Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
5#include <linux/errno.h>
6
7#ifdef __KERNEL__
8
9#include <linux/mmdebug.h>
10#include <linux/gfp.h>
11#include <linux/bug.h>
12#include <linux/list.h>
13#include <linux/mmzone.h>
14#include <linux/rbtree.h>
15#include <linux/atomic.h>
16#include <linux/debug_locks.h>
17#include <linux/mm_types.h>
18#include <linux/mmap_lock.h>
19#include <linux/range.h>
20#include <linux/pfn.h>
21#include <linux/percpu-refcount.h>
22#include <linux/bit_spinlock.h>
23#include <linux/shrinker.h>
24#include <linux/resource.h>
25#include <linux/page_ext.h>
26#include <linux/err.h>
27#include <linux/page-flags.h>
28#include <linux/page_ref.h>
29#include <linux/memremap.h>
30#include <linux/overflow.h>
31#include <linux/sizes.h>
32#include <linux/sched.h>
33#include <linux/pgtable.h>
34#include <linux/kasan.h>
35
36struct mempolicy;
37struct anon_vma;
38struct anon_vma_chain;
39struct file_ra_state;
40struct user_struct;
41struct writeback_control;
42struct bdi_writeback;
43struct pt_regs;
44
45extern int sysctl_page_lock_unfairness;
46
47void init_mm_internals(void);
48
49#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
50extern unsigned long max_mapnr;
51
52static inline void set_max_mapnr(unsigned long limit)
53{
54 max_mapnr = limit;
55}
56#else
57static inline void set_max_mapnr(unsigned long limit) { }
58#endif
59
60extern atomic_long_t _totalram_pages;
61static inline unsigned long totalram_pages(void)
62{
63 return (unsigned long)atomic_long_read(&_totalram_pages);
64}
65
66static inline void totalram_pages_inc(void)
67{
68 atomic_long_inc(&_totalram_pages);
69}
70
71static inline void totalram_pages_dec(void)
72{
73 atomic_long_dec(&_totalram_pages);
74}
75
76static inline void totalram_pages_add(long count)
77{
78 atomic_long_add(count, &_totalram_pages);
79}
80
81extern void * high_memory;
82extern int page_cluster;
83
84#ifdef CONFIG_SYSCTL
85extern int sysctl_legacy_va_layout;
86#else
87#define sysctl_legacy_va_layout 0
88#endif
89
90#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
91extern const int mmap_rnd_bits_min;
92extern const int mmap_rnd_bits_max;
93extern int mmap_rnd_bits __read_mostly;
94#endif
95#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
96extern const int mmap_rnd_compat_bits_min;
97extern const int mmap_rnd_compat_bits_max;
98extern int mmap_rnd_compat_bits __read_mostly;
99#endif
100
101#include <asm/page.h>
102#include <asm/processor.h>
103
104/*
105 * Architectures that support memory tagging (assigning tags to memory regions,
106 * embedding these tags into addresses that point to these memory regions, and
107 * checking that the memory and the pointer tags match on memory accesses)
108 * redefine this macro to strip tags from pointers.
109 * It's defined as noop for arcitectures that don't support memory tagging.
110 */
111#ifndef untagged_addr
112#define untagged_addr(addr) (addr)
113#endif
114
115#ifndef __pa_symbol
116#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
117#endif
118
119#ifndef page_to_virt
120#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
121#endif
122
123#ifndef lm_alias
124#define lm_alias(x) __va(__pa_symbol(x))
125#endif
126
127/*
128 * To prevent common memory management code establishing
129 * a zero page mapping on a read fault.
130 * This macro should be defined within <asm/pgtable.h>.
131 * s390 does this to prevent multiplexing of hardware bits
132 * related to the physical page in case of virtualization.
133 */
134#ifndef mm_forbids_zeropage
135#define mm_forbids_zeropage(X) (0)
136#endif
137
138/*
139 * On some architectures it is expensive to call memset() for small sizes.
140 * If an architecture decides to implement their own version of
141 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
142 * define their own version of this macro in <asm/pgtable.h>
143 */
144#if BITS_PER_LONG == 64
145/* This function must be updated when the size of struct page grows above 80
146 * or reduces below 56. The idea that compiler optimizes out switch()
147 * statement, and only leaves move/store instructions. Also the compiler can
148 * combine write statments if they are both assignments and can be reordered,
149 * this can result in several of the writes here being dropped.
150 */
151#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
152static inline void __mm_zero_struct_page(struct page *page)
153{
154 unsigned long *_pp = (void *)page;
155
156 /* Check that struct page is either 56, 64, 72, or 80 bytes */
157 BUILD_BUG_ON(sizeof(struct page) & 7);
158 BUILD_BUG_ON(sizeof(struct page) < 56);
159 BUILD_BUG_ON(sizeof(struct page) > 80);
160
161 switch (sizeof(struct page)) {
162 case 80:
163 _pp[9] = 0;
164 fallthrough;
165 case 72:
166 _pp[8] = 0;
167 fallthrough;
168 case 64:
169 _pp[7] = 0;
170 fallthrough;
171 case 56:
172 _pp[6] = 0;
173 _pp[5] = 0;
174 _pp[4] = 0;
175 _pp[3] = 0;
176 _pp[2] = 0;
177 _pp[1] = 0;
178 _pp[0] = 0;
179 }
180}
181#else
182#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
183#endif
184
185/*
186 * Default maximum number of active map areas, this limits the number of vmas
187 * per mm struct. Users can overwrite this number by sysctl but there is a
188 * problem.
189 *
190 * When a program's coredump is generated as ELF format, a section is created
191 * per a vma. In ELF, the number of sections is represented in unsigned short.
192 * This means the number of sections should be smaller than 65535 at coredump.
193 * Because the kernel adds some informative sections to a image of program at
194 * generating coredump, we need some margin. The number of extra sections is
195 * 1-3 now and depends on arch. We use "5" as safe margin, here.
196 *
197 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
198 * not a hard limit any more. Although some userspace tools can be surprised by
199 * that.
200 */
201#define MAPCOUNT_ELF_CORE_MARGIN (5)
202#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
203
204extern int sysctl_max_map_count;
205
206extern unsigned long sysctl_user_reserve_kbytes;
207extern unsigned long sysctl_admin_reserve_kbytes;
208
209extern int sysctl_overcommit_memory;
210extern int sysctl_overcommit_ratio;
211extern unsigned long sysctl_overcommit_kbytes;
212
213int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
214 loff_t *);
215int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
216 loff_t *);
217int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
218 loff_t *);
219/*
220 * Any attempt to mark this function as static leads to build failure
221 * when CONFIG_DEBUG_INFO_BTF is enabled because __add_to_page_cache_locked()
222 * is referred to by BPF code. This must be visible for error injection.
223 */
224int __add_to_page_cache_locked(struct page *page, struct address_space *mapping,
225 pgoff_t index, gfp_t gfp, void **shadowp);
226
227#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
228
229/* to align the pointer to the (next) page boundary */
230#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
231
232/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
233#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
234
235#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
236
237/*
238 * Linux kernel virtual memory manager primitives.
239 * The idea being to have a "virtual" mm in the same way
240 * we have a virtual fs - giving a cleaner interface to the
241 * mm details, and allowing different kinds of memory mappings
242 * (from shared memory to executable loading to arbitrary
243 * mmap() functions).
244 */
245
246struct vm_area_struct *vm_area_alloc(struct mm_struct *);
247struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
248void vm_area_free(struct vm_area_struct *);
249
250#ifndef CONFIG_MMU
251extern struct rb_root nommu_region_tree;
252extern struct rw_semaphore nommu_region_sem;
253
254extern unsigned int kobjsize(const void *objp);
255#endif
256
257/*
258 * vm_flags in vm_area_struct, see mm_types.h.
259 * When changing, update also include/trace/events/mmflags.h
260 */
261#define VM_NONE 0x00000000
262
263#define VM_READ 0x00000001 /* currently active flags */
264#define VM_WRITE 0x00000002
265#define VM_EXEC 0x00000004
266#define VM_SHARED 0x00000008
267
268/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
269#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
270#define VM_MAYWRITE 0x00000020
271#define VM_MAYEXEC 0x00000040
272#define VM_MAYSHARE 0x00000080
273
274#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
275#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
276#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
277#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
278#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
279
280#define VM_LOCKED 0x00002000
281#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
282
283 /* Used by sys_madvise() */
284#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
285#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
286
287#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
288#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
289#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
290#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
291#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
292#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
293#define VM_SYNC 0x00800000 /* Synchronous page faults */
294#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
295#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
296#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
297
298#ifdef CONFIG_MEM_SOFT_DIRTY
299# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
300#else
301# define VM_SOFTDIRTY 0
302#endif
303
304#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
305#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
306#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
307#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
308
309#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
310#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
311#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
312#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
313#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
314#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
315#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
316#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
317#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
318#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
319#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
320#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
321
322#ifdef CONFIG_ARCH_HAS_PKEYS
323# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
324# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
325# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
326# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
327# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
328#ifdef CONFIG_PPC
329# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
330#else
331# define VM_PKEY_BIT4 0
332#endif
333#endif /* CONFIG_ARCH_HAS_PKEYS */
334
335#if defined(CONFIG_X86)
336# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
337#elif defined(CONFIG_PPC)
338# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
339#elif defined(CONFIG_PARISC)
340# define VM_GROWSUP VM_ARCH_1
341#elif defined(CONFIG_IA64)
342# define VM_GROWSUP VM_ARCH_1
343#elif defined(CONFIG_SPARC64)
344# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
345# define VM_ARCH_CLEAR VM_SPARC_ADI
346#elif defined(CONFIG_ARM64)
347# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
348# define VM_ARCH_CLEAR VM_ARM64_BTI
349#elif !defined(CONFIG_MMU)
350# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
351#endif
352
353#if defined(CONFIG_ARM64_MTE)
354# define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
355# define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
356#else
357# define VM_MTE VM_NONE
358# define VM_MTE_ALLOWED VM_NONE
359#endif
360
361#ifndef VM_GROWSUP
362# define VM_GROWSUP VM_NONE
363#endif
364
365/* Bits set in the VMA until the stack is in its final location */
366#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
367
368#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
369
370/* Common data flag combinations */
371#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
372 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
373#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
374 VM_MAYWRITE | VM_MAYEXEC)
375#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
376 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
377
378#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
379#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
380#endif
381
382#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
383#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
384#endif
385
386#ifdef CONFIG_STACK_GROWSUP
387#define VM_STACK VM_GROWSUP
388#else
389#define VM_STACK VM_GROWSDOWN
390#endif
391
392#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
393
394/* VMA basic access permission flags */
395#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
396
397
398/*
399 * Special vmas that are non-mergable, non-mlock()able.
400 */
401#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
402
403/* This mask prevents VMA from being scanned with khugepaged */
404#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
405
406/* This mask defines which mm->def_flags a process can inherit its parent */
407#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
408
409/* This mask is used to clear all the VMA flags used by mlock */
410#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
411
412/* Arch-specific flags to clear when updating VM flags on protection change */
413#ifndef VM_ARCH_CLEAR
414# define VM_ARCH_CLEAR VM_NONE
415#endif
416#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
417
418/*
419 * mapping from the currently active vm_flags protection bits (the
420 * low four bits) to a page protection mask..
421 */
422extern pgprot_t protection_map[16];
423
424/**
425 * Fault flag definitions.
426 *
427 * @FAULT_FLAG_WRITE: Fault was a write fault.
428 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
429 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
430 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
431 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
432 * @FAULT_FLAG_TRIED: The fault has been tried once.
433 * @FAULT_FLAG_USER: The fault originated in userspace.
434 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
435 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
436 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
437 *
438 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
439 * whether we would allow page faults to retry by specifying these two
440 * fault flags correctly. Currently there can be three legal combinations:
441 *
442 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and
443 * this is the first try
444 *
445 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and
446 * we've already tried at least once
447 *
448 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
449 *
450 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
451 * be used. Note that page faults can be allowed to retry for multiple times,
452 * in which case we'll have an initial fault with flags (a) then later on
453 * continuous faults with flags (b). We should always try to detect pending
454 * signals before a retry to make sure the continuous page faults can still be
455 * interrupted if necessary.
456 */
457#define FAULT_FLAG_WRITE 0x01
458#define FAULT_FLAG_MKWRITE 0x02
459#define FAULT_FLAG_ALLOW_RETRY 0x04
460#define FAULT_FLAG_RETRY_NOWAIT 0x08
461#define FAULT_FLAG_KILLABLE 0x10
462#define FAULT_FLAG_TRIED 0x20
463#define FAULT_FLAG_USER 0x40
464#define FAULT_FLAG_REMOTE 0x80
465#define FAULT_FLAG_INSTRUCTION 0x100
466#define FAULT_FLAG_INTERRUPTIBLE 0x200
467
468/*
469 * The default fault flags that should be used by most of the
470 * arch-specific page fault handlers.
471 */
472#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
473 FAULT_FLAG_KILLABLE | \
474 FAULT_FLAG_INTERRUPTIBLE)
475
476/**
477 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
478 *
479 * This is mostly used for places where we want to try to avoid taking
480 * the mmap_lock for too long a time when waiting for another condition
481 * to change, in which case we can try to be polite to release the
482 * mmap_lock in the first round to avoid potential starvation of other
483 * processes that would also want the mmap_lock.
484 *
485 * Return: true if the page fault allows retry and this is the first
486 * attempt of the fault handling; false otherwise.
487 */
488static inline bool fault_flag_allow_retry_first(unsigned int flags)
489{
490 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
491 (!(flags & FAULT_FLAG_TRIED));
492}
493
494#define FAULT_FLAG_TRACE \
495 { FAULT_FLAG_WRITE, "WRITE" }, \
496 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
497 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
498 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
499 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
500 { FAULT_FLAG_TRIED, "TRIED" }, \
501 { FAULT_FLAG_USER, "USER" }, \
502 { FAULT_FLAG_REMOTE, "REMOTE" }, \
503 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
504 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }
505
506/*
507 * vm_fault is filled by the pagefault handler and passed to the vma's
508 * ->fault function. The vma's ->fault is responsible for returning a bitmask
509 * of VM_FAULT_xxx flags that give details about how the fault was handled.
510 *
511 * MM layer fills up gfp_mask for page allocations but fault handler might
512 * alter it if its implementation requires a different allocation context.
513 *
514 * pgoff should be used in favour of virtual_address, if possible.
515 */
516struct vm_fault {
517 const struct {
518 struct vm_area_struct *vma; /* Target VMA */
519 gfp_t gfp_mask; /* gfp mask to be used for allocations */
520 pgoff_t pgoff; /* Logical page offset based on vma */
521 unsigned long address; /* Faulting virtual address */
522 };
523 unsigned int flags; /* FAULT_FLAG_xxx flags
524 * XXX: should really be 'const' */
525 pmd_t *pmd; /* Pointer to pmd entry matching
526 * the 'address' */
527 pud_t *pud; /* Pointer to pud entry matching
528 * the 'address'
529 */
530 pte_t orig_pte; /* Value of PTE at the time of fault */
531
532 struct page *cow_page; /* Page handler may use for COW fault */
533 struct page *page; /* ->fault handlers should return a
534 * page here, unless VM_FAULT_NOPAGE
535 * is set (which is also implied by
536 * VM_FAULT_ERROR).
537 */
538 /* These three entries are valid only while holding ptl lock */
539 pte_t *pte; /* Pointer to pte entry matching
540 * the 'address'. NULL if the page
541 * table hasn't been allocated.
542 */
543 spinlock_t *ptl; /* Page table lock.
544 * Protects pte page table if 'pte'
545 * is not NULL, otherwise pmd.
546 */
547 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
548 * vm_ops->map_pages() sets up a page
549 * table from atomic context.
550 * do_fault_around() pre-allocates
551 * page table to avoid allocation from
552 * atomic context.
553 */
554};
555
556/* page entry size for vm->huge_fault() */
557enum page_entry_size {
558 PE_SIZE_PTE = 0,
559 PE_SIZE_PMD,
560 PE_SIZE_PUD,
561};
562
563/*
564 * These are the virtual MM functions - opening of an area, closing and
565 * unmapping it (needed to keep files on disk up-to-date etc), pointer
566 * to the functions called when a no-page or a wp-page exception occurs.
567 */
568struct vm_operations_struct {
569 void (*open)(struct vm_area_struct * area);
570 void (*close)(struct vm_area_struct * area);
571 /* Called any time before splitting to check if it's allowed */
572 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
573 int (*mremap)(struct vm_area_struct *area, unsigned long flags);
574 /*
575 * Called by mprotect() to make driver-specific permission
576 * checks before mprotect() is finalised. The VMA must not
577 * be modified. Returns 0 if eprotect() can proceed.
578 */
579 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
580 unsigned long end, unsigned long newflags);
581 vm_fault_t (*fault)(struct vm_fault *vmf);
582 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
583 enum page_entry_size pe_size);
584 vm_fault_t (*map_pages)(struct vm_fault *vmf,
585 pgoff_t start_pgoff, pgoff_t end_pgoff);
586 unsigned long (*pagesize)(struct vm_area_struct * area);
587
588 /* notification that a previously read-only page is about to become
589 * writable, if an error is returned it will cause a SIGBUS */
590 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
591
592 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
593 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
594
595 /* called by access_process_vm when get_user_pages() fails, typically
596 * for use by special VMAs. See also generic_access_phys() for a generic
597 * implementation useful for any iomem mapping.
598 */
599 int (*access)(struct vm_area_struct *vma, unsigned long addr,
600 void *buf, int len, int write);
601
602 /* Called by the /proc/PID/maps code to ask the vma whether it
603 * has a special name. Returning non-NULL will also cause this
604 * vma to be dumped unconditionally. */
605 const char *(*name)(struct vm_area_struct *vma);
606
607#ifdef CONFIG_NUMA
608 /*
609 * set_policy() op must add a reference to any non-NULL @new mempolicy
610 * to hold the policy upon return. Caller should pass NULL @new to
611 * remove a policy and fall back to surrounding context--i.e. do not
612 * install a MPOL_DEFAULT policy, nor the task or system default
613 * mempolicy.
614 */
615 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
616
617 /*
618 * get_policy() op must add reference [mpol_get()] to any policy at
619 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
620 * in mm/mempolicy.c will do this automatically.
621 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
622 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
623 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
624 * must return NULL--i.e., do not "fallback" to task or system default
625 * policy.
626 */
627 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
628 unsigned long addr);
629#endif
630 /*
631 * Called by vm_normal_page() for special PTEs to find the
632 * page for @addr. This is useful if the default behavior
633 * (using pte_page()) would not find the correct page.
634 */
635 struct page *(*find_special_page)(struct vm_area_struct *vma,
636 unsigned long addr);
637};
638
639static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
640{
641 static const struct vm_operations_struct dummy_vm_ops = {};
642
643 memset(vma, 0, sizeof(*vma));
644 vma->vm_mm = mm;
645 vma->vm_ops = &dummy_vm_ops;
646 INIT_LIST_HEAD(&vma->anon_vma_chain);
647}
648
649static inline void vma_set_anonymous(struct vm_area_struct *vma)
650{
651 vma->vm_ops = NULL;
652}
653
654static inline bool vma_is_anonymous(struct vm_area_struct *vma)
655{
656 return !vma->vm_ops;
657}
658
659static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
660{
661 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
662
663 if (!maybe_stack)
664 return false;
665
666 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
667 VM_STACK_INCOMPLETE_SETUP)
668 return true;
669
670 return false;
671}
672
673static inline bool vma_is_foreign(struct vm_area_struct *vma)
674{
675 if (!current->mm)
676 return true;
677
678 if (current->mm != vma->vm_mm)
679 return true;
680
681 return false;
682}
683
684static inline bool vma_is_accessible(struct vm_area_struct *vma)
685{
686 return vma->vm_flags & VM_ACCESS_FLAGS;
687}
688
689#ifdef CONFIG_SHMEM
690/*
691 * The vma_is_shmem is not inline because it is used only by slow
692 * paths in userfault.
693 */
694bool vma_is_shmem(struct vm_area_struct *vma);
695#else
696static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
697#endif
698
699int vma_is_stack_for_current(struct vm_area_struct *vma);
700
701/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
702#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
703
704struct mmu_gather;
705struct inode;
706
707#include <linux/huge_mm.h>
708
709/*
710 * Methods to modify the page usage count.
711 *
712 * What counts for a page usage:
713 * - cache mapping (page->mapping)
714 * - private data (page->private)
715 * - page mapped in a task's page tables, each mapping
716 * is counted separately
717 *
718 * Also, many kernel routines increase the page count before a critical
719 * routine so they can be sure the page doesn't go away from under them.
720 */
721
722/*
723 * Drop a ref, return true if the refcount fell to zero (the page has no users)
724 */
725static inline int put_page_testzero(struct page *page)
726{
727 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
728 return page_ref_dec_and_test(page);
729}
730
731/*
732 * Try to grab a ref unless the page has a refcount of zero, return false if
733 * that is the case.
734 * This can be called when MMU is off so it must not access
735 * any of the virtual mappings.
736 */
737static inline int get_page_unless_zero(struct page *page)
738{
739 return page_ref_add_unless(page, 1, 0);
740}
741
742extern int page_is_ram(unsigned long pfn);
743
744enum {
745 REGION_INTERSECTS,
746 REGION_DISJOINT,
747 REGION_MIXED,
748};
749
750int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
751 unsigned long desc);
752
753/* Support for virtually mapped pages */
754struct page *vmalloc_to_page(const void *addr);
755unsigned long vmalloc_to_pfn(const void *addr);
756
757/*
758 * Determine if an address is within the vmalloc range
759 *
760 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
761 * is no special casing required.
762 */
763
764#ifndef is_ioremap_addr
765#define is_ioremap_addr(x) is_vmalloc_addr(x)
766#endif
767
768#ifdef CONFIG_MMU
769extern bool is_vmalloc_addr(const void *x);
770extern int is_vmalloc_or_module_addr(const void *x);
771#else
772static inline bool is_vmalloc_addr(const void *x)
773{
774 return false;
775}
776static inline int is_vmalloc_or_module_addr(const void *x)
777{
778 return 0;
779}
780#endif
781
782extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
783static inline void *kvmalloc(size_t size, gfp_t flags)
784{
785 return kvmalloc_node(size, flags, NUMA_NO_NODE);
786}
787static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
788{
789 return kvmalloc_node(size, flags | __GFP_ZERO, node);
790}
791static inline void *kvzalloc(size_t size, gfp_t flags)
792{
793 return kvmalloc(size, flags | __GFP_ZERO);
794}
795
796static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
797{
798 size_t bytes;
799
800 if (unlikely(check_mul_overflow(n, size, &bytes)))
801 return NULL;
802
803 return kvmalloc(bytes, flags);
804}
805
806static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
807{
808 return kvmalloc_array(n, size, flags | __GFP_ZERO);
809}
810
811extern void kvfree(const void *addr);
812extern void kvfree_sensitive(const void *addr, size_t len);
813
814static inline int head_compound_mapcount(struct page *head)
815{
816 return atomic_read(compound_mapcount_ptr(head)) + 1;
817}
818
819/*
820 * Mapcount of compound page as a whole, does not include mapped sub-pages.
821 *
822 * Must be called only for compound pages or any their tail sub-pages.
823 */
824static inline int compound_mapcount(struct page *page)
825{
826 VM_BUG_ON_PAGE(!PageCompound(page), page);
827 page = compound_head(page);
828 return head_compound_mapcount(page);
829}
830
831/*
832 * The atomic page->_mapcount, starts from -1: so that transitions
833 * both from it and to it can be tracked, using atomic_inc_and_test
834 * and atomic_add_negative(-1).
835 */
836static inline void page_mapcount_reset(struct page *page)
837{
838 atomic_set(&(page)->_mapcount, -1);
839}
840
841int __page_mapcount(struct page *page);
842
843/*
844 * Mapcount of 0-order page; when compound sub-page, includes
845 * compound_mapcount().
846 *
847 * Result is undefined for pages which cannot be mapped into userspace.
848 * For example SLAB or special types of pages. See function page_has_type().
849 * They use this place in struct page differently.
850 */
851static inline int page_mapcount(struct page *page)
852{
853 if (unlikely(PageCompound(page)))
854 return __page_mapcount(page);
855 return atomic_read(&page->_mapcount) + 1;
856}
857
858#ifdef CONFIG_TRANSPARENT_HUGEPAGE
859int total_mapcount(struct page *page);
860int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
861#else
862static inline int total_mapcount(struct page *page)
863{
864 return page_mapcount(page);
865}
866static inline int page_trans_huge_mapcount(struct page *page,
867 int *total_mapcount)
868{
869 int mapcount = page_mapcount(page);
870 if (total_mapcount)
871 *total_mapcount = mapcount;
872 return mapcount;
873}
874#endif
875
876static inline struct page *virt_to_head_page(const void *x)
877{
878 struct page *page = virt_to_page(x);
879
880 return compound_head(page);
881}
882
883void __put_page(struct page *page);
884
885void put_pages_list(struct list_head *pages);
886
887void split_page(struct page *page, unsigned int order);
888
889/*
890 * Compound pages have a destructor function. Provide a
891 * prototype for that function and accessor functions.
892 * These are _only_ valid on the head of a compound page.
893 */
894typedef void compound_page_dtor(struct page *);
895
896/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
897enum compound_dtor_id {
898 NULL_COMPOUND_DTOR,
899 COMPOUND_PAGE_DTOR,
900#ifdef CONFIG_HUGETLB_PAGE
901 HUGETLB_PAGE_DTOR,
902#endif
903#ifdef CONFIG_TRANSPARENT_HUGEPAGE
904 TRANSHUGE_PAGE_DTOR,
905#endif
906 NR_COMPOUND_DTORS,
907};
908extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
909
910static inline void set_compound_page_dtor(struct page *page,
911 enum compound_dtor_id compound_dtor)
912{
913 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
914 page[1].compound_dtor = compound_dtor;
915}
916
917static inline void destroy_compound_page(struct page *page)
918{
919 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
920 compound_page_dtors[page[1].compound_dtor](page);
921}
922
923static inline unsigned int compound_order(struct page *page)
924{
925 if (!PageHead(page))
926 return 0;
927 return page[1].compound_order;
928}
929
930static inline bool hpage_pincount_available(struct page *page)
931{
932 /*
933 * Can the page->hpage_pinned_refcount field be used? That field is in
934 * the 3rd page of the compound page, so the smallest (2-page) compound
935 * pages cannot support it.
936 */
937 page = compound_head(page);
938 return PageCompound(page) && compound_order(page) > 1;
939}
940
941static inline int head_compound_pincount(struct page *head)
942{
943 return atomic_read(compound_pincount_ptr(head));
944}
945
946static inline int compound_pincount(struct page *page)
947{
948 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
949 page = compound_head(page);
950 return head_compound_pincount(page);
951}
952
953static inline void set_compound_order(struct page *page, unsigned int order)
954{
955 page[1].compound_order = order;
956 page[1].compound_nr = 1U << order;
957}
958
959/* Returns the number of pages in this potentially compound page. */
960static inline unsigned long compound_nr(struct page *page)
961{
962 if (!PageHead(page))
963 return 1;
964 return page[1].compound_nr;
965}
966
967/* Returns the number of bytes in this potentially compound page. */
968static inline unsigned long page_size(struct page *page)
969{
970 return PAGE_SIZE << compound_order(page);
971}
972
973/* Returns the number of bits needed for the number of bytes in a page */
974static inline unsigned int page_shift(struct page *page)
975{
976 return PAGE_SHIFT + compound_order(page);
977}
978
979void free_compound_page(struct page *page);
980
981#ifdef CONFIG_MMU
982/*
983 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
984 * servicing faults for write access. In the normal case, do always want
985 * pte_mkwrite. But get_user_pages can cause write faults for mappings
986 * that do not have writing enabled, when used by access_process_vm.
987 */
988static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
989{
990 if (likely(vma->vm_flags & VM_WRITE))
991 pte = pte_mkwrite(pte);
992 return pte;
993}
994
995vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
996void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
997
998vm_fault_t finish_fault(struct vm_fault *vmf);
999vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
1000#endif
1001
1002/*
1003 * Multiple processes may "see" the same page. E.g. for untouched
1004 * mappings of /dev/null, all processes see the same page full of
1005 * zeroes, and text pages of executables and shared libraries have
1006 * only one copy in memory, at most, normally.
1007 *
1008 * For the non-reserved pages, page_count(page) denotes a reference count.
1009 * page_count() == 0 means the page is free. page->lru is then used for
1010 * freelist management in the buddy allocator.
1011 * page_count() > 0 means the page has been allocated.
1012 *
1013 * Pages are allocated by the slab allocator in order to provide memory
1014 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1015 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1016 * unless a particular usage is carefully commented. (the responsibility of
1017 * freeing the kmalloc memory is the caller's, of course).
1018 *
1019 * A page may be used by anyone else who does a __get_free_page().
1020 * In this case, page_count still tracks the references, and should only
1021 * be used through the normal accessor functions. The top bits of page->flags
1022 * and page->virtual store page management information, but all other fields
1023 * are unused and could be used privately, carefully. The management of this
1024 * page is the responsibility of the one who allocated it, and those who have
1025 * subsequently been given references to it.
1026 *
1027 * The other pages (we may call them "pagecache pages") are completely
1028 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1029 * The following discussion applies only to them.
1030 *
1031 * A pagecache page contains an opaque `private' member, which belongs to the
1032 * page's address_space. Usually, this is the address of a circular list of
1033 * the page's disk buffers. PG_private must be set to tell the VM to call
1034 * into the filesystem to release these pages.
1035 *
1036 * A page may belong to an inode's memory mapping. In this case, page->mapping
1037 * is the pointer to the inode, and page->index is the file offset of the page,
1038 * in units of PAGE_SIZE.
1039 *
1040 * If pagecache pages are not associated with an inode, they are said to be
1041 * anonymous pages. These may become associated with the swapcache, and in that
1042 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1043 *
1044 * In either case (swapcache or inode backed), the pagecache itself holds one
1045 * reference to the page. Setting PG_private should also increment the
1046 * refcount. The each user mapping also has a reference to the page.
1047 *
1048 * The pagecache pages are stored in a per-mapping radix tree, which is
1049 * rooted at mapping->i_pages, and indexed by offset.
1050 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1051 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1052 *
1053 * All pagecache pages may be subject to I/O:
1054 * - inode pages may need to be read from disk,
1055 * - inode pages which have been modified and are MAP_SHARED may need
1056 * to be written back to the inode on disk,
1057 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1058 * modified may need to be swapped out to swap space and (later) to be read
1059 * back into memory.
1060 */
1061
1062/*
1063 * The zone field is never updated after free_area_init_core()
1064 * sets it, so none of the operations on it need to be atomic.
1065 */
1066
1067/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1068#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1069#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
1070#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
1071#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
1072#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1073
1074/*
1075 * Define the bit shifts to access each section. For non-existent
1076 * sections we define the shift as 0; that plus a 0 mask ensures
1077 * the compiler will optimise away reference to them.
1078 */
1079#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1080#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
1081#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
1082#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1083#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1084
1085/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1086#ifdef NODE_NOT_IN_PAGE_FLAGS
1087#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
1088#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
1089 SECTIONS_PGOFF : ZONES_PGOFF)
1090#else
1091#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
1092#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
1093 NODES_PGOFF : ZONES_PGOFF)
1094#endif
1095
1096#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1097
1098#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
1099#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
1100#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
1101#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
1102#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
1103#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
1104
1105static inline enum zone_type page_zonenum(const struct page *page)
1106{
1107 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
1108 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1109}
1110
1111#ifdef CONFIG_ZONE_DEVICE
1112static inline bool is_zone_device_page(const struct page *page)
1113{
1114 return page_zonenum(page) == ZONE_DEVICE;
1115}
1116extern void memmap_init_zone_device(struct zone *, unsigned long,
1117 unsigned long, struct dev_pagemap *);
1118#else
1119static inline bool is_zone_device_page(const struct page *page)
1120{
1121 return false;
1122}
1123#endif
1124
1125#ifdef CONFIG_DEV_PAGEMAP_OPS
1126void free_devmap_managed_page(struct page *page);
1127DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1128
1129static inline bool page_is_devmap_managed(struct page *page)
1130{
1131 if (!static_branch_unlikely(&devmap_managed_key))
1132 return false;
1133 if (!is_zone_device_page(page))
1134 return false;
1135 switch (page->pgmap->type) {
1136 case MEMORY_DEVICE_PRIVATE:
1137 case MEMORY_DEVICE_FS_DAX:
1138 return true;
1139 default:
1140 break;
1141 }
1142 return false;
1143}
1144
1145void put_devmap_managed_page(struct page *page);
1146
1147#else /* CONFIG_DEV_PAGEMAP_OPS */
1148static inline bool page_is_devmap_managed(struct page *page)
1149{
1150 return false;
1151}
1152
1153static inline void put_devmap_managed_page(struct page *page)
1154{
1155}
1156#endif /* CONFIG_DEV_PAGEMAP_OPS */
1157
1158static inline bool is_device_private_page(const struct page *page)
1159{
1160 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1161 IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
1162 is_zone_device_page(page) &&
1163 page->pgmap->type == MEMORY_DEVICE_PRIVATE;
1164}
1165
1166static inline bool is_pci_p2pdma_page(const struct page *page)
1167{
1168 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1169 IS_ENABLED(CONFIG_PCI_P2PDMA) &&
1170 is_zone_device_page(page) &&
1171 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
1172}
1173
1174/* 127: arbitrary random number, small enough to assemble well */
1175#define page_ref_zero_or_close_to_overflow(page) \
1176 ((unsigned int) page_ref_count(page) + 127u <= 127u)
1177
1178static inline void get_page(struct page *page)
1179{
1180 page = compound_head(page);
1181 /*
1182 * Getting a normal page or the head of a compound page
1183 * requires to already have an elevated page->_refcount.
1184 */
1185 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
1186 page_ref_inc(page);
1187}
1188
1189bool __must_check try_grab_page(struct page *page, unsigned int flags);
1190__maybe_unused struct page *try_grab_compound_head(struct page *page, int refs,
1191 unsigned int flags);
1192
1193
1194static inline __must_check bool try_get_page(struct page *page)
1195{
1196 page = compound_head(page);
1197 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1198 return false;
1199 page_ref_inc(page);
1200 return true;
1201}
1202
1203static inline void put_page(struct page *page)
1204{
1205 page = compound_head(page);
1206
1207 /*
1208 * For devmap managed pages we need to catch refcount transition from
1209 * 2 to 1, when refcount reach one it means the page is free and we
1210 * need to inform the device driver through callback. See
1211 * include/linux/memremap.h and HMM for details.
1212 */
1213 if (page_is_devmap_managed(page)) {
1214 put_devmap_managed_page(page);
1215 return;
1216 }
1217
1218 if (put_page_testzero(page))
1219 __put_page(page);
1220}
1221
1222/*
1223 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1224 * the page's refcount so that two separate items are tracked: the original page
1225 * reference count, and also a new count of how many pin_user_pages() calls were
1226 * made against the page. ("gup-pinned" is another term for the latter).
1227 *
1228 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1229 * distinct from normal pages. As such, the unpin_user_page() call (and its
1230 * variants) must be used in order to release gup-pinned pages.
1231 *
1232 * Choice of value:
1233 *
1234 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1235 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1236 * simpler, due to the fact that adding an even power of two to the page
1237 * refcount has the effect of using only the upper N bits, for the code that
1238 * counts up using the bias value. This means that the lower bits are left for
1239 * the exclusive use of the original code that increments and decrements by one
1240 * (or at least, by much smaller values than the bias value).
1241 *
1242 * Of course, once the lower bits overflow into the upper bits (and this is
1243 * OK, because subtraction recovers the original values), then visual inspection
1244 * no longer suffices to directly view the separate counts. However, for normal
1245 * applications that don't have huge page reference counts, this won't be an
1246 * issue.
1247 *
1248 * Locking: the lockless algorithm described in page_cache_get_speculative()
1249 * and page_cache_gup_pin_speculative() provides safe operation for
1250 * get_user_pages and page_mkclean and other calls that race to set up page
1251 * table entries.
1252 */
1253#define GUP_PIN_COUNTING_BIAS (1U << 10)
1254
1255void unpin_user_page(struct page *page);
1256void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1257 bool make_dirty);
1258void unpin_user_pages(struct page **pages, unsigned long npages);
1259
1260/**
1261 * page_maybe_dma_pinned() - report if a page is pinned for DMA.
1262 *
1263 * This function checks if a page has been pinned via a call to
1264 * pin_user_pages*().
1265 *
1266 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy,
1267 * because it means "definitely not pinned for DMA", but true means "probably
1268 * pinned for DMA, but possibly a false positive due to having at least
1269 * GUP_PIN_COUNTING_BIAS worth of normal page references".
1270 *
1271 * False positives are OK, because: a) it's unlikely for a page to get that many
1272 * refcounts, and b) all the callers of this routine are expected to be able to
1273 * deal gracefully with a false positive.
1274 *
1275 * For huge pages, the result will be exactly correct. That's because we have
1276 * more tracking data available: the 3rd struct page in the compound page is
1277 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS
1278 * scheme).
1279 *
1280 * For more information, please see Documentation/core-api/pin_user_pages.rst.
1281 *
1282 * @page: pointer to page to be queried.
1283 * @Return: True, if it is likely that the page has been "dma-pinned".
1284 * False, if the page is definitely not dma-pinned.
1285 */
1286static inline bool page_maybe_dma_pinned(struct page *page)
1287{
1288 if (hpage_pincount_available(page))
1289 return compound_pincount(page) > 0;
1290
1291 /*
1292 * page_ref_count() is signed. If that refcount overflows, then
1293 * page_ref_count() returns a negative value, and callers will avoid
1294 * further incrementing the refcount.
1295 *
1296 * Here, for that overflow case, use the signed bit to count a little
1297 * bit higher via unsigned math, and thus still get an accurate result.
1298 */
1299 return ((unsigned int)page_ref_count(compound_head(page))) >=
1300 GUP_PIN_COUNTING_BIAS;
1301}
1302
1303static inline bool is_cow_mapping(vm_flags_t flags)
1304{
1305 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1306}
1307
1308/*
1309 * This should most likely only be called during fork() to see whether we
1310 * should break the cow immediately for a page on the src mm.
1311 */
1312static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
1313 struct page *page)
1314{
1315 if (!is_cow_mapping(vma->vm_flags))
1316 return false;
1317
1318 if (!atomic_read(&vma->vm_mm->has_pinned))
1319 return false;
1320
1321 return page_maybe_dma_pinned(page);
1322}
1323
1324#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1325#define SECTION_IN_PAGE_FLAGS
1326#endif
1327
1328/*
1329 * The identification function is mainly used by the buddy allocator for
1330 * determining if two pages could be buddies. We are not really identifying
1331 * the zone since we could be using the section number id if we do not have
1332 * node id available in page flags.
1333 * We only guarantee that it will return the same value for two combinable
1334 * pages in a zone.
1335 */
1336static inline int page_zone_id(struct page *page)
1337{
1338 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1339}
1340
1341#ifdef NODE_NOT_IN_PAGE_FLAGS
1342extern int page_to_nid(const struct page *page);
1343#else
1344static inline int page_to_nid(const struct page *page)
1345{
1346 struct page *p = (struct page *)page;
1347
1348 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1349}
1350#endif
1351
1352#ifdef CONFIG_NUMA_BALANCING
1353static inline int cpu_pid_to_cpupid(int cpu, int pid)
1354{
1355 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1356}
1357
1358static inline int cpupid_to_pid(int cpupid)
1359{
1360 return cpupid & LAST__PID_MASK;
1361}
1362
1363static inline int cpupid_to_cpu(int cpupid)
1364{
1365 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1366}
1367
1368static inline int cpupid_to_nid(int cpupid)
1369{
1370 return cpu_to_node(cpupid_to_cpu(cpupid));
1371}
1372
1373static inline bool cpupid_pid_unset(int cpupid)
1374{
1375 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1376}
1377
1378static inline bool cpupid_cpu_unset(int cpupid)
1379{
1380 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1381}
1382
1383static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1384{
1385 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1386}
1387
1388#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1389#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1390static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1391{
1392 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1393}
1394
1395static inline int page_cpupid_last(struct page *page)
1396{
1397 return page->_last_cpupid;
1398}
1399static inline void page_cpupid_reset_last(struct page *page)
1400{
1401 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1402}
1403#else
1404static inline int page_cpupid_last(struct page *page)
1405{
1406 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1407}
1408
1409extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1410
1411static inline void page_cpupid_reset_last(struct page *page)
1412{
1413 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1414}
1415#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1416#else /* !CONFIG_NUMA_BALANCING */
1417static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1418{
1419 return page_to_nid(page); /* XXX */
1420}
1421
1422static inline int page_cpupid_last(struct page *page)
1423{
1424 return page_to_nid(page); /* XXX */
1425}
1426
1427static inline int cpupid_to_nid(int cpupid)
1428{
1429 return -1;
1430}
1431
1432static inline int cpupid_to_pid(int cpupid)
1433{
1434 return -1;
1435}
1436
1437static inline int cpupid_to_cpu(int cpupid)
1438{
1439 return -1;
1440}
1441
1442static inline int cpu_pid_to_cpupid(int nid, int pid)
1443{
1444 return -1;
1445}
1446
1447static inline bool cpupid_pid_unset(int cpupid)
1448{
1449 return true;
1450}
1451
1452static inline void page_cpupid_reset_last(struct page *page)
1453{
1454}
1455
1456static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1457{
1458 return false;
1459}
1460#endif /* CONFIG_NUMA_BALANCING */
1461
1462#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1463
1464static inline u8 page_kasan_tag(const struct page *page)
1465{
1466 if (kasan_enabled())
1467 return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1468 return 0xff;
1469}
1470
1471static inline void page_kasan_tag_set(struct page *page, u8 tag)
1472{
1473 if (kasan_enabled()) {
1474 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1475 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1476 }
1477}
1478
1479static inline void page_kasan_tag_reset(struct page *page)
1480{
1481 if (kasan_enabled())
1482 page_kasan_tag_set(page, 0xff);
1483}
1484
1485#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1486
1487static inline u8 page_kasan_tag(const struct page *page)
1488{
1489 return 0xff;
1490}
1491
1492static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1493static inline void page_kasan_tag_reset(struct page *page) { }
1494
1495#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1496
1497static inline struct zone *page_zone(const struct page *page)
1498{
1499 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1500}
1501
1502static inline pg_data_t *page_pgdat(const struct page *page)
1503{
1504 return NODE_DATA(page_to_nid(page));
1505}
1506
1507#ifdef SECTION_IN_PAGE_FLAGS
1508static inline void set_page_section(struct page *page, unsigned long section)
1509{
1510 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1511 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1512}
1513
1514static inline unsigned long page_to_section(const struct page *page)
1515{
1516 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1517}
1518#endif
1519
1520static inline void set_page_zone(struct page *page, enum zone_type zone)
1521{
1522 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1523 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1524}
1525
1526static inline void set_page_node(struct page *page, unsigned long node)
1527{
1528 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1529 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1530}
1531
1532static inline void set_page_links(struct page *page, enum zone_type zone,
1533 unsigned long node, unsigned long pfn)
1534{
1535 set_page_zone(page, zone);
1536 set_page_node(page, node);
1537#ifdef SECTION_IN_PAGE_FLAGS
1538 set_page_section(page, pfn_to_section_nr(pfn));
1539#endif
1540}
1541
1542/*
1543 * Some inline functions in vmstat.h depend on page_zone()
1544 */
1545#include <linux/vmstat.h>
1546
1547static __always_inline void *lowmem_page_address(const struct page *page)
1548{
1549 return page_to_virt(page);
1550}
1551
1552#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1553#define HASHED_PAGE_VIRTUAL
1554#endif
1555
1556#if defined(WANT_PAGE_VIRTUAL)
1557static inline void *page_address(const struct page *page)
1558{
1559 return page->virtual;
1560}
1561static inline void set_page_address(struct page *page, void *address)
1562{
1563 page->virtual = address;
1564}
1565#define page_address_init() do { } while(0)
1566#endif
1567
1568#if defined(HASHED_PAGE_VIRTUAL)
1569void *page_address(const struct page *page);
1570void set_page_address(struct page *page, void *virtual);
1571void page_address_init(void);
1572#endif
1573
1574#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1575#define page_address(page) lowmem_page_address(page)
1576#define set_page_address(page, address) do { } while(0)
1577#define page_address_init() do { } while(0)
1578#endif
1579
1580extern void *page_rmapping(struct page *page);
1581extern struct anon_vma *page_anon_vma(struct page *page);
1582extern struct address_space *page_mapping(struct page *page);
1583
1584extern struct address_space *__page_file_mapping(struct page *);
1585
1586static inline
1587struct address_space *page_file_mapping(struct page *page)
1588{
1589 if (unlikely(PageSwapCache(page)))
1590 return __page_file_mapping(page);
1591
1592 return page->mapping;
1593}
1594
1595extern pgoff_t __page_file_index(struct page *page);
1596
1597/*
1598 * Return the pagecache index of the passed page. Regular pagecache pages
1599 * use ->index whereas swapcache pages use swp_offset(->private)
1600 */
1601static inline pgoff_t page_index(struct page *page)
1602{
1603 if (unlikely(PageSwapCache(page)))
1604 return __page_file_index(page);
1605 return page->index;
1606}
1607
1608bool page_mapped(struct page *page);
1609struct address_space *page_mapping(struct page *page);
1610struct address_space *page_mapping_file(struct page *page);
1611
1612/*
1613 * Return true only if the page has been allocated with
1614 * ALLOC_NO_WATERMARKS and the low watermark was not
1615 * met implying that the system is under some pressure.
1616 */
1617static inline bool page_is_pfmemalloc(const struct page *page)
1618{
1619 /*
1620 * Page index cannot be this large so this must be
1621 * a pfmemalloc page.
1622 */
1623 return page->index == -1UL;
1624}
1625
1626/*
1627 * Only to be called by the page allocator on a freshly allocated
1628 * page.
1629 */
1630static inline void set_page_pfmemalloc(struct page *page)
1631{
1632 page->index = -1UL;
1633}
1634
1635static inline void clear_page_pfmemalloc(struct page *page)
1636{
1637 page->index = 0;
1638}
1639
1640/*
1641 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1642 */
1643extern void pagefault_out_of_memory(void);
1644
1645#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1646#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
1647
1648/*
1649 * Flags passed to show_mem() and show_free_areas() to suppress output in
1650 * various contexts.
1651 */
1652#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1653
1654extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1655
1656#ifdef CONFIG_MMU
1657extern bool can_do_mlock(void);
1658#else
1659static inline bool can_do_mlock(void) { return false; }
1660#endif
1661extern int user_shm_lock(size_t, struct user_struct *);
1662extern void user_shm_unlock(size_t, struct user_struct *);
1663
1664/*
1665 * Parameter block passed down to zap_pte_range in exceptional cases.
1666 */
1667struct zap_details {
1668 struct address_space *check_mapping; /* Check page->mapping if set */
1669 pgoff_t first_index; /* Lowest page->index to unmap */
1670 pgoff_t last_index; /* Highest page->index to unmap */
1671};
1672
1673struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1674 pte_t pte);
1675struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1676 pmd_t pmd);
1677
1678void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1679 unsigned long size);
1680void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1681 unsigned long size);
1682void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1683 unsigned long start, unsigned long end);
1684
1685struct mmu_notifier_range;
1686
1687void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1688 unsigned long end, unsigned long floor, unsigned long ceiling);
1689int
1690copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
1691int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
1692 struct mmu_notifier_range *range, pte_t **ptepp,
1693 pmd_t **pmdpp, spinlock_t **ptlp);
1694int follow_pte(struct mm_struct *mm, unsigned long address,
1695 pte_t **ptepp, spinlock_t **ptlp);
1696int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1697 unsigned long *pfn);
1698int follow_phys(struct vm_area_struct *vma, unsigned long address,
1699 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1700int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1701 void *buf, int len, int write);
1702
1703extern void truncate_pagecache(struct inode *inode, loff_t new);
1704extern void truncate_setsize(struct inode *inode, loff_t newsize);
1705void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1706void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1707int truncate_inode_page(struct address_space *mapping, struct page *page);
1708int generic_error_remove_page(struct address_space *mapping, struct page *page);
1709int invalidate_inode_page(struct page *page);
1710
1711#ifdef CONFIG_MMU
1712extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1713 unsigned long address, unsigned int flags,
1714 struct pt_regs *regs);
1715extern int fixup_user_fault(struct mm_struct *mm,
1716 unsigned long address, unsigned int fault_flags,
1717 bool *unlocked);
1718void unmap_mapping_pages(struct address_space *mapping,
1719 pgoff_t start, pgoff_t nr, bool even_cows);
1720void unmap_mapping_range(struct address_space *mapping,
1721 loff_t const holebegin, loff_t const holelen, int even_cows);
1722#else
1723static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1724 unsigned long address, unsigned int flags,
1725 struct pt_regs *regs)
1726{
1727 /* should never happen if there's no MMU */
1728 BUG();
1729 return VM_FAULT_SIGBUS;
1730}
1731static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
1732 unsigned int fault_flags, bool *unlocked)
1733{
1734 /* should never happen if there's no MMU */
1735 BUG();
1736 return -EFAULT;
1737}
1738static inline void unmap_mapping_pages(struct address_space *mapping,
1739 pgoff_t start, pgoff_t nr, bool even_cows) { }
1740static inline void unmap_mapping_range(struct address_space *mapping,
1741 loff_t const holebegin, loff_t const holelen, int even_cows) { }
1742#endif
1743
1744static inline void unmap_shared_mapping_range(struct address_space *mapping,
1745 loff_t const holebegin, loff_t const holelen)
1746{
1747 unmap_mapping_range(mapping, holebegin, holelen, 0);
1748}
1749
1750extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1751 void *buf, int len, unsigned int gup_flags);
1752extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1753 void *buf, int len, unsigned int gup_flags);
1754extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
1755 void *buf, int len, unsigned int gup_flags);
1756
1757long get_user_pages_remote(struct mm_struct *mm,
1758 unsigned long start, unsigned long nr_pages,
1759 unsigned int gup_flags, struct page **pages,
1760 struct vm_area_struct **vmas, int *locked);
1761long pin_user_pages_remote(struct mm_struct *mm,
1762 unsigned long start, unsigned long nr_pages,
1763 unsigned int gup_flags, struct page **pages,
1764 struct vm_area_struct **vmas, int *locked);
1765long get_user_pages(unsigned long start, unsigned long nr_pages,
1766 unsigned int gup_flags, struct page **pages,
1767 struct vm_area_struct **vmas);
1768long pin_user_pages(unsigned long start, unsigned long nr_pages,
1769 unsigned int gup_flags, struct page **pages,
1770 struct vm_area_struct **vmas);
1771long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1772 unsigned int gup_flags, struct page **pages, int *locked);
1773long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
1774 unsigned int gup_flags, struct page **pages, int *locked);
1775long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1776 struct page **pages, unsigned int gup_flags);
1777long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1778 struct page **pages, unsigned int gup_flags);
1779
1780int get_user_pages_fast(unsigned long start, int nr_pages,
1781 unsigned int gup_flags, struct page **pages);
1782int pin_user_pages_fast(unsigned long start, int nr_pages,
1783 unsigned int gup_flags, struct page **pages);
1784
1785int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1786int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1787 struct task_struct *task, bool bypass_rlim);
1788
1789struct kvec;
1790int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1791 struct page **pages);
1792int get_kernel_page(unsigned long start, int write, struct page **pages);
1793struct page *get_dump_page(unsigned long addr);
1794
1795extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1796extern void do_invalidatepage(struct page *page, unsigned int offset,
1797 unsigned int length);
1798
1799void __set_page_dirty(struct page *, struct address_space *, int warn);
1800int __set_page_dirty_nobuffers(struct page *page);
1801int __set_page_dirty_no_writeback(struct page *page);
1802int redirty_page_for_writepage(struct writeback_control *wbc,
1803 struct page *page);
1804void account_page_dirtied(struct page *page, struct address_space *mapping);
1805void account_page_cleaned(struct page *page, struct address_space *mapping,
1806 struct bdi_writeback *wb);
1807int set_page_dirty(struct page *page);
1808int set_page_dirty_lock(struct page *page);
1809void __cancel_dirty_page(struct page *page);
1810static inline void cancel_dirty_page(struct page *page)
1811{
1812 /* Avoid atomic ops, locking, etc. when not actually needed. */
1813 if (PageDirty(page))
1814 __cancel_dirty_page(page);
1815}
1816int clear_page_dirty_for_io(struct page *page);
1817
1818int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1819
1820extern unsigned long move_page_tables(struct vm_area_struct *vma,
1821 unsigned long old_addr, struct vm_area_struct *new_vma,
1822 unsigned long new_addr, unsigned long len,
1823 bool need_rmap_locks);
1824
1825/*
1826 * Flags used by change_protection(). For now we make it a bitmap so
1827 * that we can pass in multiple flags just like parameters. However
1828 * for now all the callers are only use one of the flags at the same
1829 * time.
1830 */
1831/* Whether we should allow dirty bit accounting */
1832#define MM_CP_DIRTY_ACCT (1UL << 0)
1833/* Whether this protection change is for NUMA hints */
1834#define MM_CP_PROT_NUMA (1UL << 1)
1835/* Whether this change is for write protecting */
1836#define MM_CP_UFFD_WP (1UL << 2) /* do wp */
1837#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
1838#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
1839 MM_CP_UFFD_WP_RESOLVE)
1840
1841extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1842 unsigned long end, pgprot_t newprot,
1843 unsigned long cp_flags);
1844extern int mprotect_fixup(struct vm_area_struct *vma,
1845 struct vm_area_struct **pprev, unsigned long start,
1846 unsigned long end, unsigned long newflags);
1847
1848/*
1849 * doesn't attempt to fault and will return short.
1850 */
1851int get_user_pages_fast_only(unsigned long start, int nr_pages,
1852 unsigned int gup_flags, struct page **pages);
1853int pin_user_pages_fast_only(unsigned long start, int nr_pages,
1854 unsigned int gup_flags, struct page **pages);
1855
1856static inline bool get_user_page_fast_only(unsigned long addr,
1857 unsigned int gup_flags, struct page **pagep)
1858{
1859 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
1860}
1861/*
1862 * per-process(per-mm_struct) statistics.
1863 */
1864static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1865{
1866 long val = atomic_long_read(&mm->rss_stat.count[member]);
1867
1868#ifdef SPLIT_RSS_COUNTING
1869 /*
1870 * counter is updated in asynchronous manner and may go to minus.
1871 * But it's never be expected number for users.
1872 */
1873 if (val < 0)
1874 val = 0;
1875#endif
1876 return (unsigned long)val;
1877}
1878
1879void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
1880
1881static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1882{
1883 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
1884
1885 mm_trace_rss_stat(mm, member, count);
1886}
1887
1888static inline void inc_mm_counter(struct mm_struct *mm, int member)
1889{
1890 long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
1891
1892 mm_trace_rss_stat(mm, member, count);
1893}
1894
1895static inline void dec_mm_counter(struct mm_struct *mm, int member)
1896{
1897 long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
1898
1899 mm_trace_rss_stat(mm, member, count);
1900}
1901
1902/* Optimized variant when page is already known not to be PageAnon */
1903static inline int mm_counter_file(struct page *page)
1904{
1905 if (PageSwapBacked(page))
1906 return MM_SHMEMPAGES;
1907 return MM_FILEPAGES;
1908}
1909
1910static inline int mm_counter(struct page *page)
1911{
1912 if (PageAnon(page))
1913 return MM_ANONPAGES;
1914 return mm_counter_file(page);
1915}
1916
1917static inline unsigned long get_mm_rss(struct mm_struct *mm)
1918{
1919 return get_mm_counter(mm, MM_FILEPAGES) +
1920 get_mm_counter(mm, MM_ANONPAGES) +
1921 get_mm_counter(mm, MM_SHMEMPAGES);
1922}
1923
1924static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1925{
1926 return max(mm->hiwater_rss, get_mm_rss(mm));
1927}
1928
1929static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1930{
1931 return max(mm->hiwater_vm, mm->total_vm);
1932}
1933
1934static inline void update_hiwater_rss(struct mm_struct *mm)
1935{
1936 unsigned long _rss = get_mm_rss(mm);
1937
1938 if ((mm)->hiwater_rss < _rss)
1939 (mm)->hiwater_rss = _rss;
1940}
1941
1942static inline void update_hiwater_vm(struct mm_struct *mm)
1943{
1944 if (mm->hiwater_vm < mm->total_vm)
1945 mm->hiwater_vm = mm->total_vm;
1946}
1947
1948static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1949{
1950 mm->hiwater_rss = get_mm_rss(mm);
1951}
1952
1953static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1954 struct mm_struct *mm)
1955{
1956 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1957
1958 if (*maxrss < hiwater_rss)
1959 *maxrss = hiwater_rss;
1960}
1961
1962#if defined(SPLIT_RSS_COUNTING)
1963void sync_mm_rss(struct mm_struct *mm);
1964#else
1965static inline void sync_mm_rss(struct mm_struct *mm)
1966{
1967}
1968#endif
1969
1970#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
1971static inline int pte_special(pte_t pte)
1972{
1973 return 0;
1974}
1975
1976static inline pte_t pte_mkspecial(pte_t pte)
1977{
1978 return pte;
1979}
1980#endif
1981
1982#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
1983static inline int pte_devmap(pte_t pte)
1984{
1985 return 0;
1986}
1987#endif
1988
1989int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1990
1991extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1992 spinlock_t **ptl);
1993static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1994 spinlock_t **ptl)
1995{
1996 pte_t *ptep;
1997 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1998 return ptep;
1999}
2000
2001#ifdef __PAGETABLE_P4D_FOLDED
2002static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2003 unsigned long address)
2004{
2005 return 0;
2006}
2007#else
2008int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2009#endif
2010
2011#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2012static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2013 unsigned long address)
2014{
2015 return 0;
2016}
2017static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2018static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2019
2020#else
2021int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2022
2023static inline void mm_inc_nr_puds(struct mm_struct *mm)
2024{
2025 if (mm_pud_folded(mm))
2026 return;
2027 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2028}
2029
2030static inline void mm_dec_nr_puds(struct mm_struct *mm)
2031{
2032 if (mm_pud_folded(mm))
2033 return;
2034 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2035}
2036#endif
2037
2038#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2039static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2040 unsigned long address)
2041{
2042 return 0;
2043}
2044
2045static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2046static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2047
2048#else
2049int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2050
2051static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2052{
2053 if (mm_pmd_folded(mm))
2054 return;
2055 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2056}
2057
2058static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2059{
2060 if (mm_pmd_folded(mm))
2061 return;
2062 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2063}
2064#endif
2065
2066#ifdef CONFIG_MMU
2067static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2068{
2069 atomic_long_set(&mm->pgtables_bytes, 0);
2070}
2071
2072static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2073{
2074 return atomic_long_read(&mm->pgtables_bytes);
2075}
2076
2077static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2078{
2079 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2080}
2081
2082static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2083{
2084 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2085}
2086#else
2087
2088static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2089static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2090{
2091 return 0;
2092}
2093
2094static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2095static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2096#endif
2097
2098int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2099int __pte_alloc_kernel(pmd_t *pmd);
2100
2101#if defined(CONFIG_MMU)
2102
2103static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2104 unsigned long address)
2105{
2106 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2107 NULL : p4d_offset(pgd, address);
2108}
2109
2110static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2111 unsigned long address)
2112{
2113 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2114 NULL : pud_offset(p4d, address);
2115}
2116
2117static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2118{
2119 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2120 NULL: pmd_offset(pud, address);
2121}
2122#endif /* CONFIG_MMU */
2123
2124#if USE_SPLIT_PTE_PTLOCKS
2125#if ALLOC_SPLIT_PTLOCKS
2126void __init ptlock_cache_init(void);
2127extern bool ptlock_alloc(struct page *page);
2128extern void ptlock_free(struct page *page);
2129
2130static inline spinlock_t *ptlock_ptr(struct page *page)
2131{
2132 return page->ptl;
2133}
2134#else /* ALLOC_SPLIT_PTLOCKS */
2135static inline void ptlock_cache_init(void)
2136{
2137}
2138
2139static inline bool ptlock_alloc(struct page *page)
2140{
2141 return true;
2142}
2143
2144static inline void ptlock_free(struct page *page)
2145{
2146}
2147
2148static inline spinlock_t *ptlock_ptr(struct page *page)
2149{
2150 return &page->ptl;
2151}
2152#endif /* ALLOC_SPLIT_PTLOCKS */
2153
2154static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2155{
2156 return ptlock_ptr(pmd_page(*pmd));
2157}
2158
2159static inline bool ptlock_init(struct page *page)
2160{
2161 /*
2162 * prep_new_page() initialize page->private (and therefore page->ptl)
2163 * with 0. Make sure nobody took it in use in between.
2164 *
2165 * It can happen if arch try to use slab for page table allocation:
2166 * slab code uses page->slab_cache, which share storage with page->ptl.
2167 */
2168 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
2169 if (!ptlock_alloc(page))
2170 return false;
2171 spin_lock_init(ptlock_ptr(page));
2172 return true;
2173}
2174
2175#else /* !USE_SPLIT_PTE_PTLOCKS */
2176/*
2177 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2178 */
2179static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2180{
2181 return &mm->page_table_lock;
2182}
2183static inline void ptlock_cache_init(void) {}
2184static inline bool ptlock_init(struct page *page) { return true; }
2185static inline void ptlock_free(struct page *page) {}
2186#endif /* USE_SPLIT_PTE_PTLOCKS */
2187
2188static inline void pgtable_init(void)
2189{
2190 ptlock_cache_init();
2191 pgtable_cache_init();
2192}
2193
2194static inline bool pgtable_pte_page_ctor(struct page *page)
2195{
2196 if (!ptlock_init(page))
2197 return false;
2198 __SetPageTable(page);
2199 inc_lruvec_page_state(page, NR_PAGETABLE);
2200 return true;
2201}
2202
2203static inline void pgtable_pte_page_dtor(struct page *page)
2204{
2205 ptlock_free(page);
2206 __ClearPageTable(page);
2207 dec_lruvec_page_state(page, NR_PAGETABLE);
2208}
2209
2210#define pte_offset_map_lock(mm, pmd, address, ptlp) \
2211({ \
2212 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
2213 pte_t *__pte = pte_offset_map(pmd, address); \
2214 *(ptlp) = __ptl; \
2215 spin_lock(__ptl); \
2216 __pte; \
2217})
2218
2219#define pte_unmap_unlock(pte, ptl) do { \
2220 spin_unlock(ptl); \
2221 pte_unmap(pte); \
2222} while (0)
2223
2224#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2225
2226#define pte_alloc_map(mm, pmd, address) \
2227 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2228
2229#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
2230 (pte_alloc(mm, pmd) ? \
2231 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2232
2233#define pte_alloc_kernel(pmd, address) \
2234 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2235 NULL: pte_offset_kernel(pmd, address))
2236
2237#if USE_SPLIT_PMD_PTLOCKS
2238
2239static struct page *pmd_to_page(pmd_t *pmd)
2240{
2241 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2242 return virt_to_page((void *)((unsigned long) pmd & mask));
2243}
2244
2245static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2246{
2247 return ptlock_ptr(pmd_to_page(pmd));
2248}
2249
2250static inline bool pmd_ptlock_init(struct page *page)
2251{
2252#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2253 page->pmd_huge_pte = NULL;
2254#endif
2255 return ptlock_init(page);
2256}
2257
2258static inline void pmd_ptlock_free(struct page *page)
2259{
2260#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2261 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2262#endif
2263 ptlock_free(page);
2264}
2265
2266#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2267
2268#else
2269
2270static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2271{
2272 return &mm->page_table_lock;
2273}
2274
2275static inline bool pmd_ptlock_init(struct page *page) { return true; }
2276static inline void pmd_ptlock_free(struct page *page) {}
2277
2278#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2279
2280#endif
2281
2282static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2283{
2284 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2285 spin_lock(ptl);
2286 return ptl;
2287}
2288
2289static inline bool pgtable_pmd_page_ctor(struct page *page)
2290{
2291 if (!pmd_ptlock_init(page))
2292 return false;
2293 __SetPageTable(page);
2294 inc_lruvec_page_state(page, NR_PAGETABLE);
2295 return true;
2296}
2297
2298static inline void pgtable_pmd_page_dtor(struct page *page)
2299{
2300 pmd_ptlock_free(page);
2301 __ClearPageTable(page);
2302 dec_lruvec_page_state(page, NR_PAGETABLE);
2303}
2304
2305/*
2306 * No scalability reason to split PUD locks yet, but follow the same pattern
2307 * as the PMD locks to make it easier if we decide to. The VM should not be
2308 * considered ready to switch to split PUD locks yet; there may be places
2309 * which need to be converted from page_table_lock.
2310 */
2311static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2312{
2313 return &mm->page_table_lock;
2314}
2315
2316static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2317{
2318 spinlock_t *ptl = pud_lockptr(mm, pud);
2319
2320 spin_lock(ptl);
2321 return ptl;
2322}
2323
2324extern void __init pagecache_init(void);
2325extern void __init free_area_init_memoryless_node(int nid);
2326extern void free_initmem(void);
2327
2328/*
2329 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2330 * into the buddy system. The freed pages will be poisoned with pattern
2331 * "poison" if it's within range [0, UCHAR_MAX].
2332 * Return pages freed into the buddy system.
2333 */
2334extern unsigned long free_reserved_area(void *start, void *end,
2335 int poison, const char *s);
2336
2337extern void adjust_managed_page_count(struct page *page, long count);
2338extern void mem_init_print_info(const char *str);
2339
2340extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2341
2342/* Free the reserved page into the buddy system, so it gets managed. */
2343static inline void free_reserved_page(struct page *page)
2344{
2345 ClearPageReserved(page);
2346 init_page_count(page);
2347 __free_page(page);
2348 adjust_managed_page_count(page, 1);
2349}
2350#define free_highmem_page(page) free_reserved_page(page)
2351
2352static inline void mark_page_reserved(struct page *page)
2353{
2354 SetPageReserved(page);
2355 adjust_managed_page_count(page, -1);
2356}
2357
2358/*
2359 * Default method to free all the __init memory into the buddy system.
2360 * The freed pages will be poisoned with pattern "poison" if it's within
2361 * range [0, UCHAR_MAX].
2362 * Return pages freed into the buddy system.
2363 */
2364static inline unsigned long free_initmem_default(int poison)
2365{
2366 extern char __init_begin[], __init_end[];
2367
2368 return free_reserved_area(&__init_begin, &__init_end,
2369 poison, "unused kernel");
2370}
2371
2372static inline unsigned long get_num_physpages(void)
2373{
2374 int nid;
2375 unsigned long phys_pages = 0;
2376
2377 for_each_online_node(nid)
2378 phys_pages += node_present_pages(nid);
2379
2380 return phys_pages;
2381}
2382
2383/*
2384 * Using memblock node mappings, an architecture may initialise its
2385 * zones, allocate the backing mem_map and account for memory holes in an
2386 * architecture independent manner.
2387 *
2388 * An architecture is expected to register range of page frames backed by
2389 * physical memory with memblock_add[_node]() before calling
2390 * free_area_init() passing in the PFN each zone ends at. At a basic
2391 * usage, an architecture is expected to do something like
2392 *
2393 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2394 * max_highmem_pfn};
2395 * for_each_valid_physical_page_range()
2396 * memblock_add_node(base, size, nid)
2397 * free_area_init(max_zone_pfns);
2398 */
2399void free_area_init(unsigned long *max_zone_pfn);
2400unsigned long node_map_pfn_alignment(void);
2401unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2402 unsigned long end_pfn);
2403extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2404 unsigned long end_pfn);
2405extern void get_pfn_range_for_nid(unsigned int nid,
2406 unsigned long *start_pfn, unsigned long *end_pfn);
2407extern unsigned long find_min_pfn_with_active_regions(void);
2408
2409#ifndef CONFIG_NEED_MULTIPLE_NODES
2410static inline int early_pfn_to_nid(unsigned long pfn)
2411{
2412 return 0;
2413}
2414#else
2415/* please see mm/page_alloc.c */
2416extern int __meminit early_pfn_to_nid(unsigned long pfn);
2417#endif
2418
2419extern void set_dma_reserve(unsigned long new_dma_reserve);
2420extern void memmap_init_range(unsigned long, int, unsigned long,
2421 unsigned long, unsigned long, enum meminit_context,
2422 struct vmem_altmap *, int migratetype);
2423extern void memmap_init_zone(struct zone *zone);
2424extern void setup_per_zone_wmarks(void);
2425extern int __meminit init_per_zone_wmark_min(void);
2426extern void mem_init(void);
2427extern void __init mmap_init(void);
2428extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2429extern long si_mem_available(void);
2430extern void si_meminfo(struct sysinfo * val);
2431extern void si_meminfo_node(struct sysinfo *val, int nid);
2432#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2433extern unsigned long arch_reserved_kernel_pages(void);
2434#endif
2435
2436extern __printf(3, 4)
2437void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2438
2439extern void setup_per_cpu_pageset(void);
2440
2441/* page_alloc.c */
2442extern int min_free_kbytes;
2443extern int watermark_boost_factor;
2444extern int watermark_scale_factor;
2445extern bool arch_has_descending_max_zone_pfns(void);
2446
2447/* nommu.c */
2448extern atomic_long_t mmap_pages_allocated;
2449extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2450
2451/* interval_tree.c */
2452void vma_interval_tree_insert(struct vm_area_struct *node,
2453 struct rb_root_cached *root);
2454void vma_interval_tree_insert_after(struct vm_area_struct *node,
2455 struct vm_area_struct *prev,
2456 struct rb_root_cached *root);
2457void vma_interval_tree_remove(struct vm_area_struct *node,
2458 struct rb_root_cached *root);
2459struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2460 unsigned long start, unsigned long last);
2461struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2462 unsigned long start, unsigned long last);
2463
2464#define vma_interval_tree_foreach(vma, root, start, last) \
2465 for (vma = vma_interval_tree_iter_first(root, start, last); \
2466 vma; vma = vma_interval_tree_iter_next(vma, start, last))
2467
2468void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2469 struct rb_root_cached *root);
2470void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2471 struct rb_root_cached *root);
2472struct anon_vma_chain *
2473anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2474 unsigned long start, unsigned long last);
2475struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2476 struct anon_vma_chain *node, unsigned long start, unsigned long last);
2477#ifdef CONFIG_DEBUG_VM_RB
2478void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2479#endif
2480
2481#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2482 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2483 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2484
2485/* mmap.c */
2486extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2487extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2488 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2489 struct vm_area_struct *expand);
2490static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2491 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2492{
2493 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2494}
2495extern struct vm_area_struct *vma_merge(struct mm_struct *,
2496 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2497 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2498 struct mempolicy *, struct vm_userfaultfd_ctx);
2499extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2500extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2501 unsigned long addr, int new_below);
2502extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2503 unsigned long addr, int new_below);
2504extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2505extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2506 struct rb_node **, struct rb_node *);
2507extern void unlink_file_vma(struct vm_area_struct *);
2508extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2509 unsigned long addr, unsigned long len, pgoff_t pgoff,
2510 bool *need_rmap_locks);
2511extern void exit_mmap(struct mm_struct *);
2512
2513static inline int check_data_rlimit(unsigned long rlim,
2514 unsigned long new,
2515 unsigned long start,
2516 unsigned long end_data,
2517 unsigned long start_data)
2518{
2519 if (rlim < RLIM_INFINITY) {
2520 if (((new - start) + (end_data - start_data)) > rlim)
2521 return -ENOSPC;
2522 }
2523
2524 return 0;
2525}
2526
2527extern int mm_take_all_locks(struct mm_struct *mm);
2528extern void mm_drop_all_locks(struct mm_struct *mm);
2529
2530extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2531extern struct file *get_mm_exe_file(struct mm_struct *mm);
2532extern struct file *get_task_exe_file(struct task_struct *task);
2533
2534extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2535extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2536
2537extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2538 const struct vm_special_mapping *sm);
2539extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2540 unsigned long addr, unsigned long len,
2541 unsigned long flags,
2542 const struct vm_special_mapping *spec);
2543/* This is an obsolete alternative to _install_special_mapping. */
2544extern int install_special_mapping(struct mm_struct *mm,
2545 unsigned long addr, unsigned long len,
2546 unsigned long flags, struct page **pages);
2547
2548unsigned long randomize_stack_top(unsigned long stack_top);
2549
2550extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2551
2552extern unsigned long mmap_region(struct file *file, unsigned long addr,
2553 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2554 struct list_head *uf);
2555extern unsigned long do_mmap(struct file *file, unsigned long addr,
2556 unsigned long len, unsigned long prot, unsigned long flags,
2557 unsigned long pgoff, unsigned long *populate, struct list_head *uf);
2558extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2559 struct list_head *uf, bool downgrade);
2560extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2561 struct list_head *uf);
2562extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
2563
2564#ifdef CONFIG_MMU
2565extern int __mm_populate(unsigned long addr, unsigned long len,
2566 int ignore_errors);
2567static inline void mm_populate(unsigned long addr, unsigned long len)
2568{
2569 /* Ignore errors */
2570 (void) __mm_populate(addr, len, 1);
2571}
2572#else
2573static inline void mm_populate(unsigned long addr, unsigned long len) {}
2574#endif
2575
2576/* These take the mm semaphore themselves */
2577extern int __must_check vm_brk(unsigned long, unsigned long);
2578extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2579extern int vm_munmap(unsigned long, size_t);
2580extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2581 unsigned long, unsigned long,
2582 unsigned long, unsigned long);
2583
2584struct vm_unmapped_area_info {
2585#define VM_UNMAPPED_AREA_TOPDOWN 1
2586 unsigned long flags;
2587 unsigned long length;
2588 unsigned long low_limit;
2589 unsigned long high_limit;
2590 unsigned long align_mask;
2591 unsigned long align_offset;
2592};
2593
2594extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
2595
2596/* truncate.c */
2597extern void truncate_inode_pages(struct address_space *, loff_t);
2598extern void truncate_inode_pages_range(struct address_space *,
2599 loff_t lstart, loff_t lend);
2600extern void truncate_inode_pages_final(struct address_space *);
2601
2602/* generic vm_area_ops exported for stackable file systems */
2603extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2604extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
2605 pgoff_t start_pgoff, pgoff_t end_pgoff);
2606extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2607
2608/* mm/page-writeback.c */
2609int __must_check write_one_page(struct page *page);
2610void task_dirty_inc(struct task_struct *tsk);
2611
2612extern unsigned long stack_guard_gap;
2613/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2614extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2615
2616/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
2617extern int expand_downwards(struct vm_area_struct *vma,
2618 unsigned long address);
2619#if VM_GROWSUP
2620extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2621#else
2622 #define expand_upwards(vma, address) (0)
2623#endif
2624
2625/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2626extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2627extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2628 struct vm_area_struct **pprev);
2629
2630/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2631 NULL if none. Assume start_addr < end_addr. */
2632static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2633{
2634 struct vm_area_struct * vma = find_vma(mm,start_addr);
2635
2636 if (vma && end_addr <= vma->vm_start)
2637 vma = NULL;
2638 return vma;
2639}
2640
2641static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2642{
2643 unsigned long vm_start = vma->vm_start;
2644
2645 if (vma->vm_flags & VM_GROWSDOWN) {
2646 vm_start -= stack_guard_gap;
2647 if (vm_start > vma->vm_start)
2648 vm_start = 0;
2649 }
2650 return vm_start;
2651}
2652
2653static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2654{
2655 unsigned long vm_end = vma->vm_end;
2656
2657 if (vma->vm_flags & VM_GROWSUP) {
2658 vm_end += stack_guard_gap;
2659 if (vm_end < vma->vm_end)
2660 vm_end = -PAGE_SIZE;
2661 }
2662 return vm_end;
2663}
2664
2665static inline unsigned long vma_pages(struct vm_area_struct *vma)
2666{
2667 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2668}
2669
2670/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2671static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2672 unsigned long vm_start, unsigned long vm_end)
2673{
2674 struct vm_area_struct *vma = find_vma(mm, vm_start);
2675
2676 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2677 vma = NULL;
2678
2679 return vma;
2680}
2681
2682static inline bool range_in_vma(struct vm_area_struct *vma,
2683 unsigned long start, unsigned long end)
2684{
2685 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2686}
2687
2688#ifdef CONFIG_MMU
2689pgprot_t vm_get_page_prot(unsigned long vm_flags);
2690void vma_set_page_prot(struct vm_area_struct *vma);
2691#else
2692static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2693{
2694 return __pgprot(0);
2695}
2696static inline void vma_set_page_prot(struct vm_area_struct *vma)
2697{
2698 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2699}
2700#endif
2701
2702void vma_set_file(struct vm_area_struct *vma, struct file *file);
2703
2704#ifdef CONFIG_NUMA_BALANCING
2705unsigned long change_prot_numa(struct vm_area_struct *vma,
2706 unsigned long start, unsigned long end);
2707#endif
2708
2709struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2710int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2711 unsigned long pfn, unsigned long size, pgprot_t);
2712int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2713int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2714 struct page **pages, unsigned long *num);
2715int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2716 unsigned long num);
2717int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2718 unsigned long num);
2719vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2720 unsigned long pfn);
2721vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2722 unsigned long pfn, pgprot_t pgprot);
2723vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2724 pfn_t pfn);
2725vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2726 pfn_t pfn, pgprot_t pgprot);
2727vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2728 unsigned long addr, pfn_t pfn);
2729int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2730
2731static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2732 unsigned long addr, struct page *page)
2733{
2734 int err = vm_insert_page(vma, addr, page);
2735
2736 if (err == -ENOMEM)
2737 return VM_FAULT_OOM;
2738 if (err < 0 && err != -EBUSY)
2739 return VM_FAULT_SIGBUS;
2740
2741 return VM_FAULT_NOPAGE;
2742}
2743
2744#ifndef io_remap_pfn_range
2745static inline int io_remap_pfn_range(struct vm_area_struct *vma,
2746 unsigned long addr, unsigned long pfn,
2747 unsigned long size, pgprot_t prot)
2748{
2749 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
2750}
2751#endif
2752
2753static inline vm_fault_t vmf_error(int err)
2754{
2755 if (err == -ENOMEM)
2756 return VM_FAULT_OOM;
2757 return VM_FAULT_SIGBUS;
2758}
2759
2760struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2761 unsigned int foll_flags);
2762
2763#define FOLL_WRITE 0x01 /* check pte is writable */
2764#define FOLL_TOUCH 0x02 /* mark page accessed */
2765#define FOLL_GET 0x04 /* do get_page on page */
2766#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2767#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2768#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2769 * and return without waiting upon it */
2770#define FOLL_POPULATE 0x40 /* fault in page */
2771#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2772#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2773#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2774#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2775#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2776#define FOLL_MLOCK 0x1000 /* lock present pages */
2777#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
2778#define FOLL_COW 0x4000 /* internal GUP flag */
2779#define FOLL_ANON 0x8000 /* don't do file mappings */
2780#define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */
2781#define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */
2782#define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */
2783#define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */
2784
2785/*
2786 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2787 * other. Here is what they mean, and how to use them:
2788 *
2789 * FOLL_LONGTERM indicates that the page will be held for an indefinite time
2790 * period _often_ under userspace control. This is in contrast to
2791 * iov_iter_get_pages(), whose usages are transient.
2792 *
2793 * FIXME: For pages which are part of a filesystem, mappings are subject to the
2794 * lifetime enforced by the filesystem and we need guarantees that longterm
2795 * users like RDMA and V4L2 only establish mappings which coordinate usage with
2796 * the filesystem. Ideas for this coordination include revoking the longterm
2797 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
2798 * added after the problem with filesystems was found FS DAX VMAs are
2799 * specifically failed. Filesystem pages are still subject to bugs and use of
2800 * FOLL_LONGTERM should be avoided on those pages.
2801 *
2802 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2803 * Currently only get_user_pages() and get_user_pages_fast() support this flag
2804 * and calls to get_user_pages_[un]locked are specifically not allowed. This
2805 * is due to an incompatibility with the FS DAX check and
2806 * FAULT_FLAG_ALLOW_RETRY.
2807 *
2808 * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2809 * that region. And so, CMA attempts to migrate the page before pinning, when
2810 * FOLL_LONGTERM is specified.
2811 *
2812 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2813 * but an additional pin counting system) will be invoked. This is intended for
2814 * anything that gets a page reference and then touches page data (for example,
2815 * Direct IO). This lets the filesystem know that some non-file-system entity is
2816 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2817 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
2818 * a call to unpin_user_page().
2819 *
2820 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2821 * and separate refcounting mechanisms, however, and that means that each has
2822 * its own acquire and release mechanisms:
2823 *
2824 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
2825 *
2826 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
2827 *
2828 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
2829 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
2830 * calls applied to them, and that's perfectly OK. This is a constraint on the
2831 * callers, not on the pages.)
2832 *
2833 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
2834 * directly by the caller. That's in order to help avoid mismatches when
2835 * releasing pages: get_user_pages*() pages must be released via put_page(),
2836 * while pin_user_pages*() pages must be released via unpin_user_page().
2837 *
2838 * Please see Documentation/core-api/pin_user_pages.rst for more information.
2839 */
2840
2841static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
2842{
2843 if (vm_fault & VM_FAULT_OOM)
2844 return -ENOMEM;
2845 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2846 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2847 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2848 return -EFAULT;
2849 return 0;
2850}
2851
2852typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
2853extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2854 unsigned long size, pte_fn_t fn, void *data);
2855extern int apply_to_existing_page_range(struct mm_struct *mm,
2856 unsigned long address, unsigned long size,
2857 pte_fn_t fn, void *data);
2858
2859extern void init_mem_debugging_and_hardening(void);
2860#ifdef CONFIG_PAGE_POISONING
2861extern void __kernel_poison_pages(struct page *page, int numpages);
2862extern void __kernel_unpoison_pages(struct page *page, int numpages);
2863extern bool _page_poisoning_enabled_early;
2864DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
2865static inline bool page_poisoning_enabled(void)
2866{
2867 return _page_poisoning_enabled_early;
2868}
2869/*
2870 * For use in fast paths after init_mem_debugging() has run, or when a
2871 * false negative result is not harmful when called too early.
2872 */
2873static inline bool page_poisoning_enabled_static(void)
2874{
2875 return static_branch_unlikely(&_page_poisoning_enabled);
2876}
2877static inline void kernel_poison_pages(struct page *page, int numpages)
2878{
2879 if (page_poisoning_enabled_static())
2880 __kernel_poison_pages(page, numpages);
2881}
2882static inline void kernel_unpoison_pages(struct page *page, int numpages)
2883{
2884 if (page_poisoning_enabled_static())
2885 __kernel_unpoison_pages(page, numpages);
2886}
2887#else
2888static inline bool page_poisoning_enabled(void) { return false; }
2889static inline bool page_poisoning_enabled_static(void) { return false; }
2890static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
2891static inline void kernel_poison_pages(struct page *page, int numpages) { }
2892static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
2893#endif
2894
2895DECLARE_STATIC_KEY_FALSE(init_on_alloc);
2896static inline bool want_init_on_alloc(gfp_t flags)
2897{
2898 if (static_branch_unlikely(&init_on_alloc))
2899 return true;
2900 return flags & __GFP_ZERO;
2901}
2902
2903DECLARE_STATIC_KEY_FALSE(init_on_free);
2904static inline bool want_init_on_free(void)
2905{
2906 return static_branch_unlikely(&init_on_free);
2907}
2908
2909extern bool _debug_pagealloc_enabled_early;
2910DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
2911
2912static inline bool debug_pagealloc_enabled(void)
2913{
2914 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
2915 _debug_pagealloc_enabled_early;
2916}
2917
2918/*
2919 * For use in fast paths after init_debug_pagealloc() has run, or when a
2920 * false negative result is not harmful when called too early.
2921 */
2922static inline bool debug_pagealloc_enabled_static(void)
2923{
2924 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
2925 return false;
2926
2927 return static_branch_unlikely(&_debug_pagealloc_enabled);
2928}
2929
2930#ifdef CONFIG_DEBUG_PAGEALLOC
2931/*
2932 * To support DEBUG_PAGEALLOC architecture must ensure that
2933 * __kernel_map_pages() never fails
2934 */
2935extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2936
2937static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
2938{
2939 if (debug_pagealloc_enabled_static())
2940 __kernel_map_pages(page, numpages, 1);
2941}
2942
2943static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
2944{
2945 if (debug_pagealloc_enabled_static())
2946 __kernel_map_pages(page, numpages, 0);
2947}
2948#else /* CONFIG_DEBUG_PAGEALLOC */
2949static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
2950static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
2951#endif /* CONFIG_DEBUG_PAGEALLOC */
2952
2953#ifdef __HAVE_ARCH_GATE_AREA
2954extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2955extern int in_gate_area_no_mm(unsigned long addr);
2956extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2957#else
2958static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2959{
2960 return NULL;
2961}
2962static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2963static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2964{
2965 return 0;
2966}
2967#endif /* __HAVE_ARCH_GATE_AREA */
2968
2969extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2970
2971#ifdef CONFIG_SYSCTL
2972extern int sysctl_drop_caches;
2973int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
2974 loff_t *);
2975#endif
2976
2977void drop_slab(void);
2978void drop_slab_node(int nid);
2979
2980#ifndef CONFIG_MMU
2981#define randomize_va_space 0
2982#else
2983extern int randomize_va_space;
2984#endif
2985
2986const char * arch_vma_name(struct vm_area_struct *vma);
2987#ifdef CONFIG_MMU
2988void print_vma_addr(char *prefix, unsigned long rip);
2989#else
2990static inline void print_vma_addr(char *prefix, unsigned long rip)
2991{
2992}
2993#endif
2994
2995void *sparse_buffer_alloc(unsigned long size);
2996struct page * __populate_section_memmap(unsigned long pfn,
2997 unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
2998pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2999p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3000pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3001pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3002pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3003 struct vmem_altmap *altmap);
3004void *vmemmap_alloc_block(unsigned long size, int node);
3005struct vmem_altmap;
3006void *vmemmap_alloc_block_buf(unsigned long size, int node,
3007 struct vmem_altmap *altmap);
3008void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3009int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3010 int node, struct vmem_altmap *altmap);
3011int vmemmap_populate(unsigned long start, unsigned long end, int node,
3012 struct vmem_altmap *altmap);
3013void vmemmap_populate_print_last(void);
3014#ifdef CONFIG_MEMORY_HOTPLUG
3015void vmemmap_free(unsigned long start, unsigned long end,
3016 struct vmem_altmap *altmap);
3017#endif
3018void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3019 unsigned long nr_pages);
3020
3021enum mf_flags {
3022 MF_COUNT_INCREASED = 1 << 0,
3023 MF_ACTION_REQUIRED = 1 << 1,
3024 MF_MUST_KILL = 1 << 2,
3025 MF_SOFT_OFFLINE = 1 << 3,
3026};
3027extern int memory_failure(unsigned long pfn, int flags);
3028extern void memory_failure_queue(unsigned long pfn, int flags);
3029extern void memory_failure_queue_kick(int cpu);
3030extern int unpoison_memory(unsigned long pfn);
3031extern int sysctl_memory_failure_early_kill;
3032extern int sysctl_memory_failure_recovery;
3033extern void shake_page(struct page *p, int access);
3034extern atomic_long_t num_poisoned_pages __read_mostly;
3035extern int soft_offline_page(unsigned long pfn, int flags);
3036
3037
3038/*
3039 * Error handlers for various types of pages.
3040 */
3041enum mf_result {
3042 MF_IGNORED, /* Error: cannot be handled */
3043 MF_FAILED, /* Error: handling failed */
3044 MF_DELAYED, /* Will be handled later */
3045 MF_RECOVERED, /* Successfully recovered */
3046};
3047
3048enum mf_action_page_type {
3049 MF_MSG_KERNEL,
3050 MF_MSG_KERNEL_HIGH_ORDER,
3051 MF_MSG_SLAB,
3052 MF_MSG_DIFFERENT_COMPOUND,
3053 MF_MSG_POISONED_HUGE,
3054 MF_MSG_HUGE,
3055 MF_MSG_FREE_HUGE,
3056 MF_MSG_NON_PMD_HUGE,
3057 MF_MSG_UNMAP_FAILED,
3058 MF_MSG_DIRTY_SWAPCACHE,
3059 MF_MSG_CLEAN_SWAPCACHE,
3060 MF_MSG_DIRTY_MLOCKED_LRU,
3061 MF_MSG_CLEAN_MLOCKED_LRU,
3062 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3063 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3064 MF_MSG_DIRTY_LRU,
3065 MF_MSG_CLEAN_LRU,
3066 MF_MSG_TRUNCATED_LRU,
3067 MF_MSG_BUDDY,
3068 MF_MSG_BUDDY_2ND,
3069 MF_MSG_DAX,
3070 MF_MSG_UNSPLIT_THP,
3071 MF_MSG_UNKNOWN,
3072};
3073
3074#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3075extern void clear_huge_page(struct page *page,
3076 unsigned long addr_hint,
3077 unsigned int pages_per_huge_page);
3078extern void copy_user_huge_page(struct page *dst, struct page *src,
3079 unsigned long addr_hint,
3080 struct vm_area_struct *vma,
3081 unsigned int pages_per_huge_page);
3082extern long copy_huge_page_from_user(struct page *dst_page,
3083 const void __user *usr_src,
3084 unsigned int pages_per_huge_page,
3085 bool allow_pagefault);
3086
3087/**
3088 * vma_is_special_huge - Are transhuge page-table entries considered special?
3089 * @vma: Pointer to the struct vm_area_struct to consider
3090 *
3091 * Whether transhuge page-table entries are considered "special" following
3092 * the definition in vm_normal_page().
3093 *
3094 * Return: true if transhuge page-table entries should be considered special,
3095 * false otherwise.
3096 */
3097static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3098{
3099 return vma_is_dax(vma) || (vma->vm_file &&
3100 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3101}
3102
3103#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3104
3105#ifdef CONFIG_DEBUG_PAGEALLOC
3106extern unsigned int _debug_guardpage_minorder;
3107DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3108
3109static inline unsigned int debug_guardpage_minorder(void)
3110{
3111 return _debug_guardpage_minorder;
3112}
3113
3114static inline bool debug_guardpage_enabled(void)
3115{
3116 return static_branch_unlikely(&_debug_guardpage_enabled);
3117}
3118
3119static inline bool page_is_guard(struct page *page)
3120{
3121 if (!debug_guardpage_enabled())
3122 return false;
3123
3124 return PageGuard(page);
3125}
3126#else
3127static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3128static inline bool debug_guardpage_enabled(void) { return false; }
3129static inline bool page_is_guard(struct page *page) { return false; }
3130#endif /* CONFIG_DEBUG_PAGEALLOC */
3131
3132#if MAX_NUMNODES > 1
3133void __init setup_nr_node_ids(void);
3134#else
3135static inline void setup_nr_node_ids(void) {}
3136#endif
3137
3138extern int memcmp_pages(struct page *page1, struct page *page2);
3139
3140static inline int pages_identical(struct page *page1, struct page *page2)
3141{
3142 return !memcmp_pages(page1, page2);
3143}
3144
3145#ifdef CONFIG_MAPPING_DIRTY_HELPERS
3146unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3147 pgoff_t first_index, pgoff_t nr,
3148 pgoff_t bitmap_pgoff,
3149 unsigned long *bitmap,
3150 pgoff_t *start,
3151 pgoff_t *end);
3152
3153unsigned long wp_shared_mapping_range(struct address_space *mapping,
3154 pgoff_t first_index, pgoff_t nr);
3155#endif
3156
3157extern int sysctl_nr_trim_pages;
3158
3159void mem_dump_obj(void *object);
3160
3161#endif /* __KERNEL__ */
3162#endif /* _LINUX_MM_H */