Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/drivers/char/mem.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * Added devfs support.
8 * Jan-11-1998, C. Scott Ananian <cananian@alumni.princeton.edu>
9 * Shared /dev/zero mmapping support, Feb 2000, Kanoj Sarcar <kanoj@sgi.com>
10 */
11
12#include <linux/mm.h>
13#include <linux/miscdevice.h>
14#include <linux/slab.h>
15#include <linux/vmalloc.h>
16#include <linux/mman.h>
17#include <linux/random.h>
18#include <linux/init.h>
19#include <linux/raw.h>
20#include <linux/tty.h>
21#include <linux/capability.h>
22#include <linux/ptrace.h>
23#include <linux/device.h>
24#include <linux/highmem.h>
25#include <linux/backing-dev.h>
26#include <linux/shmem_fs.h>
27#include <linux/splice.h>
28#include <linux/pfn.h>
29#include <linux/export.h>
30#include <linux/io.h>
31#include <linux/uio.h>
32#include <linux/uaccess.h>
33#include <linux/security.h>
34
35#ifdef CONFIG_IA64
36# include <linux/efi.h>
37#endif
38
39#define DEVMEM_MINOR 1
40#define DEVPORT_MINOR 4
41
42static inline unsigned long size_inside_page(unsigned long start,
43 unsigned long size)
44{
45 unsigned long sz;
46
47 sz = PAGE_SIZE - (start & (PAGE_SIZE - 1));
48
49 return min(sz, size);
50}
51
52#ifndef ARCH_HAS_VALID_PHYS_ADDR_RANGE
53static inline int valid_phys_addr_range(phys_addr_t addr, size_t count)
54{
55 return addr + count <= __pa(high_memory);
56}
57
58static inline int valid_mmap_phys_addr_range(unsigned long pfn, size_t size)
59{
60 return 1;
61}
62#endif
63
64#ifdef CONFIG_STRICT_DEVMEM
65static inline int page_is_allowed(unsigned long pfn)
66{
67 return devmem_is_allowed(pfn);
68}
69static inline int range_is_allowed(unsigned long pfn, unsigned long size)
70{
71 u64 from = ((u64)pfn) << PAGE_SHIFT;
72 u64 to = from + size;
73 u64 cursor = from;
74
75 while (cursor < to) {
76 if (!devmem_is_allowed(pfn))
77 return 0;
78 cursor += PAGE_SIZE;
79 pfn++;
80 }
81 return 1;
82}
83#else
84static inline int page_is_allowed(unsigned long pfn)
85{
86 return 1;
87}
88static inline int range_is_allowed(unsigned long pfn, unsigned long size)
89{
90 return 1;
91}
92#endif
93
94#ifndef unxlate_dev_mem_ptr
95#define unxlate_dev_mem_ptr unxlate_dev_mem_ptr
96void __weak unxlate_dev_mem_ptr(phys_addr_t phys, void *addr)
97{
98}
99#endif
100
101static inline bool should_stop_iteration(void)
102{
103 if (need_resched())
104 cond_resched();
105 return fatal_signal_pending(current);
106}
107
108/*
109 * This funcion reads the *physical* memory. The f_pos points directly to the
110 * memory location.
111 */
112static ssize_t read_mem(struct file *file, char __user *buf,
113 size_t count, loff_t *ppos)
114{
115 phys_addr_t p = *ppos;
116 ssize_t read, sz;
117 void *ptr;
118 char *bounce;
119 int err;
120
121 if (p != *ppos)
122 return 0;
123
124 if (!valid_phys_addr_range(p, count))
125 return -EFAULT;
126 read = 0;
127#ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
128 /* we don't have page 0 mapped on sparc and m68k.. */
129 if (p < PAGE_SIZE) {
130 sz = size_inside_page(p, count);
131 if (sz > 0) {
132 if (clear_user(buf, sz))
133 return -EFAULT;
134 buf += sz;
135 p += sz;
136 count -= sz;
137 read += sz;
138 }
139 }
140#endif
141
142 bounce = kmalloc(PAGE_SIZE, GFP_KERNEL);
143 if (!bounce)
144 return -ENOMEM;
145
146 while (count > 0) {
147 unsigned long remaining;
148 int allowed, probe;
149
150 sz = size_inside_page(p, count);
151
152 err = -EPERM;
153 allowed = page_is_allowed(p >> PAGE_SHIFT);
154 if (!allowed)
155 goto failed;
156
157 err = -EFAULT;
158 if (allowed == 2) {
159 /* Show zeros for restricted memory. */
160 remaining = clear_user(buf, sz);
161 } else {
162 /*
163 * On ia64 if a page has been mapped somewhere as
164 * uncached, then it must also be accessed uncached
165 * by the kernel or data corruption may occur.
166 */
167 ptr = xlate_dev_mem_ptr(p);
168 if (!ptr)
169 goto failed;
170
171 probe = copy_from_kernel_nofault(bounce, ptr, sz);
172 unxlate_dev_mem_ptr(p, ptr);
173 if (probe)
174 goto failed;
175
176 remaining = copy_to_user(buf, bounce, sz);
177 }
178
179 if (remaining)
180 goto failed;
181
182 buf += sz;
183 p += sz;
184 count -= sz;
185 read += sz;
186 if (should_stop_iteration())
187 break;
188 }
189 kfree(bounce);
190
191 *ppos += read;
192 return read;
193
194failed:
195 kfree(bounce);
196 return err;
197}
198
199static ssize_t write_mem(struct file *file, const char __user *buf,
200 size_t count, loff_t *ppos)
201{
202 phys_addr_t p = *ppos;
203 ssize_t written, sz;
204 unsigned long copied;
205 void *ptr;
206
207 if (p != *ppos)
208 return -EFBIG;
209
210 if (!valid_phys_addr_range(p, count))
211 return -EFAULT;
212
213 written = 0;
214
215#ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
216 /* we don't have page 0 mapped on sparc and m68k.. */
217 if (p < PAGE_SIZE) {
218 sz = size_inside_page(p, count);
219 /* Hmm. Do something? */
220 buf += sz;
221 p += sz;
222 count -= sz;
223 written += sz;
224 }
225#endif
226
227 while (count > 0) {
228 int allowed;
229
230 sz = size_inside_page(p, count);
231
232 allowed = page_is_allowed(p >> PAGE_SHIFT);
233 if (!allowed)
234 return -EPERM;
235
236 /* Skip actual writing when a page is marked as restricted. */
237 if (allowed == 1) {
238 /*
239 * On ia64 if a page has been mapped somewhere as
240 * uncached, then it must also be accessed uncached
241 * by the kernel or data corruption may occur.
242 */
243 ptr = xlate_dev_mem_ptr(p);
244 if (!ptr) {
245 if (written)
246 break;
247 return -EFAULT;
248 }
249
250 copied = copy_from_user(ptr, buf, sz);
251 unxlate_dev_mem_ptr(p, ptr);
252 if (copied) {
253 written += sz - copied;
254 if (written)
255 break;
256 return -EFAULT;
257 }
258 }
259
260 buf += sz;
261 p += sz;
262 count -= sz;
263 written += sz;
264 if (should_stop_iteration())
265 break;
266 }
267
268 *ppos += written;
269 return written;
270}
271
272int __weak phys_mem_access_prot_allowed(struct file *file,
273 unsigned long pfn, unsigned long size, pgprot_t *vma_prot)
274{
275 return 1;
276}
277
278#ifndef __HAVE_PHYS_MEM_ACCESS_PROT
279
280/*
281 * Architectures vary in how they handle caching for addresses
282 * outside of main memory.
283 *
284 */
285#ifdef pgprot_noncached
286static int uncached_access(struct file *file, phys_addr_t addr)
287{
288#if defined(CONFIG_IA64)
289 /*
290 * On ia64, we ignore O_DSYNC because we cannot tolerate memory
291 * attribute aliases.
292 */
293 return !(efi_mem_attributes(addr) & EFI_MEMORY_WB);
294#else
295 /*
296 * Accessing memory above the top the kernel knows about or through a
297 * file pointer
298 * that was marked O_DSYNC will be done non-cached.
299 */
300 if (file->f_flags & O_DSYNC)
301 return 1;
302 return addr >= __pa(high_memory);
303#endif
304}
305#endif
306
307static pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
308 unsigned long size, pgprot_t vma_prot)
309{
310#ifdef pgprot_noncached
311 phys_addr_t offset = pfn << PAGE_SHIFT;
312
313 if (uncached_access(file, offset))
314 return pgprot_noncached(vma_prot);
315#endif
316 return vma_prot;
317}
318#endif
319
320#ifndef CONFIG_MMU
321static unsigned long get_unmapped_area_mem(struct file *file,
322 unsigned long addr,
323 unsigned long len,
324 unsigned long pgoff,
325 unsigned long flags)
326{
327 if (!valid_mmap_phys_addr_range(pgoff, len))
328 return (unsigned long) -EINVAL;
329 return pgoff << PAGE_SHIFT;
330}
331
332/* permit direct mmap, for read, write or exec */
333static unsigned memory_mmap_capabilities(struct file *file)
334{
335 return NOMMU_MAP_DIRECT |
336 NOMMU_MAP_READ | NOMMU_MAP_WRITE | NOMMU_MAP_EXEC;
337}
338
339static unsigned zero_mmap_capabilities(struct file *file)
340{
341 return NOMMU_MAP_COPY;
342}
343
344/* can't do an in-place private mapping if there's no MMU */
345static inline int private_mapping_ok(struct vm_area_struct *vma)
346{
347 return vma->vm_flags & VM_MAYSHARE;
348}
349#else
350
351static inline int private_mapping_ok(struct vm_area_struct *vma)
352{
353 return 1;
354}
355#endif
356
357static const struct vm_operations_struct mmap_mem_ops = {
358#ifdef CONFIG_HAVE_IOREMAP_PROT
359 .access = generic_access_phys
360#endif
361};
362
363static int mmap_mem(struct file *file, struct vm_area_struct *vma)
364{
365 size_t size = vma->vm_end - vma->vm_start;
366 phys_addr_t offset = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
367
368 /* Does it even fit in phys_addr_t? */
369 if (offset >> PAGE_SHIFT != vma->vm_pgoff)
370 return -EINVAL;
371
372 /* It's illegal to wrap around the end of the physical address space. */
373 if (offset + (phys_addr_t)size - 1 < offset)
374 return -EINVAL;
375
376 if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
377 return -EINVAL;
378
379 if (!private_mapping_ok(vma))
380 return -ENOSYS;
381
382 if (!range_is_allowed(vma->vm_pgoff, size))
383 return -EPERM;
384
385 if (!phys_mem_access_prot_allowed(file, vma->vm_pgoff, size,
386 &vma->vm_page_prot))
387 return -EINVAL;
388
389 vma->vm_page_prot = phys_mem_access_prot(file, vma->vm_pgoff,
390 size,
391 vma->vm_page_prot);
392
393 vma->vm_ops = &mmap_mem_ops;
394
395 /* Remap-pfn-range will mark the range VM_IO */
396 if (remap_pfn_range(vma,
397 vma->vm_start,
398 vma->vm_pgoff,
399 size,
400 vma->vm_page_prot)) {
401 return -EAGAIN;
402 }
403 return 0;
404}
405
406static int mmap_kmem(struct file *file, struct vm_area_struct *vma)
407{
408 unsigned long pfn;
409
410 /* Turn a kernel-virtual address into a physical page frame */
411 pfn = __pa((u64)vma->vm_pgoff << PAGE_SHIFT) >> PAGE_SHIFT;
412
413 /*
414 * RED-PEN: on some architectures there is more mapped memory than
415 * available in mem_map which pfn_valid checks for. Perhaps should add a
416 * new macro here.
417 *
418 * RED-PEN: vmalloc is not supported right now.
419 */
420 if (!pfn_valid(pfn))
421 return -EIO;
422
423 vma->vm_pgoff = pfn;
424 return mmap_mem(file, vma);
425}
426
427/*
428 * This function reads the *virtual* memory as seen by the kernel.
429 */
430static ssize_t read_kmem(struct file *file, char __user *buf,
431 size_t count, loff_t *ppos)
432{
433 unsigned long p = *ppos;
434 ssize_t low_count, read, sz;
435 char *kbuf; /* k-addr because vread() takes vmlist_lock rwlock */
436 int err = 0;
437
438 read = 0;
439 if (p < (unsigned long) high_memory) {
440 low_count = count;
441 if (count > (unsigned long)high_memory - p)
442 low_count = (unsigned long)high_memory - p;
443
444#ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
445 /* we don't have page 0 mapped on sparc and m68k.. */
446 if (p < PAGE_SIZE && low_count > 0) {
447 sz = size_inside_page(p, low_count);
448 if (clear_user(buf, sz))
449 return -EFAULT;
450 buf += sz;
451 p += sz;
452 read += sz;
453 low_count -= sz;
454 count -= sz;
455 }
456#endif
457 while (low_count > 0) {
458 sz = size_inside_page(p, low_count);
459
460 /*
461 * On ia64 if a page has been mapped somewhere as
462 * uncached, then it must also be accessed uncached
463 * by the kernel or data corruption may occur
464 */
465 kbuf = xlate_dev_kmem_ptr((void *)p);
466 if (!virt_addr_valid(kbuf))
467 return -ENXIO;
468
469 if (copy_to_user(buf, kbuf, sz))
470 return -EFAULT;
471 buf += sz;
472 p += sz;
473 read += sz;
474 low_count -= sz;
475 count -= sz;
476 if (should_stop_iteration()) {
477 count = 0;
478 break;
479 }
480 }
481 }
482
483 if (count > 0) {
484 kbuf = (char *)__get_free_page(GFP_KERNEL);
485 if (!kbuf)
486 return -ENOMEM;
487 while (count > 0) {
488 sz = size_inside_page(p, count);
489 if (!is_vmalloc_or_module_addr((void *)p)) {
490 err = -ENXIO;
491 break;
492 }
493 sz = vread(kbuf, (char *)p, sz);
494 if (!sz)
495 break;
496 if (copy_to_user(buf, kbuf, sz)) {
497 err = -EFAULT;
498 break;
499 }
500 count -= sz;
501 buf += sz;
502 read += sz;
503 p += sz;
504 if (should_stop_iteration())
505 break;
506 }
507 free_page((unsigned long)kbuf);
508 }
509 *ppos = p;
510 return read ? read : err;
511}
512
513
514static ssize_t do_write_kmem(unsigned long p, const char __user *buf,
515 size_t count, loff_t *ppos)
516{
517 ssize_t written, sz;
518 unsigned long copied;
519
520 written = 0;
521#ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
522 /* we don't have page 0 mapped on sparc and m68k.. */
523 if (p < PAGE_SIZE) {
524 sz = size_inside_page(p, count);
525 /* Hmm. Do something? */
526 buf += sz;
527 p += sz;
528 count -= sz;
529 written += sz;
530 }
531#endif
532
533 while (count > 0) {
534 void *ptr;
535
536 sz = size_inside_page(p, count);
537
538 /*
539 * On ia64 if a page has been mapped somewhere as uncached, then
540 * it must also be accessed uncached by the kernel or data
541 * corruption may occur.
542 */
543 ptr = xlate_dev_kmem_ptr((void *)p);
544 if (!virt_addr_valid(ptr))
545 return -ENXIO;
546
547 copied = copy_from_user(ptr, buf, sz);
548 if (copied) {
549 written += sz - copied;
550 if (written)
551 break;
552 return -EFAULT;
553 }
554 buf += sz;
555 p += sz;
556 count -= sz;
557 written += sz;
558 if (should_stop_iteration())
559 break;
560 }
561
562 *ppos += written;
563 return written;
564}
565
566/*
567 * This function writes to the *virtual* memory as seen by the kernel.
568 */
569static ssize_t write_kmem(struct file *file, const char __user *buf,
570 size_t count, loff_t *ppos)
571{
572 unsigned long p = *ppos;
573 ssize_t wrote = 0;
574 ssize_t virtr = 0;
575 char *kbuf; /* k-addr because vwrite() takes vmlist_lock rwlock */
576 int err = 0;
577
578 if (p < (unsigned long) high_memory) {
579 unsigned long to_write = min_t(unsigned long, count,
580 (unsigned long)high_memory - p);
581 wrote = do_write_kmem(p, buf, to_write, ppos);
582 if (wrote != to_write)
583 return wrote;
584 p += wrote;
585 buf += wrote;
586 count -= wrote;
587 }
588
589 if (count > 0) {
590 kbuf = (char *)__get_free_page(GFP_KERNEL);
591 if (!kbuf)
592 return wrote ? wrote : -ENOMEM;
593 while (count > 0) {
594 unsigned long sz = size_inside_page(p, count);
595 unsigned long n;
596
597 if (!is_vmalloc_or_module_addr((void *)p)) {
598 err = -ENXIO;
599 break;
600 }
601 n = copy_from_user(kbuf, buf, sz);
602 if (n) {
603 err = -EFAULT;
604 break;
605 }
606 vwrite(kbuf, (char *)p, sz);
607 count -= sz;
608 buf += sz;
609 virtr += sz;
610 p += sz;
611 if (should_stop_iteration())
612 break;
613 }
614 free_page((unsigned long)kbuf);
615 }
616
617 *ppos = p;
618 return virtr + wrote ? : err;
619}
620
621static ssize_t read_port(struct file *file, char __user *buf,
622 size_t count, loff_t *ppos)
623{
624 unsigned long i = *ppos;
625 char __user *tmp = buf;
626
627 if (!access_ok(buf, count))
628 return -EFAULT;
629 while (count-- > 0 && i < 65536) {
630 if (__put_user(inb(i), tmp) < 0)
631 return -EFAULT;
632 i++;
633 tmp++;
634 }
635 *ppos = i;
636 return tmp-buf;
637}
638
639static ssize_t write_port(struct file *file, const char __user *buf,
640 size_t count, loff_t *ppos)
641{
642 unsigned long i = *ppos;
643 const char __user *tmp = buf;
644
645 if (!access_ok(buf, count))
646 return -EFAULT;
647 while (count-- > 0 && i < 65536) {
648 char c;
649
650 if (__get_user(c, tmp)) {
651 if (tmp > buf)
652 break;
653 return -EFAULT;
654 }
655 outb(c, i);
656 i++;
657 tmp++;
658 }
659 *ppos = i;
660 return tmp-buf;
661}
662
663static ssize_t read_null(struct file *file, char __user *buf,
664 size_t count, loff_t *ppos)
665{
666 return 0;
667}
668
669static ssize_t write_null(struct file *file, const char __user *buf,
670 size_t count, loff_t *ppos)
671{
672 return count;
673}
674
675static ssize_t read_iter_null(struct kiocb *iocb, struct iov_iter *to)
676{
677 return 0;
678}
679
680static ssize_t write_iter_null(struct kiocb *iocb, struct iov_iter *from)
681{
682 size_t count = iov_iter_count(from);
683 iov_iter_advance(from, count);
684 return count;
685}
686
687static int pipe_to_null(struct pipe_inode_info *info, struct pipe_buffer *buf,
688 struct splice_desc *sd)
689{
690 return sd->len;
691}
692
693static ssize_t splice_write_null(struct pipe_inode_info *pipe, struct file *out,
694 loff_t *ppos, size_t len, unsigned int flags)
695{
696 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_null);
697}
698
699static ssize_t read_iter_zero(struct kiocb *iocb, struct iov_iter *iter)
700{
701 size_t written = 0;
702
703 while (iov_iter_count(iter)) {
704 size_t chunk = iov_iter_count(iter), n;
705
706 if (chunk > PAGE_SIZE)
707 chunk = PAGE_SIZE; /* Just for latency reasons */
708 n = iov_iter_zero(chunk, iter);
709 if (!n && iov_iter_count(iter))
710 return written ? written : -EFAULT;
711 written += n;
712 if (signal_pending(current))
713 return written ? written : -ERESTARTSYS;
714 cond_resched();
715 }
716 return written;
717}
718
719static ssize_t read_zero(struct file *file, char __user *buf,
720 size_t count, loff_t *ppos)
721{
722 size_t cleared = 0;
723
724 while (count) {
725 size_t chunk = min_t(size_t, count, PAGE_SIZE);
726 size_t left;
727
728 left = clear_user(buf + cleared, chunk);
729 if (unlikely(left)) {
730 cleared += (chunk - left);
731 if (!cleared)
732 return -EFAULT;
733 break;
734 }
735 cleared += chunk;
736 count -= chunk;
737
738 if (signal_pending(current))
739 break;
740 cond_resched();
741 }
742
743 return cleared;
744}
745
746static int mmap_zero(struct file *file, struct vm_area_struct *vma)
747{
748#ifndef CONFIG_MMU
749 return -ENOSYS;
750#endif
751 if (vma->vm_flags & VM_SHARED)
752 return shmem_zero_setup(vma);
753 vma_set_anonymous(vma);
754 return 0;
755}
756
757static unsigned long get_unmapped_area_zero(struct file *file,
758 unsigned long addr, unsigned long len,
759 unsigned long pgoff, unsigned long flags)
760{
761#ifdef CONFIG_MMU
762 if (flags & MAP_SHARED) {
763 /*
764 * mmap_zero() will call shmem_zero_setup() to create a file,
765 * so use shmem's get_unmapped_area in case it can be huge;
766 * and pass NULL for file as in mmap.c's get_unmapped_area(),
767 * so as not to confuse shmem with our handle on "/dev/zero".
768 */
769 return shmem_get_unmapped_area(NULL, addr, len, pgoff, flags);
770 }
771
772 /* Otherwise flags & MAP_PRIVATE: with no shmem object beneath it */
773 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
774#else
775 return -ENOSYS;
776#endif
777}
778
779static ssize_t write_full(struct file *file, const char __user *buf,
780 size_t count, loff_t *ppos)
781{
782 return -ENOSPC;
783}
784
785/*
786 * Special lseek() function for /dev/null and /dev/zero. Most notably, you
787 * can fopen() both devices with "a" now. This was previously impossible.
788 * -- SRB.
789 */
790static loff_t null_lseek(struct file *file, loff_t offset, int orig)
791{
792 return file->f_pos = 0;
793}
794
795/*
796 * The memory devices use the full 32/64 bits of the offset, and so we cannot
797 * check against negative addresses: they are ok. The return value is weird,
798 * though, in that case (0).
799 *
800 * also note that seeking relative to the "end of file" isn't supported:
801 * it has no meaning, so it returns -EINVAL.
802 */
803static loff_t memory_lseek(struct file *file, loff_t offset, int orig)
804{
805 loff_t ret;
806
807 inode_lock(file_inode(file));
808 switch (orig) {
809 case SEEK_CUR:
810 offset += file->f_pos;
811 fallthrough;
812 case SEEK_SET:
813 /* to avoid userland mistaking f_pos=-9 as -EBADF=-9 */
814 if ((unsigned long long)offset >= -MAX_ERRNO) {
815 ret = -EOVERFLOW;
816 break;
817 }
818 file->f_pos = offset;
819 ret = file->f_pos;
820 force_successful_syscall_return();
821 break;
822 default:
823 ret = -EINVAL;
824 }
825 inode_unlock(file_inode(file));
826 return ret;
827}
828
829static int open_port(struct inode *inode, struct file *filp)
830{
831 int rc;
832
833 if (!capable(CAP_SYS_RAWIO))
834 return -EPERM;
835
836 rc = security_locked_down(LOCKDOWN_DEV_MEM);
837 if (rc)
838 return rc;
839
840 if (iminor(inode) != DEVMEM_MINOR)
841 return 0;
842
843 /*
844 * Use a unified address space to have a single point to manage
845 * revocations when drivers want to take over a /dev/mem mapped
846 * range.
847 */
848 filp->f_mapping = iomem_get_mapping();
849
850 return 0;
851}
852
853#define zero_lseek null_lseek
854#define full_lseek null_lseek
855#define write_zero write_null
856#define write_iter_zero write_iter_null
857#define open_mem open_port
858#define open_kmem open_mem
859
860static const struct file_operations __maybe_unused mem_fops = {
861 .llseek = memory_lseek,
862 .read = read_mem,
863 .write = write_mem,
864 .mmap = mmap_mem,
865 .open = open_mem,
866#ifndef CONFIG_MMU
867 .get_unmapped_area = get_unmapped_area_mem,
868 .mmap_capabilities = memory_mmap_capabilities,
869#endif
870};
871
872static const struct file_operations __maybe_unused kmem_fops = {
873 .llseek = memory_lseek,
874 .read = read_kmem,
875 .write = write_kmem,
876 .mmap = mmap_kmem,
877 .open = open_kmem,
878#ifndef CONFIG_MMU
879 .get_unmapped_area = get_unmapped_area_mem,
880 .mmap_capabilities = memory_mmap_capabilities,
881#endif
882};
883
884static const struct file_operations null_fops = {
885 .llseek = null_lseek,
886 .read = read_null,
887 .write = write_null,
888 .read_iter = read_iter_null,
889 .write_iter = write_iter_null,
890 .splice_write = splice_write_null,
891};
892
893static const struct file_operations __maybe_unused port_fops = {
894 .llseek = memory_lseek,
895 .read = read_port,
896 .write = write_port,
897 .open = open_port,
898};
899
900static const struct file_operations zero_fops = {
901 .llseek = zero_lseek,
902 .write = write_zero,
903 .read_iter = read_iter_zero,
904 .read = read_zero,
905 .write_iter = write_iter_zero,
906 .mmap = mmap_zero,
907 .get_unmapped_area = get_unmapped_area_zero,
908#ifndef CONFIG_MMU
909 .mmap_capabilities = zero_mmap_capabilities,
910#endif
911};
912
913static const struct file_operations full_fops = {
914 .llseek = full_lseek,
915 .read_iter = read_iter_zero,
916 .write = write_full,
917};
918
919static const struct memdev {
920 const char *name;
921 umode_t mode;
922 const struct file_operations *fops;
923 fmode_t fmode;
924} devlist[] = {
925#ifdef CONFIG_DEVMEM
926 [DEVMEM_MINOR] = { "mem", 0, &mem_fops, FMODE_UNSIGNED_OFFSET },
927#endif
928#ifdef CONFIG_DEVKMEM
929 [2] = { "kmem", 0, &kmem_fops, FMODE_UNSIGNED_OFFSET },
930#endif
931 [3] = { "null", 0666, &null_fops, 0 },
932#ifdef CONFIG_DEVPORT
933 [4] = { "port", 0, &port_fops, 0 },
934#endif
935 [5] = { "zero", 0666, &zero_fops, 0 },
936 [7] = { "full", 0666, &full_fops, 0 },
937 [8] = { "random", 0666, &random_fops, 0 },
938 [9] = { "urandom", 0666, &urandom_fops, 0 },
939#ifdef CONFIG_PRINTK
940 [11] = { "kmsg", 0644, &kmsg_fops, 0 },
941#endif
942};
943
944static int memory_open(struct inode *inode, struct file *filp)
945{
946 int minor;
947 const struct memdev *dev;
948
949 minor = iminor(inode);
950 if (minor >= ARRAY_SIZE(devlist))
951 return -ENXIO;
952
953 dev = &devlist[minor];
954 if (!dev->fops)
955 return -ENXIO;
956
957 filp->f_op = dev->fops;
958 filp->f_mode |= dev->fmode;
959
960 if (dev->fops->open)
961 return dev->fops->open(inode, filp);
962
963 return 0;
964}
965
966static const struct file_operations memory_fops = {
967 .open = memory_open,
968 .llseek = noop_llseek,
969};
970
971static char *mem_devnode(struct device *dev, umode_t *mode)
972{
973 if (mode && devlist[MINOR(dev->devt)].mode)
974 *mode = devlist[MINOR(dev->devt)].mode;
975 return NULL;
976}
977
978static struct class *mem_class;
979
980static int __init chr_dev_init(void)
981{
982 int minor;
983
984 if (register_chrdev(MEM_MAJOR, "mem", &memory_fops))
985 printk("unable to get major %d for memory devs\n", MEM_MAJOR);
986
987 mem_class = class_create(THIS_MODULE, "mem");
988 if (IS_ERR(mem_class))
989 return PTR_ERR(mem_class);
990
991 mem_class->devnode = mem_devnode;
992 for (minor = 1; minor < ARRAY_SIZE(devlist); minor++) {
993 if (!devlist[minor].name)
994 continue;
995
996 /*
997 * Create /dev/port?
998 */
999 if ((minor == DEVPORT_MINOR) && !arch_has_dev_port())
1000 continue;
1001
1002 device_create(mem_class, NULL, MKDEV(MEM_MAJOR, minor),
1003 NULL, devlist[minor].name);
1004 }
1005
1006 return tty_init();
1007}
1008
1009fs_initcall(chr_dev_init);