Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2//
3// Register map access API
4//
5// Copyright 2011 Wolfson Microelectronics plc
6//
7// Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8
9#include <linux/device.h>
10#include <linux/slab.h>
11#include <linux/export.h>
12#include <linux/mutex.h>
13#include <linux/err.h>
14#include <linux/property.h>
15#include <linux/rbtree.h>
16#include <linux/sched.h>
17#include <linux/delay.h>
18#include <linux/log2.h>
19#include <linux/hwspinlock.h>
20#include <asm/unaligned.h>
21
22#define CREATE_TRACE_POINTS
23#include "trace.h"
24
25#include "internal.h"
26
27/*
28 * Sometimes for failures during very early init the trace
29 * infrastructure isn't available early enough to be used. For this
30 * sort of problem defining LOG_DEVICE will add printks for basic
31 * register I/O on a specific device.
32 */
33#undef LOG_DEVICE
34
35#ifdef LOG_DEVICE
36static inline bool regmap_should_log(struct regmap *map)
37{
38 return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
39}
40#else
41static inline bool regmap_should_log(struct regmap *map) { return false; }
42#endif
43
44
45static int _regmap_update_bits(struct regmap *map, unsigned int reg,
46 unsigned int mask, unsigned int val,
47 bool *change, bool force_write);
48
49static int _regmap_bus_reg_read(void *context, unsigned int reg,
50 unsigned int *val);
51static int _regmap_bus_read(void *context, unsigned int reg,
52 unsigned int *val);
53static int _regmap_bus_formatted_write(void *context, unsigned int reg,
54 unsigned int val);
55static int _regmap_bus_reg_write(void *context, unsigned int reg,
56 unsigned int val);
57static int _regmap_bus_raw_write(void *context, unsigned int reg,
58 unsigned int val);
59
60bool regmap_reg_in_ranges(unsigned int reg,
61 const struct regmap_range *ranges,
62 unsigned int nranges)
63{
64 const struct regmap_range *r;
65 int i;
66
67 for (i = 0, r = ranges; i < nranges; i++, r++)
68 if (regmap_reg_in_range(reg, r))
69 return true;
70 return false;
71}
72EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
73
74bool regmap_check_range_table(struct regmap *map, unsigned int reg,
75 const struct regmap_access_table *table)
76{
77 /* Check "no ranges" first */
78 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
79 return false;
80
81 /* In case zero "yes ranges" are supplied, any reg is OK */
82 if (!table->n_yes_ranges)
83 return true;
84
85 return regmap_reg_in_ranges(reg, table->yes_ranges,
86 table->n_yes_ranges);
87}
88EXPORT_SYMBOL_GPL(regmap_check_range_table);
89
90bool regmap_writeable(struct regmap *map, unsigned int reg)
91{
92 if (map->max_register && reg > map->max_register)
93 return false;
94
95 if (map->writeable_reg)
96 return map->writeable_reg(map->dev, reg);
97
98 if (map->wr_table)
99 return regmap_check_range_table(map, reg, map->wr_table);
100
101 return true;
102}
103
104bool regmap_cached(struct regmap *map, unsigned int reg)
105{
106 int ret;
107 unsigned int val;
108
109 if (map->cache_type == REGCACHE_NONE)
110 return false;
111
112 if (!map->cache_ops)
113 return false;
114
115 if (map->max_register && reg > map->max_register)
116 return false;
117
118 map->lock(map->lock_arg);
119 ret = regcache_read(map, reg, &val);
120 map->unlock(map->lock_arg);
121 if (ret)
122 return false;
123
124 return true;
125}
126
127bool regmap_readable(struct regmap *map, unsigned int reg)
128{
129 if (!map->reg_read)
130 return false;
131
132 if (map->max_register && reg > map->max_register)
133 return false;
134
135 if (map->format.format_write)
136 return false;
137
138 if (map->readable_reg)
139 return map->readable_reg(map->dev, reg);
140
141 if (map->rd_table)
142 return regmap_check_range_table(map, reg, map->rd_table);
143
144 return true;
145}
146
147bool regmap_volatile(struct regmap *map, unsigned int reg)
148{
149 if (!map->format.format_write && !regmap_readable(map, reg))
150 return false;
151
152 if (map->volatile_reg)
153 return map->volatile_reg(map->dev, reg);
154
155 if (map->volatile_table)
156 return regmap_check_range_table(map, reg, map->volatile_table);
157
158 if (map->cache_ops)
159 return false;
160 else
161 return true;
162}
163
164bool regmap_precious(struct regmap *map, unsigned int reg)
165{
166 if (!regmap_readable(map, reg))
167 return false;
168
169 if (map->precious_reg)
170 return map->precious_reg(map->dev, reg);
171
172 if (map->precious_table)
173 return regmap_check_range_table(map, reg, map->precious_table);
174
175 return false;
176}
177
178bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
179{
180 if (map->writeable_noinc_reg)
181 return map->writeable_noinc_reg(map->dev, reg);
182
183 if (map->wr_noinc_table)
184 return regmap_check_range_table(map, reg, map->wr_noinc_table);
185
186 return true;
187}
188
189bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
190{
191 if (map->readable_noinc_reg)
192 return map->readable_noinc_reg(map->dev, reg);
193
194 if (map->rd_noinc_table)
195 return regmap_check_range_table(map, reg, map->rd_noinc_table);
196
197 return true;
198}
199
200static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
201 size_t num)
202{
203 unsigned int i;
204
205 for (i = 0; i < num; i++)
206 if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
207 return false;
208
209 return true;
210}
211
212static void regmap_format_12_20_write(struct regmap *map,
213 unsigned int reg, unsigned int val)
214{
215 u8 *out = map->work_buf;
216
217 out[0] = reg >> 4;
218 out[1] = (reg << 4) | (val >> 16);
219 out[2] = val >> 8;
220 out[3] = val;
221}
222
223
224static void regmap_format_2_6_write(struct regmap *map,
225 unsigned int reg, unsigned int val)
226{
227 u8 *out = map->work_buf;
228
229 *out = (reg << 6) | val;
230}
231
232static void regmap_format_4_12_write(struct regmap *map,
233 unsigned int reg, unsigned int val)
234{
235 __be16 *out = map->work_buf;
236 *out = cpu_to_be16((reg << 12) | val);
237}
238
239static void regmap_format_7_9_write(struct regmap *map,
240 unsigned int reg, unsigned int val)
241{
242 __be16 *out = map->work_buf;
243 *out = cpu_to_be16((reg << 9) | val);
244}
245
246static void regmap_format_10_14_write(struct regmap *map,
247 unsigned int reg, unsigned int val)
248{
249 u8 *out = map->work_buf;
250
251 out[2] = val;
252 out[1] = (val >> 8) | (reg << 6);
253 out[0] = reg >> 2;
254}
255
256static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
257{
258 u8 *b = buf;
259
260 b[0] = val << shift;
261}
262
263static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
264{
265 put_unaligned_be16(val << shift, buf);
266}
267
268static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
269{
270 put_unaligned_le16(val << shift, buf);
271}
272
273static void regmap_format_16_native(void *buf, unsigned int val,
274 unsigned int shift)
275{
276 u16 v = val << shift;
277
278 memcpy(buf, &v, sizeof(v));
279}
280
281static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
282{
283 u8 *b = buf;
284
285 val <<= shift;
286
287 b[0] = val >> 16;
288 b[1] = val >> 8;
289 b[2] = val;
290}
291
292static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
293{
294 put_unaligned_be32(val << shift, buf);
295}
296
297static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
298{
299 put_unaligned_le32(val << shift, buf);
300}
301
302static void regmap_format_32_native(void *buf, unsigned int val,
303 unsigned int shift)
304{
305 u32 v = val << shift;
306
307 memcpy(buf, &v, sizeof(v));
308}
309
310#ifdef CONFIG_64BIT
311static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
312{
313 put_unaligned_be64((u64) val << shift, buf);
314}
315
316static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
317{
318 put_unaligned_le64((u64) val << shift, buf);
319}
320
321static void regmap_format_64_native(void *buf, unsigned int val,
322 unsigned int shift)
323{
324 u64 v = (u64) val << shift;
325
326 memcpy(buf, &v, sizeof(v));
327}
328#endif
329
330static void regmap_parse_inplace_noop(void *buf)
331{
332}
333
334static unsigned int regmap_parse_8(const void *buf)
335{
336 const u8 *b = buf;
337
338 return b[0];
339}
340
341static unsigned int regmap_parse_16_be(const void *buf)
342{
343 return get_unaligned_be16(buf);
344}
345
346static unsigned int regmap_parse_16_le(const void *buf)
347{
348 return get_unaligned_le16(buf);
349}
350
351static void regmap_parse_16_be_inplace(void *buf)
352{
353 u16 v = get_unaligned_be16(buf);
354
355 memcpy(buf, &v, sizeof(v));
356}
357
358static void regmap_parse_16_le_inplace(void *buf)
359{
360 u16 v = get_unaligned_le16(buf);
361
362 memcpy(buf, &v, sizeof(v));
363}
364
365static unsigned int regmap_parse_16_native(const void *buf)
366{
367 u16 v;
368
369 memcpy(&v, buf, sizeof(v));
370 return v;
371}
372
373static unsigned int regmap_parse_24(const void *buf)
374{
375 const u8 *b = buf;
376 unsigned int ret = b[2];
377 ret |= ((unsigned int)b[1]) << 8;
378 ret |= ((unsigned int)b[0]) << 16;
379
380 return ret;
381}
382
383static unsigned int regmap_parse_32_be(const void *buf)
384{
385 return get_unaligned_be32(buf);
386}
387
388static unsigned int regmap_parse_32_le(const void *buf)
389{
390 return get_unaligned_le32(buf);
391}
392
393static void regmap_parse_32_be_inplace(void *buf)
394{
395 u32 v = get_unaligned_be32(buf);
396
397 memcpy(buf, &v, sizeof(v));
398}
399
400static void regmap_parse_32_le_inplace(void *buf)
401{
402 u32 v = get_unaligned_le32(buf);
403
404 memcpy(buf, &v, sizeof(v));
405}
406
407static unsigned int regmap_parse_32_native(const void *buf)
408{
409 u32 v;
410
411 memcpy(&v, buf, sizeof(v));
412 return v;
413}
414
415#ifdef CONFIG_64BIT
416static unsigned int regmap_parse_64_be(const void *buf)
417{
418 return get_unaligned_be64(buf);
419}
420
421static unsigned int regmap_parse_64_le(const void *buf)
422{
423 return get_unaligned_le64(buf);
424}
425
426static void regmap_parse_64_be_inplace(void *buf)
427{
428 u64 v = get_unaligned_be64(buf);
429
430 memcpy(buf, &v, sizeof(v));
431}
432
433static void regmap_parse_64_le_inplace(void *buf)
434{
435 u64 v = get_unaligned_le64(buf);
436
437 memcpy(buf, &v, sizeof(v));
438}
439
440static unsigned int regmap_parse_64_native(const void *buf)
441{
442 u64 v;
443
444 memcpy(&v, buf, sizeof(v));
445 return v;
446}
447#endif
448
449static void regmap_lock_hwlock(void *__map)
450{
451 struct regmap *map = __map;
452
453 hwspin_lock_timeout(map->hwlock, UINT_MAX);
454}
455
456static void regmap_lock_hwlock_irq(void *__map)
457{
458 struct regmap *map = __map;
459
460 hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
461}
462
463static void regmap_lock_hwlock_irqsave(void *__map)
464{
465 struct regmap *map = __map;
466
467 hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
468 &map->spinlock_flags);
469}
470
471static void regmap_unlock_hwlock(void *__map)
472{
473 struct regmap *map = __map;
474
475 hwspin_unlock(map->hwlock);
476}
477
478static void regmap_unlock_hwlock_irq(void *__map)
479{
480 struct regmap *map = __map;
481
482 hwspin_unlock_irq(map->hwlock);
483}
484
485static void regmap_unlock_hwlock_irqrestore(void *__map)
486{
487 struct regmap *map = __map;
488
489 hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
490}
491
492static void regmap_lock_unlock_none(void *__map)
493{
494
495}
496
497static void regmap_lock_mutex(void *__map)
498{
499 struct regmap *map = __map;
500 mutex_lock(&map->mutex);
501}
502
503static void regmap_unlock_mutex(void *__map)
504{
505 struct regmap *map = __map;
506 mutex_unlock(&map->mutex);
507}
508
509static void regmap_lock_spinlock(void *__map)
510__acquires(&map->spinlock)
511{
512 struct regmap *map = __map;
513 unsigned long flags;
514
515 spin_lock_irqsave(&map->spinlock, flags);
516 map->spinlock_flags = flags;
517}
518
519static void regmap_unlock_spinlock(void *__map)
520__releases(&map->spinlock)
521{
522 struct regmap *map = __map;
523 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
524}
525
526static void dev_get_regmap_release(struct device *dev, void *res)
527{
528 /*
529 * We don't actually have anything to do here; the goal here
530 * is not to manage the regmap but to provide a simple way to
531 * get the regmap back given a struct device.
532 */
533}
534
535static bool _regmap_range_add(struct regmap *map,
536 struct regmap_range_node *data)
537{
538 struct rb_root *root = &map->range_tree;
539 struct rb_node **new = &(root->rb_node), *parent = NULL;
540
541 while (*new) {
542 struct regmap_range_node *this =
543 rb_entry(*new, struct regmap_range_node, node);
544
545 parent = *new;
546 if (data->range_max < this->range_min)
547 new = &((*new)->rb_left);
548 else if (data->range_min > this->range_max)
549 new = &((*new)->rb_right);
550 else
551 return false;
552 }
553
554 rb_link_node(&data->node, parent, new);
555 rb_insert_color(&data->node, root);
556
557 return true;
558}
559
560static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
561 unsigned int reg)
562{
563 struct rb_node *node = map->range_tree.rb_node;
564
565 while (node) {
566 struct regmap_range_node *this =
567 rb_entry(node, struct regmap_range_node, node);
568
569 if (reg < this->range_min)
570 node = node->rb_left;
571 else if (reg > this->range_max)
572 node = node->rb_right;
573 else
574 return this;
575 }
576
577 return NULL;
578}
579
580static void regmap_range_exit(struct regmap *map)
581{
582 struct rb_node *next;
583 struct regmap_range_node *range_node;
584
585 next = rb_first(&map->range_tree);
586 while (next) {
587 range_node = rb_entry(next, struct regmap_range_node, node);
588 next = rb_next(&range_node->node);
589 rb_erase(&range_node->node, &map->range_tree);
590 kfree(range_node);
591 }
592
593 kfree(map->selector_work_buf);
594}
595
596static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
597{
598 if (config->name) {
599 const char *name = kstrdup_const(config->name, GFP_KERNEL);
600
601 if (!name)
602 return -ENOMEM;
603
604 kfree_const(map->name);
605 map->name = name;
606 }
607
608 return 0;
609}
610
611int regmap_attach_dev(struct device *dev, struct regmap *map,
612 const struct regmap_config *config)
613{
614 struct regmap **m;
615 int ret;
616
617 map->dev = dev;
618
619 ret = regmap_set_name(map, config);
620 if (ret)
621 return ret;
622
623 regmap_debugfs_init(map);
624
625 /* Add a devres resource for dev_get_regmap() */
626 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
627 if (!m) {
628 regmap_debugfs_exit(map);
629 return -ENOMEM;
630 }
631 *m = map;
632 devres_add(dev, m);
633
634 return 0;
635}
636EXPORT_SYMBOL_GPL(regmap_attach_dev);
637
638static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
639 const struct regmap_config *config)
640{
641 enum regmap_endian endian;
642
643 /* Retrieve the endianness specification from the regmap config */
644 endian = config->reg_format_endian;
645
646 /* If the regmap config specified a non-default value, use that */
647 if (endian != REGMAP_ENDIAN_DEFAULT)
648 return endian;
649
650 /* Retrieve the endianness specification from the bus config */
651 if (bus && bus->reg_format_endian_default)
652 endian = bus->reg_format_endian_default;
653
654 /* If the bus specified a non-default value, use that */
655 if (endian != REGMAP_ENDIAN_DEFAULT)
656 return endian;
657
658 /* Use this if no other value was found */
659 return REGMAP_ENDIAN_BIG;
660}
661
662enum regmap_endian regmap_get_val_endian(struct device *dev,
663 const struct regmap_bus *bus,
664 const struct regmap_config *config)
665{
666 struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
667 enum regmap_endian endian;
668
669 /* Retrieve the endianness specification from the regmap config */
670 endian = config->val_format_endian;
671
672 /* If the regmap config specified a non-default value, use that */
673 if (endian != REGMAP_ENDIAN_DEFAULT)
674 return endian;
675
676 /* If the firmware node exist try to get endianness from it */
677 if (fwnode_property_read_bool(fwnode, "big-endian"))
678 endian = REGMAP_ENDIAN_BIG;
679 else if (fwnode_property_read_bool(fwnode, "little-endian"))
680 endian = REGMAP_ENDIAN_LITTLE;
681 else if (fwnode_property_read_bool(fwnode, "native-endian"))
682 endian = REGMAP_ENDIAN_NATIVE;
683
684 /* If the endianness was specified in fwnode, use that */
685 if (endian != REGMAP_ENDIAN_DEFAULT)
686 return endian;
687
688 /* Retrieve the endianness specification from the bus config */
689 if (bus && bus->val_format_endian_default)
690 endian = bus->val_format_endian_default;
691
692 /* If the bus specified a non-default value, use that */
693 if (endian != REGMAP_ENDIAN_DEFAULT)
694 return endian;
695
696 /* Use this if no other value was found */
697 return REGMAP_ENDIAN_BIG;
698}
699EXPORT_SYMBOL_GPL(regmap_get_val_endian);
700
701struct regmap *__regmap_init(struct device *dev,
702 const struct regmap_bus *bus,
703 void *bus_context,
704 const struct regmap_config *config,
705 struct lock_class_key *lock_key,
706 const char *lock_name)
707{
708 struct regmap *map;
709 int ret = -EINVAL;
710 enum regmap_endian reg_endian, val_endian;
711 int i, j;
712
713 if (!config)
714 goto err;
715
716 map = kzalloc(sizeof(*map), GFP_KERNEL);
717 if (map == NULL) {
718 ret = -ENOMEM;
719 goto err;
720 }
721
722 ret = regmap_set_name(map, config);
723 if (ret)
724 goto err_map;
725
726 ret = -EINVAL; /* Later error paths rely on this */
727
728 if (config->disable_locking) {
729 map->lock = map->unlock = regmap_lock_unlock_none;
730 map->can_sleep = config->can_sleep;
731 regmap_debugfs_disable(map);
732 } else if (config->lock && config->unlock) {
733 map->lock = config->lock;
734 map->unlock = config->unlock;
735 map->lock_arg = config->lock_arg;
736 map->can_sleep = config->can_sleep;
737 } else if (config->use_hwlock) {
738 map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
739 if (!map->hwlock) {
740 ret = -ENXIO;
741 goto err_name;
742 }
743
744 switch (config->hwlock_mode) {
745 case HWLOCK_IRQSTATE:
746 map->lock = regmap_lock_hwlock_irqsave;
747 map->unlock = regmap_unlock_hwlock_irqrestore;
748 break;
749 case HWLOCK_IRQ:
750 map->lock = regmap_lock_hwlock_irq;
751 map->unlock = regmap_unlock_hwlock_irq;
752 break;
753 default:
754 map->lock = regmap_lock_hwlock;
755 map->unlock = regmap_unlock_hwlock;
756 break;
757 }
758
759 map->lock_arg = map;
760 } else {
761 if ((bus && bus->fast_io) ||
762 config->fast_io) {
763 spin_lock_init(&map->spinlock);
764 map->lock = regmap_lock_spinlock;
765 map->unlock = regmap_unlock_spinlock;
766 lockdep_set_class_and_name(&map->spinlock,
767 lock_key, lock_name);
768 } else {
769 mutex_init(&map->mutex);
770 map->lock = regmap_lock_mutex;
771 map->unlock = regmap_unlock_mutex;
772 map->can_sleep = true;
773 lockdep_set_class_and_name(&map->mutex,
774 lock_key, lock_name);
775 }
776 map->lock_arg = map;
777 }
778
779 /*
780 * When we write in fast-paths with regmap_bulk_write() don't allocate
781 * scratch buffers with sleeping allocations.
782 */
783 if ((bus && bus->fast_io) || config->fast_io)
784 map->alloc_flags = GFP_ATOMIC;
785 else
786 map->alloc_flags = GFP_KERNEL;
787
788 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
789 map->format.pad_bytes = config->pad_bits / 8;
790 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
791 map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
792 config->val_bits + config->pad_bits, 8);
793 map->reg_shift = config->pad_bits % 8;
794 if (config->reg_stride)
795 map->reg_stride = config->reg_stride;
796 else
797 map->reg_stride = 1;
798 if (is_power_of_2(map->reg_stride))
799 map->reg_stride_order = ilog2(map->reg_stride);
800 else
801 map->reg_stride_order = -1;
802 map->use_single_read = config->use_single_read || !bus || !bus->read;
803 map->use_single_write = config->use_single_write || !bus || !bus->write;
804 map->can_multi_write = config->can_multi_write && bus && bus->write;
805 if (bus) {
806 map->max_raw_read = bus->max_raw_read;
807 map->max_raw_write = bus->max_raw_write;
808 }
809 map->dev = dev;
810 map->bus = bus;
811 map->bus_context = bus_context;
812 map->max_register = config->max_register;
813 map->wr_table = config->wr_table;
814 map->rd_table = config->rd_table;
815 map->volatile_table = config->volatile_table;
816 map->precious_table = config->precious_table;
817 map->wr_noinc_table = config->wr_noinc_table;
818 map->rd_noinc_table = config->rd_noinc_table;
819 map->writeable_reg = config->writeable_reg;
820 map->readable_reg = config->readable_reg;
821 map->volatile_reg = config->volatile_reg;
822 map->precious_reg = config->precious_reg;
823 map->writeable_noinc_reg = config->writeable_noinc_reg;
824 map->readable_noinc_reg = config->readable_noinc_reg;
825 map->cache_type = config->cache_type;
826
827 spin_lock_init(&map->async_lock);
828 INIT_LIST_HEAD(&map->async_list);
829 INIT_LIST_HEAD(&map->async_free);
830 init_waitqueue_head(&map->async_waitq);
831
832 if (config->read_flag_mask ||
833 config->write_flag_mask ||
834 config->zero_flag_mask) {
835 map->read_flag_mask = config->read_flag_mask;
836 map->write_flag_mask = config->write_flag_mask;
837 } else if (bus) {
838 map->read_flag_mask = bus->read_flag_mask;
839 }
840
841 if (!bus) {
842 map->reg_read = config->reg_read;
843 map->reg_write = config->reg_write;
844
845 map->defer_caching = false;
846 goto skip_format_initialization;
847 } else if (!bus->read || !bus->write) {
848 map->reg_read = _regmap_bus_reg_read;
849 map->reg_write = _regmap_bus_reg_write;
850 map->reg_update_bits = bus->reg_update_bits;
851
852 map->defer_caching = false;
853 goto skip_format_initialization;
854 } else {
855 map->reg_read = _regmap_bus_read;
856 map->reg_update_bits = bus->reg_update_bits;
857 }
858
859 reg_endian = regmap_get_reg_endian(bus, config);
860 val_endian = regmap_get_val_endian(dev, bus, config);
861
862 switch (config->reg_bits + map->reg_shift) {
863 case 2:
864 switch (config->val_bits) {
865 case 6:
866 map->format.format_write = regmap_format_2_6_write;
867 break;
868 default:
869 goto err_hwlock;
870 }
871 break;
872
873 case 4:
874 switch (config->val_bits) {
875 case 12:
876 map->format.format_write = regmap_format_4_12_write;
877 break;
878 default:
879 goto err_hwlock;
880 }
881 break;
882
883 case 7:
884 switch (config->val_bits) {
885 case 9:
886 map->format.format_write = regmap_format_7_9_write;
887 break;
888 default:
889 goto err_hwlock;
890 }
891 break;
892
893 case 10:
894 switch (config->val_bits) {
895 case 14:
896 map->format.format_write = regmap_format_10_14_write;
897 break;
898 default:
899 goto err_hwlock;
900 }
901 break;
902
903 case 12:
904 switch (config->val_bits) {
905 case 20:
906 map->format.format_write = regmap_format_12_20_write;
907 break;
908 default:
909 goto err_hwlock;
910 }
911 break;
912
913 case 8:
914 map->format.format_reg = regmap_format_8;
915 break;
916
917 case 16:
918 switch (reg_endian) {
919 case REGMAP_ENDIAN_BIG:
920 map->format.format_reg = regmap_format_16_be;
921 break;
922 case REGMAP_ENDIAN_LITTLE:
923 map->format.format_reg = regmap_format_16_le;
924 break;
925 case REGMAP_ENDIAN_NATIVE:
926 map->format.format_reg = regmap_format_16_native;
927 break;
928 default:
929 goto err_hwlock;
930 }
931 break;
932
933 case 24:
934 if (reg_endian != REGMAP_ENDIAN_BIG)
935 goto err_hwlock;
936 map->format.format_reg = regmap_format_24;
937 break;
938
939 case 32:
940 switch (reg_endian) {
941 case REGMAP_ENDIAN_BIG:
942 map->format.format_reg = regmap_format_32_be;
943 break;
944 case REGMAP_ENDIAN_LITTLE:
945 map->format.format_reg = regmap_format_32_le;
946 break;
947 case REGMAP_ENDIAN_NATIVE:
948 map->format.format_reg = regmap_format_32_native;
949 break;
950 default:
951 goto err_hwlock;
952 }
953 break;
954
955#ifdef CONFIG_64BIT
956 case 64:
957 switch (reg_endian) {
958 case REGMAP_ENDIAN_BIG:
959 map->format.format_reg = regmap_format_64_be;
960 break;
961 case REGMAP_ENDIAN_LITTLE:
962 map->format.format_reg = regmap_format_64_le;
963 break;
964 case REGMAP_ENDIAN_NATIVE:
965 map->format.format_reg = regmap_format_64_native;
966 break;
967 default:
968 goto err_hwlock;
969 }
970 break;
971#endif
972
973 default:
974 goto err_hwlock;
975 }
976
977 if (val_endian == REGMAP_ENDIAN_NATIVE)
978 map->format.parse_inplace = regmap_parse_inplace_noop;
979
980 switch (config->val_bits) {
981 case 8:
982 map->format.format_val = regmap_format_8;
983 map->format.parse_val = regmap_parse_8;
984 map->format.parse_inplace = regmap_parse_inplace_noop;
985 break;
986 case 16:
987 switch (val_endian) {
988 case REGMAP_ENDIAN_BIG:
989 map->format.format_val = regmap_format_16_be;
990 map->format.parse_val = regmap_parse_16_be;
991 map->format.parse_inplace = regmap_parse_16_be_inplace;
992 break;
993 case REGMAP_ENDIAN_LITTLE:
994 map->format.format_val = regmap_format_16_le;
995 map->format.parse_val = regmap_parse_16_le;
996 map->format.parse_inplace = regmap_parse_16_le_inplace;
997 break;
998 case REGMAP_ENDIAN_NATIVE:
999 map->format.format_val = regmap_format_16_native;
1000 map->format.parse_val = regmap_parse_16_native;
1001 break;
1002 default:
1003 goto err_hwlock;
1004 }
1005 break;
1006 case 24:
1007 if (val_endian != REGMAP_ENDIAN_BIG)
1008 goto err_hwlock;
1009 map->format.format_val = regmap_format_24;
1010 map->format.parse_val = regmap_parse_24;
1011 break;
1012 case 32:
1013 switch (val_endian) {
1014 case REGMAP_ENDIAN_BIG:
1015 map->format.format_val = regmap_format_32_be;
1016 map->format.parse_val = regmap_parse_32_be;
1017 map->format.parse_inplace = regmap_parse_32_be_inplace;
1018 break;
1019 case REGMAP_ENDIAN_LITTLE:
1020 map->format.format_val = regmap_format_32_le;
1021 map->format.parse_val = regmap_parse_32_le;
1022 map->format.parse_inplace = regmap_parse_32_le_inplace;
1023 break;
1024 case REGMAP_ENDIAN_NATIVE:
1025 map->format.format_val = regmap_format_32_native;
1026 map->format.parse_val = regmap_parse_32_native;
1027 break;
1028 default:
1029 goto err_hwlock;
1030 }
1031 break;
1032#ifdef CONFIG_64BIT
1033 case 64:
1034 switch (val_endian) {
1035 case REGMAP_ENDIAN_BIG:
1036 map->format.format_val = regmap_format_64_be;
1037 map->format.parse_val = regmap_parse_64_be;
1038 map->format.parse_inplace = regmap_parse_64_be_inplace;
1039 break;
1040 case REGMAP_ENDIAN_LITTLE:
1041 map->format.format_val = regmap_format_64_le;
1042 map->format.parse_val = regmap_parse_64_le;
1043 map->format.parse_inplace = regmap_parse_64_le_inplace;
1044 break;
1045 case REGMAP_ENDIAN_NATIVE:
1046 map->format.format_val = regmap_format_64_native;
1047 map->format.parse_val = regmap_parse_64_native;
1048 break;
1049 default:
1050 goto err_hwlock;
1051 }
1052 break;
1053#endif
1054 }
1055
1056 if (map->format.format_write) {
1057 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1058 (val_endian != REGMAP_ENDIAN_BIG))
1059 goto err_hwlock;
1060 map->use_single_write = true;
1061 }
1062
1063 if (!map->format.format_write &&
1064 !(map->format.format_reg && map->format.format_val))
1065 goto err_hwlock;
1066
1067 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1068 if (map->work_buf == NULL) {
1069 ret = -ENOMEM;
1070 goto err_hwlock;
1071 }
1072
1073 if (map->format.format_write) {
1074 map->defer_caching = false;
1075 map->reg_write = _regmap_bus_formatted_write;
1076 } else if (map->format.format_val) {
1077 map->defer_caching = true;
1078 map->reg_write = _regmap_bus_raw_write;
1079 }
1080
1081skip_format_initialization:
1082
1083 map->range_tree = RB_ROOT;
1084 for (i = 0; i < config->num_ranges; i++) {
1085 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1086 struct regmap_range_node *new;
1087
1088 /* Sanity check */
1089 if (range_cfg->range_max < range_cfg->range_min) {
1090 dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1091 range_cfg->range_max, range_cfg->range_min);
1092 goto err_range;
1093 }
1094
1095 if (range_cfg->range_max > map->max_register) {
1096 dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1097 range_cfg->range_max, map->max_register);
1098 goto err_range;
1099 }
1100
1101 if (range_cfg->selector_reg > map->max_register) {
1102 dev_err(map->dev,
1103 "Invalid range %d: selector out of map\n", i);
1104 goto err_range;
1105 }
1106
1107 if (range_cfg->window_len == 0) {
1108 dev_err(map->dev, "Invalid range %d: window_len 0\n",
1109 i);
1110 goto err_range;
1111 }
1112
1113 /* Make sure, that this register range has no selector
1114 or data window within its boundary */
1115 for (j = 0; j < config->num_ranges; j++) {
1116 unsigned sel_reg = config->ranges[j].selector_reg;
1117 unsigned win_min = config->ranges[j].window_start;
1118 unsigned win_max = win_min +
1119 config->ranges[j].window_len - 1;
1120
1121 /* Allow data window inside its own virtual range */
1122 if (j == i)
1123 continue;
1124
1125 if (range_cfg->range_min <= sel_reg &&
1126 sel_reg <= range_cfg->range_max) {
1127 dev_err(map->dev,
1128 "Range %d: selector for %d in window\n",
1129 i, j);
1130 goto err_range;
1131 }
1132
1133 if (!(win_max < range_cfg->range_min ||
1134 win_min > range_cfg->range_max)) {
1135 dev_err(map->dev,
1136 "Range %d: window for %d in window\n",
1137 i, j);
1138 goto err_range;
1139 }
1140 }
1141
1142 new = kzalloc(sizeof(*new), GFP_KERNEL);
1143 if (new == NULL) {
1144 ret = -ENOMEM;
1145 goto err_range;
1146 }
1147
1148 new->map = map;
1149 new->name = range_cfg->name;
1150 new->range_min = range_cfg->range_min;
1151 new->range_max = range_cfg->range_max;
1152 new->selector_reg = range_cfg->selector_reg;
1153 new->selector_mask = range_cfg->selector_mask;
1154 new->selector_shift = range_cfg->selector_shift;
1155 new->window_start = range_cfg->window_start;
1156 new->window_len = range_cfg->window_len;
1157
1158 if (!_regmap_range_add(map, new)) {
1159 dev_err(map->dev, "Failed to add range %d\n", i);
1160 kfree(new);
1161 goto err_range;
1162 }
1163
1164 if (map->selector_work_buf == NULL) {
1165 map->selector_work_buf =
1166 kzalloc(map->format.buf_size, GFP_KERNEL);
1167 if (map->selector_work_buf == NULL) {
1168 ret = -ENOMEM;
1169 goto err_range;
1170 }
1171 }
1172 }
1173
1174 ret = regcache_init(map, config);
1175 if (ret != 0)
1176 goto err_range;
1177
1178 if (dev) {
1179 ret = regmap_attach_dev(dev, map, config);
1180 if (ret != 0)
1181 goto err_regcache;
1182 } else {
1183 regmap_debugfs_init(map);
1184 }
1185
1186 return map;
1187
1188err_regcache:
1189 regcache_exit(map);
1190err_range:
1191 regmap_range_exit(map);
1192 kfree(map->work_buf);
1193err_hwlock:
1194 if (map->hwlock)
1195 hwspin_lock_free(map->hwlock);
1196err_name:
1197 kfree_const(map->name);
1198err_map:
1199 kfree(map);
1200err:
1201 return ERR_PTR(ret);
1202}
1203EXPORT_SYMBOL_GPL(__regmap_init);
1204
1205static void devm_regmap_release(struct device *dev, void *res)
1206{
1207 regmap_exit(*(struct regmap **)res);
1208}
1209
1210struct regmap *__devm_regmap_init(struct device *dev,
1211 const struct regmap_bus *bus,
1212 void *bus_context,
1213 const struct regmap_config *config,
1214 struct lock_class_key *lock_key,
1215 const char *lock_name)
1216{
1217 struct regmap **ptr, *regmap;
1218
1219 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1220 if (!ptr)
1221 return ERR_PTR(-ENOMEM);
1222
1223 regmap = __regmap_init(dev, bus, bus_context, config,
1224 lock_key, lock_name);
1225 if (!IS_ERR(regmap)) {
1226 *ptr = regmap;
1227 devres_add(dev, ptr);
1228 } else {
1229 devres_free(ptr);
1230 }
1231
1232 return regmap;
1233}
1234EXPORT_SYMBOL_GPL(__devm_regmap_init);
1235
1236static void regmap_field_init(struct regmap_field *rm_field,
1237 struct regmap *regmap, struct reg_field reg_field)
1238{
1239 rm_field->regmap = regmap;
1240 rm_field->reg = reg_field.reg;
1241 rm_field->shift = reg_field.lsb;
1242 rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1243 rm_field->id_size = reg_field.id_size;
1244 rm_field->id_offset = reg_field.id_offset;
1245}
1246
1247/**
1248 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1249 *
1250 * @dev: Device that will be interacted with
1251 * @regmap: regmap bank in which this register field is located.
1252 * @reg_field: Register field with in the bank.
1253 *
1254 * The return value will be an ERR_PTR() on error or a valid pointer
1255 * to a struct regmap_field. The regmap_field will be automatically freed
1256 * by the device management code.
1257 */
1258struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1259 struct regmap *regmap, struct reg_field reg_field)
1260{
1261 struct regmap_field *rm_field = devm_kzalloc(dev,
1262 sizeof(*rm_field), GFP_KERNEL);
1263 if (!rm_field)
1264 return ERR_PTR(-ENOMEM);
1265
1266 regmap_field_init(rm_field, regmap, reg_field);
1267
1268 return rm_field;
1269
1270}
1271EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1272
1273
1274/**
1275 * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field.
1276 *
1277 * @regmap: regmap bank in which this register field is located.
1278 * @rm_field: regmap register fields within the bank.
1279 * @reg_field: Register fields within the bank.
1280 * @num_fields: Number of register fields.
1281 *
1282 * The return value will be an -ENOMEM on error or zero for success.
1283 * Newly allocated regmap_fields should be freed by calling
1284 * regmap_field_bulk_free()
1285 */
1286int regmap_field_bulk_alloc(struct regmap *regmap,
1287 struct regmap_field **rm_field,
1288 struct reg_field *reg_field,
1289 int num_fields)
1290{
1291 struct regmap_field *rf;
1292 int i;
1293
1294 rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL);
1295 if (!rf)
1296 return -ENOMEM;
1297
1298 for (i = 0; i < num_fields; i++) {
1299 regmap_field_init(&rf[i], regmap, reg_field[i]);
1300 rm_field[i] = &rf[i];
1301 }
1302
1303 return 0;
1304}
1305EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc);
1306
1307/**
1308 * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register
1309 * fields.
1310 *
1311 * @dev: Device that will be interacted with
1312 * @regmap: regmap bank in which this register field is located.
1313 * @rm_field: regmap register fields within the bank.
1314 * @reg_field: Register fields within the bank.
1315 * @num_fields: Number of register fields.
1316 *
1317 * The return value will be an -ENOMEM on error or zero for success.
1318 * Newly allocated regmap_fields will be automatically freed by the
1319 * device management code.
1320 */
1321int devm_regmap_field_bulk_alloc(struct device *dev,
1322 struct regmap *regmap,
1323 struct regmap_field **rm_field,
1324 struct reg_field *reg_field,
1325 int num_fields)
1326{
1327 struct regmap_field *rf;
1328 int i;
1329
1330 rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL);
1331 if (!rf)
1332 return -ENOMEM;
1333
1334 for (i = 0; i < num_fields; i++) {
1335 regmap_field_init(&rf[i], regmap, reg_field[i]);
1336 rm_field[i] = &rf[i];
1337 }
1338
1339 return 0;
1340}
1341EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc);
1342
1343/**
1344 * regmap_field_bulk_free() - Free register field allocated using
1345 * regmap_field_bulk_alloc.
1346 *
1347 * @field: regmap fields which should be freed.
1348 */
1349void regmap_field_bulk_free(struct regmap_field *field)
1350{
1351 kfree(field);
1352}
1353EXPORT_SYMBOL_GPL(regmap_field_bulk_free);
1354
1355/**
1356 * devm_regmap_field_bulk_free() - Free a bulk register field allocated using
1357 * devm_regmap_field_bulk_alloc.
1358 *
1359 * @dev: Device that will be interacted with
1360 * @field: regmap field which should be freed.
1361 *
1362 * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually
1363 * drivers need not call this function, as the memory allocated via devm
1364 * will be freed as per device-driver life-cycle.
1365 */
1366void devm_regmap_field_bulk_free(struct device *dev,
1367 struct regmap_field *field)
1368{
1369 devm_kfree(dev, field);
1370}
1371EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free);
1372
1373/**
1374 * devm_regmap_field_free() - Free a register field allocated using
1375 * devm_regmap_field_alloc.
1376 *
1377 * @dev: Device that will be interacted with
1378 * @field: regmap field which should be freed.
1379 *
1380 * Free register field allocated using devm_regmap_field_alloc(). Usually
1381 * drivers need not call this function, as the memory allocated via devm
1382 * will be freed as per device-driver life-cyle.
1383 */
1384void devm_regmap_field_free(struct device *dev,
1385 struct regmap_field *field)
1386{
1387 devm_kfree(dev, field);
1388}
1389EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1390
1391/**
1392 * regmap_field_alloc() - Allocate and initialise a register field.
1393 *
1394 * @regmap: regmap bank in which this register field is located.
1395 * @reg_field: Register field with in the bank.
1396 *
1397 * The return value will be an ERR_PTR() on error or a valid pointer
1398 * to a struct regmap_field. The regmap_field should be freed by the
1399 * user once its finished working with it using regmap_field_free().
1400 */
1401struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1402 struct reg_field reg_field)
1403{
1404 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1405
1406 if (!rm_field)
1407 return ERR_PTR(-ENOMEM);
1408
1409 regmap_field_init(rm_field, regmap, reg_field);
1410
1411 return rm_field;
1412}
1413EXPORT_SYMBOL_GPL(regmap_field_alloc);
1414
1415/**
1416 * regmap_field_free() - Free register field allocated using
1417 * regmap_field_alloc.
1418 *
1419 * @field: regmap field which should be freed.
1420 */
1421void regmap_field_free(struct regmap_field *field)
1422{
1423 kfree(field);
1424}
1425EXPORT_SYMBOL_GPL(regmap_field_free);
1426
1427/**
1428 * regmap_reinit_cache() - Reinitialise the current register cache
1429 *
1430 * @map: Register map to operate on.
1431 * @config: New configuration. Only the cache data will be used.
1432 *
1433 * Discard any existing register cache for the map and initialize a
1434 * new cache. This can be used to restore the cache to defaults or to
1435 * update the cache configuration to reflect runtime discovery of the
1436 * hardware.
1437 *
1438 * No explicit locking is done here, the user needs to ensure that
1439 * this function will not race with other calls to regmap.
1440 */
1441int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1442{
1443 int ret;
1444
1445 regcache_exit(map);
1446 regmap_debugfs_exit(map);
1447
1448 map->max_register = config->max_register;
1449 map->writeable_reg = config->writeable_reg;
1450 map->readable_reg = config->readable_reg;
1451 map->volatile_reg = config->volatile_reg;
1452 map->precious_reg = config->precious_reg;
1453 map->writeable_noinc_reg = config->writeable_noinc_reg;
1454 map->readable_noinc_reg = config->readable_noinc_reg;
1455 map->cache_type = config->cache_type;
1456
1457 ret = regmap_set_name(map, config);
1458 if (ret)
1459 return ret;
1460
1461 regmap_debugfs_init(map);
1462
1463 map->cache_bypass = false;
1464 map->cache_only = false;
1465
1466 return regcache_init(map, config);
1467}
1468EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1469
1470/**
1471 * regmap_exit() - Free a previously allocated register map
1472 *
1473 * @map: Register map to operate on.
1474 */
1475void regmap_exit(struct regmap *map)
1476{
1477 struct regmap_async *async;
1478
1479 regcache_exit(map);
1480 regmap_debugfs_exit(map);
1481 regmap_range_exit(map);
1482 if (map->bus && map->bus->free_context)
1483 map->bus->free_context(map->bus_context);
1484 kfree(map->work_buf);
1485 while (!list_empty(&map->async_free)) {
1486 async = list_first_entry_or_null(&map->async_free,
1487 struct regmap_async,
1488 list);
1489 list_del(&async->list);
1490 kfree(async->work_buf);
1491 kfree(async);
1492 }
1493 if (map->hwlock)
1494 hwspin_lock_free(map->hwlock);
1495 if (map->lock == regmap_lock_mutex)
1496 mutex_destroy(&map->mutex);
1497 kfree_const(map->name);
1498 kfree(map->patch);
1499 kfree(map);
1500}
1501EXPORT_SYMBOL_GPL(regmap_exit);
1502
1503static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1504{
1505 struct regmap **r = res;
1506 if (!r || !*r) {
1507 WARN_ON(!r || !*r);
1508 return 0;
1509 }
1510
1511 /* If the user didn't specify a name match any */
1512 if (data)
1513 return !strcmp((*r)->name, data);
1514 else
1515 return 1;
1516}
1517
1518/**
1519 * dev_get_regmap() - Obtain the regmap (if any) for a device
1520 *
1521 * @dev: Device to retrieve the map for
1522 * @name: Optional name for the register map, usually NULL.
1523 *
1524 * Returns the regmap for the device if one is present, or NULL. If
1525 * name is specified then it must match the name specified when
1526 * registering the device, if it is NULL then the first regmap found
1527 * will be used. Devices with multiple register maps are very rare,
1528 * generic code should normally not need to specify a name.
1529 */
1530struct regmap *dev_get_regmap(struct device *dev, const char *name)
1531{
1532 struct regmap **r = devres_find(dev, dev_get_regmap_release,
1533 dev_get_regmap_match, (void *)name);
1534
1535 if (!r)
1536 return NULL;
1537 return *r;
1538}
1539EXPORT_SYMBOL_GPL(dev_get_regmap);
1540
1541/**
1542 * regmap_get_device() - Obtain the device from a regmap
1543 *
1544 * @map: Register map to operate on.
1545 *
1546 * Returns the underlying device that the regmap has been created for.
1547 */
1548struct device *regmap_get_device(struct regmap *map)
1549{
1550 return map->dev;
1551}
1552EXPORT_SYMBOL_GPL(regmap_get_device);
1553
1554static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1555 struct regmap_range_node *range,
1556 unsigned int val_num)
1557{
1558 void *orig_work_buf;
1559 unsigned int win_offset;
1560 unsigned int win_page;
1561 bool page_chg;
1562 int ret;
1563
1564 win_offset = (*reg - range->range_min) % range->window_len;
1565 win_page = (*reg - range->range_min) / range->window_len;
1566
1567 if (val_num > 1) {
1568 /* Bulk write shouldn't cross range boundary */
1569 if (*reg + val_num - 1 > range->range_max)
1570 return -EINVAL;
1571
1572 /* ... or single page boundary */
1573 if (val_num > range->window_len - win_offset)
1574 return -EINVAL;
1575 }
1576
1577 /* It is possible to have selector register inside data window.
1578 In that case, selector register is located on every page and
1579 it needs no page switching, when accessed alone. */
1580 if (val_num > 1 ||
1581 range->window_start + win_offset != range->selector_reg) {
1582 /* Use separate work_buf during page switching */
1583 orig_work_buf = map->work_buf;
1584 map->work_buf = map->selector_work_buf;
1585
1586 ret = _regmap_update_bits(map, range->selector_reg,
1587 range->selector_mask,
1588 win_page << range->selector_shift,
1589 &page_chg, false);
1590
1591 map->work_buf = orig_work_buf;
1592
1593 if (ret != 0)
1594 return ret;
1595 }
1596
1597 *reg = range->window_start + win_offset;
1598
1599 return 0;
1600}
1601
1602static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1603 unsigned long mask)
1604{
1605 u8 *buf;
1606 int i;
1607
1608 if (!mask || !map->work_buf)
1609 return;
1610
1611 buf = map->work_buf;
1612
1613 for (i = 0; i < max_bytes; i++)
1614 buf[i] |= (mask >> (8 * i)) & 0xff;
1615}
1616
1617static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1618 const void *val, size_t val_len, bool noinc)
1619{
1620 struct regmap_range_node *range;
1621 unsigned long flags;
1622 void *work_val = map->work_buf + map->format.reg_bytes +
1623 map->format.pad_bytes;
1624 void *buf;
1625 int ret = -ENOTSUPP;
1626 size_t len;
1627 int i;
1628
1629 WARN_ON(!map->bus);
1630
1631 /* Check for unwritable or noinc registers in range
1632 * before we start
1633 */
1634 if (!regmap_writeable_noinc(map, reg)) {
1635 for (i = 0; i < val_len / map->format.val_bytes; i++) {
1636 unsigned int element =
1637 reg + regmap_get_offset(map, i);
1638 if (!regmap_writeable(map, element) ||
1639 regmap_writeable_noinc(map, element))
1640 return -EINVAL;
1641 }
1642 }
1643
1644 if (!map->cache_bypass && map->format.parse_val) {
1645 unsigned int ival;
1646 int val_bytes = map->format.val_bytes;
1647 for (i = 0; i < val_len / val_bytes; i++) {
1648 ival = map->format.parse_val(val + (i * val_bytes));
1649 ret = regcache_write(map,
1650 reg + regmap_get_offset(map, i),
1651 ival);
1652 if (ret) {
1653 dev_err(map->dev,
1654 "Error in caching of register: %x ret: %d\n",
1655 reg + i, ret);
1656 return ret;
1657 }
1658 }
1659 if (map->cache_only) {
1660 map->cache_dirty = true;
1661 return 0;
1662 }
1663 }
1664
1665 range = _regmap_range_lookup(map, reg);
1666 if (range) {
1667 int val_num = val_len / map->format.val_bytes;
1668 int win_offset = (reg - range->range_min) % range->window_len;
1669 int win_residue = range->window_len - win_offset;
1670
1671 /* If the write goes beyond the end of the window split it */
1672 while (val_num > win_residue) {
1673 dev_dbg(map->dev, "Writing window %d/%zu\n",
1674 win_residue, val_len / map->format.val_bytes);
1675 ret = _regmap_raw_write_impl(map, reg, val,
1676 win_residue *
1677 map->format.val_bytes, noinc);
1678 if (ret != 0)
1679 return ret;
1680
1681 reg += win_residue;
1682 val_num -= win_residue;
1683 val += win_residue * map->format.val_bytes;
1684 val_len -= win_residue * map->format.val_bytes;
1685
1686 win_offset = (reg - range->range_min) %
1687 range->window_len;
1688 win_residue = range->window_len - win_offset;
1689 }
1690
1691 ret = _regmap_select_page(map, ®, range, noinc ? 1 : val_num);
1692 if (ret != 0)
1693 return ret;
1694 }
1695
1696 map->format.format_reg(map->work_buf, reg, map->reg_shift);
1697 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1698 map->write_flag_mask);
1699
1700 /*
1701 * Essentially all I/O mechanisms will be faster with a single
1702 * buffer to write. Since register syncs often generate raw
1703 * writes of single registers optimise that case.
1704 */
1705 if (val != work_val && val_len == map->format.val_bytes) {
1706 memcpy(work_val, val, map->format.val_bytes);
1707 val = work_val;
1708 }
1709
1710 if (map->async && map->bus->async_write) {
1711 struct regmap_async *async;
1712
1713 trace_regmap_async_write_start(map, reg, val_len);
1714
1715 spin_lock_irqsave(&map->async_lock, flags);
1716 async = list_first_entry_or_null(&map->async_free,
1717 struct regmap_async,
1718 list);
1719 if (async)
1720 list_del(&async->list);
1721 spin_unlock_irqrestore(&map->async_lock, flags);
1722
1723 if (!async) {
1724 async = map->bus->async_alloc();
1725 if (!async)
1726 return -ENOMEM;
1727
1728 async->work_buf = kzalloc(map->format.buf_size,
1729 GFP_KERNEL | GFP_DMA);
1730 if (!async->work_buf) {
1731 kfree(async);
1732 return -ENOMEM;
1733 }
1734 }
1735
1736 async->map = map;
1737
1738 /* If the caller supplied the value we can use it safely. */
1739 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1740 map->format.reg_bytes + map->format.val_bytes);
1741
1742 spin_lock_irqsave(&map->async_lock, flags);
1743 list_add_tail(&async->list, &map->async_list);
1744 spin_unlock_irqrestore(&map->async_lock, flags);
1745
1746 if (val != work_val)
1747 ret = map->bus->async_write(map->bus_context,
1748 async->work_buf,
1749 map->format.reg_bytes +
1750 map->format.pad_bytes,
1751 val, val_len, async);
1752 else
1753 ret = map->bus->async_write(map->bus_context,
1754 async->work_buf,
1755 map->format.reg_bytes +
1756 map->format.pad_bytes +
1757 val_len, NULL, 0, async);
1758
1759 if (ret != 0) {
1760 dev_err(map->dev, "Failed to schedule write: %d\n",
1761 ret);
1762
1763 spin_lock_irqsave(&map->async_lock, flags);
1764 list_move(&async->list, &map->async_free);
1765 spin_unlock_irqrestore(&map->async_lock, flags);
1766 }
1767
1768 return ret;
1769 }
1770
1771 trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1772
1773 /* If we're doing a single register write we can probably just
1774 * send the work_buf directly, otherwise try to do a gather
1775 * write.
1776 */
1777 if (val == work_val)
1778 ret = map->bus->write(map->bus_context, map->work_buf,
1779 map->format.reg_bytes +
1780 map->format.pad_bytes +
1781 val_len);
1782 else if (map->bus->gather_write)
1783 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1784 map->format.reg_bytes +
1785 map->format.pad_bytes,
1786 val, val_len);
1787 else
1788 ret = -ENOTSUPP;
1789
1790 /* If that didn't work fall back on linearising by hand. */
1791 if (ret == -ENOTSUPP) {
1792 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1793 buf = kzalloc(len, GFP_KERNEL);
1794 if (!buf)
1795 return -ENOMEM;
1796
1797 memcpy(buf, map->work_buf, map->format.reg_bytes);
1798 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1799 val, val_len);
1800 ret = map->bus->write(map->bus_context, buf, len);
1801
1802 kfree(buf);
1803 } else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1804 /* regcache_drop_region() takes lock that we already have,
1805 * thus call map->cache_ops->drop() directly
1806 */
1807 if (map->cache_ops && map->cache_ops->drop)
1808 map->cache_ops->drop(map, reg, reg + 1);
1809 }
1810
1811 trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1812
1813 return ret;
1814}
1815
1816/**
1817 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1818 *
1819 * @map: Map to check.
1820 */
1821bool regmap_can_raw_write(struct regmap *map)
1822{
1823 return map->bus && map->bus->write && map->format.format_val &&
1824 map->format.format_reg;
1825}
1826EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1827
1828/**
1829 * regmap_get_raw_read_max - Get the maximum size we can read
1830 *
1831 * @map: Map to check.
1832 */
1833size_t regmap_get_raw_read_max(struct regmap *map)
1834{
1835 return map->max_raw_read;
1836}
1837EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1838
1839/**
1840 * regmap_get_raw_write_max - Get the maximum size we can read
1841 *
1842 * @map: Map to check.
1843 */
1844size_t regmap_get_raw_write_max(struct regmap *map)
1845{
1846 return map->max_raw_write;
1847}
1848EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1849
1850static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1851 unsigned int val)
1852{
1853 int ret;
1854 struct regmap_range_node *range;
1855 struct regmap *map = context;
1856
1857 WARN_ON(!map->bus || !map->format.format_write);
1858
1859 range = _regmap_range_lookup(map, reg);
1860 if (range) {
1861 ret = _regmap_select_page(map, ®, range, 1);
1862 if (ret != 0)
1863 return ret;
1864 }
1865
1866 map->format.format_write(map, reg, val);
1867
1868 trace_regmap_hw_write_start(map, reg, 1);
1869
1870 ret = map->bus->write(map->bus_context, map->work_buf,
1871 map->format.buf_size);
1872
1873 trace_regmap_hw_write_done(map, reg, 1);
1874
1875 return ret;
1876}
1877
1878static int _regmap_bus_reg_write(void *context, unsigned int reg,
1879 unsigned int val)
1880{
1881 struct regmap *map = context;
1882
1883 return map->bus->reg_write(map->bus_context, reg, val);
1884}
1885
1886static int _regmap_bus_raw_write(void *context, unsigned int reg,
1887 unsigned int val)
1888{
1889 struct regmap *map = context;
1890
1891 WARN_ON(!map->bus || !map->format.format_val);
1892
1893 map->format.format_val(map->work_buf + map->format.reg_bytes
1894 + map->format.pad_bytes, val, 0);
1895 return _regmap_raw_write_impl(map, reg,
1896 map->work_buf +
1897 map->format.reg_bytes +
1898 map->format.pad_bytes,
1899 map->format.val_bytes,
1900 false);
1901}
1902
1903static inline void *_regmap_map_get_context(struct regmap *map)
1904{
1905 return (map->bus) ? map : map->bus_context;
1906}
1907
1908int _regmap_write(struct regmap *map, unsigned int reg,
1909 unsigned int val)
1910{
1911 int ret;
1912 void *context = _regmap_map_get_context(map);
1913
1914 if (!regmap_writeable(map, reg))
1915 return -EIO;
1916
1917 if (!map->cache_bypass && !map->defer_caching) {
1918 ret = regcache_write(map, reg, val);
1919 if (ret != 0)
1920 return ret;
1921 if (map->cache_only) {
1922 map->cache_dirty = true;
1923 return 0;
1924 }
1925 }
1926
1927 ret = map->reg_write(context, reg, val);
1928 if (ret == 0) {
1929 if (regmap_should_log(map))
1930 dev_info(map->dev, "%x <= %x\n", reg, val);
1931
1932 trace_regmap_reg_write(map, reg, val);
1933 }
1934
1935 return ret;
1936}
1937
1938/**
1939 * regmap_write() - Write a value to a single register
1940 *
1941 * @map: Register map to write to
1942 * @reg: Register to write to
1943 * @val: Value to be written
1944 *
1945 * A value of zero will be returned on success, a negative errno will
1946 * be returned in error cases.
1947 */
1948int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1949{
1950 int ret;
1951
1952 if (!IS_ALIGNED(reg, map->reg_stride))
1953 return -EINVAL;
1954
1955 map->lock(map->lock_arg);
1956
1957 ret = _regmap_write(map, reg, val);
1958
1959 map->unlock(map->lock_arg);
1960
1961 return ret;
1962}
1963EXPORT_SYMBOL_GPL(regmap_write);
1964
1965/**
1966 * regmap_write_async() - Write a value to a single register asynchronously
1967 *
1968 * @map: Register map to write to
1969 * @reg: Register to write to
1970 * @val: Value to be written
1971 *
1972 * A value of zero will be returned on success, a negative errno will
1973 * be returned in error cases.
1974 */
1975int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1976{
1977 int ret;
1978
1979 if (!IS_ALIGNED(reg, map->reg_stride))
1980 return -EINVAL;
1981
1982 map->lock(map->lock_arg);
1983
1984 map->async = true;
1985
1986 ret = _regmap_write(map, reg, val);
1987
1988 map->async = false;
1989
1990 map->unlock(map->lock_arg);
1991
1992 return ret;
1993}
1994EXPORT_SYMBOL_GPL(regmap_write_async);
1995
1996int _regmap_raw_write(struct regmap *map, unsigned int reg,
1997 const void *val, size_t val_len, bool noinc)
1998{
1999 size_t val_bytes = map->format.val_bytes;
2000 size_t val_count = val_len / val_bytes;
2001 size_t chunk_count, chunk_bytes;
2002 size_t chunk_regs = val_count;
2003 int ret, i;
2004
2005 if (!val_count)
2006 return -EINVAL;
2007
2008 if (map->use_single_write)
2009 chunk_regs = 1;
2010 else if (map->max_raw_write && val_len > map->max_raw_write)
2011 chunk_regs = map->max_raw_write / val_bytes;
2012
2013 chunk_count = val_count / chunk_regs;
2014 chunk_bytes = chunk_regs * val_bytes;
2015
2016 /* Write as many bytes as possible with chunk_size */
2017 for (i = 0; i < chunk_count; i++) {
2018 ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
2019 if (ret)
2020 return ret;
2021
2022 reg += regmap_get_offset(map, chunk_regs);
2023 val += chunk_bytes;
2024 val_len -= chunk_bytes;
2025 }
2026
2027 /* Write remaining bytes */
2028 if (val_len)
2029 ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
2030
2031 return ret;
2032}
2033
2034/**
2035 * regmap_raw_write() - Write raw values to one or more registers
2036 *
2037 * @map: Register map to write to
2038 * @reg: Initial register to write to
2039 * @val: Block of data to be written, laid out for direct transmission to the
2040 * device
2041 * @val_len: Length of data pointed to by val.
2042 *
2043 * This function is intended to be used for things like firmware
2044 * download where a large block of data needs to be transferred to the
2045 * device. No formatting will be done on the data provided.
2046 *
2047 * A value of zero will be returned on success, a negative errno will
2048 * be returned in error cases.
2049 */
2050int regmap_raw_write(struct regmap *map, unsigned int reg,
2051 const void *val, size_t val_len)
2052{
2053 int ret;
2054
2055 if (!regmap_can_raw_write(map))
2056 return -EINVAL;
2057 if (val_len % map->format.val_bytes)
2058 return -EINVAL;
2059
2060 map->lock(map->lock_arg);
2061
2062 ret = _regmap_raw_write(map, reg, val, val_len, false);
2063
2064 map->unlock(map->lock_arg);
2065
2066 return ret;
2067}
2068EXPORT_SYMBOL_GPL(regmap_raw_write);
2069
2070/**
2071 * regmap_noinc_write(): Write data from a register without incrementing the
2072 * register number
2073 *
2074 * @map: Register map to write to
2075 * @reg: Register to write to
2076 * @val: Pointer to data buffer
2077 * @val_len: Length of output buffer in bytes.
2078 *
2079 * The regmap API usually assumes that bulk bus write operations will write a
2080 * range of registers. Some devices have certain registers for which a write
2081 * operation can write to an internal FIFO.
2082 *
2083 * The target register must be volatile but registers after it can be
2084 * completely unrelated cacheable registers.
2085 *
2086 * This will attempt multiple writes as required to write val_len bytes.
2087 *
2088 * A value of zero will be returned on success, a negative errno will be
2089 * returned in error cases.
2090 */
2091int regmap_noinc_write(struct regmap *map, unsigned int reg,
2092 const void *val, size_t val_len)
2093{
2094 size_t write_len;
2095 int ret;
2096
2097 if (!map->bus)
2098 return -EINVAL;
2099 if (!map->bus->write)
2100 return -ENOTSUPP;
2101 if (val_len % map->format.val_bytes)
2102 return -EINVAL;
2103 if (!IS_ALIGNED(reg, map->reg_stride))
2104 return -EINVAL;
2105 if (val_len == 0)
2106 return -EINVAL;
2107
2108 map->lock(map->lock_arg);
2109
2110 if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
2111 ret = -EINVAL;
2112 goto out_unlock;
2113 }
2114
2115 while (val_len) {
2116 if (map->max_raw_write && map->max_raw_write < val_len)
2117 write_len = map->max_raw_write;
2118 else
2119 write_len = val_len;
2120 ret = _regmap_raw_write(map, reg, val, write_len, true);
2121 if (ret)
2122 goto out_unlock;
2123 val = ((u8 *)val) + write_len;
2124 val_len -= write_len;
2125 }
2126
2127out_unlock:
2128 map->unlock(map->lock_arg);
2129 return ret;
2130}
2131EXPORT_SYMBOL_GPL(regmap_noinc_write);
2132
2133/**
2134 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2135 * register field.
2136 *
2137 * @field: Register field to write to
2138 * @mask: Bitmask to change
2139 * @val: Value to be written
2140 * @change: Boolean indicating if a write was done
2141 * @async: Boolean indicating asynchronously
2142 * @force: Boolean indicating use force update
2143 *
2144 * Perform a read/modify/write cycle on the register field with change,
2145 * async, force option.
2146 *
2147 * A value of zero will be returned on success, a negative errno will
2148 * be returned in error cases.
2149 */
2150int regmap_field_update_bits_base(struct regmap_field *field,
2151 unsigned int mask, unsigned int val,
2152 bool *change, bool async, bool force)
2153{
2154 mask = (mask << field->shift) & field->mask;
2155
2156 return regmap_update_bits_base(field->regmap, field->reg,
2157 mask, val << field->shift,
2158 change, async, force);
2159}
2160EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2161
2162/**
2163 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2164 * register field with port ID
2165 *
2166 * @field: Register field to write to
2167 * @id: port ID
2168 * @mask: Bitmask to change
2169 * @val: Value to be written
2170 * @change: Boolean indicating if a write was done
2171 * @async: Boolean indicating asynchronously
2172 * @force: Boolean indicating use force update
2173 *
2174 * A value of zero will be returned on success, a negative errno will
2175 * be returned in error cases.
2176 */
2177int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2178 unsigned int mask, unsigned int val,
2179 bool *change, bool async, bool force)
2180{
2181 if (id >= field->id_size)
2182 return -EINVAL;
2183
2184 mask = (mask << field->shift) & field->mask;
2185
2186 return regmap_update_bits_base(field->regmap,
2187 field->reg + (field->id_offset * id),
2188 mask, val << field->shift,
2189 change, async, force);
2190}
2191EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2192
2193/**
2194 * regmap_bulk_write() - Write multiple registers to the device
2195 *
2196 * @map: Register map to write to
2197 * @reg: First register to be write from
2198 * @val: Block of data to be written, in native register size for device
2199 * @val_count: Number of registers to write
2200 *
2201 * This function is intended to be used for writing a large block of
2202 * data to the device either in single transfer or multiple transfer.
2203 *
2204 * A value of zero will be returned on success, a negative errno will
2205 * be returned in error cases.
2206 */
2207int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2208 size_t val_count)
2209{
2210 int ret = 0, i;
2211 size_t val_bytes = map->format.val_bytes;
2212
2213 if (!IS_ALIGNED(reg, map->reg_stride))
2214 return -EINVAL;
2215
2216 /*
2217 * Some devices don't support bulk write, for them we have a series of
2218 * single write operations.
2219 */
2220 if (!map->bus || !map->format.parse_inplace) {
2221 map->lock(map->lock_arg);
2222 for (i = 0; i < val_count; i++) {
2223 unsigned int ival;
2224
2225 switch (val_bytes) {
2226 case 1:
2227 ival = *(u8 *)(val + (i * val_bytes));
2228 break;
2229 case 2:
2230 ival = *(u16 *)(val + (i * val_bytes));
2231 break;
2232 case 4:
2233 ival = *(u32 *)(val + (i * val_bytes));
2234 break;
2235#ifdef CONFIG_64BIT
2236 case 8:
2237 ival = *(u64 *)(val + (i * val_bytes));
2238 break;
2239#endif
2240 default:
2241 ret = -EINVAL;
2242 goto out;
2243 }
2244
2245 ret = _regmap_write(map,
2246 reg + regmap_get_offset(map, i),
2247 ival);
2248 if (ret != 0)
2249 goto out;
2250 }
2251out:
2252 map->unlock(map->lock_arg);
2253 } else {
2254 void *wval;
2255
2256 wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2257 if (!wval)
2258 return -ENOMEM;
2259
2260 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2261 map->format.parse_inplace(wval + i);
2262
2263 ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2264
2265 kfree(wval);
2266 }
2267 return ret;
2268}
2269EXPORT_SYMBOL_GPL(regmap_bulk_write);
2270
2271/*
2272 * _regmap_raw_multi_reg_write()
2273 *
2274 * the (register,newvalue) pairs in regs have not been formatted, but
2275 * they are all in the same page and have been changed to being page
2276 * relative. The page register has been written if that was necessary.
2277 */
2278static int _regmap_raw_multi_reg_write(struct regmap *map,
2279 const struct reg_sequence *regs,
2280 size_t num_regs)
2281{
2282 int ret;
2283 void *buf;
2284 int i;
2285 u8 *u8;
2286 size_t val_bytes = map->format.val_bytes;
2287 size_t reg_bytes = map->format.reg_bytes;
2288 size_t pad_bytes = map->format.pad_bytes;
2289 size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2290 size_t len = pair_size * num_regs;
2291
2292 if (!len)
2293 return -EINVAL;
2294
2295 buf = kzalloc(len, GFP_KERNEL);
2296 if (!buf)
2297 return -ENOMEM;
2298
2299 /* We have to linearise by hand. */
2300
2301 u8 = buf;
2302
2303 for (i = 0; i < num_regs; i++) {
2304 unsigned int reg = regs[i].reg;
2305 unsigned int val = regs[i].def;
2306 trace_regmap_hw_write_start(map, reg, 1);
2307 map->format.format_reg(u8, reg, map->reg_shift);
2308 u8 += reg_bytes + pad_bytes;
2309 map->format.format_val(u8, val, 0);
2310 u8 += val_bytes;
2311 }
2312 u8 = buf;
2313 *u8 |= map->write_flag_mask;
2314
2315 ret = map->bus->write(map->bus_context, buf, len);
2316
2317 kfree(buf);
2318
2319 for (i = 0; i < num_regs; i++) {
2320 int reg = regs[i].reg;
2321 trace_regmap_hw_write_done(map, reg, 1);
2322 }
2323 return ret;
2324}
2325
2326static unsigned int _regmap_register_page(struct regmap *map,
2327 unsigned int reg,
2328 struct regmap_range_node *range)
2329{
2330 unsigned int win_page = (reg - range->range_min) / range->window_len;
2331
2332 return win_page;
2333}
2334
2335static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2336 struct reg_sequence *regs,
2337 size_t num_regs)
2338{
2339 int ret;
2340 int i, n;
2341 struct reg_sequence *base;
2342 unsigned int this_page = 0;
2343 unsigned int page_change = 0;
2344 /*
2345 * the set of registers are not neccessarily in order, but
2346 * since the order of write must be preserved this algorithm
2347 * chops the set each time the page changes. This also applies
2348 * if there is a delay required at any point in the sequence.
2349 */
2350 base = regs;
2351 for (i = 0, n = 0; i < num_regs; i++, n++) {
2352 unsigned int reg = regs[i].reg;
2353 struct regmap_range_node *range;
2354
2355 range = _regmap_range_lookup(map, reg);
2356 if (range) {
2357 unsigned int win_page = _regmap_register_page(map, reg,
2358 range);
2359
2360 if (i == 0)
2361 this_page = win_page;
2362 if (win_page != this_page) {
2363 this_page = win_page;
2364 page_change = 1;
2365 }
2366 }
2367
2368 /* If we have both a page change and a delay make sure to
2369 * write the regs and apply the delay before we change the
2370 * page.
2371 */
2372
2373 if (page_change || regs[i].delay_us) {
2374
2375 /* For situations where the first write requires
2376 * a delay we need to make sure we don't call
2377 * raw_multi_reg_write with n=0
2378 * This can't occur with page breaks as we
2379 * never write on the first iteration
2380 */
2381 if (regs[i].delay_us && i == 0)
2382 n = 1;
2383
2384 ret = _regmap_raw_multi_reg_write(map, base, n);
2385 if (ret != 0)
2386 return ret;
2387
2388 if (regs[i].delay_us) {
2389 if (map->can_sleep)
2390 fsleep(regs[i].delay_us);
2391 else
2392 udelay(regs[i].delay_us);
2393 }
2394
2395 base += n;
2396 n = 0;
2397
2398 if (page_change) {
2399 ret = _regmap_select_page(map,
2400 &base[n].reg,
2401 range, 1);
2402 if (ret != 0)
2403 return ret;
2404
2405 page_change = 0;
2406 }
2407
2408 }
2409
2410 }
2411 if (n > 0)
2412 return _regmap_raw_multi_reg_write(map, base, n);
2413 return 0;
2414}
2415
2416static int _regmap_multi_reg_write(struct regmap *map,
2417 const struct reg_sequence *regs,
2418 size_t num_regs)
2419{
2420 int i;
2421 int ret;
2422
2423 if (!map->can_multi_write) {
2424 for (i = 0; i < num_regs; i++) {
2425 ret = _regmap_write(map, regs[i].reg, regs[i].def);
2426 if (ret != 0)
2427 return ret;
2428
2429 if (regs[i].delay_us) {
2430 if (map->can_sleep)
2431 fsleep(regs[i].delay_us);
2432 else
2433 udelay(regs[i].delay_us);
2434 }
2435 }
2436 return 0;
2437 }
2438
2439 if (!map->format.parse_inplace)
2440 return -EINVAL;
2441
2442 if (map->writeable_reg)
2443 for (i = 0; i < num_regs; i++) {
2444 int reg = regs[i].reg;
2445 if (!map->writeable_reg(map->dev, reg))
2446 return -EINVAL;
2447 if (!IS_ALIGNED(reg, map->reg_stride))
2448 return -EINVAL;
2449 }
2450
2451 if (!map->cache_bypass) {
2452 for (i = 0; i < num_regs; i++) {
2453 unsigned int val = regs[i].def;
2454 unsigned int reg = regs[i].reg;
2455 ret = regcache_write(map, reg, val);
2456 if (ret) {
2457 dev_err(map->dev,
2458 "Error in caching of register: %x ret: %d\n",
2459 reg, ret);
2460 return ret;
2461 }
2462 }
2463 if (map->cache_only) {
2464 map->cache_dirty = true;
2465 return 0;
2466 }
2467 }
2468
2469 WARN_ON(!map->bus);
2470
2471 for (i = 0; i < num_regs; i++) {
2472 unsigned int reg = regs[i].reg;
2473 struct regmap_range_node *range;
2474
2475 /* Coalesce all the writes between a page break or a delay
2476 * in a sequence
2477 */
2478 range = _regmap_range_lookup(map, reg);
2479 if (range || regs[i].delay_us) {
2480 size_t len = sizeof(struct reg_sequence)*num_regs;
2481 struct reg_sequence *base = kmemdup(regs, len,
2482 GFP_KERNEL);
2483 if (!base)
2484 return -ENOMEM;
2485 ret = _regmap_range_multi_paged_reg_write(map, base,
2486 num_regs);
2487 kfree(base);
2488
2489 return ret;
2490 }
2491 }
2492 return _regmap_raw_multi_reg_write(map, regs, num_regs);
2493}
2494
2495/**
2496 * regmap_multi_reg_write() - Write multiple registers to the device
2497 *
2498 * @map: Register map to write to
2499 * @regs: Array of structures containing register,value to be written
2500 * @num_regs: Number of registers to write
2501 *
2502 * Write multiple registers to the device where the set of register, value
2503 * pairs are supplied in any order, possibly not all in a single range.
2504 *
2505 * The 'normal' block write mode will send ultimately send data on the
2506 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2507 * addressed. However, this alternative block multi write mode will send
2508 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2509 * must of course support the mode.
2510 *
2511 * A value of zero will be returned on success, a negative errno will be
2512 * returned in error cases.
2513 */
2514int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2515 int num_regs)
2516{
2517 int ret;
2518
2519 map->lock(map->lock_arg);
2520
2521 ret = _regmap_multi_reg_write(map, regs, num_regs);
2522
2523 map->unlock(map->lock_arg);
2524
2525 return ret;
2526}
2527EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2528
2529/**
2530 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2531 * device but not the cache
2532 *
2533 * @map: Register map to write to
2534 * @regs: Array of structures containing register,value to be written
2535 * @num_regs: Number of registers to write
2536 *
2537 * Write multiple registers to the device but not the cache where the set
2538 * of register are supplied in any order.
2539 *
2540 * This function is intended to be used for writing a large block of data
2541 * atomically to the device in single transfer for those I2C client devices
2542 * that implement this alternative block write mode.
2543 *
2544 * A value of zero will be returned on success, a negative errno will
2545 * be returned in error cases.
2546 */
2547int regmap_multi_reg_write_bypassed(struct regmap *map,
2548 const struct reg_sequence *regs,
2549 int num_regs)
2550{
2551 int ret;
2552 bool bypass;
2553
2554 map->lock(map->lock_arg);
2555
2556 bypass = map->cache_bypass;
2557 map->cache_bypass = true;
2558
2559 ret = _regmap_multi_reg_write(map, regs, num_regs);
2560
2561 map->cache_bypass = bypass;
2562
2563 map->unlock(map->lock_arg);
2564
2565 return ret;
2566}
2567EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2568
2569/**
2570 * regmap_raw_write_async() - Write raw values to one or more registers
2571 * asynchronously
2572 *
2573 * @map: Register map to write to
2574 * @reg: Initial register to write to
2575 * @val: Block of data to be written, laid out for direct transmission to the
2576 * device. Must be valid until regmap_async_complete() is called.
2577 * @val_len: Length of data pointed to by val.
2578 *
2579 * This function is intended to be used for things like firmware
2580 * download where a large block of data needs to be transferred to the
2581 * device. No formatting will be done on the data provided.
2582 *
2583 * If supported by the underlying bus the write will be scheduled
2584 * asynchronously, helping maximise I/O speed on higher speed buses
2585 * like SPI. regmap_async_complete() can be called to ensure that all
2586 * asynchrnous writes have been completed.
2587 *
2588 * A value of zero will be returned on success, a negative errno will
2589 * be returned in error cases.
2590 */
2591int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2592 const void *val, size_t val_len)
2593{
2594 int ret;
2595
2596 if (val_len % map->format.val_bytes)
2597 return -EINVAL;
2598 if (!IS_ALIGNED(reg, map->reg_stride))
2599 return -EINVAL;
2600
2601 map->lock(map->lock_arg);
2602
2603 map->async = true;
2604
2605 ret = _regmap_raw_write(map, reg, val, val_len, false);
2606
2607 map->async = false;
2608
2609 map->unlock(map->lock_arg);
2610
2611 return ret;
2612}
2613EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2614
2615static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2616 unsigned int val_len, bool noinc)
2617{
2618 struct regmap_range_node *range;
2619 int ret;
2620
2621 WARN_ON(!map->bus);
2622
2623 if (!map->bus || !map->bus->read)
2624 return -EINVAL;
2625
2626 range = _regmap_range_lookup(map, reg);
2627 if (range) {
2628 ret = _regmap_select_page(map, ®, range,
2629 noinc ? 1 : val_len / map->format.val_bytes);
2630 if (ret != 0)
2631 return ret;
2632 }
2633
2634 map->format.format_reg(map->work_buf, reg, map->reg_shift);
2635 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2636 map->read_flag_mask);
2637 trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2638
2639 ret = map->bus->read(map->bus_context, map->work_buf,
2640 map->format.reg_bytes + map->format.pad_bytes,
2641 val, val_len);
2642
2643 trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2644
2645 return ret;
2646}
2647
2648static int _regmap_bus_reg_read(void *context, unsigned int reg,
2649 unsigned int *val)
2650{
2651 struct regmap *map = context;
2652
2653 return map->bus->reg_read(map->bus_context, reg, val);
2654}
2655
2656static int _regmap_bus_read(void *context, unsigned int reg,
2657 unsigned int *val)
2658{
2659 int ret;
2660 struct regmap *map = context;
2661 void *work_val = map->work_buf + map->format.reg_bytes +
2662 map->format.pad_bytes;
2663
2664 if (!map->format.parse_val)
2665 return -EINVAL;
2666
2667 ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2668 if (ret == 0)
2669 *val = map->format.parse_val(work_val);
2670
2671 return ret;
2672}
2673
2674static int _regmap_read(struct regmap *map, unsigned int reg,
2675 unsigned int *val)
2676{
2677 int ret;
2678 void *context = _regmap_map_get_context(map);
2679
2680 if (!map->cache_bypass) {
2681 ret = regcache_read(map, reg, val);
2682 if (ret == 0)
2683 return 0;
2684 }
2685
2686 if (map->cache_only)
2687 return -EBUSY;
2688
2689 if (!regmap_readable(map, reg))
2690 return -EIO;
2691
2692 ret = map->reg_read(context, reg, val);
2693 if (ret == 0) {
2694 if (regmap_should_log(map))
2695 dev_info(map->dev, "%x => %x\n", reg, *val);
2696
2697 trace_regmap_reg_read(map, reg, *val);
2698
2699 if (!map->cache_bypass)
2700 regcache_write(map, reg, *val);
2701 }
2702
2703 return ret;
2704}
2705
2706/**
2707 * regmap_read() - Read a value from a single register
2708 *
2709 * @map: Register map to read from
2710 * @reg: Register to be read from
2711 * @val: Pointer to store read value
2712 *
2713 * A value of zero will be returned on success, a negative errno will
2714 * be returned in error cases.
2715 */
2716int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2717{
2718 int ret;
2719
2720 if (!IS_ALIGNED(reg, map->reg_stride))
2721 return -EINVAL;
2722
2723 map->lock(map->lock_arg);
2724
2725 ret = _regmap_read(map, reg, val);
2726
2727 map->unlock(map->lock_arg);
2728
2729 return ret;
2730}
2731EXPORT_SYMBOL_GPL(regmap_read);
2732
2733/**
2734 * regmap_raw_read() - Read raw data from the device
2735 *
2736 * @map: Register map to read from
2737 * @reg: First register to be read from
2738 * @val: Pointer to store read value
2739 * @val_len: Size of data to read
2740 *
2741 * A value of zero will be returned on success, a negative errno will
2742 * be returned in error cases.
2743 */
2744int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2745 size_t val_len)
2746{
2747 size_t val_bytes = map->format.val_bytes;
2748 size_t val_count = val_len / val_bytes;
2749 unsigned int v;
2750 int ret, i;
2751
2752 if (!map->bus)
2753 return -EINVAL;
2754 if (val_len % map->format.val_bytes)
2755 return -EINVAL;
2756 if (!IS_ALIGNED(reg, map->reg_stride))
2757 return -EINVAL;
2758 if (val_count == 0)
2759 return -EINVAL;
2760
2761 map->lock(map->lock_arg);
2762
2763 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2764 map->cache_type == REGCACHE_NONE) {
2765 size_t chunk_count, chunk_bytes;
2766 size_t chunk_regs = val_count;
2767
2768 if (!map->bus->read) {
2769 ret = -ENOTSUPP;
2770 goto out;
2771 }
2772
2773 if (map->use_single_read)
2774 chunk_regs = 1;
2775 else if (map->max_raw_read && val_len > map->max_raw_read)
2776 chunk_regs = map->max_raw_read / val_bytes;
2777
2778 chunk_count = val_count / chunk_regs;
2779 chunk_bytes = chunk_regs * val_bytes;
2780
2781 /* Read bytes that fit into whole chunks */
2782 for (i = 0; i < chunk_count; i++) {
2783 ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
2784 if (ret != 0)
2785 goto out;
2786
2787 reg += regmap_get_offset(map, chunk_regs);
2788 val += chunk_bytes;
2789 val_len -= chunk_bytes;
2790 }
2791
2792 /* Read remaining bytes */
2793 if (val_len) {
2794 ret = _regmap_raw_read(map, reg, val, val_len, false);
2795 if (ret != 0)
2796 goto out;
2797 }
2798 } else {
2799 /* Otherwise go word by word for the cache; should be low
2800 * cost as we expect to hit the cache.
2801 */
2802 for (i = 0; i < val_count; i++) {
2803 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2804 &v);
2805 if (ret != 0)
2806 goto out;
2807
2808 map->format.format_val(val + (i * val_bytes), v, 0);
2809 }
2810 }
2811
2812 out:
2813 map->unlock(map->lock_arg);
2814
2815 return ret;
2816}
2817EXPORT_SYMBOL_GPL(regmap_raw_read);
2818
2819/**
2820 * regmap_noinc_read(): Read data from a register without incrementing the
2821 * register number
2822 *
2823 * @map: Register map to read from
2824 * @reg: Register to read from
2825 * @val: Pointer to data buffer
2826 * @val_len: Length of output buffer in bytes.
2827 *
2828 * The regmap API usually assumes that bulk bus read operations will read a
2829 * range of registers. Some devices have certain registers for which a read
2830 * operation read will read from an internal FIFO.
2831 *
2832 * The target register must be volatile but registers after it can be
2833 * completely unrelated cacheable registers.
2834 *
2835 * This will attempt multiple reads as required to read val_len bytes.
2836 *
2837 * A value of zero will be returned on success, a negative errno will be
2838 * returned in error cases.
2839 */
2840int regmap_noinc_read(struct regmap *map, unsigned int reg,
2841 void *val, size_t val_len)
2842{
2843 size_t read_len;
2844 int ret;
2845
2846 if (!map->bus)
2847 return -EINVAL;
2848 if (!map->bus->read)
2849 return -ENOTSUPP;
2850 if (val_len % map->format.val_bytes)
2851 return -EINVAL;
2852 if (!IS_ALIGNED(reg, map->reg_stride))
2853 return -EINVAL;
2854 if (val_len == 0)
2855 return -EINVAL;
2856
2857 map->lock(map->lock_arg);
2858
2859 if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
2860 ret = -EINVAL;
2861 goto out_unlock;
2862 }
2863
2864 while (val_len) {
2865 if (map->max_raw_read && map->max_raw_read < val_len)
2866 read_len = map->max_raw_read;
2867 else
2868 read_len = val_len;
2869 ret = _regmap_raw_read(map, reg, val, read_len, true);
2870 if (ret)
2871 goto out_unlock;
2872 val = ((u8 *)val) + read_len;
2873 val_len -= read_len;
2874 }
2875
2876out_unlock:
2877 map->unlock(map->lock_arg);
2878 return ret;
2879}
2880EXPORT_SYMBOL_GPL(regmap_noinc_read);
2881
2882/**
2883 * regmap_field_read(): Read a value to a single register field
2884 *
2885 * @field: Register field to read from
2886 * @val: Pointer to store read value
2887 *
2888 * A value of zero will be returned on success, a negative errno will
2889 * be returned in error cases.
2890 */
2891int regmap_field_read(struct regmap_field *field, unsigned int *val)
2892{
2893 int ret;
2894 unsigned int reg_val;
2895 ret = regmap_read(field->regmap, field->reg, ®_val);
2896 if (ret != 0)
2897 return ret;
2898
2899 reg_val &= field->mask;
2900 reg_val >>= field->shift;
2901 *val = reg_val;
2902
2903 return ret;
2904}
2905EXPORT_SYMBOL_GPL(regmap_field_read);
2906
2907/**
2908 * regmap_fields_read() - Read a value to a single register field with port ID
2909 *
2910 * @field: Register field to read from
2911 * @id: port ID
2912 * @val: Pointer to store read value
2913 *
2914 * A value of zero will be returned on success, a negative errno will
2915 * be returned in error cases.
2916 */
2917int regmap_fields_read(struct regmap_field *field, unsigned int id,
2918 unsigned int *val)
2919{
2920 int ret;
2921 unsigned int reg_val;
2922
2923 if (id >= field->id_size)
2924 return -EINVAL;
2925
2926 ret = regmap_read(field->regmap,
2927 field->reg + (field->id_offset * id),
2928 ®_val);
2929 if (ret != 0)
2930 return ret;
2931
2932 reg_val &= field->mask;
2933 reg_val >>= field->shift;
2934 *val = reg_val;
2935
2936 return ret;
2937}
2938EXPORT_SYMBOL_GPL(regmap_fields_read);
2939
2940/**
2941 * regmap_bulk_read() - Read multiple registers from the device
2942 *
2943 * @map: Register map to read from
2944 * @reg: First register to be read from
2945 * @val: Pointer to store read value, in native register size for device
2946 * @val_count: Number of registers to read
2947 *
2948 * A value of zero will be returned on success, a negative errno will
2949 * be returned in error cases.
2950 */
2951int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2952 size_t val_count)
2953{
2954 int ret, i;
2955 size_t val_bytes = map->format.val_bytes;
2956 bool vol = regmap_volatile_range(map, reg, val_count);
2957
2958 if (!IS_ALIGNED(reg, map->reg_stride))
2959 return -EINVAL;
2960 if (val_count == 0)
2961 return -EINVAL;
2962
2963 if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2964 ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
2965 if (ret != 0)
2966 return ret;
2967
2968 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2969 map->format.parse_inplace(val + i);
2970 } else {
2971#ifdef CONFIG_64BIT
2972 u64 *u64 = val;
2973#endif
2974 u32 *u32 = val;
2975 u16 *u16 = val;
2976 u8 *u8 = val;
2977
2978 map->lock(map->lock_arg);
2979
2980 for (i = 0; i < val_count; i++) {
2981 unsigned int ival;
2982
2983 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2984 &ival);
2985 if (ret != 0)
2986 goto out;
2987
2988 switch (map->format.val_bytes) {
2989#ifdef CONFIG_64BIT
2990 case 8:
2991 u64[i] = ival;
2992 break;
2993#endif
2994 case 4:
2995 u32[i] = ival;
2996 break;
2997 case 2:
2998 u16[i] = ival;
2999 break;
3000 case 1:
3001 u8[i] = ival;
3002 break;
3003 default:
3004 ret = -EINVAL;
3005 goto out;
3006 }
3007 }
3008
3009out:
3010 map->unlock(map->lock_arg);
3011 }
3012
3013 return ret;
3014}
3015EXPORT_SYMBOL_GPL(regmap_bulk_read);
3016
3017static int _regmap_update_bits(struct regmap *map, unsigned int reg,
3018 unsigned int mask, unsigned int val,
3019 bool *change, bool force_write)
3020{
3021 int ret;
3022 unsigned int tmp, orig;
3023
3024 if (change)
3025 *change = false;
3026
3027 if (regmap_volatile(map, reg) && map->reg_update_bits) {
3028 ret = map->reg_update_bits(map->bus_context, reg, mask, val);
3029 if (ret == 0 && change)
3030 *change = true;
3031 } else {
3032 ret = _regmap_read(map, reg, &orig);
3033 if (ret != 0)
3034 return ret;
3035
3036 tmp = orig & ~mask;
3037 tmp |= val & mask;
3038
3039 if (force_write || (tmp != orig)) {
3040 ret = _regmap_write(map, reg, tmp);
3041 if (ret == 0 && change)
3042 *change = true;
3043 }
3044 }
3045
3046 return ret;
3047}
3048
3049/**
3050 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
3051 *
3052 * @map: Register map to update
3053 * @reg: Register to update
3054 * @mask: Bitmask to change
3055 * @val: New value for bitmask
3056 * @change: Boolean indicating if a write was done
3057 * @async: Boolean indicating asynchronously
3058 * @force: Boolean indicating use force update
3059 *
3060 * Perform a read/modify/write cycle on a register map with change, async, force
3061 * options.
3062 *
3063 * If async is true:
3064 *
3065 * With most buses the read must be done synchronously so this is most useful
3066 * for devices with a cache which do not need to interact with the hardware to
3067 * determine the current register value.
3068 *
3069 * Returns zero for success, a negative number on error.
3070 */
3071int regmap_update_bits_base(struct regmap *map, unsigned int reg,
3072 unsigned int mask, unsigned int val,
3073 bool *change, bool async, bool force)
3074{
3075 int ret;
3076
3077 map->lock(map->lock_arg);
3078
3079 map->async = async;
3080
3081 ret = _regmap_update_bits(map, reg, mask, val, change, force);
3082
3083 map->async = false;
3084
3085 map->unlock(map->lock_arg);
3086
3087 return ret;
3088}
3089EXPORT_SYMBOL_GPL(regmap_update_bits_base);
3090
3091/**
3092 * regmap_test_bits() - Check if all specified bits are set in a register.
3093 *
3094 * @map: Register map to operate on
3095 * @reg: Register to read from
3096 * @bits: Bits to test
3097 *
3098 * Returns 0 if at least one of the tested bits is not set, 1 if all tested
3099 * bits are set and a negative error number if the underlying regmap_read()
3100 * fails.
3101 */
3102int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
3103{
3104 unsigned int val, ret;
3105
3106 ret = regmap_read(map, reg, &val);
3107 if (ret)
3108 return ret;
3109
3110 return (val & bits) == bits;
3111}
3112EXPORT_SYMBOL_GPL(regmap_test_bits);
3113
3114void regmap_async_complete_cb(struct regmap_async *async, int ret)
3115{
3116 struct regmap *map = async->map;
3117 bool wake;
3118
3119 trace_regmap_async_io_complete(map);
3120
3121 spin_lock(&map->async_lock);
3122 list_move(&async->list, &map->async_free);
3123 wake = list_empty(&map->async_list);
3124
3125 if (ret != 0)
3126 map->async_ret = ret;
3127
3128 spin_unlock(&map->async_lock);
3129
3130 if (wake)
3131 wake_up(&map->async_waitq);
3132}
3133EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
3134
3135static int regmap_async_is_done(struct regmap *map)
3136{
3137 unsigned long flags;
3138 int ret;
3139
3140 spin_lock_irqsave(&map->async_lock, flags);
3141 ret = list_empty(&map->async_list);
3142 spin_unlock_irqrestore(&map->async_lock, flags);
3143
3144 return ret;
3145}
3146
3147/**
3148 * regmap_async_complete - Ensure all asynchronous I/O has completed.
3149 *
3150 * @map: Map to operate on.
3151 *
3152 * Blocks until any pending asynchronous I/O has completed. Returns
3153 * an error code for any failed I/O operations.
3154 */
3155int regmap_async_complete(struct regmap *map)
3156{
3157 unsigned long flags;
3158 int ret;
3159
3160 /* Nothing to do with no async support */
3161 if (!map->bus || !map->bus->async_write)
3162 return 0;
3163
3164 trace_regmap_async_complete_start(map);
3165
3166 wait_event(map->async_waitq, regmap_async_is_done(map));
3167
3168 spin_lock_irqsave(&map->async_lock, flags);
3169 ret = map->async_ret;
3170 map->async_ret = 0;
3171 spin_unlock_irqrestore(&map->async_lock, flags);
3172
3173 trace_regmap_async_complete_done(map);
3174
3175 return ret;
3176}
3177EXPORT_SYMBOL_GPL(regmap_async_complete);
3178
3179/**
3180 * regmap_register_patch - Register and apply register updates to be applied
3181 * on device initialistion
3182 *
3183 * @map: Register map to apply updates to.
3184 * @regs: Values to update.
3185 * @num_regs: Number of entries in regs.
3186 *
3187 * Register a set of register updates to be applied to the device
3188 * whenever the device registers are synchronised with the cache and
3189 * apply them immediately. Typically this is used to apply
3190 * corrections to be applied to the device defaults on startup, such
3191 * as the updates some vendors provide to undocumented registers.
3192 *
3193 * The caller must ensure that this function cannot be called
3194 * concurrently with either itself or regcache_sync().
3195 */
3196int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3197 int num_regs)
3198{
3199 struct reg_sequence *p;
3200 int ret;
3201 bool bypass;
3202
3203 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3204 num_regs))
3205 return 0;
3206
3207 p = krealloc(map->patch,
3208 sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3209 GFP_KERNEL);
3210 if (p) {
3211 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3212 map->patch = p;
3213 map->patch_regs += num_regs;
3214 } else {
3215 return -ENOMEM;
3216 }
3217
3218 map->lock(map->lock_arg);
3219
3220 bypass = map->cache_bypass;
3221
3222 map->cache_bypass = true;
3223 map->async = true;
3224
3225 ret = _regmap_multi_reg_write(map, regs, num_regs);
3226
3227 map->async = false;
3228 map->cache_bypass = bypass;
3229
3230 map->unlock(map->lock_arg);
3231
3232 regmap_async_complete(map);
3233
3234 return ret;
3235}
3236EXPORT_SYMBOL_GPL(regmap_register_patch);
3237
3238/**
3239 * regmap_get_val_bytes() - Report the size of a register value
3240 *
3241 * @map: Register map to operate on.
3242 *
3243 * Report the size of a register value, mainly intended to for use by
3244 * generic infrastructure built on top of regmap.
3245 */
3246int regmap_get_val_bytes(struct regmap *map)
3247{
3248 if (map->format.format_write)
3249 return -EINVAL;
3250
3251 return map->format.val_bytes;
3252}
3253EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3254
3255/**
3256 * regmap_get_max_register() - Report the max register value
3257 *
3258 * @map: Register map to operate on.
3259 *
3260 * Report the max register value, mainly intended to for use by
3261 * generic infrastructure built on top of regmap.
3262 */
3263int regmap_get_max_register(struct regmap *map)
3264{
3265 return map->max_register ? map->max_register : -EINVAL;
3266}
3267EXPORT_SYMBOL_GPL(regmap_get_max_register);
3268
3269/**
3270 * regmap_get_reg_stride() - Report the register address stride
3271 *
3272 * @map: Register map to operate on.
3273 *
3274 * Report the register address stride, mainly intended to for use by
3275 * generic infrastructure built on top of regmap.
3276 */
3277int regmap_get_reg_stride(struct regmap *map)
3278{
3279 return map->reg_stride;
3280}
3281EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3282
3283int regmap_parse_val(struct regmap *map, const void *buf,
3284 unsigned int *val)
3285{
3286 if (!map->format.parse_val)
3287 return -EINVAL;
3288
3289 *val = map->format.parse_val(buf);
3290
3291 return 0;
3292}
3293EXPORT_SYMBOL_GPL(regmap_parse_val);
3294
3295static int __init regmap_initcall(void)
3296{
3297 regmap_debugfs_initcall();
3298
3299 return 0;
3300}
3301postcore_initcall(regmap_initcall);