Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Generic OPP Interface
4 *
5 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6 * Nishanth Menon
7 * Romit Dasgupta
8 * Kevin Hilman
9 */
10
11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13#include <linux/clk.h>
14#include <linux/errno.h>
15#include <linux/err.h>
16#include <linux/slab.h>
17#include <linux/device.h>
18#include <linux/export.h>
19#include <linux/pm_domain.h>
20#include <linux/regulator/consumer.h>
21
22#include "opp.h"
23
24/*
25 * The root of the list of all opp-tables. All opp_table structures branch off
26 * from here, with each opp_table containing the list of opps it supports in
27 * various states of availability.
28 */
29LIST_HEAD(opp_tables);
30
31/* OPP tables with uninitialized required OPPs */
32LIST_HEAD(lazy_opp_tables);
33
34/* Lock to allow exclusive modification to the device and opp lists */
35DEFINE_MUTEX(opp_table_lock);
36/* Flag indicating that opp_tables list is being updated at the moment */
37static bool opp_tables_busy;
38
39static bool _find_opp_dev(const struct device *dev, struct opp_table *opp_table)
40{
41 struct opp_device *opp_dev;
42 bool found = false;
43
44 mutex_lock(&opp_table->lock);
45 list_for_each_entry(opp_dev, &opp_table->dev_list, node)
46 if (opp_dev->dev == dev) {
47 found = true;
48 break;
49 }
50
51 mutex_unlock(&opp_table->lock);
52 return found;
53}
54
55static struct opp_table *_find_opp_table_unlocked(struct device *dev)
56{
57 struct opp_table *opp_table;
58
59 list_for_each_entry(opp_table, &opp_tables, node) {
60 if (_find_opp_dev(dev, opp_table)) {
61 _get_opp_table_kref(opp_table);
62 return opp_table;
63 }
64 }
65
66 return ERR_PTR(-ENODEV);
67}
68
69/**
70 * _find_opp_table() - find opp_table struct using device pointer
71 * @dev: device pointer used to lookup OPP table
72 *
73 * Search OPP table for one containing matching device.
74 *
75 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
76 * -EINVAL based on type of error.
77 *
78 * The callers must call dev_pm_opp_put_opp_table() after the table is used.
79 */
80struct opp_table *_find_opp_table(struct device *dev)
81{
82 struct opp_table *opp_table;
83
84 if (IS_ERR_OR_NULL(dev)) {
85 pr_err("%s: Invalid parameters\n", __func__);
86 return ERR_PTR(-EINVAL);
87 }
88
89 mutex_lock(&opp_table_lock);
90 opp_table = _find_opp_table_unlocked(dev);
91 mutex_unlock(&opp_table_lock);
92
93 return opp_table;
94}
95
96/**
97 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
98 * @opp: opp for which voltage has to be returned for
99 *
100 * Return: voltage in micro volt corresponding to the opp, else
101 * return 0
102 *
103 * This is useful only for devices with single power supply.
104 */
105unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
106{
107 if (IS_ERR_OR_NULL(opp)) {
108 pr_err("%s: Invalid parameters\n", __func__);
109 return 0;
110 }
111
112 return opp->supplies[0].u_volt;
113}
114EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
115
116/**
117 * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp
118 * @opp: opp for which frequency has to be returned for
119 *
120 * Return: frequency in hertz corresponding to the opp, else
121 * return 0
122 */
123unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp)
124{
125 if (IS_ERR_OR_NULL(opp)) {
126 pr_err("%s: Invalid parameters\n", __func__);
127 return 0;
128 }
129
130 return opp->rate;
131}
132EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq);
133
134/**
135 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
136 * @opp: opp for which level value has to be returned for
137 *
138 * Return: level read from device tree corresponding to the opp, else
139 * return 0.
140 */
141unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
142{
143 if (IS_ERR_OR_NULL(opp) || !opp->available) {
144 pr_err("%s: Invalid parameters\n", __func__);
145 return 0;
146 }
147
148 return opp->level;
149}
150EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
151
152/**
153 * dev_pm_opp_get_required_pstate() - Gets the required performance state
154 * corresponding to an available opp
155 * @opp: opp for which performance state has to be returned for
156 * @index: index of the required opp
157 *
158 * Return: performance state read from device tree corresponding to the
159 * required opp, else return 0.
160 */
161unsigned int dev_pm_opp_get_required_pstate(struct dev_pm_opp *opp,
162 unsigned int index)
163{
164 if (IS_ERR_OR_NULL(opp) || !opp->available ||
165 index >= opp->opp_table->required_opp_count) {
166 pr_err("%s: Invalid parameters\n", __func__);
167 return 0;
168 }
169
170 /* required-opps not fully initialized yet */
171 if (lazy_linking_pending(opp->opp_table))
172 return 0;
173
174 return opp->required_opps[index]->pstate;
175}
176EXPORT_SYMBOL_GPL(dev_pm_opp_get_required_pstate);
177
178/**
179 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
180 * @opp: opp for which turbo mode is being verified
181 *
182 * Turbo OPPs are not for normal use, and can be enabled (under certain
183 * conditions) for short duration of times to finish high throughput work
184 * quickly. Running on them for longer times may overheat the chip.
185 *
186 * Return: true if opp is turbo opp, else false.
187 */
188bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
189{
190 if (IS_ERR_OR_NULL(opp) || !opp->available) {
191 pr_err("%s: Invalid parameters\n", __func__);
192 return false;
193 }
194
195 return opp->turbo;
196}
197EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
198
199/**
200 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
201 * @dev: device for which we do this operation
202 *
203 * Return: This function returns the max clock latency in nanoseconds.
204 */
205unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
206{
207 struct opp_table *opp_table;
208 unsigned long clock_latency_ns;
209
210 opp_table = _find_opp_table(dev);
211 if (IS_ERR(opp_table))
212 return 0;
213
214 clock_latency_ns = opp_table->clock_latency_ns_max;
215
216 dev_pm_opp_put_opp_table(opp_table);
217
218 return clock_latency_ns;
219}
220EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
221
222/**
223 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
224 * @dev: device for which we do this operation
225 *
226 * Return: This function returns the max voltage latency in nanoseconds.
227 */
228unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
229{
230 struct opp_table *opp_table;
231 struct dev_pm_opp *opp;
232 struct regulator *reg;
233 unsigned long latency_ns = 0;
234 int ret, i, count;
235 struct {
236 unsigned long min;
237 unsigned long max;
238 } *uV;
239
240 opp_table = _find_opp_table(dev);
241 if (IS_ERR(opp_table))
242 return 0;
243
244 /* Regulator may not be required for the device */
245 if (!opp_table->regulators)
246 goto put_opp_table;
247
248 count = opp_table->regulator_count;
249
250 uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
251 if (!uV)
252 goto put_opp_table;
253
254 mutex_lock(&opp_table->lock);
255
256 for (i = 0; i < count; i++) {
257 uV[i].min = ~0;
258 uV[i].max = 0;
259
260 list_for_each_entry(opp, &opp_table->opp_list, node) {
261 if (!opp->available)
262 continue;
263
264 if (opp->supplies[i].u_volt_min < uV[i].min)
265 uV[i].min = opp->supplies[i].u_volt_min;
266 if (opp->supplies[i].u_volt_max > uV[i].max)
267 uV[i].max = opp->supplies[i].u_volt_max;
268 }
269 }
270
271 mutex_unlock(&opp_table->lock);
272
273 /*
274 * The caller needs to ensure that opp_table (and hence the regulator)
275 * isn't freed, while we are executing this routine.
276 */
277 for (i = 0; i < count; i++) {
278 reg = opp_table->regulators[i];
279 ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
280 if (ret > 0)
281 latency_ns += ret * 1000;
282 }
283
284 kfree(uV);
285put_opp_table:
286 dev_pm_opp_put_opp_table(opp_table);
287
288 return latency_ns;
289}
290EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
291
292/**
293 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
294 * nanoseconds
295 * @dev: device for which we do this operation
296 *
297 * Return: This function returns the max transition latency, in nanoseconds, to
298 * switch from one OPP to other.
299 */
300unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
301{
302 return dev_pm_opp_get_max_volt_latency(dev) +
303 dev_pm_opp_get_max_clock_latency(dev);
304}
305EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
306
307/**
308 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
309 * @dev: device for which we do this operation
310 *
311 * Return: This function returns the frequency of the OPP marked as suspend_opp
312 * if one is available, else returns 0;
313 */
314unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
315{
316 struct opp_table *opp_table;
317 unsigned long freq = 0;
318
319 opp_table = _find_opp_table(dev);
320 if (IS_ERR(opp_table))
321 return 0;
322
323 if (opp_table->suspend_opp && opp_table->suspend_opp->available)
324 freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
325
326 dev_pm_opp_put_opp_table(opp_table);
327
328 return freq;
329}
330EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
331
332int _get_opp_count(struct opp_table *opp_table)
333{
334 struct dev_pm_opp *opp;
335 int count = 0;
336
337 mutex_lock(&opp_table->lock);
338
339 list_for_each_entry(opp, &opp_table->opp_list, node) {
340 if (opp->available)
341 count++;
342 }
343
344 mutex_unlock(&opp_table->lock);
345
346 return count;
347}
348
349/**
350 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
351 * @dev: device for which we do this operation
352 *
353 * Return: This function returns the number of available opps if there are any,
354 * else returns 0 if none or the corresponding error value.
355 */
356int dev_pm_opp_get_opp_count(struct device *dev)
357{
358 struct opp_table *opp_table;
359 int count;
360
361 opp_table = _find_opp_table(dev);
362 if (IS_ERR(opp_table)) {
363 count = PTR_ERR(opp_table);
364 dev_dbg(dev, "%s: OPP table not found (%d)\n",
365 __func__, count);
366 return count;
367 }
368
369 count = _get_opp_count(opp_table);
370 dev_pm_opp_put_opp_table(opp_table);
371
372 return count;
373}
374EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
375
376/**
377 * dev_pm_opp_find_freq_exact() - search for an exact frequency
378 * @dev: device for which we do this operation
379 * @freq: frequency to search for
380 * @available: true/false - match for available opp
381 *
382 * Return: Searches for exact match in the opp table and returns pointer to the
383 * matching opp if found, else returns ERR_PTR in case of error and should
384 * be handled using IS_ERR. Error return values can be:
385 * EINVAL: for bad pointer
386 * ERANGE: no match found for search
387 * ENODEV: if device not found in list of registered devices
388 *
389 * Note: available is a modifier for the search. if available=true, then the
390 * match is for exact matching frequency and is available in the stored OPP
391 * table. if false, the match is for exact frequency which is not available.
392 *
393 * This provides a mechanism to enable an opp which is not available currently
394 * or the opposite as well.
395 *
396 * The callers are required to call dev_pm_opp_put() for the returned OPP after
397 * use.
398 */
399struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
400 unsigned long freq,
401 bool available)
402{
403 struct opp_table *opp_table;
404 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
405
406 opp_table = _find_opp_table(dev);
407 if (IS_ERR(opp_table)) {
408 int r = PTR_ERR(opp_table);
409
410 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
411 return ERR_PTR(r);
412 }
413
414 mutex_lock(&opp_table->lock);
415
416 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
417 if (temp_opp->available == available &&
418 temp_opp->rate == freq) {
419 opp = temp_opp;
420
421 /* Increment the reference count of OPP */
422 dev_pm_opp_get(opp);
423 break;
424 }
425 }
426
427 mutex_unlock(&opp_table->lock);
428 dev_pm_opp_put_opp_table(opp_table);
429
430 return opp;
431}
432EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
433
434/**
435 * dev_pm_opp_find_level_exact() - search for an exact level
436 * @dev: device for which we do this operation
437 * @level: level to search for
438 *
439 * Return: Searches for exact match in the opp table and returns pointer to the
440 * matching opp if found, else returns ERR_PTR in case of error and should
441 * be handled using IS_ERR. Error return values can be:
442 * EINVAL: for bad pointer
443 * ERANGE: no match found for search
444 * ENODEV: if device not found in list of registered devices
445 *
446 * The callers are required to call dev_pm_opp_put() for the returned OPP after
447 * use.
448 */
449struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
450 unsigned int level)
451{
452 struct opp_table *opp_table;
453 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
454
455 opp_table = _find_opp_table(dev);
456 if (IS_ERR(opp_table)) {
457 int r = PTR_ERR(opp_table);
458
459 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
460 return ERR_PTR(r);
461 }
462
463 mutex_lock(&opp_table->lock);
464
465 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
466 if (temp_opp->level == level) {
467 opp = temp_opp;
468
469 /* Increment the reference count of OPP */
470 dev_pm_opp_get(opp);
471 break;
472 }
473 }
474
475 mutex_unlock(&opp_table->lock);
476 dev_pm_opp_put_opp_table(opp_table);
477
478 return opp;
479}
480EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
481
482/**
483 * dev_pm_opp_find_level_ceil() - search for an rounded up level
484 * @dev: device for which we do this operation
485 * @level: level to search for
486 *
487 * Return: Searches for rounded up match in the opp table and returns pointer
488 * to the matching opp if found, else returns ERR_PTR in case of error and
489 * should be handled using IS_ERR. Error return values can be:
490 * EINVAL: for bad pointer
491 * ERANGE: no match found for search
492 * ENODEV: if device not found in list of registered devices
493 *
494 * The callers are required to call dev_pm_opp_put() for the returned OPP after
495 * use.
496 */
497struct dev_pm_opp *dev_pm_opp_find_level_ceil(struct device *dev,
498 unsigned int *level)
499{
500 struct opp_table *opp_table;
501 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
502
503 opp_table = _find_opp_table(dev);
504 if (IS_ERR(opp_table)) {
505 int r = PTR_ERR(opp_table);
506
507 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
508 return ERR_PTR(r);
509 }
510
511 mutex_lock(&opp_table->lock);
512
513 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
514 if (temp_opp->available && temp_opp->level >= *level) {
515 opp = temp_opp;
516 *level = opp->level;
517
518 /* Increment the reference count of OPP */
519 dev_pm_opp_get(opp);
520 break;
521 }
522 }
523
524 mutex_unlock(&opp_table->lock);
525 dev_pm_opp_put_opp_table(opp_table);
526
527 return opp;
528}
529EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_ceil);
530
531static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
532 unsigned long *freq)
533{
534 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
535
536 mutex_lock(&opp_table->lock);
537
538 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
539 if (temp_opp->available && temp_opp->rate >= *freq) {
540 opp = temp_opp;
541 *freq = opp->rate;
542
543 /* Increment the reference count of OPP */
544 dev_pm_opp_get(opp);
545 break;
546 }
547 }
548
549 mutex_unlock(&opp_table->lock);
550
551 return opp;
552}
553
554/**
555 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
556 * @dev: device for which we do this operation
557 * @freq: Start frequency
558 *
559 * Search for the matching ceil *available* OPP from a starting freq
560 * for a device.
561 *
562 * Return: matching *opp and refreshes *freq accordingly, else returns
563 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
564 * values can be:
565 * EINVAL: for bad pointer
566 * ERANGE: no match found for search
567 * ENODEV: if device not found in list of registered devices
568 *
569 * The callers are required to call dev_pm_opp_put() for the returned OPP after
570 * use.
571 */
572struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
573 unsigned long *freq)
574{
575 struct opp_table *opp_table;
576 struct dev_pm_opp *opp;
577
578 if (!dev || !freq) {
579 dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
580 return ERR_PTR(-EINVAL);
581 }
582
583 opp_table = _find_opp_table(dev);
584 if (IS_ERR(opp_table))
585 return ERR_CAST(opp_table);
586
587 opp = _find_freq_ceil(opp_table, freq);
588
589 dev_pm_opp_put_opp_table(opp_table);
590
591 return opp;
592}
593EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
594
595/**
596 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
597 * @dev: device for which we do this operation
598 * @freq: Start frequency
599 *
600 * Search for the matching floor *available* OPP from a starting freq
601 * for a device.
602 *
603 * Return: matching *opp and refreshes *freq accordingly, else returns
604 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
605 * values can be:
606 * EINVAL: for bad pointer
607 * ERANGE: no match found for search
608 * ENODEV: if device not found in list of registered devices
609 *
610 * The callers are required to call dev_pm_opp_put() for the returned OPP after
611 * use.
612 */
613struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
614 unsigned long *freq)
615{
616 struct opp_table *opp_table;
617 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
618
619 if (!dev || !freq) {
620 dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
621 return ERR_PTR(-EINVAL);
622 }
623
624 opp_table = _find_opp_table(dev);
625 if (IS_ERR(opp_table))
626 return ERR_CAST(opp_table);
627
628 mutex_lock(&opp_table->lock);
629
630 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
631 if (temp_opp->available) {
632 /* go to the next node, before choosing prev */
633 if (temp_opp->rate > *freq)
634 break;
635 else
636 opp = temp_opp;
637 }
638 }
639
640 /* Increment the reference count of OPP */
641 if (!IS_ERR(opp))
642 dev_pm_opp_get(opp);
643 mutex_unlock(&opp_table->lock);
644 dev_pm_opp_put_opp_table(opp_table);
645
646 if (!IS_ERR(opp))
647 *freq = opp->rate;
648
649 return opp;
650}
651EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
652
653/**
654 * dev_pm_opp_find_freq_ceil_by_volt() - Find OPP with highest frequency for
655 * target voltage.
656 * @dev: Device for which we do this operation.
657 * @u_volt: Target voltage.
658 *
659 * Search for OPP with highest (ceil) frequency and has voltage <= u_volt.
660 *
661 * Return: matching *opp, else returns ERR_PTR in case of error which should be
662 * handled using IS_ERR.
663 *
664 * Error return values can be:
665 * EINVAL: bad parameters
666 *
667 * The callers are required to call dev_pm_opp_put() for the returned OPP after
668 * use.
669 */
670struct dev_pm_opp *dev_pm_opp_find_freq_ceil_by_volt(struct device *dev,
671 unsigned long u_volt)
672{
673 struct opp_table *opp_table;
674 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
675
676 if (!dev || !u_volt) {
677 dev_err(dev, "%s: Invalid argument volt=%lu\n", __func__,
678 u_volt);
679 return ERR_PTR(-EINVAL);
680 }
681
682 opp_table = _find_opp_table(dev);
683 if (IS_ERR(opp_table))
684 return ERR_CAST(opp_table);
685
686 mutex_lock(&opp_table->lock);
687
688 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
689 if (temp_opp->available) {
690 if (temp_opp->supplies[0].u_volt > u_volt)
691 break;
692 opp = temp_opp;
693 }
694 }
695
696 /* Increment the reference count of OPP */
697 if (!IS_ERR(opp))
698 dev_pm_opp_get(opp);
699
700 mutex_unlock(&opp_table->lock);
701 dev_pm_opp_put_opp_table(opp_table);
702
703 return opp;
704}
705EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_by_volt);
706
707static int _set_opp_voltage(struct device *dev, struct regulator *reg,
708 struct dev_pm_opp_supply *supply)
709{
710 int ret;
711
712 /* Regulator not available for device */
713 if (IS_ERR(reg)) {
714 dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
715 PTR_ERR(reg));
716 return 0;
717 }
718
719 dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
720 supply->u_volt_min, supply->u_volt, supply->u_volt_max);
721
722 ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
723 supply->u_volt, supply->u_volt_max);
724 if (ret)
725 dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
726 __func__, supply->u_volt_min, supply->u_volt,
727 supply->u_volt_max, ret);
728
729 return ret;
730}
731
732static inline int _generic_set_opp_clk_only(struct device *dev, struct clk *clk,
733 unsigned long freq)
734{
735 int ret;
736
737 /* We may reach here for devices which don't change frequency */
738 if (IS_ERR(clk))
739 return 0;
740
741 ret = clk_set_rate(clk, freq);
742 if (ret) {
743 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
744 ret);
745 }
746
747 return ret;
748}
749
750static int _generic_set_opp_regulator(struct opp_table *opp_table,
751 struct device *dev,
752 struct dev_pm_opp *opp,
753 unsigned long freq,
754 int scaling_down)
755{
756 struct regulator *reg = opp_table->regulators[0];
757 struct dev_pm_opp *old_opp = opp_table->current_opp;
758 int ret;
759
760 /* This function only supports single regulator per device */
761 if (WARN_ON(opp_table->regulator_count > 1)) {
762 dev_err(dev, "multiple regulators are not supported\n");
763 return -EINVAL;
764 }
765
766 /* Scaling up? Scale voltage before frequency */
767 if (!scaling_down) {
768 ret = _set_opp_voltage(dev, reg, opp->supplies);
769 if (ret)
770 goto restore_voltage;
771 }
772
773 /* Change frequency */
774 ret = _generic_set_opp_clk_only(dev, opp_table->clk, freq);
775 if (ret)
776 goto restore_voltage;
777
778 /* Scaling down? Scale voltage after frequency */
779 if (scaling_down) {
780 ret = _set_opp_voltage(dev, reg, opp->supplies);
781 if (ret)
782 goto restore_freq;
783 }
784
785 /*
786 * Enable the regulator after setting its voltages, otherwise it breaks
787 * some boot-enabled regulators.
788 */
789 if (unlikely(!opp_table->enabled)) {
790 ret = regulator_enable(reg);
791 if (ret < 0)
792 dev_warn(dev, "Failed to enable regulator: %d", ret);
793 }
794
795 return 0;
796
797restore_freq:
798 if (_generic_set_opp_clk_only(dev, opp_table->clk, old_opp->rate))
799 dev_err(dev, "%s: failed to restore old-freq (%lu Hz)\n",
800 __func__, old_opp->rate);
801restore_voltage:
802 /* This shouldn't harm even if the voltages weren't updated earlier */
803 _set_opp_voltage(dev, reg, old_opp->supplies);
804
805 return ret;
806}
807
808static int _set_opp_bw(const struct opp_table *opp_table,
809 struct dev_pm_opp *opp, struct device *dev)
810{
811 u32 avg, peak;
812 int i, ret;
813
814 if (!opp_table->paths)
815 return 0;
816
817 for (i = 0; i < opp_table->path_count; i++) {
818 if (!opp) {
819 avg = 0;
820 peak = 0;
821 } else {
822 avg = opp->bandwidth[i].avg;
823 peak = opp->bandwidth[i].peak;
824 }
825 ret = icc_set_bw(opp_table->paths[i], avg, peak);
826 if (ret) {
827 dev_err(dev, "Failed to %s bandwidth[%d]: %d\n",
828 opp ? "set" : "remove", i, ret);
829 return ret;
830 }
831 }
832
833 return 0;
834}
835
836static int _set_opp_custom(const struct opp_table *opp_table,
837 struct device *dev, struct dev_pm_opp *opp,
838 unsigned long freq)
839{
840 struct dev_pm_set_opp_data *data = opp_table->set_opp_data;
841 struct dev_pm_opp *old_opp = opp_table->current_opp;
842 int size;
843
844 /*
845 * We support this only if dev_pm_opp_set_regulators() was called
846 * earlier.
847 */
848 if (opp_table->sod_supplies) {
849 size = sizeof(*old_opp->supplies) * opp_table->regulator_count;
850 memcpy(data->old_opp.supplies, old_opp->supplies, size);
851 memcpy(data->new_opp.supplies, opp->supplies, size);
852 data->regulator_count = opp_table->regulator_count;
853 } else {
854 data->regulator_count = 0;
855 }
856
857 data->regulators = opp_table->regulators;
858 data->clk = opp_table->clk;
859 data->dev = dev;
860 data->old_opp.rate = old_opp->rate;
861 data->new_opp.rate = freq;
862
863 return opp_table->set_opp(data);
864}
865
866static int _set_required_opp(struct device *dev, struct device *pd_dev,
867 struct dev_pm_opp *opp, int i)
868{
869 unsigned int pstate = likely(opp) ? opp->required_opps[i]->pstate : 0;
870 int ret;
871
872 if (!pd_dev)
873 return 0;
874
875 ret = dev_pm_genpd_set_performance_state(pd_dev, pstate);
876 if (ret) {
877 dev_err(dev, "Failed to set performance rate of %s: %d (%d)\n",
878 dev_name(pd_dev), pstate, ret);
879 }
880
881 return ret;
882}
883
884/* This is only called for PM domain for now */
885static int _set_required_opps(struct device *dev,
886 struct opp_table *opp_table,
887 struct dev_pm_opp *opp, bool up)
888{
889 struct opp_table **required_opp_tables = opp_table->required_opp_tables;
890 struct device **genpd_virt_devs = opp_table->genpd_virt_devs;
891 int i, ret = 0;
892
893 if (!required_opp_tables)
894 return 0;
895
896 /* required-opps not fully initialized yet */
897 if (lazy_linking_pending(opp_table))
898 return -EBUSY;
899
900 /* Single genpd case */
901 if (!genpd_virt_devs)
902 return _set_required_opp(dev, dev, opp, 0);
903
904 /* Multiple genpd case */
905
906 /*
907 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev
908 * after it is freed from another thread.
909 */
910 mutex_lock(&opp_table->genpd_virt_dev_lock);
911
912 /* Scaling up? Set required OPPs in normal order, else reverse */
913 if (up) {
914 for (i = 0; i < opp_table->required_opp_count; i++) {
915 ret = _set_required_opp(dev, genpd_virt_devs[i], opp, i);
916 if (ret)
917 break;
918 }
919 } else {
920 for (i = opp_table->required_opp_count - 1; i >= 0; i--) {
921 ret = _set_required_opp(dev, genpd_virt_devs[i], opp, i);
922 if (ret)
923 break;
924 }
925 }
926
927 mutex_unlock(&opp_table->genpd_virt_dev_lock);
928
929 return ret;
930}
931
932static void _find_current_opp(struct device *dev, struct opp_table *opp_table)
933{
934 struct dev_pm_opp *opp = ERR_PTR(-ENODEV);
935 unsigned long freq;
936
937 if (!IS_ERR(opp_table->clk)) {
938 freq = clk_get_rate(opp_table->clk);
939 opp = _find_freq_ceil(opp_table, &freq);
940 }
941
942 /*
943 * Unable to find the current OPP ? Pick the first from the list since
944 * it is in ascending order, otherwise rest of the code will need to
945 * make special checks to validate current_opp.
946 */
947 if (IS_ERR(opp)) {
948 mutex_lock(&opp_table->lock);
949 opp = list_first_entry(&opp_table->opp_list, struct dev_pm_opp, node);
950 dev_pm_opp_get(opp);
951 mutex_unlock(&opp_table->lock);
952 }
953
954 opp_table->current_opp = opp;
955}
956
957static int _disable_opp_table(struct device *dev, struct opp_table *opp_table)
958{
959 int ret;
960
961 if (!opp_table->enabled)
962 return 0;
963
964 /*
965 * Some drivers need to support cases where some platforms may
966 * have OPP table for the device, while others don't and
967 * opp_set_rate() just needs to behave like clk_set_rate().
968 */
969 if (!_get_opp_count(opp_table))
970 return 0;
971
972 ret = _set_opp_bw(opp_table, NULL, dev);
973 if (ret)
974 return ret;
975
976 if (opp_table->regulators)
977 regulator_disable(opp_table->regulators[0]);
978
979 ret = _set_required_opps(dev, opp_table, NULL, false);
980
981 opp_table->enabled = false;
982 return ret;
983}
984
985static int _set_opp(struct device *dev, struct opp_table *opp_table,
986 struct dev_pm_opp *opp, unsigned long freq)
987{
988 struct dev_pm_opp *old_opp;
989 int scaling_down, ret;
990
991 if (unlikely(!opp))
992 return _disable_opp_table(dev, opp_table);
993
994 /* Find the currently set OPP if we don't know already */
995 if (unlikely(!opp_table->current_opp))
996 _find_current_opp(dev, opp_table);
997
998 old_opp = opp_table->current_opp;
999
1000 /* Return early if nothing to do */
1001 if (old_opp == opp && opp_table->current_rate == freq &&
1002 opp_table->enabled) {
1003 dev_dbg(dev, "%s: OPPs are same, nothing to do\n", __func__);
1004 return 0;
1005 }
1006
1007 dev_dbg(dev, "%s: switching OPP: Freq %lu -> %lu Hz, Level %u -> %u, Bw %u -> %u\n",
1008 __func__, opp_table->current_rate, freq, old_opp->level,
1009 opp->level, old_opp->bandwidth ? old_opp->bandwidth[0].peak : 0,
1010 opp->bandwidth ? opp->bandwidth[0].peak : 0);
1011
1012 scaling_down = _opp_compare_key(old_opp, opp);
1013 if (scaling_down == -1)
1014 scaling_down = 0;
1015
1016 /* Scaling up? Configure required OPPs before frequency */
1017 if (!scaling_down) {
1018 ret = _set_required_opps(dev, opp_table, opp, true);
1019 if (ret) {
1020 dev_err(dev, "Failed to set required opps: %d\n", ret);
1021 return ret;
1022 }
1023
1024 ret = _set_opp_bw(opp_table, opp, dev);
1025 if (ret) {
1026 dev_err(dev, "Failed to set bw: %d\n", ret);
1027 return ret;
1028 }
1029 }
1030
1031 if (opp_table->set_opp) {
1032 ret = _set_opp_custom(opp_table, dev, opp, freq);
1033 } else if (opp_table->regulators) {
1034 ret = _generic_set_opp_regulator(opp_table, dev, opp, freq,
1035 scaling_down);
1036 } else {
1037 /* Only frequency scaling */
1038 ret = _generic_set_opp_clk_only(dev, opp_table->clk, freq);
1039 }
1040
1041 if (ret)
1042 return ret;
1043
1044 /* Scaling down? Configure required OPPs after frequency */
1045 if (scaling_down) {
1046 ret = _set_opp_bw(opp_table, opp, dev);
1047 if (ret) {
1048 dev_err(dev, "Failed to set bw: %d\n", ret);
1049 return ret;
1050 }
1051
1052 ret = _set_required_opps(dev, opp_table, opp, false);
1053 if (ret) {
1054 dev_err(dev, "Failed to set required opps: %d\n", ret);
1055 return ret;
1056 }
1057 }
1058
1059 opp_table->enabled = true;
1060 dev_pm_opp_put(old_opp);
1061
1062 /* Make sure current_opp doesn't get freed */
1063 dev_pm_opp_get(opp);
1064 opp_table->current_opp = opp;
1065 opp_table->current_rate = freq;
1066
1067 return ret;
1068}
1069
1070/**
1071 * dev_pm_opp_set_rate() - Configure new OPP based on frequency
1072 * @dev: device for which we do this operation
1073 * @target_freq: frequency to achieve
1074 *
1075 * This configures the power-supplies to the levels specified by the OPP
1076 * corresponding to the target_freq, and programs the clock to a value <=
1077 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
1078 * provided by the opp, should have already rounded to the target OPP's
1079 * frequency.
1080 */
1081int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
1082{
1083 struct opp_table *opp_table;
1084 unsigned long freq = 0, temp_freq;
1085 struct dev_pm_opp *opp = NULL;
1086 int ret;
1087
1088 opp_table = _find_opp_table(dev);
1089 if (IS_ERR(opp_table)) {
1090 dev_err(dev, "%s: device's opp table doesn't exist\n", __func__);
1091 return PTR_ERR(opp_table);
1092 }
1093
1094 if (target_freq) {
1095 /*
1096 * For IO devices which require an OPP on some platforms/SoCs
1097 * while just needing to scale the clock on some others
1098 * we look for empty OPP tables with just a clock handle and
1099 * scale only the clk. This makes dev_pm_opp_set_rate()
1100 * equivalent to a clk_set_rate()
1101 */
1102 if (!_get_opp_count(opp_table)) {
1103 ret = _generic_set_opp_clk_only(dev, opp_table->clk, target_freq);
1104 goto put_opp_table;
1105 }
1106
1107 freq = clk_round_rate(opp_table->clk, target_freq);
1108 if ((long)freq <= 0)
1109 freq = target_freq;
1110
1111 /*
1112 * The clock driver may support finer resolution of the
1113 * frequencies than the OPP table, don't update the frequency we
1114 * pass to clk_set_rate() here.
1115 */
1116 temp_freq = freq;
1117 opp = _find_freq_ceil(opp_table, &temp_freq);
1118 if (IS_ERR(opp)) {
1119 ret = PTR_ERR(opp);
1120 dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
1121 __func__, freq, ret);
1122 goto put_opp_table;
1123 }
1124 }
1125
1126 ret = _set_opp(dev, opp_table, opp, freq);
1127
1128 if (target_freq)
1129 dev_pm_opp_put(opp);
1130put_opp_table:
1131 dev_pm_opp_put_opp_table(opp_table);
1132 return ret;
1133}
1134EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
1135
1136/**
1137 * dev_pm_opp_set_opp() - Configure device for OPP
1138 * @dev: device for which we do this operation
1139 * @opp: OPP to set to
1140 *
1141 * This configures the device based on the properties of the OPP passed to this
1142 * routine.
1143 *
1144 * Return: 0 on success, a negative error number otherwise.
1145 */
1146int dev_pm_opp_set_opp(struct device *dev, struct dev_pm_opp *opp)
1147{
1148 struct opp_table *opp_table;
1149 int ret;
1150
1151 opp_table = _find_opp_table(dev);
1152 if (IS_ERR(opp_table)) {
1153 dev_err(dev, "%s: device opp doesn't exist\n", __func__);
1154 return PTR_ERR(opp_table);
1155 }
1156
1157 ret = _set_opp(dev, opp_table, opp, opp ? opp->rate : 0);
1158 dev_pm_opp_put_opp_table(opp_table);
1159
1160 return ret;
1161}
1162EXPORT_SYMBOL_GPL(dev_pm_opp_set_opp);
1163
1164/* OPP-dev Helpers */
1165static void _remove_opp_dev(struct opp_device *opp_dev,
1166 struct opp_table *opp_table)
1167{
1168 opp_debug_unregister(opp_dev, opp_table);
1169 list_del(&opp_dev->node);
1170 kfree(opp_dev);
1171}
1172
1173struct opp_device *_add_opp_dev(const struct device *dev,
1174 struct opp_table *opp_table)
1175{
1176 struct opp_device *opp_dev;
1177
1178 opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
1179 if (!opp_dev)
1180 return NULL;
1181
1182 /* Initialize opp-dev */
1183 opp_dev->dev = dev;
1184
1185 mutex_lock(&opp_table->lock);
1186 list_add(&opp_dev->node, &opp_table->dev_list);
1187 mutex_unlock(&opp_table->lock);
1188
1189 /* Create debugfs entries for the opp_table */
1190 opp_debug_register(opp_dev, opp_table);
1191
1192 return opp_dev;
1193}
1194
1195static struct opp_table *_allocate_opp_table(struct device *dev, int index)
1196{
1197 struct opp_table *opp_table;
1198 struct opp_device *opp_dev;
1199 int ret;
1200
1201 /*
1202 * Allocate a new OPP table. In the infrequent case where a new
1203 * device is needed to be added, we pay this penalty.
1204 */
1205 opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
1206 if (!opp_table)
1207 return ERR_PTR(-ENOMEM);
1208
1209 mutex_init(&opp_table->lock);
1210 mutex_init(&opp_table->genpd_virt_dev_lock);
1211 INIT_LIST_HEAD(&opp_table->dev_list);
1212 INIT_LIST_HEAD(&opp_table->lazy);
1213
1214 /* Mark regulator count uninitialized */
1215 opp_table->regulator_count = -1;
1216
1217 opp_dev = _add_opp_dev(dev, opp_table);
1218 if (!opp_dev) {
1219 ret = -ENOMEM;
1220 goto err;
1221 }
1222
1223 _of_init_opp_table(opp_table, dev, index);
1224
1225 /* Find interconnect path(s) for the device */
1226 ret = dev_pm_opp_of_find_icc_paths(dev, opp_table);
1227 if (ret) {
1228 if (ret == -EPROBE_DEFER)
1229 goto remove_opp_dev;
1230
1231 dev_warn(dev, "%s: Error finding interconnect paths: %d\n",
1232 __func__, ret);
1233 }
1234
1235 BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
1236 INIT_LIST_HEAD(&opp_table->opp_list);
1237 kref_init(&opp_table->kref);
1238
1239 return opp_table;
1240
1241remove_opp_dev:
1242 _remove_opp_dev(opp_dev, opp_table);
1243err:
1244 kfree(opp_table);
1245 return ERR_PTR(ret);
1246}
1247
1248void _get_opp_table_kref(struct opp_table *opp_table)
1249{
1250 kref_get(&opp_table->kref);
1251}
1252
1253static struct opp_table *_update_opp_table_clk(struct device *dev,
1254 struct opp_table *opp_table,
1255 bool getclk)
1256{
1257 int ret;
1258
1259 /*
1260 * Return early if we don't need to get clk or we have already tried it
1261 * earlier.
1262 */
1263 if (!getclk || IS_ERR(opp_table) || opp_table->clk)
1264 return opp_table;
1265
1266 /* Find clk for the device */
1267 opp_table->clk = clk_get(dev, NULL);
1268
1269 ret = PTR_ERR_OR_ZERO(opp_table->clk);
1270 if (!ret)
1271 return opp_table;
1272
1273 if (ret == -ENOENT) {
1274 dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret);
1275 return opp_table;
1276 }
1277
1278 dev_pm_opp_put_opp_table(opp_table);
1279 dev_err_probe(dev, ret, "Couldn't find clock\n");
1280
1281 return ERR_PTR(ret);
1282}
1283
1284/*
1285 * We need to make sure that the OPP table for a device doesn't get added twice,
1286 * if this routine gets called in parallel with the same device pointer.
1287 *
1288 * The simplest way to enforce that is to perform everything (find existing
1289 * table and if not found, create a new one) under the opp_table_lock, so only
1290 * one creator gets access to the same. But that expands the critical section
1291 * under the lock and may end up causing circular dependencies with frameworks
1292 * like debugfs, interconnect or clock framework as they may be direct or
1293 * indirect users of OPP core.
1294 *
1295 * And for that reason we have to go for a bit tricky implementation here, which
1296 * uses the opp_tables_busy flag to indicate if another creator is in the middle
1297 * of adding an OPP table and others should wait for it to finish.
1298 */
1299struct opp_table *_add_opp_table_indexed(struct device *dev, int index,
1300 bool getclk)
1301{
1302 struct opp_table *opp_table;
1303
1304again:
1305 mutex_lock(&opp_table_lock);
1306
1307 opp_table = _find_opp_table_unlocked(dev);
1308 if (!IS_ERR(opp_table))
1309 goto unlock;
1310
1311 /*
1312 * The opp_tables list or an OPP table's dev_list is getting updated by
1313 * another user, wait for it to finish.
1314 */
1315 if (unlikely(opp_tables_busy)) {
1316 mutex_unlock(&opp_table_lock);
1317 cpu_relax();
1318 goto again;
1319 }
1320
1321 opp_tables_busy = true;
1322 opp_table = _managed_opp(dev, index);
1323
1324 /* Drop the lock to reduce the size of critical section */
1325 mutex_unlock(&opp_table_lock);
1326
1327 if (opp_table) {
1328 if (!_add_opp_dev(dev, opp_table)) {
1329 dev_pm_opp_put_opp_table(opp_table);
1330 opp_table = ERR_PTR(-ENOMEM);
1331 }
1332
1333 mutex_lock(&opp_table_lock);
1334 } else {
1335 opp_table = _allocate_opp_table(dev, index);
1336
1337 mutex_lock(&opp_table_lock);
1338 if (!IS_ERR(opp_table))
1339 list_add(&opp_table->node, &opp_tables);
1340 }
1341
1342 opp_tables_busy = false;
1343
1344unlock:
1345 mutex_unlock(&opp_table_lock);
1346
1347 return _update_opp_table_clk(dev, opp_table, getclk);
1348}
1349
1350static struct opp_table *_add_opp_table(struct device *dev, bool getclk)
1351{
1352 return _add_opp_table_indexed(dev, 0, getclk);
1353}
1354
1355struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1356{
1357 return _find_opp_table(dev);
1358}
1359EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1360
1361static void _opp_table_kref_release(struct kref *kref)
1362{
1363 struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1364 struct opp_device *opp_dev, *temp;
1365 int i;
1366
1367 /* Drop the lock as soon as we can */
1368 list_del(&opp_table->node);
1369 mutex_unlock(&opp_table_lock);
1370
1371 if (opp_table->current_opp)
1372 dev_pm_opp_put(opp_table->current_opp);
1373
1374 _of_clear_opp_table(opp_table);
1375
1376 /* Release clk */
1377 if (!IS_ERR(opp_table->clk))
1378 clk_put(opp_table->clk);
1379
1380 if (opp_table->paths) {
1381 for (i = 0; i < opp_table->path_count; i++)
1382 icc_put(opp_table->paths[i]);
1383 kfree(opp_table->paths);
1384 }
1385
1386 WARN_ON(!list_empty(&opp_table->opp_list));
1387
1388 list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) {
1389 /*
1390 * The OPP table is getting removed, drop the performance state
1391 * constraints.
1392 */
1393 if (opp_table->genpd_performance_state)
1394 dev_pm_genpd_set_performance_state((struct device *)(opp_dev->dev), 0);
1395
1396 _remove_opp_dev(opp_dev, opp_table);
1397 }
1398
1399 mutex_destroy(&opp_table->genpd_virt_dev_lock);
1400 mutex_destroy(&opp_table->lock);
1401 kfree(opp_table);
1402}
1403
1404void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1405{
1406 kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1407 &opp_table_lock);
1408}
1409EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1410
1411void _opp_free(struct dev_pm_opp *opp)
1412{
1413 kfree(opp);
1414}
1415
1416static void _opp_kref_release(struct kref *kref)
1417{
1418 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1419 struct opp_table *opp_table = opp->opp_table;
1420
1421 list_del(&opp->node);
1422 mutex_unlock(&opp_table->lock);
1423
1424 /*
1425 * Notify the changes in the availability of the operable
1426 * frequency/voltage list.
1427 */
1428 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1429 _of_opp_free_required_opps(opp_table, opp);
1430 opp_debug_remove_one(opp);
1431 kfree(opp);
1432}
1433
1434void dev_pm_opp_get(struct dev_pm_opp *opp)
1435{
1436 kref_get(&opp->kref);
1437}
1438
1439void dev_pm_opp_put(struct dev_pm_opp *opp)
1440{
1441 kref_put_mutex(&opp->kref, _opp_kref_release, &opp->opp_table->lock);
1442}
1443EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1444
1445/**
1446 * dev_pm_opp_remove() - Remove an OPP from OPP table
1447 * @dev: device for which we do this operation
1448 * @freq: OPP to remove with matching 'freq'
1449 *
1450 * This function removes an opp from the opp table.
1451 */
1452void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1453{
1454 struct dev_pm_opp *opp;
1455 struct opp_table *opp_table;
1456 bool found = false;
1457
1458 opp_table = _find_opp_table(dev);
1459 if (IS_ERR(opp_table))
1460 return;
1461
1462 mutex_lock(&opp_table->lock);
1463
1464 list_for_each_entry(opp, &opp_table->opp_list, node) {
1465 if (opp->rate == freq) {
1466 found = true;
1467 break;
1468 }
1469 }
1470
1471 mutex_unlock(&opp_table->lock);
1472
1473 if (found) {
1474 dev_pm_opp_put(opp);
1475
1476 /* Drop the reference taken by dev_pm_opp_add() */
1477 dev_pm_opp_put_opp_table(opp_table);
1478 } else {
1479 dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1480 __func__, freq);
1481 }
1482
1483 /* Drop the reference taken by _find_opp_table() */
1484 dev_pm_opp_put_opp_table(opp_table);
1485}
1486EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1487
1488static struct dev_pm_opp *_opp_get_next(struct opp_table *opp_table,
1489 bool dynamic)
1490{
1491 struct dev_pm_opp *opp = NULL, *temp;
1492
1493 mutex_lock(&opp_table->lock);
1494 list_for_each_entry(temp, &opp_table->opp_list, node) {
1495 /*
1496 * Refcount must be dropped only once for each OPP by OPP core,
1497 * do that with help of "removed" flag.
1498 */
1499 if (!temp->removed && dynamic == temp->dynamic) {
1500 opp = temp;
1501 break;
1502 }
1503 }
1504
1505 mutex_unlock(&opp_table->lock);
1506 return opp;
1507}
1508
1509/*
1510 * Can't call dev_pm_opp_put() from under the lock as debugfs removal needs to
1511 * happen lock less to avoid circular dependency issues. This routine must be
1512 * called without the opp_table->lock held.
1513 */
1514static void _opp_remove_all(struct opp_table *opp_table, bool dynamic)
1515{
1516 struct dev_pm_opp *opp;
1517
1518 while ((opp = _opp_get_next(opp_table, dynamic))) {
1519 opp->removed = true;
1520 dev_pm_opp_put(opp);
1521
1522 /* Drop the references taken by dev_pm_opp_add() */
1523 if (dynamic)
1524 dev_pm_opp_put_opp_table(opp_table);
1525 }
1526}
1527
1528bool _opp_remove_all_static(struct opp_table *opp_table)
1529{
1530 mutex_lock(&opp_table->lock);
1531
1532 if (!opp_table->parsed_static_opps) {
1533 mutex_unlock(&opp_table->lock);
1534 return false;
1535 }
1536
1537 if (--opp_table->parsed_static_opps) {
1538 mutex_unlock(&opp_table->lock);
1539 return true;
1540 }
1541
1542 mutex_unlock(&opp_table->lock);
1543
1544 _opp_remove_all(opp_table, false);
1545 return true;
1546}
1547
1548/**
1549 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1550 * @dev: device for which we do this operation
1551 *
1552 * This function removes all dynamically created OPPs from the opp table.
1553 */
1554void dev_pm_opp_remove_all_dynamic(struct device *dev)
1555{
1556 struct opp_table *opp_table;
1557
1558 opp_table = _find_opp_table(dev);
1559 if (IS_ERR(opp_table))
1560 return;
1561
1562 _opp_remove_all(opp_table, true);
1563
1564 /* Drop the reference taken by _find_opp_table() */
1565 dev_pm_opp_put_opp_table(opp_table);
1566}
1567EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1568
1569struct dev_pm_opp *_opp_allocate(struct opp_table *table)
1570{
1571 struct dev_pm_opp *opp;
1572 int supply_count, supply_size, icc_size;
1573
1574 /* Allocate space for at least one supply */
1575 supply_count = table->regulator_count > 0 ? table->regulator_count : 1;
1576 supply_size = sizeof(*opp->supplies) * supply_count;
1577 icc_size = sizeof(*opp->bandwidth) * table->path_count;
1578
1579 /* allocate new OPP node and supplies structures */
1580 opp = kzalloc(sizeof(*opp) + supply_size + icc_size, GFP_KERNEL);
1581
1582 if (!opp)
1583 return NULL;
1584
1585 /* Put the supplies at the end of the OPP structure as an empty array */
1586 opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1587 if (icc_size)
1588 opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->supplies + supply_count);
1589 INIT_LIST_HEAD(&opp->node);
1590
1591 return opp;
1592}
1593
1594static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1595 struct opp_table *opp_table)
1596{
1597 struct regulator *reg;
1598 int i;
1599
1600 if (!opp_table->regulators)
1601 return true;
1602
1603 for (i = 0; i < opp_table->regulator_count; i++) {
1604 reg = opp_table->regulators[i];
1605
1606 if (!regulator_is_supported_voltage(reg,
1607 opp->supplies[i].u_volt_min,
1608 opp->supplies[i].u_volt_max)) {
1609 pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1610 __func__, opp->supplies[i].u_volt_min,
1611 opp->supplies[i].u_volt_max);
1612 return false;
1613 }
1614 }
1615
1616 return true;
1617}
1618
1619int _opp_compare_key(struct dev_pm_opp *opp1, struct dev_pm_opp *opp2)
1620{
1621 if (opp1->rate != opp2->rate)
1622 return opp1->rate < opp2->rate ? -1 : 1;
1623 if (opp1->bandwidth && opp2->bandwidth &&
1624 opp1->bandwidth[0].peak != opp2->bandwidth[0].peak)
1625 return opp1->bandwidth[0].peak < opp2->bandwidth[0].peak ? -1 : 1;
1626 if (opp1->level != opp2->level)
1627 return opp1->level < opp2->level ? -1 : 1;
1628 return 0;
1629}
1630
1631static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1632 struct opp_table *opp_table,
1633 struct list_head **head)
1634{
1635 struct dev_pm_opp *opp;
1636 int opp_cmp;
1637
1638 /*
1639 * Insert new OPP in order of increasing frequency and discard if
1640 * already present.
1641 *
1642 * Need to use &opp_table->opp_list in the condition part of the 'for'
1643 * loop, don't replace it with head otherwise it will become an infinite
1644 * loop.
1645 */
1646 list_for_each_entry(opp, &opp_table->opp_list, node) {
1647 opp_cmp = _opp_compare_key(new_opp, opp);
1648 if (opp_cmp > 0) {
1649 *head = &opp->node;
1650 continue;
1651 }
1652
1653 if (opp_cmp < 0)
1654 return 0;
1655
1656 /* Duplicate OPPs */
1657 dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1658 __func__, opp->rate, opp->supplies[0].u_volt,
1659 opp->available, new_opp->rate,
1660 new_opp->supplies[0].u_volt, new_opp->available);
1661
1662 /* Should we compare voltages for all regulators here ? */
1663 return opp->available &&
1664 new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1665 }
1666
1667 return 0;
1668}
1669
1670void _required_opps_available(struct dev_pm_opp *opp, int count)
1671{
1672 int i;
1673
1674 for (i = 0; i < count; i++) {
1675 if (opp->required_opps[i]->available)
1676 continue;
1677
1678 opp->available = false;
1679 pr_warn("%s: OPP not supported by required OPP %pOF (%lu)\n",
1680 __func__, opp->required_opps[i]->np, opp->rate);
1681 return;
1682 }
1683}
1684
1685/*
1686 * Returns:
1687 * 0: On success. And appropriate error message for duplicate OPPs.
1688 * -EBUSY: For OPP with same freq/volt and is available. The callers of
1689 * _opp_add() must return 0 if they receive -EBUSY from it. This is to make
1690 * sure we don't print error messages unnecessarily if different parts of
1691 * kernel try to initialize the OPP table.
1692 * -EEXIST: For OPP with same freq but different volt or is unavailable. This
1693 * should be considered an error by the callers of _opp_add().
1694 */
1695int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
1696 struct opp_table *opp_table, bool rate_not_available)
1697{
1698 struct list_head *head;
1699 int ret;
1700
1701 mutex_lock(&opp_table->lock);
1702 head = &opp_table->opp_list;
1703
1704 ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
1705 if (ret) {
1706 mutex_unlock(&opp_table->lock);
1707 return ret;
1708 }
1709
1710 list_add(&new_opp->node, head);
1711 mutex_unlock(&opp_table->lock);
1712
1713 new_opp->opp_table = opp_table;
1714 kref_init(&new_opp->kref);
1715
1716 opp_debug_create_one(new_opp, opp_table);
1717
1718 if (!_opp_supported_by_regulators(new_opp, opp_table)) {
1719 new_opp->available = false;
1720 dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
1721 __func__, new_opp->rate);
1722 }
1723
1724 /* required-opps not fully initialized yet */
1725 if (lazy_linking_pending(opp_table))
1726 return 0;
1727
1728 _required_opps_available(new_opp, opp_table->required_opp_count);
1729
1730 return 0;
1731}
1732
1733/**
1734 * _opp_add_v1() - Allocate a OPP based on v1 bindings.
1735 * @opp_table: OPP table
1736 * @dev: device for which we do this operation
1737 * @freq: Frequency in Hz for this OPP
1738 * @u_volt: Voltage in uVolts for this OPP
1739 * @dynamic: Dynamically added OPPs.
1740 *
1741 * This function adds an opp definition to the opp table and returns status.
1742 * The opp is made available by default and it can be controlled using
1743 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
1744 *
1745 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
1746 * and freed by dev_pm_opp_of_remove_table.
1747 *
1748 * Return:
1749 * 0 On success OR
1750 * Duplicate OPPs (both freq and volt are same) and opp->available
1751 * -EEXIST Freq are same and volt are different OR
1752 * Duplicate OPPs (both freq and volt are same) and !opp->available
1753 * -ENOMEM Memory allocation failure
1754 */
1755int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
1756 unsigned long freq, long u_volt, bool dynamic)
1757{
1758 struct dev_pm_opp *new_opp;
1759 unsigned long tol;
1760 int ret;
1761
1762 new_opp = _opp_allocate(opp_table);
1763 if (!new_opp)
1764 return -ENOMEM;
1765
1766 /* populate the opp table */
1767 new_opp->rate = freq;
1768 tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
1769 new_opp->supplies[0].u_volt = u_volt;
1770 new_opp->supplies[0].u_volt_min = u_volt - tol;
1771 new_opp->supplies[0].u_volt_max = u_volt + tol;
1772 new_opp->available = true;
1773 new_opp->dynamic = dynamic;
1774
1775 ret = _opp_add(dev, new_opp, opp_table, false);
1776 if (ret) {
1777 /* Don't return error for duplicate OPPs */
1778 if (ret == -EBUSY)
1779 ret = 0;
1780 goto free_opp;
1781 }
1782
1783 /*
1784 * Notify the changes in the availability of the operable
1785 * frequency/voltage list.
1786 */
1787 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
1788 return 0;
1789
1790free_opp:
1791 _opp_free(new_opp);
1792
1793 return ret;
1794}
1795
1796/**
1797 * dev_pm_opp_set_supported_hw() - Set supported platforms
1798 * @dev: Device for which supported-hw has to be set.
1799 * @versions: Array of hierarchy of versions to match.
1800 * @count: Number of elements in the array.
1801 *
1802 * This is required only for the V2 bindings, and it enables a platform to
1803 * specify the hierarchy of versions it supports. OPP layer will then enable
1804 * OPPs, which are available for those versions, based on its 'opp-supported-hw'
1805 * property.
1806 */
1807struct opp_table *dev_pm_opp_set_supported_hw(struct device *dev,
1808 const u32 *versions, unsigned int count)
1809{
1810 struct opp_table *opp_table;
1811
1812 opp_table = _add_opp_table(dev, false);
1813 if (IS_ERR(opp_table))
1814 return opp_table;
1815
1816 /* Make sure there are no concurrent readers while updating opp_table */
1817 WARN_ON(!list_empty(&opp_table->opp_list));
1818
1819 /* Another CPU that shares the OPP table has set the property ? */
1820 if (opp_table->supported_hw)
1821 return opp_table;
1822
1823 opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
1824 GFP_KERNEL);
1825 if (!opp_table->supported_hw) {
1826 dev_pm_opp_put_opp_table(opp_table);
1827 return ERR_PTR(-ENOMEM);
1828 }
1829
1830 opp_table->supported_hw_count = count;
1831
1832 return opp_table;
1833}
1834EXPORT_SYMBOL_GPL(dev_pm_opp_set_supported_hw);
1835
1836/**
1837 * dev_pm_opp_put_supported_hw() - Releases resources blocked for supported hw
1838 * @opp_table: OPP table returned by dev_pm_opp_set_supported_hw().
1839 *
1840 * This is required only for the V2 bindings, and is called for a matching
1841 * dev_pm_opp_set_supported_hw(). Until this is called, the opp_table structure
1842 * will not be freed.
1843 */
1844void dev_pm_opp_put_supported_hw(struct opp_table *opp_table)
1845{
1846 if (unlikely(!opp_table))
1847 return;
1848
1849 /* Make sure there are no concurrent readers while updating opp_table */
1850 WARN_ON(!list_empty(&opp_table->opp_list));
1851
1852 kfree(opp_table->supported_hw);
1853 opp_table->supported_hw = NULL;
1854 opp_table->supported_hw_count = 0;
1855
1856 dev_pm_opp_put_opp_table(opp_table);
1857}
1858EXPORT_SYMBOL_GPL(dev_pm_opp_put_supported_hw);
1859
1860/**
1861 * dev_pm_opp_set_prop_name() - Set prop-extn name
1862 * @dev: Device for which the prop-name has to be set.
1863 * @name: name to postfix to properties.
1864 *
1865 * This is required only for the V2 bindings, and it enables a platform to
1866 * specify the extn to be used for certain property names. The properties to
1867 * which the extension will apply are opp-microvolt and opp-microamp. OPP core
1868 * should postfix the property name with -<name> while looking for them.
1869 */
1870struct opp_table *dev_pm_opp_set_prop_name(struct device *dev, const char *name)
1871{
1872 struct opp_table *opp_table;
1873
1874 opp_table = _add_opp_table(dev, false);
1875 if (IS_ERR(opp_table))
1876 return opp_table;
1877
1878 /* Make sure there are no concurrent readers while updating opp_table */
1879 WARN_ON(!list_empty(&opp_table->opp_list));
1880
1881 /* Another CPU that shares the OPP table has set the property ? */
1882 if (opp_table->prop_name)
1883 return opp_table;
1884
1885 opp_table->prop_name = kstrdup(name, GFP_KERNEL);
1886 if (!opp_table->prop_name) {
1887 dev_pm_opp_put_opp_table(opp_table);
1888 return ERR_PTR(-ENOMEM);
1889 }
1890
1891 return opp_table;
1892}
1893EXPORT_SYMBOL_GPL(dev_pm_opp_set_prop_name);
1894
1895/**
1896 * dev_pm_opp_put_prop_name() - Releases resources blocked for prop-name
1897 * @opp_table: OPP table returned by dev_pm_opp_set_prop_name().
1898 *
1899 * This is required only for the V2 bindings, and is called for a matching
1900 * dev_pm_opp_set_prop_name(). Until this is called, the opp_table structure
1901 * will not be freed.
1902 */
1903void dev_pm_opp_put_prop_name(struct opp_table *opp_table)
1904{
1905 if (unlikely(!opp_table))
1906 return;
1907
1908 /* Make sure there are no concurrent readers while updating opp_table */
1909 WARN_ON(!list_empty(&opp_table->opp_list));
1910
1911 kfree(opp_table->prop_name);
1912 opp_table->prop_name = NULL;
1913
1914 dev_pm_opp_put_opp_table(opp_table);
1915}
1916EXPORT_SYMBOL_GPL(dev_pm_opp_put_prop_name);
1917
1918/**
1919 * dev_pm_opp_set_regulators() - Set regulator names for the device
1920 * @dev: Device for which regulator name is being set.
1921 * @names: Array of pointers to the names of the regulator.
1922 * @count: Number of regulators.
1923 *
1924 * In order to support OPP switching, OPP layer needs to know the name of the
1925 * device's regulators, as the core would be required to switch voltages as
1926 * well.
1927 *
1928 * This must be called before any OPPs are initialized for the device.
1929 */
1930struct opp_table *dev_pm_opp_set_regulators(struct device *dev,
1931 const char * const names[],
1932 unsigned int count)
1933{
1934 struct dev_pm_opp_supply *supplies;
1935 struct opp_table *opp_table;
1936 struct regulator *reg;
1937 int ret, i;
1938
1939 opp_table = _add_opp_table(dev, false);
1940 if (IS_ERR(opp_table))
1941 return opp_table;
1942
1943 /* This should be called before OPPs are initialized */
1944 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1945 ret = -EBUSY;
1946 goto err;
1947 }
1948
1949 /* Another CPU that shares the OPP table has set the regulators ? */
1950 if (opp_table->regulators)
1951 return opp_table;
1952
1953 opp_table->regulators = kmalloc_array(count,
1954 sizeof(*opp_table->regulators),
1955 GFP_KERNEL);
1956 if (!opp_table->regulators) {
1957 ret = -ENOMEM;
1958 goto err;
1959 }
1960
1961 for (i = 0; i < count; i++) {
1962 reg = regulator_get_optional(dev, names[i]);
1963 if (IS_ERR(reg)) {
1964 ret = PTR_ERR(reg);
1965 if (ret != -EPROBE_DEFER)
1966 dev_err(dev, "%s: no regulator (%s) found: %d\n",
1967 __func__, names[i], ret);
1968 goto free_regulators;
1969 }
1970
1971 opp_table->regulators[i] = reg;
1972 }
1973
1974 opp_table->regulator_count = count;
1975
1976 supplies = kmalloc_array(count * 2, sizeof(*supplies), GFP_KERNEL);
1977 if (!supplies) {
1978 ret = -ENOMEM;
1979 goto free_regulators;
1980 }
1981
1982 mutex_lock(&opp_table->lock);
1983 opp_table->sod_supplies = supplies;
1984 if (opp_table->set_opp_data) {
1985 opp_table->set_opp_data->old_opp.supplies = supplies;
1986 opp_table->set_opp_data->new_opp.supplies = supplies + count;
1987 }
1988 mutex_unlock(&opp_table->lock);
1989
1990 return opp_table;
1991
1992free_regulators:
1993 while (i != 0)
1994 regulator_put(opp_table->regulators[--i]);
1995
1996 kfree(opp_table->regulators);
1997 opp_table->regulators = NULL;
1998 opp_table->regulator_count = -1;
1999err:
2000 dev_pm_opp_put_opp_table(opp_table);
2001
2002 return ERR_PTR(ret);
2003}
2004EXPORT_SYMBOL_GPL(dev_pm_opp_set_regulators);
2005
2006/**
2007 * dev_pm_opp_put_regulators() - Releases resources blocked for regulator
2008 * @opp_table: OPP table returned from dev_pm_opp_set_regulators().
2009 */
2010void dev_pm_opp_put_regulators(struct opp_table *opp_table)
2011{
2012 int i;
2013
2014 if (unlikely(!opp_table))
2015 return;
2016
2017 if (!opp_table->regulators)
2018 goto put_opp_table;
2019
2020 /* Make sure there are no concurrent readers while updating opp_table */
2021 WARN_ON(!list_empty(&opp_table->opp_list));
2022
2023 if (opp_table->enabled) {
2024 for (i = opp_table->regulator_count - 1; i >= 0; i--)
2025 regulator_disable(opp_table->regulators[i]);
2026 }
2027
2028 for (i = opp_table->regulator_count - 1; i >= 0; i--)
2029 regulator_put(opp_table->regulators[i]);
2030
2031 mutex_lock(&opp_table->lock);
2032 if (opp_table->set_opp_data) {
2033 opp_table->set_opp_data->old_opp.supplies = NULL;
2034 opp_table->set_opp_data->new_opp.supplies = NULL;
2035 }
2036
2037 kfree(opp_table->sod_supplies);
2038 opp_table->sod_supplies = NULL;
2039 mutex_unlock(&opp_table->lock);
2040
2041 kfree(opp_table->regulators);
2042 opp_table->regulators = NULL;
2043 opp_table->regulator_count = -1;
2044
2045put_opp_table:
2046 dev_pm_opp_put_opp_table(opp_table);
2047}
2048EXPORT_SYMBOL_GPL(dev_pm_opp_put_regulators);
2049
2050/**
2051 * dev_pm_opp_set_clkname() - Set clk name for the device
2052 * @dev: Device for which clk name is being set.
2053 * @name: Clk name.
2054 *
2055 * In order to support OPP switching, OPP layer needs to get pointer to the
2056 * clock for the device. Simple cases work fine without using this routine (i.e.
2057 * by passing connection-id as NULL), but for a device with multiple clocks
2058 * available, the OPP core needs to know the exact name of the clk to use.
2059 *
2060 * This must be called before any OPPs are initialized for the device.
2061 */
2062struct opp_table *dev_pm_opp_set_clkname(struct device *dev, const char *name)
2063{
2064 struct opp_table *opp_table;
2065 int ret;
2066
2067 opp_table = _add_opp_table(dev, false);
2068 if (IS_ERR(opp_table))
2069 return opp_table;
2070
2071 /* This should be called before OPPs are initialized */
2072 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
2073 ret = -EBUSY;
2074 goto err;
2075 }
2076
2077 /* clk shouldn't be initialized at this point */
2078 if (WARN_ON(opp_table->clk)) {
2079 ret = -EBUSY;
2080 goto err;
2081 }
2082
2083 /* Find clk for the device */
2084 opp_table->clk = clk_get(dev, name);
2085 if (IS_ERR(opp_table->clk)) {
2086 ret = PTR_ERR(opp_table->clk);
2087 if (ret != -EPROBE_DEFER) {
2088 dev_err(dev, "%s: Couldn't find clock: %d\n", __func__,
2089 ret);
2090 }
2091 goto err;
2092 }
2093
2094 return opp_table;
2095
2096err:
2097 dev_pm_opp_put_opp_table(opp_table);
2098
2099 return ERR_PTR(ret);
2100}
2101EXPORT_SYMBOL_GPL(dev_pm_opp_set_clkname);
2102
2103/**
2104 * dev_pm_opp_put_clkname() - Releases resources blocked for clk.
2105 * @opp_table: OPP table returned from dev_pm_opp_set_clkname().
2106 */
2107void dev_pm_opp_put_clkname(struct opp_table *opp_table)
2108{
2109 if (unlikely(!opp_table))
2110 return;
2111
2112 /* Make sure there are no concurrent readers while updating opp_table */
2113 WARN_ON(!list_empty(&opp_table->opp_list));
2114
2115 clk_put(opp_table->clk);
2116 opp_table->clk = ERR_PTR(-EINVAL);
2117
2118 dev_pm_opp_put_opp_table(opp_table);
2119}
2120EXPORT_SYMBOL_GPL(dev_pm_opp_put_clkname);
2121
2122/**
2123 * dev_pm_opp_register_set_opp_helper() - Register custom set OPP helper
2124 * @dev: Device for which the helper is getting registered.
2125 * @set_opp: Custom set OPP helper.
2126 *
2127 * This is useful to support complex platforms (like platforms with multiple
2128 * regulators per device), instead of the generic OPP set rate helper.
2129 *
2130 * This must be called before any OPPs are initialized for the device.
2131 */
2132struct opp_table *dev_pm_opp_register_set_opp_helper(struct device *dev,
2133 int (*set_opp)(struct dev_pm_set_opp_data *data))
2134{
2135 struct dev_pm_set_opp_data *data;
2136 struct opp_table *opp_table;
2137
2138 if (!set_opp)
2139 return ERR_PTR(-EINVAL);
2140
2141 opp_table = _add_opp_table(dev, false);
2142 if (IS_ERR(opp_table))
2143 return opp_table;
2144
2145 /* This should be called before OPPs are initialized */
2146 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
2147 dev_pm_opp_put_opp_table(opp_table);
2148 return ERR_PTR(-EBUSY);
2149 }
2150
2151 /* Another CPU that shares the OPP table has set the helper ? */
2152 if (opp_table->set_opp)
2153 return opp_table;
2154
2155 data = kzalloc(sizeof(*data), GFP_KERNEL);
2156 if (!data)
2157 return ERR_PTR(-ENOMEM);
2158
2159 mutex_lock(&opp_table->lock);
2160 opp_table->set_opp_data = data;
2161 if (opp_table->sod_supplies) {
2162 data->old_opp.supplies = opp_table->sod_supplies;
2163 data->new_opp.supplies = opp_table->sod_supplies +
2164 opp_table->regulator_count;
2165 }
2166 mutex_unlock(&opp_table->lock);
2167
2168 opp_table->set_opp = set_opp;
2169
2170 return opp_table;
2171}
2172EXPORT_SYMBOL_GPL(dev_pm_opp_register_set_opp_helper);
2173
2174/**
2175 * dev_pm_opp_unregister_set_opp_helper() - Releases resources blocked for
2176 * set_opp helper
2177 * @opp_table: OPP table returned from dev_pm_opp_register_set_opp_helper().
2178 *
2179 * Release resources blocked for platform specific set_opp helper.
2180 */
2181void dev_pm_opp_unregister_set_opp_helper(struct opp_table *opp_table)
2182{
2183 if (unlikely(!opp_table))
2184 return;
2185
2186 /* Make sure there are no concurrent readers while updating opp_table */
2187 WARN_ON(!list_empty(&opp_table->opp_list));
2188
2189 opp_table->set_opp = NULL;
2190
2191 mutex_lock(&opp_table->lock);
2192 kfree(opp_table->set_opp_data);
2193 opp_table->set_opp_data = NULL;
2194 mutex_unlock(&opp_table->lock);
2195
2196 dev_pm_opp_put_opp_table(opp_table);
2197}
2198EXPORT_SYMBOL_GPL(dev_pm_opp_unregister_set_opp_helper);
2199
2200static void devm_pm_opp_unregister_set_opp_helper(void *data)
2201{
2202 dev_pm_opp_unregister_set_opp_helper(data);
2203}
2204
2205/**
2206 * devm_pm_opp_register_set_opp_helper() - Register custom set OPP helper
2207 * @dev: Device for which the helper is getting registered.
2208 * @set_opp: Custom set OPP helper.
2209 *
2210 * This is a resource-managed version of dev_pm_opp_register_set_opp_helper().
2211 *
2212 * Return: pointer to 'struct opp_table' on success and errorno otherwise.
2213 */
2214struct opp_table *
2215devm_pm_opp_register_set_opp_helper(struct device *dev,
2216 int (*set_opp)(struct dev_pm_set_opp_data *data))
2217{
2218 struct opp_table *opp_table;
2219 int err;
2220
2221 opp_table = dev_pm_opp_register_set_opp_helper(dev, set_opp);
2222 if (IS_ERR(opp_table))
2223 return opp_table;
2224
2225 err = devm_add_action_or_reset(dev, devm_pm_opp_unregister_set_opp_helper,
2226 opp_table);
2227 if (err)
2228 return ERR_PTR(err);
2229
2230 return opp_table;
2231}
2232EXPORT_SYMBOL_GPL(devm_pm_opp_register_set_opp_helper);
2233
2234static void _opp_detach_genpd(struct opp_table *opp_table)
2235{
2236 int index;
2237
2238 if (!opp_table->genpd_virt_devs)
2239 return;
2240
2241 for (index = 0; index < opp_table->required_opp_count; index++) {
2242 if (!opp_table->genpd_virt_devs[index])
2243 continue;
2244
2245 dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false);
2246 opp_table->genpd_virt_devs[index] = NULL;
2247 }
2248
2249 kfree(opp_table->genpd_virt_devs);
2250 opp_table->genpd_virt_devs = NULL;
2251}
2252
2253/**
2254 * dev_pm_opp_attach_genpd - Attach genpd(s) for the device and save virtual device pointer
2255 * @dev: Consumer device for which the genpd is getting attached.
2256 * @names: Null terminated array of pointers containing names of genpd to attach.
2257 * @virt_devs: Pointer to return the array of virtual devices.
2258 *
2259 * Multiple generic power domains for a device are supported with the help of
2260 * virtual genpd devices, which are created for each consumer device - genpd
2261 * pair. These are the device structures which are attached to the power domain
2262 * and are required by the OPP core to set the performance state of the genpd.
2263 * The same API also works for the case where single genpd is available and so
2264 * we don't need to support that separately.
2265 *
2266 * This helper will normally be called by the consumer driver of the device
2267 * "dev", as only that has details of the genpd names.
2268 *
2269 * This helper needs to be called once with a list of all genpd to attach.
2270 * Otherwise the original device structure will be used instead by the OPP core.
2271 *
2272 * The order of entries in the names array must match the order in which
2273 * "required-opps" are added in DT.
2274 */
2275struct opp_table *dev_pm_opp_attach_genpd(struct device *dev,
2276 const char **names, struct device ***virt_devs)
2277{
2278 struct opp_table *opp_table;
2279 struct device *virt_dev;
2280 int index = 0, ret = -EINVAL;
2281 const char **name = names;
2282
2283 opp_table = _add_opp_table(dev, false);
2284 if (IS_ERR(opp_table))
2285 return opp_table;
2286
2287 if (opp_table->genpd_virt_devs)
2288 return opp_table;
2289
2290 /*
2291 * If the genpd's OPP table isn't already initialized, parsing of the
2292 * required-opps fail for dev. We should retry this after genpd's OPP
2293 * table is added.
2294 */
2295 if (!opp_table->required_opp_count) {
2296 ret = -EPROBE_DEFER;
2297 goto put_table;
2298 }
2299
2300 mutex_lock(&opp_table->genpd_virt_dev_lock);
2301
2302 opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count,
2303 sizeof(*opp_table->genpd_virt_devs),
2304 GFP_KERNEL);
2305 if (!opp_table->genpd_virt_devs)
2306 goto unlock;
2307
2308 while (*name) {
2309 if (index >= opp_table->required_opp_count) {
2310 dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n",
2311 *name, opp_table->required_opp_count, index);
2312 goto err;
2313 }
2314
2315 virt_dev = dev_pm_domain_attach_by_name(dev, *name);
2316 if (IS_ERR(virt_dev)) {
2317 ret = PTR_ERR(virt_dev);
2318 dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret);
2319 goto err;
2320 }
2321
2322 opp_table->genpd_virt_devs[index] = virt_dev;
2323 index++;
2324 name++;
2325 }
2326
2327 if (virt_devs)
2328 *virt_devs = opp_table->genpd_virt_devs;
2329 mutex_unlock(&opp_table->genpd_virt_dev_lock);
2330
2331 return opp_table;
2332
2333err:
2334 _opp_detach_genpd(opp_table);
2335unlock:
2336 mutex_unlock(&opp_table->genpd_virt_dev_lock);
2337
2338put_table:
2339 dev_pm_opp_put_opp_table(opp_table);
2340
2341 return ERR_PTR(ret);
2342}
2343EXPORT_SYMBOL_GPL(dev_pm_opp_attach_genpd);
2344
2345/**
2346 * dev_pm_opp_detach_genpd() - Detach genpd(s) from the device.
2347 * @opp_table: OPP table returned by dev_pm_opp_attach_genpd().
2348 *
2349 * This detaches the genpd(s), resets the virtual device pointers, and puts the
2350 * OPP table.
2351 */
2352void dev_pm_opp_detach_genpd(struct opp_table *opp_table)
2353{
2354 if (unlikely(!opp_table))
2355 return;
2356
2357 /*
2358 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting
2359 * used in parallel.
2360 */
2361 mutex_lock(&opp_table->genpd_virt_dev_lock);
2362 _opp_detach_genpd(opp_table);
2363 mutex_unlock(&opp_table->genpd_virt_dev_lock);
2364
2365 dev_pm_opp_put_opp_table(opp_table);
2366}
2367EXPORT_SYMBOL_GPL(dev_pm_opp_detach_genpd);
2368
2369static void devm_pm_opp_detach_genpd(void *data)
2370{
2371 dev_pm_opp_detach_genpd(data);
2372}
2373
2374/**
2375 * devm_pm_opp_attach_genpd - Attach genpd(s) for the device and save virtual
2376 * device pointer
2377 * @dev: Consumer device for which the genpd is getting attached.
2378 * @names: Null terminated array of pointers containing names of genpd to attach.
2379 * @virt_devs: Pointer to return the array of virtual devices.
2380 *
2381 * This is a resource-managed version of dev_pm_opp_attach_genpd().
2382 *
2383 * Return: pointer to 'struct opp_table' on success and errorno otherwise.
2384 */
2385struct opp_table *
2386devm_pm_opp_attach_genpd(struct device *dev, const char **names,
2387 struct device ***virt_devs)
2388{
2389 struct opp_table *opp_table;
2390 int err;
2391
2392 opp_table = dev_pm_opp_attach_genpd(dev, names, virt_devs);
2393 if (IS_ERR(opp_table))
2394 return opp_table;
2395
2396 err = devm_add_action_or_reset(dev, devm_pm_opp_detach_genpd,
2397 opp_table);
2398 if (err)
2399 return ERR_PTR(err);
2400
2401 return opp_table;
2402}
2403EXPORT_SYMBOL_GPL(devm_pm_opp_attach_genpd);
2404
2405/**
2406 * dev_pm_opp_xlate_required_opp() - Find required OPP for @src_table OPP.
2407 * @src_table: OPP table which has @dst_table as one of its required OPP table.
2408 * @dst_table: Required OPP table of the @src_table.
2409 * @src_opp: OPP from the @src_table.
2410 *
2411 * This function returns the OPP (present in @dst_table) pointed out by the
2412 * "required-opps" property of the @src_opp (present in @src_table).
2413 *
2414 * The callers are required to call dev_pm_opp_put() for the returned OPP after
2415 * use.
2416 *
2417 * Return: pointer to 'struct dev_pm_opp' on success and errorno otherwise.
2418 */
2419struct dev_pm_opp *dev_pm_opp_xlate_required_opp(struct opp_table *src_table,
2420 struct opp_table *dst_table,
2421 struct dev_pm_opp *src_opp)
2422{
2423 struct dev_pm_opp *opp, *dest_opp = ERR_PTR(-ENODEV);
2424 int i;
2425
2426 if (!src_table || !dst_table || !src_opp ||
2427 !src_table->required_opp_tables)
2428 return ERR_PTR(-EINVAL);
2429
2430 /* required-opps not fully initialized yet */
2431 if (lazy_linking_pending(src_table))
2432 return ERR_PTR(-EBUSY);
2433
2434 for (i = 0; i < src_table->required_opp_count; i++) {
2435 if (src_table->required_opp_tables[i] == dst_table) {
2436 mutex_lock(&src_table->lock);
2437
2438 list_for_each_entry(opp, &src_table->opp_list, node) {
2439 if (opp == src_opp) {
2440 dest_opp = opp->required_opps[i];
2441 dev_pm_opp_get(dest_opp);
2442 break;
2443 }
2444 }
2445
2446 mutex_unlock(&src_table->lock);
2447 break;
2448 }
2449 }
2450
2451 if (IS_ERR(dest_opp)) {
2452 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__,
2453 src_table, dst_table);
2454 }
2455
2456 return dest_opp;
2457}
2458EXPORT_SYMBOL_GPL(dev_pm_opp_xlate_required_opp);
2459
2460/**
2461 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
2462 * @src_table: OPP table which has dst_table as one of its required OPP table.
2463 * @dst_table: Required OPP table of the src_table.
2464 * @pstate: Current performance state of the src_table.
2465 *
2466 * This Returns pstate of the OPP (present in @dst_table) pointed out by the
2467 * "required-opps" property of the OPP (present in @src_table) which has
2468 * performance state set to @pstate.
2469 *
2470 * Return: Zero or positive performance state on success, otherwise negative
2471 * value on errors.
2472 */
2473int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
2474 struct opp_table *dst_table,
2475 unsigned int pstate)
2476{
2477 struct dev_pm_opp *opp;
2478 int dest_pstate = -EINVAL;
2479 int i;
2480
2481 /*
2482 * Normally the src_table will have the "required_opps" property set to
2483 * point to one of the OPPs in the dst_table, but in some cases the
2484 * genpd and its master have one to one mapping of performance states
2485 * and so none of them have the "required-opps" property set. Return the
2486 * pstate of the src_table as it is in such cases.
2487 */
2488 if (!src_table || !src_table->required_opp_count)
2489 return pstate;
2490
2491 /* required-opps not fully initialized yet */
2492 if (lazy_linking_pending(src_table))
2493 return -EBUSY;
2494
2495 for (i = 0; i < src_table->required_opp_count; i++) {
2496 if (src_table->required_opp_tables[i]->np == dst_table->np)
2497 break;
2498 }
2499
2500 if (unlikely(i == src_table->required_opp_count)) {
2501 pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
2502 __func__, src_table, dst_table);
2503 return -EINVAL;
2504 }
2505
2506 mutex_lock(&src_table->lock);
2507
2508 list_for_each_entry(opp, &src_table->opp_list, node) {
2509 if (opp->pstate == pstate) {
2510 dest_pstate = opp->required_opps[i]->pstate;
2511 goto unlock;
2512 }
2513 }
2514
2515 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
2516 dst_table);
2517
2518unlock:
2519 mutex_unlock(&src_table->lock);
2520
2521 return dest_pstate;
2522}
2523
2524/**
2525 * dev_pm_opp_add() - Add an OPP table from a table definitions
2526 * @dev: device for which we do this operation
2527 * @freq: Frequency in Hz for this OPP
2528 * @u_volt: Voltage in uVolts for this OPP
2529 *
2530 * This function adds an opp definition to the opp table and returns status.
2531 * The opp is made available by default and it can be controlled using
2532 * dev_pm_opp_enable/disable functions.
2533 *
2534 * Return:
2535 * 0 On success OR
2536 * Duplicate OPPs (both freq and volt are same) and opp->available
2537 * -EEXIST Freq are same and volt are different OR
2538 * Duplicate OPPs (both freq and volt are same) and !opp->available
2539 * -ENOMEM Memory allocation failure
2540 */
2541int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt)
2542{
2543 struct opp_table *opp_table;
2544 int ret;
2545
2546 opp_table = _add_opp_table(dev, true);
2547 if (IS_ERR(opp_table))
2548 return PTR_ERR(opp_table);
2549
2550 /* Fix regulator count for dynamic OPPs */
2551 opp_table->regulator_count = 1;
2552
2553 ret = _opp_add_v1(opp_table, dev, freq, u_volt, true);
2554 if (ret)
2555 dev_pm_opp_put_opp_table(opp_table);
2556
2557 return ret;
2558}
2559EXPORT_SYMBOL_GPL(dev_pm_opp_add);
2560
2561/**
2562 * _opp_set_availability() - helper to set the availability of an opp
2563 * @dev: device for which we do this operation
2564 * @freq: OPP frequency to modify availability
2565 * @availability_req: availability status requested for this opp
2566 *
2567 * Set the availability of an OPP, opp_{enable,disable} share a common logic
2568 * which is isolated here.
2569 *
2570 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2571 * copy operation, returns 0 if no modification was done OR modification was
2572 * successful.
2573 */
2574static int _opp_set_availability(struct device *dev, unsigned long freq,
2575 bool availability_req)
2576{
2577 struct opp_table *opp_table;
2578 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2579 int r = 0;
2580
2581 /* Find the opp_table */
2582 opp_table = _find_opp_table(dev);
2583 if (IS_ERR(opp_table)) {
2584 r = PTR_ERR(opp_table);
2585 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2586 return r;
2587 }
2588
2589 mutex_lock(&opp_table->lock);
2590
2591 /* Do we have the frequency? */
2592 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2593 if (tmp_opp->rate == freq) {
2594 opp = tmp_opp;
2595 break;
2596 }
2597 }
2598
2599 if (IS_ERR(opp)) {
2600 r = PTR_ERR(opp);
2601 goto unlock;
2602 }
2603
2604 /* Is update really needed? */
2605 if (opp->available == availability_req)
2606 goto unlock;
2607
2608 opp->available = availability_req;
2609
2610 dev_pm_opp_get(opp);
2611 mutex_unlock(&opp_table->lock);
2612
2613 /* Notify the change of the OPP availability */
2614 if (availability_req)
2615 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2616 opp);
2617 else
2618 blocking_notifier_call_chain(&opp_table->head,
2619 OPP_EVENT_DISABLE, opp);
2620
2621 dev_pm_opp_put(opp);
2622 goto put_table;
2623
2624unlock:
2625 mutex_unlock(&opp_table->lock);
2626put_table:
2627 dev_pm_opp_put_opp_table(opp_table);
2628 return r;
2629}
2630
2631/**
2632 * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
2633 * @dev: device for which we do this operation
2634 * @freq: OPP frequency to adjust voltage of
2635 * @u_volt: new OPP target voltage
2636 * @u_volt_min: new OPP min voltage
2637 * @u_volt_max: new OPP max voltage
2638 *
2639 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2640 * copy operation, returns 0 if no modifcation was done OR modification was
2641 * successful.
2642 */
2643int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
2644 unsigned long u_volt, unsigned long u_volt_min,
2645 unsigned long u_volt_max)
2646
2647{
2648 struct opp_table *opp_table;
2649 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2650 int r = 0;
2651
2652 /* Find the opp_table */
2653 opp_table = _find_opp_table(dev);
2654 if (IS_ERR(opp_table)) {
2655 r = PTR_ERR(opp_table);
2656 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2657 return r;
2658 }
2659
2660 mutex_lock(&opp_table->lock);
2661
2662 /* Do we have the frequency? */
2663 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2664 if (tmp_opp->rate == freq) {
2665 opp = tmp_opp;
2666 break;
2667 }
2668 }
2669
2670 if (IS_ERR(opp)) {
2671 r = PTR_ERR(opp);
2672 goto adjust_unlock;
2673 }
2674
2675 /* Is update really needed? */
2676 if (opp->supplies->u_volt == u_volt)
2677 goto adjust_unlock;
2678
2679 opp->supplies->u_volt = u_volt;
2680 opp->supplies->u_volt_min = u_volt_min;
2681 opp->supplies->u_volt_max = u_volt_max;
2682
2683 dev_pm_opp_get(opp);
2684 mutex_unlock(&opp_table->lock);
2685
2686 /* Notify the voltage change of the OPP */
2687 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE,
2688 opp);
2689
2690 dev_pm_opp_put(opp);
2691 goto adjust_put_table;
2692
2693adjust_unlock:
2694 mutex_unlock(&opp_table->lock);
2695adjust_put_table:
2696 dev_pm_opp_put_opp_table(opp_table);
2697 return r;
2698}
2699EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage);
2700
2701/**
2702 * dev_pm_opp_enable() - Enable a specific OPP
2703 * @dev: device for which we do this operation
2704 * @freq: OPP frequency to enable
2705 *
2706 * Enables a provided opp. If the operation is valid, this returns 0, else the
2707 * corresponding error value. It is meant to be used for users an OPP available
2708 * after being temporarily made unavailable with dev_pm_opp_disable.
2709 *
2710 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2711 * copy operation, returns 0 if no modification was done OR modification was
2712 * successful.
2713 */
2714int dev_pm_opp_enable(struct device *dev, unsigned long freq)
2715{
2716 return _opp_set_availability(dev, freq, true);
2717}
2718EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
2719
2720/**
2721 * dev_pm_opp_disable() - Disable a specific OPP
2722 * @dev: device for which we do this operation
2723 * @freq: OPP frequency to disable
2724 *
2725 * Disables a provided opp. If the operation is valid, this returns
2726 * 0, else the corresponding error value. It is meant to be a temporary
2727 * control by users to make this OPP not available until the circumstances are
2728 * right to make it available again (with a call to dev_pm_opp_enable).
2729 *
2730 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2731 * copy operation, returns 0 if no modification was done OR modification was
2732 * successful.
2733 */
2734int dev_pm_opp_disable(struct device *dev, unsigned long freq)
2735{
2736 return _opp_set_availability(dev, freq, false);
2737}
2738EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
2739
2740/**
2741 * dev_pm_opp_register_notifier() - Register OPP notifier for the device
2742 * @dev: Device for which notifier needs to be registered
2743 * @nb: Notifier block to be registered
2744 *
2745 * Return: 0 on success or a negative error value.
2746 */
2747int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
2748{
2749 struct opp_table *opp_table;
2750 int ret;
2751
2752 opp_table = _find_opp_table(dev);
2753 if (IS_ERR(opp_table))
2754 return PTR_ERR(opp_table);
2755
2756 ret = blocking_notifier_chain_register(&opp_table->head, nb);
2757
2758 dev_pm_opp_put_opp_table(opp_table);
2759
2760 return ret;
2761}
2762EXPORT_SYMBOL(dev_pm_opp_register_notifier);
2763
2764/**
2765 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
2766 * @dev: Device for which notifier needs to be unregistered
2767 * @nb: Notifier block to be unregistered
2768 *
2769 * Return: 0 on success or a negative error value.
2770 */
2771int dev_pm_opp_unregister_notifier(struct device *dev,
2772 struct notifier_block *nb)
2773{
2774 struct opp_table *opp_table;
2775 int ret;
2776
2777 opp_table = _find_opp_table(dev);
2778 if (IS_ERR(opp_table))
2779 return PTR_ERR(opp_table);
2780
2781 ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
2782
2783 dev_pm_opp_put_opp_table(opp_table);
2784
2785 return ret;
2786}
2787EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
2788
2789/**
2790 * dev_pm_opp_remove_table() - Free all OPPs associated with the device
2791 * @dev: device pointer used to lookup OPP table.
2792 *
2793 * Free both OPPs created using static entries present in DT and the
2794 * dynamically added entries.
2795 */
2796void dev_pm_opp_remove_table(struct device *dev)
2797{
2798 struct opp_table *opp_table;
2799
2800 /* Check for existing table for 'dev' */
2801 opp_table = _find_opp_table(dev);
2802 if (IS_ERR(opp_table)) {
2803 int error = PTR_ERR(opp_table);
2804
2805 if (error != -ENODEV)
2806 WARN(1, "%s: opp_table: %d\n",
2807 IS_ERR_OR_NULL(dev) ?
2808 "Invalid device" : dev_name(dev),
2809 error);
2810 return;
2811 }
2812
2813 /*
2814 * Drop the extra reference only if the OPP table was successfully added
2815 * with dev_pm_opp_of_add_table() earlier.
2816 **/
2817 if (_opp_remove_all_static(opp_table))
2818 dev_pm_opp_put_opp_table(opp_table);
2819
2820 /* Drop reference taken by _find_opp_table() */
2821 dev_pm_opp_put_opp_table(opp_table);
2822}
2823EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);
2824
2825/**
2826 * dev_pm_opp_sync_regulators() - Sync state of voltage regulators
2827 * @dev: device for which we do this operation
2828 *
2829 * Sync voltage state of the OPP table regulators.
2830 *
2831 * Return: 0 on success or a negative error value.
2832 */
2833int dev_pm_opp_sync_regulators(struct device *dev)
2834{
2835 struct opp_table *opp_table;
2836 struct regulator *reg;
2837 int i, ret = 0;
2838
2839 /* Device may not have OPP table */
2840 opp_table = _find_opp_table(dev);
2841 if (IS_ERR(opp_table))
2842 return 0;
2843
2844 /* Regulator may not be required for the device */
2845 if (unlikely(!opp_table->regulators))
2846 goto put_table;
2847
2848 /* Nothing to sync if voltage wasn't changed */
2849 if (!opp_table->enabled)
2850 goto put_table;
2851
2852 for (i = 0; i < opp_table->regulator_count; i++) {
2853 reg = opp_table->regulators[i];
2854 ret = regulator_sync_voltage(reg);
2855 if (ret)
2856 break;
2857 }
2858put_table:
2859 /* Drop reference taken by _find_opp_table() */
2860 dev_pm_opp_put_opp_table(opp_table);
2861
2862 return ret;
2863}
2864EXPORT_SYMBOL_GPL(dev_pm_opp_sync_regulators);