(flags);
4621 return NET_RX_SUCCESS;
4622 }
4623
4624 /* Schedule NAPI for backlog device
4625 * We can use non atomic operation since we own the queue lock
4626 */
4627 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4628 if (!rps_ipi_queued(sd))
4629 ____napi_schedule(sd, &sd->backlog);
4630 }
4631 goto enqueue;
4632 }
4633
4634drop:
4635 sd->dropped++;
4636 rps_unlock(sd);
4637
4638 local_irq_restore(flags);
4639
4640 atomic_long_inc(&skb->dev->rx_dropped);
4641 kfree_skb(skb);
4642 return NET_RX_DROP;
4643}
4644
4645static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4646{
4647 struct net_device *dev = skb->dev;
4648 struct netdev_rx_queue *rxqueue;
4649
4650 rxqueue = dev->_rx;
4651
4652 if (skb_rx_queue_recorded(skb)) {
4653 u16 index = skb_get_rx_queue(skb);
4654
4655 if (unlikely(index >= dev->real_num_rx_queues)) {
4656 WARN_ONCE(dev->real_num_rx_queues > 1,
4657 "%s received packet on queue %u, but number "
4658 "of RX queues is %u\n",
4659 dev->name, index, dev->real_num_rx_queues);
4660
4661 return rxqueue; /* Return first rxqueue */
4662 }
4663 rxqueue += index;
4664 }
4665 return rxqueue;
4666}
4667
4668static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4669 struct xdp_buff *xdp,
4670 struct bpf_prog *xdp_prog)
4671{
4672 void *orig_data, *orig_data_end, *hard_start;
4673 struct netdev_rx_queue *rxqueue;
4674 u32 metalen, act = XDP_DROP;
4675 u32 mac_len, frame_sz;
4676 __be16 orig_eth_type;
4677 struct ethhdr *eth;
4678 bool orig_bcast;
4679 int off;
4680
4681 /* Reinjected packets coming from act_mirred or similar should
4682 * not get XDP generic processing.
4683 */
4684 if (skb_is_redirected(skb))
4685 return XDP_PASS;
4686
4687 /* XDP packets must be linear and must have sufficient headroom
4688 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4689 * native XDP provides, thus we need to do it here as well.
4690 */
4691 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4692 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4693 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4694 int troom = skb->tail + skb->data_len - skb->end;
4695
4696 /* In case we have to go down the path and also linearize,
4697 * then lets do the pskb_expand_head() work just once here.
4698 */
4699 if (pskb_expand_head(skb,
4700 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4701 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4702 goto do_drop;
4703 if (skb_linearize(skb))
4704 goto do_drop;
4705 }
4706
4707 /* The XDP program wants to see the packet starting at the MAC
4708 * header.
4709 */
4710 mac_len = skb->data - skb_mac_header(skb);
4711 hard_start = skb->data - skb_headroom(skb);
4712
4713 /* SKB "head" area always have tailroom for skb_shared_info */
4714 frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4715 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4716
4717 rxqueue = netif_get_rxqueue(skb);
4718 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4719 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4720 skb_headlen(skb) + mac_len, true);
4721
4722 orig_data_end = xdp->data_end;
4723 orig_data = xdp->data;
4724 eth = (struct ethhdr *)xdp->data;
4725 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4726 orig_eth_type = eth->h_proto;
4727
4728 act = bpf_prog_run_xdp(xdp_prog, xdp);
4729
4730 /* check if bpf_xdp_adjust_head was used */
4731 off = xdp->data - orig_data;
4732 if (off) {
4733 if (off > 0)
4734 __skb_pull(skb, off);
4735 else if (off < 0)
4736 __skb_push(skb, -off);
4737
4738 skb->mac_header += off;
4739 skb_reset_network_header(skb);
4740 }
4741
4742 /* check if bpf_xdp_adjust_tail was used */
4743 off = xdp->data_end - orig_data_end;
4744 if (off != 0) {
4745 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4746 skb->len += off; /* positive on grow, negative on shrink */
4747 }
4748
4749 /* check if XDP changed eth hdr such SKB needs update */
4750 eth = (struct ethhdr *)xdp->data;
4751 if ((orig_eth_type != eth->h_proto) ||
4752 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4753 __skb_push(skb, ETH_HLEN);
4754 skb->protocol = eth_type_trans(skb, skb->dev);
4755 }
4756
4757 switch (act) {
4758 case XDP_REDIRECT:
4759 case XDP_TX:
4760 __skb_push(skb, mac_len);
4761 break;
4762 case XDP_PASS:
4763 metalen = xdp->data - xdp->data_meta;
4764 if (metalen)
4765 skb_metadata_set(skb, metalen);
4766 break;
4767 default:
4768 bpf_warn_invalid_xdp_action(act);
4769 fallthrough;
4770 case XDP_ABORTED:
4771 trace_xdp_exception(skb->dev, xdp_prog, act);
4772 fallthrough;
4773 case XDP_DROP:
4774 do_drop:
4775 kfree_skb(skb);
4776 break;
4777 }
4778
4779 return act;
4780}
4781
4782/* When doing generic XDP we have to bypass the qdisc layer and the
4783 * network taps in order to match in-driver-XDP behavior.
4784 */
4785void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4786{
4787 struct net_device *dev = skb->dev;
4788 struct netdev_queue *txq;
4789 bool free_skb = true;
4790 int cpu, rc;
4791
4792 txq = netdev_core_pick_tx(dev, skb, NULL);
4793 cpu = smp_processor_id();
4794 HARD_TX_LOCK(dev, txq, cpu);
4795 if (!netif_xmit_stopped(txq)) {
4796 rc = netdev_start_xmit(skb, dev, txq, 0);
4797 if (dev_xmit_complete(rc))
4798 free_skb = false;
4799 }
4800 HARD_TX_UNLOCK(dev, txq);
4801 if (free_skb) {
4802 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4803 kfree_skb(skb);
4804 }
4805}
4806
4807static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4808
4809int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4810{
4811 if (xdp_prog) {
4812 struct xdp_buff xdp;
4813 u32 act;
4814 int err;
4815
4816 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4817 if (act != XDP_PASS) {
4818 switch (act) {
4819 case XDP_REDIRECT:
4820 err = xdp_do_generic_redirect(skb->dev, skb,
4821 &xdp, xdp_prog);
4822 if (err)
4823 goto out_redir;
4824 break;
4825 case XDP_TX:
4826 generic_xdp_tx(skb, xdp_prog);
4827 break;
4828 }
4829 return XDP_DROP;
4830 }
4831 }
4832 return XDP_PASS;
4833out_redir:
4834 kfree_skb(skb);
4835 return XDP_DROP;
4836}
4837EXPORT_SYMBOL_GPL(do_xdp_generic);
4838
4839static int netif_rx_internal(struct sk_buff *skb)
4840{
4841 int ret;
4842
4843 net_timestamp_check(netdev_tstamp_prequeue, skb);
4844
4845 trace_netif_rx(skb);
4846
4847#ifdef CONFIG_RPS
4848 if (static_branch_unlikely(&rps_needed)) {
4849 struct rps_dev_flow voidflow, *rflow = &voidflow;
4850 int cpu;
4851
4852 preempt_disable();
4853 rcu_read_lock();
4854
4855 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4856 if (cpu < 0)
4857 cpu = smp_processor_id();
4858
4859 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4860
4861 rcu_read_unlock();
4862 preempt_enable();
4863 } else
4864#endif
4865 {
4866 unsigned int qtail;
4867
4868 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4869 put_cpu();
4870 }
4871 return ret;
4872}
4873
4874/**
4875 * netif_rx - post buffer to the network code
4876 * @skb: buffer to post
4877 *
4878 * This function receives a packet from a device driver and queues it for
4879 * the upper (protocol) levels to process. It always succeeds. The buffer
4880 * may be dropped during processing for congestion control or by the
4881 * protocol layers.
4882 *
4883 * return values:
4884 * NET_RX_SUCCESS (no congestion)
4885 * NET_RX_DROP (packet was dropped)
4886 *
4887 */
4888
4889int netif_rx(struct sk_buff *skb)
4890{
4891 int ret;
4892
4893 trace_netif_rx_entry(skb);
4894
4895 ret = netif_rx_internal(skb);
4896 trace_netif_rx_exit(ret);
4897
4898 return ret;
4899}
4900EXPORT_SYMBOL(netif_rx);
4901
4902int netif_rx_ni(struct sk_buff *skb)
4903{
4904 int err;
4905
4906 trace_netif_rx_ni_entry(skb);
4907
4908 preempt_disable();
4909 err = netif_rx_internal(skb);
4910 if (local_softirq_pending())
4911 do_softirq();
4912 preempt_enable();
4913 trace_netif_rx_ni_exit(err);
4914
4915 return err;
4916}
4917EXPORT_SYMBOL(netif_rx_ni);
4918
4919int netif_rx_any_context(struct sk_buff *skb)
4920{
4921 /*
4922 * If invoked from contexts which do not invoke bottom half
4923 * processing either at return from interrupt or when softrqs are
4924 * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4925 * directly.
4926 */
4927 if (in_interrupt())
4928 return netif_rx(skb);
4929 else
4930 return netif_rx_ni(skb);
4931}
4932EXPORT_SYMBOL(netif_rx_any_context);
4933
4934static __latent_entropy void net_tx_action(struct softirq_action *h)
4935{
4936 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4937
4938 if (sd->completion_queue) {
4939 struct sk_buff *clist;
4940
4941 local_irq_disable();
4942 clist = sd->completion_queue;
4943 sd->completion_queue = NULL;
4944 local_irq_enable();
4945
4946 while (clist) {
4947 struct sk_buff *skb = clist;
4948
4949 clist = clist->next;
4950
4951 WARN_ON(refcount_read(&skb->users));
4952 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4953 trace_consume_skb(skb);
4954 else
4955 trace_kfree_skb(skb, net_tx_action);
4956
4957 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4958 __kfree_skb(skb);
4959 else
4960 __kfree_skb_defer(skb);
4961 }
4962 }
4963
4964 if (sd->output_queue) {
4965 struct Qdisc *head;
4966
4967 local_irq_disable();
4968 head = sd->output_queue;
4969 sd->output_queue = NULL;
4970 sd->output_queue_tailp = &sd->output_queue;
4971 local_irq_enable();
4972
4973 while (head) {
4974 struct Qdisc *q = head;
4975 spinlock_t *root_lock = NULL;
4976
4977 head = head->next_sched;
4978
4979 if (!(q->flags & TCQ_F_NOLOCK)) {
4980 root_lock = qdisc_lock(q);
4981 spin_lock(root_lock);
4982 }
4983 /* We need to make sure head->next_sched is read
4984 * before clearing __QDISC_STATE_SCHED
4985 */
4986 smp_mb__before_atomic();
4987 clear_bit(__QDISC_STATE_SCHED, &q->state);
4988 qdisc_run(q);
4989 if (root_lock)
4990 spin_unlock(root_lock);
4991 }
4992 }
4993
4994 xfrm_dev_backlog(sd);
4995}
4996
4997#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4998/* This hook is defined here for ATM LANE */
4999int (*br_fdb_test_addr_hook)(struct net_device *dev,
5000 unsigned char *addr) __read_mostly;
5001EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5002#endif
5003
5004static inline struct sk_buff *
5005sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5006 struct net_device *orig_dev, bool *another)
5007{
5008#ifdef CONFIG_NET_CLS_ACT
5009 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5010 struct tcf_result cl_res;
5011
5012 /* If there's at least one ingress present somewhere (so
5013 * we get here via enabled static key), remaining devices
5014 * that are not configured with an ingress qdisc will bail
5015 * out here.
5016 */
5017 if (!miniq)
5018 return skb;
5019
5020 if (*pt_prev) {
5021 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5022 *pt_prev = NULL;
5023 }
5024
5025 qdisc_skb_cb(skb)->pkt_len = skb->len;
5026 qdisc_skb_cb(skb)->mru = 0;
5027 qdisc_skb_cb(skb)->post_ct = false;
5028 skb->tc_at_ingress = 1;
5029 mini_qdisc_bstats_cpu_update(miniq, skb);
5030
5031 switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
5032 &cl_res, false)) {
5033 case TC_ACT_OK:
5034 case TC_ACT_RECLASSIFY:
5035 skb->tc_index = TC_H_MIN(cl_res.classid);
5036 break;
5037 case TC_ACT_SHOT:
5038 mini_qdisc_qstats_cpu_drop(miniq);
5039 kfree_skb(skb);
5040 return NULL;
5041 case TC_ACT_STOLEN:
5042 case TC_ACT_QUEUED:
5043 case TC_ACT_TRAP:
5044 consume_skb(skb);
5045 return NULL;
5046 case TC_ACT_REDIRECT:
5047 /* skb_mac_header check was done by cls/act_bpf, so
5048 * we can safely push the L2 header back before
5049 * redirecting to another netdev
5050 */
5051 __skb_push(skb, skb->mac_len);
5052 if (skb_do_redirect(skb) == -EAGAIN) {
5053 __skb_pull(skb, skb->mac_len);
5054 *another = true;
5055 break;
5056 }
5057 return NULL;
5058 case TC_ACT_CONSUMED:
5059 return NULL;
5060 default:
5061 break;
5062 }
5063#endif /* CONFIG_NET_CLS_ACT */
5064 return skb;
5065}
5066
5067/**
5068 * netdev_is_rx_handler_busy - check if receive handler is registered
5069 * @dev: device to check
5070 *
5071 * Check if a receive handler is already registered for a given device.
5072 * Return true if there one.
5073 *
5074 * The caller must hold the rtnl_mutex.
5075 */
5076bool netdev_is_rx_handler_busy(struct net_device *dev)
5077{
5078 ASSERT_RTNL();
5079 return dev && rtnl_dereference(dev->rx_handler);
5080}
5081EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5082
5083/**
5084 * netdev_rx_handler_register - register receive handler
5085 * @dev: device to register a handler for
5086 * @rx_handler: receive handler to register
5087 * @rx_handler_data: data pointer that is used by rx handler
5088 *
5089 * Register a receive handler for a device. This handler will then be
5090 * called from __netif_receive_skb. A negative errno code is returned
5091 * on a failure.
5092 *
5093 * The caller must hold the rtnl_mutex.
5094 *
5095 * For a general description of rx_handler, see enum rx_handler_result.
5096 */
5097int netdev_rx_handler_register(struct net_device *dev,
5098 rx_handler_func_t *rx_handler,
5099 void *rx_handler_data)
5100{
5101 if (netdev_is_rx_handler_busy(dev))
5102 return -EBUSY;
5103
5104 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5105 return -EINVAL;
5106
5107 /* Note: rx_handler_data must be set before rx_handler */
5108 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5109 rcu_assign_pointer(dev->rx_handler, rx_handler);
5110
5111 return 0;
5112}
5113EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5114
5115/**
5116 * netdev_rx_handler_unregister - unregister receive handler
5117 * @dev: device to unregister a handler from
5118 *
5119 * Unregister a receive handler from a device.
5120 *
5121 * The caller must hold the rtnl_mutex.
5122 */
5123void netdev_rx_handler_unregister(struct net_device *dev)
5124{
5125
5126 ASSERT_RTNL();
5127 RCU_INIT_POINTER(dev->rx_handler, NULL);
5128 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5129 * section has a guarantee to see a non NULL rx_handler_data
5130 * as well.
5131 */
5132 synchronize_net();
5133 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5134}
5135EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5136
5137/*
5138 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5139 * the special handling of PFMEMALLOC skbs.
5140 */
5141static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5142{
5143 switch (skb->protocol) {
5144 case htons(ETH_P_ARP):
5145 case htons(ETH_P_IP):
5146 case htons(ETH_P_IPV6):
5147 case htons(ETH_P_8021Q):
5148 case htons(ETH_P_8021AD):
5149 return true;
5150 default:
5151 return false;
5152 }
5153}
5154
5155static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5156 int *ret, struct net_device *orig_dev)
5157{
5158 if (nf_hook_ingress_active(skb)) {
5159 int ingress_retval;
5160
5161 if (*pt_prev) {
5162 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5163 *pt_prev = NULL;
5164 }
5165
5166 rcu_read_lock();
5167 ingress_retval = nf_hook_ingress(skb);
5168 rcu_read_unlock();
5169 return ingress_retval;
5170 }
5171 return 0;
5172}
5173
5174static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5175 struct packet_type **ppt_prev)
5176{
5177 struct packet_type *ptype, *pt_prev;
5178 rx_handler_func_t *rx_handler;
5179 struct sk_buff *skb = *pskb;
5180 struct net_device *orig_dev;
5181 bool deliver_exact = false;
5182 int ret = NET_RX_DROP;
5183 __be16 type;
5184
5185 net_timestamp_check(!netdev_tstamp_prequeue, skb);
5186
5187 trace_netif_receive_skb(skb);
5188
5189 orig_dev = skb->dev;
5190
5191 skb_reset_network_header(skb);
5192 if (!skb_transport_header_was_set(skb))
5193 skb_reset_transport_header(skb);
5194 skb_reset_mac_len(skb);
5195
5196 pt_prev = NULL;
5197
5198another_round:
5199 skb->skb_iif = skb->dev->ifindex;
5200
5201 __this_cpu_inc(softnet_data.processed);
5202
5203 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5204 int ret2;
5205
5206 preempt_disable();
5207 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5208 preempt_enable();
5209
5210 if (ret2 != XDP_PASS) {
5211 ret = NET_RX_DROP;
5212 goto out;
5213 }
5214 skb_reset_mac_len(skb);
5215 }
5216
5217 if (eth_type_vlan(skb->protocol)) {
5218 skb = skb_vlan_untag(skb);
5219 if (unlikely(!skb))
5220 goto out;
5221 }
5222
5223 if (skb_skip_tc_classify(skb))
5224 goto skip_classify;
5225
5226 if (pfmemalloc)
5227 goto skip_taps;
5228
5229 list_for_each_entry_rcu(ptype, &ptype_all, list) {
5230 if (pt_prev)
5231 ret = deliver_skb(skb, pt_prev, orig_dev);
5232 pt_prev = ptype;
5233 }
5234
5235 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5236 if (pt_prev)
5237 ret = deliver_skb(skb, pt_prev, orig_dev);
5238 pt_prev = ptype;
5239 }
5240
5241skip_taps:
5242#ifdef CONFIG_NET_INGRESS
5243 if (static_branch_unlikely(&ingress_needed_key)) {
5244 bool another = false;
5245
5246 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5247 &another);
5248 if (another)
5249 goto another_round;
5250 if (!skb)
5251 goto out;
5252
5253 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5254 goto out;
5255 }
5256#endif
5257 skb_reset_redirect(skb);
5258skip_classify:
5259 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5260 goto drop;
5261
5262 if (skb_vlan_tag_present(skb)) {
5263 if (pt_prev) {
5264 ret = deliver_skb(skb, pt_prev, orig_dev);
5265 pt_prev = NULL;
5266 }
5267 if (vlan_do_receive(&skb))
5268 goto another_round;
5269 else if (unlikely(!skb))
5270 goto out;
5271 }
5272
5273 rx_handler = rcu_dereference(skb->dev->rx_handler);
5274 if (rx_handler) {
5275 if (pt_prev) {
5276 ret = deliver_skb(skb, pt_prev, orig_dev);
5277 pt_prev = NULL;
5278 }
5279 switch (rx_handler(&skb)) {
5280 case RX_HANDLER_CONSUMED:
5281 ret = NET_RX_SUCCESS;
5282 goto out;
5283 case RX_HANDLER_ANOTHER:
5284 goto another_round;
5285 case RX_HANDLER_EXACT:
5286 deliver_exact = true;
5287 case RX_HANDLER_PASS:
5288 break;
5289 default:
5290 BUG();
5291 }
5292 }
5293
5294 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5295check_vlan_id:
5296 if (skb_vlan_tag_get_id(skb)) {
5297 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5298 * find vlan device.
5299 */
5300 skb->pkt_type = PACKET_OTHERHOST;
5301 } else if (eth_type_vlan(skb->protocol)) {
5302 /* Outer header is 802.1P with vlan 0, inner header is
5303 * 802.1Q or 802.1AD and vlan_do_receive() above could
5304 * not find vlan dev for vlan id 0.
5305 */
5306 __vlan_hwaccel_clear_tag(skb);
5307 skb = skb_vlan_untag(skb);
5308 if (unlikely(!skb))
5309 goto out;
5310 if (vlan_do_receive(&skb))
5311 /* After stripping off 802.1P header with vlan 0
5312 * vlan dev is found for inner header.
5313 */
5314 goto another_round;
5315 else if (unlikely(!skb))
5316 goto out;
5317 else
5318 /* We have stripped outer 802.1P vlan 0 header.
5319 * But could not find vlan dev.
5320 * check again for vlan id to set OTHERHOST.
5321 */
5322 goto check_vlan_id;
5323 }
5324 /* Note: we might in the future use prio bits
5325 * and set skb->priority like in vlan_do_receive()
5326 * For the time being, just ignore Priority Code Point
5327 */
5328 __vlan_hwaccel_clear_tag(skb);
5329 }
5330
5331 type = skb->protocol;
5332
5333 /* deliver only exact match when indicated */
5334 if (likely(!deliver_exact)) {
5335 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5336 &ptype_base[ntohs(type) &
5337 PTYPE_HASH_MASK]);
5338 }
5339
5340 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5341 &orig_dev->ptype_specific);
5342
5343 if (unlikely(skb->dev != orig_dev)) {
5344 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5345 &skb->dev->ptype_specific);
5346 }
5347
5348 if (pt_prev) {
5349 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5350 goto drop;
5351 *ppt_prev = pt_prev;
5352 } else {
5353drop:
5354 if (!deliver_exact)
5355 atomic_long_inc(&skb->dev->rx_dropped);
5356 else
5357 atomic_long_inc(&skb->dev->rx_nohandler);
5358 kfree_skb(skb);
5359 /* Jamal, now you will not able to escape explaining
5360 * me how you were going to use this. :-)
5361 */
5362 ret = NET_RX_DROP;
5363 }
5364
5365out:
5366 /* The invariant here is that if *ppt_prev is not NULL
5367 * then skb should also be non-NULL.
5368 *
5369 * Apparently *ppt_prev assignment above holds this invariant due to
5370 * skb dereferencing near it.
5371 */
5372 *pskb = skb;
5373 return ret;
5374}
5375
5376static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5377{
5378 struct net_device *orig_dev = skb->dev;
5379 struct packet_type *pt_prev = NULL;
5380 int ret;
5381
5382 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5383 if (pt_prev)
5384 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5385 skb->dev, pt_prev, orig_dev);
5386 return ret;
5387}
5388
5389/**
5390 * netif_receive_skb_core - special purpose version of netif_receive_skb
5391 * @skb: buffer to process
5392 *
5393 * More direct receive version of netif_receive_skb(). It should
5394 * only be used by callers that have a need to skip RPS and Generic XDP.
5395 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5396 *
5397 * This function may only be called from softirq context and interrupts
5398 * should be enabled.
5399 *
5400 * Return values (usually ignored):
5401 * NET_RX_SUCCESS: no congestion
5402 * NET_RX_DROP: packet was dropped
5403 */
5404int netif_receive_skb_core(struct sk_buff *skb)
5405{
5406 int ret;
5407
5408 rcu_read_lock();
5409 ret = __netif_receive_skb_one_core(skb, false);
5410 rcu_read_unlock();
5411
5412 return ret;
5413}
5414EXPORT_SYMBOL(netif_receive_skb_core);
5415
5416static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5417 struct packet_type *pt_prev,
5418 struct net_device *orig_dev)
5419{
5420 struct sk_buff *skb, *next;
5421
5422 if (!pt_prev)
5423 return;
5424 if (list_empty(head))
5425 return;
5426 if (pt_prev->list_func != NULL)
5427 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5428 ip_list_rcv, head, pt_prev, orig_dev);
5429 else
5430 list_for_each_entry_safe(skb, next, head, list) {
5431 skb_list_del_init(skb);
5432 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5433 }
5434}
5435
5436static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5437{
5438 /* Fast-path assumptions:
5439 * - There is no RX handler.
5440 * - Only one packet_type matches.
5441 * If either of these fails, we will end up doing some per-packet
5442 * processing in-line, then handling the 'last ptype' for the whole
5443 * sublist. This can't cause out-of-order delivery to any single ptype,
5444 * because the 'last ptype' must be constant across the sublist, and all
5445 * other ptypes are handled per-packet.
5446 */
5447 /* Current (common) ptype of sublist */
5448 struct packet_type *pt_curr = NULL;
5449 /* Current (common) orig_dev of sublist */
5450 struct net_device *od_curr = NULL;
5451 struct list_head sublist;
5452 struct sk_buff *skb, *next;
5453
5454 INIT_LIST_HEAD(&sublist);
5455 list_for_each_entry_safe(skb, next, head, list) {
5456 struct net_device *orig_dev = skb->dev;
5457 struct packet_type *pt_prev = NULL;
5458
5459 skb_list_del_init(skb);
5460 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5461 if (!pt_prev)
5462 continue;
5463 if (pt_curr != pt_prev || od_curr != orig_dev) {
5464 /* dispatch old sublist */
5465 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5466 /* start new sublist */
5467 INIT_LIST_HEAD(&sublist);
5468 pt_curr = pt_prev;
5469 od_curr = orig_dev;
5470 }
5471 list_add_tail(&skb->list, &sublist);
5472 }
5473
5474 /* dispatch final sublist */
5475 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5476}
5477
5478static int __netif_receive_skb(struct sk_buff *skb)
5479{
5480 int ret;
5481
5482 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5483 unsigned int noreclaim_flag;
5484
5485 /*
5486 * PFMEMALLOC skbs are special, they should
5487 * - be delivered to SOCK_MEMALLOC sockets only
5488 * - stay away from userspace
5489 * - have bounded memory usage
5490 *
5491 * Use PF_MEMALLOC as this saves us from propagating the allocation
5492 * context down to all allocation sites.
5493 */
5494 noreclaim_flag = memalloc_noreclaim_save();
5495 ret = __netif_receive_skb_one_core(skb, true);
5496 memalloc_noreclaim_restore(noreclaim_flag);
5497 } else
5498 ret = __netif_receive_skb_one_core(skb, false);
5499
5500 return ret;
5501}
5502
5503static void __netif_receive_skb_list(struct list_head *head)
5504{
5505 unsigned long noreclaim_flag = 0;
5506 struct sk_buff *skb, *next;
5507 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5508
5509 list_for_each_entry_safe(skb, next, head, list) {
5510 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5511 struct list_head sublist;
5512
5513 /* Handle the previous sublist */
5514 list_cut_before(&sublist, head, &skb->list);
5515 if (!list_empty(&sublist))
5516 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5517 pfmemalloc = !pfmemalloc;
5518 /* See comments in __netif_receive_skb */
5519 if (pfmemalloc)
5520 noreclaim_flag = memalloc_noreclaim_save();
5521 else
5522 memalloc_noreclaim_restore(noreclaim_flag);
5523 }
5524 }
5525 /* Handle the remaining sublist */
5526 if (!list_empty(head))
5527 __netif_receive_skb_list_core(head, pfmemalloc);
5528 /* Restore pflags */
5529 if (pfmemalloc)
5530 memalloc_noreclaim_restore(noreclaim_flag);
5531}
5532
5533static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5534{
5535 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5536 struct bpf_prog *new = xdp->prog;
5537 int ret = 0;
5538
5539 if (new) {
5540 u32 i;
5541
5542 mutex_lock(&new->aux->used_maps_mutex);
5543
5544 /* generic XDP does not work with DEVMAPs that can
5545 * have a bpf_prog installed on an entry
5546 */
5547 for (i = 0; i < new->aux->used_map_cnt; i++) {
5548 if (dev_map_can_have_prog(new->aux->used_maps[i]) ||
5549 cpu_map_prog_allowed(new->aux->used_maps[i])) {
5550 mutex_unlock(&new->aux->used_maps_mutex);
5551 return -EINVAL;
5552 }
5553 }
5554
5555 mutex_unlock(&new->aux->used_maps_mutex);
5556 }
5557
5558 switch (xdp->command) {
5559 case XDP_SETUP_PROG:
5560 rcu_assign_pointer(dev->xdp_prog, new);
5561 if (old)
5562 bpf_prog_put(old);
5563
5564 if (old && !new) {
5565 static_branch_dec(&generic_xdp_needed_key);
5566 } else if (new && !old) {
5567 static_branch_inc(&generic_xdp_needed_key);
5568 dev_disable_lro(dev);
5569 dev_disable_gro_hw(dev);
5570 }
5571 break;
5572
5573 default:
5574 ret = -EINVAL;
5575 break;
5576 }
5577
5578 return ret;
5579}
5580
5581static int netif_receive_skb_internal(struct sk_buff *skb)
5582{
5583 int ret;
5584
5585 net_timestamp_check(netdev_tstamp_prequeue, skb);
5586
5587 if (skb_defer_rx_timestamp(skb))
5588 return NET_RX_SUCCESS;
5589
5590 rcu_read_lock();
5591#ifdef CONFIG_RPS
5592 if (static_branch_unlikely(&rps_needed)) {
5593 struct rps_dev_flow voidflow, *rflow = &voidflow;
5594 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5595
5596 if (cpu >= 0) {
5597 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5598 rcu_read_unlock();
5599 return ret;
5600 }
5601 }
5602#endif
5603 ret = __netif_receive_skb(skb);
5604 rcu_read_unlock();
5605 return ret;
5606}
5607
5608static void netif_receive_skb_list_internal(struct list_head *head)
5609{
5610 struct sk_buff *skb, *next;
5611 struct list_head sublist;
5612
5613 INIT_LIST_HEAD(&sublist);
5614 list_for_each_entry_safe(skb, next, head, list) {
5615 net_timestamp_check(netdev_tstamp_prequeue, skb);
5616 skb_list_del_init(skb);
5617 if (!skb_defer_rx_timestamp(skb))
5618 list_add_tail(&skb->list, &sublist);
5619 }
5620 list_splice_init(&sublist, head);
5621
5622 rcu_read_lock();
5623#ifdef CONFIG_RPS
5624 if (static_branch_unlikely(&rps_needed)) {
5625 list_for_each_entry_safe(skb, next, head, list) {
5626 struct rps_dev_flow voidflow, *rflow = &voidflow;
5627 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5628
5629 if (cpu >= 0) {
5630 /* Will be handled, remove from list */
5631 skb_list_del_init(skb);
5632 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5633 }
5634 }
5635 }
5636#endif
5637 __netif_receive_skb_list(head);
5638 rcu_read_unlock();
5639}
5640
5641/**
5642 * netif_receive_skb - process receive buffer from network
5643 * @skb: buffer to process
5644 *
5645 * netif_receive_skb() is the main receive data processing function.
5646 * It always succeeds. The buffer may be dropped during processing
5647 * for congestion control or by the protocol layers.
5648 *
5649 * This function may only be called from softirq context and interrupts
5650 * should be enabled.
5651 *
5652 * Return values (usually ignored):
5653 * NET_RX_SUCCESS: no congestion
5654 * NET_RX_DROP: packet was dropped
5655 */
5656int netif_receive_skb(struct sk_buff *skb)
5657{
5658 int ret;
5659
5660 trace_netif_receive_skb_entry(skb);
5661
5662 ret = netif_receive_skb_internal(skb);
5663 trace_netif_receive_skb_exit(ret);
5664
5665 return ret;
5666}
5667EXPORT_SYMBOL(netif_receive_skb);
5668
5669/**
5670 * netif_receive_skb_list - process many receive buffers from network
5671 * @head: list of skbs to process.
5672 *
5673 * Since return value of netif_receive_skb() is normally ignored, and
5674 * wouldn't be meaningful for a list, this function returns void.
5675 *
5676 * This function may only be called from softirq context and interrupts
5677 * should be enabled.
5678 */
5679void netif_receive_skb_list(struct list_head *head)
5680{
5681 struct sk_buff *skb;
5682
5683 if (list_empty(head))
5684 return;
5685 if (trace_netif_receive_skb_list_entry_enabled()) {
5686 list_for_each_entry(skb, head, list)
5687 trace_netif_receive_skb_list_entry(skb);
5688 }
5689 netif_receive_skb_list_internal(head);
5690 trace_netif_receive_skb_list_exit(0);
5691}
5692EXPORT_SYMBOL(netif_receive_skb_list);
5693
5694static DEFINE_PER_CPU(struct work_struct, flush_works);
5695
5696/* Network device is going away, flush any packets still pending */
5697static void flush_backlog(struct work_struct *work)
5698{
5699 struct sk_buff *skb, *tmp;
5700 struct softnet_data *sd;
5701
5702 local_bh_disable();
5703 sd = this_cpu_ptr(&softnet_data);
5704
5705 local_irq_disable();
5706 rps_lock(sd);
5707 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5708 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5709 __skb_unlink(skb, &sd->input_pkt_queue);
5710 dev_kfree_skb_irq(skb);
5711 input_queue_head_incr(sd);
5712 }
5713 }
5714 rps_unlock(sd);
5715 local_irq_enable();
5716
5717 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5718 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5719 __skb_unlink(skb, &sd->process_queue);
5720 kfree_skb(skb);
5721 input_queue_head_incr(sd);
5722 }
5723 }
5724 local_bh_enable();
5725}
5726
5727static bool flush_required(int cpu)
5728{
5729#if IS_ENABLED(CONFIG_RPS)
5730 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5731 bool do_flush;
5732
5733 local_irq_disable();
5734 rps_lock(sd);
5735
5736 /* as insertion into process_queue happens with the rps lock held,
5737 * process_queue access may race only with dequeue
5738 */
5739 do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5740 !skb_queue_empty_lockless(&sd->process_queue);
5741 rps_unlock(sd);
5742 local_irq_enable();
5743
5744 return do_flush;
5745#endif
5746 /* without RPS we can't safely check input_pkt_queue: during a
5747 * concurrent remote skb_queue_splice() we can detect as empty both
5748 * input_pkt_queue and process_queue even if the latter could end-up
5749 * containing a lot of packets.
5750 */
5751 return true;
5752}
5753
5754static void flush_all_backlogs(void)
5755{
5756 static cpumask_t flush_cpus;
5757 unsigned int cpu;
5758
5759 /* since we are under rtnl lock protection we can use static data
5760 * for the cpumask and avoid allocating on stack the possibly
5761 * large mask
5762 */
5763 ASSERT_RTNL();
5764
5765 get_online_cpus();
5766
5767 cpumask_clear(&flush_cpus);
5768 for_each_online_cpu(cpu) {
5769 if (flush_required(cpu)) {
5770 queue_work_on(cpu, system_highpri_wq,
5771 per_cpu_ptr(&flush_works, cpu));
5772 cpumask_set_cpu(cpu, &flush_cpus);
5773 }
5774 }
5775
5776 /* we can have in flight packet[s] on the cpus we are not flushing,
5777 * synchronize_net() in unregister_netdevice_many() will take care of
5778 * them
5779 */
5780 for_each_cpu(cpu, &flush_cpus)
5781 flush_work(per_cpu_ptr(&flush_works, cpu));
5782
5783 put_online_cpus();
5784}
5785
5786/* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5787static void gro_normal_list(struct napi_struct *napi)
5788{
5789 if (!napi->rx_count)
5790 return;
5791 netif_receive_skb_list_internal(&napi->rx_list);
5792 INIT_LIST_HEAD(&napi->rx_list);
5793 napi->rx_count = 0;
5794}
5795
5796/* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5797 * pass the whole batch up to the stack.
5798 */
5799static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs)
5800{
5801 list_add_tail(&skb->list, &napi->rx_list);
5802 napi->rx_count += segs;
5803 if (napi->rx_count >= gro_normal_batch)
5804 gro_normal_list(napi);
5805}
5806
5807static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5808{
5809 struct packet_offload *ptype;
5810 __be16 type = skb->protocol;
5811 struct list_head *head = &offload_base;
5812 int err = -ENOENT;
5813
5814 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5815
5816 if (NAPI_GRO_CB(skb)->count == 1) {
5817 skb_shinfo(skb)->gso_size = 0;
5818 goto out;
5819 }
5820
5821 rcu_read_lock();
5822 list_for_each_entry_rcu(ptype, head, list) {
5823 if (ptype->type != type || !ptype->callbacks.gro_complete)
5824 continue;
5825
5826 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5827 ipv6_gro_complete, inet_gro_complete,
5828 skb, 0);
5829 break;
5830 }
5831 rcu_read_unlock();
5832
5833 if (err) {
5834 WARN_ON(&ptype->list == head);
5835 kfree_skb(skb);
5836 return NET_RX_SUCCESS;
5837 }
5838
5839out:
5840 gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count);
5841 return NET_RX_SUCCESS;
5842}
5843
5844static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5845 bool flush_old)
5846{
5847 struct list_head *head = &napi->gro_hash[index].list;
5848 struct sk_buff *skb, *p;
5849
5850 list_for_each_entry_safe_reverse(skb, p, head, list) {
5851 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5852 return;
5853 skb_list_del_init(skb);
5854 napi_gro_complete(napi, skb);
5855 napi->gro_hash[index].count--;
5856 }
5857
5858 if (!napi->gro_hash[index].count)
5859 __clear_bit(index, &napi->gro_bitmask);
5860}
5861
5862/* napi->gro_hash[].list contains packets ordered by age.
5863 * youngest packets at the head of it.
5864 * Complete skbs in reverse order to reduce latencies.
5865 */
5866void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5867{
5868 unsigned long bitmask = napi->gro_bitmask;
5869 unsigned int i, base = ~0U;
5870
5871 while ((i = ffs(bitmask)) != 0) {
5872 bitmask >>= i;
5873 base += i;
5874 __napi_gro_flush_chain(napi, base, flush_old);
5875 }
5876}
5877EXPORT_SYMBOL(napi_gro_flush);
5878
5879static struct list_head *gro_list_prepare(struct napi_struct *napi,
5880 struct sk_buff *skb)
5881{
5882 unsigned int maclen = skb->dev->hard_header_len;
5883 u32 hash = skb_get_hash_raw(skb);
5884 struct list_head *head;
5885 struct sk_buff *p;
5886
5887 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5888 list_for_each_entry(p, head, list) {
5889 unsigned long diffs;
5890
5891 NAPI_GRO_CB(p)->flush = 0;
5892
5893 if (hash != skb_get_hash_raw(p)) {
5894 NAPI_GRO_CB(p)->same_flow = 0;
5895 continue;
5896 }
5897
5898 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5899 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5900 if (skb_vlan_tag_present(p))
5901 diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5902 diffs |= skb_metadata_dst_cmp(p, skb);
5903 diffs |= skb_metadata_differs(p, skb);
5904 if (maclen == ETH_HLEN)
5905 diffs |= compare_ether_header(skb_mac_header(p),
5906 skb_mac_header(skb));
5907 else if (!diffs)
5908 diffs = memcmp(skb_mac_header(p),
5909 skb_mac_header(skb),
5910 maclen);
5911 NAPI_GRO_CB(p)->same_flow = !diffs;
5912 }
5913
5914 return head;
5915}
5916
5917static void skb_gro_reset_offset(struct sk_buff *skb)
5918{
5919 const struct skb_shared_info *pinfo = skb_shinfo(skb);
5920 const skb_frag_t *frag0 = &pinfo->frags[0];
5921
5922 NAPI_GRO_CB(skb)->data_offset = 0;
5923 NAPI_GRO_CB(skb)->frag0 = NULL;
5924 NAPI_GRO_CB(skb)->frag0_len = 0;
5925
5926 if (!skb_headlen(skb) && pinfo->nr_frags &&
5927 !PageHighMem(skb_frag_page(frag0))) {
5928 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5929 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5930 skb_frag_size(frag0),
5931 skb->end - skb->tail);
5932 }
5933}
5934
5935static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5936{
5937 struct skb_shared_info *pinfo = skb_shinfo(skb);
5938
5939 BUG_ON(skb->end - skb->tail < grow);
5940
5941 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5942
5943 skb->data_len -= grow;
5944 skb->tail += grow;
5945
5946 skb_frag_off_add(&pinfo->frags[0], grow);
5947 skb_frag_size_sub(&pinfo->frags[0], grow);
5948
5949 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5950 skb_frag_unref(skb, 0);
5951 memmove(pinfo->frags, pinfo->frags + 1,
5952 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5953 }
5954}
5955
5956static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
5957{
5958 struct sk_buff *oldest;
5959
5960 oldest = list_last_entry(head, struct sk_buff, list);
5961
5962 /* We are called with head length >= MAX_GRO_SKBS, so this is
5963 * impossible.
5964 */
5965 if (WARN_ON_ONCE(!oldest))
5966 return;
5967
5968 /* Do not adjust napi->gro_hash[].count, caller is adding a new
5969 * SKB to the chain.
5970 */
5971 skb_list_del_init(oldest);
5972 napi_gro_complete(napi, oldest);
5973}
5974
5975static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5976{
5977 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5978 struct list_head *head = &offload_base;
5979 struct packet_offload *ptype;
5980 __be16 type = skb->protocol;
5981 struct list_head *gro_head;
5982 struct sk_buff *pp = NULL;
5983 enum gro_result ret;
5984 int same_flow;
5985 int grow;
5986
5987 if (netif_elide_gro(skb->dev))
5988 goto normal;
5989
5990 gro_head = gro_list_prepare(napi, skb);
5991
5992 rcu_read_lock();
5993 list_for_each_entry_rcu(ptype, head, list) {
5994 if (ptype->type != type || !ptype->callbacks.gro_receive)
5995 continue;
5996
5997 skb_set_network_header(skb, skb_gro_offset(skb));
5998 skb_reset_mac_len(skb);
5999 NAPI_GRO_CB(skb)->same_flow = 0;
6000 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
6001 NAPI_GRO_CB(skb)->free = 0;
6002 NAPI_GRO_CB(skb)->encap_mark = 0;
6003 NAPI_GRO_CB(skb)->recursion_counter = 0;
6004 NAPI_GRO_CB(skb)->is_fou = 0;
6005 NAPI_GRO_CB(skb)->is_atomic = 1;
6006 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
6007
6008 /* Setup for GRO checksum validation */
6009 switch (skb->ip_summed) {
6010 case CHECKSUM_COMPLETE:
6011 NAPI_GRO_CB(skb)->csum = skb->csum;
6012 NAPI_GRO_CB(skb)->csum_valid = 1;
6013 NAPI_GRO_CB(skb)->csum_cnt = 0;
6014 break;
6015 case CHECKSUM_UNNECESSARY:
6016 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
6017 NAPI_GRO_CB(skb)->csum_valid = 0;
6018 break;
6019 default:
6020 NAPI_GRO_CB(skb)->csum_cnt = 0;
6021 NAPI_GRO_CB(skb)->csum_valid = 0;
6022 }
6023
6024 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
6025 ipv6_gro_receive, inet_gro_receive,
6026 gro_head, skb);
6027 break;
6028 }
6029 rcu_read_unlock();
6030
6031 if (&ptype->list == head)
6032 goto normal;
6033
6034 if (PTR_ERR(pp) == -EINPROGRESS) {
6035 ret = GRO_CONSUMED;
6036 goto ok;
6037 }
6038
6039 same_flow = NAPI_GRO_CB(skb)->same_flow;
6040 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
6041
6042 if (pp) {
6043 skb_list_del_init(pp);
6044 napi_gro_complete(napi, pp);
6045 napi->gro_hash[hash].count--;
6046 }
6047
6048 if (same_flow)
6049 goto ok;
6050
6051 if (NAPI_GRO_CB(skb)->flush)
6052 goto normal;
6053
6054 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
6055 gro_flush_oldest(napi, gro_head);
6056 } else {
6057 napi->gro_hash[hash].count++;
6058 }
6059 NAPI_GRO_CB(skb)->count = 1;
6060 NAPI_GRO_CB(skb)->age = jiffies;
6061 NAPI_GRO_CB(skb)->last = skb;
6062 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
6063 list_add(&skb->list, gro_head);
6064 ret = GRO_HELD;
6065
6066pull:
6067 grow = skb_gro_offset(skb) - skb_headlen(skb);
6068 if (grow > 0)
6069 gro_pull_from_frag0(skb, grow);
6070ok:
6071 if (napi->gro_hash[hash].count) {
6072 if (!test_bit(hash, &napi->gro_bitmask))
6073 __set_bit(hash, &napi->gro_bitmask);
6074 } else if (test_bit(hash, &napi->gro_bitmask)) {
6075 __clear_bit(hash, &napi->gro_bitmask);
6076 }
6077
6078 return ret;
6079
6080normal:
6081 ret = GRO_NORMAL;
6082 goto pull;
6083}
6084
6085struct packet_offload *gro_find_receive_by_type(__be16 type)
6086{
6087 struct list_head *offload_head = &offload_base;
6088 struct packet_offload *ptype;
6089
6090 list_for_each_entry_rcu(ptype, offload_head, list) {
6091 if (ptype->type != type || !ptype->callbacks.gro_receive)
6092 continue;
6093 return ptype;
6094 }
6095 return NULL;
6096}
6097EXPORT_SYMBOL(gro_find_receive_by_type);
6098
6099struct packet_offload *gro_find_complete_by_type(__be16 type)
6100{
6101 struct list_head *offload_head = &offload_base;
6102 struct packet_offload *ptype;
6103
6104 list_for_each_entry_rcu(ptype, offload_head, list) {
6105 if (ptype->type != type || !ptype->callbacks.gro_complete)
6106 continue;
6107 return ptype;
6108 }
6109 return NULL;
6110}
6111EXPORT_SYMBOL(gro_find_complete_by_type);
6112
6113static gro_result_t napi_skb_finish(struct napi_struct *napi,
6114 struct sk_buff *skb,
6115 gro_result_t ret)
6116{
6117 switch (ret) {
6118 case GRO_NORMAL:
6119 gro_normal_one(napi, skb, 1);
6120 break;
6121
6122 case GRO_MERGED_FREE:
6123 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6124 napi_skb_free_stolen_head(skb);
6125 else
6126 __kfree_skb_defer(skb);
6127 break;
6128
6129 case GRO_HELD:
6130 case GRO_MERGED:
6131 case GRO_CONSUMED:
6132 break;
6133 }
6134
6135 return ret;
6136}
6137
6138gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6139{
6140 gro_result_t ret;
6141
6142 skb_mark_napi_id(skb, napi);
6143 trace_napi_gro_receive_entry(skb);
6144
6145 skb_gro_reset_offset(skb);
6146
6147 ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6148 trace_napi_gro_receive_exit(ret);
6149
6150 return ret;
6151}
6152EXPORT_SYMBOL(napi_gro_receive);
6153
6154static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6155{
6156 if (unlikely(skb->pfmemalloc)) {
6157 consume_skb(skb);
6158 return;
6159 }
6160 __skb_pull(skb, skb_headlen(skb));
6161 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
6162 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6163 __vlan_hwaccel_clear_tag(skb);
6164 skb->dev = napi->dev;
6165 skb->skb_iif = 0;
6166
6167 /* eth_type_trans() assumes pkt_type is PACKET_HOST */
6168 skb->pkt_type = PACKET_HOST;
6169
6170 skb->encapsulation = 0;
6171 skb_shinfo(skb)->gso_type = 0;
6172 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6173 skb_ext_reset(skb);
6174
6175 napi->skb = skb;
6176}
6177
6178struct sk_buff *napi_get_frags(struct napi_struct *napi)
6179{
6180 struct sk_buff *skb = napi->skb;
6181
6182 if (!skb) {
6183 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6184 if (skb) {
6185 napi->skb = skb;
6186 skb_mark_napi_id(skb, napi);
6187 }
6188 }
6189 return skb;
6190}
6191EXPORT_SYMBOL(napi_get_frags);
6192
6193static gro_result_t napi_frags_finish(struct napi_struct *napi,
6194 struct sk_buff *skb,
6195 gro_result_t ret)
6196{
6197 switch (ret) {
6198 case GRO_NORMAL:
6199 case GRO_HELD:
6200 __skb_push(skb, ETH_HLEN);
6201 skb->protocol = eth_type_trans(skb, skb->dev);
6202 if (ret == GRO_NORMAL)
6203 gro_normal_one(napi, skb, 1);
6204 break;
6205
6206 case GRO_MERGED_FREE:
6207 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6208 napi_skb_free_stolen_head(skb);
6209 else
6210 napi_reuse_skb(napi, skb);
6211 break;
6212
6213 case GRO_MERGED:
6214 case GRO_CONSUMED:
6215 break;
6216 }
6217
6218 return ret;
6219}
6220
6221/* Upper GRO stack assumes network header starts at gro_offset=0
6222 * Drivers could call both napi_gro_frags() and napi_gro_receive()
6223 * We copy ethernet header into skb->data to have a common layout.
6224 */
6225static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6226{
6227 struct sk_buff *skb = napi->skb;
6228 const struct ethhdr *eth;
6229 unsigned int hlen = sizeof(*eth);
6230
6231 napi->skb = NULL;
6232
6233 skb_reset_mac_header(skb);
6234 skb_gro_reset_offset(skb);
6235
6236 if (unlikely(skb_gro_header_hard(skb, hlen))) {
6237 eth = skb_gro_header_slow(skb, hlen, 0);
6238 if (unlikely(!eth)) {
6239 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6240 __func__, napi->dev->name);
6241 napi_reuse_skb(napi, skb);
6242 return NULL;
6243 }
6244 } else {
6245 eth = (const struct ethhdr *)skb->data;
6246 gro_pull_from_frag0(skb, hlen);
6247 NAPI_GRO_CB(skb)->frag0 += hlen;
6248 NAPI_GRO_CB(skb)->frag0_len -= hlen;
6249 }
6250 __skb_pull(skb, hlen);
6251
6252 /*
6253 * This works because the only protocols we care about don't require
6254 * special handling.
6255 * We'll fix it up properly in napi_frags_finish()
6256 */
6257 skb->protocol = eth->h_proto;
6258
6259 return skb;
6260}
6261
6262gro_result_t napi_gro_frags(struct napi_struct *napi)
6263{
6264 gro_result_t ret;
6265 struct sk_buff *skb = napi_frags_skb(napi);
6266
6267 trace_napi_gro_frags_entry(skb);
6268
6269 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6270 trace_napi_gro_frags_exit(ret);
6271
6272 return ret;
6273}
6274EXPORT_SYMBOL(napi_gro_frags);
6275
6276/* Compute the checksum from gro_offset and return the folded value
6277 * after adding in any pseudo checksum.
6278 */
6279__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6280{
6281 __wsum wsum;
6282 __sum16 sum;
6283
6284 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6285
6286 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6287 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6288 /* See comments in __skb_checksum_complete(). */
6289 if (likely(!sum)) {
6290 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6291 !skb->csum_complete_sw)
6292 netdev_rx_csum_fault(skb->dev, skb);
6293 }
6294
6295 NAPI_GRO_CB(skb)->csum = wsum;
6296 NAPI_GRO_CB(skb)->csum_valid = 1;
6297
6298 return sum;
6299}
6300EXPORT_SYMBOL(__skb_gro_checksum_complete);
6301
6302static void net_rps_send_ipi(struct softnet_data *remsd)
6303{
6304#ifdef CONFIG_RPS
6305 while (remsd) {
6306 struct softnet_data *next = remsd->rps_ipi_next;
6307
6308 if (cpu_online(remsd->cpu))
6309 smp_call_function_single_async(remsd->cpu, &remsd->csd);
6310 remsd = next;
6311 }
6312#endif
6313}
6314
6315/*
6316 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6317 * Note: called with local irq disabled, but exits with local irq enabled.
6318 */
6319static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6320{
6321#ifdef CONFIG_RPS
6322 struct softnet_data *remsd = sd->rps_ipi_list;
6323
6324 if (remsd) {
6325 sd->rps_ipi_list = NULL;
6326
6327 local_irq_enable();
6328
6329 /* Send pending IPI's to kick RPS processing on remote cpus. */
6330 net_rps_send_ipi(remsd);
6331 } else
6332#endif
6333 local_irq_enable();
6334}
6335
6336static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6337{
6338#ifdef CONFIG_RPS
6339 return sd->rps_ipi_list != NULL;
6340#else
6341 return false;
6342#endif
6343}
6344
6345static int process_backlog(struct napi_struct *napi, int quota)
6346{
6347 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6348 bool again = true;
6349 int work = 0;
6350
6351 /* Check if we have pending ipi, its better to send them now,
6352 * not waiting net_rx_action() end.
6353 */
6354 if (sd_has_rps_ipi_waiting(sd)) {
6355 local_irq_disable();
6356 net_rps_action_and_irq_enable(sd);
6357 }
6358
6359 napi->weight = dev_rx_weight;
6360 while (again) {
6361 struct sk_buff *skb;
6362
6363 while ((skb = __skb_dequeue(&sd->process_queue))) {
6364 rcu_read_lock();
6365 __netif_receive_skb(skb);
6366 rcu_read_unlock();
6367 input_queue_head_incr(sd);
6368 if (++work >= quota)
6369 return work;
6370
6371 }
6372
6373 local_irq_disable();
6374 rps_lock(sd);
6375 if (skb_queue_empty(&sd->input_pkt_queue)) {
6376 /*
6377 * Inline a custom version of __napi_complete().
6378 * only current cpu owns and manipulates this napi,
6379 * and NAPI_STATE_SCHED is the only possible flag set
6380 * on backlog.
6381 * We can use a plain write instead of clear_bit(),
6382 * and we dont need an smp_mb() memory barrier.
6383 */
6384 napi->state = 0;
6385 again = false;
6386 } else {
6387 skb_queue_splice_tail_init(&sd->input_pkt_queue,
6388 &sd->process_queue);
6389 }
6390 rps_unlock(sd);
6391 local_irq_enable();
6392 }
6393
6394 return work;
6395}
6396
6397/**
6398 * __napi_schedule - schedule for receive
6399 * @n: entry to schedule
6400 *
6401 * The entry's receive function will be scheduled to run.
6402 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6403 */
6404void __napi_schedule(struct napi_struct *n)
6405{
6406 unsigned long flags;
6407
6408 local_irq_save(flags);
6409 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6410 local_irq_restore(flags);
6411}
6412EXPORT_SYMBOL(__napi_schedule);
6413
6414/**
6415 * napi_schedule_prep - check if napi can be scheduled
6416 * @n: napi context
6417 *
6418 * Test if NAPI routine is already running, and if not mark
6419 * it as running. This is used as a condition variable to
6420 * insure only one NAPI poll instance runs. We also make
6421 * sure there is no pending NAPI disable.
6422 */
6423bool napi_schedule_prep(struct napi_struct *n)
6424{
6425 unsigned long val, new;
6426
6427 do {
6428 val = READ_ONCE(n->state);
6429 if (unlikely(val & NAPIF_STATE_DISABLE))
6430 return false;
6431 new = val | NAPIF_STATE_SCHED;
6432
6433 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6434 * This was suggested by Alexander Duyck, as compiler
6435 * emits better code than :
6436 * if (val & NAPIF_STATE_SCHED)
6437 * new |= NAPIF_STATE_MISSED;
6438 */
6439 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6440 NAPIF_STATE_MISSED;
6441 } while (cmpxchg(&n->state, val, new) != val);
6442
6443 return !(val & NAPIF_STATE_SCHED);
6444}
6445EXPORT_SYMBOL(napi_schedule_prep);
6446
6447/**
6448 * __napi_schedule_irqoff - schedule for receive
6449 * @n: entry to schedule
6450 *
6451 * Variant of __napi_schedule() assuming hard irqs are masked
6452 */
6453void __napi_schedule_irqoff(struct napi_struct *n)
6454{
6455 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6456}
6457EXPORT_SYMBOL(__napi_schedule_irqoff);
6458
6459bool napi_complete_done(struct napi_struct *n, int work_done)
6460{
6461 unsigned long flags, val, new, timeout = 0;
6462 bool ret = true;
6463
6464 /*
6465 * 1) Don't let napi dequeue from the cpu poll list
6466 * just in case its running on a different cpu.
6467 * 2) If we are busy polling, do nothing here, we have
6468 * the guarantee we will be called later.
6469 */
6470 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6471 NAPIF_STATE_IN_BUSY_POLL)))
6472 return false;
6473
6474 if (work_done) {
6475 if (n->gro_bitmask)
6476 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6477 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6478 }
6479 if (n->defer_hard_irqs_count > 0) {
6480 n->defer_hard_irqs_count--;
6481 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6482 if (timeout)
6483 ret = false;
6484 }
6485 if (n->gro_bitmask) {
6486 /* When the NAPI instance uses a timeout and keeps postponing
6487 * it, we need to bound somehow the time packets are kept in
6488 * the GRO layer
6489 */
6490 napi_gro_flush(n, !!timeout);
6491 }
6492
6493 gro_normal_list(n);
6494
6495 if (unlikely(!list_empty(&n->poll_list))) {
6496 /* If n->poll_list is not empty, we need to mask irqs */
6497 local_irq_save(flags);
6498 list_del_init(&n->poll_list);
6499 local_irq_restore(flags);
6500 }
6501
6502 do {
6503 val = READ_ONCE(n->state);
6504
6505 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6506
6507 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6508 NAPIF_STATE_SCHED_THREADED |
6509 NAPIF_STATE_PREFER_BUSY_POLL);
6510
6511 /* If STATE_MISSED was set, leave STATE_SCHED set,
6512 * because we will call napi->poll() one more time.
6513 * This C code was suggested by Alexander Duyck to help gcc.
6514 */
6515 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6516 NAPIF_STATE_SCHED;
6517 } while (cmpxchg(&n->state, val, new) != val);
6518
6519 if (unlikely(val & NAPIF_STATE_MISSED)) {
6520 __napi_schedule(n);
6521 return false;
6522 }
6523
6524 if (timeout)
6525 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6526 HRTIMER_MODE_REL_PINNED);
6527 return ret;
6528}
6529EXPORT_SYMBOL(napi_complete_done);
6530
6531/* must be called under rcu_read_lock(), as we dont take a reference */
6532static struct napi_struct *napi_by_id(unsigned int napi_id)
6533{
6534 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6535 struct napi_struct *napi;
6536
6537 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6538 if (napi->napi_id == napi_id)
6539 return napi;
6540
6541 return NULL;
6542}
6543
6544#if defined(CONFIG_NET_RX_BUSY_POLL)
6545
6546static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6547{
6548 if (!skip_schedule) {
6549 gro_normal_list(napi);
6550 __napi_schedule(napi);
6551 return;
6552 }
6553
6554 if (napi->gro_bitmask) {
6555 /* flush too old packets
6556 * If HZ < 1000, flush all packets.
6557 */
6558 napi_gro_flush(napi, HZ >= 1000);
6559 }
6560
6561 gro_normal_list(napi);
6562 clear_bit(NAPI_STATE_SCHED, &napi->state);
6563}
6564
6565static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6566 u16 budget)
6567{
6568 bool skip_schedule = false;
6569 unsigned long timeout;
6570 int rc;
6571
6572 /* Busy polling means there is a high chance device driver hard irq
6573 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6574 * set in napi_schedule_prep().
6575 * Since we are about to call napi->poll() once more, we can safely
6576 * clear NAPI_STATE_MISSED.
6577 *
6578 * Note: x86 could use a single "lock and ..." instruction
6579 * to perform these two clear_bit()
6580 */
6581 clear_bit(NAPI_STATE_MISSED, &napi->state);
6582 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6583
6584 local_bh_disable();
6585
6586 if (prefer_busy_poll) {
6587 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6588 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6589 if (napi->defer_hard_irqs_count && timeout) {
6590 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6591 skip_schedule = true;
6592 }
6593 }
6594
6595 /* All we really want here is to re-enable device interrupts.
6596 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6597 */
6598 rc = napi->poll(napi, budget);
6599 /* We can't gro_normal_list() here, because napi->poll() might have
6600 * rearmed the napi (napi_complete_done()) in which case it could
6601 * already be running on another CPU.
6602 */
6603 trace_napi_poll(napi, rc, budget);
6604 netpoll_poll_unlock(have_poll_lock);
6605 if (rc == budget)
6606 __busy_poll_stop(napi, skip_schedule);
6607 local_bh_enable();
6608}
6609
6610void napi_busy_loop(unsigned int napi_id,
6611 bool (*loop_end)(void *, unsigned long),
6612 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6613{
6614 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6615 int (*napi_poll)(struct napi_struct *napi, int budget);
6616 void *have_poll_lock = NULL;
6617 struct napi_struct *napi;
6618
6619restart:
6620 napi_poll = NULL;
6621
6622 rcu_read_lock();
6623
6624 napi = napi_by_id(napi_id);
6625 if (!napi)
6626 goto out;
6627
6628 preempt_disable();
6629 for (;;) {
6630 int work = 0;
6631
6632 local_bh_disable();
6633 if (!napi_poll) {
6634 unsigned long val = READ_ONCE(napi->state);
6635
6636 /* If multiple threads are competing for this napi,
6637 * we avoid dirtying napi->state as much as we can.
6638 */
6639 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6640 NAPIF_STATE_IN_BUSY_POLL)) {
6641 if (prefer_busy_poll)
6642 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6643 goto count;
6644 }
6645 if (cmpxchg(&napi->state, val,
6646 val | NAPIF_STATE_IN_BUSY_POLL |
6647 NAPIF_STATE_SCHED) != val) {
6648 if (prefer_busy_poll)
6649 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6650 goto count;
6651 }
6652 have_poll_lock = netpoll_poll_lock(napi);
6653 napi_poll = napi->poll;
6654 }
6655 work = napi_poll(napi, budget);
6656 trace_napi_poll(napi, work, budget);
6657 gro_normal_list(napi);
6658count:
6659 if (work > 0)
6660 __NET_ADD_STATS(dev_net(napi->dev),
6661 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6662 local_bh_enable();
6663
6664 if (!loop_end || loop_end(loop_end_arg, start_time))
6665 break;
6666
6667 if (unlikely(need_resched())) {
6668 if (napi_poll)
6669 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6670 preempt_enable();
6671 rcu_read_unlock();
6672 cond_resched();
6673 if (loop_end(loop_end_arg, start_time))
6674 return;
6675 goto restart;
6676 }
6677 cpu_relax();
6678 }
6679 if (napi_poll)
6680 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6681 preempt_enable();
6682out:
6683 rcu_read_unlock();
6684}
6685EXPORT_SYMBOL(napi_busy_loop);
6686
6687#endif /* CONFIG_NET_RX_BUSY_POLL */
6688
6689static void napi_hash_add(struct napi_struct *napi)
6690{
6691 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6692 return;
6693
6694 spin_lock(&napi_hash_lock);
6695
6696 /* 0..NR_CPUS range is reserved for sender_cpu use */
6697 do {
6698 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6699 napi_gen_id = MIN_NAPI_ID;
6700 } while (napi_by_id(napi_gen_id));
6701 napi->napi_id = napi_gen_id;
6702
6703 hlist_add_head_rcu(&napi->napi_hash_node,
6704 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6705
6706 spin_unlock(&napi_hash_lock);
6707}
6708
6709/* Warning : caller is responsible to make sure rcu grace period
6710 * is respected before freeing memory containing @napi
6711 */
6712static void napi_hash_del(struct napi_struct *napi)
6713{
6714 spin_lock(&napi_hash_lock);
6715
6716 hlist_del_init_rcu(&napi->napi_hash_node);
6717
6718 spin_unlock(&napi_hash_lock);
6719}
6720
6721static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6722{
6723 struct napi_struct *napi;
6724
6725 napi = container_of(timer, struct napi_struct, timer);
6726
6727 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6728 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6729 */
6730 if (!napi_disable_pending(napi) &&
6731 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6732 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6733 __napi_schedule_irqoff(napi);
6734 }
6735
6736 return HRTIMER_NORESTART;
6737}
6738
6739static void init_gro_hash(struct napi_struct *napi)
6740{
6741 int i;
6742
6743 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6744 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6745 napi->gro_hash[i].count = 0;
6746 }
6747 napi->gro_bitmask = 0;
6748}
6749
6750int dev_set_threaded(struct net_device *dev, bool threaded)
6751{
6752 struct napi_struct *napi;
6753 int err = 0;
6754
6755 if (dev->threaded == threaded)
6756 return 0;
6757
6758 if (threaded) {
6759 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6760 if (!napi->thread) {
6761 err = napi_kthread_create(napi);
6762 if (err) {
6763 threaded = false;
6764 break;
6765 }
6766 }
6767 }
6768 }
6769
6770 dev->threaded = threaded;
6771
6772 /* Make sure kthread is created before THREADED bit
6773 * is set.
6774 */
6775 smp_mb__before_atomic();
6776
6777 /* Setting/unsetting threaded mode on a napi might not immediately
6778 * take effect, if the current napi instance is actively being
6779 * polled. In this case, the switch between threaded mode and
6780 * softirq mode will happen in the next round of napi_schedule().
6781 * This should not cause hiccups/stalls to the live traffic.
6782 */
6783 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6784 if (threaded)
6785 set_bit(NAPI_STATE_THREADED, &napi->state);
6786 else
6787 clear_bit(NAPI_STATE_THREADED, &napi->state);
6788 }
6789
6790 return err;
6791}
6792
6793void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6794 int (*poll)(struct napi_struct *, int), int weight)
6795{
6796 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6797 return;
6798
6799 INIT_LIST_HEAD(&napi->poll_list);
6800 INIT_HLIST_NODE(&napi->napi_hash_node);
6801 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6802 napi->timer.function = napi_watchdog;
6803 init_gro_hash(napi);
6804 napi->skb = NULL;
6805 INIT_LIST_HEAD(&napi->rx_list);
6806 napi->rx_count = 0;
6807 napi->poll = poll;
6808 if (weight > NAPI_POLL_WEIGHT)
6809 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6810 weight);
6811 napi->weight = weight;
6812 napi->dev = dev;
6813#ifdef CONFIG_NETPOLL
6814 napi->poll_owner = -1;
6815#endif
6816 set_bit(NAPI_STATE_SCHED, &napi->state);
6817 set_bit(NAPI_STATE_NPSVC, &napi->state);
6818 list_add_rcu(&napi->dev_list, &dev->napi_list);
6819 napi_hash_add(napi);
6820 /* Create kthread for this napi if dev->threaded is set.
6821 * Clear dev->threaded if kthread creation failed so that
6822 * threaded mode will not be enabled in napi_enable().
6823 */
6824 if (dev->threaded && napi_kthread_create(napi))
6825 dev->threaded = 0;
6826}
6827EXPORT_SYMBOL(netif_napi_add);
6828
6829void napi_disable(struct napi_struct *n)
6830{
6831 might_sleep();
6832 set_bit(NAPI_STATE_DISABLE, &n->state);
6833
6834 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6835 msleep(1);
6836 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6837 msleep(1);
6838
6839 hrtimer_cancel(&n->timer);
6840
6841 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
6842 clear_bit(NAPI_STATE_DISABLE, &n->state);
6843 clear_bit(NAPI_STATE_THREADED, &n->state);
6844}
6845EXPORT_SYMBOL(napi_disable);
6846
6847/**
6848 * napi_enable - enable NAPI scheduling
6849 * @n: NAPI context
6850 *
6851 * Resume NAPI from being scheduled on this context.
6852 * Must be paired with napi_disable.
6853 */
6854void napi_enable(struct napi_struct *n)
6855{
6856 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
6857 smp_mb__before_atomic();
6858 clear_bit(NAPI_STATE_SCHED, &n->state);
6859 clear_bit(NAPI_STATE_NPSVC, &n->state);
6860 if (n->dev->threaded && n->thread)
6861 set_bit(NAPI_STATE_THREADED, &n->state);
6862}
6863EXPORT_SYMBOL(napi_enable);
6864
6865static void flush_gro_hash(struct napi_struct *napi)
6866{
6867 int i;
6868
6869 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6870 struct sk_buff *skb, *n;
6871
6872 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6873 kfree_skb(skb);
6874 napi->gro_hash[i].count = 0;
6875 }
6876}
6877
6878/* Must be called in process context */
6879void __netif_napi_del(struct napi_struct *napi)
6880{
6881 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6882 return;
6883
6884 napi_hash_del(napi);
6885 list_del_rcu(&napi->dev_list);
6886 napi_free_frags(napi);
6887
6888 flush_gro_hash(napi);
6889 napi->gro_bitmask = 0;
6890
6891 if (napi->thread) {
6892 kthread_stop(napi->thread);
6893 napi->thread = NULL;
6894 }
6895}
6896EXPORT_SYMBOL(__netif_napi_del);
6897
6898static int __napi_poll(struct napi_struct *n, bool *repoll)
6899{
6900 int work, weight;
6901
6902 weight = n->weight;
6903
6904 /* This NAPI_STATE_SCHED test is for avoiding a race
6905 * with netpoll's poll_napi(). Only the entity which
6906 * obtains the lock and sees NAPI_STATE_SCHED set will
6907 * actually make the ->poll() call. Therefore we avoid
6908 * accidentally calling ->poll() when NAPI is not scheduled.
6909 */
6910 work = 0;
6911 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6912 work = n->poll(n, weight);
6913 trace_napi_poll(n, work, weight);
6914 }
6915
6916 if (unlikely(work > weight))
6917 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6918 n->poll, work, weight);
6919
6920 if (likely(work < weight))
6921 return work;
6922
6923 /* Drivers must not modify the NAPI state if they
6924 * consume the entire weight. In such cases this code
6925 * still "owns" the NAPI instance and therefore can
6926 * move the instance around on the list at-will.
6927 */
6928 if (unlikely(napi_disable_pending(n))) {
6929 napi_complete(n);
6930 return work;
6931 }
6932
6933 /* The NAPI context has more processing work, but busy-polling
6934 * is preferred. Exit early.
6935 */
6936 if (napi_prefer_busy_poll(n)) {
6937 if (napi_complete_done(n, work)) {
6938 /* If timeout is not set, we need to make sure
6939 * that the NAPI is re-scheduled.
6940 */
6941 napi_schedule(n);
6942 }
6943 return work;
6944 }
6945
6946 if (n->gro_bitmask) {
6947 /* flush too old packets
6948 * If HZ < 1000, flush all packets.
6949 */
6950 napi_gro_flush(n, HZ >= 1000);
6951 }
6952
6953 gro_normal_list(n);
6954
6955 /* Some drivers may have called napi_schedule
6956 * prior to exhausting their budget.
6957 */
6958 if (unlikely(!list_empty(&n->poll_list))) {
6959 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6960 n->dev ? n->dev->name : "backlog");
6961 return work;
6962 }
6963
6964 *repoll = true;
6965
6966 return work;
6967}
6968
6969static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6970{
6971 bool do_repoll = false;
6972 void *have;
6973 int work;
6974
6975 list_del_init(&n->poll_list);
6976
6977 have = netpoll_poll_lock(n);
6978
6979 work = __napi_poll(n, &do_repoll);
6980
6981 if (do_repoll)
6982 list_add_tail(&n->poll_list, repoll);
6983
6984 netpoll_poll_unlock(have);
6985
6986 return work;
6987}
6988
6989static int napi_thread_wait(struct napi_struct *napi)
6990{
6991 bool woken = false;
6992
6993 set_current_state(TASK_INTERRUPTIBLE);
6994
6995 while (!kthread_should_stop()) {
6996 /* Testing SCHED_THREADED bit here to make sure the current
6997 * kthread owns this napi and could poll on this napi.
6998 * Testing SCHED bit is not enough because SCHED bit might be
6999 * set by some other busy poll thread or by napi_disable().
7000 */
7001 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
7002 WARN_ON(!list_empty(&napi->poll_list));
7003 __set_current_state(TASK_RUNNING);
7004 return 0;
7005 }
7006
7007 schedule();
7008 /* woken being true indicates this thread owns this napi. */
7009 woken = true;
7010 set_current_state(TASK_INTERRUPTIBLE);
7011 }
7012 __set_current_state(TASK_RUNNING);
7013
7014 return -1;
7015}
7016
7017static int napi_threaded_poll(void *data)
7018{
7019 struct napi_struct *napi = data;
7020 void *have;
7021
7022 while (!napi_thread_wait(napi)) {
7023 for (;;) {
7024 bool repoll = false;
7025
7026 local_bh_disable();
7027
7028 have = netpoll_poll_lock(napi);
7029 __napi_poll(napi, &repoll);
7030 netpoll_poll_unlock(have);
7031
7032 local_bh_enable();
7033
7034 if (!repoll)
7035 break;
7036
7037 cond_resched();
7038 }
7039 }
7040 return 0;
7041}
7042
7043static __latent_entropy void net_rx_action(struct softirq_action *h)
7044{
7045 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7046 unsigned long time_limit = jiffies +
7047 usecs_to_jiffies(netdev_budget_usecs);
7048 int budget = netdev_budget;
7049 LIST_HEAD(list);
7050 LIST_HEAD(repoll);
7051
7052 local_irq_disable();
7053 list_splice_init(&sd->poll_list, &list);
7054 local_irq_enable();
7055
7056 for (;;) {
7057 struct napi_struct *n;
7058
7059 if (list_empty(&list)) {
7060 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
7061 return;
7062 break;
7063 }
7064
7065 n = list_first_entry(&list, struct napi_struct, poll_list);
7066 budget -= napi_poll(n, &repoll);
7067
7068 /* If softirq window is exhausted then punt.
7069 * Allow this to run for 2 jiffies since which will allow
7070 * an average latency of 1.5/HZ.
7071 */
7072 if (unlikely(budget <= 0 ||
7073 time_after_eq(jiffies, time_limit))) {
7074 sd->time_squeeze++;
7075 break;
7076 }
7077 }
7078
7079 local_irq_disable();
7080
7081 list_splice_tail_init(&sd->poll_list, &list);
7082 list_splice_tail(&repoll, &list);
7083 list_splice(&list, &sd->poll_list);
7084 if (!list_empty(&sd->poll_list))
7085 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
7086
7087 net_rps_action_and_irq_enable(sd);
7088}
7089
7090struct netdev_adjacent {
7091 struct net_device *dev;
7092
7093 /* upper master flag, there can only be one master device per list */
7094 bool master;
7095
7096 /* lookup ignore flag */
7097 bool ignore;
7098
7099 /* counter for the number of times this device was added to us */
7100 u16 ref_nr;
7101
7102 /* private field for the users */
7103 void *private;
7104
7105 struct list_head list;
7106 struct rcu_head rcu;
7107};
7108
7109static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7110 struct list_head *adj_list)
7111{
7112 struct netdev_adjacent *adj;
7113
7114 list_for_each_entry(adj, adj_list, list) {
7115 if (adj->dev == adj_dev)
7116 return adj;
7117 }
7118 return NULL;
7119}
7120
7121static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7122 struct netdev_nested_priv *priv)
7123{
7124 struct net_device *dev = (struct net_device *)priv->data;
7125
7126 return upper_dev == dev;
7127}
7128
7129/**
7130 * netdev_has_upper_dev - Check if device is linked to an upper device
7131 * @dev: device
7132 * @upper_dev: upper device to check
7133 *
7134 * Find out if a device is linked to specified upper device and return true
7135 * in case it is. Note that this checks only immediate upper device,
7136 * not through a complete stack of devices. The caller must hold the RTNL lock.
7137 */
7138bool netdev_has_upper_dev(struct net_device *dev,
7139 struct net_device *upper_dev)
7140{
7141 struct netdev_nested_priv priv = {
7142 .data = (void *)upper_dev,
7143 };
7144
7145 ASSERT_RTNL();
7146
7147 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7148 &priv);
7149}
7150EXPORT_SYMBOL(netdev_has_upper_dev);
7151
7152/**
7153 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7154 * @dev: device
7155 * @upper_dev: upper device to check
7156 *
7157 * Find out if a device is linked to specified upper device and return true
7158 * in case it is. Note that this checks the entire upper device chain.
7159 * The caller must hold rcu lock.
7160 */
7161
7162bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7163 struct net_device *upper_dev)
7164{
7165 struct netdev_nested_priv priv = {
7166 .data = (void *)upper_dev,
7167 };
7168
7169 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7170 &priv);
7171}
7172EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7173
7174/**
7175 * netdev_has_any_upper_dev - Check if device is linked to some device
7176 * @dev: device
7177 *
7178 * Find out if a device is linked to an upper device and return true in case
7179 * it is. The caller must hold the RTNL lock.
7180 */
7181bool netdev_has_any_upper_dev(struct net_device *dev)
7182{
7183 ASSERT_RTNL();
7184
7185 return !list_empty(&dev->adj_list.upper);
7186}
7187EXPORT_SYMBOL(netdev_has_any_upper_dev);
7188
7189/**
7190 * netdev_master_upper_dev_get - Get master upper device
7191 * @dev: device
7192 *
7193 * Find a master upper device and return pointer to it or NULL in case
7194 * it's not there. The caller must hold the RTNL lock.
7195 */
7196struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7197{
7198 struct netdev_adjacent *upper;
7199
7200 ASSERT_RTNL();
7201
7202 if (list_empty(&dev->adj_list.upper))
7203 return NULL;
7204
7205 upper = list_first_entry(&dev->adj_list.upper,
7206 struct netdev_adjacent, list);
7207 if (likely(upper->master))
7208 return upper->dev;
7209 return NULL;
7210}
7211EXPORT_SYMBOL(netdev_master_upper_dev_get);
7212
7213static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7214{
7215 struct netdev_adjacent *upper;
7216
7217 ASSERT_RTNL();
7218
7219 if (list_empty(&dev->adj_list.upper))
7220 return NULL;
7221
7222 upper = list_first_entry(&dev->adj_list.upper,
7223 struct netdev_adjacent, list);
7224 if (likely(upper->master) && !upper->ignore)
7225 return upper->dev;
7226 return NULL;
7227}
7228
7229/**
7230 * netdev_has_any_lower_dev - Check if device is linked to some device
7231 * @dev: device
7232 *
7233 * Find out if a device is linked to a lower device and return true in case
7234 * it is. The caller must hold the RTNL lock.
7235 */
7236static bool netdev_has_any_lower_dev(struct net_device *dev)
7237{
7238 ASSERT_RTNL();
7239
7240 return !list_empty(&dev->adj_list.lower);
7241}
7242
7243void *netdev_adjacent_get_private(struct list_head *adj_list)
7244{
7245 struct netdev_adjacent *adj;
7246
7247 adj = list_entry(adj_list, struct netdev_adjacent, list);
7248
7249 return adj->private;
7250}
7251EXPORT_SYMBOL(netdev_adjacent_get_private);
7252
7253/**
7254 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7255 * @dev: device
7256 * @iter: list_head ** of the current position
7257 *
7258 * Gets the next device from the dev's upper list, starting from iter
7259 * position. The caller must hold RCU read lock.
7260 */
7261struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7262 struct list_head **iter)
7263{
7264 struct netdev_adjacent *upper;
7265
7266 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7267
7268 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7269
7270 if (&upper->list == &dev->adj_list.upper)
7271 return NULL;
7272
7273 *iter = &upper->list;
7274
7275 return upper->dev;
7276}
7277EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7278
7279static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7280 struct list_head **iter,
7281 bool *ignore)
7282{
7283 struct netdev_adjacent *upper;
7284
7285 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7286
7287 if (&upper->list == &dev->adj_list.upper)
7288 return NULL;
7289
7290 *iter = &upper->list;
7291 *ignore = upper->ignore;
7292
7293 return upper->dev;
7294}
7295
7296static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7297 struct list_head **iter)
7298{
7299 struct netdev_adjacent *upper;
7300
7301 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7302
7303 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7304
7305 if (&upper->list == &dev->adj_list.upper)
7306 return NULL;
7307
7308 *iter = &upper->list;
7309
7310 return upper->dev;
7311}
7312
7313static int __netdev_walk_all_upper_dev(struct net_device *dev,
7314 int (*fn)(struct net_device *dev,
7315 struct netdev_nested_priv *priv),
7316 struct netdev_nested_priv *priv)
7317{
7318 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7319 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7320 int ret, cur = 0;
7321 bool ignore;
7322
7323 now = dev;
7324 iter = &dev->adj_list.upper;
7325
7326 while (1) {
7327 if (now != dev) {
7328 ret = fn(now, priv);
7329 if (ret)
7330 return ret;
7331 }
7332
7333 next = NULL;
7334 while (1) {
7335 udev = __netdev_next_upper_dev(now, &iter, &ignore);
7336 if (!udev)
7337 break;
7338 if (ignore)
7339 continue;
7340
7341 next = udev;
7342 niter = &udev->adj_list.upper;
7343 dev_stack[cur] = now;
7344 iter_stack[cur++] = iter;
7345 break;
7346 }
7347
7348 if (!next) {
7349 if (!cur)
7350 return 0;
7351 next = dev_stack[--cur];
7352 niter = iter_stack[cur];
7353 }
7354
7355 now = next;
7356 iter = niter;
7357 }
7358
7359 return 0;
7360}
7361
7362int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7363 int (*fn)(struct net_device *dev,
7364 struct netdev_nested_priv *priv),
7365 struct netdev_nested_priv *priv)
7366{
7367 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7368 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7369 int ret, cur = 0;
7370
7371 now = dev;
7372 iter = &dev->adj_list.upper;
7373
7374 while (1) {
7375 if (now != dev) {
7376 ret = fn(now, priv);
7377 if (ret)
7378 return ret;
7379 }
7380
7381 next = NULL;
7382 while (1) {
7383 udev = netdev_next_upper_dev_rcu(now, &iter);
7384 if (!udev)
7385 break;
7386
7387 next = udev;
7388 niter = &udev->adj_list.upper;
7389 dev_stack[cur] = now;
7390 iter_stack[cur++] = iter;
7391 break;
7392 }
7393
7394 if (!next) {
7395 if (!cur)
7396 return 0;
7397 next = dev_stack[--cur];
7398 niter = iter_stack[cur];
7399 }
7400
7401 now = next;
7402 iter = niter;
7403 }
7404
7405 return 0;
7406}
7407EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7408
7409static bool __netdev_has_upper_dev(struct net_device *dev,
7410 struct net_device *upper_dev)
7411{
7412 struct netdev_nested_priv priv = {
7413 .flags = 0,
7414 .data = (void *)upper_dev,
7415 };
7416
7417 ASSERT_RTNL();
7418
7419 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7420 &priv);
7421}
7422
7423/**
7424 * netdev_lower_get_next_private - Get the next ->private from the
7425 * lower neighbour list
7426 * @dev: device
7427 * @iter: list_head ** of the current position
7428 *
7429 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7430 * list, starting from iter position. The caller must hold either hold the
7431 * RTNL lock or its own locking that guarantees that the neighbour lower
7432 * list will remain unchanged.
7433 */
7434void *netdev_lower_get_next_private(struct net_device *dev,
7435 struct list_head **iter)
7436{
7437 struct netdev_adjacent *lower;
7438
7439 lower = list_entry(*iter, struct netdev_adjacent, list);
7440
7441 if (&lower->list == &dev->adj_list.lower)
7442 return NULL;
7443
7444 *iter = lower->list.next;
7445
7446 return lower->private;
7447}
7448EXPORT_SYMBOL(netdev_lower_get_next_private);
7449
7450/**
7451 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7452 * lower neighbour list, RCU
7453 * variant
7454 * @dev: device
7455 * @iter: list_head ** of the current position
7456 *
7457 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7458 * list, starting from iter position. The caller must hold RCU read lock.
7459 */
7460void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7461 struct list_head **iter)
7462{
7463 struct netdev_adjacent *lower;
7464
7465 WARN_ON_ONCE(!rcu_read_lock_held());
7466
7467 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7468
7469 if (&lower->list == &dev->adj_list.lower)
7470 return NULL;
7471
7472 *iter = &lower->list;
7473
7474 return lower->private;
7475}
7476EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7477
7478/**
7479 * netdev_lower_get_next - Get the next device from the lower neighbour
7480 * list
7481 * @dev: device
7482 * @iter: list_head ** of the current position
7483 *
7484 * Gets the next netdev_adjacent from the dev's lower neighbour
7485 * list, starting from iter position. The caller must hold RTNL lock or
7486 * its own locking that guarantees that the neighbour lower
7487 * list will remain unchanged.
7488 */
7489void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7490{
7491 struct netdev_adjacent *lower;
7492
7493 lower = list_entry(*iter, struct netdev_adjacent, list);
7494
7495 if (&lower->list == &dev->adj_list.lower)
7496 return NULL;
7497
7498 *iter = lower->list.next;
7499
7500 return lower->dev;
7501}
7502EXPORT_SYMBOL(netdev_lower_get_next);
7503
7504static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7505 struct list_head **iter)
7506{
7507 struct netdev_adjacent *lower;
7508
7509 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7510
7511 if (&lower->list == &dev->adj_list.lower)
7512 return NULL;
7513
7514 *iter = &lower->list;
7515
7516 return lower->dev;
7517}
7518
7519static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7520 struct list_head **iter,
7521 bool *ignore)
7522{
7523 struct netdev_adjacent *lower;
7524
7525 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7526
7527 if (&lower->list == &dev->adj_list.lower)
7528 return NULL;
7529
7530 *iter = &lower->list;
7531 *ignore = lower->ignore;
7532
7533 return lower->dev;
7534}
7535
7536int netdev_walk_all_lower_dev(struct net_device *dev,
7537 int (*fn)(struct net_device *dev,
7538 struct netdev_nested_priv *priv),
7539 struct netdev_nested_priv *priv)
7540{
7541 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7542 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7543 int ret, cur = 0;
7544
7545 now = dev;
7546 iter = &dev->adj_list.lower;
7547
7548 while (1) {
7549 if (now != dev) {
7550 ret = fn(now, priv);
7551 if (ret)
7552 return ret;
7553 }
7554
7555 next = NULL;
7556 while (1) {
7557 ldev = netdev_next_lower_dev(now, &iter);
7558 if (!ldev)
7559 break;
7560
7561 next = ldev;
7562 niter = &ldev->adj_list.lower;
7563 dev_stack[cur] = now;
7564 iter_stack[cur++] = iter;
7565 break;
7566 }
7567
7568 if (!next) {
7569 if (!cur)
7570 return 0;
7571 next = dev_stack[--cur];
7572 niter = iter_stack[cur];
7573 }
7574
7575 now = next;
7576 iter = niter;
7577 }
7578
7579 return 0;
7580}
7581EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7582
7583static int __netdev_walk_all_lower_dev(struct net_device *dev,
7584 int (*fn)(struct net_device *dev,
7585 struct netdev_nested_priv *priv),
7586 struct netdev_nested_priv *priv)
7587{
7588 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7589 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7590 int ret, cur = 0;
7591 bool ignore;
7592
7593 now = dev;
7594 iter = &dev->adj_list.lower;
7595
7596 while (1) {
7597 if (now != dev) {
7598 ret = fn(now, priv);
7599 if (ret)
7600 return ret;
7601 }
7602
7603 next = NULL;
7604 while (1) {
7605 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7606 if (!ldev)
7607 break;
7608 if (ignore)
7609 continue;
7610
7611 next = ldev;
7612 niter = &ldev->adj_list.lower;
7613 dev_stack[cur] = now;
7614 iter_stack[cur++] = iter;
7615 break;
7616 }
7617
7618 if (!next) {
7619 if (!cur)
7620 return 0;
7621 next = dev_stack[--cur];
7622 niter = iter_stack[cur];
7623 }
7624
7625 now = next;
7626 iter = niter;
7627 }
7628
7629 return 0;
7630}
7631
7632struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7633 struct list_head **iter)
7634{
7635 struct netdev_adjacent *lower;
7636
7637 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7638 if (&lower->list == &dev->adj_list.lower)
7639 return NULL;
7640
7641 *iter = &lower->list;
7642
7643 return lower->dev;
7644}
7645EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7646
7647static u8 __netdev_upper_depth(struct net_device *dev)
7648{
7649 struct net_device *udev;
7650 struct list_head *iter;
7651 u8 max_depth = 0;
7652 bool ignore;
7653
7654 for (iter = &dev->adj_list.upper,
7655 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7656 udev;
7657 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7658 if (ignore)
7659 continue;
7660 if (max_depth < udev->upper_level)
7661 max_depth = udev->upper_level;
7662 }
7663
7664 return max_depth;
7665}
7666
7667static u8 __netdev_lower_depth(struct net_device *dev)
7668{
7669 struct net_device *ldev;
7670 struct list_head *iter;
7671 u8 max_depth = 0;
7672 bool ignore;
7673
7674 for (iter = &dev->adj_list.lower,
7675 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7676 ldev;
7677 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7678 if (ignore)
7679 continue;
7680 if (max_depth < ldev->lower_level)
7681 max_depth = ldev->lower_level;
7682 }
7683
7684 return max_depth;
7685}
7686
7687static int __netdev_update_upper_level(struct net_device *dev,
7688 struct netdev_nested_priv *__unused)
7689{
7690 dev->upper_level = __netdev_upper_depth(dev) + 1;
7691 return 0;
7692}
7693
7694static int __netdev_update_lower_level(struct net_device *dev,
7695 struct netdev_nested_priv *priv)
7696{
7697 dev->lower_level = __netdev_lower_depth(dev) + 1;
7698
7699#ifdef CONFIG_LOCKDEP
7700 if (!priv)
7701 return 0;
7702
7703 if (priv->flags & NESTED_SYNC_IMM)
7704 dev->nested_level = dev->lower_level - 1;
7705 if (priv->flags & NESTED_SYNC_TODO)
7706 net_unlink_todo(dev);
7707#endif
7708 return 0;
7709}
7710
7711int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7712 int (*fn)(struct net_device *dev,
7713 struct netdev_nested_priv *priv),
7714 struct netdev_nested_priv *priv)
7715{
7716 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7717 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7718 int ret, cur = 0;
7719
7720 now = dev;
7721 iter = &dev->adj_list.lower;
7722
7723 while (1) {
7724 if (now != dev) {
7725 ret = fn(now, priv);
7726 if (ret)
7727 return ret;
7728 }
7729
7730 next = NULL;
7731 while (1) {
7732 ldev = netdev_next_lower_dev_rcu(now, &iter);
7733 if (!ldev)
7734 break;
7735
7736 next = ldev;
7737 niter = &ldev->adj_list.lower;
7738 dev_stack[cur] = now;
7739 iter_stack[cur++] = iter;
7740 break;
7741 }
7742
7743 if (!next) {
7744 if (!cur)
7745 return 0;
7746 next = dev_stack[--cur];
7747 niter = iter_stack[cur];
7748 }
7749
7750 now = next;
7751 iter = niter;
7752 }
7753
7754 return 0;
7755}
7756EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7757
7758/**
7759 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7760 * lower neighbour list, RCU
7761 * variant
7762 * @dev: device
7763 *
7764 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7765 * list. The caller must hold RCU read lock.
7766 */
7767void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7768{
7769 struct netdev_adjacent *lower;
7770
7771 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7772 struct netdev_adjacent, list);
7773 if (lower)
7774 return lower->private;
7775 return NULL;
7776}
7777EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7778
7779/**
7780 * netdev_master_upper_dev_get_rcu - Get master upper device
7781 * @dev: device
7782 *
7783 * Find a master upper device and return pointer to it or NULL in case
7784 * it's not there. The caller must hold the RCU read lock.
7785 */
7786struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7787{
7788 struct netdev_adjacent *upper;
7789
7790 upper = list_first_or_null_rcu(&dev->adj_list.upper,
7791 struct netdev_adjacent, list);
7792 if (upper && likely(upper->master))
7793 return upper->dev;
7794 return NULL;
7795}
7796EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7797
7798static int netdev_adjacent_sysfs_add(struct net_device *dev,
7799 struct net_device *adj_dev,
7800 struct list_head *dev_list)
7801{
7802 char linkname[IFNAMSIZ+7];
7803
7804 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7805 "upper_%s" : "lower_%s", adj_dev->name);
7806 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7807 linkname);
7808}
7809static void netdev_adjacent_sysfs_del(struct net_device *dev,
7810 char *name,
7811 struct list_head *dev_list)
7812{
7813 char linkname[IFNAMSIZ+7];
7814
7815 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7816 "upper_%s" : "lower_%s", name);
7817 sysfs_remove_link(&(dev->dev.kobj), linkname);
7818}
7819
7820static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7821 struct net_device *adj_dev,
7822 struct list_head *dev_list)
7823{
7824 return (dev_list == &dev->adj_list.upper ||
7825 dev_list == &dev->adj_list.lower) &&
7826 net_eq(dev_net(dev), dev_net(adj_dev));
7827}
7828
7829static int __netdev_adjacent_dev_insert(struct net_device *dev,
7830 struct net_device *adj_dev,
7831 struct list_head *dev_list,
7832 void *private, bool master)
7833{
7834 struct netdev_adjacent *adj;
7835 int ret;
7836
7837 adj = __netdev_find_adj(adj_dev, dev_list);
7838
7839 if (adj) {
7840 adj->ref_nr += 1;
7841 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7842 dev->name, adj_dev->name, adj->ref_nr);
7843
7844 return 0;
7845 }
7846
7847 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7848 if (!adj)
7849 return -ENOMEM;
7850
7851 adj->dev = adj_dev;
7852 adj->master = master;
7853 adj->ref_nr = 1;
7854 adj->private = private;
7855 adj->ignore = false;
7856 dev_hold(adj_dev);
7857
7858 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7859 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7860
7861 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7862 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7863 if (ret)
7864 goto free_adj;
7865 }
7866
7867 /* Ensure that master link is always the first item in list. */
7868 if (master) {
7869 ret = sysfs_create_link(&(dev->dev.kobj),
7870 &(adj_dev->dev.kobj), "master");
7871 if (ret)
7872 goto remove_symlinks;
7873
7874 list_add_rcu(&adj->list, dev_list);
7875 } else {
7876 list_add_tail_rcu(&adj->list, dev_list);
7877 }
7878
7879 return 0;
7880
7881remove_symlinks:
7882 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7883 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7884free_adj:
7885 kfree(adj);
7886 dev_put(adj_dev);
7887
7888 return ret;
7889}
7890
7891static void __netdev_adjacent_dev_remove(struct net_device *dev,
7892 struct net_device *adj_dev,
7893 u16 ref_nr,
7894 struct list_head *dev_list)
7895{
7896 struct netdev_adjacent *adj;
7897
7898 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7899 dev->name, adj_dev->name, ref_nr);
7900
7901 adj = __netdev_find_adj(adj_dev, dev_list);
7902
7903 if (!adj) {
7904 pr_err("Adjacency does not exist for device %s from %s\n",
7905 dev->name, adj_dev->name);
7906 WARN_ON(1);
7907 return;
7908 }
7909
7910 if (adj->ref_nr > ref_nr) {
7911 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7912 dev->name, adj_dev->name, ref_nr,
7913 adj->ref_nr - ref_nr);
7914 adj->ref_nr -= ref_nr;
7915 return;
7916 }
7917
7918 if (adj->master)
7919 sysfs_remove_link(&(dev->dev.kobj), "master");
7920
7921 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7922 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7923
7924 list_del_rcu(&adj->list);
7925 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7926 adj_dev->name, dev->name, adj_dev->name);
7927 dev_put(adj_dev);
7928 kfree_rcu(adj, rcu);
7929}
7930
7931static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7932 struct net_device *upper_dev,
7933 struct list_head *up_list,
7934 struct list_head *down_list,
7935 void *private, bool master)
7936{
7937 int ret;
7938
7939 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7940 private, master);
7941 if (ret)
7942 return ret;
7943
7944 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7945 private, false);
7946 if (ret) {
7947 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7948 return ret;
7949 }
7950
7951 return 0;
7952}
7953
7954static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7955 struct net_device *upper_dev,
7956 u16 ref_nr,
7957 struct list_head *up_list,
7958 struct list_head *down_list)
7959{
7960 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7961 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7962}
7963
7964static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7965 struct net_device *upper_dev,
7966 void *private, bool master)
7967{
7968 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7969 &dev->adj_list.upper,
7970 &upper_dev->adj_list.lower,
7971 private, master);
7972}
7973
7974static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7975 struct net_device *upper_dev)
7976{
7977 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7978 &dev->adj_list.upper,
7979 &upper_dev->adj_list.lower);
7980}
7981
7982static int __netdev_upper_dev_link(struct net_device *dev,
7983 struct net_device *upper_dev, bool master,
7984 void *upper_priv, void *upper_info,
7985 struct netdev_nested_priv *priv,
7986 struct netlink_ext_ack *extack)
7987{
7988 struct netdev_notifier_changeupper_info changeupper_info = {
7989 .info = {
7990 .dev = dev,
7991 .extack = extack,
7992 },
7993 .upper_dev = upper_dev,
7994 .master = master,
7995 .linking = true,
7996 .upper_info = upper_info,
7997 };
7998 struct net_device *master_dev;
7999 int ret = 0;
8000
8001 ASSERT_RTNL();
8002
8003 if (dev == upper_dev)
8004 return -EBUSY;
8005
8006 /* To prevent loops, check if dev is not upper device to upper_dev. */
8007 if (__netdev_has_upper_dev(upper_dev, dev))
8008 return -EBUSY;
8009
8010 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8011 return -EMLINK;
8012
8013 if (!master) {
8014 if (__netdev_has_upper_dev(dev, upper_dev))
8015 return -EEXIST;
8016 } else {
8017 master_dev = __netdev_master_upper_dev_get(dev);
8018 if (master_dev)
8019 return master_dev == upper_dev ? -EEXIST : -EBUSY;
8020 }
8021
8022 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8023 &changeupper_info.info);
8024 ret = notifier_to_errno(ret);
8025 if (ret)
8026 return ret;
8027
8028 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8029 master);
8030 if (ret)
8031 return ret;
8032
8033 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8034 &changeupper_info.info);
8035 ret = notifier_to_errno(ret);
8036 if (ret)
8037 goto rollback;
8038
8039 __netdev_update_upper_level(dev, NULL);
8040 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8041
8042 __netdev_update_lower_level(upper_dev, priv);
8043 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8044 priv);
8045
8046 return 0;
8047
8048rollback:
8049 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8050
8051 return ret;
8052}
8053
8054/**
8055 * netdev_upper_dev_link - Add a link to the upper device
8056 * @dev: device
8057 * @upper_dev: new upper device
8058 * @extack: netlink extended ack
8059 *
8060 * Adds a link to device which is upper to this one. The caller must hold
8061 * the RTNL lock. On a failure a negative errno code is returned.
8062 * On success the reference counts are adjusted and the function
8063 * returns zero.
8064 */
8065int netdev_upper_dev_link(struct net_device *dev,
8066 struct net_device *upper_dev,
8067 struct netlink_ext_ack *extack)
8068{
8069 struct netdev_nested_priv priv = {
8070 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8071 .data = NULL,
8072 };
8073
8074 return __netdev_upper_dev_link(dev, upper_dev, false,
8075 NULL, NULL, &priv, extack);
8076}
8077EXPORT_SYMBOL(netdev_upper_dev_link);
8078
8079/**
8080 * netdev_master_upper_dev_link - Add a master link to the upper device
8081 * @dev: device
8082 * @upper_dev: new upper device
8083 * @upper_priv: upper device private
8084 * @upper_info: upper info to be passed down via notifier
8085 * @extack: netlink extended ack
8086 *
8087 * Adds a link to device which is upper to this one. In this case, only
8088 * one master upper device can be linked, although other non-master devices
8089 * might be linked as well. The caller must hold the RTNL lock.
8090 * On a failure a negative errno code is returned. On success the reference
8091 * counts are adjusted and the function returns zero.
8092 */
8093int netdev_master_upper_dev_link(struct net_device *dev,
8094 struct net_device *upper_dev,
8095 void *upper_priv, void *upper_info,
8096 struct netlink_ext_ack *extack)
8097{
8098 struct netdev_nested_priv priv = {
8099 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8100 .data = NULL,
8101 };
8102
8103 return __netdev_upper_dev_link(dev, upper_dev, true,
8104 upper_priv, upper_info, &priv, extack);
8105}
8106EXPORT_SYMBOL(netdev_master_upper_dev_link);
8107
8108static void __netdev_upper_dev_unlink(struct net_device *dev,
8109 struct net_device *upper_dev,
8110 struct netdev_nested_priv *priv)
8111{
8112 struct netdev_notifier_changeupper_info changeupper_info = {
8113 .info = {
8114 .dev = dev,
8115 },
8116 .upper_dev = upper_dev,
8117 .linking = false,
8118 };
8119
8120 ASSERT_RTNL();
8121
8122 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8123
8124 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8125 &changeupper_info.info);
8126
8127 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8128
8129 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8130 &changeupper_info.info);
8131
8132 __netdev_update_upper_level(dev, NULL);
8133 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8134
8135 __netdev_update_lower_level(upper_dev, priv);
8136 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8137 priv);
8138}
8139
8140/**
8141 * netdev_upper_dev_unlink - Removes a link to upper device
8142 * @dev: device
8143 * @upper_dev: new upper device
8144 *
8145 * Removes a link to device which is upper to this one. The caller must hold
8146 * the RTNL lock.
8147 */
8148void netdev_upper_dev_unlink(struct net_device *dev,
8149 struct net_device *upper_dev)
8150{
8151 struct netdev_nested_priv priv = {
8152 .flags = NESTED_SYNC_TODO,
8153 .data = NULL,
8154 };
8155
8156 __netdev_upper_dev_unlink(dev, upper_dev, &priv);
8157}
8158EXPORT_SYMBOL(netdev_upper_dev_unlink);
8159
8160static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8161 struct net_device *lower_dev,
8162 bool val)
8163{
8164 struct netdev_adjacent *adj;
8165
8166 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8167 if (adj)
8168 adj->ignore = val;
8169
8170 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8171 if (adj)
8172 adj->ignore = val;
8173}
8174
8175static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8176 struct net_device *lower_dev)
8177{
8178 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8179}
8180
8181static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8182 struct net_device *lower_dev)
8183{
8184 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8185}
8186
8187int netdev_adjacent_change_prepare(struct net_device *old_dev,
8188 struct net_device *new_dev,
8189 struct net_device *dev,
8190 struct netlink_ext_ack *extack)
8191{
8192 struct netdev_nested_priv priv = {
8193 .flags = 0,
8194 .data = NULL,
8195 };
8196 int err;
8197
8198 if (!new_dev)
8199 return 0;
8200
8201 if (old_dev && new_dev != old_dev)
8202 netdev_adjacent_dev_disable(dev, old_dev);
8203 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8204 extack);
8205 if (err) {
8206 if (old_dev && new_dev != old_dev)
8207 netdev_adjacent_dev_enable(dev, old_dev);
8208 return err;
8209 }
8210
8211 return 0;
8212}
8213EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8214
8215void netdev_adjacent_change_commit(struct net_device *old_dev,
8216 struct net_device *new_dev,
8217 struct net_device *dev)
8218{
8219 struct netdev_nested_priv priv = {
8220 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8221 .data = NULL,
8222 };
8223
8224 if (!new_dev || !old_dev)
8225 return;
8226
8227 if (new_dev == old_dev)
8228 return;
8229
8230 netdev_adjacent_dev_enable(dev, old_dev);
8231 __netdev_upper_dev_unlink(old_dev, dev, &priv);
8232}
8233EXPORT_SYMBOL(netdev_adjacent_change_commit);
8234
8235void netdev_adjacent_change_abort(struct net_device *old_dev,
8236 struct net_device *new_dev,
8237 struct net_device *dev)
8238{
8239 struct netdev_nested_priv priv = {
8240 .flags = 0,
8241 .data = NULL,
8242 };
8243
8244 if (!new_dev)
8245 return;
8246
8247 if (old_dev && new_dev != old_dev)
8248 netdev_adjacent_dev_enable(dev, old_dev);
8249
8250 __netdev_upper_dev_unlink(new_dev, dev, &priv);
8251}
8252EXPORT_SYMBOL(netdev_adjacent_change_abort);
8253
8254/**
8255 * netdev_bonding_info_change - Dispatch event about slave change
8256 * @dev: device
8257 * @bonding_info: info to dispatch
8258 *
8259 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8260 * The caller must hold the RTNL lock.
8261 */
8262void netdev_bonding_info_change(struct net_device *dev,
8263 struct netdev_bonding_info *bonding_info)
8264{
8265 struct netdev_notifier_bonding_info info = {
8266 .info.dev = dev,
8267 };
8268
8269 memcpy(&info.bonding_info, bonding_info,
8270 sizeof(struct netdev_bonding_info));
8271 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8272 &info.info);
8273}
8274EXPORT_SYMBOL(netdev_bonding_info_change);
8275
8276/**
8277 * netdev_get_xmit_slave - Get the xmit slave of master device
8278 * @dev: device
8279 * @skb: The packet
8280 * @all_slaves: assume all the slaves are active
8281 *
8282 * The reference counters are not incremented so the caller must be
8283 * careful with locks. The caller must hold RCU lock.
8284 * %NULL is returned if no slave is found.
8285 */
8286
8287struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8288 struct sk_buff *skb,
8289 bool all_slaves)
8290{
8291 const struct net_device_ops *ops = dev->netdev_ops;
8292
8293 if (!ops->ndo_get_xmit_slave)
8294 return NULL;
8295 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8296}
8297EXPORT_SYMBOL(netdev_get_xmit_slave);
8298
8299static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8300 struct sock *sk)
8301{
8302 const struct net_device_ops *ops = dev->netdev_ops;
8303
8304 if (!ops->ndo_sk_get_lower_dev)
8305 return NULL;
8306 return ops->ndo_sk_get_lower_dev(dev, sk);
8307}
8308
8309/**
8310 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8311 * @dev: device
8312 * @sk: the socket
8313 *
8314 * %NULL is returned if no lower device is found.
8315 */
8316
8317struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8318 struct sock *sk)
8319{
8320 struct net_device *lower;
8321
8322 lower = netdev_sk_get_lower_dev(dev, sk);
8323 while (lower) {
8324 dev = lower;
8325 lower = netdev_sk_get_lower_dev(dev, sk);
8326 }
8327
8328 return dev;
8329}
8330EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8331
8332static void netdev_adjacent_add_links(struct net_device *dev)
8333{
8334 struct netdev_adjacent *iter;
8335
8336 struct net *net = dev_net(dev);
8337
8338 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8339 if (!net_eq(net, dev_net(iter->dev)))
8340 continue;
8341 netdev_adjacent_sysfs_add(iter->dev, dev,
8342 &iter->dev->adj_list.lower);
8343 netdev_adjacent_sysfs_add(dev, iter->dev,
8344 &dev->adj_list.upper);
8345 }
8346
8347 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8348 if (!net_eq(net, dev_net(iter->dev)))
8349 continue;
8350 netdev_adjacent_sysfs_add(iter->dev, dev,
8351 &iter->dev->adj_list.upper);
8352 netdev_adjacent_sysfs_add(dev, iter->dev,
8353 &dev->adj_list.lower);
8354 }
8355}
8356
8357static void netdev_adjacent_del_links(struct net_device *dev)
8358{
8359 struct netdev_adjacent *iter;
8360
8361 struct net *net = dev_net(dev);
8362
8363 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8364 if (!net_eq(net, dev_net(iter->dev)))
8365 continue;
8366 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8367 &iter->dev->adj_list.lower);
8368 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8369 &dev->adj_list.upper);
8370 }
8371
8372 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8373 if (!net_eq(net, dev_net(iter->dev)))
8374 continue;
8375 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8376 &iter->dev->adj_list.upper);
8377 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8378 &dev->adj_list.lower);
8379 }
8380}
8381
8382void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8383{
8384 struct netdev_adjacent *iter;
8385
8386 struct net *net = dev_net(dev);
8387
8388 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8389 if (!net_eq(net, dev_net(iter->dev)))
8390 continue;
8391 netdev_adjacent_sysfs_del(iter->dev, oldname,
8392 &iter->dev->adj_list.lower);
8393 netdev_adjacent_sysfs_add(iter->dev, dev,
8394 &iter->dev->adj_list.lower);
8395 }
8396
8397 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8398 if (!net_eq(net, dev_net(iter->dev)))
8399 continue;
8400 netdev_adjacent_sysfs_del(iter->dev, oldname,
8401 &iter->dev->adj_list.upper);
8402 netdev_adjacent_sysfs_add(iter->dev, dev,
8403 &iter->dev->adj_list.upper);
8404 }
8405}
8406
8407void *netdev_lower_dev_get_private(struct net_device *dev,
8408 struct net_device *lower_dev)
8409{
8410 struct netdev_adjacent *lower;
8411
8412 if (!lower_dev)
8413 return NULL;
8414 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8415 if (!lower)
8416 return NULL;
8417
8418 return lower->private;
8419}
8420EXPORT_SYMBOL(netdev_lower_dev_get_private);
8421
8422
8423/**
8424 * netdev_lower_state_changed - Dispatch event about lower device state change
8425 * @lower_dev: device
8426 * @lower_state_info: state to dispatch
8427 *
8428 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8429 * The caller must hold the RTNL lock.
8430 */
8431void netdev_lower_state_changed(struct net_device *lower_dev,
8432 void *lower_state_info)
8433{
8434 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8435 .info.dev = lower_dev,
8436 };
8437
8438 ASSERT_RTNL();
8439 changelowerstate_info.lower_state_info = lower_state_info;
8440 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8441 &changelowerstate_info.info);
8442}
8443EXPORT_SYMBOL(netdev_lower_state_changed);
8444
8445static void dev_change_rx_flags(struct net_device *dev, int flags)
8446{
8447 const struct net_device_ops *ops = dev->netdev_ops;
8448
8449 if (ops->ndo_change_rx_flags)
8450 ops->ndo_change_rx_flags(dev, flags);
8451}
8452
8453static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8454{
8455 unsigned int old_flags = dev->flags;
8456 kuid_t uid;
8457 kgid_t gid;
8458
8459 ASSERT_RTNL();
8460
8461 dev->flags |= IFF_PROMISC;
8462 dev->promiscuity += inc;
8463 if (dev->promiscuity == 0) {
8464 /*
8465 * Avoid overflow.
8466 * If inc causes overflow, untouch promisc and return error.
8467 */
8468 if (inc < 0)
8469 dev->flags &= ~IFF_PROMISC;
8470 else {
8471 dev->promiscuity -= inc;
8472 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8473 dev->name);
8474 return -EOVERFLOW;
8475 }
8476 }
8477 if (dev->flags != old_flags) {
8478 pr_info("device %s %s promiscuous mode\n",
8479 dev->name,
8480 dev->flags & IFF_PROMISC ? "entered" : "left");
8481 if (audit_enabled) {
8482 current_uid_gid(&uid, &gid);
8483 audit_log(audit_context(), GFP_ATOMIC,
8484 AUDIT_ANOM_PROMISCUOUS,
8485 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8486 dev->name, (dev->flags & IFF_PROMISC),
8487 (old_flags & IFF_PROMISC),
8488 from_kuid(&init_user_ns, audit_get_loginuid(current)),
8489 from_kuid(&init_user_ns, uid),
8490 from_kgid(&init_user_ns, gid),
8491 audit_get_sessionid(current));
8492 }
8493
8494 dev_change_rx_flags(dev, IFF_PROMISC);
8495 }
8496 if (notify)
8497 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8498 return 0;
8499}
8500
8501/**
8502 * dev_set_promiscuity - update promiscuity count on a device
8503 * @dev: device
8504 * @inc: modifier
8505 *
8506 * Add or remove promiscuity from a device. While the count in the device
8507 * remains above zero the interface remains promiscuous. Once it hits zero
8508 * the device reverts back to normal filtering operation. A negative inc
8509 * value is used to drop promiscuity on the device.
8510 * Return 0 if successful or a negative errno code on error.
8511 */
8512int dev_set_promiscuity(struct net_device *dev, int inc)
8513{
8514 unsigned int old_flags = dev->flags;
8515 int err;
8516
8517 err = __dev_set_promiscuity(dev, inc, true);
8518 if (err < 0)
8519 return err;
8520 if (dev->flags != old_flags)
8521 dev_set_rx_mode(dev);
8522 return err;
8523}
8524EXPORT_SYMBOL(dev_set_promiscuity);
8525
8526static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8527{
8528 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8529
8530 ASSERT_RTNL();
8531
8532 dev->flags |= IFF_ALLMULTI;
8533 dev->allmulti += inc;
8534 if (dev->allmulti == 0) {
8535 /*
8536 * Avoid overflow.
8537 * If inc causes overflow, untouch allmulti and return error.
8538 */
8539 if (inc < 0)
8540 dev->flags &= ~IFF_ALLMULTI;
8541 else {
8542 dev->allmulti -= inc;
8543 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8544 dev->name);
8545 return -EOVERFLOW;
8546 }
8547 }
8548 if (dev->flags ^ old_flags) {
8549 dev_change_rx_flags(dev, IFF_ALLMULTI);
8550 dev_set_rx_mode(dev);
8551 if (notify)
8552 __dev_notify_flags(dev, old_flags,
8553 dev->gflags ^ old_gflags);
8554 }
8555 return 0;
8556}
8557
8558/**
8559 * dev_set_allmulti - update allmulti count on a device
8560 * @dev: device
8561 * @inc: modifier
8562 *
8563 * Add or remove reception of all multicast frames to a device. While the
8564 * count in the device remains above zero the interface remains listening
8565 * to all interfaces. Once it hits zero the device reverts back to normal
8566 * filtering operation. A negative @inc value is used to drop the counter
8567 * when releasing a resource needing all multicasts.
8568 * Return 0 if successful or a negative errno code on error.
8569 */
8570
8571int dev_set_allmulti(struct net_device *dev, int inc)
8572{
8573 return __dev_set_allmulti(dev, inc, true);
8574}
8575EXPORT_SYMBOL(dev_set_allmulti);
8576
8577/*
8578 * Upload unicast and multicast address lists to device and
8579 * configure RX filtering. When the device doesn't support unicast
8580 * filtering it is put in promiscuous mode while unicast addresses
8581 * are present.
8582 */
8583void __dev_set_rx_mode(struct net_device *dev)
8584{
8585 const struct net_device_ops *ops = dev->netdev_ops;
8586
8587 /* dev_open will call this function so the list will stay sane. */
8588 if (!(dev->flags&IFF_UP))
8589 return;
8590
8591 if (!netif_device_present(dev))
8592 return;
8593
8594 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8595 /* Unicast addresses changes may only happen under the rtnl,
8596 * therefore calling __dev_set_promiscuity here is safe.
8597 */
8598 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8599 __dev_set_promiscuity(dev, 1, false);
8600 dev->uc_promisc = true;
8601 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8602 __dev_set_promiscuity(dev, -1, false);
8603 dev->uc_promisc = false;
8604 }
8605 }
8606
8607 if (ops->ndo_set_rx_mode)
8608 ops->ndo_set_rx_mode(dev);
8609}
8610
8611void dev_set_rx_mode(struct net_device *dev)
8612{
8613 netif_addr_lock_bh(dev);
8614 __dev_set_rx_mode(dev);
8615 netif_addr_unlock_bh(dev);
8616}
8617
8618/**
8619 * dev_get_flags - get flags reported to userspace
8620 * @dev: device
8621 *
8622 * Get the combination of flag bits exported through APIs to userspace.
8623 */
8624unsigned int dev_get_flags(const struct net_device *dev)
8625{
8626 unsigned int flags;
8627
8628 flags = (dev->flags & ~(IFF_PROMISC |
8629 IFF_ALLMULTI |
8630 IFF_RUNNING |
8631 IFF_LOWER_UP |
8632 IFF_DORMANT)) |
8633 (dev->gflags & (IFF_PROMISC |
8634 IFF_ALLMULTI));
8635
8636 if (netif_running(dev)) {
8637 if (netif_oper_up(dev))
8638 flags |= IFF_RUNNING;
8639 if (netif_carrier_ok(dev))
8640 flags |= IFF_LOWER_UP;
8641 if (netif_dormant(dev))
8642 flags |= IFF_DORMANT;
8643 }
8644
8645 return flags;
8646}
8647EXPORT_SYMBOL(dev_get_flags);
8648
8649int __dev_change_flags(struct net_device *dev, unsigned int flags,
8650 struct netlink_ext_ack *extack)
8651{
8652 unsigned int old_flags = dev->flags;
8653 int ret;
8654
8655 ASSERT_RTNL();
8656
8657 /*
8658 * Set the flags on our device.
8659 */
8660
8661 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8662 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8663 IFF_AUTOMEDIA)) |
8664 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8665 IFF_ALLMULTI));
8666
8667 /*
8668 * Load in the correct multicast list now the flags have changed.
8669 */
8670
8671 if ((old_flags ^ flags) & IFF_MULTICAST)
8672 dev_change_rx_flags(dev, IFF_MULTICAST);
8673
8674 dev_set_rx_mode(dev);
8675
8676 /*
8677 * Have we downed the interface. We handle IFF_UP ourselves
8678 * according to user attempts to set it, rather than blindly
8679 * setting it.
8680 */
8681
8682 ret = 0;
8683 if ((old_flags ^ flags) & IFF_UP) {
8684 if (old_flags & IFF_UP)
8685 __dev_close(dev);
8686 else
8687 ret = __dev_open(dev, extack);
8688 }
8689
8690 if ((flags ^ dev->gflags) & IFF_PROMISC) {
8691 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8692 unsigned int old_flags = dev->flags;
8693
8694 dev->gflags ^= IFF_PROMISC;
8695
8696 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8697 if (dev->flags != old_flags)
8698 dev_set_rx_mode(dev);
8699 }
8700
8701 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8702 * is important. Some (broken) drivers set IFF_PROMISC, when
8703 * IFF_ALLMULTI is requested not asking us and not reporting.
8704 */
8705 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8706 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8707
8708 dev->gflags ^= IFF_ALLMULTI;
8709 __dev_set_allmulti(dev, inc, false);
8710 }
8711
8712 return ret;
8713}
8714
8715void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8716 unsigned int gchanges)
8717{
8718 unsigned int changes = dev->flags ^ old_flags;
8719
8720 if (gchanges)
8721 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8722
8723 if (changes & IFF_UP) {
8724 if (dev->flags & IFF_UP)
8725 call_netdevice_notifiers(NETDEV_UP, dev);
8726 else
8727 call_netdevice_notifiers(NETDEV_DOWN, dev);
8728 }
8729
8730 if (dev->flags & IFF_UP &&
8731 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8732 struct netdev_notifier_change_info change_info = {
8733 .info = {
8734 .dev = dev,
8735 },
8736 .flags_changed = changes,
8737 };
8738
8739 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8740 }
8741}
8742
8743/**
8744 * dev_change_flags - change device settings
8745 * @dev: device
8746 * @flags: device state flags
8747 * @extack: netlink extended ack
8748 *
8749 * Change settings on device based state flags. The flags are
8750 * in the userspace exported format.
8751 */
8752int dev_change_flags(struct net_device *dev, unsigned int flags,
8753 struct netlink_ext_ack *extack)
8754{
8755 int ret;
8756 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8757
8758 ret = __dev_change_flags(dev, flags, extack);
8759 if (ret < 0)
8760 return ret;
8761
8762 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8763 __dev_notify_flags(dev, old_flags, changes);
8764 return ret;
8765}
8766EXPORT_SYMBOL(dev_change_flags);
8767
8768int __dev_set_mtu(struct net_device *dev, int new_mtu)
8769{
8770 const struct net_device_ops *ops = dev->netdev_ops;
8771
8772 if (ops->ndo_change_mtu)
8773 return ops->ndo_change_mtu(dev, new_mtu);
8774
8775 /* Pairs with all the lockless reads of dev->mtu in the stack */
8776 WRITE_ONCE(dev->mtu, new_mtu);
8777 return 0;
8778}
8779EXPORT_SYMBOL(__dev_set_mtu);
8780
8781int dev_validate_mtu(struct net_device *dev, int new_mtu,
8782 struct netlink_ext_ack *extack)
8783{
8784 /* MTU must be positive, and in range */
8785 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8786 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8787 return -EINVAL;
8788 }
8789
8790 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8791 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8792 return -EINVAL;
8793 }
8794 return 0;
8795}
8796
8797/**
8798 * dev_set_mtu_ext - Change maximum transfer unit
8799 * @dev: device
8800 * @new_mtu: new transfer unit
8801 * @extack: netlink extended ack
8802 *
8803 * Change the maximum transfer size of the network device.
8804 */
8805int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8806 struct netlink_ext_ack *extack)
8807{
8808 int err, orig_mtu;
8809
8810 if (new_mtu == dev->mtu)
8811 return 0;
8812
8813 err = dev_validate_mtu(dev, new_mtu, extack);
8814 if (err)
8815 return err;
8816
8817 if (!netif_device_present(dev))
8818 return -ENODEV;
8819
8820 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8821 err = notifier_to_errno(err);
8822 if (err)
8823 return err;
8824
8825 orig_mtu = dev->mtu;
8826 err = __dev_set_mtu(dev, new_mtu);
8827
8828 if (!err) {
8829 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8830 orig_mtu);
8831 err = notifier_to_errno(err);
8832 if (err) {
8833 /* setting mtu back and notifying everyone again,
8834 * so that they have a chance to revert changes.
8835 */
8836 __dev_set_mtu(dev, orig_mtu);
8837 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8838 new_mtu);
8839 }
8840 }
8841 return err;
8842}
8843
8844int dev_set_mtu(struct net_device *dev, int new_mtu)
8845{
8846 struct netlink_ext_ack extack;
8847 int err;
8848
8849 memset(&extack, 0, sizeof(extack));
8850 err = dev_set_mtu_ext(dev, new_mtu, &extack);
8851 if (err && extack._msg)
8852 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8853 return err;
8854}
8855EXPORT_SYMBOL(dev_set_mtu);
8856
8857/**
8858 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8859 * @dev: device
8860 * @new_len: new tx queue length
8861 */
8862int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8863{
8864 unsigned int orig_len = dev->tx_queue_len;
8865 int res;
8866
8867 if (new_len != (unsigned int)new_len)
8868 return -ERANGE;
8869
8870 if (new_len != orig_len) {
8871 dev->tx_queue_len = new_len;
8872 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8873 res = notifier_to_errno(res);
8874 if (res)
8875 goto err_rollback;
8876 res = dev_qdisc_change_tx_queue_len(dev);
8877 if (res)
8878 goto err_rollback;
8879 }
8880
8881 return 0;
8882
8883err_rollback:
8884 netdev_err(dev, "refused to change device tx_queue_len\n");
8885 dev->tx_queue_len = orig_len;
8886 return res;
8887}
8888
8889/**
8890 * dev_set_group - Change group this device belongs to
8891 * @dev: device
8892 * @new_group: group this device should belong to
8893 */
8894void dev_set_group(struct net_device *dev, int new_group)
8895{
8896 dev->group = new_group;
8897}
8898EXPORT_SYMBOL(dev_set_group);
8899
8900/**
8901 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8902 * @dev: device
8903 * @addr: new address
8904 * @extack: netlink extended ack
8905 */
8906int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8907 struct netlink_ext_ack *extack)
8908{
8909 struct netdev_notifier_pre_changeaddr_info info = {
8910 .info.dev = dev,
8911 .info.extack = extack,
8912 .dev_addr = addr,
8913 };
8914 int rc;
8915
8916 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8917 return notifier_to_errno(rc);
8918}
8919EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8920
8921/**
8922 * dev_set_mac_address - Change Media Access Control Address
8923 * @dev: device
8924 * @sa: new address
8925 * @extack: netlink extended ack
8926 *
8927 * Change the hardware (MAC) address of the device
8928 */
8929int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8930 struct netlink_ext_ack *extack)
8931{
8932 const struct net_device_ops *ops = dev->netdev_ops;
8933 int err;
8934
8935 if (!ops->ndo_set_mac_address)
8936 return -EOPNOTSUPP;
8937 if (sa->sa_family != dev->type)
8938 return -EINVAL;
8939 if (!netif_device_present(dev))
8940 return -ENODEV;
8941 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8942 if (err)
8943 return err;
8944 err = ops->ndo_set_mac_address(dev, sa);
8945 if (err)
8946 return err;
8947 dev->addr_assign_type = NET_ADDR_SET;
8948 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8949 add_device_randomness(dev->dev_addr, dev->addr_len);
8950 return 0;
8951}
8952EXPORT_SYMBOL(dev_set_mac_address);
8953
8954static DECLARE_RWSEM(dev_addr_sem);
8955
8956int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8957 struct netlink_ext_ack *extack)
8958{
8959 int ret;
8960
8961 down_write(&dev_addr_sem);
8962 ret = dev_set_mac_address(dev, sa, extack);
8963 up_write(&dev_addr_sem);
8964 return ret;
8965}
8966EXPORT_SYMBOL(dev_set_mac_address_user);
8967
8968int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8969{
8970 size_t size = sizeof(sa->sa_data);
8971 struct net_device *dev;
8972 int ret = 0;
8973
8974 down_read(&dev_addr_sem);
8975 rcu_read_lock();
8976
8977 dev = dev_get_by_name_rcu(net, dev_name);
8978 if (!dev) {
8979 ret = -ENODEV;
8980 goto unlock;
8981 }
8982 if (!dev->addr_len)
8983 memset(sa->sa_data, 0, size);
8984 else
8985 memcpy(sa->sa_data, dev->dev_addr,
8986 min_t(size_t, size, dev->addr_len));
8987 sa->sa_family = dev->type;
8988
8989unlock:
8990 rcu_read_unlock();
8991 up_read(&dev_addr_sem);
8992 return ret;
8993}
8994EXPORT_SYMBOL(dev_get_mac_address);
8995
8996/**
8997 * dev_change_carrier - Change device carrier
8998 * @dev: device
8999 * @new_carrier: new value
9000 *
9001 * Change device carrier
9002 */
9003int dev_change_carrier(struct net_device *dev, bool new_carrier)
9004{
9005 const struct net_device_ops *ops = dev->netdev_ops;
9006
9007 if (!ops->ndo_change_carrier)
9008 return -EOPNOTSUPP;
9009 if (!netif_device_present(dev))
9010 return -ENODEV;
9011 return ops->ndo_change_carrier(dev, new_carrier);
9012}
9013EXPORT_SYMBOL(dev_change_carrier);
9014
9015/**
9016 * dev_get_phys_port_id - Get device physical port ID
9017 * @dev: device
9018 * @ppid: port ID
9019 *
9020 * Get device physical port ID
9021 */
9022int dev_get_phys_port_id(struct net_device *dev,
9023 struct netdev_phys_item_id *ppid)
9024{
9025 const struct net_device_ops *ops = dev->netdev_ops;
9026
9027 if (!ops->ndo_get_phys_port_id)
9028 return -EOPNOTSUPP;
9029 return ops->ndo_get_phys_port_id(dev, ppid);
9030}
9031EXPORT_SYMBOL(dev_get_phys_port_id);
9032
9033/**
9034 * dev_get_phys_port_name - Get device physical port name
9035 * @dev: device
9036 * @name: port name
9037 * @len: limit of bytes to copy to name
9038 *
9039 * Get device physical port name
9040 */
9041int dev_get_phys_port_name(struct net_device *dev,
9042 char *name, size_t len)
9043{
9044 const struct net_device_ops *ops = dev->netdev_ops;
9045 int err;
9046
9047 if (ops->ndo_get_phys_port_name) {
9048 err = ops->ndo_get_phys_port_name(dev, name, len);
9049 if (err != -EOPNOTSUPP)
9050 return err;
9051 }
9052 return devlink_compat_phys_port_name_get(dev, name, len);
9053}
9054EXPORT_SYMBOL(dev_get_phys_port_name);
9055
9056/**
9057 * dev_get_port_parent_id - Get the device's port parent identifier
9058 * @dev: network device
9059 * @ppid: pointer to a storage for the port's parent identifier
9060 * @recurse: allow/disallow recursion to lower devices
9061 *
9062 * Get the devices's port parent identifier
9063 */
9064int dev_get_port_parent_id(struct net_device *dev,
9065 struct netdev_phys_item_id *ppid,
9066 bool recurse)
9067{
9068 const struct net_device_ops *ops = dev->netdev_ops;
9069 struct netdev_phys_item_id first = { };
9070 struct net_device *lower_dev;
9071 struct list_head *iter;
9072 int err;
9073
9074 if (ops->ndo_get_port_parent_id) {
9075 err = ops->ndo_get_port_parent_id(dev, ppid);
9076 if (err != -EOPNOTSUPP)
9077 return err;
9078 }
9079
9080 err = devlink_compat_switch_id_get(dev, ppid);
9081 if (!err || err != -EOPNOTSUPP)
9082 return err;
9083
9084 if (!recurse)
9085 return -EOPNOTSUPP;
9086
9087 netdev_for_each_lower_dev(dev, lower_dev, iter) {
9088 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
9089 if (err)
9090 break;
9091 if (!first.id_len)
9092 first = *ppid;
9093 else if (memcmp(&first, ppid, sizeof(*ppid)))
9094 return -EOPNOTSUPP;
9095 }
9096
9097 return err;
9098}
9099EXPORT_SYMBOL(dev_get_port_parent_id);
9100
9101/**
9102 * netdev_port_same_parent_id - Indicate if two network devices have
9103 * the same port parent identifier
9104 * @a: first network device
9105 * @b: second network device
9106 */
9107bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9108{
9109 struct netdev_phys_item_id a_id = { };
9110 struct netdev_phys_item_id b_id = { };
9111
9112 if (dev_get_port_parent_id(a, &a_id, true) ||
9113 dev_get_port_parent_id(b, &b_id, true))
9114 return false;
9115
9116 return netdev_phys_item_id_same(&a_id, &b_id);
9117}
9118EXPORT_SYMBOL(netdev_port_same_parent_id);
9119
9120/**
9121 * dev_change_proto_down - update protocol port state information
9122 * @dev: device
9123 * @proto_down: new value
9124 *
9125 * This info can be used by switch drivers to set the phys state of the
9126 * port.
9127 */
9128int dev_change_proto_down(struct net_device *dev, bool proto_down)
9129{
9130 const struct net_device_ops *ops = dev->netdev_ops;
9131
9132 if (!ops->ndo_change_proto_down)
9133 return -EOPNOTSUPP;
9134 if (!netif_device_present(dev))
9135 return -ENODEV;
9136 return ops->ndo_change_proto_down(dev, proto_down);
9137}
9138EXPORT_SYMBOL(dev_change_proto_down);
9139
9140/**
9141 * dev_change_proto_down_generic - generic implementation for
9142 * ndo_change_proto_down that sets carrier according to
9143 * proto_down.
9144 *
9145 * @dev: device
9146 * @proto_down: new value
9147 */
9148int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
9149{
9150 if (proto_down)
9151 netif_carrier_off(dev);
9152 else
9153 netif_carrier_on(dev);
9154 dev->proto_down = proto_down;
9155 return 0;
9156}
9157EXPORT_SYMBOL(dev_change_proto_down_generic);
9158
9159/**
9160 * dev_change_proto_down_reason - proto down reason
9161 *
9162 * @dev: device
9163 * @mask: proto down mask
9164 * @value: proto down value
9165 */
9166void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9167 u32 value)
9168{
9169 int b;
9170
9171 if (!mask) {
9172 dev->proto_down_reason = value;
9173 } else {
9174 for_each_set_bit(b, &mask, 32) {
9175 if (value & (1 << b))
9176 dev->proto_down_reason |= BIT(b);
9177 else
9178 dev->proto_down_reason &= ~BIT(b);
9179 }
9180 }
9181}
9182EXPORT_SYMBOL(dev_change_proto_down_reason);
9183
9184struct bpf_xdp_link {
9185 struct bpf_link link;
9186 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9187 int flags;
9188};
9189
9190static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9191{
9192 if (flags & XDP_FLAGS_HW_MODE)
9193 return XDP_MODE_HW;
9194 if (flags & XDP_FLAGS_DRV_MODE)
9195 return XDP_MODE_DRV;
9196 if (flags & XDP_FLAGS_SKB_MODE)
9197 return XDP_MODE_SKB;
9198 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9199}
9200
9201static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9202{
9203 switch (mode) {
9204 case XDP_MODE_SKB:
9205 return generic_xdp_install;
9206 case XDP_MODE_DRV:
9207 case XDP_MODE_HW:
9208 return dev->netdev_ops->ndo_bpf;
9209 default:
9210 return NULL;
9211 }
9212}
9213
9214static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9215 enum bpf_xdp_mode mode)
9216{
9217 return dev->xdp_state[mode].link;
9218}
9219
9220static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9221 enum bpf_xdp_mode mode)
9222{
9223 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9224
9225 if (link)
9226 return link->link.prog;
9227 return dev->xdp_state[mode].prog;
9228}
9229
9230static u8 dev_xdp_prog_count(struct net_device *dev)
9231{
9232 u8 count = 0;
9233 int i;
9234
9235 for (i = 0; i < __MAX_XDP_MODE; i++)
9236 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9237 count++;
9238 return count;
9239}
9240
9241u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9242{
9243 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9244
9245 return prog ? prog->aux->id : 0;
9246}
9247
9248static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9249 struct bpf_xdp_link *link)
9250{
9251 dev->xdp_state[mode].link = link;
9252 dev->xdp_state[mode].prog = NULL;
9253}
9254
9255static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9256 struct bpf_prog *prog)
9257{
9258 dev->xdp_state[mode].link = NULL;
9259 dev->xdp_state[mode].prog = prog;
9260}
9261
9262static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9263 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9264 u32 flags, struct bpf_prog *prog)
9265{
9266 struct netdev_bpf xdp;
9267 int err;
9268
9269 memset(&xdp, 0, sizeof(xdp));
9270 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9271 xdp.extack = extack;
9272 xdp.flags = flags;
9273 xdp.prog = prog;
9274
9275 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9276 * "moved" into driver), so they don't increment it on their own, but
9277 * they do decrement refcnt when program is detached or replaced.
9278 * Given net_device also owns link/prog, we need to bump refcnt here
9279 * to prevent drivers from underflowing it.
9280 */
9281 if (prog)
9282 bpf_prog_inc(prog);
9283 err = bpf_op(dev, &xdp);
9284 if (err) {
9285 if (prog)
9286 bpf_prog_put(prog);
9287 return err;
9288 }
9289
9290 if (mode != XDP_MODE_HW)
9291 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9292
9293 return 0;
9294}
9295
9296static void dev_xdp_uninstall(struct net_device *dev)
9297{
9298 struct bpf_xdp_link *link;
9299 struct bpf_prog *prog;
9300 enum bpf_xdp_mode mode;
9301 bpf_op_t bpf_op;
9302
9303 ASSERT_RTNL();
9304
9305 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9306 prog = dev_xdp_prog(dev, mode);
9307 if (!prog)
9308 continue;
9309
9310 bpf_op = dev_xdp_bpf_op(dev, mode);
9311 if (!bpf_op)
9312 continue;
9313
9314 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9315
9316 /* auto-detach link from net device */
9317 link = dev_xdp_link(dev, mode);
9318 if (link)
9319 link->dev = NULL;
9320 else
9321 bpf_prog_put(prog);
9322
9323 dev_xdp_set_link(dev, mode, NULL);
9324 }
9325}
9326
9327static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9328 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9329 struct bpf_prog *old_prog, u32 flags)
9330{
9331 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9332 struct bpf_prog *cur_prog;
9333 enum bpf_xdp_mode mode;
9334 bpf_op_t bpf_op;
9335 int err;
9336
9337 ASSERT_RTNL();
9338
9339 /* either link or prog attachment, never both */
9340 if (link && (new_prog || old_prog))
9341 return -EINVAL;
9342 /* link supports only XDP mode flags */
9343 if (link && (flags & ~XDP_FLAGS_MODES)) {
9344 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9345 return -EINVAL;
9346 }
9347 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9348 if (num_modes > 1) {
9349 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9350 return -EINVAL;
9351 }
9352 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9353 if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9354 NL_SET_ERR_MSG(extack,
9355 "More than one program loaded, unset mode is ambiguous");
9356 return -EINVAL;
9357 }
9358 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9359 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9360 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9361 return -EINVAL;
9362 }
9363
9364 mode = dev_xdp_mode(dev, flags);
9365 /* can't replace attached link */
9366 if (dev_xdp_link(dev, mode)) {
9367 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9368 return -EBUSY;
9369 }
9370
9371 cur_prog = dev_xdp_prog(dev, mode);
9372 /* can't replace attached prog with link */
9373 if (link && cur_prog) {
9374 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9375 return -EBUSY;
9376 }
9377 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9378 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9379 return -EEXIST;
9380 }
9381
9382 /* put effective new program into new_prog */
9383 if (link)
9384 new_prog = link->link.prog;
9385
9386 if (new_prog) {
9387 bool offload = mode == XDP_MODE_HW;
9388 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9389 ? XDP_MODE_DRV : XDP_MODE_SKB;
9390
9391 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9392 NL_SET_ERR_MSG(extack, "XDP program already attached");
9393 return -EBUSY;
9394 }
9395 if (!offload && dev_xdp_prog(dev, other_mode)) {
9396 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9397 return -EEXIST;
9398 }
9399 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9400 NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9401 return -EINVAL;
9402 }
9403 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9404 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9405 return -EINVAL;
9406 }
9407 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9408 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9409 return -EINVAL;
9410 }
9411 }
9412
9413 /* don't call drivers if the effective program didn't change */
9414 if (new_prog != cur_prog) {
9415 bpf_op = dev_xdp_bpf_op(dev, mode);
9416 if (!bpf_op) {
9417 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9418 return -EOPNOTSUPP;
9419 }
9420
9421 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9422 if (err)
9423 return err;
9424 }
9425
9426 if (link)
9427 dev_xdp_set_link(dev, mode, link);
9428 else
9429 dev_xdp_set_prog(dev, mode, new_prog);
9430 if (cur_prog)
9431 bpf_prog_put(cur_prog);
9432
9433 return 0;
9434}
9435
9436static int dev_xdp_attach_link(struct net_device *dev,
9437 struct netlink_ext_ack *extack,
9438 struct bpf_xdp_link *link)
9439{
9440 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9441}
9442
9443static int dev_xdp_detach_link(struct net_device *dev,
9444 struct netlink_ext_ack *extack,
9445 struct bpf_xdp_link *link)
9446{
9447 enum bpf_xdp_mode mode;
9448 bpf_op_t bpf_op;
9449
9450 ASSERT_RTNL();
9451
9452 mode = dev_xdp_mode(dev, link->flags);
9453 if (dev_xdp_link(dev, mode) != link)
9454 return -EINVAL;
9455
9456 bpf_op = dev_xdp_bpf_op(dev, mode);
9457 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9458 dev_xdp_set_link(dev, mode, NULL);
9459 return 0;
9460}
9461
9462static void bpf_xdp_link_release(struct bpf_link *link)
9463{
9464 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9465
9466 rtnl_lock();
9467
9468 /* if racing with net_device's tear down, xdp_link->dev might be
9469 * already NULL, in which case link was already auto-detached
9470 */
9471 if (xdp_link->dev) {
9472 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9473 xdp_link->dev = NULL;
9474 }
9475
9476 rtnl_unlock();
9477}
9478
9479static int bpf_xdp_link_detach(struct bpf_link *link)
9480{
9481 bpf_xdp_link_release(link);
9482 return 0;
9483}
9484
9485static void bpf_xdp_link_dealloc(struct bpf_link *link)
9486{
9487 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9488
9489 kfree(xdp_link);
9490}
9491
9492static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9493 struct seq_file *seq)
9494{
9495 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9496 u32 ifindex = 0;
9497
9498 rtnl_lock();
9499 if (xdp_link->dev)
9500 ifindex = xdp_link->dev->ifindex;
9501 rtnl_unlock();
9502
9503 seq_printf(seq, "ifindex:\t%u\n", ifindex);
9504}
9505
9506static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9507 struct bpf_link_info *info)
9508{
9509 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9510 u32 ifindex = 0;
9511
9512 rtnl_lock();
9513 if (xdp_link->dev)
9514 ifindex = xdp_link->dev->ifindex;
9515 rtnl_unlock();
9516
9517 info->xdp.ifindex = ifindex;
9518 return 0;
9519}
9520
9521static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9522 struct bpf_prog *old_prog)
9523{
9524 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9525 enum bpf_xdp_mode mode;
9526 bpf_op_t bpf_op;
9527 int err = 0;
9528
9529 rtnl_lock();
9530
9531 /* link might have been auto-released already, so fail */
9532 if (!xdp_link->dev) {
9533 err = -ENOLINK;
9534 goto out_unlock;
9535 }
9536
9537 if (old_prog && link->prog != old_prog) {
9538 err = -EPERM;
9539 goto out_unlock;
9540 }
9541 old_prog = link->prog;
9542 if (old_prog == new_prog) {
9543 /* no-op, don't disturb drivers */
9544 bpf_prog_put(new_prog);
9545 goto out_unlock;
9546 }
9547
9548 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9549 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9550 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9551 xdp_link->flags, new_prog);
9552 if (err)
9553 goto out_unlock;
9554
9555 old_prog = xchg(&link->prog, new_prog);
9556 bpf_prog_put(old_prog);
9557
9558out_unlock:
9559 rtnl_unlock();
9560 return err;
9561}
9562
9563static const struct bpf_link_ops bpf_xdp_link_lops = {
9564 .release = bpf_xdp_link_release,
9565 .dealloc = bpf_xdp_link_dealloc,
9566 .detach = bpf_xdp_link_detach,
9567 .show_fdinfo = bpf_xdp_link_show_fdinfo,
9568 .fill_link_info = bpf_xdp_link_fill_link_info,
9569 .update_prog = bpf_xdp_link_update,
9570};
9571
9572int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9573{
9574 struct net *net = current->nsproxy->net_ns;
9575 struct bpf_link_primer link_primer;
9576 struct bpf_xdp_link *link;
9577 struct net_device *dev;
9578 int err, fd;
9579
9580 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9581 if (!dev)
9582 return -EINVAL;
9583
9584 link = kzalloc(sizeof(*link), GFP_USER);
9585 if (!link) {
9586 err = -ENOMEM;
9587 goto out_put_dev;
9588 }
9589
9590 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9591 link->dev = dev;
9592 link->flags = attr->link_create.flags;
9593
9594 err = bpf_link_prime(&link->link, &link_primer);
9595 if (err) {
9596 kfree(link);
9597 goto out_put_dev;
9598 }
9599
9600 rtnl_lock();
9601 err = dev_xdp_attach_link(dev, NULL, link);
9602 rtnl_unlock();
9603
9604 if (err) {
9605 bpf_link_cleanup(&link_primer);
9606 goto out_put_dev;
9607 }
9608
9609 fd = bpf_link_settle(&link_primer);
9610 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9611 dev_put(dev);
9612 return fd;
9613
9614out_put_dev:
9615 dev_put(dev);
9616 return err;
9617}
9618
9619/**
9620 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
9621 * @dev: device
9622 * @extack: netlink extended ack
9623 * @fd: new program fd or negative value to clear
9624 * @expected_fd: old program fd that userspace expects to replace or clear
9625 * @flags: xdp-related flags
9626 *
9627 * Set or clear a bpf program for a device
9628 */
9629int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9630 int fd, int expected_fd, u32 flags)
9631{
9632 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9633 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9634 int err;
9635
9636 ASSERT_RTNL();
9637
9638 if (fd >= 0) {
9639 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9640 mode != XDP_MODE_SKB);
9641 if (IS_ERR(new_prog))
9642 return PTR_ERR(new_prog);
9643 }
9644
9645 if (expected_fd >= 0) {
9646 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9647 mode != XDP_MODE_SKB);
9648 if (IS_ERR(old_prog)) {
9649 err = PTR_ERR(old_prog);
9650 old_prog = NULL;
9651 goto err_out;
9652 }
9653 }
9654
9655 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9656
9657err_out:
9658 if (err && new_prog)
9659 bpf_prog_put(new_prog);
9660 if (old_prog)
9661 bpf_prog_put(old_prog);
9662 return err;
9663}
9664
9665/**
9666 * dev_new_index - allocate an ifindex
9667 * @net: the applicable net namespace
9668 *
9669 * Returns a suitable unique value for a new device interface
9670 * number. The caller must hold the rtnl semaphore or the
9671 * dev_base_lock to be sure it remains unique.
9672 */
9673static int dev_new_index(struct net *net)
9674{
9675 int ifindex = net->ifindex;
9676
9677 for (;;) {
9678 if (++ifindex <= 0)
9679 ifindex = 1;
9680 if (!__dev_get_by_index(net, ifindex))
9681 return net->ifindex = ifindex;
9682 }
9683}
9684
9685/* Delayed registration/unregisteration */
9686static LIST_HEAD(net_todo_list);
9687DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9688
9689static void net_set_todo(struct net_device *dev)
9690{
9691 list_add_tail(&dev->todo_list, &net_todo_list);
9692 dev_net(dev)->dev_unreg_count++;
9693}
9694
9695static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9696 struct net_device *upper, netdev_features_t features)
9697{
9698 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9699 netdev_features_t feature;
9700 int feature_bit;
9701
9702 for_each_netdev_feature(upper_disables, feature_bit) {
9703 feature = __NETIF_F_BIT(feature_bit);
9704 if (!(upper->wanted_features & feature)
9705 && (features & feature)) {
9706 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9707 &feature, upper->name);
9708 features &= ~feature;
9709 }
9710 }
9711
9712 return features;
9713}
9714
9715static void netdev_sync_lower_features(struct net_device *upper,
9716 struct net_device *lower, netdev_features_t features)
9717{
9718 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9719 netdev_features_t feature;
9720 int feature_bit;
9721
9722 for_each_netdev_feature(upper_disables, feature_bit) {
9723 feature = __NETIF_F_BIT(feature_bit);
9724 if (!(features & feature) && (lower->features & feature)) {
9725 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9726 &feature, lower->name);
9727 lower->wanted_features &= ~feature;
9728 __netdev_update_features(lower);
9729
9730 if (unlikely(lower->features & feature))
9731 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9732 &feature, lower->name);
9733 else
9734 netdev_features_change(lower);
9735 }
9736 }
9737}
9738
9739static netdev_features_t netdev_fix_features(struct net_device *dev,
9740 netdev_features_t features)
9741{
9742 /* Fix illegal checksum combinations */
9743 if ((features & NETIF_F_HW_CSUM) &&
9744 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9745 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9746 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9747 }
9748
9749 /* TSO requires that SG is present as well. */
9750 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9751 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9752 features &= ~NETIF_F_ALL_TSO;
9753 }
9754
9755 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9756 !(features & NETIF_F_IP_CSUM)) {
9757 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9758 features &= ~NETIF_F_TSO;
9759 features &= ~NETIF_F_TSO_ECN;
9760 }
9761
9762 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9763 !(features & NETIF_F_IPV6_CSUM)) {
9764 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9765 features &= ~NETIF_F_TSO6;
9766 }
9767
9768 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9769 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9770 features &= ~NETIF_F_TSO_MANGLEID;
9771
9772 /* TSO ECN requires that TSO is present as well. */
9773 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9774 features &= ~NETIF_F_TSO_ECN;
9775
9776 /* Software GSO depends on SG. */
9777 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9778 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9779 features &= ~NETIF_F_GSO;
9780 }
9781
9782 /* GSO partial features require GSO partial be set */
9783 if ((features & dev->gso_partial_features) &&
9784 !(features & NETIF_F_GSO_PARTIAL)) {
9785 netdev_dbg(dev,
9786 "Dropping partially supported GSO features since no GSO partial.\n");
9787 features &= ~dev->gso_partial_features;
9788 }
9789
9790 if (!(features & NETIF_F_RXCSUM)) {
9791 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9792 * successfully merged by hardware must also have the
9793 * checksum verified by hardware. If the user does not
9794 * want to enable RXCSUM, logically, we should disable GRO_HW.
9795 */
9796 if (features & NETIF_F_GRO_HW) {
9797 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9798 features &= ~NETIF_F_GRO_HW;
9799 }
9800 }
9801
9802 /* LRO/HW-GRO features cannot be combined with RX-FCS */
9803 if (features & NETIF_F_RXFCS) {
9804 if (features & NETIF_F_LRO) {
9805 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9806 features &= ~NETIF_F_LRO;
9807 }
9808
9809 if (features & NETIF_F_GRO_HW) {
9810 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9811 features &= ~NETIF_F_GRO_HW;
9812 }
9813 }
9814
9815 if (features & NETIF_F_HW_TLS_TX) {
9816 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9817 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9818 bool hw_csum = features & NETIF_F_HW_CSUM;
9819
9820 if (!ip_csum && !hw_csum) {
9821 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9822 features &= ~NETIF_F_HW_TLS_TX;
9823 }
9824 }
9825
9826 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9827 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9828 features &= ~NETIF_F_HW_TLS_RX;
9829 }
9830
9831 return features;
9832}
9833
9834int __netdev_update_features(struct net_device *dev)
9835{
9836 struct net_device *upper, *lower;
9837 netdev_features_t features;
9838 struct list_head *iter;
9839 int err = -1;
9840
9841 ASSERT_RTNL();
9842
9843 features = netdev_get_wanted_features(dev);
9844
9845 if (dev->netdev_ops->ndo_fix_features)
9846 features = dev->netdev_ops->ndo_fix_features(dev, features);
9847
9848 /* driver might be less strict about feature dependencies */
9849 features = netdev_fix_features(dev, features);
9850
9851 /* some features can't be enabled if they're off on an upper device */
9852 netdev_for_each_upper_dev_rcu(dev, upper, iter)
9853 features = netdev_sync_upper_features(dev, upper, features);
9854
9855 if (dev->features == features)
9856 goto sync_lower;
9857
9858 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9859 &dev->features, &features);
9860
9861 if (dev->netdev_ops->ndo_set_features)
9862 err = dev->netdev_ops->ndo_set_features(dev, features);
9863 else
9864 err = 0;
9865
9866 if (unlikely(err < 0)) {
9867 netdev_err(dev,
9868 "set_features() failed (%d); wanted %pNF, left %pNF\n",
9869 err, &features, &dev->features);
9870 /* return non-0 since some features might have changed and
9871 * it's better to fire a spurious notification than miss it
9872 */
9873 return -1;
9874 }
9875
9876sync_lower:
9877 /* some features must be disabled on lower devices when disabled
9878 * on an upper device (think: bonding master or bridge)
9879 */
9880 netdev_for_each_lower_dev(dev, lower, iter)
9881 netdev_sync_lower_features(dev, lower, features);
9882
9883 if (!err) {
9884 netdev_features_t diff = features ^ dev->features;
9885
9886 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9887 /* udp_tunnel_{get,drop}_rx_info both need
9888 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9889 * device, or they won't do anything.
9890 * Thus we need to update dev->features
9891 * *before* calling udp_tunnel_get_rx_info,
9892 * but *after* calling udp_tunnel_drop_rx_info.
9893 */
9894 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9895 dev->features = features;
9896 udp_tunnel_get_rx_info(dev);
9897 } else {
9898 udp_tunnel_drop_rx_info(dev);
9899 }
9900 }
9901
9902 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9903 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9904 dev->features = features;
9905 err |= vlan_get_rx_ctag_filter_info(dev);
9906 } else {
9907 vlan_drop_rx_ctag_filter_info(dev);
9908 }
9909 }
9910
9911 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9912 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9913 dev->features = features;
9914 err |= vlan_get_rx_stag_filter_info(dev);
9915 } else {
9916 vlan_drop_rx_stag_filter_info(dev);
9917 }
9918 }
9919
9920 dev->features = features;
9921 }
9922
9923 return err < 0 ? 0 : 1;
9924}
9925
9926/**
9927 * netdev_update_features - recalculate device features
9928 * @dev: the device to check
9929 *
9930 * Recalculate dev->features set and send notifications if it
9931 * has changed. Should be called after driver or hardware dependent
9932 * conditions might have changed that influence the features.
9933 */
9934void netdev_update_features(struct net_device *dev)
9935{
9936 if (__netdev_update_features(dev))
9937 netdev_features_change(dev);
9938}
9939EXPORT_SYMBOL(netdev_update_features);
9940
9941/**
9942 * netdev_change_features - recalculate device features
9943 * @dev: the device to check
9944 *
9945 * Recalculate dev->features set and send notifications even
9946 * if they have not changed. Should be called instead of
9947 * netdev_update_features() if also dev->vlan_features might
9948 * have changed to allow the changes to be propagated to stacked
9949 * VLAN devices.
9950 */
9951void netdev_change_features(struct net_device *dev)
9952{
9953 __netdev_update_features(dev);
9954 netdev_features_change(dev);
9955}
9956EXPORT_SYMBOL(netdev_change_features);
9957
9958/**
9959 * netif_stacked_transfer_operstate - transfer operstate
9960 * @rootdev: the root or lower level device to transfer state from
9961 * @dev: the device to transfer operstate to
9962 *
9963 * Transfer operational state from root to device. This is normally
9964 * called when a stacking relationship exists between the root
9965 * device and the device(a leaf device).
9966 */
9967void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9968 struct net_device *dev)
9969{
9970 if (rootdev->operstate == IF_OPER_DORMANT)
9971 netif_dormant_on(dev);
9972 else
9973 netif_dormant_off(dev);
9974
9975 if (rootdev->operstate == IF_OPER_TESTING)
9976 netif_testing_on(dev);
9977 else
9978 netif_testing_off(dev);
9979
9980 if (netif_carrier_ok(rootdev))
9981 netif_carrier_on(dev);
9982 else
9983 netif_carrier_off(dev);
9984}
9985EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9986
9987static int netif_alloc_rx_queues(struct net_device *dev)
9988{
9989 unsigned int i, count = dev->num_rx_queues;
9990 struct netdev_rx_queue *rx;
9991 size_t sz = count * sizeof(*rx);
9992 int err = 0;
9993
9994 BUG_ON(count < 1);
9995
9996 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9997 if (!rx)
9998 return -ENOMEM;
9999
10000 dev->_rx = rx;
10001
10002 for (i = 0; i < count; i++) {
10003 rx[i].dev = dev;
10004
10005 /* XDP RX-queue setup */
10006 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10007 if (err < 0)
10008 goto err_rxq_info;
10009 }
10010 return 0;
10011
10012err_rxq_info:
10013 /* Rollback successful reg's and free other resources */
10014 while (i--)
10015 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10016 kvfree(dev->_rx);
10017 dev->_rx = NULL;
10018 return err;
10019}
10020
10021static void netif_free_rx_queues(struct net_device *dev)
10022{
10023 unsigned int i, count = dev->num_rx_queues;
10024
10025 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10026 if (!dev->_rx)
10027 return;
10028
10029 for (i = 0; i < count; i++)
10030 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10031
10032 kvfree(dev->_rx);
10033}
10034
10035static void netdev_init_one_queue(struct net_device *dev,
10036 struct netdev_queue *queue, void *_unused)
10037{
10038 /* Initialize queue lock */
10039 spin_lock_init(&queue->_xmit_lock);
10040 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10041 queue->xmit_lock_owner = -1;
10042 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10043 queue->dev = dev;
10044#ifdef CONFIG_BQL
10045 dql_init(&queue->dql, HZ);
10046#endif
10047}
10048
10049static void netif_free_tx_queues(struct net_device *dev)
10050{
10051 kvfree(dev->_tx);
10052}
10053
10054static int netif_alloc_netdev_queues(struct net_device *dev)
10055{
10056 unsigned int count = dev->num_tx_queues;
10057 struct netdev_queue *tx;
10058 size_t sz = count * sizeof(*tx);
10059
10060 if (count < 1 || count > 0xffff)
10061 return -EINVAL;
10062
10063 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10064 if (!tx)
10065 return -ENOMEM;
10066
10067 dev->_tx = tx;
10068
10069 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10070 spin_lock_init(&dev->tx_global_lock);
10071
10072 return 0;
10073}
10074
10075void netif_tx_stop_all_queues(struct net_device *dev)
10076{
10077 unsigned int i;
10078
10079 for (i = 0; i < dev->num_tx_queues; i++) {
10080 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10081
10082 netif_tx_stop_queue(txq);
10083 }
10084}
10085EXPORT_SYMBOL(netif_tx_stop_all_queues);
10086
10087/**
10088 * register_netdevice - register a network device
10089 * @dev: device to register
10090 *
10091 * Take a completed network device structure and add it to the kernel
10092 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10093 * chain. 0 is returned on success. A negative errno code is returned
10094 * on a failure to set up the device, or if the name is a duplicate.
10095 *
10096 * Callers must hold the rtnl semaphore. You may want
10097 * register_netdev() instead of this.
10098 *
10099 * BUGS:
10100 * The locking appears insufficient to guarantee two parallel registers
10101 * will not get the same name.
10102 */
10103
10104int register_netdevice(struct net_device *dev)
10105{
10106 int ret;
10107 struct net *net = dev_net(dev);
10108
10109 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10110 NETDEV_FEATURE_COUNT);
10111 BUG_ON(dev_boot_phase);
10112 ASSERT_RTNL();
10113
10114 might_sleep();
10115
10116 /* When net_device's are persistent, this will be fatal. */
10117 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10118 BUG_ON(!net);
10119
10120 ret = ethtool_check_ops(dev->ethtool_ops);
10121 if (ret)
10122 return ret;
10123
10124 spin_lock_init(&dev->addr_list_lock);
10125 netdev_set_addr_lockdep_class(dev);
10126
10127 ret = dev_get_valid_name(net, dev, dev->name);
10128 if (ret < 0)
10129 goto out;
10130
10131 ret = -ENOMEM;
10132 dev->name_node = netdev_name_node_head_alloc(dev);
10133 if (!dev->name_node)
10134 goto out;
10135
10136 /* Init, if this function is available */
10137 if (dev->netdev_ops->ndo_init) {
10138 ret = dev->netdev_ops->ndo_init(dev);
10139 if (ret) {
10140 if (ret > 0)
10141 ret = -EIO;
10142 goto err_free_name;
10143 }
10144 }
10145
10146 if (((dev->hw_features | dev->features) &
10147 NETIF_F_HW_VLAN_CTAG_FILTER) &&
10148 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10149 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10150 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10151 ret = -EINVAL;
10152 goto err_uninit;
10153 }
10154
10155 ret = -EBUSY;
10156 if (!dev->ifindex)
10157 dev->ifindex = dev_new_index(net);
10158 else if (__dev_get_by_index(net, dev->ifindex))
10159 goto err_uninit;
10160
10161 /* Transfer changeable features to wanted_features and enable
10162 * software offloads (GSO and GRO).
10163 */
10164 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10165 dev->features |= NETIF_F_SOFT_FEATURES;
10166
10167 if (dev->udp_tunnel_nic_info) {
10168 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10169 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10170 }
10171
10172 dev->wanted_features = dev->features & dev->hw_features;
10173
10174 if (!(dev->flags & IFF_LOOPBACK))
10175 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10176
10177 /* If IPv4 TCP segmentation offload is supported we should also
10178 * allow the device to enable segmenting the frame with the option
10179 * of ignoring a static IP ID value. This doesn't enable the
10180 * feature itself but allows the user to enable it later.
10181 */
10182 if (dev->hw_features & NETIF_F_TSO)
10183 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10184 if (dev->vlan_features & NETIF_F_TSO)
10185 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10186 if (dev->mpls_features & NETIF_F_TSO)
10187 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10188 if (dev->hw_enc_features & NETIF_F_TSO)
10189 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10190
10191 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10192 */
10193 dev->vlan_features |= NETIF_F_HIGHDMA;
10194
10195 /* Make NETIF_F_SG inheritable to tunnel devices.
10196 */
10197 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10198
10199 /* Make NETIF_F_SG inheritable to MPLS.
10200 */
10201 dev->mpls_features |= NETIF_F_SG;
10202
10203 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10204 ret = notifier_to_errno(ret);
10205 if (ret)
10206 goto err_uninit;
10207
10208 ret = netdev_register_kobject(dev);
10209 if (ret) {
10210 dev->reg_state = NETREG_UNREGISTERED;
10211 goto err_uninit;
10212 }
10213 dev->reg_state = NETREG_REGISTERED;
10214
10215 __netdev_update_features(dev);
10216
10217 /*
10218 * Default initial state at registry is that the
10219 * device is present.
10220 */
10221
10222 set_bit(__LINK_STATE_PRESENT, &dev->state);
10223
10224 linkwatch_init_dev(dev);
10225
10226 dev_init_scheduler(dev);
10227 dev_hold(dev);
10228 list_netdevice(dev);
10229 add_device_randomness(dev->dev_addr, dev->addr_len);
10230
10231 /* If the device has permanent device address, driver should
10232 * set dev_addr and also addr_assign_type should be set to
10233 * NET_ADDR_PERM (default value).
10234 */
10235 if (dev->addr_assign_type == NET_ADDR_PERM)
10236 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10237
10238 /* Notify protocols, that a new device appeared. */
10239 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10240 ret = notifier_to_errno(ret);
10241 if (ret) {
10242 /* Expect explicit free_netdev() on failure */
10243 dev->needs_free_netdev = false;
10244 unregister_netdevice_queue(dev, NULL);
10245 goto out;
10246 }
10247 /*
10248 * Prevent userspace races by waiting until the network
10249 * device is fully setup before sending notifications.
10250 */
10251 if (!dev->rtnl_link_ops ||
10252 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10253 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10254
10255out:
10256 return ret;
10257
10258err_uninit:
10259 if (dev->netdev_ops->ndo_uninit)
10260 dev->netdev_ops->ndo_uninit(dev);
10261 if (dev->priv_destructor)
10262 dev->priv_destructor(dev);
10263err_free_name:
10264 netdev_name_node_free(dev->name_node);
10265 goto out;
10266}
10267EXPORT_SYMBOL(register_netdevice);
10268
10269/**
10270 * init_dummy_netdev - init a dummy network device for NAPI
10271 * @dev: device to init
10272 *
10273 * This takes a network device structure and initialize the minimum
10274 * amount of fields so it can be used to schedule NAPI polls without
10275 * registering a full blown interface. This is to be used by drivers
10276 * that need to tie several hardware interfaces to a single NAPI
10277 * poll scheduler due to HW limitations.
10278 */
10279int init_dummy_netdev(struct net_device *dev)
10280{
10281 /* Clear everything. Note we don't initialize spinlocks
10282 * are they aren't supposed to be taken by any of the
10283 * NAPI code and this dummy netdev is supposed to be
10284 * only ever used for NAPI polls
10285 */
10286 memset(dev, 0, sizeof(struct net_device));
10287
10288 /* make sure we BUG if trying to hit standard
10289 * register/unregister code path
10290 */
10291 dev->reg_state = NETREG_DUMMY;
10292
10293 /* NAPI wants this */
10294 INIT_LIST_HEAD(&dev->napi_list);
10295
10296 /* a dummy interface is started by default */
10297 set_bit(__LINK_STATE_PRESENT, &dev->state);
10298 set_bit(__LINK_STATE_START, &dev->state);
10299
10300 /* napi_busy_loop stats accounting wants this */
10301 dev_net_set(dev, &init_net);
10302
10303 /* Note : We dont allocate pcpu_refcnt for dummy devices,
10304 * because users of this 'device' dont need to change
10305 * its refcount.
10306 */
10307
10308 return 0;
10309}
10310EXPORT_SYMBOL_GPL(init_dummy_netdev);
10311
10312
10313/**
10314 * register_netdev - register a network device
10315 * @dev: device to register
10316 *
10317 * Take a completed network device structure and add it to the kernel
10318 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10319 * chain. 0 is returned on success. A negative errno code is returned
10320 * on a failure to set up the device, or if the name is a duplicate.
10321 *
10322 * This is a wrapper around register_netdevice that takes the rtnl semaphore
10323 * and expands the device name if you passed a format string to
10324 * alloc_netdev.
10325 */
10326int register_netdev(struct net_device *dev)
10327{
10328 int err;
10329
10330 if (rtnl_lock_killable())
10331 return -EINTR;
10332 err = register_netdevice(dev);
10333 rtnl_unlock();
10334 return err;
10335}
10336EXPORT_SYMBOL(register_netdev);
10337
10338int netdev_refcnt_read(const struct net_device *dev)
10339{
10340 int i, refcnt = 0;
10341
10342 for_each_possible_cpu(i)
10343 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10344 return refcnt;
10345}
10346EXPORT_SYMBOL(netdev_refcnt_read);
10347
10348#define WAIT_REFS_MIN_MSECS 1
10349#define WAIT_REFS_MAX_MSECS 250
10350/**
10351 * netdev_wait_allrefs - wait until all references are gone.
10352 * @dev: target net_device
10353 *
10354 * This is called when unregistering network devices.
10355 *
10356 * Any protocol or device that holds a reference should register
10357 * for netdevice notification, and cleanup and put back the
10358 * reference if they receive an UNREGISTER event.
10359 * We can get stuck here if buggy protocols don't correctly
10360 * call dev_put.
10361 */
10362static void netdev_wait_allrefs(struct net_device *dev)
10363{
10364 unsigned long rebroadcast_time, warning_time;
10365 int wait = 0, refcnt;
10366
10367 linkwatch_forget_dev(dev);
10368
10369 rebroadcast_time = warning_time = jiffies;
10370 refcnt = netdev_refcnt_read(dev);
10371
10372 while (refcnt != 0) {
10373 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10374 rtnl_lock();
10375
10376 /* Rebroadcast unregister notification */
10377 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10378
10379 __rtnl_unlock();
10380 rcu_barrier();
10381 rtnl_lock();
10382
10383 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10384 &dev->state)) {
10385 /* We must not have linkwatch events
10386 * pending on unregister. If this
10387 * happens, we simply run the queue
10388 * unscheduled, resulting in a noop
10389 * for this device.
10390 */
10391 linkwatch_run_queue();
10392 }
10393
10394 __rtnl_unlock();
10395
10396 rebroadcast_time = jiffies;
10397 }
10398
10399 if (!wait) {
10400 rcu_barrier();
10401 wait = WAIT_REFS_MIN_MSECS;
10402 } else {
10403 msleep(wait);
10404 wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10405 }
10406
10407 refcnt = netdev_refcnt_read(dev);
10408
10409 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
10410 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10411 dev->name, refcnt);
10412 warning_time = jiffies;
10413 }
10414 }
10415}
10416
10417/* The sequence is:
10418 *
10419 * rtnl_lock();
10420 * ...
10421 * register_netdevice(x1);
10422 * register_netdevice(x2);
10423 * ...
10424 * unregister_netdevice(y1);
10425 * unregister_netdevice(y2);
10426 * ...
10427 * rtnl_unlock();
10428 * free_netdev(y1);
10429 * free_netdev(y2);
10430 *
10431 * We are invoked by rtnl_unlock().
10432 * This allows us to deal with problems:
10433 * 1) We can delete sysfs objects which invoke hotplug
10434 * without deadlocking with linkwatch via keventd.
10435 * 2) Since we run with the RTNL semaphore not held, we can sleep
10436 * safely in order to wait for the netdev refcnt to drop to zero.
10437 *
10438 * We must not return until all unregister events added during
10439 * the interval the lock was held have been completed.
10440 */
10441void netdev_run_todo(void)
10442{
10443 struct list_head list;
10444#ifdef CONFIG_LOCKDEP
10445 struct list_head unlink_list;
10446
10447 list_replace_init(&net_unlink_list, &unlink_list);
10448
10449 while (!list_empty(&unlink_list)) {
10450 struct net_device *dev = list_first_entry(&unlink_list,
10451 struct net_device,
10452 unlink_list);
10453 list_del_init(&dev->unlink_list);
10454 dev->nested_level = dev->lower_level - 1;
10455 }
10456#endif
10457
10458 /* Snapshot list, allow later requests */
10459 list_replace_init(&net_todo_list, &list);
10460
10461 __rtnl_unlock();
10462
10463
10464 /* Wait for rcu callbacks to finish before next phase */
10465 if (!list_empty(&list))
10466 rcu_barrier();
10467
10468 while (!list_empty(&list)) {
10469 struct net_device *dev
10470 = list_first_entry(&list, struct net_device, todo_list);
10471 list_del(&dev->todo_list);
10472
10473 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10474 pr_err("network todo '%s' but state %d\n",
10475 dev->name, dev->reg_state);
10476 dump_stack();
10477 continue;
10478 }
10479
10480 dev->reg_state = NETREG_UNREGISTERED;
10481
10482 netdev_wait_allrefs(dev);
10483
10484 /* paranoia */
10485 BUG_ON(netdev_refcnt_read(dev));
10486 BUG_ON(!list_empty(&dev->ptype_all));
10487 BUG_ON(!list_empty(&dev->ptype_specific));
10488 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10489 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10490#if IS_ENABLED(CONFIG_DECNET)
10491 WARN_ON(dev->dn_ptr);
10492#endif
10493 if (dev->priv_destructor)
10494 dev->priv_destructor(dev);
10495 if (dev->needs_free_netdev)
10496 free_netdev(dev);
10497
10498 /* Report a network device has been unregistered */
10499 rtnl_lock();
10500 dev_net(dev)->dev_unreg_count--;
10501 __rtnl_unlock();
10502 wake_up(&netdev_unregistering_wq);
10503
10504 /* Free network device */
10505 kobject_put(&dev->dev.kobj);
10506 }
10507}
10508
10509/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10510 * all the same fields in the same order as net_device_stats, with only
10511 * the type differing, but rtnl_link_stats64 may have additional fields
10512 * at the end for newer counters.
10513 */
10514void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10515 const struct net_device_stats *netdev_stats)
10516{
10517#if BITS_PER_LONG == 64
10518 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10519 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10520 /* zero out counters that only exist in rtnl_link_stats64 */
10521 memset((char *)stats64 + sizeof(*netdev_stats), 0,
10522 sizeof(*stats64) - sizeof(*netdev_stats));
10523#else
10524 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10525 const unsigned long *src = (const unsigned long *)netdev_stats;
10526 u64 *dst = (u64 *)stats64;
10527
10528 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10529 for (i = 0; i < n; i++)
10530 dst[i] = src[i];
10531 /* zero out counters that only exist in rtnl_link_stats64 */
10532 memset((char *)stats64 + n * sizeof(u64), 0,
10533 sizeof(*stats64) - n * sizeof(u64));
10534#endif
10535}
10536EXPORT_SYMBOL(netdev_stats_to_stats64);
10537
10538/**
10539 * dev_get_stats - get network device statistics
10540 * @dev: device to get statistics from
10541 * @storage: place to store stats
10542 *
10543 * Get network statistics from device. Return @storage.
10544 * The device driver may provide its own method by setting
10545 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10546 * otherwise the internal statistics structure is used.
10547 */
10548struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10549 struct rtnl_link_stats64 *storage)
10550{
10551 const struct net_device_ops *ops = dev->netdev_ops;
10552
10553 if (ops->ndo_get_stats64) {
10554 memset(storage, 0, sizeof(*storage));
10555 ops->ndo_get_stats64(dev, storage);
10556 } else if (ops->ndo_get_stats) {
10557 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10558 } else {
10559 netdev_stats_to_stats64(storage, &dev->stats);
10560 }
10561 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10562 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10563 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10564 return storage;
10565}
10566EXPORT_SYMBOL(dev_get_stats);
10567
10568/**
10569 * dev_fetch_sw_netstats - get per-cpu network device statistics
10570 * @s: place to store stats
10571 * @netstats: per-cpu network stats to read from
10572 *
10573 * Read per-cpu network statistics and populate the related fields in @s.
10574 */
10575void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10576 const struct pcpu_sw_netstats __percpu *netstats)
10577{
10578 int cpu;
10579
10580 for_each_possible_cpu(cpu) {
10581 const struct pcpu_sw_netstats *stats;
10582 struct pcpu_sw_netstats tmp;
10583 unsigned int start;
10584
10585 stats = per_cpu_ptr(netstats, cpu);
10586 do {
10587 start = u64_stats_fetch_begin_irq(&stats->syncp);
10588 tmp.rx_packets = stats->rx_packets;
10589 tmp.rx_bytes = stats->rx_bytes;
10590 tmp.tx_packets = stats->tx_packets;
10591 tmp.tx_bytes = stats->tx_bytes;
10592 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10593
10594 s->rx_packets += tmp.rx_packets;
10595 s->rx_bytes += tmp.rx_bytes;
10596 s->tx_packets += tmp.tx_packets;
10597 s->tx_bytes += tmp.tx_bytes;
10598 }
10599}
10600EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10601
10602/**
10603 * dev_get_tstats64 - ndo_get_stats64 implementation
10604 * @dev: device to get statistics from
10605 * @s: place to store stats
10606 *
10607 * Populate @s from dev->stats and dev->tstats. Can be used as
10608 * ndo_get_stats64() callback.
10609 */
10610void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10611{
10612 netdev_stats_to_stats64(s, &dev->stats);
10613 dev_fetch_sw_netstats(s, dev->tstats);
10614}
10615EXPORT_SYMBOL_GPL(dev_get_tstats64);
10616
10617struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10618{
10619 struct netdev_queue *queue = dev_ingress_queue(dev);
10620
10621#ifdef CONFIG_NET_CLS_ACT
10622 if (queue)
10623 return queue;
10624 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10625 if (!queue)
10626 return NULL;
10627 netdev_init_one_queue(dev, queue, NULL);
10628 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10629 queue->qdisc_sleeping = &noop_qdisc;
10630 rcu_assign_pointer(dev->ingress_queue, queue);
10631#endif
10632 return queue;
10633}
10634
10635static const struct ethtool_ops default_ethtool_ops;
10636
10637void netdev_set_default_ethtool_ops(struct net_device *dev,
10638 const struct ethtool_ops *ops)
10639{
10640 if (dev->ethtool_ops == &default_ethtool_ops)
10641 dev->ethtool_ops = ops;
10642}
10643EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10644
10645void netdev_freemem(struct net_device *dev)
10646{
10647 char *addr = (char *)dev - dev->padded;
10648
10649 kvfree(addr);
10650}
10651
10652/**
10653 * alloc_netdev_mqs - allocate network device
10654 * @sizeof_priv: size of private data to allocate space for
10655 * @name: device name format string
10656 * @name_assign_type: origin of device name
10657 * @setup: callback to initialize device
10658 * @txqs: the number of TX subqueues to allocate
10659 * @rxqs: the number of RX subqueues to allocate
10660 *
10661 * Allocates a struct net_device with private data area for driver use
10662 * and performs basic initialization. Also allocates subqueue structs
10663 * for each queue on the device.
10664 */
10665struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10666 unsigned char name_assign_type,
10667 void (*setup)(struct net_device *),
10668 unsigned int txqs, unsigned int rxqs)
10669{
10670 struct net_device *dev;
10671 unsigned int alloc_size;
10672 struct net_device *p;
10673
10674 BUG_ON(strlen(name) >= sizeof(dev->name));
10675
10676 if (txqs < 1) {
10677 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10678 return NULL;
10679 }
10680
10681 if (rxqs < 1) {
10682 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10683 return NULL;
10684 }
10685
10686 alloc_size = sizeof(struct net_device);
10687 if (sizeof_priv) {
10688 /* ensure 32-byte alignment of private area */
10689 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10690 alloc_size += sizeof_priv;
10691 }
10692 /* ensure 32-byte alignment of whole construct */
10693 alloc_size += NETDEV_ALIGN - 1;
10694
10695 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10696 if (!p)
10697 return NULL;
10698
10699 dev = PTR_ALIGN(p, NETDEV_ALIGN);
10700 dev->padded = (char *)dev - (char *)p;
10701
10702 dev->pcpu_refcnt = alloc_percpu(int);
10703 if (!dev->pcpu_refcnt)
10704 goto free_dev;
10705
10706 if (dev_addr_init(dev))
10707 goto free_pcpu;
10708
10709 dev_mc_init(dev);
10710 dev_uc_init(dev);
10711
10712 dev_net_set(dev, &init_net);
10713
10714 dev->gso_max_size = GSO_MAX_SIZE;
10715 dev->gso_max_segs = GSO_MAX_SEGS;
10716 dev->upper_level = 1;
10717 dev->lower_level = 1;
10718#ifdef CONFIG_LOCKDEP
10719 dev->nested_level = 0;
10720 INIT_LIST_HEAD(&dev->unlink_list);
10721#endif
10722
10723 INIT_LIST_HEAD(&dev->napi_list);
10724 INIT_LIST_HEAD(&dev->unreg_list);
10725 INIT_LIST_HEAD(&dev->close_list);
10726 INIT_LIST_HEAD(&dev->link_watch_list);
10727 INIT_LIST_HEAD(&dev->adj_list.upper);
10728 INIT_LIST_HEAD(&dev->adj_list.lower);
10729 INIT_LIST_HEAD(&dev->ptype_all);
10730 INIT_LIST_HEAD(&dev->ptype_specific);
10731 INIT_LIST_HEAD(&dev->net_notifier_list);
10732#ifdef CONFIG_NET_SCHED
10733 hash_init(dev->qdisc_hash);
10734#endif
10735 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10736 setup(dev);
10737
10738 if (!dev->tx_queue_len) {
10739 dev->priv_flags |= IFF_NO_QUEUE;
10740 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10741 }
10742
10743 dev->num_tx_queues = txqs;
10744 dev->real_num_tx_queues = txqs;
10745 if (netif_alloc_netdev_queues(dev))
10746 goto free_all;
10747
10748 dev->num_rx_queues = rxqs;
10749 dev->real_num_rx_queues = rxqs;
10750 if (netif_alloc_rx_queues(dev))
10751 goto free_all;
10752
10753 strcpy(dev->name, name);
10754 dev->name_assign_type = name_assign_type;
10755 dev->group = INIT_NETDEV_GROUP;
10756 if (!dev->ethtool_ops)
10757 dev->ethtool_ops = &default_ethtool_ops;
10758
10759 nf_hook_ingress_init(dev);
10760
10761 return dev;
10762
10763free_all:
10764 free_netdev(dev);
10765 return NULL;
10766
10767free_pcpu:
10768 free_percpu(dev->pcpu_refcnt);
10769free_dev:
10770 netdev_freemem(dev);
10771 return NULL;
10772}
10773EXPORT_SYMBOL(alloc_netdev_mqs);
10774
10775/**
10776 * free_netdev - free network device
10777 * @dev: device
10778 *
10779 * This function does the last stage of destroying an allocated device
10780 * interface. The reference to the device object is released. If this
10781 * is the last reference then it will be freed.Must be called in process
10782 * context.
10783 */
10784void free_netdev(struct net_device *dev)
10785{
10786 struct napi_struct *p, *n;
10787
10788 might_sleep();
10789
10790 /* When called immediately after register_netdevice() failed the unwind
10791 * handling may still be dismantling the device. Handle that case by
10792 * deferring the free.
10793 */
10794 if (dev->reg_state == NETREG_UNREGISTERING) {
10795 ASSERT_RTNL();
10796 dev->needs_free_netdev = true;
10797 return;
10798 }
10799
10800 netif_free_tx_queues(dev);
10801 netif_free_rx_queues(dev);
10802
10803 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10804
10805 /* Flush device addresses */
10806 dev_addr_flush(dev);
10807
10808 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10809 netif_napi_del(p);
10810
10811 free_percpu(dev->pcpu_refcnt);
10812 dev->pcpu_refcnt = NULL;
10813 free_percpu(dev->xdp_bulkq);
10814 dev->xdp_bulkq = NULL;
10815
10816 /* Compatibility with error handling in drivers */
10817 if (dev->reg_state == NETREG_UNINITIALIZED) {
10818 netdev_freemem(dev);
10819 return;
10820 }
10821
10822 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10823 dev->reg_state = NETREG_RELEASED;
10824
10825 /* will free via device release */
10826 put_device(&dev->dev);
10827}
10828EXPORT_SYMBOL(free_netdev);
10829
10830/**
10831 * synchronize_net - Synchronize with packet receive processing
10832 *
10833 * Wait for packets currently being received to be done.
10834 * Does not block later packets from starting.
10835 */
10836void synchronize_net(void)
10837{
10838 might_sleep();
10839 if (rtnl_is_locked())
10840 synchronize_rcu_expedited();
10841 else
10842 synchronize_rcu();
10843}
10844EXPORT_SYMBOL(synchronize_net);
10845
10846/**
10847 * unregister_netdevice_queue - remove device from the kernel
10848 * @dev: device
10849 * @head: list
10850 *
10851 * This function shuts down a device interface and removes it
10852 * from the kernel tables.
10853 * If head not NULL, device is queued to be unregistered later.
10854 *
10855 * Callers must hold the rtnl semaphore. You may want
10856 * unregister_netdev() instead of this.
10857 */
10858
10859void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10860{
10861 ASSERT_RTNL();
10862
10863 if (head) {
10864 list_move_tail(&dev->unreg_list, head);
10865 } else {
10866 LIST_HEAD(single);
10867
10868 list_add(&dev->unreg_list, &single);
10869 unregister_netdevice_many(&single);
10870 }
10871}
10872EXPORT_SYMBOL(unregister_netdevice_queue);
10873
10874/**
10875 * unregister_netdevice_many - unregister many devices
10876 * @head: list of devices
10877 *
10878 * Note: As most callers use a stack allocated list_head,
10879 * we force a list_del() to make sure stack wont be corrupted later.
10880 */
10881void unregister_netdevice_many(struct list_head *head)
10882{
10883 struct net_device *dev, *tmp;
10884 LIST_HEAD(close_head);
10885
10886 BUG_ON(dev_boot_phase);
10887 ASSERT_RTNL();
10888
10889 if (list_empty(head))
10890 return;
10891
10892 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10893 /* Some devices call without registering
10894 * for initialization unwind. Remove those
10895 * devices and proceed with the remaining.
10896 */
10897 if (dev->reg_state == NETREG_UNINITIALIZED) {
10898 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10899 dev->name, dev);
10900
10901 WARN_ON(1);
10902 list_del(&dev->unreg_list);
10903 continue;
10904 }
10905 dev->dismantle = true;
10906 BUG_ON(dev->reg_state != NETREG_REGISTERED);
10907 }
10908
10909 /* If device is running, close it first. */
10910 list_for_each_entry(dev, head, unreg_list)
10911 list_add_tail(&dev->close_list, &close_head);
10912 dev_close_many(&close_head, true);
10913
10914 list_for_each_entry(dev, head, unreg_list) {
10915 /* And unlink it from device chain. */
10916 unlist_netdevice(dev);
10917
10918 dev->reg_state = NETREG_UNREGISTERING;
10919 }
10920 flush_all_backlogs();
10921
10922 synchronize_net();
10923
10924 list_for_each_entry(dev, head, unreg_list) {
10925 struct sk_buff *skb = NULL;
10926
10927 /* Shutdown queueing discipline. */
10928 dev_shutdown(dev);
10929
10930 dev_xdp_uninstall(dev);
10931
10932 /* Notify protocols, that we are about to destroy
10933 * this device. They should clean all the things.
10934 */
10935 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10936
10937 if (!dev->rtnl_link_ops ||
10938 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10939 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10940 GFP_KERNEL, NULL, 0);
10941
10942 /*
10943 * Flush the unicast and multicast chains
10944 */
10945 dev_uc_flush(dev);
10946 dev_mc_flush(dev);
10947
10948 netdev_name_node_alt_flush(dev);
10949 netdev_name_node_free(dev->name_node);
10950
10951 if (dev->netdev_ops->ndo_uninit)
10952 dev->netdev_ops->ndo_uninit(dev);
10953
10954 if (skb)
10955 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
10956
10957 /* Notifier chain MUST detach us all upper devices. */
10958 WARN_ON(netdev_has_any_upper_dev(dev));
10959 WARN_ON(netdev_has_any_lower_dev(dev));
10960
10961 /* Remove entries from kobject tree */
10962 netdev_unregister_kobject(dev);
10963#ifdef CONFIG_XPS
10964 /* Remove XPS queueing entries */
10965 netif_reset_xps_queues_gt(dev, 0);
10966#endif
10967 }
10968
10969 synchronize_net();
10970
10971 list_for_each_entry(dev, head, unreg_list) {
10972 dev_put(dev);
10973 net_set_todo(dev);
10974 }
10975
10976 list_del(head);
10977}
10978EXPORT_SYMBOL(unregister_netdevice_many);
10979
10980/**
10981 * unregister_netdev - remove device from the kernel
10982 * @dev: device
10983 *
10984 * This function shuts down a device interface and removes it
10985 * from the kernel tables.
10986 *
10987 * This is just a wrapper for unregister_netdevice that takes
10988 * the rtnl semaphore. In general you want to use this and not
10989 * unregister_netdevice.
10990 */
10991void unregister_netdev(struct net_device *dev)
10992{
10993 rtnl_lock();
10994 unregister_netdevice(dev);
10995 rtnl_unlock();
10996}
10997EXPORT_SYMBOL(unregister_netdev);
10998
10999/**
11000 * dev_change_net_namespace - move device to different nethost namespace
11001 * @dev: device
11002 * @net: network namespace
11003 * @pat: If not NULL name pattern to try if the current device name
11004 * is already taken in the destination network namespace.
11005 *
11006 * This function shuts down a device interface and moves it
11007 * to a new network namespace. On success 0 is returned, on
11008 * a failure a netagive errno code is returned.
11009 *
11010 * Callers must hold the rtnl semaphore.
11011 */
11012
11013int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
11014{
11015 struct net *net_old = dev_net(dev);
11016 int err, new_nsid, new_ifindex;
11017
11018 ASSERT_RTNL();
11019
11020 /* Don't allow namespace local devices to be moved. */
11021 err = -EINVAL;
11022 if (dev->features & NETIF_F_NETNS_LOCAL)
11023 goto out;
11024
11025 /* Ensure the device has been registrered */
11026 if (dev->reg_state != NETREG_REGISTERED)
11027 goto out;
11028
11029 /* Get out if there is nothing todo */
11030 err = 0;
11031 if (net_eq(net_old, net))
11032 goto out;
11033
11034 /* Pick the destination device name, and ensure
11035 * we can use it in the destination network namespace.
11036 */
11037 err = -EEXIST;
11038 if (__dev_get_by_name(net, dev->name)) {
11039 /* We get here if we can't use the current device name */
11040 if (!pat)
11041 goto out;
11042 err = dev_get_valid_name(net, dev, pat);
11043 if (err < 0)
11044 goto out;
11045 }
11046
11047 /*
11048 * And now a mini version of register_netdevice unregister_netdevice.
11049 */
11050
11051 /* If device is running close it first. */
11052 dev_close(dev);
11053
11054 /* And unlink it from device chain */
11055 unlist_netdevice(dev);
11056
11057 synchronize_net();
11058
11059 /* Shutdown queueing discipline. */
11060 dev_shutdown(dev);
11061
11062 /* Notify protocols, that we are about to destroy
11063 * this device. They should clean all the things.
11064 *
11065 * Note that dev->reg_state stays at NETREG_REGISTERED.
11066 * This is wanted because this way 8021q and macvlan know
11067 * the device is just moving and can keep their slaves up.
11068 */
11069 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11070 rcu_barrier();
11071
11072 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11073 /* If there is an ifindex conflict assign a new one */
11074 if (__dev_get_by_index(net, dev->ifindex))
11075 new_ifindex = dev_new_index(net);
11076 else
11077 new_ifindex = dev->ifindex;
11078
11079 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11080 new_ifindex);
11081
11082 /*
11083 * Flush the unicast and multicast chains
11084 */
11085 dev_uc_flush(dev);
11086 dev_mc_flush(dev);
11087
11088 /* Send a netdev-removed uevent to the old namespace */
11089 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11090 netdev_adjacent_del_links(dev);
11091
11092 /* Move per-net netdevice notifiers that are following the netdevice */
11093 move_netdevice_notifiers_dev_net(dev, net);
11094
11095 /* Actually switch the network namespace */
11096 dev_net_set(dev, net);
11097 dev->ifindex = new_ifindex;
11098
11099 /* Send a netdev-add uevent to the new namespace */
11100 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11101 netdev_adjacent_add_links(dev);
11102
11103 /* Fixup kobjects */
11104 err = device_rename(&dev->dev, dev->name);
11105 WARN_ON(err);
11106
11107 /* Adapt owner in case owning user namespace of target network
11108 * namespace is different from the original one.
11109 */
11110 err = netdev_change_owner(dev, net_old, net);
11111 WARN_ON(err);
11112
11113 /* Add the device back in the hashes */
11114 list_netdevice(dev);
11115
11116 /* Notify protocols, that a new device appeared. */
11117 call_netdevice_notifiers(NETDEV_REGISTER, dev);
11118
11119 /*
11120 * Prevent userspace races by waiting until the network
11121 * device is fully setup before sending notifications.
11122 */
11123 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
11124
11125 synchronize_net();
11126 err = 0;
11127out:
11128 return err;
11129}
11130EXPORT_SYMBOL_GPL(dev_change_net_namespace);
11131
11132static int dev_cpu_dead(unsigned int oldcpu)
11133{
11134 struct sk_buff **list_skb;
11135 struct sk_buff *skb;
11136 unsigned int cpu;
11137 struct softnet_data *sd, *oldsd, *remsd = NULL;
11138
11139 local_irq_disable();
11140 cpu = smp_processor_id();
11141 sd = &per_cpu(softnet_data, cpu);
11142 oldsd = &per_cpu(softnet_data, oldcpu);
11143
11144 /* Find end of our completion_queue. */
11145 list_skb = &sd->completion_queue;
11146 while (*list_skb)
11147 list_skb = &(*list_skb)->next;
11148 /* Append completion queue from offline CPU. */
11149 *list_skb = oldsd->completion_queue;
11150 oldsd->completion_queue = NULL;
11151
11152 /* Append output queue from offline CPU. */
11153 if (oldsd->output_queue) {
11154 *sd->output_queue_tailp = oldsd->output_queue;
11155 sd->output_queue_tailp = oldsd->output_queue_tailp;
11156 oldsd->output_queue = NULL;
11157 oldsd->output_queue_tailp = &oldsd->output_queue;
11158 }
11159 /* Append NAPI poll list from offline CPU, with one exception :
11160 * process_backlog() must be called by cpu owning percpu backlog.
11161 * We properly handle process_queue & input_pkt_queue later.
11162 */
11163 while (!list_empty(&oldsd->poll_list)) {
11164 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11165 struct napi_struct,
11166 poll_list);
11167
11168 list_del_init(&napi->poll_list);
11169 if (napi->poll == process_backlog)
11170 napi->state = 0;
11171 else
11172 ____napi_schedule(sd, napi);
11173 }
11174
11175 raise_softirq_irqoff(NET_TX_SOFTIRQ);
11176 local_irq_enable();
11177
11178#ifdef CONFIG_RPS
11179 remsd = oldsd->rps_ipi_list;
11180 oldsd->rps_ipi_list = NULL;
11181#endif
11182 /* send out pending IPI's on offline CPU */
11183 net_rps_send_ipi(remsd);
11184
11185 /* Process offline CPU's input_pkt_queue */
11186 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11187 netif_rx_ni(skb);
11188 input_queue_head_incr(oldsd);
11189 }
11190 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11191 netif_rx_ni(skb);
11192 input_queue_head_incr(oldsd);
11193 }
11194
11195 return 0;
11196}
11197
11198/**
11199 * netdev_increment_features - increment feature set by one
11200 * @all: current feature set
11201 * @one: new feature set
11202 * @mask: mask feature set
11203 *
11204 * Computes a new feature set after adding a device with feature set
11205 * @one to the master device with current feature set @all. Will not
11206 * enable anything that is off in @mask. Returns the new feature set.
11207 */
11208netdev_features_t netdev_increment_features(netdev_features_t all,
11209 netdev_features_t one, netdev_features_t mask)
11210{
11211 if (mask & NETIF_F_HW_CSUM)
11212 mask |= NETIF_F_CSUM_MASK;
11213 mask |= NETIF_F_VLAN_CHALLENGED;
11214
11215 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11216 all &= one | ~NETIF_F_ALL_FOR_ALL;
11217
11218 /* If one device supports hw checksumming, set for all. */
11219 if (all & NETIF_F_HW_CSUM)
11220 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11221
11222 return all;
11223}
11224EXPORT_SYMBOL(netdev_increment_features);
11225
11226static struct hlist_head * __net_init netdev_create_hash(void)
11227{
11228 int i;
11229 struct hlist_head *hash;
11230
11231 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11232 if (hash != NULL)
11233 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11234 INIT_HLIST_HEAD(&hash[i]);
11235
11236 return hash;
11237}
11238
11239/* Initialize per network namespace state */
11240static int __net_init netdev_init(struct net *net)
11241{
11242 BUILD_BUG_ON(GRO_HASH_BUCKETS >
11243 8 * sizeof_field(struct napi_struct, gro_bitmask));
11244
11245 if (net != &init_net)
11246 INIT_LIST_HEAD(&net->dev_base_head);
11247
11248 net->dev_name_head = netdev_create_hash();
11249 if (net->dev_name_head == NULL)
11250 goto err_name;
11251
11252 net->dev_index_head = netdev_create_hash();
11253 if (net->dev_index_head == NULL)
11254 goto err_idx;
11255
11256 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11257
11258 return 0;
11259
11260err_idx:
11261 kfree(net->dev_name_head);
11262err_name:
11263 return -ENOMEM;
11264}
11265
11266/**
11267 * netdev_drivername - network driver for the device
11268 * @dev: network device
11269 *
11270 * Determine network driver for device.
11271 */
11272const char *netdev_drivername(const struct net_device *dev)
11273{
11274 const struct device_driver *driver;
11275 const struct device *parent;
11276 const char *empty = "";
11277
11278 parent = dev->dev.parent;
11279 if (!parent)
11280 return empty;
11281
11282 driver = parent->driver;
11283 if (driver && driver->name)
11284 return driver->name;
11285 return empty;
11286}
11287
11288static void __netdev_printk(const char *level, const struct net_device *dev,
11289 struct va_format *vaf)
11290{
11291 if (dev && dev->dev.parent) {
11292 dev_printk_emit(level[1] - '0',
11293 dev->dev.parent,
11294 "%s %s %s%s: %pV",
11295 dev_driver_string(dev->dev.parent),
11296 dev_name(dev->dev.parent),
11297 netdev_name(dev), netdev_reg_state(dev),
11298 vaf);
11299 } else if (dev) {
11300 printk("%s%s%s: %pV",
11301 level, netdev_name(dev), netdev_reg_state(dev), vaf);
11302 } else {
11303 printk("%s(NULL net_device): %pV", level, vaf);
11304 }
11305}
11306
11307void netdev_printk(const char *level, const struct net_device *dev,
11308 const char *format, ...)
11309{
11310 struct va_format vaf;
11311 va_list args;
11312
11313 va_start(args, format);
11314
11315 vaf.fmt = format;
11316 vaf.va = &args;
11317
11318 __netdev_printk(level, dev, &vaf);
11319
11320 va_end(args);
11321}
11322EXPORT_SYMBOL(netdev_printk);
11323
11324#define define_netdev_printk_level(func, level) \
11325void func(const struct net_device *dev, const char *fmt, ...) \
11326{ \
11327 struct va_format vaf; \
11328 va_list args; \
11329 \
11330 va_start(args, fmt); \
11331 \
11332 vaf.fmt = fmt; \
11333 vaf.va = &args; \
11334 \
11335 __netdev_printk(level, dev, &vaf); \
11336 \
11337 va_end(args); \
11338} \
11339EXPORT_SYMBOL(func);
11340
11341define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11342define_netdev_printk_level(netdev_alert, KERN_ALERT);
11343define_netdev_printk_level(netdev_crit, KERN_CRIT);
11344define_netdev_printk_level(netdev_err, KERN_ERR);
11345define_netdev_printk_level(netdev_warn, KERN_WARNING);
11346define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11347define_netdev_printk_level(netdev_info, KERN_INFO);
11348
11349static void __net_exit netdev_exit(struct net *net)
11350{
11351 kfree(net->dev_name_head);
11352 kfree(net->dev_index_head);
11353 if (net != &init_net)
11354 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11355}
11356
11357static struct pernet_operations __net_initdata netdev_net_ops = {
11358 .init = netdev_init,
11359 .exit = netdev_exit,
11360};
11361
11362static void __net_exit default_device_exit(struct net *net)
11363{
11364 struct net_device *dev, *aux;
11365 /*
11366 * Push all migratable network devices back to the
11367 * initial network namespace
11368 */
11369 rtnl_lock();
11370 for_each_netdev_safe(net, dev, aux) {
11371 int err;
11372 char fb_name[IFNAMSIZ];
11373
11374 /* Ignore unmoveable devices (i.e. loopback) */
11375 if (dev->features & NETIF_F_NETNS_LOCAL)
11376 continue;
11377
11378 /* Leave virtual devices for the generic cleanup */
11379 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11380 continue;
11381
11382 /* Push remaining network devices to init_net */
11383 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11384 if (__dev_get_by_name(&init_net, fb_name))
11385 snprintf(fb_name, IFNAMSIZ, "dev%%d");
11386 err = dev_change_net_namespace(dev, &init_net, fb_name);
11387 if (err) {
11388 pr_emerg("%s: failed to move %s to init_net: %d\n",
11389 __func__, dev->name, err);
11390 BUG();
11391 }
11392 }
11393 rtnl_unlock();
11394}
11395
11396static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11397{
11398 /* Return with the rtnl_lock held when there are no network
11399 * devices unregistering in any network namespace in net_list.
11400 */
11401 struct net *net;
11402 bool unregistering;
11403 DEFINE_WAIT_FUNC(wait, woken_wake_function);
11404
11405 add_wait_queue(&netdev_unregistering_wq, &wait);
11406 for (;;) {
11407 unregistering = false;
11408 rtnl_lock();
11409 list_for_each_entry(net, net_list, exit_list) {
11410 if (net->dev_unreg_count > 0) {
11411 unregistering = true;
11412 break;
11413 }
11414 }
11415 if (!unregistering)
11416 break;
11417 __rtnl_unlock();
11418
11419 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11420 }
11421 remove_wait_queue(&netdev_unregistering_wq, &wait);
11422}
11423
11424static void __net_exit default_device_exit_batch(struct list_head *net_list)
11425{
11426 /* At exit all network devices most be removed from a network
11427 * namespace. Do this in the reverse order of registration.
11428 * Do this across as many network namespaces as possible to
11429 * improve batching efficiency.
11430 */
11431 struct net_device *dev;
11432 struct net *net;
11433 LIST_HEAD(dev_kill_list);
11434
11435 /* To prevent network device cleanup code from dereferencing
11436 * loopback devices or network devices that have been freed
11437 * wait here for all pending unregistrations to complete,
11438 * before unregistring the loopback device and allowing the
11439 * network namespace be freed.
11440 *
11441 * The netdev todo list containing all network devices
11442 * unregistrations that happen in default_device_exit_batch
11443 * will run in the rtnl_unlock() at the end of
11444 * default_device_exit_batch.
11445 */
11446 rtnl_lock_unregistering(net_list);
11447 list_for_each_entry(net, net_list, exit_list) {
11448 for_each_netdev_reverse(net, dev) {
11449 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11450 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11451 else
11452 unregister_netdevice_queue(dev, &dev_kill_list);
11453 }
11454 }
11455 unregister_netdevice_many(&dev_kill_list);
11456 rtnl_unlock();
11457}
11458
11459static struct pernet_operations __net_initdata default_device_ops = {
11460 .exit = default_device_exit,
11461 .exit_batch = default_device_exit_batch,
11462};
11463
11464/*
11465 * Initialize the DEV module. At boot time this walks the device list and
11466 * unhooks any devices that fail to initialise (normally hardware not
11467 * present) and leaves us with a valid list of present and active devices.
11468 *
11469 */
11470
11471/*
11472 * This is called single threaded during boot, so no need
11473 * to take the rtnl semaphore.
11474 */
11475static int __init net_dev_init(void)
11476{
11477 int i, rc = -ENOMEM;
11478
11479 BUG_ON(!dev_boot_phase);
11480
11481 if (dev_proc_init())
11482 goto out;
11483
11484 if (netdev_kobject_init())
11485 goto out;
11486
11487 INIT_LIST_HEAD(&ptype_all);
11488 for (i = 0; i < PTYPE_HASH_SIZE; i++)
11489 INIT_LIST_HEAD(&ptype_base[i]);
11490
11491 INIT_LIST_HEAD(&offload_base);
11492
11493 if (register_pernet_subsys(&netdev_net_ops))
11494 goto out;
11495
11496 /*
11497 * Initialise the packet receive queues.
11498 */
11499
11500 for_each_possible_cpu(i) {
11501 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11502 struct softnet_data *sd = &per_cpu(softnet_data, i);
11503
11504 INIT_WORK(flush, flush_backlog);
11505
11506 skb_queue_head_init(&sd->input_pkt_queue);
11507 skb_queue_head_init(&sd->process_queue);
11508#ifdef CONFIG_XFRM_OFFLOAD
11509 skb_queue_head_init(&sd->xfrm_backlog);
11510#endif
11511 INIT_LIST_HEAD(&sd->poll_list);
11512 sd->output_queue_tailp = &sd->output_queue;
11513#ifdef CONFIG_RPS
11514 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11515 sd->cpu = i;
11516#endif
11517
11518 init_gro_hash(&sd->backlog);
11519 sd->backlog.poll = process_backlog;
11520 sd->backlog.weight = weight_p;
11521 }
11522
11523 dev_boot_phase = 0;
11524
11525 /* The loopback device is special if any other network devices
11526 * is present in a network namespace the loopback device must
11527 * be present. Since we now dynamically allocate and free the
11528 * loopback device ensure this invariant is maintained by
11529 * keeping the loopback device as the first device on the
11530 * list of network devices. Ensuring the loopback devices
11531 * is the first device that appears and the last network device
11532 * that disappears.
11533 */
11534 if (register_pernet_device(&loopback_net_ops))
11535 goto out;
11536
11537 if (register_pernet_device(&default_device_ops))
11538 goto out;
11539
11540 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11541 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11542
11543 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11544 NULL, dev_cpu_dead);
11545 WARN_ON(rc < 0);
11546 rc = 0;
11547out:
11548 return rc;
11549}
11550
11551subsys_initcall(net_dev_init);