Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Generic socket support routines. Memory allocators, socket lock/release
8 * handler for protocols to use and generic option handler.
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 */
85
86#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
87
88#include <asm/unaligned.h>
89#include <linux/capability.h>
90#include <linux/errno.h>
91#include <linux/errqueue.h>
92#include <linux/types.h>
93#include <linux/socket.h>
94#include <linux/in.h>
95#include <linux/kernel.h>
96#include <linux/module.h>
97#include <linux/proc_fs.h>
98#include <linux/seq_file.h>
99#include <linux/sched.h>
100#include <linux/sched/mm.h>
101#include <linux/timer.h>
102#include <linux/string.h>
103#include <linux/sockios.h>
104#include <linux/net.h>
105#include <linux/mm.h>
106#include <linux/slab.h>
107#include <linux/interrupt.h>
108#include <linux/poll.h>
109#include <linux/tcp.h>
110#include <linux/init.h>
111#include <linux/highmem.h>
112#include <linux/user_namespace.h>
113#include <linux/static_key.h>
114#include <linux/memcontrol.h>
115#include <linux/prefetch.h>
116#include <linux/compat.h>
117
118#include <linux/uaccess.h>
119
120#include <linux/netdevice.h>
121#include <net/protocol.h>
122#include <linux/skbuff.h>
123#include <net/net_namespace.h>
124#include <net/request_sock.h>
125#include <net/sock.h>
126#include <linux/net_tstamp.h>
127#include <net/xfrm.h>
128#include <linux/ipsec.h>
129#include <net/cls_cgroup.h>
130#include <net/netprio_cgroup.h>
131#include <linux/sock_diag.h>
132
133#include <linux/filter.h>
134#include <net/sock_reuseport.h>
135#include <net/bpf_sk_storage.h>
136
137#include <trace/events/sock.h>
138
139#include <net/tcp.h>
140#include <net/busy_poll.h>
141
142static DEFINE_MUTEX(proto_list_mutex);
143static LIST_HEAD(proto_list);
144
145static void sock_inuse_add(struct net *net, int val);
146
147/**
148 * sk_ns_capable - General socket capability test
149 * @sk: Socket to use a capability on or through
150 * @user_ns: The user namespace of the capability to use
151 * @cap: The capability to use
152 *
153 * Test to see if the opener of the socket had when the socket was
154 * created and the current process has the capability @cap in the user
155 * namespace @user_ns.
156 */
157bool sk_ns_capable(const struct sock *sk,
158 struct user_namespace *user_ns, int cap)
159{
160 return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
161 ns_capable(user_ns, cap);
162}
163EXPORT_SYMBOL(sk_ns_capable);
164
165/**
166 * sk_capable - Socket global capability test
167 * @sk: Socket to use a capability on or through
168 * @cap: The global capability to use
169 *
170 * Test to see if the opener of the socket had when the socket was
171 * created and the current process has the capability @cap in all user
172 * namespaces.
173 */
174bool sk_capable(const struct sock *sk, int cap)
175{
176 return sk_ns_capable(sk, &init_user_ns, cap);
177}
178EXPORT_SYMBOL(sk_capable);
179
180/**
181 * sk_net_capable - Network namespace socket capability test
182 * @sk: Socket to use a capability on or through
183 * @cap: The capability to use
184 *
185 * Test to see if the opener of the socket had when the socket was created
186 * and the current process has the capability @cap over the network namespace
187 * the socket is a member of.
188 */
189bool sk_net_capable(const struct sock *sk, int cap)
190{
191 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
192}
193EXPORT_SYMBOL(sk_net_capable);
194
195/*
196 * Each address family might have different locking rules, so we have
197 * one slock key per address family and separate keys for internal and
198 * userspace sockets.
199 */
200static struct lock_class_key af_family_keys[AF_MAX];
201static struct lock_class_key af_family_kern_keys[AF_MAX];
202static struct lock_class_key af_family_slock_keys[AF_MAX];
203static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
204
205/*
206 * Make lock validator output more readable. (we pre-construct these
207 * strings build-time, so that runtime initialization of socket
208 * locks is fast):
209 */
210
211#define _sock_locks(x) \
212 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \
213 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \
214 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \
215 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \
216 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \
217 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \
218 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \
219 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \
220 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \
221 x "27" , x "28" , x "AF_CAN" , \
222 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \
223 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \
224 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \
225 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \
226 x "AF_QIPCRTR", x "AF_SMC" , x "AF_XDP" , \
227 x "AF_MAX"
228
229static const char *const af_family_key_strings[AF_MAX+1] = {
230 _sock_locks("sk_lock-")
231};
232static const char *const af_family_slock_key_strings[AF_MAX+1] = {
233 _sock_locks("slock-")
234};
235static const char *const af_family_clock_key_strings[AF_MAX+1] = {
236 _sock_locks("clock-")
237};
238
239static const char *const af_family_kern_key_strings[AF_MAX+1] = {
240 _sock_locks("k-sk_lock-")
241};
242static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
243 _sock_locks("k-slock-")
244};
245static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
246 _sock_locks("k-clock-")
247};
248static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
249 _sock_locks("rlock-")
250};
251static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
252 _sock_locks("wlock-")
253};
254static const char *const af_family_elock_key_strings[AF_MAX+1] = {
255 _sock_locks("elock-")
256};
257
258/*
259 * sk_callback_lock and sk queues locking rules are per-address-family,
260 * so split the lock classes by using a per-AF key:
261 */
262static struct lock_class_key af_callback_keys[AF_MAX];
263static struct lock_class_key af_rlock_keys[AF_MAX];
264static struct lock_class_key af_wlock_keys[AF_MAX];
265static struct lock_class_key af_elock_keys[AF_MAX];
266static struct lock_class_key af_kern_callback_keys[AF_MAX];
267
268/* Run time adjustable parameters. */
269__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
270EXPORT_SYMBOL(sysctl_wmem_max);
271__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
272EXPORT_SYMBOL(sysctl_rmem_max);
273__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
274__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
275
276/* Maximal space eaten by iovec or ancillary data plus some space */
277int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
278EXPORT_SYMBOL(sysctl_optmem_max);
279
280int sysctl_tstamp_allow_data __read_mostly = 1;
281
282DEFINE_STATIC_KEY_FALSE(memalloc_socks_key);
283EXPORT_SYMBOL_GPL(memalloc_socks_key);
284
285/**
286 * sk_set_memalloc - sets %SOCK_MEMALLOC
287 * @sk: socket to set it on
288 *
289 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
290 * It's the responsibility of the admin to adjust min_free_kbytes
291 * to meet the requirements
292 */
293void sk_set_memalloc(struct sock *sk)
294{
295 sock_set_flag(sk, SOCK_MEMALLOC);
296 sk->sk_allocation |= __GFP_MEMALLOC;
297 static_branch_inc(&memalloc_socks_key);
298}
299EXPORT_SYMBOL_GPL(sk_set_memalloc);
300
301void sk_clear_memalloc(struct sock *sk)
302{
303 sock_reset_flag(sk, SOCK_MEMALLOC);
304 sk->sk_allocation &= ~__GFP_MEMALLOC;
305 static_branch_dec(&memalloc_socks_key);
306
307 /*
308 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
309 * progress of swapping. SOCK_MEMALLOC may be cleared while
310 * it has rmem allocations due to the last swapfile being deactivated
311 * but there is a risk that the socket is unusable due to exceeding
312 * the rmem limits. Reclaim the reserves and obey rmem limits again.
313 */
314 sk_mem_reclaim(sk);
315}
316EXPORT_SYMBOL_GPL(sk_clear_memalloc);
317
318int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
319{
320 int ret;
321 unsigned int noreclaim_flag;
322
323 /* these should have been dropped before queueing */
324 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
325
326 noreclaim_flag = memalloc_noreclaim_save();
327 ret = sk->sk_backlog_rcv(sk, skb);
328 memalloc_noreclaim_restore(noreclaim_flag);
329
330 return ret;
331}
332EXPORT_SYMBOL(__sk_backlog_rcv);
333
334static int sock_get_timeout(long timeo, void *optval, bool old_timeval)
335{
336 struct __kernel_sock_timeval tv;
337
338 if (timeo == MAX_SCHEDULE_TIMEOUT) {
339 tv.tv_sec = 0;
340 tv.tv_usec = 0;
341 } else {
342 tv.tv_sec = timeo / HZ;
343 tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ;
344 }
345
346 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
347 struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec };
348 *(struct old_timeval32 *)optval = tv32;
349 return sizeof(tv32);
350 }
351
352 if (old_timeval) {
353 struct __kernel_old_timeval old_tv;
354 old_tv.tv_sec = tv.tv_sec;
355 old_tv.tv_usec = tv.tv_usec;
356 *(struct __kernel_old_timeval *)optval = old_tv;
357 return sizeof(old_tv);
358 }
359
360 *(struct __kernel_sock_timeval *)optval = tv;
361 return sizeof(tv);
362}
363
364static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen,
365 bool old_timeval)
366{
367 struct __kernel_sock_timeval tv;
368
369 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
370 struct old_timeval32 tv32;
371
372 if (optlen < sizeof(tv32))
373 return -EINVAL;
374
375 if (copy_from_sockptr(&tv32, optval, sizeof(tv32)))
376 return -EFAULT;
377 tv.tv_sec = tv32.tv_sec;
378 tv.tv_usec = tv32.tv_usec;
379 } else if (old_timeval) {
380 struct __kernel_old_timeval old_tv;
381
382 if (optlen < sizeof(old_tv))
383 return -EINVAL;
384 if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv)))
385 return -EFAULT;
386 tv.tv_sec = old_tv.tv_sec;
387 tv.tv_usec = old_tv.tv_usec;
388 } else {
389 if (optlen < sizeof(tv))
390 return -EINVAL;
391 if (copy_from_sockptr(&tv, optval, sizeof(tv)))
392 return -EFAULT;
393 }
394 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
395 return -EDOM;
396
397 if (tv.tv_sec < 0) {
398 static int warned __read_mostly;
399
400 *timeo_p = 0;
401 if (warned < 10 && net_ratelimit()) {
402 warned++;
403 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
404 __func__, current->comm, task_pid_nr(current));
405 }
406 return 0;
407 }
408 *timeo_p = MAX_SCHEDULE_TIMEOUT;
409 if (tv.tv_sec == 0 && tv.tv_usec == 0)
410 return 0;
411 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1))
412 *timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ);
413 return 0;
414}
415
416static bool sock_needs_netstamp(const struct sock *sk)
417{
418 switch (sk->sk_family) {
419 case AF_UNSPEC:
420 case AF_UNIX:
421 return false;
422 default:
423 return true;
424 }
425}
426
427static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
428{
429 if (sk->sk_flags & flags) {
430 sk->sk_flags &= ~flags;
431 if (sock_needs_netstamp(sk) &&
432 !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
433 net_disable_timestamp();
434 }
435}
436
437
438int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
439{
440 unsigned long flags;
441 struct sk_buff_head *list = &sk->sk_receive_queue;
442
443 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
444 atomic_inc(&sk->sk_drops);
445 trace_sock_rcvqueue_full(sk, skb);
446 return -ENOMEM;
447 }
448
449 if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
450 atomic_inc(&sk->sk_drops);
451 return -ENOBUFS;
452 }
453
454 skb->dev = NULL;
455 skb_set_owner_r(skb, sk);
456
457 /* we escape from rcu protected region, make sure we dont leak
458 * a norefcounted dst
459 */
460 skb_dst_force(skb);
461
462 spin_lock_irqsave(&list->lock, flags);
463 sock_skb_set_dropcount(sk, skb);
464 __skb_queue_tail(list, skb);
465 spin_unlock_irqrestore(&list->lock, flags);
466
467 if (!sock_flag(sk, SOCK_DEAD))
468 sk->sk_data_ready(sk);
469 return 0;
470}
471EXPORT_SYMBOL(__sock_queue_rcv_skb);
472
473int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
474{
475 int err;
476
477 err = sk_filter(sk, skb);
478 if (err)
479 return err;
480
481 return __sock_queue_rcv_skb(sk, skb);
482}
483EXPORT_SYMBOL(sock_queue_rcv_skb);
484
485int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
486 const int nested, unsigned int trim_cap, bool refcounted)
487{
488 int rc = NET_RX_SUCCESS;
489
490 if (sk_filter_trim_cap(sk, skb, trim_cap))
491 goto discard_and_relse;
492
493 skb->dev = NULL;
494
495 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
496 atomic_inc(&sk->sk_drops);
497 goto discard_and_relse;
498 }
499 if (nested)
500 bh_lock_sock_nested(sk);
501 else
502 bh_lock_sock(sk);
503 if (!sock_owned_by_user(sk)) {
504 /*
505 * trylock + unlock semantics:
506 */
507 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
508
509 rc = sk_backlog_rcv(sk, skb);
510
511 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
512 } else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) {
513 bh_unlock_sock(sk);
514 atomic_inc(&sk->sk_drops);
515 goto discard_and_relse;
516 }
517
518 bh_unlock_sock(sk);
519out:
520 if (refcounted)
521 sock_put(sk);
522 return rc;
523discard_and_relse:
524 kfree_skb(skb);
525 goto out;
526}
527EXPORT_SYMBOL(__sk_receive_skb);
528
529INDIRECT_CALLABLE_DECLARE(struct dst_entry *ip6_dst_check(struct dst_entry *,
530 u32));
531INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *,
532 u32));
533struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
534{
535 struct dst_entry *dst = __sk_dst_get(sk);
536
537 if (dst && dst->obsolete &&
538 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
539 dst, cookie) == NULL) {
540 sk_tx_queue_clear(sk);
541 sk->sk_dst_pending_confirm = 0;
542 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
543 dst_release(dst);
544 return NULL;
545 }
546
547 return dst;
548}
549EXPORT_SYMBOL(__sk_dst_check);
550
551struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
552{
553 struct dst_entry *dst = sk_dst_get(sk);
554
555 if (dst && dst->obsolete &&
556 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
557 dst, cookie) == NULL) {
558 sk_dst_reset(sk);
559 dst_release(dst);
560 return NULL;
561 }
562
563 return dst;
564}
565EXPORT_SYMBOL(sk_dst_check);
566
567static int sock_bindtoindex_locked(struct sock *sk, int ifindex)
568{
569 int ret = -ENOPROTOOPT;
570#ifdef CONFIG_NETDEVICES
571 struct net *net = sock_net(sk);
572
573 /* Sorry... */
574 ret = -EPERM;
575 if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW))
576 goto out;
577
578 ret = -EINVAL;
579 if (ifindex < 0)
580 goto out;
581
582 sk->sk_bound_dev_if = ifindex;
583 if (sk->sk_prot->rehash)
584 sk->sk_prot->rehash(sk);
585 sk_dst_reset(sk);
586
587 ret = 0;
588
589out:
590#endif
591
592 return ret;
593}
594
595int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk)
596{
597 int ret;
598
599 if (lock_sk)
600 lock_sock(sk);
601 ret = sock_bindtoindex_locked(sk, ifindex);
602 if (lock_sk)
603 release_sock(sk);
604
605 return ret;
606}
607EXPORT_SYMBOL(sock_bindtoindex);
608
609static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen)
610{
611 int ret = -ENOPROTOOPT;
612#ifdef CONFIG_NETDEVICES
613 struct net *net = sock_net(sk);
614 char devname[IFNAMSIZ];
615 int index;
616
617 ret = -EINVAL;
618 if (optlen < 0)
619 goto out;
620
621 /* Bind this socket to a particular device like "eth0",
622 * as specified in the passed interface name. If the
623 * name is "" or the option length is zero the socket
624 * is not bound.
625 */
626 if (optlen > IFNAMSIZ - 1)
627 optlen = IFNAMSIZ - 1;
628 memset(devname, 0, sizeof(devname));
629
630 ret = -EFAULT;
631 if (copy_from_sockptr(devname, optval, optlen))
632 goto out;
633
634 index = 0;
635 if (devname[0] != '\0') {
636 struct net_device *dev;
637
638 rcu_read_lock();
639 dev = dev_get_by_name_rcu(net, devname);
640 if (dev)
641 index = dev->ifindex;
642 rcu_read_unlock();
643 ret = -ENODEV;
644 if (!dev)
645 goto out;
646 }
647
648 return sock_bindtoindex(sk, index, true);
649out:
650#endif
651
652 return ret;
653}
654
655static int sock_getbindtodevice(struct sock *sk, char __user *optval,
656 int __user *optlen, int len)
657{
658 int ret = -ENOPROTOOPT;
659#ifdef CONFIG_NETDEVICES
660 struct net *net = sock_net(sk);
661 char devname[IFNAMSIZ];
662
663 if (sk->sk_bound_dev_if == 0) {
664 len = 0;
665 goto zero;
666 }
667
668 ret = -EINVAL;
669 if (len < IFNAMSIZ)
670 goto out;
671
672 ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
673 if (ret)
674 goto out;
675
676 len = strlen(devname) + 1;
677
678 ret = -EFAULT;
679 if (copy_to_user(optval, devname, len))
680 goto out;
681
682zero:
683 ret = -EFAULT;
684 if (put_user(len, optlen))
685 goto out;
686
687 ret = 0;
688
689out:
690#endif
691
692 return ret;
693}
694
695bool sk_mc_loop(struct sock *sk)
696{
697 if (dev_recursion_level())
698 return false;
699 if (!sk)
700 return true;
701 switch (sk->sk_family) {
702 case AF_INET:
703 return inet_sk(sk)->mc_loop;
704#if IS_ENABLED(CONFIG_IPV6)
705 case AF_INET6:
706 return inet6_sk(sk)->mc_loop;
707#endif
708 }
709 WARN_ON_ONCE(1);
710 return true;
711}
712EXPORT_SYMBOL(sk_mc_loop);
713
714void sock_set_reuseaddr(struct sock *sk)
715{
716 lock_sock(sk);
717 sk->sk_reuse = SK_CAN_REUSE;
718 release_sock(sk);
719}
720EXPORT_SYMBOL(sock_set_reuseaddr);
721
722void sock_set_reuseport(struct sock *sk)
723{
724 lock_sock(sk);
725 sk->sk_reuseport = true;
726 release_sock(sk);
727}
728EXPORT_SYMBOL(sock_set_reuseport);
729
730void sock_no_linger(struct sock *sk)
731{
732 lock_sock(sk);
733 sk->sk_lingertime = 0;
734 sock_set_flag(sk, SOCK_LINGER);
735 release_sock(sk);
736}
737EXPORT_SYMBOL(sock_no_linger);
738
739void sock_set_priority(struct sock *sk, u32 priority)
740{
741 lock_sock(sk);
742 sk->sk_priority = priority;
743 release_sock(sk);
744}
745EXPORT_SYMBOL(sock_set_priority);
746
747void sock_set_sndtimeo(struct sock *sk, s64 secs)
748{
749 lock_sock(sk);
750 if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1)
751 sk->sk_sndtimeo = secs * HZ;
752 else
753 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
754 release_sock(sk);
755}
756EXPORT_SYMBOL(sock_set_sndtimeo);
757
758static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns)
759{
760 if (val) {
761 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new);
762 sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, ns);
763 sock_set_flag(sk, SOCK_RCVTSTAMP);
764 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
765 } else {
766 sock_reset_flag(sk, SOCK_RCVTSTAMP);
767 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
768 }
769}
770
771void sock_enable_timestamps(struct sock *sk)
772{
773 lock_sock(sk);
774 __sock_set_timestamps(sk, true, false, true);
775 release_sock(sk);
776}
777EXPORT_SYMBOL(sock_enable_timestamps);
778
779void sock_set_keepalive(struct sock *sk)
780{
781 lock_sock(sk);
782 if (sk->sk_prot->keepalive)
783 sk->sk_prot->keepalive(sk, true);
784 sock_valbool_flag(sk, SOCK_KEEPOPEN, true);
785 release_sock(sk);
786}
787EXPORT_SYMBOL(sock_set_keepalive);
788
789static void __sock_set_rcvbuf(struct sock *sk, int val)
790{
791 /* Ensure val * 2 fits into an int, to prevent max_t() from treating it
792 * as a negative value.
793 */
794 val = min_t(int, val, INT_MAX / 2);
795 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
796
797 /* We double it on the way in to account for "struct sk_buff" etc.
798 * overhead. Applications assume that the SO_RCVBUF setting they make
799 * will allow that much actual data to be received on that socket.
800 *
801 * Applications are unaware that "struct sk_buff" and other overheads
802 * allocate from the receive buffer during socket buffer allocation.
803 *
804 * And after considering the possible alternatives, returning the value
805 * we actually used in getsockopt is the most desirable behavior.
806 */
807 WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF));
808}
809
810void sock_set_rcvbuf(struct sock *sk, int val)
811{
812 lock_sock(sk);
813 __sock_set_rcvbuf(sk, val);
814 release_sock(sk);
815}
816EXPORT_SYMBOL(sock_set_rcvbuf);
817
818void sock_set_mark(struct sock *sk, u32 val)
819{
820 lock_sock(sk);
821 sk->sk_mark = val;
822 release_sock(sk);
823}
824EXPORT_SYMBOL(sock_set_mark);
825
826/*
827 * This is meant for all protocols to use and covers goings on
828 * at the socket level. Everything here is generic.
829 */
830
831int sock_setsockopt(struct socket *sock, int level, int optname,
832 sockptr_t optval, unsigned int optlen)
833{
834 struct sock_txtime sk_txtime;
835 struct sock *sk = sock->sk;
836 int val;
837 int valbool;
838 struct linger ling;
839 int ret = 0;
840
841 /*
842 * Options without arguments
843 */
844
845 if (optname == SO_BINDTODEVICE)
846 return sock_setbindtodevice(sk, optval, optlen);
847
848 if (optlen < sizeof(int))
849 return -EINVAL;
850
851 if (copy_from_sockptr(&val, optval, sizeof(val)))
852 return -EFAULT;
853
854 valbool = val ? 1 : 0;
855
856 lock_sock(sk);
857
858 switch (optname) {
859 case SO_DEBUG:
860 if (val && !capable(CAP_NET_ADMIN))
861 ret = -EACCES;
862 else
863 sock_valbool_flag(sk, SOCK_DBG, valbool);
864 break;
865 case SO_REUSEADDR:
866 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
867 break;
868 case SO_REUSEPORT:
869 sk->sk_reuseport = valbool;
870 break;
871 case SO_TYPE:
872 case SO_PROTOCOL:
873 case SO_DOMAIN:
874 case SO_ERROR:
875 ret = -ENOPROTOOPT;
876 break;
877 case SO_DONTROUTE:
878 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
879 sk_dst_reset(sk);
880 break;
881 case SO_BROADCAST:
882 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
883 break;
884 case SO_SNDBUF:
885 /* Don't error on this BSD doesn't and if you think
886 * about it this is right. Otherwise apps have to
887 * play 'guess the biggest size' games. RCVBUF/SNDBUF
888 * are treated in BSD as hints
889 */
890 val = min_t(u32, val, sysctl_wmem_max);
891set_sndbuf:
892 /* Ensure val * 2 fits into an int, to prevent max_t()
893 * from treating it as a negative value.
894 */
895 val = min_t(int, val, INT_MAX / 2);
896 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
897 WRITE_ONCE(sk->sk_sndbuf,
898 max_t(int, val * 2, SOCK_MIN_SNDBUF));
899 /* Wake up sending tasks if we upped the value. */
900 sk->sk_write_space(sk);
901 break;
902
903 case SO_SNDBUFFORCE:
904 if (!capable(CAP_NET_ADMIN)) {
905 ret = -EPERM;
906 break;
907 }
908
909 /* No negative values (to prevent underflow, as val will be
910 * multiplied by 2).
911 */
912 if (val < 0)
913 val = 0;
914 goto set_sndbuf;
915
916 case SO_RCVBUF:
917 /* Don't error on this BSD doesn't and if you think
918 * about it this is right. Otherwise apps have to
919 * play 'guess the biggest size' games. RCVBUF/SNDBUF
920 * are treated in BSD as hints
921 */
922 __sock_set_rcvbuf(sk, min_t(u32, val, sysctl_rmem_max));
923 break;
924
925 case SO_RCVBUFFORCE:
926 if (!capable(CAP_NET_ADMIN)) {
927 ret = -EPERM;
928 break;
929 }
930
931 /* No negative values (to prevent underflow, as val will be
932 * multiplied by 2).
933 */
934 __sock_set_rcvbuf(sk, max(val, 0));
935 break;
936
937 case SO_KEEPALIVE:
938 if (sk->sk_prot->keepalive)
939 sk->sk_prot->keepalive(sk, valbool);
940 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
941 break;
942
943 case SO_OOBINLINE:
944 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
945 break;
946
947 case SO_NO_CHECK:
948 sk->sk_no_check_tx = valbool;
949 break;
950
951 case SO_PRIORITY:
952 if ((val >= 0 && val <= 6) ||
953 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
954 sk->sk_priority = val;
955 else
956 ret = -EPERM;
957 break;
958
959 case SO_LINGER:
960 if (optlen < sizeof(ling)) {
961 ret = -EINVAL; /* 1003.1g */
962 break;
963 }
964 if (copy_from_sockptr(&ling, optval, sizeof(ling))) {
965 ret = -EFAULT;
966 break;
967 }
968 if (!ling.l_onoff)
969 sock_reset_flag(sk, SOCK_LINGER);
970 else {
971#if (BITS_PER_LONG == 32)
972 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
973 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
974 else
975#endif
976 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
977 sock_set_flag(sk, SOCK_LINGER);
978 }
979 break;
980
981 case SO_BSDCOMPAT:
982 break;
983
984 case SO_PASSCRED:
985 if (valbool)
986 set_bit(SOCK_PASSCRED, &sock->flags);
987 else
988 clear_bit(SOCK_PASSCRED, &sock->flags);
989 break;
990
991 case SO_TIMESTAMP_OLD:
992 __sock_set_timestamps(sk, valbool, false, false);
993 break;
994 case SO_TIMESTAMP_NEW:
995 __sock_set_timestamps(sk, valbool, true, false);
996 break;
997 case SO_TIMESTAMPNS_OLD:
998 __sock_set_timestamps(sk, valbool, false, true);
999 break;
1000 case SO_TIMESTAMPNS_NEW:
1001 __sock_set_timestamps(sk, valbool, true, true);
1002 break;
1003 case SO_TIMESTAMPING_NEW:
1004 case SO_TIMESTAMPING_OLD:
1005 if (val & ~SOF_TIMESTAMPING_MASK) {
1006 ret = -EINVAL;
1007 break;
1008 }
1009
1010 if (val & SOF_TIMESTAMPING_OPT_ID &&
1011 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
1012 if (sk->sk_protocol == IPPROTO_TCP &&
1013 sk->sk_type == SOCK_STREAM) {
1014 if ((1 << sk->sk_state) &
1015 (TCPF_CLOSE | TCPF_LISTEN)) {
1016 ret = -EINVAL;
1017 break;
1018 }
1019 sk->sk_tskey = tcp_sk(sk)->snd_una;
1020 } else {
1021 sk->sk_tskey = 0;
1022 }
1023 }
1024
1025 if (val & SOF_TIMESTAMPING_OPT_STATS &&
1026 !(val & SOF_TIMESTAMPING_OPT_TSONLY)) {
1027 ret = -EINVAL;
1028 break;
1029 }
1030
1031 sk->sk_tsflags = val;
1032 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, optname == SO_TIMESTAMPING_NEW);
1033
1034 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
1035 sock_enable_timestamp(sk,
1036 SOCK_TIMESTAMPING_RX_SOFTWARE);
1037 else
1038 sock_disable_timestamp(sk,
1039 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
1040 break;
1041
1042 case SO_RCVLOWAT:
1043 if (val < 0)
1044 val = INT_MAX;
1045 if (sock->ops->set_rcvlowat)
1046 ret = sock->ops->set_rcvlowat(sk, val);
1047 else
1048 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1049 break;
1050
1051 case SO_RCVTIMEO_OLD:
1052 case SO_RCVTIMEO_NEW:
1053 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval,
1054 optlen, optname == SO_RCVTIMEO_OLD);
1055 break;
1056
1057 case SO_SNDTIMEO_OLD:
1058 case SO_SNDTIMEO_NEW:
1059 ret = sock_set_timeout(&sk->sk_sndtimeo, optval,
1060 optlen, optname == SO_SNDTIMEO_OLD);
1061 break;
1062
1063 case SO_ATTACH_FILTER: {
1064 struct sock_fprog fprog;
1065
1066 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1067 if (!ret)
1068 ret = sk_attach_filter(&fprog, sk);
1069 break;
1070 }
1071 case SO_ATTACH_BPF:
1072 ret = -EINVAL;
1073 if (optlen == sizeof(u32)) {
1074 u32 ufd;
1075
1076 ret = -EFAULT;
1077 if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1078 break;
1079
1080 ret = sk_attach_bpf(ufd, sk);
1081 }
1082 break;
1083
1084 case SO_ATTACH_REUSEPORT_CBPF: {
1085 struct sock_fprog fprog;
1086
1087 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1088 if (!ret)
1089 ret = sk_reuseport_attach_filter(&fprog, sk);
1090 break;
1091 }
1092 case SO_ATTACH_REUSEPORT_EBPF:
1093 ret = -EINVAL;
1094 if (optlen == sizeof(u32)) {
1095 u32 ufd;
1096
1097 ret = -EFAULT;
1098 if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1099 break;
1100
1101 ret = sk_reuseport_attach_bpf(ufd, sk);
1102 }
1103 break;
1104
1105 case SO_DETACH_REUSEPORT_BPF:
1106 ret = reuseport_detach_prog(sk);
1107 break;
1108
1109 case SO_DETACH_FILTER:
1110 ret = sk_detach_filter(sk);
1111 break;
1112
1113 case SO_LOCK_FILTER:
1114 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
1115 ret = -EPERM;
1116 else
1117 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
1118 break;
1119
1120 case SO_PASSSEC:
1121 if (valbool)
1122 set_bit(SOCK_PASSSEC, &sock->flags);
1123 else
1124 clear_bit(SOCK_PASSSEC, &sock->flags);
1125 break;
1126 case SO_MARK:
1127 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1128 ret = -EPERM;
1129 } else if (val != sk->sk_mark) {
1130 sk->sk_mark = val;
1131 sk_dst_reset(sk);
1132 }
1133 break;
1134
1135 case SO_RXQ_OVFL:
1136 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1137 break;
1138
1139 case SO_WIFI_STATUS:
1140 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1141 break;
1142
1143 case SO_PEEK_OFF:
1144 if (sock->ops->set_peek_off)
1145 ret = sock->ops->set_peek_off(sk, val);
1146 else
1147 ret = -EOPNOTSUPP;
1148 break;
1149
1150 case SO_NOFCS:
1151 sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1152 break;
1153
1154 case SO_SELECT_ERR_QUEUE:
1155 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1156 break;
1157
1158#ifdef CONFIG_NET_RX_BUSY_POLL
1159 case SO_BUSY_POLL:
1160 /* allow unprivileged users to decrease the value */
1161 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
1162 ret = -EPERM;
1163 else {
1164 if (val < 0)
1165 ret = -EINVAL;
1166 else
1167 sk->sk_ll_usec = val;
1168 }
1169 break;
1170 case SO_PREFER_BUSY_POLL:
1171 if (valbool && !capable(CAP_NET_ADMIN))
1172 ret = -EPERM;
1173 else
1174 WRITE_ONCE(sk->sk_prefer_busy_poll, valbool);
1175 break;
1176 case SO_BUSY_POLL_BUDGET:
1177 if (val > READ_ONCE(sk->sk_busy_poll_budget) && !capable(CAP_NET_ADMIN)) {
1178 ret = -EPERM;
1179 } else {
1180 if (val < 0 || val > U16_MAX)
1181 ret = -EINVAL;
1182 else
1183 WRITE_ONCE(sk->sk_busy_poll_budget, val);
1184 }
1185 break;
1186#endif
1187
1188 case SO_MAX_PACING_RATE:
1189 {
1190 unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val;
1191
1192 if (sizeof(ulval) != sizeof(val) &&
1193 optlen >= sizeof(ulval) &&
1194 copy_from_sockptr(&ulval, optval, sizeof(ulval))) {
1195 ret = -EFAULT;
1196 break;
1197 }
1198 if (ulval != ~0UL)
1199 cmpxchg(&sk->sk_pacing_status,
1200 SK_PACING_NONE,
1201 SK_PACING_NEEDED);
1202 sk->sk_max_pacing_rate = ulval;
1203 sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval);
1204 break;
1205 }
1206 case SO_INCOMING_CPU:
1207 WRITE_ONCE(sk->sk_incoming_cpu, val);
1208 break;
1209
1210 case SO_CNX_ADVICE:
1211 if (val == 1)
1212 dst_negative_advice(sk);
1213 break;
1214
1215 case SO_ZEROCOPY:
1216 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1217 if (!((sk->sk_type == SOCK_STREAM &&
1218 sk->sk_protocol == IPPROTO_TCP) ||
1219 (sk->sk_type == SOCK_DGRAM &&
1220 sk->sk_protocol == IPPROTO_UDP)))
1221 ret = -ENOTSUPP;
1222 } else if (sk->sk_family != PF_RDS) {
1223 ret = -ENOTSUPP;
1224 }
1225 if (!ret) {
1226 if (val < 0 || val > 1)
1227 ret = -EINVAL;
1228 else
1229 sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1230 }
1231 break;
1232
1233 case SO_TXTIME:
1234 if (optlen != sizeof(struct sock_txtime)) {
1235 ret = -EINVAL;
1236 break;
1237 } else if (copy_from_sockptr(&sk_txtime, optval,
1238 sizeof(struct sock_txtime))) {
1239 ret = -EFAULT;
1240 break;
1241 } else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) {
1242 ret = -EINVAL;
1243 break;
1244 }
1245 /* CLOCK_MONOTONIC is only used by sch_fq, and this packet
1246 * scheduler has enough safe guards.
1247 */
1248 if (sk_txtime.clockid != CLOCK_MONOTONIC &&
1249 !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1250 ret = -EPERM;
1251 break;
1252 }
1253 sock_valbool_flag(sk, SOCK_TXTIME, true);
1254 sk->sk_clockid = sk_txtime.clockid;
1255 sk->sk_txtime_deadline_mode =
1256 !!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE);
1257 sk->sk_txtime_report_errors =
1258 !!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS);
1259 break;
1260
1261 case SO_BINDTOIFINDEX:
1262 ret = sock_bindtoindex_locked(sk, val);
1263 break;
1264
1265 default:
1266 ret = -ENOPROTOOPT;
1267 break;
1268 }
1269 release_sock(sk);
1270 return ret;
1271}
1272EXPORT_SYMBOL(sock_setsockopt);
1273
1274
1275static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1276 struct ucred *ucred)
1277{
1278 ucred->pid = pid_vnr(pid);
1279 ucred->uid = ucred->gid = -1;
1280 if (cred) {
1281 struct user_namespace *current_ns = current_user_ns();
1282
1283 ucred->uid = from_kuid_munged(current_ns, cred->euid);
1284 ucred->gid = from_kgid_munged(current_ns, cred->egid);
1285 }
1286}
1287
1288static int groups_to_user(gid_t __user *dst, const struct group_info *src)
1289{
1290 struct user_namespace *user_ns = current_user_ns();
1291 int i;
1292
1293 for (i = 0; i < src->ngroups; i++)
1294 if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i))
1295 return -EFAULT;
1296
1297 return 0;
1298}
1299
1300int sock_getsockopt(struct socket *sock, int level, int optname,
1301 char __user *optval, int __user *optlen)
1302{
1303 struct sock *sk = sock->sk;
1304
1305 union {
1306 int val;
1307 u64 val64;
1308 unsigned long ulval;
1309 struct linger ling;
1310 struct old_timeval32 tm32;
1311 struct __kernel_old_timeval tm;
1312 struct __kernel_sock_timeval stm;
1313 struct sock_txtime txtime;
1314 } v;
1315
1316 int lv = sizeof(int);
1317 int len;
1318
1319 if (get_user(len, optlen))
1320 return -EFAULT;
1321 if (len < 0)
1322 return -EINVAL;
1323
1324 memset(&v, 0, sizeof(v));
1325
1326 switch (optname) {
1327 case SO_DEBUG:
1328 v.val = sock_flag(sk, SOCK_DBG);
1329 break;
1330
1331 case SO_DONTROUTE:
1332 v.val = sock_flag(sk, SOCK_LOCALROUTE);
1333 break;
1334
1335 case SO_BROADCAST:
1336 v.val = sock_flag(sk, SOCK_BROADCAST);
1337 break;
1338
1339 case SO_SNDBUF:
1340 v.val = sk->sk_sndbuf;
1341 break;
1342
1343 case SO_RCVBUF:
1344 v.val = sk->sk_rcvbuf;
1345 break;
1346
1347 case SO_REUSEADDR:
1348 v.val = sk->sk_reuse;
1349 break;
1350
1351 case SO_REUSEPORT:
1352 v.val = sk->sk_reuseport;
1353 break;
1354
1355 case SO_KEEPALIVE:
1356 v.val = sock_flag(sk, SOCK_KEEPOPEN);
1357 break;
1358
1359 case SO_TYPE:
1360 v.val = sk->sk_type;
1361 break;
1362
1363 case SO_PROTOCOL:
1364 v.val = sk->sk_protocol;
1365 break;
1366
1367 case SO_DOMAIN:
1368 v.val = sk->sk_family;
1369 break;
1370
1371 case SO_ERROR:
1372 v.val = -sock_error(sk);
1373 if (v.val == 0)
1374 v.val = xchg(&sk->sk_err_soft, 0);
1375 break;
1376
1377 case SO_OOBINLINE:
1378 v.val = sock_flag(sk, SOCK_URGINLINE);
1379 break;
1380
1381 case SO_NO_CHECK:
1382 v.val = sk->sk_no_check_tx;
1383 break;
1384
1385 case SO_PRIORITY:
1386 v.val = sk->sk_priority;
1387 break;
1388
1389 case SO_LINGER:
1390 lv = sizeof(v.ling);
1391 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
1392 v.ling.l_linger = sk->sk_lingertime / HZ;
1393 break;
1394
1395 case SO_BSDCOMPAT:
1396 break;
1397
1398 case SO_TIMESTAMP_OLD:
1399 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1400 !sock_flag(sk, SOCK_TSTAMP_NEW) &&
1401 !sock_flag(sk, SOCK_RCVTSTAMPNS);
1402 break;
1403
1404 case SO_TIMESTAMPNS_OLD:
1405 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW);
1406 break;
1407
1408 case SO_TIMESTAMP_NEW:
1409 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW);
1410 break;
1411
1412 case SO_TIMESTAMPNS_NEW:
1413 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW);
1414 break;
1415
1416 case SO_TIMESTAMPING_OLD:
1417 v.val = sk->sk_tsflags;
1418 break;
1419
1420 case SO_RCVTIMEO_OLD:
1421 case SO_RCVTIMEO_NEW:
1422 lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname);
1423 break;
1424
1425 case SO_SNDTIMEO_OLD:
1426 case SO_SNDTIMEO_NEW:
1427 lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname);
1428 break;
1429
1430 case SO_RCVLOWAT:
1431 v.val = sk->sk_rcvlowat;
1432 break;
1433
1434 case SO_SNDLOWAT:
1435 v.val = 1;
1436 break;
1437
1438 case SO_PASSCRED:
1439 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1440 break;
1441
1442 case SO_PEERCRED:
1443 {
1444 struct ucred peercred;
1445 if (len > sizeof(peercred))
1446 len = sizeof(peercred);
1447 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1448 if (copy_to_user(optval, &peercred, len))
1449 return -EFAULT;
1450 goto lenout;
1451 }
1452
1453 case SO_PEERGROUPS:
1454 {
1455 int ret, n;
1456
1457 if (!sk->sk_peer_cred)
1458 return -ENODATA;
1459
1460 n = sk->sk_peer_cred->group_info->ngroups;
1461 if (len < n * sizeof(gid_t)) {
1462 len = n * sizeof(gid_t);
1463 return put_user(len, optlen) ? -EFAULT : -ERANGE;
1464 }
1465 len = n * sizeof(gid_t);
1466
1467 ret = groups_to_user((gid_t __user *)optval,
1468 sk->sk_peer_cred->group_info);
1469 if (ret)
1470 return ret;
1471 goto lenout;
1472 }
1473
1474 case SO_PEERNAME:
1475 {
1476 char address[128];
1477
1478 lv = sock->ops->getname(sock, (struct sockaddr *)address, 2);
1479 if (lv < 0)
1480 return -ENOTCONN;
1481 if (lv < len)
1482 return -EINVAL;
1483 if (copy_to_user(optval, address, len))
1484 return -EFAULT;
1485 goto lenout;
1486 }
1487
1488 /* Dubious BSD thing... Probably nobody even uses it, but
1489 * the UNIX standard wants it for whatever reason... -DaveM
1490 */
1491 case SO_ACCEPTCONN:
1492 v.val = sk->sk_state == TCP_LISTEN;
1493 break;
1494
1495 case SO_PASSSEC:
1496 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1497 break;
1498
1499 case SO_PEERSEC:
1500 return security_socket_getpeersec_stream(sock, optval, optlen, len);
1501
1502 case SO_MARK:
1503 v.val = sk->sk_mark;
1504 break;
1505
1506 case SO_RXQ_OVFL:
1507 v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1508 break;
1509
1510 case SO_WIFI_STATUS:
1511 v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1512 break;
1513
1514 case SO_PEEK_OFF:
1515 if (!sock->ops->set_peek_off)
1516 return -EOPNOTSUPP;
1517
1518 v.val = sk->sk_peek_off;
1519 break;
1520 case SO_NOFCS:
1521 v.val = sock_flag(sk, SOCK_NOFCS);
1522 break;
1523
1524 case SO_BINDTODEVICE:
1525 return sock_getbindtodevice(sk, optval, optlen, len);
1526
1527 case SO_GET_FILTER:
1528 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1529 if (len < 0)
1530 return len;
1531
1532 goto lenout;
1533
1534 case SO_LOCK_FILTER:
1535 v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1536 break;
1537
1538 case SO_BPF_EXTENSIONS:
1539 v.val = bpf_tell_extensions();
1540 break;
1541
1542 case SO_SELECT_ERR_QUEUE:
1543 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1544 break;
1545
1546#ifdef CONFIG_NET_RX_BUSY_POLL
1547 case SO_BUSY_POLL:
1548 v.val = sk->sk_ll_usec;
1549 break;
1550 case SO_PREFER_BUSY_POLL:
1551 v.val = READ_ONCE(sk->sk_prefer_busy_poll);
1552 break;
1553#endif
1554
1555 case SO_MAX_PACING_RATE:
1556 if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) {
1557 lv = sizeof(v.ulval);
1558 v.ulval = sk->sk_max_pacing_rate;
1559 } else {
1560 /* 32bit version */
1561 v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U);
1562 }
1563 break;
1564
1565 case SO_INCOMING_CPU:
1566 v.val = READ_ONCE(sk->sk_incoming_cpu);
1567 break;
1568
1569 case SO_MEMINFO:
1570 {
1571 u32 meminfo[SK_MEMINFO_VARS];
1572
1573 sk_get_meminfo(sk, meminfo);
1574
1575 len = min_t(unsigned int, len, sizeof(meminfo));
1576 if (copy_to_user(optval, &meminfo, len))
1577 return -EFAULT;
1578
1579 goto lenout;
1580 }
1581
1582#ifdef CONFIG_NET_RX_BUSY_POLL
1583 case SO_INCOMING_NAPI_ID:
1584 v.val = READ_ONCE(sk->sk_napi_id);
1585
1586 /* aggregate non-NAPI IDs down to 0 */
1587 if (v.val < MIN_NAPI_ID)
1588 v.val = 0;
1589
1590 break;
1591#endif
1592
1593 case SO_COOKIE:
1594 lv = sizeof(u64);
1595 if (len < lv)
1596 return -EINVAL;
1597 v.val64 = sock_gen_cookie(sk);
1598 break;
1599
1600 case SO_ZEROCOPY:
1601 v.val = sock_flag(sk, SOCK_ZEROCOPY);
1602 break;
1603
1604 case SO_TXTIME:
1605 lv = sizeof(v.txtime);
1606 v.txtime.clockid = sk->sk_clockid;
1607 v.txtime.flags |= sk->sk_txtime_deadline_mode ?
1608 SOF_TXTIME_DEADLINE_MODE : 0;
1609 v.txtime.flags |= sk->sk_txtime_report_errors ?
1610 SOF_TXTIME_REPORT_ERRORS : 0;
1611 break;
1612
1613 case SO_BINDTOIFINDEX:
1614 v.val = sk->sk_bound_dev_if;
1615 break;
1616
1617 default:
1618 /* We implement the SO_SNDLOWAT etc to not be settable
1619 * (1003.1g 7).
1620 */
1621 return -ENOPROTOOPT;
1622 }
1623
1624 if (len > lv)
1625 len = lv;
1626 if (copy_to_user(optval, &v, len))
1627 return -EFAULT;
1628lenout:
1629 if (put_user(len, optlen))
1630 return -EFAULT;
1631 return 0;
1632}
1633
1634/*
1635 * Initialize an sk_lock.
1636 *
1637 * (We also register the sk_lock with the lock validator.)
1638 */
1639static inline void sock_lock_init(struct sock *sk)
1640{
1641 if (sk->sk_kern_sock)
1642 sock_lock_init_class_and_name(
1643 sk,
1644 af_family_kern_slock_key_strings[sk->sk_family],
1645 af_family_kern_slock_keys + sk->sk_family,
1646 af_family_kern_key_strings[sk->sk_family],
1647 af_family_kern_keys + sk->sk_family);
1648 else
1649 sock_lock_init_class_and_name(
1650 sk,
1651 af_family_slock_key_strings[sk->sk_family],
1652 af_family_slock_keys + sk->sk_family,
1653 af_family_key_strings[sk->sk_family],
1654 af_family_keys + sk->sk_family);
1655}
1656
1657/*
1658 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1659 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1660 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1661 */
1662static void sock_copy(struct sock *nsk, const struct sock *osk)
1663{
1664 const struct proto *prot = READ_ONCE(osk->sk_prot);
1665#ifdef CONFIG_SECURITY_NETWORK
1666 void *sptr = nsk->sk_security;
1667#endif
1668
1669 /* If we move sk_tx_queue_mapping out of the private section,
1670 * we must check if sk_tx_queue_clear() is called after
1671 * sock_copy() in sk_clone_lock().
1672 */
1673 BUILD_BUG_ON(offsetof(struct sock, sk_tx_queue_mapping) <
1674 offsetof(struct sock, sk_dontcopy_begin) ||
1675 offsetof(struct sock, sk_tx_queue_mapping) >=
1676 offsetof(struct sock, sk_dontcopy_end));
1677
1678 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1679
1680 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1681 prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1682
1683#ifdef CONFIG_SECURITY_NETWORK
1684 nsk->sk_security = sptr;
1685 security_sk_clone(osk, nsk);
1686#endif
1687}
1688
1689static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1690 int family)
1691{
1692 struct sock *sk;
1693 struct kmem_cache *slab;
1694
1695 slab = prot->slab;
1696 if (slab != NULL) {
1697 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1698 if (!sk)
1699 return sk;
1700 if (want_init_on_alloc(priority))
1701 sk_prot_clear_nulls(sk, prot->obj_size);
1702 } else
1703 sk = kmalloc(prot->obj_size, priority);
1704
1705 if (sk != NULL) {
1706 if (security_sk_alloc(sk, family, priority))
1707 goto out_free;
1708
1709 if (!try_module_get(prot->owner))
1710 goto out_free_sec;
1711 }
1712
1713 return sk;
1714
1715out_free_sec:
1716 security_sk_free(sk);
1717out_free:
1718 if (slab != NULL)
1719 kmem_cache_free(slab, sk);
1720 else
1721 kfree(sk);
1722 return NULL;
1723}
1724
1725static void sk_prot_free(struct proto *prot, struct sock *sk)
1726{
1727 struct kmem_cache *slab;
1728 struct module *owner;
1729
1730 owner = prot->owner;
1731 slab = prot->slab;
1732
1733 cgroup_sk_free(&sk->sk_cgrp_data);
1734 mem_cgroup_sk_free(sk);
1735 security_sk_free(sk);
1736 if (slab != NULL)
1737 kmem_cache_free(slab, sk);
1738 else
1739 kfree(sk);
1740 module_put(owner);
1741}
1742
1743/**
1744 * sk_alloc - All socket objects are allocated here
1745 * @net: the applicable net namespace
1746 * @family: protocol family
1747 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1748 * @prot: struct proto associated with this new sock instance
1749 * @kern: is this to be a kernel socket?
1750 */
1751struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1752 struct proto *prot, int kern)
1753{
1754 struct sock *sk;
1755
1756 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1757 if (sk) {
1758 sk->sk_family = family;
1759 /*
1760 * See comment in struct sock definition to understand
1761 * why we need sk_prot_creator -acme
1762 */
1763 sk->sk_prot = sk->sk_prot_creator = prot;
1764 sk->sk_kern_sock = kern;
1765 sock_lock_init(sk);
1766 sk->sk_net_refcnt = kern ? 0 : 1;
1767 if (likely(sk->sk_net_refcnt)) {
1768 get_net(net);
1769 sock_inuse_add(net, 1);
1770 }
1771
1772 sock_net_set(sk, net);
1773 refcount_set(&sk->sk_wmem_alloc, 1);
1774
1775 mem_cgroup_sk_alloc(sk);
1776 cgroup_sk_alloc(&sk->sk_cgrp_data);
1777 sock_update_classid(&sk->sk_cgrp_data);
1778 sock_update_netprioidx(&sk->sk_cgrp_data);
1779 sk_tx_queue_clear(sk);
1780 }
1781
1782 return sk;
1783}
1784EXPORT_SYMBOL(sk_alloc);
1785
1786/* Sockets having SOCK_RCU_FREE will call this function after one RCU
1787 * grace period. This is the case for UDP sockets and TCP listeners.
1788 */
1789static void __sk_destruct(struct rcu_head *head)
1790{
1791 struct sock *sk = container_of(head, struct sock, sk_rcu);
1792 struct sk_filter *filter;
1793
1794 if (sk->sk_destruct)
1795 sk->sk_destruct(sk);
1796
1797 filter = rcu_dereference_check(sk->sk_filter,
1798 refcount_read(&sk->sk_wmem_alloc) == 0);
1799 if (filter) {
1800 sk_filter_uncharge(sk, filter);
1801 RCU_INIT_POINTER(sk->sk_filter, NULL);
1802 }
1803
1804 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1805
1806#ifdef CONFIG_BPF_SYSCALL
1807 bpf_sk_storage_free(sk);
1808#endif
1809
1810 if (atomic_read(&sk->sk_omem_alloc))
1811 pr_debug("%s: optmem leakage (%d bytes) detected\n",
1812 __func__, atomic_read(&sk->sk_omem_alloc));
1813
1814 if (sk->sk_frag.page) {
1815 put_page(sk->sk_frag.page);
1816 sk->sk_frag.page = NULL;
1817 }
1818
1819 if (sk->sk_peer_cred)
1820 put_cred(sk->sk_peer_cred);
1821 put_pid(sk->sk_peer_pid);
1822 if (likely(sk->sk_net_refcnt))
1823 put_net(sock_net(sk));
1824 sk_prot_free(sk->sk_prot_creator, sk);
1825}
1826
1827void sk_destruct(struct sock *sk)
1828{
1829 bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE);
1830
1831 if (rcu_access_pointer(sk->sk_reuseport_cb)) {
1832 reuseport_detach_sock(sk);
1833 use_call_rcu = true;
1834 }
1835
1836 if (use_call_rcu)
1837 call_rcu(&sk->sk_rcu, __sk_destruct);
1838 else
1839 __sk_destruct(&sk->sk_rcu);
1840}
1841
1842static void __sk_free(struct sock *sk)
1843{
1844 if (likely(sk->sk_net_refcnt))
1845 sock_inuse_add(sock_net(sk), -1);
1846
1847 if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
1848 sock_diag_broadcast_destroy(sk);
1849 else
1850 sk_destruct(sk);
1851}
1852
1853void sk_free(struct sock *sk)
1854{
1855 /*
1856 * We subtract one from sk_wmem_alloc and can know if
1857 * some packets are still in some tx queue.
1858 * If not null, sock_wfree() will call __sk_free(sk) later
1859 */
1860 if (refcount_dec_and_test(&sk->sk_wmem_alloc))
1861 __sk_free(sk);
1862}
1863EXPORT_SYMBOL(sk_free);
1864
1865static void sk_init_common(struct sock *sk)
1866{
1867 skb_queue_head_init(&sk->sk_receive_queue);
1868 skb_queue_head_init(&sk->sk_write_queue);
1869 skb_queue_head_init(&sk->sk_error_queue);
1870
1871 rwlock_init(&sk->sk_callback_lock);
1872 lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
1873 af_rlock_keys + sk->sk_family,
1874 af_family_rlock_key_strings[sk->sk_family]);
1875 lockdep_set_class_and_name(&sk->sk_write_queue.lock,
1876 af_wlock_keys + sk->sk_family,
1877 af_family_wlock_key_strings[sk->sk_family]);
1878 lockdep_set_class_and_name(&sk->sk_error_queue.lock,
1879 af_elock_keys + sk->sk_family,
1880 af_family_elock_key_strings[sk->sk_family]);
1881 lockdep_set_class_and_name(&sk->sk_callback_lock,
1882 af_callback_keys + sk->sk_family,
1883 af_family_clock_key_strings[sk->sk_family]);
1884}
1885
1886/**
1887 * sk_clone_lock - clone a socket, and lock its clone
1888 * @sk: the socket to clone
1889 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1890 *
1891 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1892 */
1893struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1894{
1895 struct proto *prot = READ_ONCE(sk->sk_prot);
1896 struct sk_filter *filter;
1897 bool is_charged = true;
1898 struct sock *newsk;
1899
1900 newsk = sk_prot_alloc(prot, priority, sk->sk_family);
1901 if (!newsk)
1902 goto out;
1903
1904 sock_copy(newsk, sk);
1905
1906 newsk->sk_prot_creator = prot;
1907
1908 /* SANITY */
1909 if (likely(newsk->sk_net_refcnt))
1910 get_net(sock_net(newsk));
1911 sk_node_init(&newsk->sk_node);
1912 sock_lock_init(newsk);
1913 bh_lock_sock(newsk);
1914 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1915 newsk->sk_backlog.len = 0;
1916
1917 atomic_set(&newsk->sk_rmem_alloc, 0);
1918
1919 /* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */
1920 refcount_set(&newsk->sk_wmem_alloc, 1);
1921
1922 atomic_set(&newsk->sk_omem_alloc, 0);
1923 sk_init_common(newsk);
1924
1925 newsk->sk_dst_cache = NULL;
1926 newsk->sk_dst_pending_confirm = 0;
1927 newsk->sk_wmem_queued = 0;
1928 newsk->sk_forward_alloc = 0;
1929 atomic_set(&newsk->sk_drops, 0);
1930 newsk->sk_send_head = NULL;
1931 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1932 atomic_set(&newsk->sk_zckey, 0);
1933
1934 sock_reset_flag(newsk, SOCK_DONE);
1935
1936 /* sk->sk_memcg will be populated at accept() time */
1937 newsk->sk_memcg = NULL;
1938
1939 cgroup_sk_clone(&newsk->sk_cgrp_data);
1940
1941 rcu_read_lock();
1942 filter = rcu_dereference(sk->sk_filter);
1943 if (filter != NULL)
1944 /* though it's an empty new sock, the charging may fail
1945 * if sysctl_optmem_max was changed between creation of
1946 * original socket and cloning
1947 */
1948 is_charged = sk_filter_charge(newsk, filter);
1949 RCU_INIT_POINTER(newsk->sk_filter, filter);
1950 rcu_read_unlock();
1951
1952 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
1953 /* We need to make sure that we don't uncharge the new
1954 * socket if we couldn't charge it in the first place
1955 * as otherwise we uncharge the parent's filter.
1956 */
1957 if (!is_charged)
1958 RCU_INIT_POINTER(newsk->sk_filter, NULL);
1959 sk_free_unlock_clone(newsk);
1960 newsk = NULL;
1961 goto out;
1962 }
1963 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
1964
1965 if (bpf_sk_storage_clone(sk, newsk)) {
1966 sk_free_unlock_clone(newsk);
1967 newsk = NULL;
1968 goto out;
1969 }
1970
1971 /* Clear sk_user_data if parent had the pointer tagged
1972 * as not suitable for copying when cloning.
1973 */
1974 if (sk_user_data_is_nocopy(newsk))
1975 newsk->sk_user_data = NULL;
1976
1977 newsk->sk_err = 0;
1978 newsk->sk_err_soft = 0;
1979 newsk->sk_priority = 0;
1980 newsk->sk_incoming_cpu = raw_smp_processor_id();
1981 if (likely(newsk->sk_net_refcnt))
1982 sock_inuse_add(sock_net(newsk), 1);
1983
1984 /* Before updating sk_refcnt, we must commit prior changes to memory
1985 * (Documentation/RCU/rculist_nulls.rst for details)
1986 */
1987 smp_wmb();
1988 refcount_set(&newsk->sk_refcnt, 2);
1989
1990 /* Increment the counter in the same struct proto as the master
1991 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1992 * is the same as sk->sk_prot->socks, as this field was copied
1993 * with memcpy).
1994 *
1995 * This _changes_ the previous behaviour, where
1996 * tcp_create_openreq_child always was incrementing the
1997 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1998 * to be taken into account in all callers. -acme
1999 */
2000 sk_refcnt_debug_inc(newsk);
2001 sk_set_socket(newsk, NULL);
2002 sk_tx_queue_clear(newsk);
2003 RCU_INIT_POINTER(newsk->sk_wq, NULL);
2004
2005 if (newsk->sk_prot->sockets_allocated)
2006 sk_sockets_allocated_inc(newsk);
2007
2008 if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP)
2009 net_enable_timestamp();
2010out:
2011 return newsk;
2012}
2013EXPORT_SYMBOL_GPL(sk_clone_lock);
2014
2015void sk_free_unlock_clone(struct sock *sk)
2016{
2017 /* It is still raw copy of parent, so invalidate
2018 * destructor and make plain sk_free() */
2019 sk->sk_destruct = NULL;
2020 bh_unlock_sock(sk);
2021 sk_free(sk);
2022}
2023EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
2024
2025void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
2026{
2027 u32 max_segs = 1;
2028
2029 sk_dst_set(sk, dst);
2030 sk->sk_route_caps = dst->dev->features | sk->sk_route_forced_caps;
2031 if (sk->sk_route_caps & NETIF_F_GSO)
2032 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
2033 sk->sk_route_caps &= ~sk->sk_route_nocaps;
2034 if (sk_can_gso(sk)) {
2035 if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
2036 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2037 } else {
2038 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
2039 sk->sk_gso_max_size = dst->dev->gso_max_size;
2040 max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
2041 }
2042 }
2043 sk->sk_gso_max_segs = max_segs;
2044}
2045EXPORT_SYMBOL_GPL(sk_setup_caps);
2046
2047/*
2048 * Simple resource managers for sockets.
2049 */
2050
2051
2052/*
2053 * Write buffer destructor automatically called from kfree_skb.
2054 */
2055void sock_wfree(struct sk_buff *skb)
2056{
2057 struct sock *sk = skb->sk;
2058 unsigned int len = skb->truesize;
2059
2060 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
2061 /*
2062 * Keep a reference on sk_wmem_alloc, this will be released
2063 * after sk_write_space() call
2064 */
2065 WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
2066 sk->sk_write_space(sk);
2067 len = 1;
2068 }
2069 /*
2070 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
2071 * could not do because of in-flight packets
2072 */
2073 if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
2074 __sk_free(sk);
2075}
2076EXPORT_SYMBOL(sock_wfree);
2077
2078/* This variant of sock_wfree() is used by TCP,
2079 * since it sets SOCK_USE_WRITE_QUEUE.
2080 */
2081void __sock_wfree(struct sk_buff *skb)
2082{
2083 struct sock *sk = skb->sk;
2084
2085 if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
2086 __sk_free(sk);
2087}
2088
2089void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
2090{
2091 skb_orphan(skb);
2092 skb->sk = sk;
2093#ifdef CONFIG_INET
2094 if (unlikely(!sk_fullsock(sk))) {
2095 skb->destructor = sock_edemux;
2096 sock_hold(sk);
2097 return;
2098 }
2099#endif
2100 skb->destructor = sock_wfree;
2101 skb_set_hash_from_sk(skb, sk);
2102 /*
2103 * We used to take a refcount on sk, but following operation
2104 * is enough to guarantee sk_free() wont free this sock until
2105 * all in-flight packets are completed
2106 */
2107 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
2108}
2109EXPORT_SYMBOL(skb_set_owner_w);
2110
2111static bool can_skb_orphan_partial(const struct sk_buff *skb)
2112{
2113#ifdef CONFIG_TLS_DEVICE
2114 /* Drivers depend on in-order delivery for crypto offload,
2115 * partial orphan breaks out-of-order-OK logic.
2116 */
2117 if (skb->decrypted)
2118 return false;
2119#endif
2120 return (skb->destructor == sock_wfree ||
2121 (IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree));
2122}
2123
2124/* This helper is used by netem, as it can hold packets in its
2125 * delay queue. We want to allow the owner socket to send more
2126 * packets, as if they were already TX completed by a typical driver.
2127 * But we also want to keep skb->sk set because some packet schedulers
2128 * rely on it (sch_fq for example).
2129 */
2130void skb_orphan_partial(struct sk_buff *skb)
2131{
2132 if (skb_is_tcp_pure_ack(skb))
2133 return;
2134
2135 if (can_skb_orphan_partial(skb)) {
2136 struct sock *sk = skb->sk;
2137
2138 if (refcount_inc_not_zero(&sk->sk_refcnt)) {
2139 WARN_ON(refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc));
2140 skb->destructor = sock_efree;
2141 }
2142 } else {
2143 skb_orphan(skb);
2144 }
2145}
2146EXPORT_SYMBOL(skb_orphan_partial);
2147
2148/*
2149 * Read buffer destructor automatically called from kfree_skb.
2150 */
2151void sock_rfree(struct sk_buff *skb)
2152{
2153 struct sock *sk = skb->sk;
2154 unsigned int len = skb->truesize;
2155
2156 atomic_sub(len, &sk->sk_rmem_alloc);
2157 sk_mem_uncharge(sk, len);
2158}
2159EXPORT_SYMBOL(sock_rfree);
2160
2161/*
2162 * Buffer destructor for skbs that are not used directly in read or write
2163 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
2164 */
2165void sock_efree(struct sk_buff *skb)
2166{
2167 sock_put(skb->sk);
2168}
2169EXPORT_SYMBOL(sock_efree);
2170
2171/* Buffer destructor for prefetch/receive path where reference count may
2172 * not be held, e.g. for listen sockets.
2173 */
2174#ifdef CONFIG_INET
2175void sock_pfree(struct sk_buff *skb)
2176{
2177 if (sk_is_refcounted(skb->sk))
2178 sock_gen_put(skb->sk);
2179}
2180EXPORT_SYMBOL(sock_pfree);
2181#endif /* CONFIG_INET */
2182
2183kuid_t sock_i_uid(struct sock *sk)
2184{
2185 kuid_t uid;
2186
2187 read_lock_bh(&sk->sk_callback_lock);
2188 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
2189 read_unlock_bh(&sk->sk_callback_lock);
2190 return uid;
2191}
2192EXPORT_SYMBOL(sock_i_uid);
2193
2194unsigned long sock_i_ino(struct sock *sk)
2195{
2196 unsigned long ino;
2197
2198 read_lock_bh(&sk->sk_callback_lock);
2199 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
2200 read_unlock_bh(&sk->sk_callback_lock);
2201 return ino;
2202}
2203EXPORT_SYMBOL(sock_i_ino);
2204
2205/*
2206 * Allocate a skb from the socket's send buffer.
2207 */
2208struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
2209 gfp_t priority)
2210{
2211 if (force ||
2212 refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) {
2213 struct sk_buff *skb = alloc_skb(size, priority);
2214
2215 if (skb) {
2216 skb_set_owner_w(skb, sk);
2217 return skb;
2218 }
2219 }
2220 return NULL;
2221}
2222EXPORT_SYMBOL(sock_wmalloc);
2223
2224static void sock_ofree(struct sk_buff *skb)
2225{
2226 struct sock *sk = skb->sk;
2227
2228 atomic_sub(skb->truesize, &sk->sk_omem_alloc);
2229}
2230
2231struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
2232 gfp_t priority)
2233{
2234 struct sk_buff *skb;
2235
2236 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
2237 if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
2238 sysctl_optmem_max)
2239 return NULL;
2240
2241 skb = alloc_skb(size, priority);
2242 if (!skb)
2243 return NULL;
2244
2245 atomic_add(skb->truesize, &sk->sk_omem_alloc);
2246 skb->sk = sk;
2247 skb->destructor = sock_ofree;
2248 return skb;
2249}
2250
2251/*
2252 * Allocate a memory block from the socket's option memory buffer.
2253 */
2254void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
2255{
2256 if ((unsigned int)size <= sysctl_optmem_max &&
2257 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
2258 void *mem;
2259 /* First do the add, to avoid the race if kmalloc
2260 * might sleep.
2261 */
2262 atomic_add(size, &sk->sk_omem_alloc);
2263 mem = kmalloc(size, priority);
2264 if (mem)
2265 return mem;
2266 atomic_sub(size, &sk->sk_omem_alloc);
2267 }
2268 return NULL;
2269}
2270EXPORT_SYMBOL(sock_kmalloc);
2271
2272/* Free an option memory block. Note, we actually want the inline
2273 * here as this allows gcc to detect the nullify and fold away the
2274 * condition entirely.
2275 */
2276static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2277 const bool nullify)
2278{
2279 if (WARN_ON_ONCE(!mem))
2280 return;
2281 if (nullify)
2282 kfree_sensitive(mem);
2283 else
2284 kfree(mem);
2285 atomic_sub(size, &sk->sk_omem_alloc);
2286}
2287
2288void sock_kfree_s(struct sock *sk, void *mem, int size)
2289{
2290 __sock_kfree_s(sk, mem, size, false);
2291}
2292EXPORT_SYMBOL(sock_kfree_s);
2293
2294void sock_kzfree_s(struct sock *sk, void *mem, int size)
2295{
2296 __sock_kfree_s(sk, mem, size, true);
2297}
2298EXPORT_SYMBOL(sock_kzfree_s);
2299
2300/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2301 I think, these locks should be removed for datagram sockets.
2302 */
2303static long sock_wait_for_wmem(struct sock *sk, long timeo)
2304{
2305 DEFINE_WAIT(wait);
2306
2307 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2308 for (;;) {
2309 if (!timeo)
2310 break;
2311 if (signal_pending(current))
2312 break;
2313 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2314 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2315 if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf))
2316 break;
2317 if (sk->sk_shutdown & SEND_SHUTDOWN)
2318 break;
2319 if (sk->sk_err)
2320 break;
2321 timeo = schedule_timeout(timeo);
2322 }
2323 finish_wait(sk_sleep(sk), &wait);
2324 return timeo;
2325}
2326
2327
2328/*
2329 * Generic send/receive buffer handlers
2330 */
2331
2332struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2333 unsigned long data_len, int noblock,
2334 int *errcode, int max_page_order)
2335{
2336 struct sk_buff *skb;
2337 long timeo;
2338 int err;
2339
2340 timeo = sock_sndtimeo(sk, noblock);
2341 for (;;) {
2342 err = sock_error(sk);
2343 if (err != 0)
2344 goto failure;
2345
2346 err = -EPIPE;
2347 if (sk->sk_shutdown & SEND_SHUTDOWN)
2348 goto failure;
2349
2350 if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf))
2351 break;
2352
2353 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2354 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2355 err = -EAGAIN;
2356 if (!timeo)
2357 goto failure;
2358 if (signal_pending(current))
2359 goto interrupted;
2360 timeo = sock_wait_for_wmem(sk, timeo);
2361 }
2362 skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2363 errcode, sk->sk_allocation);
2364 if (skb)
2365 skb_set_owner_w(skb, sk);
2366 return skb;
2367
2368interrupted:
2369 err = sock_intr_errno(timeo);
2370failure:
2371 *errcode = err;
2372 return NULL;
2373}
2374EXPORT_SYMBOL(sock_alloc_send_pskb);
2375
2376struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
2377 int noblock, int *errcode)
2378{
2379 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
2380}
2381EXPORT_SYMBOL(sock_alloc_send_skb);
2382
2383int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
2384 struct sockcm_cookie *sockc)
2385{
2386 u32 tsflags;
2387
2388 switch (cmsg->cmsg_type) {
2389 case SO_MARK:
2390 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2391 return -EPERM;
2392 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2393 return -EINVAL;
2394 sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2395 break;
2396 case SO_TIMESTAMPING_OLD:
2397 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2398 return -EINVAL;
2399
2400 tsflags = *(u32 *)CMSG_DATA(cmsg);
2401 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2402 return -EINVAL;
2403
2404 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2405 sockc->tsflags |= tsflags;
2406 break;
2407 case SCM_TXTIME:
2408 if (!sock_flag(sk, SOCK_TXTIME))
2409 return -EINVAL;
2410 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64)))
2411 return -EINVAL;
2412 sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg));
2413 break;
2414 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2415 case SCM_RIGHTS:
2416 case SCM_CREDENTIALS:
2417 break;
2418 default:
2419 return -EINVAL;
2420 }
2421 return 0;
2422}
2423EXPORT_SYMBOL(__sock_cmsg_send);
2424
2425int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2426 struct sockcm_cookie *sockc)
2427{
2428 struct cmsghdr *cmsg;
2429 int ret;
2430
2431 for_each_cmsghdr(cmsg, msg) {
2432 if (!CMSG_OK(msg, cmsg))
2433 return -EINVAL;
2434 if (cmsg->cmsg_level != SOL_SOCKET)
2435 continue;
2436 ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
2437 if (ret)
2438 return ret;
2439 }
2440 return 0;
2441}
2442EXPORT_SYMBOL(sock_cmsg_send);
2443
2444static void sk_enter_memory_pressure(struct sock *sk)
2445{
2446 if (!sk->sk_prot->enter_memory_pressure)
2447 return;
2448
2449 sk->sk_prot->enter_memory_pressure(sk);
2450}
2451
2452static void sk_leave_memory_pressure(struct sock *sk)
2453{
2454 if (sk->sk_prot->leave_memory_pressure) {
2455 sk->sk_prot->leave_memory_pressure(sk);
2456 } else {
2457 unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2458
2459 if (memory_pressure && READ_ONCE(*memory_pressure))
2460 WRITE_ONCE(*memory_pressure, 0);
2461 }
2462}
2463
2464#define SKB_FRAG_PAGE_ORDER get_order(32768)
2465DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2466
2467/**
2468 * skb_page_frag_refill - check that a page_frag contains enough room
2469 * @sz: minimum size of the fragment we want to get
2470 * @pfrag: pointer to page_frag
2471 * @gfp: priority for memory allocation
2472 *
2473 * Note: While this allocator tries to use high order pages, there is
2474 * no guarantee that allocations succeed. Therefore, @sz MUST be
2475 * less or equal than PAGE_SIZE.
2476 */
2477bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2478{
2479 if (pfrag->page) {
2480 if (page_ref_count(pfrag->page) == 1) {
2481 pfrag->offset = 0;
2482 return true;
2483 }
2484 if (pfrag->offset + sz <= pfrag->size)
2485 return true;
2486 put_page(pfrag->page);
2487 }
2488
2489 pfrag->offset = 0;
2490 if (SKB_FRAG_PAGE_ORDER &&
2491 !static_branch_unlikely(&net_high_order_alloc_disable_key)) {
2492 /* Avoid direct reclaim but allow kswapd to wake */
2493 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2494 __GFP_COMP | __GFP_NOWARN |
2495 __GFP_NORETRY,
2496 SKB_FRAG_PAGE_ORDER);
2497 if (likely(pfrag->page)) {
2498 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2499 return true;
2500 }
2501 }
2502 pfrag->page = alloc_page(gfp);
2503 if (likely(pfrag->page)) {
2504 pfrag->size = PAGE_SIZE;
2505 return true;
2506 }
2507 return false;
2508}
2509EXPORT_SYMBOL(skb_page_frag_refill);
2510
2511bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2512{
2513 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2514 return true;
2515
2516 sk_enter_memory_pressure(sk);
2517 sk_stream_moderate_sndbuf(sk);
2518 return false;
2519}
2520EXPORT_SYMBOL(sk_page_frag_refill);
2521
2522void __lock_sock(struct sock *sk)
2523 __releases(&sk->sk_lock.slock)
2524 __acquires(&sk->sk_lock.slock)
2525{
2526 DEFINE_WAIT(wait);
2527
2528 for (;;) {
2529 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2530 TASK_UNINTERRUPTIBLE);
2531 spin_unlock_bh(&sk->sk_lock.slock);
2532 schedule();
2533 spin_lock_bh(&sk->sk_lock.slock);
2534 if (!sock_owned_by_user(sk))
2535 break;
2536 }
2537 finish_wait(&sk->sk_lock.wq, &wait);
2538}
2539
2540void __release_sock(struct sock *sk)
2541 __releases(&sk->sk_lock.slock)
2542 __acquires(&sk->sk_lock.slock)
2543{
2544 struct sk_buff *skb, *next;
2545
2546 while ((skb = sk->sk_backlog.head) != NULL) {
2547 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2548
2549 spin_unlock_bh(&sk->sk_lock.slock);
2550
2551 do {
2552 next = skb->next;
2553 prefetch(next);
2554 WARN_ON_ONCE(skb_dst_is_noref(skb));
2555 skb_mark_not_on_list(skb);
2556 sk_backlog_rcv(sk, skb);
2557
2558 cond_resched();
2559
2560 skb = next;
2561 } while (skb != NULL);
2562
2563 spin_lock_bh(&sk->sk_lock.slock);
2564 }
2565
2566 /*
2567 * Doing the zeroing here guarantee we can not loop forever
2568 * while a wild producer attempts to flood us.
2569 */
2570 sk->sk_backlog.len = 0;
2571}
2572
2573void __sk_flush_backlog(struct sock *sk)
2574{
2575 spin_lock_bh(&sk->sk_lock.slock);
2576 __release_sock(sk);
2577 spin_unlock_bh(&sk->sk_lock.slock);
2578}
2579
2580/**
2581 * sk_wait_data - wait for data to arrive at sk_receive_queue
2582 * @sk: sock to wait on
2583 * @timeo: for how long
2584 * @skb: last skb seen on sk_receive_queue
2585 *
2586 * Now socket state including sk->sk_err is changed only under lock,
2587 * hence we may omit checks after joining wait queue.
2588 * We check receive queue before schedule() only as optimization;
2589 * it is very likely that release_sock() added new data.
2590 */
2591int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2592{
2593 DEFINE_WAIT_FUNC(wait, woken_wake_function);
2594 int rc;
2595
2596 add_wait_queue(sk_sleep(sk), &wait);
2597 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2598 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2599 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2600 remove_wait_queue(sk_sleep(sk), &wait);
2601 return rc;
2602}
2603EXPORT_SYMBOL(sk_wait_data);
2604
2605/**
2606 * __sk_mem_raise_allocated - increase memory_allocated
2607 * @sk: socket
2608 * @size: memory size to allocate
2609 * @amt: pages to allocate
2610 * @kind: allocation type
2611 *
2612 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2613 */
2614int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2615{
2616 struct proto *prot = sk->sk_prot;
2617 long allocated = sk_memory_allocated_add(sk, amt);
2618 bool charged = true;
2619
2620 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
2621 !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt)))
2622 goto suppress_allocation;
2623
2624 /* Under limit. */
2625 if (allocated <= sk_prot_mem_limits(sk, 0)) {
2626 sk_leave_memory_pressure(sk);
2627 return 1;
2628 }
2629
2630 /* Under pressure. */
2631 if (allocated > sk_prot_mem_limits(sk, 1))
2632 sk_enter_memory_pressure(sk);
2633
2634 /* Over hard limit. */
2635 if (allocated > sk_prot_mem_limits(sk, 2))
2636 goto suppress_allocation;
2637
2638 /* guarantee minimum buffer size under pressure */
2639 if (kind == SK_MEM_RECV) {
2640 if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
2641 return 1;
2642
2643 } else { /* SK_MEM_SEND */
2644 int wmem0 = sk_get_wmem0(sk, prot);
2645
2646 if (sk->sk_type == SOCK_STREAM) {
2647 if (sk->sk_wmem_queued < wmem0)
2648 return 1;
2649 } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
2650 return 1;
2651 }
2652 }
2653
2654 if (sk_has_memory_pressure(sk)) {
2655 u64 alloc;
2656
2657 if (!sk_under_memory_pressure(sk))
2658 return 1;
2659 alloc = sk_sockets_allocated_read_positive(sk);
2660 if (sk_prot_mem_limits(sk, 2) > alloc *
2661 sk_mem_pages(sk->sk_wmem_queued +
2662 atomic_read(&sk->sk_rmem_alloc) +
2663 sk->sk_forward_alloc))
2664 return 1;
2665 }
2666
2667suppress_allocation:
2668
2669 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2670 sk_stream_moderate_sndbuf(sk);
2671
2672 /* Fail only if socket is _under_ its sndbuf.
2673 * In this case we cannot block, so that we have to fail.
2674 */
2675 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2676 return 1;
2677 }
2678
2679 if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged))
2680 trace_sock_exceed_buf_limit(sk, prot, allocated, kind);
2681
2682 sk_memory_allocated_sub(sk, amt);
2683
2684 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2685 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2686
2687 return 0;
2688}
2689EXPORT_SYMBOL(__sk_mem_raise_allocated);
2690
2691/**
2692 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2693 * @sk: socket
2694 * @size: memory size to allocate
2695 * @kind: allocation type
2696 *
2697 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2698 * rmem allocation. This function assumes that protocols which have
2699 * memory_pressure use sk_wmem_queued as write buffer accounting.
2700 */
2701int __sk_mem_schedule(struct sock *sk, int size, int kind)
2702{
2703 int ret, amt = sk_mem_pages(size);
2704
2705 sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT;
2706 ret = __sk_mem_raise_allocated(sk, size, amt, kind);
2707 if (!ret)
2708 sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT;
2709 return ret;
2710}
2711EXPORT_SYMBOL(__sk_mem_schedule);
2712
2713/**
2714 * __sk_mem_reduce_allocated - reclaim memory_allocated
2715 * @sk: socket
2716 * @amount: number of quanta
2717 *
2718 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
2719 */
2720void __sk_mem_reduce_allocated(struct sock *sk, int amount)
2721{
2722 sk_memory_allocated_sub(sk, amount);
2723
2724 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2725 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2726
2727 if (sk_under_memory_pressure(sk) &&
2728 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2729 sk_leave_memory_pressure(sk);
2730}
2731EXPORT_SYMBOL(__sk_mem_reduce_allocated);
2732
2733/**
2734 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
2735 * @sk: socket
2736 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2737 */
2738void __sk_mem_reclaim(struct sock *sk, int amount)
2739{
2740 amount >>= SK_MEM_QUANTUM_SHIFT;
2741 sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2742 __sk_mem_reduce_allocated(sk, amount);
2743}
2744EXPORT_SYMBOL(__sk_mem_reclaim);
2745
2746int sk_set_peek_off(struct sock *sk, int val)
2747{
2748 sk->sk_peek_off = val;
2749 return 0;
2750}
2751EXPORT_SYMBOL_GPL(sk_set_peek_off);
2752
2753/*
2754 * Set of default routines for initialising struct proto_ops when
2755 * the protocol does not support a particular function. In certain
2756 * cases where it makes no sense for a protocol to have a "do nothing"
2757 * function, some default processing is provided.
2758 */
2759
2760int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2761{
2762 return -EOPNOTSUPP;
2763}
2764EXPORT_SYMBOL(sock_no_bind);
2765
2766int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2767 int len, int flags)
2768{
2769 return -EOPNOTSUPP;
2770}
2771EXPORT_SYMBOL(sock_no_connect);
2772
2773int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2774{
2775 return -EOPNOTSUPP;
2776}
2777EXPORT_SYMBOL(sock_no_socketpair);
2778
2779int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
2780 bool kern)
2781{
2782 return -EOPNOTSUPP;
2783}
2784EXPORT_SYMBOL(sock_no_accept);
2785
2786int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2787 int peer)
2788{
2789 return -EOPNOTSUPP;
2790}
2791EXPORT_SYMBOL(sock_no_getname);
2792
2793int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2794{
2795 return -EOPNOTSUPP;
2796}
2797EXPORT_SYMBOL(sock_no_ioctl);
2798
2799int sock_no_listen(struct socket *sock, int backlog)
2800{
2801 return -EOPNOTSUPP;
2802}
2803EXPORT_SYMBOL(sock_no_listen);
2804
2805int sock_no_shutdown(struct socket *sock, int how)
2806{
2807 return -EOPNOTSUPP;
2808}
2809EXPORT_SYMBOL(sock_no_shutdown);
2810
2811int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2812{
2813 return -EOPNOTSUPP;
2814}
2815EXPORT_SYMBOL(sock_no_sendmsg);
2816
2817int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
2818{
2819 return -EOPNOTSUPP;
2820}
2821EXPORT_SYMBOL(sock_no_sendmsg_locked);
2822
2823int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2824 int flags)
2825{
2826 return -EOPNOTSUPP;
2827}
2828EXPORT_SYMBOL(sock_no_recvmsg);
2829
2830int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2831{
2832 /* Mirror missing mmap method error code */
2833 return -ENODEV;
2834}
2835EXPORT_SYMBOL(sock_no_mmap);
2836
2837/*
2838 * When a file is received (via SCM_RIGHTS, etc), we must bump the
2839 * various sock-based usage counts.
2840 */
2841void __receive_sock(struct file *file)
2842{
2843 struct socket *sock;
2844
2845 sock = sock_from_file(file);
2846 if (sock) {
2847 sock_update_netprioidx(&sock->sk->sk_cgrp_data);
2848 sock_update_classid(&sock->sk->sk_cgrp_data);
2849 }
2850}
2851
2852ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2853{
2854 ssize_t res;
2855 struct msghdr msg = {.msg_flags = flags};
2856 struct kvec iov;
2857 char *kaddr = kmap(page);
2858 iov.iov_base = kaddr + offset;
2859 iov.iov_len = size;
2860 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2861 kunmap(page);
2862 return res;
2863}
2864EXPORT_SYMBOL(sock_no_sendpage);
2865
2866ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
2867 int offset, size_t size, int flags)
2868{
2869 ssize_t res;
2870 struct msghdr msg = {.msg_flags = flags};
2871 struct kvec iov;
2872 char *kaddr = kmap(page);
2873
2874 iov.iov_base = kaddr + offset;
2875 iov.iov_len = size;
2876 res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size);
2877 kunmap(page);
2878 return res;
2879}
2880EXPORT_SYMBOL(sock_no_sendpage_locked);
2881
2882/*
2883 * Default Socket Callbacks
2884 */
2885
2886static void sock_def_wakeup(struct sock *sk)
2887{
2888 struct socket_wq *wq;
2889
2890 rcu_read_lock();
2891 wq = rcu_dereference(sk->sk_wq);
2892 if (skwq_has_sleeper(wq))
2893 wake_up_interruptible_all(&wq->wait);
2894 rcu_read_unlock();
2895}
2896
2897static void sock_def_error_report(struct sock *sk)
2898{
2899 struct socket_wq *wq;
2900
2901 rcu_read_lock();
2902 wq = rcu_dereference(sk->sk_wq);
2903 if (skwq_has_sleeper(wq))
2904 wake_up_interruptible_poll(&wq->wait, EPOLLERR);
2905 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2906 rcu_read_unlock();
2907}
2908
2909void sock_def_readable(struct sock *sk)
2910{
2911 struct socket_wq *wq;
2912
2913 rcu_read_lock();
2914 wq = rcu_dereference(sk->sk_wq);
2915 if (skwq_has_sleeper(wq))
2916 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
2917 EPOLLRDNORM | EPOLLRDBAND);
2918 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2919 rcu_read_unlock();
2920}
2921
2922static void sock_def_write_space(struct sock *sk)
2923{
2924 struct socket_wq *wq;
2925
2926 rcu_read_lock();
2927
2928 /* Do not wake up a writer until he can make "significant"
2929 * progress. --DaveM
2930 */
2931 if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= READ_ONCE(sk->sk_sndbuf)) {
2932 wq = rcu_dereference(sk->sk_wq);
2933 if (skwq_has_sleeper(wq))
2934 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
2935 EPOLLWRNORM | EPOLLWRBAND);
2936
2937 /* Should agree with poll, otherwise some programs break */
2938 if (sock_writeable(sk))
2939 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2940 }
2941
2942 rcu_read_unlock();
2943}
2944
2945static void sock_def_destruct(struct sock *sk)
2946{
2947}
2948
2949void sk_send_sigurg(struct sock *sk)
2950{
2951 if (sk->sk_socket && sk->sk_socket->file)
2952 if (send_sigurg(&sk->sk_socket->file->f_owner))
2953 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2954}
2955EXPORT_SYMBOL(sk_send_sigurg);
2956
2957void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2958 unsigned long expires)
2959{
2960 if (!mod_timer(timer, expires))
2961 sock_hold(sk);
2962}
2963EXPORT_SYMBOL(sk_reset_timer);
2964
2965void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2966{
2967 if (del_timer(timer))
2968 __sock_put(sk);
2969}
2970EXPORT_SYMBOL(sk_stop_timer);
2971
2972void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer)
2973{
2974 if (del_timer_sync(timer))
2975 __sock_put(sk);
2976}
2977EXPORT_SYMBOL(sk_stop_timer_sync);
2978
2979void sock_init_data(struct socket *sock, struct sock *sk)
2980{
2981 sk_init_common(sk);
2982 sk->sk_send_head = NULL;
2983
2984 timer_setup(&sk->sk_timer, NULL, 0);
2985
2986 sk->sk_allocation = GFP_KERNEL;
2987 sk->sk_rcvbuf = sysctl_rmem_default;
2988 sk->sk_sndbuf = sysctl_wmem_default;
2989 sk->sk_state = TCP_CLOSE;
2990 sk_set_socket(sk, sock);
2991
2992 sock_set_flag(sk, SOCK_ZAPPED);
2993
2994 if (sock) {
2995 sk->sk_type = sock->type;
2996 RCU_INIT_POINTER(sk->sk_wq, &sock->wq);
2997 sock->sk = sk;
2998 sk->sk_uid = SOCK_INODE(sock)->i_uid;
2999 } else {
3000 RCU_INIT_POINTER(sk->sk_wq, NULL);
3001 sk->sk_uid = make_kuid(sock_net(sk)->user_ns, 0);
3002 }
3003
3004 rwlock_init(&sk->sk_callback_lock);
3005 if (sk->sk_kern_sock)
3006 lockdep_set_class_and_name(
3007 &sk->sk_callback_lock,
3008 af_kern_callback_keys + sk->sk_family,
3009 af_family_kern_clock_key_strings[sk->sk_family]);
3010 else
3011 lockdep_set_class_and_name(
3012 &sk->sk_callback_lock,
3013 af_callback_keys + sk->sk_family,
3014 af_family_clock_key_strings[sk->sk_family]);
3015
3016 sk->sk_state_change = sock_def_wakeup;
3017 sk->sk_data_ready = sock_def_readable;
3018 sk->sk_write_space = sock_def_write_space;
3019 sk->sk_error_report = sock_def_error_report;
3020 sk->sk_destruct = sock_def_destruct;
3021
3022 sk->sk_frag.page = NULL;
3023 sk->sk_frag.offset = 0;
3024 sk->sk_peek_off = -1;
3025
3026 sk->sk_peer_pid = NULL;
3027 sk->sk_peer_cred = NULL;
3028 sk->sk_write_pending = 0;
3029 sk->sk_rcvlowat = 1;
3030 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
3031 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
3032
3033 sk->sk_stamp = SK_DEFAULT_STAMP;
3034#if BITS_PER_LONG==32
3035 seqlock_init(&sk->sk_stamp_seq);
3036#endif
3037 atomic_set(&sk->sk_zckey, 0);
3038
3039#ifdef CONFIG_NET_RX_BUSY_POLL
3040 sk->sk_napi_id = 0;
3041 sk->sk_ll_usec = sysctl_net_busy_read;
3042#endif
3043
3044 sk->sk_max_pacing_rate = ~0UL;
3045 sk->sk_pacing_rate = ~0UL;
3046 WRITE_ONCE(sk->sk_pacing_shift, 10);
3047 sk->sk_incoming_cpu = -1;
3048
3049 sk_rx_queue_clear(sk);
3050 /*
3051 * Before updating sk_refcnt, we must commit prior changes to memory
3052 * (Documentation/RCU/rculist_nulls.rst for details)
3053 */
3054 smp_wmb();
3055 refcount_set(&sk->sk_refcnt, 1);
3056 atomic_set(&sk->sk_drops, 0);
3057}
3058EXPORT_SYMBOL(sock_init_data);
3059
3060void lock_sock_nested(struct sock *sk, int subclass)
3061{
3062 might_sleep();
3063 spin_lock_bh(&sk->sk_lock.slock);
3064 if (sk->sk_lock.owned)
3065 __lock_sock(sk);
3066 sk->sk_lock.owned = 1;
3067 spin_unlock(&sk->sk_lock.slock);
3068 /*
3069 * The sk_lock has mutex_lock() semantics here:
3070 */
3071 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
3072 local_bh_enable();
3073}
3074EXPORT_SYMBOL(lock_sock_nested);
3075
3076void release_sock(struct sock *sk)
3077{
3078 spin_lock_bh(&sk->sk_lock.slock);
3079 if (sk->sk_backlog.tail)
3080 __release_sock(sk);
3081
3082 /* Warning : release_cb() might need to release sk ownership,
3083 * ie call sock_release_ownership(sk) before us.
3084 */
3085 if (sk->sk_prot->release_cb)
3086 sk->sk_prot->release_cb(sk);
3087
3088 sock_release_ownership(sk);
3089 if (waitqueue_active(&sk->sk_lock.wq))
3090 wake_up(&sk->sk_lock.wq);
3091 spin_unlock_bh(&sk->sk_lock.slock);
3092}
3093EXPORT_SYMBOL(release_sock);
3094
3095/**
3096 * lock_sock_fast - fast version of lock_sock
3097 * @sk: socket
3098 *
3099 * This version should be used for very small section, where process wont block
3100 * return false if fast path is taken:
3101 *
3102 * sk_lock.slock locked, owned = 0, BH disabled
3103 *
3104 * return true if slow path is taken:
3105 *
3106 * sk_lock.slock unlocked, owned = 1, BH enabled
3107 */
3108bool lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock)
3109{
3110 might_sleep();
3111 spin_lock_bh(&sk->sk_lock.slock);
3112
3113 if (!sk->sk_lock.owned)
3114 /*
3115 * Note : We must disable BH
3116 */
3117 return false;
3118
3119 __lock_sock(sk);
3120 sk->sk_lock.owned = 1;
3121 spin_unlock(&sk->sk_lock.slock);
3122 /*
3123 * The sk_lock has mutex_lock() semantics here:
3124 */
3125 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
3126 __acquire(&sk->sk_lock.slock);
3127 local_bh_enable();
3128 return true;
3129}
3130EXPORT_SYMBOL(lock_sock_fast);
3131
3132int sock_gettstamp(struct socket *sock, void __user *userstamp,
3133 bool timeval, bool time32)
3134{
3135 struct sock *sk = sock->sk;
3136 struct timespec64 ts;
3137
3138 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
3139 ts = ktime_to_timespec64(sock_read_timestamp(sk));
3140 if (ts.tv_sec == -1)
3141 return -ENOENT;
3142 if (ts.tv_sec == 0) {
3143 ktime_t kt = ktime_get_real();
3144 sock_write_timestamp(sk, kt);
3145 ts = ktime_to_timespec64(kt);
3146 }
3147
3148 if (timeval)
3149 ts.tv_nsec /= 1000;
3150
3151#ifdef CONFIG_COMPAT_32BIT_TIME
3152 if (time32)
3153 return put_old_timespec32(&ts, userstamp);
3154#endif
3155#ifdef CONFIG_SPARC64
3156 /* beware of padding in sparc64 timeval */
3157 if (timeval && !in_compat_syscall()) {
3158 struct __kernel_old_timeval __user tv = {
3159 .tv_sec = ts.tv_sec,
3160 .tv_usec = ts.tv_nsec,
3161 };
3162 if (copy_to_user(userstamp, &tv, sizeof(tv)))
3163 return -EFAULT;
3164 return 0;
3165 }
3166#endif
3167 return put_timespec64(&ts, userstamp);
3168}
3169EXPORT_SYMBOL(sock_gettstamp);
3170
3171void sock_enable_timestamp(struct sock *sk, enum sock_flags flag)
3172{
3173 if (!sock_flag(sk, flag)) {
3174 unsigned long previous_flags = sk->sk_flags;
3175
3176 sock_set_flag(sk, flag);
3177 /*
3178 * we just set one of the two flags which require net
3179 * time stamping, but time stamping might have been on
3180 * already because of the other one
3181 */
3182 if (sock_needs_netstamp(sk) &&
3183 !(previous_flags & SK_FLAGS_TIMESTAMP))
3184 net_enable_timestamp();
3185 }
3186}
3187
3188int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
3189 int level, int type)
3190{
3191 struct sock_exterr_skb *serr;
3192 struct sk_buff *skb;
3193 int copied, err;
3194
3195 err = -EAGAIN;
3196 skb = sock_dequeue_err_skb(sk);
3197 if (skb == NULL)
3198 goto out;
3199
3200 copied = skb->len;
3201 if (copied > len) {
3202 msg->msg_flags |= MSG_TRUNC;
3203 copied = len;
3204 }
3205 err = skb_copy_datagram_msg(skb, 0, msg, copied);
3206 if (err)
3207 goto out_free_skb;
3208
3209 sock_recv_timestamp(msg, sk, skb);
3210
3211 serr = SKB_EXT_ERR(skb);
3212 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
3213
3214 msg->msg_flags |= MSG_ERRQUEUE;
3215 err = copied;
3216
3217out_free_skb:
3218 kfree_skb(skb);
3219out:
3220 return err;
3221}
3222EXPORT_SYMBOL(sock_recv_errqueue);
3223
3224/*
3225 * Get a socket option on an socket.
3226 *
3227 * FIX: POSIX 1003.1g is very ambiguous here. It states that
3228 * asynchronous errors should be reported by getsockopt. We assume
3229 * this means if you specify SO_ERROR (otherwise whats the point of it).
3230 */
3231int sock_common_getsockopt(struct socket *sock, int level, int optname,
3232 char __user *optval, int __user *optlen)
3233{
3234 struct sock *sk = sock->sk;
3235
3236 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
3237}
3238EXPORT_SYMBOL(sock_common_getsockopt);
3239
3240int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3241 int flags)
3242{
3243 struct sock *sk = sock->sk;
3244 int addr_len = 0;
3245 int err;
3246
3247 err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
3248 flags & ~MSG_DONTWAIT, &addr_len);
3249 if (err >= 0)
3250 msg->msg_namelen = addr_len;
3251 return err;
3252}
3253EXPORT_SYMBOL(sock_common_recvmsg);
3254
3255/*
3256 * Set socket options on an inet socket.
3257 */
3258int sock_common_setsockopt(struct socket *sock, int level, int optname,
3259 sockptr_t optval, unsigned int optlen)
3260{
3261 struct sock *sk = sock->sk;
3262
3263 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
3264}
3265EXPORT_SYMBOL(sock_common_setsockopt);
3266
3267void sk_common_release(struct sock *sk)
3268{
3269 if (sk->sk_prot->destroy)
3270 sk->sk_prot->destroy(sk);
3271
3272 /*
3273 * Observation: when sk_common_release is called, processes have
3274 * no access to socket. But net still has.
3275 * Step one, detach it from networking:
3276 *
3277 * A. Remove from hash tables.
3278 */
3279
3280 sk->sk_prot->unhash(sk);
3281
3282 /*
3283 * In this point socket cannot receive new packets, but it is possible
3284 * that some packets are in flight because some CPU runs receiver and
3285 * did hash table lookup before we unhashed socket. They will achieve
3286 * receive queue and will be purged by socket destructor.
3287 *
3288 * Also we still have packets pending on receive queue and probably,
3289 * our own packets waiting in device queues. sock_destroy will drain
3290 * receive queue, but transmitted packets will delay socket destruction
3291 * until the last reference will be released.
3292 */
3293
3294 sock_orphan(sk);
3295
3296 xfrm_sk_free_policy(sk);
3297
3298 sk_refcnt_debug_release(sk);
3299
3300 sock_put(sk);
3301}
3302EXPORT_SYMBOL(sk_common_release);
3303
3304void sk_get_meminfo(const struct sock *sk, u32 *mem)
3305{
3306 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3307
3308 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3309 mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf);
3310 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3311 mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf);
3312 mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
3313 mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued);
3314 mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3315 mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len);
3316 mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3317}
3318
3319#ifdef CONFIG_PROC_FS
3320#define PROTO_INUSE_NR 64 /* should be enough for the first time */
3321struct prot_inuse {
3322 int val[PROTO_INUSE_NR];
3323};
3324
3325static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3326
3327void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
3328{
3329 __this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
3330}
3331EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
3332
3333int sock_prot_inuse_get(struct net *net, struct proto *prot)
3334{
3335 int cpu, idx = prot->inuse_idx;
3336 int res = 0;
3337
3338 for_each_possible_cpu(cpu)
3339 res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3340
3341 return res >= 0 ? res : 0;
3342}
3343EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3344
3345static void sock_inuse_add(struct net *net, int val)
3346{
3347 this_cpu_add(*net->core.sock_inuse, val);
3348}
3349
3350int sock_inuse_get(struct net *net)
3351{
3352 int cpu, res = 0;
3353
3354 for_each_possible_cpu(cpu)
3355 res += *per_cpu_ptr(net->core.sock_inuse, cpu);
3356
3357 return res;
3358}
3359
3360EXPORT_SYMBOL_GPL(sock_inuse_get);
3361
3362static int __net_init sock_inuse_init_net(struct net *net)
3363{
3364 net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3365 if (net->core.prot_inuse == NULL)
3366 return -ENOMEM;
3367
3368 net->core.sock_inuse = alloc_percpu(int);
3369 if (net->core.sock_inuse == NULL)
3370 goto out;
3371
3372 return 0;
3373
3374out:
3375 free_percpu(net->core.prot_inuse);
3376 return -ENOMEM;
3377}
3378
3379static void __net_exit sock_inuse_exit_net(struct net *net)
3380{
3381 free_percpu(net->core.prot_inuse);
3382 free_percpu(net->core.sock_inuse);
3383}
3384
3385static struct pernet_operations net_inuse_ops = {
3386 .init = sock_inuse_init_net,
3387 .exit = sock_inuse_exit_net,
3388};
3389
3390static __init int net_inuse_init(void)
3391{
3392 if (register_pernet_subsys(&net_inuse_ops))
3393 panic("Cannot initialize net inuse counters");
3394
3395 return 0;
3396}
3397
3398core_initcall(net_inuse_init);
3399
3400static int assign_proto_idx(struct proto *prot)
3401{
3402 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3403
3404 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3405 pr_err("PROTO_INUSE_NR exhausted\n");
3406 return -ENOSPC;
3407 }
3408
3409 set_bit(prot->inuse_idx, proto_inuse_idx);
3410 return 0;
3411}
3412
3413static void release_proto_idx(struct proto *prot)
3414{
3415 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3416 clear_bit(prot->inuse_idx, proto_inuse_idx);
3417}
3418#else
3419static inline int assign_proto_idx(struct proto *prot)
3420{
3421 return 0;
3422}
3423
3424static inline void release_proto_idx(struct proto *prot)
3425{
3426}
3427
3428static void sock_inuse_add(struct net *net, int val)
3429{
3430}
3431#endif
3432
3433static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot)
3434{
3435 if (!twsk_prot)
3436 return;
3437 kfree(twsk_prot->twsk_slab_name);
3438 twsk_prot->twsk_slab_name = NULL;
3439 kmem_cache_destroy(twsk_prot->twsk_slab);
3440 twsk_prot->twsk_slab = NULL;
3441}
3442
3443static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3444{
3445 if (!rsk_prot)
3446 return;
3447 kfree(rsk_prot->slab_name);
3448 rsk_prot->slab_name = NULL;
3449 kmem_cache_destroy(rsk_prot->slab);
3450 rsk_prot->slab = NULL;
3451}
3452
3453static int req_prot_init(const struct proto *prot)
3454{
3455 struct request_sock_ops *rsk_prot = prot->rsk_prot;
3456
3457 if (!rsk_prot)
3458 return 0;
3459
3460 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3461 prot->name);
3462 if (!rsk_prot->slab_name)
3463 return -ENOMEM;
3464
3465 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3466 rsk_prot->obj_size, 0,
3467 SLAB_ACCOUNT | prot->slab_flags,
3468 NULL);
3469
3470 if (!rsk_prot->slab) {
3471 pr_crit("%s: Can't create request sock SLAB cache!\n",
3472 prot->name);
3473 return -ENOMEM;
3474 }
3475 return 0;
3476}
3477
3478int proto_register(struct proto *prot, int alloc_slab)
3479{
3480 int ret = -ENOBUFS;
3481
3482 if (alloc_slab) {
3483 prot->slab = kmem_cache_create_usercopy(prot->name,
3484 prot->obj_size, 0,
3485 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT |
3486 prot->slab_flags,
3487 prot->useroffset, prot->usersize,
3488 NULL);
3489
3490 if (prot->slab == NULL) {
3491 pr_crit("%s: Can't create sock SLAB cache!\n",
3492 prot->name);
3493 goto out;
3494 }
3495
3496 if (req_prot_init(prot))
3497 goto out_free_request_sock_slab;
3498
3499 if (prot->twsk_prot != NULL) {
3500 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
3501
3502 if (prot->twsk_prot->twsk_slab_name == NULL)
3503 goto out_free_request_sock_slab;
3504
3505 prot->twsk_prot->twsk_slab =
3506 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
3507 prot->twsk_prot->twsk_obj_size,
3508 0,
3509 SLAB_ACCOUNT |
3510 prot->slab_flags,
3511 NULL);
3512 if (prot->twsk_prot->twsk_slab == NULL)
3513 goto out_free_timewait_sock_slab;
3514 }
3515 }
3516
3517 mutex_lock(&proto_list_mutex);
3518 ret = assign_proto_idx(prot);
3519 if (ret) {
3520 mutex_unlock(&proto_list_mutex);
3521 goto out_free_timewait_sock_slab;
3522 }
3523 list_add(&prot->node, &proto_list);
3524 mutex_unlock(&proto_list_mutex);
3525 return ret;
3526
3527out_free_timewait_sock_slab:
3528 if (alloc_slab && prot->twsk_prot)
3529 tw_prot_cleanup(prot->twsk_prot);
3530out_free_request_sock_slab:
3531 if (alloc_slab) {
3532 req_prot_cleanup(prot->rsk_prot);
3533
3534 kmem_cache_destroy(prot->slab);
3535 prot->slab = NULL;
3536 }
3537out:
3538 return ret;
3539}
3540EXPORT_SYMBOL(proto_register);
3541
3542void proto_unregister(struct proto *prot)
3543{
3544 mutex_lock(&proto_list_mutex);
3545 release_proto_idx(prot);
3546 list_del(&prot->node);
3547 mutex_unlock(&proto_list_mutex);
3548
3549 kmem_cache_destroy(prot->slab);
3550 prot->slab = NULL;
3551
3552 req_prot_cleanup(prot->rsk_prot);
3553 tw_prot_cleanup(prot->twsk_prot);
3554}
3555EXPORT_SYMBOL(proto_unregister);
3556
3557int sock_load_diag_module(int family, int protocol)
3558{
3559 if (!protocol) {
3560 if (!sock_is_registered(family))
3561 return -ENOENT;
3562
3563 return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
3564 NETLINK_SOCK_DIAG, family);
3565 }
3566
3567#ifdef CONFIG_INET
3568 if (family == AF_INET &&
3569 protocol != IPPROTO_RAW &&
3570 protocol < MAX_INET_PROTOS &&
3571 !rcu_access_pointer(inet_protos[protocol]))
3572 return -ENOENT;
3573#endif
3574
3575 return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
3576 NETLINK_SOCK_DIAG, family, protocol);
3577}
3578EXPORT_SYMBOL(sock_load_diag_module);
3579
3580#ifdef CONFIG_PROC_FS
3581static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
3582 __acquires(proto_list_mutex)
3583{
3584 mutex_lock(&proto_list_mutex);
3585 return seq_list_start_head(&proto_list, *pos);
3586}
3587
3588static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3589{
3590 return seq_list_next(v, &proto_list, pos);
3591}
3592
3593static void proto_seq_stop(struct seq_file *seq, void *v)
3594 __releases(proto_list_mutex)
3595{
3596 mutex_unlock(&proto_list_mutex);
3597}
3598
3599static char proto_method_implemented(const void *method)
3600{
3601 return method == NULL ? 'n' : 'y';
3602}
3603static long sock_prot_memory_allocated(struct proto *proto)
3604{
3605 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3606}
3607
3608static const char *sock_prot_memory_pressure(struct proto *proto)
3609{
3610 return proto->memory_pressure != NULL ?
3611 proto_memory_pressure(proto) ? "yes" : "no" : "NI";
3612}
3613
3614static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
3615{
3616
3617 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
3618 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3619 proto->name,
3620 proto->obj_size,
3621 sock_prot_inuse_get(seq_file_net(seq), proto),
3622 sock_prot_memory_allocated(proto),
3623 sock_prot_memory_pressure(proto),
3624 proto->max_header,
3625 proto->slab == NULL ? "no" : "yes",
3626 module_name(proto->owner),
3627 proto_method_implemented(proto->close),
3628 proto_method_implemented(proto->connect),
3629 proto_method_implemented(proto->disconnect),
3630 proto_method_implemented(proto->accept),
3631 proto_method_implemented(proto->ioctl),
3632 proto_method_implemented(proto->init),
3633 proto_method_implemented(proto->destroy),
3634 proto_method_implemented(proto->shutdown),
3635 proto_method_implemented(proto->setsockopt),
3636 proto_method_implemented(proto->getsockopt),
3637 proto_method_implemented(proto->sendmsg),
3638 proto_method_implemented(proto->recvmsg),
3639 proto_method_implemented(proto->sendpage),
3640 proto_method_implemented(proto->bind),
3641 proto_method_implemented(proto->backlog_rcv),
3642 proto_method_implemented(proto->hash),
3643 proto_method_implemented(proto->unhash),
3644 proto_method_implemented(proto->get_port),
3645 proto_method_implemented(proto->enter_memory_pressure));
3646}
3647
3648static int proto_seq_show(struct seq_file *seq, void *v)
3649{
3650 if (v == &proto_list)
3651 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3652 "protocol",
3653 "size",
3654 "sockets",
3655 "memory",
3656 "press",
3657 "maxhdr",
3658 "slab",
3659 "module",
3660 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3661 else
3662 proto_seq_printf(seq, list_entry(v, struct proto, node));
3663 return 0;
3664}
3665
3666static const struct seq_operations proto_seq_ops = {
3667 .start = proto_seq_start,
3668 .next = proto_seq_next,
3669 .stop = proto_seq_stop,
3670 .show = proto_seq_show,
3671};
3672
3673static __net_init int proto_init_net(struct net *net)
3674{
3675 if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops,
3676 sizeof(struct seq_net_private)))
3677 return -ENOMEM;
3678
3679 return 0;
3680}
3681
3682static __net_exit void proto_exit_net(struct net *net)
3683{
3684 remove_proc_entry("protocols", net->proc_net);
3685}
3686
3687
3688static __net_initdata struct pernet_operations proto_net_ops = {
3689 .init = proto_init_net,
3690 .exit = proto_exit_net,
3691};
3692
3693static int __init proto_init(void)
3694{
3695 return register_pernet_subsys(&proto_net_ops);
3696}
3697
3698subsys_initcall(proto_init);
3699
3700#endif /* PROC_FS */
3701
3702#ifdef CONFIG_NET_RX_BUSY_POLL
3703bool sk_busy_loop_end(void *p, unsigned long start_time)
3704{
3705 struct sock *sk = p;
3706
3707 return !skb_queue_empty_lockless(&sk->sk_receive_queue) ||
3708 sk_busy_loop_timeout(sk, start_time);
3709}
3710EXPORT_SYMBOL(sk_busy_loop_end);
3711#endif /* CONFIG_NET_RX_BUSY_POLL */
3712
3713int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len)
3714{
3715 if (!sk->sk_prot->bind_add)
3716 return -EOPNOTSUPP;
3717 return sk->sk_prot->bind_add(sk, addr, addr_len);
3718}
3719EXPORT_SYMBOL(sock_bind_add);