Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * NET3 Protocol independent device support routines.
4 *
5 * Derived from the non IP parts of dev.c 1.0.19
6 * Authors: Ross Biro
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
69 */
70
71#include <linux/uaccess.h>
72#include <linux/bitops.h>
73#include <linux/capability.h>
74#include <linux/cpu.h>
75#include <linux/types.h>
76#include <linux/kernel.h>
77#include <linux/hash.h>
78#include <linux/slab.h>
79#include <linux/sched.h>
80#include <linux/sched/mm.h>
81#include <linux/mutex.h>
82#include <linux/rwsem.h>
83#include <linux/string.h>
84#include <linux/mm.h>
85#include <linux/socket.h>
86#include <linux/sockios.h>
87#include <linux/errno.h>
88#include <linux/interrupt.h>
89#include <linux/if_ether.h>
90#include <linux/netdevice.h>
91#include <linux/etherdevice.h>
92#include <linux/ethtool.h>
93#include <linux/skbuff.h>
94#include <linux/kthread.h>
95#include <linux/bpf.h>
96#include <linux/bpf_trace.h>
97#include <net/net_namespace.h>
98#include <net/sock.h>
99#include <net/busy_poll.h>
100#include <linux/rtnetlink.h>
101#include <linux/stat.h>
102#include <net/dsa.h>
103#include <net/dst.h>
104#include <net/dst_metadata.h>
105#include <net/gro.h>
106#include <net/pkt_sched.h>
107#include <net/pkt_cls.h>
108#include <net/checksum.h>
109#include <net/xfrm.h>
110#include <linux/highmem.h>
111#include <linux/init.h>
112#include <linux/module.h>
113#include <linux/netpoll.h>
114#include <linux/rcupdate.h>
115#include <linux/delay.h>
116#include <net/iw_handler.h>
117#include <asm/current.h>
118#include <linux/audit.h>
119#include <linux/dmaengine.h>
120#include <linux/err.h>
121#include <linux/ctype.h>
122#include <linux/if_arp.h>
123#include <linux/if_vlan.h>
124#include <linux/ip.h>
125#include <net/ip.h>
126#include <net/mpls.h>
127#include <linux/ipv6.h>
128#include <linux/in.h>
129#include <linux/jhash.h>
130#include <linux/random.h>
131#include <trace/events/napi.h>
132#include <trace/events/net.h>
133#include <trace/events/skb.h>
134#include <linux/inetdevice.h>
135#include <linux/cpu_rmap.h>
136#include <linux/static_key.h>
137#include <linux/hashtable.h>
138#include <linux/vmalloc.h>
139#include <linux/if_macvlan.h>
140#include <linux/errqueue.h>
141#include <linux/hrtimer.h>
142#include <linux/netfilter_ingress.h>
143#include <linux/crash_dump.h>
144#include <linux/sctp.h>
145#include <net/udp_tunnel.h>
146#include <linux/net_namespace.h>
147#include <linux/indirect_call_wrapper.h>
148#include <net/devlink.h>
149#include <linux/pm_runtime.h>
150#include <linux/prandom.h>
151
152#include "net-sysfs.h"
153
154#define MAX_GRO_SKBS 8
155
156/* This should be increased if a protocol with a bigger head is added. */
157#define GRO_MAX_HEAD (MAX_HEADER + 128)
158
159static DEFINE_SPINLOCK(ptype_lock);
160static DEFINE_SPINLOCK(offload_lock);
161struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
162struct list_head ptype_all __read_mostly; /* Taps */
163static struct list_head offload_base __read_mostly;
164
165static int netif_rx_internal(struct sk_buff *skb);
166static int call_netdevice_notifiers_info(unsigned long val,
167 struct netdev_notifier_info *info);
168static int call_netdevice_notifiers_extack(unsigned long val,
169 struct net_device *dev,
170 struct netlink_ext_ack *extack);
171static struct napi_struct *napi_by_id(unsigned int napi_id);
172
173/*
174 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
175 * semaphore.
176 *
177 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
178 *
179 * Writers must hold the rtnl semaphore while they loop through the
180 * dev_base_head list, and hold dev_base_lock for writing when they do the
181 * actual updates. This allows pure readers to access the list even
182 * while a writer is preparing to update it.
183 *
184 * To put it another way, dev_base_lock is held for writing only to
185 * protect against pure readers; the rtnl semaphore provides the
186 * protection against other writers.
187 *
188 * See, for example usages, register_netdevice() and
189 * unregister_netdevice(), which must be called with the rtnl
190 * semaphore held.
191 */
192DEFINE_RWLOCK(dev_base_lock);
193EXPORT_SYMBOL(dev_base_lock);
194
195static DEFINE_MUTEX(ifalias_mutex);
196
197/* protects napi_hash addition/deletion and napi_gen_id */
198static DEFINE_SPINLOCK(napi_hash_lock);
199
200static unsigned int napi_gen_id = NR_CPUS;
201static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
202
203static DECLARE_RWSEM(devnet_rename_sem);
204
205static inline void dev_base_seq_inc(struct net *net)
206{
207 while (++net->dev_base_seq == 0)
208 ;
209}
210
211static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
212{
213 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
214
215 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
216}
217
218static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
219{
220 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
221}
222
223static inline void rps_lock(struct softnet_data *sd)
224{
225#ifdef CONFIG_RPS
226 spin_lock(&sd->input_pkt_queue.lock);
227#endif
228}
229
230static inline void rps_unlock(struct softnet_data *sd)
231{
232#ifdef CONFIG_RPS
233 spin_unlock(&sd->input_pkt_queue.lock);
234#endif
235}
236
237static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
238 const char *name)
239{
240 struct netdev_name_node *name_node;
241
242 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
243 if (!name_node)
244 return NULL;
245 INIT_HLIST_NODE(&name_node->hlist);
246 name_node->dev = dev;
247 name_node->name = name;
248 return name_node;
249}
250
251static struct netdev_name_node *
252netdev_name_node_head_alloc(struct net_device *dev)
253{
254 struct netdev_name_node *name_node;
255
256 name_node = netdev_name_node_alloc(dev, dev->name);
257 if (!name_node)
258 return NULL;
259 INIT_LIST_HEAD(&name_node->list);
260 return name_node;
261}
262
263static void netdev_name_node_free(struct netdev_name_node *name_node)
264{
265 kfree(name_node);
266}
267
268static void netdev_name_node_add(struct net *net,
269 struct netdev_name_node *name_node)
270{
271 hlist_add_head_rcu(&name_node->hlist,
272 dev_name_hash(net, name_node->name));
273}
274
275static void netdev_name_node_del(struct netdev_name_node *name_node)
276{
277 hlist_del_rcu(&name_node->hlist);
278}
279
280static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
281 const char *name)
282{
283 struct hlist_head *head = dev_name_hash(net, name);
284 struct netdev_name_node *name_node;
285
286 hlist_for_each_entry(name_node, head, hlist)
287 if (!strcmp(name_node->name, name))
288 return name_node;
289 return NULL;
290}
291
292static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
293 const char *name)
294{
295 struct hlist_head *head = dev_name_hash(net, name);
296 struct netdev_name_node *name_node;
297
298 hlist_for_each_entry_rcu(name_node, head, hlist)
299 if (!strcmp(name_node->name, name))
300 return name_node;
301 return NULL;
302}
303
304int netdev_name_node_alt_create(struct net_device *dev, const char *name)
305{
306 struct netdev_name_node *name_node;
307 struct net *net = dev_net(dev);
308
309 name_node = netdev_name_node_lookup(net, name);
310 if (name_node)
311 return -EEXIST;
312 name_node = netdev_name_node_alloc(dev, name);
313 if (!name_node)
314 return -ENOMEM;
315 netdev_name_node_add(net, name_node);
316 /* The node that holds dev->name acts as a head of per-device list. */
317 list_add_tail(&name_node->list, &dev->name_node->list);
318
319 return 0;
320}
321EXPORT_SYMBOL(netdev_name_node_alt_create);
322
323static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
324{
325 list_del(&name_node->list);
326 netdev_name_node_del(name_node);
327 kfree(name_node->name);
328 netdev_name_node_free(name_node);
329}
330
331int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
332{
333 struct netdev_name_node *name_node;
334 struct net *net = dev_net(dev);
335
336 name_node = netdev_name_node_lookup(net, name);
337 if (!name_node)
338 return -ENOENT;
339 /* lookup might have found our primary name or a name belonging
340 * to another device.
341 */
342 if (name_node == dev->name_node || name_node->dev != dev)
343 return -EINVAL;
344
345 __netdev_name_node_alt_destroy(name_node);
346
347 return 0;
348}
349EXPORT_SYMBOL(netdev_name_node_alt_destroy);
350
351static void netdev_name_node_alt_flush(struct net_device *dev)
352{
353 struct netdev_name_node *name_node, *tmp;
354
355 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
356 __netdev_name_node_alt_destroy(name_node);
357}
358
359/* Device list insertion */
360static void list_netdevice(struct net_device *dev)
361{
362 struct net *net = dev_net(dev);
363
364 ASSERT_RTNL();
365
366 write_lock_bh(&dev_base_lock);
367 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
368 netdev_name_node_add(net, dev->name_node);
369 hlist_add_head_rcu(&dev->index_hlist,
370 dev_index_hash(net, dev->ifindex));
371 write_unlock_bh(&dev_base_lock);
372
373 dev_base_seq_inc(net);
374}
375
376/* Device list removal
377 * caller must respect a RCU grace period before freeing/reusing dev
378 */
379static void unlist_netdevice(struct net_device *dev)
380{
381 ASSERT_RTNL();
382
383 /* Unlink dev from the device chain */
384 write_lock_bh(&dev_base_lock);
385 list_del_rcu(&dev->dev_list);
386 netdev_name_node_del(dev->name_node);
387 hlist_del_rcu(&dev->index_hlist);
388 write_unlock_bh(&dev_base_lock);
389
390 dev_base_seq_inc(dev_net(dev));
391}
392
393/*
394 * Our notifier list
395 */
396
397static RAW_NOTIFIER_HEAD(netdev_chain);
398
399/*
400 * Device drivers call our routines to queue packets here. We empty the
401 * queue in the local softnet handler.
402 */
403
404DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
405EXPORT_PER_CPU_SYMBOL(softnet_data);
406
407#ifdef CONFIG_LOCKDEP
408/*
409 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
410 * according to dev->type
411 */
412static const unsigned short netdev_lock_type[] = {
413 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
414 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
415 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
416 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
417 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
418 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
419 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
420 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
421 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
422 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
423 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
424 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
425 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
426 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
427 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
428
429static const char *const netdev_lock_name[] = {
430 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
431 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
432 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
433 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
434 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
435 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
436 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
437 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
438 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
439 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
440 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
441 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
442 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
443 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
444 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
445
446static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
447static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
448
449static inline unsigned short netdev_lock_pos(unsigned short dev_type)
450{
451 int i;
452
453 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
454 if (netdev_lock_type[i] == dev_type)
455 return i;
456 /* the last key is used by default */
457 return ARRAY_SIZE(netdev_lock_type) - 1;
458}
459
460static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
461 unsigned short dev_type)
462{
463 int i;
464
465 i = netdev_lock_pos(dev_type);
466 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
467 netdev_lock_name[i]);
468}
469
470static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
471{
472 int i;
473
474 i = netdev_lock_pos(dev->type);
475 lockdep_set_class_and_name(&dev->addr_list_lock,
476 &netdev_addr_lock_key[i],
477 netdev_lock_name[i]);
478}
479#else
480static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
481 unsigned short dev_type)
482{
483}
484
485static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
486{
487}
488#endif
489
490/*******************************************************************************
491 *
492 * Protocol management and registration routines
493 *
494 *******************************************************************************/
495
496
497/*
498 * Add a protocol ID to the list. Now that the input handler is
499 * smarter we can dispense with all the messy stuff that used to be
500 * here.
501 *
502 * BEWARE!!! Protocol handlers, mangling input packets,
503 * MUST BE last in hash buckets and checking protocol handlers
504 * MUST start from promiscuous ptype_all chain in net_bh.
505 * It is true now, do not change it.
506 * Explanation follows: if protocol handler, mangling packet, will
507 * be the first on list, it is not able to sense, that packet
508 * is cloned and should be copied-on-write, so that it will
509 * change it and subsequent readers will get broken packet.
510 * --ANK (980803)
511 */
512
513static inline struct list_head *ptype_head(const struct packet_type *pt)
514{
515 if (pt->type == htons(ETH_P_ALL))
516 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
517 else
518 return pt->dev ? &pt->dev->ptype_specific :
519 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
520}
521
522/**
523 * dev_add_pack - add packet handler
524 * @pt: packet type declaration
525 *
526 * Add a protocol handler to the networking stack. The passed &packet_type
527 * is linked into kernel lists and may not be freed until it has been
528 * removed from the kernel lists.
529 *
530 * This call does not sleep therefore it can not
531 * guarantee all CPU's that are in middle of receiving packets
532 * will see the new packet type (until the next received packet).
533 */
534
535void dev_add_pack(struct packet_type *pt)
536{
537 struct list_head *head = ptype_head(pt);
538
539 spin_lock(&ptype_lock);
540 list_add_rcu(&pt->list, head);
541 spin_unlock(&ptype_lock);
542}
543EXPORT_SYMBOL(dev_add_pack);
544
545/**
546 * __dev_remove_pack - remove packet handler
547 * @pt: packet type declaration
548 *
549 * Remove a protocol handler that was previously added to the kernel
550 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
551 * from the kernel lists and can be freed or reused once this function
552 * returns.
553 *
554 * The packet type might still be in use by receivers
555 * and must not be freed until after all the CPU's have gone
556 * through a quiescent state.
557 */
558void __dev_remove_pack(struct packet_type *pt)
559{
560 struct list_head *head = ptype_head(pt);
561 struct packet_type *pt1;
562
563 spin_lock(&ptype_lock);
564
565 list_for_each_entry(pt1, head, list) {
566 if (pt == pt1) {
567 list_del_rcu(&pt->list);
568 goto out;
569 }
570 }
571
572 pr_warn("dev_remove_pack: %p not found\n", pt);
573out:
574 spin_unlock(&ptype_lock);
575}
576EXPORT_SYMBOL(__dev_remove_pack);
577
578/**
579 * dev_remove_pack - remove packet handler
580 * @pt: packet type declaration
581 *
582 * Remove a protocol handler that was previously added to the kernel
583 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
584 * from the kernel lists and can be freed or reused once this function
585 * returns.
586 *
587 * This call sleeps to guarantee that no CPU is looking at the packet
588 * type after return.
589 */
590void dev_remove_pack(struct packet_type *pt)
591{
592 __dev_remove_pack(pt);
593
594 synchronize_net();
595}
596EXPORT_SYMBOL(dev_remove_pack);
597
598
599/**
600 * dev_add_offload - register offload handlers
601 * @po: protocol offload declaration
602 *
603 * Add protocol offload handlers to the networking stack. The passed
604 * &proto_offload is linked into kernel lists and may not be freed until
605 * it has been removed from the kernel lists.
606 *
607 * This call does not sleep therefore it can not
608 * guarantee all CPU's that are in middle of receiving packets
609 * will see the new offload handlers (until the next received packet).
610 */
611void dev_add_offload(struct packet_offload *po)
612{
613 struct packet_offload *elem;
614
615 spin_lock(&offload_lock);
616 list_for_each_entry(elem, &offload_base, list) {
617 if (po->priority < elem->priority)
618 break;
619 }
620 list_add_rcu(&po->list, elem->list.prev);
621 spin_unlock(&offload_lock);
622}
623EXPORT_SYMBOL(dev_add_offload);
624
625/**
626 * __dev_remove_offload - remove offload handler
627 * @po: packet offload declaration
628 *
629 * Remove a protocol offload handler that was previously added to the
630 * kernel offload handlers by dev_add_offload(). The passed &offload_type
631 * is removed from the kernel lists and can be freed or reused once this
632 * function returns.
633 *
634 * The packet type might still be in use by receivers
635 * and must not be freed until after all the CPU's have gone
636 * through a quiescent state.
637 */
638static void __dev_remove_offload(struct packet_offload *po)
639{
640 struct list_head *head = &offload_base;
641 struct packet_offload *po1;
642
643 spin_lock(&offload_lock);
644
645 list_for_each_entry(po1, head, list) {
646 if (po == po1) {
647 list_del_rcu(&po->list);
648 goto out;
649 }
650 }
651
652 pr_warn("dev_remove_offload: %p not found\n", po);
653out:
654 spin_unlock(&offload_lock);
655}
656
657/**
658 * dev_remove_offload - remove packet offload handler
659 * @po: packet offload declaration
660 *
661 * Remove a packet offload handler that was previously added to the kernel
662 * offload handlers by dev_add_offload(). The passed &offload_type is
663 * removed from the kernel lists and can be freed or reused once this
664 * function returns.
665 *
666 * This call sleeps to guarantee that no CPU is looking at the packet
667 * type after return.
668 */
669void dev_remove_offload(struct packet_offload *po)
670{
671 __dev_remove_offload(po);
672
673 synchronize_net();
674}
675EXPORT_SYMBOL(dev_remove_offload);
676
677/******************************************************************************
678 *
679 * Device Boot-time Settings Routines
680 *
681 ******************************************************************************/
682
683/* Boot time configuration table */
684static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
685
686/**
687 * netdev_boot_setup_add - add new setup entry
688 * @name: name of the device
689 * @map: configured settings for the device
690 *
691 * Adds new setup entry to the dev_boot_setup list. The function
692 * returns 0 on error and 1 on success. This is a generic routine to
693 * all netdevices.
694 */
695static int netdev_boot_setup_add(char *name, struct ifmap *map)
696{
697 struct netdev_boot_setup *s;
698 int i;
699
700 s = dev_boot_setup;
701 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
702 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
703 memset(s[i].name, 0, sizeof(s[i].name));
704 strlcpy(s[i].name, name, IFNAMSIZ);
705 memcpy(&s[i].map, map, sizeof(s[i].map));
706 break;
707 }
708 }
709
710 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
711}
712
713/**
714 * netdev_boot_setup_check - check boot time settings
715 * @dev: the netdevice
716 *
717 * Check boot time settings for the device.
718 * The found settings are set for the device to be used
719 * later in the device probing.
720 * Returns 0 if no settings found, 1 if they are.
721 */
722int netdev_boot_setup_check(struct net_device *dev)
723{
724 struct netdev_boot_setup *s = dev_boot_setup;
725 int i;
726
727 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
728 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
729 !strcmp(dev->name, s[i].name)) {
730 dev->irq = s[i].map.irq;
731 dev->base_addr = s[i].map.base_addr;
732 dev->mem_start = s[i].map.mem_start;
733 dev->mem_end = s[i].map.mem_end;
734 return 1;
735 }
736 }
737 return 0;
738}
739EXPORT_SYMBOL(netdev_boot_setup_check);
740
741
742/**
743 * netdev_boot_base - get address from boot time settings
744 * @prefix: prefix for network device
745 * @unit: id for network device
746 *
747 * Check boot time settings for the base address of device.
748 * The found settings are set for the device to be used
749 * later in the device probing.
750 * Returns 0 if no settings found.
751 */
752unsigned long netdev_boot_base(const char *prefix, int unit)
753{
754 const struct netdev_boot_setup *s = dev_boot_setup;
755 char name[IFNAMSIZ];
756 int i;
757
758 sprintf(name, "%s%d", prefix, unit);
759
760 /*
761 * If device already registered then return base of 1
762 * to indicate not to probe for this interface
763 */
764 if (__dev_get_by_name(&init_net, name))
765 return 1;
766
767 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
768 if (!strcmp(name, s[i].name))
769 return s[i].map.base_addr;
770 return 0;
771}
772
773/*
774 * Saves at boot time configured settings for any netdevice.
775 */
776int __init netdev_boot_setup(char *str)
777{
778 int ints[5];
779 struct ifmap map;
780
781 str = get_options(str, ARRAY_SIZE(ints), ints);
782 if (!str || !*str)
783 return 0;
784
785 /* Save settings */
786 memset(&map, 0, sizeof(map));
787 if (ints[0] > 0)
788 map.irq = ints[1];
789 if (ints[0] > 1)
790 map.base_addr = ints[2];
791 if (ints[0] > 2)
792 map.mem_start = ints[3];
793 if (ints[0] > 3)
794 map.mem_end = ints[4];
795
796 /* Add new entry to the list */
797 return netdev_boot_setup_add(str, &map);
798}
799
800__setup("netdev=", netdev_boot_setup);
801
802/*******************************************************************************
803 *
804 * Device Interface Subroutines
805 *
806 *******************************************************************************/
807
808/**
809 * dev_get_iflink - get 'iflink' value of a interface
810 * @dev: targeted interface
811 *
812 * Indicates the ifindex the interface is linked to.
813 * Physical interfaces have the same 'ifindex' and 'iflink' values.
814 */
815
816int dev_get_iflink(const struct net_device *dev)
817{
818 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
819 return dev->netdev_ops->ndo_get_iflink(dev);
820
821 return dev->ifindex;
822}
823EXPORT_SYMBOL(dev_get_iflink);
824
825/**
826 * dev_fill_metadata_dst - Retrieve tunnel egress information.
827 * @dev: targeted interface
828 * @skb: The packet.
829 *
830 * For better visibility of tunnel traffic OVS needs to retrieve
831 * egress tunnel information for a packet. Following API allows
832 * user to get this info.
833 */
834int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
835{
836 struct ip_tunnel_info *info;
837
838 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
839 return -EINVAL;
840
841 info = skb_tunnel_info_unclone(skb);
842 if (!info)
843 return -ENOMEM;
844 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
845 return -EINVAL;
846
847 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
848}
849EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
850
851/**
852 * __dev_get_by_name - find a device by its name
853 * @net: the applicable net namespace
854 * @name: name to find
855 *
856 * Find an interface by name. Must be called under RTNL semaphore
857 * or @dev_base_lock. If the name is found a pointer to the device
858 * is returned. If the name is not found then %NULL is returned. The
859 * reference counters are not incremented so the caller must be
860 * careful with locks.
861 */
862
863struct net_device *__dev_get_by_name(struct net *net, const char *name)
864{
865 struct netdev_name_node *node_name;
866
867 node_name = netdev_name_node_lookup(net, name);
868 return node_name ? node_name->dev : NULL;
869}
870EXPORT_SYMBOL(__dev_get_by_name);
871
872/**
873 * dev_get_by_name_rcu - find a device by its name
874 * @net: the applicable net namespace
875 * @name: name to find
876 *
877 * Find an interface by name.
878 * If the name is found a pointer to the device is returned.
879 * If the name is not found then %NULL is returned.
880 * The reference counters are not incremented so the caller must be
881 * careful with locks. The caller must hold RCU lock.
882 */
883
884struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
885{
886 struct netdev_name_node *node_name;
887
888 node_name = netdev_name_node_lookup_rcu(net, name);
889 return node_name ? node_name->dev : NULL;
890}
891EXPORT_SYMBOL(dev_get_by_name_rcu);
892
893/**
894 * dev_get_by_name - find a device by its name
895 * @net: the applicable net namespace
896 * @name: name to find
897 *
898 * Find an interface by name. This can be called from any
899 * context and does its own locking. The returned handle has
900 * the usage count incremented and the caller must use dev_put() to
901 * release it when it is no longer needed. %NULL is returned if no
902 * matching device is found.
903 */
904
905struct net_device *dev_get_by_name(struct net *net, const char *name)
906{
907 struct net_device *dev;
908
909 rcu_read_lock();
910 dev = dev_get_by_name_rcu(net, name);
911 if (dev)
912 dev_hold(dev);
913 rcu_read_unlock();
914 return dev;
915}
916EXPORT_SYMBOL(dev_get_by_name);
917
918/**
919 * __dev_get_by_index - find a device by its ifindex
920 * @net: the applicable net namespace
921 * @ifindex: index of device
922 *
923 * Search for an interface by index. Returns %NULL if the device
924 * is not found or a pointer to the device. The device has not
925 * had its reference counter increased so the caller must be careful
926 * about locking. The caller must hold either the RTNL semaphore
927 * or @dev_base_lock.
928 */
929
930struct net_device *__dev_get_by_index(struct net *net, int ifindex)
931{
932 struct net_device *dev;
933 struct hlist_head *head = dev_index_hash(net, ifindex);
934
935 hlist_for_each_entry(dev, head, index_hlist)
936 if (dev->ifindex == ifindex)
937 return dev;
938
939 return NULL;
940}
941EXPORT_SYMBOL(__dev_get_by_index);
942
943/**
944 * dev_get_by_index_rcu - find a device by its ifindex
945 * @net: the applicable net namespace
946 * @ifindex: index of device
947 *
948 * Search for an interface by index. Returns %NULL if the device
949 * is not found or a pointer to the device. The device has not
950 * had its reference counter increased so the caller must be careful
951 * about locking. The caller must hold RCU lock.
952 */
953
954struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
955{
956 struct net_device *dev;
957 struct hlist_head *head = dev_index_hash(net, ifindex);
958
959 hlist_for_each_entry_rcu(dev, head, index_hlist)
960 if (dev->ifindex == ifindex)
961 return dev;
962
963 return NULL;
964}
965EXPORT_SYMBOL(dev_get_by_index_rcu);
966
967
968/**
969 * dev_get_by_index - find a device by its ifindex
970 * @net: the applicable net namespace
971 * @ifindex: index of device
972 *
973 * Search for an interface by index. Returns NULL if the device
974 * is not found or a pointer to the device. The device returned has
975 * had a reference added and the pointer is safe until the user calls
976 * dev_put to indicate they have finished with it.
977 */
978
979struct net_device *dev_get_by_index(struct net *net, int ifindex)
980{
981 struct net_device *dev;
982
983 rcu_read_lock();
984 dev = dev_get_by_index_rcu(net, ifindex);
985 if (dev)
986 dev_hold(dev);
987 rcu_read_unlock();
988 return dev;
989}
990EXPORT_SYMBOL(dev_get_by_index);
991
992/**
993 * dev_get_by_napi_id - find a device by napi_id
994 * @napi_id: ID of the NAPI struct
995 *
996 * Search for an interface by NAPI ID. Returns %NULL if the device
997 * is not found or a pointer to the device. The device has not had
998 * its reference counter increased so the caller must be careful
999 * about locking. The caller must hold RCU lock.
1000 */
1001
1002struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1003{
1004 struct napi_struct *napi;
1005
1006 WARN_ON_ONCE(!rcu_read_lock_held());
1007
1008 if (napi_id < MIN_NAPI_ID)
1009 return NULL;
1010
1011 napi = napi_by_id(napi_id);
1012
1013 return napi ? napi->dev : NULL;
1014}
1015EXPORT_SYMBOL(dev_get_by_napi_id);
1016
1017/**
1018 * netdev_get_name - get a netdevice name, knowing its ifindex.
1019 * @net: network namespace
1020 * @name: a pointer to the buffer where the name will be stored.
1021 * @ifindex: the ifindex of the interface to get the name from.
1022 */
1023int netdev_get_name(struct net *net, char *name, int ifindex)
1024{
1025 struct net_device *dev;
1026 int ret;
1027
1028 down_read(&devnet_rename_sem);
1029 rcu_read_lock();
1030
1031 dev = dev_get_by_index_rcu(net, ifindex);
1032 if (!dev) {
1033 ret = -ENODEV;
1034 goto out;
1035 }
1036
1037 strcpy(name, dev->name);
1038
1039 ret = 0;
1040out:
1041 rcu_read_unlock();
1042 up_read(&devnet_rename_sem);
1043 return ret;
1044}
1045
1046/**
1047 * dev_getbyhwaddr_rcu - find a device by its hardware address
1048 * @net: the applicable net namespace
1049 * @type: media type of device
1050 * @ha: hardware address
1051 *
1052 * Search for an interface by MAC address. Returns NULL if the device
1053 * is not found or a pointer to the device.
1054 * The caller must hold RCU or RTNL.
1055 * The returned device has not had its ref count increased
1056 * and the caller must therefore be careful about locking
1057 *
1058 */
1059
1060struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1061 const char *ha)
1062{
1063 struct net_device *dev;
1064
1065 for_each_netdev_rcu(net, dev)
1066 if (dev->type == type &&
1067 !memcmp(dev->dev_addr, ha, dev->addr_len))
1068 return dev;
1069
1070 return NULL;
1071}
1072EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1073
1074struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1075{
1076 struct net_device *dev, *ret = NULL;
1077
1078 rcu_read_lock();
1079 for_each_netdev_rcu(net, dev)
1080 if (dev->type == type) {
1081 dev_hold(dev);
1082 ret = dev;
1083 break;
1084 }
1085 rcu_read_unlock();
1086 return ret;
1087}
1088EXPORT_SYMBOL(dev_getfirstbyhwtype);
1089
1090/**
1091 * __dev_get_by_flags - find any device with given flags
1092 * @net: the applicable net namespace
1093 * @if_flags: IFF_* values
1094 * @mask: bitmask of bits in if_flags to check
1095 *
1096 * Search for any interface with the given flags. Returns NULL if a device
1097 * is not found or a pointer to the device. Must be called inside
1098 * rtnl_lock(), and result refcount is unchanged.
1099 */
1100
1101struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1102 unsigned short mask)
1103{
1104 struct net_device *dev, *ret;
1105
1106 ASSERT_RTNL();
1107
1108 ret = NULL;
1109 for_each_netdev(net, dev) {
1110 if (((dev->flags ^ if_flags) & mask) == 0) {
1111 ret = dev;
1112 break;
1113 }
1114 }
1115 return ret;
1116}
1117EXPORT_SYMBOL(__dev_get_by_flags);
1118
1119/**
1120 * dev_valid_name - check if name is okay for network device
1121 * @name: name string
1122 *
1123 * Network device names need to be valid file names to
1124 * allow sysfs to work. We also disallow any kind of
1125 * whitespace.
1126 */
1127bool dev_valid_name(const char *name)
1128{
1129 if (*name == '\0')
1130 return false;
1131 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1132 return false;
1133 if (!strcmp(name, ".") || !strcmp(name, ".."))
1134 return false;
1135
1136 while (*name) {
1137 if (*name == '/' || *name == ':' || isspace(*name))
1138 return false;
1139 name++;
1140 }
1141 return true;
1142}
1143EXPORT_SYMBOL(dev_valid_name);
1144
1145/**
1146 * __dev_alloc_name - allocate a name for a device
1147 * @net: network namespace to allocate the device name in
1148 * @name: name format string
1149 * @buf: scratch buffer and result name string
1150 *
1151 * Passed a format string - eg "lt%d" it will try and find a suitable
1152 * id. It scans list of devices to build up a free map, then chooses
1153 * the first empty slot. The caller must hold the dev_base or rtnl lock
1154 * while allocating the name and adding the device in order to avoid
1155 * duplicates.
1156 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1157 * Returns the number of the unit assigned or a negative errno code.
1158 */
1159
1160static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1161{
1162 int i = 0;
1163 const char *p;
1164 const int max_netdevices = 8*PAGE_SIZE;
1165 unsigned long *inuse;
1166 struct net_device *d;
1167
1168 if (!dev_valid_name(name))
1169 return -EINVAL;
1170
1171 p = strchr(name, '%');
1172 if (p) {
1173 /*
1174 * Verify the string as this thing may have come from
1175 * the user. There must be either one "%d" and no other "%"
1176 * characters.
1177 */
1178 if (p[1] != 'd' || strchr(p + 2, '%'))
1179 return -EINVAL;
1180
1181 /* Use one page as a bit array of possible slots */
1182 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1183 if (!inuse)
1184 return -ENOMEM;
1185
1186 for_each_netdev(net, d) {
1187 if (!sscanf(d->name, name, &i))
1188 continue;
1189 if (i < 0 || i >= max_netdevices)
1190 continue;
1191
1192 /* avoid cases where sscanf is not exact inverse of printf */
1193 snprintf(buf, IFNAMSIZ, name, i);
1194 if (!strncmp(buf, d->name, IFNAMSIZ))
1195 set_bit(i, inuse);
1196 }
1197
1198 i = find_first_zero_bit(inuse, max_netdevices);
1199 free_page((unsigned long) inuse);
1200 }
1201
1202 snprintf(buf, IFNAMSIZ, name, i);
1203 if (!__dev_get_by_name(net, buf))
1204 return i;
1205
1206 /* It is possible to run out of possible slots
1207 * when the name is long and there isn't enough space left
1208 * for the digits, or if all bits are used.
1209 */
1210 return -ENFILE;
1211}
1212
1213static int dev_alloc_name_ns(struct net *net,
1214 struct net_device *dev,
1215 const char *name)
1216{
1217 char buf[IFNAMSIZ];
1218 int ret;
1219
1220 BUG_ON(!net);
1221 ret = __dev_alloc_name(net, name, buf);
1222 if (ret >= 0)
1223 strlcpy(dev->name, buf, IFNAMSIZ);
1224 return ret;
1225}
1226
1227/**
1228 * dev_alloc_name - allocate a name for a device
1229 * @dev: device
1230 * @name: name format string
1231 *
1232 * Passed a format string - eg "lt%d" it will try and find a suitable
1233 * id. It scans list of devices to build up a free map, then chooses
1234 * the first empty slot. The caller must hold the dev_base or rtnl lock
1235 * while allocating the name and adding the device in order to avoid
1236 * duplicates.
1237 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1238 * Returns the number of the unit assigned or a negative errno code.
1239 */
1240
1241int dev_alloc_name(struct net_device *dev, const char *name)
1242{
1243 return dev_alloc_name_ns(dev_net(dev), dev, name);
1244}
1245EXPORT_SYMBOL(dev_alloc_name);
1246
1247static int dev_get_valid_name(struct net *net, struct net_device *dev,
1248 const char *name)
1249{
1250 BUG_ON(!net);
1251
1252 if (!dev_valid_name(name))
1253 return -EINVAL;
1254
1255 if (strchr(name, '%'))
1256 return dev_alloc_name_ns(net, dev, name);
1257 else if (__dev_get_by_name(net, name))
1258 return -EEXIST;
1259 else if (dev->name != name)
1260 strlcpy(dev->name, name, IFNAMSIZ);
1261
1262 return 0;
1263}
1264
1265/**
1266 * dev_change_name - change name of a device
1267 * @dev: device
1268 * @newname: name (or format string) must be at least IFNAMSIZ
1269 *
1270 * Change name of a device, can pass format strings "eth%d".
1271 * for wildcarding.
1272 */
1273int dev_change_name(struct net_device *dev, const char *newname)
1274{
1275 unsigned char old_assign_type;
1276 char oldname[IFNAMSIZ];
1277 int err = 0;
1278 int ret;
1279 struct net *net;
1280
1281 ASSERT_RTNL();
1282 BUG_ON(!dev_net(dev));
1283
1284 net = dev_net(dev);
1285
1286 /* Some auto-enslaved devices e.g. failover slaves are
1287 * special, as userspace might rename the device after
1288 * the interface had been brought up and running since
1289 * the point kernel initiated auto-enslavement. Allow
1290 * live name change even when these slave devices are
1291 * up and running.
1292 *
1293 * Typically, users of these auto-enslaving devices
1294 * don't actually care about slave name change, as
1295 * they are supposed to operate on master interface
1296 * directly.
1297 */
1298 if (dev->flags & IFF_UP &&
1299 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1300 return -EBUSY;
1301
1302 down_write(&devnet_rename_sem);
1303
1304 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1305 up_write(&devnet_rename_sem);
1306 return 0;
1307 }
1308
1309 memcpy(oldname, dev->name, IFNAMSIZ);
1310
1311 err = dev_get_valid_name(net, dev, newname);
1312 if (err < 0) {
1313 up_write(&devnet_rename_sem);
1314 return err;
1315 }
1316
1317 if (oldname[0] && !strchr(oldname, '%'))
1318 netdev_info(dev, "renamed from %s\n", oldname);
1319
1320 old_assign_type = dev->name_assign_type;
1321 dev->name_assign_type = NET_NAME_RENAMED;
1322
1323rollback:
1324 ret = device_rename(&dev->dev, dev->name);
1325 if (ret) {
1326 memcpy(dev->name, oldname, IFNAMSIZ);
1327 dev->name_assign_type = old_assign_type;
1328 up_write(&devnet_rename_sem);
1329 return ret;
1330 }
1331
1332 up_write(&devnet_rename_sem);
1333
1334 netdev_adjacent_rename_links(dev, oldname);
1335
1336 write_lock_bh(&dev_base_lock);
1337 netdev_name_node_del(dev->name_node);
1338 write_unlock_bh(&dev_base_lock);
1339
1340 synchronize_rcu();
1341
1342 write_lock_bh(&dev_base_lock);
1343 netdev_name_node_add(net, dev->name_node);
1344 write_unlock_bh(&dev_base_lock);
1345
1346 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1347 ret = notifier_to_errno(ret);
1348
1349 if (ret) {
1350 /* err >= 0 after dev_alloc_name() or stores the first errno */
1351 if (err >= 0) {
1352 err = ret;
1353 down_write(&devnet_rename_sem);
1354 memcpy(dev->name, oldname, IFNAMSIZ);
1355 memcpy(oldname, newname, IFNAMSIZ);
1356 dev->name_assign_type = old_assign_type;
1357 old_assign_type = NET_NAME_RENAMED;
1358 goto rollback;
1359 } else {
1360 pr_err("%s: name change rollback failed: %d\n",
1361 dev->name, ret);
1362 }
1363 }
1364
1365 return err;
1366}
1367
1368/**
1369 * dev_set_alias - change ifalias of a device
1370 * @dev: device
1371 * @alias: name up to IFALIASZ
1372 * @len: limit of bytes to copy from info
1373 *
1374 * Set ifalias for a device,
1375 */
1376int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1377{
1378 struct dev_ifalias *new_alias = NULL;
1379
1380 if (len >= IFALIASZ)
1381 return -EINVAL;
1382
1383 if (len) {
1384 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1385 if (!new_alias)
1386 return -ENOMEM;
1387
1388 memcpy(new_alias->ifalias, alias, len);
1389 new_alias->ifalias[len] = 0;
1390 }
1391
1392 mutex_lock(&ifalias_mutex);
1393 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1394 mutex_is_locked(&ifalias_mutex));
1395 mutex_unlock(&ifalias_mutex);
1396
1397 if (new_alias)
1398 kfree_rcu(new_alias, rcuhead);
1399
1400 return len;
1401}
1402EXPORT_SYMBOL(dev_set_alias);
1403
1404/**
1405 * dev_get_alias - get ifalias of a device
1406 * @dev: device
1407 * @name: buffer to store name of ifalias
1408 * @len: size of buffer
1409 *
1410 * get ifalias for a device. Caller must make sure dev cannot go
1411 * away, e.g. rcu read lock or own a reference count to device.
1412 */
1413int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1414{
1415 const struct dev_ifalias *alias;
1416 int ret = 0;
1417
1418 rcu_read_lock();
1419 alias = rcu_dereference(dev->ifalias);
1420 if (alias)
1421 ret = snprintf(name, len, "%s", alias->ifalias);
1422 rcu_read_unlock();
1423
1424 return ret;
1425}
1426
1427/**
1428 * netdev_features_change - device changes features
1429 * @dev: device to cause notification
1430 *
1431 * Called to indicate a device has changed features.
1432 */
1433void netdev_features_change(struct net_device *dev)
1434{
1435 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1436}
1437EXPORT_SYMBOL(netdev_features_change);
1438
1439/**
1440 * netdev_state_change - device changes state
1441 * @dev: device to cause notification
1442 *
1443 * Called to indicate a device has changed state. This function calls
1444 * the notifier chains for netdev_chain and sends a NEWLINK message
1445 * to the routing socket.
1446 */
1447void netdev_state_change(struct net_device *dev)
1448{
1449 if (dev->flags & IFF_UP) {
1450 struct netdev_notifier_change_info change_info = {
1451 .info.dev = dev,
1452 };
1453
1454 call_netdevice_notifiers_info(NETDEV_CHANGE,
1455 &change_info.info);
1456 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1457 }
1458}
1459EXPORT_SYMBOL(netdev_state_change);
1460
1461/**
1462 * __netdev_notify_peers - notify network peers about existence of @dev,
1463 * to be called when rtnl lock is already held.
1464 * @dev: network device
1465 *
1466 * Generate traffic such that interested network peers are aware of
1467 * @dev, such as by generating a gratuitous ARP. This may be used when
1468 * a device wants to inform the rest of the network about some sort of
1469 * reconfiguration such as a failover event or virtual machine
1470 * migration.
1471 */
1472void __netdev_notify_peers(struct net_device *dev)
1473{
1474 ASSERT_RTNL();
1475 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1476 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1477}
1478EXPORT_SYMBOL(__netdev_notify_peers);
1479
1480/**
1481 * netdev_notify_peers - notify network peers about existence of @dev
1482 * @dev: network device
1483 *
1484 * Generate traffic such that interested network peers are aware of
1485 * @dev, such as by generating a gratuitous ARP. This may be used when
1486 * a device wants to inform the rest of the network about some sort of
1487 * reconfiguration such as a failover event or virtual machine
1488 * migration.
1489 */
1490void netdev_notify_peers(struct net_device *dev)
1491{
1492 rtnl_lock();
1493 __netdev_notify_peers(dev);
1494 rtnl_unlock();
1495}
1496EXPORT_SYMBOL(netdev_notify_peers);
1497
1498static int napi_threaded_poll(void *data);
1499
1500static int napi_kthread_create(struct napi_struct *n)
1501{
1502 int err = 0;
1503
1504 /* Create and wake up the kthread once to put it in
1505 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1506 * warning and work with loadavg.
1507 */
1508 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1509 n->dev->name, n->napi_id);
1510 if (IS_ERR(n->thread)) {
1511 err = PTR_ERR(n->thread);
1512 pr_err("kthread_run failed with err %d\n", err);
1513 n->thread = NULL;
1514 }
1515
1516 return err;
1517}
1518
1519static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1520{
1521 const struct net_device_ops *ops = dev->netdev_ops;
1522 int ret;
1523
1524 ASSERT_RTNL();
1525
1526 if (!netif_device_present(dev)) {
1527 /* may be detached because parent is runtime-suspended */
1528 if (dev->dev.parent)
1529 pm_runtime_resume(dev->dev.parent);
1530 if (!netif_device_present(dev))
1531 return -ENODEV;
1532 }
1533
1534 /* Block netpoll from trying to do any rx path servicing.
1535 * If we don't do this there is a chance ndo_poll_controller
1536 * or ndo_poll may be running while we open the device
1537 */
1538 netpoll_poll_disable(dev);
1539
1540 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1541 ret = notifier_to_errno(ret);
1542 if (ret)
1543 return ret;
1544
1545 set_bit(__LINK_STATE_START, &dev->state);
1546
1547 if (ops->ndo_validate_addr)
1548 ret = ops->ndo_validate_addr(dev);
1549
1550 if (!ret && ops->ndo_open)
1551 ret = ops->ndo_open(dev);
1552
1553 netpoll_poll_enable(dev);
1554
1555 if (ret)
1556 clear_bit(__LINK_STATE_START, &dev->state);
1557 else {
1558 dev->flags |= IFF_UP;
1559 dev_set_rx_mode(dev);
1560 dev_activate(dev);
1561 add_device_randomness(dev->dev_addr, dev->addr_len);
1562 }
1563
1564 return ret;
1565}
1566
1567/**
1568 * dev_open - prepare an interface for use.
1569 * @dev: device to open
1570 * @extack: netlink extended ack
1571 *
1572 * Takes a device from down to up state. The device's private open
1573 * function is invoked and then the multicast lists are loaded. Finally
1574 * the device is moved into the up state and a %NETDEV_UP message is
1575 * sent to the netdev notifier chain.
1576 *
1577 * Calling this function on an active interface is a nop. On a failure
1578 * a negative errno code is returned.
1579 */
1580int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1581{
1582 int ret;
1583
1584 if (dev->flags & IFF_UP)
1585 return 0;
1586
1587 ret = __dev_open(dev, extack);
1588 if (ret < 0)
1589 return ret;
1590
1591 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1592 call_netdevice_notifiers(NETDEV_UP, dev);
1593
1594 return ret;
1595}
1596EXPORT_SYMBOL(dev_open);
1597
1598static void __dev_close_many(struct list_head *head)
1599{
1600 struct net_device *dev;
1601
1602 ASSERT_RTNL();
1603 might_sleep();
1604
1605 list_for_each_entry(dev, head, close_list) {
1606 /* Temporarily disable netpoll until the interface is down */
1607 netpoll_poll_disable(dev);
1608
1609 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1610
1611 clear_bit(__LINK_STATE_START, &dev->state);
1612
1613 /* Synchronize to scheduled poll. We cannot touch poll list, it
1614 * can be even on different cpu. So just clear netif_running().
1615 *
1616 * dev->stop() will invoke napi_disable() on all of it's
1617 * napi_struct instances on this device.
1618 */
1619 smp_mb__after_atomic(); /* Commit netif_running(). */
1620 }
1621
1622 dev_deactivate_many(head);
1623
1624 list_for_each_entry(dev, head, close_list) {
1625 const struct net_device_ops *ops = dev->netdev_ops;
1626
1627 /*
1628 * Call the device specific close. This cannot fail.
1629 * Only if device is UP
1630 *
1631 * We allow it to be called even after a DETACH hot-plug
1632 * event.
1633 */
1634 if (ops->ndo_stop)
1635 ops->ndo_stop(dev);
1636
1637 dev->flags &= ~IFF_UP;
1638 netpoll_poll_enable(dev);
1639 }
1640}
1641
1642static void __dev_close(struct net_device *dev)
1643{
1644 LIST_HEAD(single);
1645
1646 list_add(&dev->close_list, &single);
1647 __dev_close_many(&single);
1648 list_del(&single);
1649}
1650
1651void dev_close_many(struct list_head *head, bool unlink)
1652{
1653 struct net_device *dev, *tmp;
1654
1655 /* Remove the devices that don't need to be closed */
1656 list_for_each_entry_safe(dev, tmp, head, close_list)
1657 if (!(dev->flags & IFF_UP))
1658 list_del_init(&dev->close_list);
1659
1660 __dev_close_many(head);
1661
1662 list_for_each_entry_safe(dev, tmp, head, close_list) {
1663 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1664 call_netdevice_notifiers(NETDEV_DOWN, dev);
1665 if (unlink)
1666 list_del_init(&dev->close_list);
1667 }
1668}
1669EXPORT_SYMBOL(dev_close_many);
1670
1671/**
1672 * dev_close - shutdown an interface.
1673 * @dev: device to shutdown
1674 *
1675 * This function moves an active device into down state. A
1676 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1677 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1678 * chain.
1679 */
1680void dev_close(struct net_device *dev)
1681{
1682 if (dev->flags & IFF_UP) {
1683 LIST_HEAD(single);
1684
1685 list_add(&dev->close_list, &single);
1686 dev_close_many(&single, true);
1687 list_del(&single);
1688 }
1689}
1690EXPORT_SYMBOL(dev_close);
1691
1692
1693/**
1694 * dev_disable_lro - disable Large Receive Offload on a device
1695 * @dev: device
1696 *
1697 * Disable Large Receive Offload (LRO) on a net device. Must be
1698 * called under RTNL. This is needed if received packets may be
1699 * forwarded to another interface.
1700 */
1701void dev_disable_lro(struct net_device *dev)
1702{
1703 struct net_device *lower_dev;
1704 struct list_head *iter;
1705
1706 dev->wanted_features &= ~NETIF_F_LRO;
1707 netdev_update_features(dev);
1708
1709 if (unlikely(dev->features & NETIF_F_LRO))
1710 netdev_WARN(dev, "failed to disable LRO!\n");
1711
1712 netdev_for_each_lower_dev(dev, lower_dev, iter)
1713 dev_disable_lro(lower_dev);
1714}
1715EXPORT_SYMBOL(dev_disable_lro);
1716
1717/**
1718 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1719 * @dev: device
1720 *
1721 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1722 * called under RTNL. This is needed if Generic XDP is installed on
1723 * the device.
1724 */
1725static void dev_disable_gro_hw(struct net_device *dev)
1726{
1727 dev->wanted_features &= ~NETIF_F_GRO_HW;
1728 netdev_update_features(dev);
1729
1730 if (unlikely(dev->features & NETIF_F_GRO_HW))
1731 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1732}
1733
1734const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1735{
1736#define N(val) \
1737 case NETDEV_##val: \
1738 return "NETDEV_" __stringify(val);
1739 switch (cmd) {
1740 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1741 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1742 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1743 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1744 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1745 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1746 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1747 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1748 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1749 N(PRE_CHANGEADDR)
1750 }
1751#undef N
1752 return "UNKNOWN_NETDEV_EVENT";
1753}
1754EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1755
1756static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1757 struct net_device *dev)
1758{
1759 struct netdev_notifier_info info = {
1760 .dev = dev,
1761 };
1762
1763 return nb->notifier_call(nb, val, &info);
1764}
1765
1766static int call_netdevice_register_notifiers(struct notifier_block *nb,
1767 struct net_device *dev)
1768{
1769 int err;
1770
1771 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1772 err = notifier_to_errno(err);
1773 if (err)
1774 return err;
1775
1776 if (!(dev->flags & IFF_UP))
1777 return 0;
1778
1779 call_netdevice_notifier(nb, NETDEV_UP, dev);
1780 return 0;
1781}
1782
1783static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1784 struct net_device *dev)
1785{
1786 if (dev->flags & IFF_UP) {
1787 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1788 dev);
1789 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1790 }
1791 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1792}
1793
1794static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1795 struct net *net)
1796{
1797 struct net_device *dev;
1798 int err;
1799
1800 for_each_netdev(net, dev) {
1801 err = call_netdevice_register_notifiers(nb, dev);
1802 if (err)
1803 goto rollback;
1804 }
1805 return 0;
1806
1807rollback:
1808 for_each_netdev_continue_reverse(net, dev)
1809 call_netdevice_unregister_notifiers(nb, dev);
1810 return err;
1811}
1812
1813static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1814 struct net *net)
1815{
1816 struct net_device *dev;
1817
1818 for_each_netdev(net, dev)
1819 call_netdevice_unregister_notifiers(nb, dev);
1820}
1821
1822static int dev_boot_phase = 1;
1823
1824/**
1825 * register_netdevice_notifier - register a network notifier block
1826 * @nb: notifier
1827 *
1828 * Register a notifier to be called when network device events occur.
1829 * The notifier passed is linked into the kernel structures and must
1830 * not be reused until it has been unregistered. A negative errno code
1831 * is returned on a failure.
1832 *
1833 * When registered all registration and up events are replayed
1834 * to the new notifier to allow device to have a race free
1835 * view of the network device list.
1836 */
1837
1838int register_netdevice_notifier(struct notifier_block *nb)
1839{
1840 struct net *net;
1841 int err;
1842
1843 /* Close race with setup_net() and cleanup_net() */
1844 down_write(&pernet_ops_rwsem);
1845 rtnl_lock();
1846 err = raw_notifier_chain_register(&netdev_chain, nb);
1847 if (err)
1848 goto unlock;
1849 if (dev_boot_phase)
1850 goto unlock;
1851 for_each_net(net) {
1852 err = call_netdevice_register_net_notifiers(nb, net);
1853 if (err)
1854 goto rollback;
1855 }
1856
1857unlock:
1858 rtnl_unlock();
1859 up_write(&pernet_ops_rwsem);
1860 return err;
1861
1862rollback:
1863 for_each_net_continue_reverse(net)
1864 call_netdevice_unregister_net_notifiers(nb, net);
1865
1866 raw_notifier_chain_unregister(&netdev_chain, nb);
1867 goto unlock;
1868}
1869EXPORT_SYMBOL(register_netdevice_notifier);
1870
1871/**
1872 * unregister_netdevice_notifier - unregister a network notifier block
1873 * @nb: notifier
1874 *
1875 * Unregister a notifier previously registered by
1876 * register_netdevice_notifier(). The notifier is unlinked into the
1877 * kernel structures and may then be reused. A negative errno code
1878 * is returned on a failure.
1879 *
1880 * After unregistering unregister and down device events are synthesized
1881 * for all devices on the device list to the removed notifier to remove
1882 * the need for special case cleanup code.
1883 */
1884
1885int unregister_netdevice_notifier(struct notifier_block *nb)
1886{
1887 struct net *net;
1888 int err;
1889
1890 /* Close race with setup_net() and cleanup_net() */
1891 down_write(&pernet_ops_rwsem);
1892 rtnl_lock();
1893 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1894 if (err)
1895 goto unlock;
1896
1897 for_each_net(net)
1898 call_netdevice_unregister_net_notifiers(nb, net);
1899
1900unlock:
1901 rtnl_unlock();
1902 up_write(&pernet_ops_rwsem);
1903 return err;
1904}
1905EXPORT_SYMBOL(unregister_netdevice_notifier);
1906
1907static int __register_netdevice_notifier_net(struct net *net,
1908 struct notifier_block *nb,
1909 bool ignore_call_fail)
1910{
1911 int err;
1912
1913 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1914 if (err)
1915 return err;
1916 if (dev_boot_phase)
1917 return 0;
1918
1919 err = call_netdevice_register_net_notifiers(nb, net);
1920 if (err && !ignore_call_fail)
1921 goto chain_unregister;
1922
1923 return 0;
1924
1925chain_unregister:
1926 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1927 return err;
1928}
1929
1930static int __unregister_netdevice_notifier_net(struct net *net,
1931 struct notifier_block *nb)
1932{
1933 int err;
1934
1935 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1936 if (err)
1937 return err;
1938
1939 call_netdevice_unregister_net_notifiers(nb, net);
1940 return 0;
1941}
1942
1943/**
1944 * register_netdevice_notifier_net - register a per-netns network notifier block
1945 * @net: network namespace
1946 * @nb: notifier
1947 *
1948 * Register a notifier to be called when network device events occur.
1949 * The notifier passed is linked into the kernel structures and must
1950 * not be reused until it has been unregistered. A negative errno code
1951 * is returned on a failure.
1952 *
1953 * When registered all registration and up events are replayed
1954 * to the new notifier to allow device to have a race free
1955 * view of the network device list.
1956 */
1957
1958int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1959{
1960 int err;
1961
1962 rtnl_lock();
1963 err = __register_netdevice_notifier_net(net, nb, false);
1964 rtnl_unlock();
1965 return err;
1966}
1967EXPORT_SYMBOL(register_netdevice_notifier_net);
1968
1969/**
1970 * unregister_netdevice_notifier_net - unregister a per-netns
1971 * network notifier block
1972 * @net: network namespace
1973 * @nb: notifier
1974 *
1975 * Unregister a notifier previously registered by
1976 * register_netdevice_notifier(). The notifier is unlinked into the
1977 * kernel structures and may then be reused. A negative errno code
1978 * is returned on a failure.
1979 *
1980 * After unregistering unregister and down device events are synthesized
1981 * for all devices on the device list to the removed notifier to remove
1982 * the need for special case cleanup code.
1983 */
1984
1985int unregister_netdevice_notifier_net(struct net *net,
1986 struct notifier_block *nb)
1987{
1988 int err;
1989
1990 rtnl_lock();
1991 err = __unregister_netdevice_notifier_net(net, nb);
1992 rtnl_unlock();
1993 return err;
1994}
1995EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1996
1997int register_netdevice_notifier_dev_net(struct net_device *dev,
1998 struct notifier_block *nb,
1999 struct netdev_net_notifier *nn)
2000{
2001 int err;
2002
2003 rtnl_lock();
2004 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
2005 if (!err) {
2006 nn->nb = nb;
2007 list_add(&nn->list, &dev->net_notifier_list);
2008 }
2009 rtnl_unlock();
2010 return err;
2011}
2012EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2013
2014int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2015 struct notifier_block *nb,
2016 struct netdev_net_notifier *nn)
2017{
2018 int err;
2019
2020 rtnl_lock();
2021 list_del(&nn->list);
2022 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2023 rtnl_unlock();
2024 return err;
2025}
2026EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2027
2028static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2029 struct net *net)
2030{
2031 struct netdev_net_notifier *nn;
2032
2033 list_for_each_entry(nn, &dev->net_notifier_list, list) {
2034 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2035 __register_netdevice_notifier_net(net, nn->nb, true);
2036 }
2037}
2038
2039/**
2040 * call_netdevice_notifiers_info - call all network notifier blocks
2041 * @val: value passed unmodified to notifier function
2042 * @info: notifier information data
2043 *
2044 * Call all network notifier blocks. Parameters and return value
2045 * are as for raw_notifier_call_chain().
2046 */
2047
2048static int call_netdevice_notifiers_info(unsigned long val,
2049 struct netdev_notifier_info *info)
2050{
2051 struct net *net = dev_net(info->dev);
2052 int ret;
2053
2054 ASSERT_RTNL();
2055
2056 /* Run per-netns notifier block chain first, then run the global one.
2057 * Hopefully, one day, the global one is going to be removed after
2058 * all notifier block registrators get converted to be per-netns.
2059 */
2060 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2061 if (ret & NOTIFY_STOP_MASK)
2062 return ret;
2063 return raw_notifier_call_chain(&netdev_chain, val, info);
2064}
2065
2066static int call_netdevice_notifiers_extack(unsigned long val,
2067 struct net_device *dev,
2068 struct netlink_ext_ack *extack)
2069{
2070 struct netdev_notifier_info info = {
2071 .dev = dev,
2072 .extack = extack,
2073 };
2074
2075 return call_netdevice_notifiers_info(val, &info);
2076}
2077
2078/**
2079 * call_netdevice_notifiers - call all network notifier blocks
2080 * @val: value passed unmodified to notifier function
2081 * @dev: net_device pointer passed unmodified to notifier function
2082 *
2083 * Call all network notifier blocks. Parameters and return value
2084 * are as for raw_notifier_call_chain().
2085 */
2086
2087int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2088{
2089 return call_netdevice_notifiers_extack(val, dev, NULL);
2090}
2091EXPORT_SYMBOL(call_netdevice_notifiers);
2092
2093/**
2094 * call_netdevice_notifiers_mtu - call all network notifier blocks
2095 * @val: value passed unmodified to notifier function
2096 * @dev: net_device pointer passed unmodified to notifier function
2097 * @arg: additional u32 argument passed to the notifier function
2098 *
2099 * Call all network notifier blocks. Parameters and return value
2100 * are as for raw_notifier_call_chain().
2101 */
2102static int call_netdevice_notifiers_mtu(unsigned long val,
2103 struct net_device *dev, u32 arg)
2104{
2105 struct netdev_notifier_info_ext info = {
2106 .info.dev = dev,
2107 .ext.mtu = arg,
2108 };
2109
2110 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2111
2112 return call_netdevice_notifiers_info(val, &info.info);
2113}
2114
2115#ifdef CONFIG_NET_INGRESS
2116static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2117
2118void net_inc_ingress_queue(void)
2119{
2120 static_branch_inc(&ingress_needed_key);
2121}
2122EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2123
2124void net_dec_ingress_queue(void)
2125{
2126 static_branch_dec(&ingress_needed_key);
2127}
2128EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2129#endif
2130
2131#ifdef CONFIG_NET_EGRESS
2132static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2133
2134void net_inc_egress_queue(void)
2135{
2136 static_branch_inc(&egress_needed_key);
2137}
2138EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2139
2140void net_dec_egress_queue(void)
2141{
2142 static_branch_dec(&egress_needed_key);
2143}
2144EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2145#endif
2146
2147static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2148#ifdef CONFIG_JUMP_LABEL
2149static atomic_t netstamp_needed_deferred;
2150static atomic_t netstamp_wanted;
2151static void netstamp_clear(struct work_struct *work)
2152{
2153 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2154 int wanted;
2155
2156 wanted = atomic_add_return(deferred, &netstamp_wanted);
2157 if (wanted > 0)
2158 static_branch_enable(&netstamp_needed_key);
2159 else
2160 static_branch_disable(&netstamp_needed_key);
2161}
2162static DECLARE_WORK(netstamp_work, netstamp_clear);
2163#endif
2164
2165void net_enable_timestamp(void)
2166{
2167#ifdef CONFIG_JUMP_LABEL
2168 int wanted;
2169
2170 while (1) {
2171 wanted = atomic_read(&netstamp_wanted);
2172 if (wanted <= 0)
2173 break;
2174 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2175 return;
2176 }
2177 atomic_inc(&netstamp_needed_deferred);
2178 schedule_work(&netstamp_work);
2179#else
2180 static_branch_inc(&netstamp_needed_key);
2181#endif
2182}
2183EXPORT_SYMBOL(net_enable_timestamp);
2184
2185void net_disable_timestamp(void)
2186{
2187#ifdef CONFIG_JUMP_LABEL
2188 int wanted;
2189
2190 while (1) {
2191 wanted = atomic_read(&netstamp_wanted);
2192 if (wanted <= 1)
2193 break;
2194 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2195 return;
2196 }
2197 atomic_dec(&netstamp_needed_deferred);
2198 schedule_work(&netstamp_work);
2199#else
2200 static_branch_dec(&netstamp_needed_key);
2201#endif
2202}
2203EXPORT_SYMBOL(net_disable_timestamp);
2204
2205static inline void net_timestamp_set(struct sk_buff *skb)
2206{
2207 skb->tstamp = 0;
2208 if (static_branch_unlikely(&netstamp_needed_key))
2209 __net_timestamp(skb);
2210}
2211
2212#define net_timestamp_check(COND, SKB) \
2213 if (static_branch_unlikely(&netstamp_needed_key)) { \
2214 if ((COND) && !(SKB)->tstamp) \
2215 __net_timestamp(SKB); \
2216 } \
2217
2218bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2219{
2220 return __is_skb_forwardable(dev, skb, true);
2221}
2222EXPORT_SYMBOL_GPL(is_skb_forwardable);
2223
2224static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2225 bool check_mtu)
2226{
2227 int ret = ____dev_forward_skb(dev, skb, check_mtu);
2228
2229 if (likely(!ret)) {
2230 skb->protocol = eth_type_trans(skb, dev);
2231 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2232 }
2233
2234 return ret;
2235}
2236
2237int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2238{
2239 return __dev_forward_skb2(dev, skb, true);
2240}
2241EXPORT_SYMBOL_GPL(__dev_forward_skb);
2242
2243/**
2244 * dev_forward_skb - loopback an skb to another netif
2245 *
2246 * @dev: destination network device
2247 * @skb: buffer to forward
2248 *
2249 * return values:
2250 * NET_RX_SUCCESS (no congestion)
2251 * NET_RX_DROP (packet was dropped, but freed)
2252 *
2253 * dev_forward_skb can be used for injecting an skb from the
2254 * start_xmit function of one device into the receive queue
2255 * of another device.
2256 *
2257 * The receiving device may be in another namespace, so
2258 * we have to clear all information in the skb that could
2259 * impact namespace isolation.
2260 */
2261int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2262{
2263 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2264}
2265EXPORT_SYMBOL_GPL(dev_forward_skb);
2266
2267int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2268{
2269 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2270}
2271
2272static inline int deliver_skb(struct sk_buff *skb,
2273 struct packet_type *pt_prev,
2274 struct net_device *orig_dev)
2275{
2276 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2277 return -ENOMEM;
2278 refcount_inc(&skb->users);
2279 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2280}
2281
2282static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2283 struct packet_type **pt,
2284 struct net_device *orig_dev,
2285 __be16 type,
2286 struct list_head *ptype_list)
2287{
2288 struct packet_type *ptype, *pt_prev = *pt;
2289
2290 list_for_each_entry_rcu(ptype, ptype_list, list) {
2291 if (ptype->type != type)
2292 continue;
2293 if (pt_prev)
2294 deliver_skb(skb, pt_prev, orig_dev);
2295 pt_prev = ptype;
2296 }
2297 *pt = pt_prev;
2298}
2299
2300static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2301{
2302 if (!ptype->af_packet_priv || !skb->sk)
2303 return false;
2304
2305 if (ptype->id_match)
2306 return ptype->id_match(ptype, skb->sk);
2307 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2308 return true;
2309
2310 return false;
2311}
2312
2313/**
2314 * dev_nit_active - return true if any network interface taps are in use
2315 *
2316 * @dev: network device to check for the presence of taps
2317 */
2318bool dev_nit_active(struct net_device *dev)
2319{
2320 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2321}
2322EXPORT_SYMBOL_GPL(dev_nit_active);
2323
2324/*
2325 * Support routine. Sends outgoing frames to any network
2326 * taps currently in use.
2327 */
2328
2329void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2330{
2331 struct packet_type *ptype;
2332 struct sk_buff *skb2 = NULL;
2333 struct packet_type *pt_prev = NULL;
2334 struct list_head *ptype_list = &ptype_all;
2335
2336 rcu_read_lock();
2337again:
2338 list_for_each_entry_rcu(ptype, ptype_list, list) {
2339 if (ptype->ignore_outgoing)
2340 continue;
2341
2342 /* Never send packets back to the socket
2343 * they originated from - MvS (miquels@drinkel.ow.org)
2344 */
2345 if (skb_loop_sk(ptype, skb))
2346 continue;
2347
2348 if (pt_prev) {
2349 deliver_skb(skb2, pt_prev, skb->dev);
2350 pt_prev = ptype;
2351 continue;
2352 }
2353
2354 /* need to clone skb, done only once */
2355 skb2 = skb_clone(skb, GFP_ATOMIC);
2356 if (!skb2)
2357 goto out_unlock;
2358
2359 net_timestamp_set(skb2);
2360
2361 /* skb->nh should be correctly
2362 * set by sender, so that the second statement is
2363 * just protection against buggy protocols.
2364 */
2365 skb_reset_mac_header(skb2);
2366
2367 if (skb_network_header(skb2) < skb2->data ||
2368 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2369 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2370 ntohs(skb2->protocol),
2371 dev->name);
2372 skb_reset_network_header(skb2);
2373 }
2374
2375 skb2->transport_header = skb2->network_header;
2376 skb2->pkt_type = PACKET_OUTGOING;
2377 pt_prev = ptype;
2378 }
2379
2380 if (ptype_list == &ptype_all) {
2381 ptype_list = &dev->ptype_all;
2382 goto again;
2383 }
2384out_unlock:
2385 if (pt_prev) {
2386 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2387 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2388 else
2389 kfree_skb(skb2);
2390 }
2391 rcu_read_unlock();
2392}
2393EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2394
2395/**
2396 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2397 * @dev: Network device
2398 * @txq: number of queues available
2399 *
2400 * If real_num_tx_queues is changed the tc mappings may no longer be
2401 * valid. To resolve this verify the tc mapping remains valid and if
2402 * not NULL the mapping. With no priorities mapping to this
2403 * offset/count pair it will no longer be used. In the worst case TC0
2404 * is invalid nothing can be done so disable priority mappings. If is
2405 * expected that drivers will fix this mapping if they can before
2406 * calling netif_set_real_num_tx_queues.
2407 */
2408static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2409{
2410 int i;
2411 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2412
2413 /* If TC0 is invalidated disable TC mapping */
2414 if (tc->offset + tc->count > txq) {
2415 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2416 dev->num_tc = 0;
2417 return;
2418 }
2419
2420 /* Invalidated prio to tc mappings set to TC0 */
2421 for (i = 1; i < TC_BITMASK + 1; i++) {
2422 int q = netdev_get_prio_tc_map(dev, i);
2423
2424 tc = &dev->tc_to_txq[q];
2425 if (tc->offset + tc->count > txq) {
2426 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2427 i, q);
2428 netdev_set_prio_tc_map(dev, i, 0);
2429 }
2430 }
2431}
2432
2433int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2434{
2435 if (dev->num_tc) {
2436 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2437 int i;
2438
2439 /* walk through the TCs and see if it falls into any of them */
2440 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2441 if ((txq - tc->offset) < tc->count)
2442 return i;
2443 }
2444
2445 /* didn't find it, just return -1 to indicate no match */
2446 return -1;
2447 }
2448
2449 return 0;
2450}
2451EXPORT_SYMBOL(netdev_txq_to_tc);
2452
2453#ifdef CONFIG_XPS
2454struct static_key xps_needed __read_mostly;
2455EXPORT_SYMBOL(xps_needed);
2456struct static_key xps_rxqs_needed __read_mostly;
2457EXPORT_SYMBOL(xps_rxqs_needed);
2458static DEFINE_MUTEX(xps_map_mutex);
2459#define xmap_dereference(P) \
2460 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2461
2462static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2463 int tci, u16 index)
2464{
2465 struct xps_map *map = NULL;
2466 int pos;
2467
2468 if (dev_maps)
2469 map = xmap_dereference(dev_maps->attr_map[tci]);
2470 if (!map)
2471 return false;
2472
2473 for (pos = map->len; pos--;) {
2474 if (map->queues[pos] != index)
2475 continue;
2476
2477 if (map->len > 1) {
2478 map->queues[pos] = map->queues[--map->len];
2479 break;
2480 }
2481
2482 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2483 kfree_rcu(map, rcu);
2484 return false;
2485 }
2486
2487 return true;
2488}
2489
2490static bool remove_xps_queue_cpu(struct net_device *dev,
2491 struct xps_dev_maps *dev_maps,
2492 int cpu, u16 offset, u16 count)
2493{
2494 int num_tc = dev->num_tc ? : 1;
2495 bool active = false;
2496 int tci;
2497
2498 for (tci = cpu * num_tc; num_tc--; tci++) {
2499 int i, j;
2500
2501 for (i = count, j = offset; i--; j++) {
2502 if (!remove_xps_queue(dev_maps, tci, j))
2503 break;
2504 }
2505
2506 active |= i < 0;
2507 }
2508
2509 return active;
2510}
2511
2512static void reset_xps_maps(struct net_device *dev,
2513 struct xps_dev_maps *dev_maps,
2514 bool is_rxqs_map)
2515{
2516 if (is_rxqs_map) {
2517 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2518 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2519 } else {
2520 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2521 }
2522 static_key_slow_dec_cpuslocked(&xps_needed);
2523 kfree_rcu(dev_maps, rcu);
2524}
2525
2526static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2527 struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2528 u16 offset, u16 count, bool is_rxqs_map)
2529{
2530 bool active = false;
2531 int i, j;
2532
2533 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2534 j < nr_ids;)
2535 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2536 count);
2537 if (!active)
2538 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2539
2540 if (!is_rxqs_map) {
2541 for (i = offset + (count - 1); count--; i--) {
2542 netdev_queue_numa_node_write(
2543 netdev_get_tx_queue(dev, i),
2544 NUMA_NO_NODE);
2545 }
2546 }
2547}
2548
2549static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2550 u16 count)
2551{
2552 const unsigned long *possible_mask = NULL;
2553 struct xps_dev_maps *dev_maps;
2554 unsigned int nr_ids;
2555
2556 if (!static_key_false(&xps_needed))
2557 return;
2558
2559 cpus_read_lock();
2560 mutex_lock(&xps_map_mutex);
2561
2562 if (static_key_false(&xps_rxqs_needed)) {
2563 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2564 if (dev_maps) {
2565 nr_ids = dev->num_rx_queues;
2566 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2567 offset, count, true);
2568 }
2569 }
2570
2571 dev_maps = xmap_dereference(dev->xps_cpus_map);
2572 if (!dev_maps)
2573 goto out_no_maps;
2574
2575 if (num_possible_cpus() > 1)
2576 possible_mask = cpumask_bits(cpu_possible_mask);
2577 nr_ids = nr_cpu_ids;
2578 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2579 false);
2580
2581out_no_maps:
2582 mutex_unlock(&xps_map_mutex);
2583 cpus_read_unlock();
2584}
2585
2586static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2587{
2588 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2589}
2590
2591static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2592 u16 index, bool is_rxqs_map)
2593{
2594 struct xps_map *new_map;
2595 int alloc_len = XPS_MIN_MAP_ALLOC;
2596 int i, pos;
2597
2598 for (pos = 0; map && pos < map->len; pos++) {
2599 if (map->queues[pos] != index)
2600 continue;
2601 return map;
2602 }
2603
2604 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2605 if (map) {
2606 if (pos < map->alloc_len)
2607 return map;
2608
2609 alloc_len = map->alloc_len * 2;
2610 }
2611
2612 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2613 * map
2614 */
2615 if (is_rxqs_map)
2616 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2617 else
2618 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2619 cpu_to_node(attr_index));
2620 if (!new_map)
2621 return NULL;
2622
2623 for (i = 0; i < pos; i++)
2624 new_map->queues[i] = map->queues[i];
2625 new_map->alloc_len = alloc_len;
2626 new_map->len = pos;
2627
2628 return new_map;
2629}
2630
2631/* Must be called under cpus_read_lock */
2632int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2633 u16 index, bool is_rxqs_map)
2634{
2635 const unsigned long *online_mask = NULL, *possible_mask = NULL;
2636 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2637 int i, j, tci, numa_node_id = -2;
2638 int maps_sz, num_tc = 1, tc = 0;
2639 struct xps_map *map, *new_map;
2640 bool active = false;
2641 unsigned int nr_ids;
2642
2643 if (dev->num_tc) {
2644 /* Do not allow XPS on subordinate device directly */
2645 num_tc = dev->num_tc;
2646 if (num_tc < 0)
2647 return -EINVAL;
2648
2649 /* If queue belongs to subordinate dev use its map */
2650 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2651
2652 tc = netdev_txq_to_tc(dev, index);
2653 if (tc < 0)
2654 return -EINVAL;
2655 }
2656
2657 mutex_lock(&xps_map_mutex);
2658 if (is_rxqs_map) {
2659 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2660 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2661 nr_ids = dev->num_rx_queues;
2662 } else {
2663 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2664 if (num_possible_cpus() > 1) {
2665 online_mask = cpumask_bits(cpu_online_mask);
2666 possible_mask = cpumask_bits(cpu_possible_mask);
2667 }
2668 dev_maps = xmap_dereference(dev->xps_cpus_map);
2669 nr_ids = nr_cpu_ids;
2670 }
2671
2672 if (maps_sz < L1_CACHE_BYTES)
2673 maps_sz = L1_CACHE_BYTES;
2674
2675 /* allocate memory for queue storage */
2676 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2677 j < nr_ids;) {
2678 if (!new_dev_maps)
2679 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2680 if (!new_dev_maps) {
2681 mutex_unlock(&xps_map_mutex);
2682 return -ENOMEM;
2683 }
2684
2685 tci = j * num_tc + tc;
2686 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2687 NULL;
2688
2689 map = expand_xps_map(map, j, index, is_rxqs_map);
2690 if (!map)
2691 goto error;
2692
2693 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2694 }
2695
2696 if (!new_dev_maps)
2697 goto out_no_new_maps;
2698
2699 if (!dev_maps) {
2700 /* Increment static keys at most once per type */
2701 static_key_slow_inc_cpuslocked(&xps_needed);
2702 if (is_rxqs_map)
2703 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2704 }
2705
2706 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2707 j < nr_ids;) {
2708 /* copy maps belonging to foreign traffic classes */
2709 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2710 /* fill in the new device map from the old device map */
2711 map = xmap_dereference(dev_maps->attr_map[tci]);
2712 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2713 }
2714
2715 /* We need to explicitly update tci as prevous loop
2716 * could break out early if dev_maps is NULL.
2717 */
2718 tci = j * num_tc + tc;
2719
2720 if (netif_attr_test_mask(j, mask, nr_ids) &&
2721 netif_attr_test_online(j, online_mask, nr_ids)) {
2722 /* add tx-queue to CPU/rx-queue maps */
2723 int pos = 0;
2724
2725 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2726 while ((pos < map->len) && (map->queues[pos] != index))
2727 pos++;
2728
2729 if (pos == map->len)
2730 map->queues[map->len++] = index;
2731#ifdef CONFIG_NUMA
2732 if (!is_rxqs_map) {
2733 if (numa_node_id == -2)
2734 numa_node_id = cpu_to_node(j);
2735 else if (numa_node_id != cpu_to_node(j))
2736 numa_node_id = -1;
2737 }
2738#endif
2739 } else if (dev_maps) {
2740 /* fill in the new device map from the old device map */
2741 map = xmap_dereference(dev_maps->attr_map[tci]);
2742 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2743 }
2744
2745 /* copy maps belonging to foreign traffic classes */
2746 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2747 /* fill in the new device map from the old device map */
2748 map = xmap_dereference(dev_maps->attr_map[tci]);
2749 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2750 }
2751 }
2752
2753 if (is_rxqs_map)
2754 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2755 else
2756 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2757
2758 /* Cleanup old maps */
2759 if (!dev_maps)
2760 goto out_no_old_maps;
2761
2762 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2763 j < nr_ids;) {
2764 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2765 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2766 map = xmap_dereference(dev_maps->attr_map[tci]);
2767 if (map && map != new_map)
2768 kfree_rcu(map, rcu);
2769 }
2770 }
2771
2772 kfree_rcu(dev_maps, rcu);
2773
2774out_no_old_maps:
2775 dev_maps = new_dev_maps;
2776 active = true;
2777
2778out_no_new_maps:
2779 if (!is_rxqs_map) {
2780 /* update Tx queue numa node */
2781 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2782 (numa_node_id >= 0) ?
2783 numa_node_id : NUMA_NO_NODE);
2784 }
2785
2786 if (!dev_maps)
2787 goto out_no_maps;
2788
2789 /* removes tx-queue from unused CPUs/rx-queues */
2790 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2791 j < nr_ids;) {
2792 for (i = tc, tci = j * num_tc; i--; tci++)
2793 active |= remove_xps_queue(dev_maps, tci, index);
2794 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2795 !netif_attr_test_online(j, online_mask, nr_ids))
2796 active |= remove_xps_queue(dev_maps, tci, index);
2797 for (i = num_tc - tc, tci++; --i; tci++)
2798 active |= remove_xps_queue(dev_maps, tci, index);
2799 }
2800
2801 /* free map if not active */
2802 if (!active)
2803 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2804
2805out_no_maps:
2806 mutex_unlock(&xps_map_mutex);
2807
2808 return 0;
2809error:
2810 /* remove any maps that we added */
2811 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2812 j < nr_ids;) {
2813 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2814 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2815 map = dev_maps ?
2816 xmap_dereference(dev_maps->attr_map[tci]) :
2817 NULL;
2818 if (new_map && new_map != map)
2819 kfree(new_map);
2820 }
2821 }
2822
2823 mutex_unlock(&xps_map_mutex);
2824
2825 kfree(new_dev_maps);
2826 return -ENOMEM;
2827}
2828EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2829
2830int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2831 u16 index)
2832{
2833 int ret;
2834
2835 cpus_read_lock();
2836 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2837 cpus_read_unlock();
2838
2839 return ret;
2840}
2841EXPORT_SYMBOL(netif_set_xps_queue);
2842
2843#endif
2844static void netdev_unbind_all_sb_channels(struct net_device *dev)
2845{
2846 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2847
2848 /* Unbind any subordinate channels */
2849 while (txq-- != &dev->_tx[0]) {
2850 if (txq->sb_dev)
2851 netdev_unbind_sb_channel(dev, txq->sb_dev);
2852 }
2853}
2854
2855void netdev_reset_tc(struct net_device *dev)
2856{
2857#ifdef CONFIG_XPS
2858 netif_reset_xps_queues_gt(dev, 0);
2859#endif
2860 netdev_unbind_all_sb_channels(dev);
2861
2862 /* Reset TC configuration of device */
2863 dev->num_tc = 0;
2864 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2865 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2866}
2867EXPORT_SYMBOL(netdev_reset_tc);
2868
2869int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2870{
2871 if (tc >= dev->num_tc)
2872 return -EINVAL;
2873
2874#ifdef CONFIG_XPS
2875 netif_reset_xps_queues(dev, offset, count);
2876#endif
2877 dev->tc_to_txq[tc].count = count;
2878 dev->tc_to_txq[tc].offset = offset;
2879 return 0;
2880}
2881EXPORT_SYMBOL(netdev_set_tc_queue);
2882
2883int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2884{
2885 if (num_tc > TC_MAX_QUEUE)
2886 return -EINVAL;
2887
2888#ifdef CONFIG_XPS
2889 netif_reset_xps_queues_gt(dev, 0);
2890#endif
2891 netdev_unbind_all_sb_channels(dev);
2892
2893 dev->num_tc = num_tc;
2894 return 0;
2895}
2896EXPORT_SYMBOL(netdev_set_num_tc);
2897
2898void netdev_unbind_sb_channel(struct net_device *dev,
2899 struct net_device *sb_dev)
2900{
2901 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2902
2903#ifdef CONFIG_XPS
2904 netif_reset_xps_queues_gt(sb_dev, 0);
2905#endif
2906 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2907 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2908
2909 while (txq-- != &dev->_tx[0]) {
2910 if (txq->sb_dev == sb_dev)
2911 txq->sb_dev = NULL;
2912 }
2913}
2914EXPORT_SYMBOL(netdev_unbind_sb_channel);
2915
2916int netdev_bind_sb_channel_queue(struct net_device *dev,
2917 struct net_device *sb_dev,
2918 u8 tc, u16 count, u16 offset)
2919{
2920 /* Make certain the sb_dev and dev are already configured */
2921 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2922 return -EINVAL;
2923
2924 /* We cannot hand out queues we don't have */
2925 if ((offset + count) > dev->real_num_tx_queues)
2926 return -EINVAL;
2927
2928 /* Record the mapping */
2929 sb_dev->tc_to_txq[tc].count = count;
2930 sb_dev->tc_to_txq[tc].offset = offset;
2931
2932 /* Provide a way for Tx queue to find the tc_to_txq map or
2933 * XPS map for itself.
2934 */
2935 while (count--)
2936 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2937
2938 return 0;
2939}
2940EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2941
2942int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2943{
2944 /* Do not use a multiqueue device to represent a subordinate channel */
2945 if (netif_is_multiqueue(dev))
2946 return -ENODEV;
2947
2948 /* We allow channels 1 - 32767 to be used for subordinate channels.
2949 * Channel 0 is meant to be "native" mode and used only to represent
2950 * the main root device. We allow writing 0 to reset the device back
2951 * to normal mode after being used as a subordinate channel.
2952 */
2953 if (channel > S16_MAX)
2954 return -EINVAL;
2955
2956 dev->num_tc = -channel;
2957
2958 return 0;
2959}
2960EXPORT_SYMBOL(netdev_set_sb_channel);
2961
2962/*
2963 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2964 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2965 */
2966int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2967{
2968 bool disabling;
2969 int rc;
2970
2971 disabling = txq < dev->real_num_tx_queues;
2972
2973 if (txq < 1 || txq > dev->num_tx_queues)
2974 return -EINVAL;
2975
2976 if (dev->reg_state == NETREG_REGISTERED ||
2977 dev->reg_state == NETREG_UNREGISTERING) {
2978 ASSERT_RTNL();
2979
2980 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2981 txq);
2982 if (rc)
2983 return rc;
2984
2985 if (dev->num_tc)
2986 netif_setup_tc(dev, txq);
2987
2988 dev->real_num_tx_queues = txq;
2989
2990 if (disabling) {
2991 synchronize_net();
2992 qdisc_reset_all_tx_gt(dev, txq);
2993#ifdef CONFIG_XPS
2994 netif_reset_xps_queues_gt(dev, txq);
2995#endif
2996 }
2997 } else {
2998 dev->real_num_tx_queues = txq;
2999 }
3000
3001 return 0;
3002}
3003EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3004
3005#ifdef CONFIG_SYSFS
3006/**
3007 * netif_set_real_num_rx_queues - set actual number of RX queues used
3008 * @dev: Network device
3009 * @rxq: Actual number of RX queues
3010 *
3011 * This must be called either with the rtnl_lock held or before
3012 * registration of the net device. Returns 0 on success, or a
3013 * negative error code. If called before registration, it always
3014 * succeeds.
3015 */
3016int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3017{
3018 int rc;
3019
3020 if (rxq < 1 || rxq > dev->num_rx_queues)
3021 return -EINVAL;
3022
3023 if (dev->reg_state == NETREG_REGISTERED) {
3024 ASSERT_RTNL();
3025
3026 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3027 rxq);
3028 if (rc)
3029 return rc;
3030 }
3031
3032 dev->real_num_rx_queues = rxq;
3033 return 0;
3034}
3035EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3036#endif
3037
3038/**
3039 * netif_get_num_default_rss_queues - default number of RSS queues
3040 *
3041 * This routine should set an upper limit on the number of RSS queues
3042 * used by default by multiqueue devices.
3043 */
3044int netif_get_num_default_rss_queues(void)
3045{
3046 return is_kdump_kernel() ?
3047 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3048}
3049EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3050
3051static void __netif_reschedule(struct Qdisc *q)
3052{
3053 struct softnet_data *sd;
3054 unsigned long flags;
3055
3056 local_irq_save(flags);
3057 sd = this_cpu_ptr(&softnet_data);
3058 q->next_sched = NULL;
3059 *sd->output_queue_tailp = q;
3060 sd->output_queue_tailp = &q->next_sched;
3061 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3062 local_irq_restore(flags);
3063}
3064
3065void __netif_schedule(struct Qdisc *q)
3066{
3067 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3068 __netif_reschedule(q);
3069}
3070EXPORT_SYMBOL(__netif_schedule);
3071
3072struct dev_kfree_skb_cb {
3073 enum skb_free_reason reason;
3074};
3075
3076static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3077{
3078 return (struct dev_kfree_skb_cb *)skb->cb;
3079}
3080
3081void netif_schedule_queue(struct netdev_queue *txq)
3082{
3083 rcu_read_lock();
3084 if (!netif_xmit_stopped(txq)) {
3085 struct Qdisc *q = rcu_dereference(txq->qdisc);
3086
3087 __netif_schedule(q);
3088 }
3089 rcu_read_unlock();
3090}
3091EXPORT_SYMBOL(netif_schedule_queue);
3092
3093void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3094{
3095 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3096 struct Qdisc *q;
3097
3098 rcu_read_lock();
3099 q = rcu_dereference(dev_queue->qdisc);
3100 __netif_schedule(q);
3101 rcu_read_unlock();
3102 }
3103}
3104EXPORT_SYMBOL(netif_tx_wake_queue);
3105
3106void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3107{
3108 unsigned long flags;
3109
3110 if (unlikely(!skb))
3111 return;
3112
3113 if (likely(refcount_read(&skb->users) == 1)) {
3114 smp_rmb();
3115 refcount_set(&skb->users, 0);
3116 } else if (likely(!refcount_dec_and_test(&skb->users))) {
3117 return;
3118 }
3119 get_kfree_skb_cb(skb)->reason = reason;
3120 local_irq_save(flags);
3121 skb->next = __this_cpu_read(softnet_data.completion_queue);
3122 __this_cpu_write(softnet_data.completion_queue, skb);
3123 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3124 local_irq_restore(flags);
3125}
3126EXPORT_SYMBOL(__dev_kfree_skb_irq);
3127
3128void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3129{
3130 if (in_irq() || irqs_disabled())
3131 __dev_kfree_skb_irq(skb, reason);
3132 else
3133 dev_kfree_skb(skb);
3134}
3135EXPORT_SYMBOL(__dev_kfree_skb_any);
3136
3137
3138/**
3139 * netif_device_detach - mark device as removed
3140 * @dev: network device
3141 *
3142 * Mark device as removed from system and therefore no longer available.
3143 */
3144void netif_device_detach(struct net_device *dev)
3145{
3146 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3147 netif_running(dev)) {
3148 netif_tx_stop_all_queues(dev);
3149 }
3150}
3151EXPORT_SYMBOL(netif_device_detach);
3152
3153/**
3154 * netif_device_attach - mark device as attached
3155 * @dev: network device
3156 *
3157 * Mark device as attached from system and restart if needed.
3158 */
3159void netif_device_attach(struct net_device *dev)
3160{
3161 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3162 netif_running(dev)) {
3163 netif_tx_wake_all_queues(dev);
3164 __netdev_watchdog_up(dev);
3165 }
3166}
3167EXPORT_SYMBOL(netif_device_attach);
3168
3169/*
3170 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3171 * to be used as a distribution range.
3172 */
3173static u16 skb_tx_hash(const struct net_device *dev,
3174 const struct net_device *sb_dev,
3175 struct sk_buff *skb)
3176{
3177 u32 hash;
3178 u16 qoffset = 0;
3179 u16 qcount = dev->real_num_tx_queues;
3180
3181 if (dev->num_tc) {
3182 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3183
3184 qoffset = sb_dev->tc_to_txq[tc].offset;
3185 qcount = sb_dev->tc_to_txq[tc].count;
3186 }
3187
3188 if (skb_rx_queue_recorded(skb)) {
3189 hash = skb_get_rx_queue(skb);
3190 if (hash >= qoffset)
3191 hash -= qoffset;
3192 while (unlikely(hash >= qcount))
3193 hash -= qcount;
3194 return hash + qoffset;
3195 }
3196
3197 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3198}
3199
3200static void skb_warn_bad_offload(const struct sk_buff *skb)
3201{
3202 static const netdev_features_t null_features;
3203 struct net_device *dev = skb->dev;
3204 const char *name = "";
3205
3206 if (!net_ratelimit())
3207 return;
3208
3209 if (dev) {
3210 if (dev->dev.parent)
3211 name = dev_driver_string(dev->dev.parent);
3212 else
3213 name = netdev_name(dev);
3214 }
3215 skb_dump(KERN_WARNING, skb, false);
3216 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3217 name, dev ? &dev->features : &null_features,
3218 skb->sk ? &skb->sk->sk_route_caps : &null_features);
3219}
3220
3221/*
3222 * Invalidate hardware checksum when packet is to be mangled, and
3223 * complete checksum manually on outgoing path.
3224 */
3225int skb_checksum_help(struct sk_buff *skb)
3226{
3227 __wsum csum;
3228 int ret = 0, offset;
3229
3230 if (skb->ip_summed == CHECKSUM_COMPLETE)
3231 goto out_set_summed;
3232
3233 if (unlikely(skb_is_gso(skb))) {
3234 skb_warn_bad_offload(skb);
3235 return -EINVAL;
3236 }
3237
3238 /* Before computing a checksum, we should make sure no frag could
3239 * be modified by an external entity : checksum could be wrong.
3240 */
3241 if (skb_has_shared_frag(skb)) {
3242 ret = __skb_linearize(skb);
3243 if (ret)
3244 goto out;
3245 }
3246
3247 offset = skb_checksum_start_offset(skb);
3248 BUG_ON(offset >= skb_headlen(skb));
3249 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3250
3251 offset += skb->csum_offset;
3252 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3253
3254 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3255 if (ret)
3256 goto out;
3257
3258 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3259out_set_summed:
3260 skb->ip_summed = CHECKSUM_NONE;
3261out:
3262 return ret;
3263}
3264EXPORT_SYMBOL(skb_checksum_help);
3265
3266int skb_crc32c_csum_help(struct sk_buff *skb)
3267{
3268 __le32 crc32c_csum;
3269 int ret = 0, offset, start;
3270
3271 if (skb->ip_summed != CHECKSUM_PARTIAL)
3272 goto out;
3273
3274 if (unlikely(skb_is_gso(skb)))
3275 goto out;
3276
3277 /* Before computing a checksum, we should make sure no frag could
3278 * be modified by an external entity : checksum could be wrong.
3279 */
3280 if (unlikely(skb_has_shared_frag(skb))) {
3281 ret = __skb_linearize(skb);
3282 if (ret)
3283 goto out;
3284 }
3285 start = skb_checksum_start_offset(skb);
3286 offset = start + offsetof(struct sctphdr, checksum);
3287 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3288 ret = -EINVAL;
3289 goto out;
3290 }
3291
3292 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3293 if (ret)
3294 goto out;
3295
3296 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3297 skb->len - start, ~(__u32)0,
3298 crc32c_csum_stub));
3299 *(__le32 *)(skb->data + offset) = crc32c_csum;
3300 skb->ip_summed = CHECKSUM_NONE;
3301 skb->csum_not_inet = 0;
3302out:
3303 return ret;
3304}
3305
3306__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3307{
3308 __be16 type = skb->protocol;
3309
3310 /* Tunnel gso handlers can set protocol to ethernet. */
3311 if (type == htons(ETH_P_TEB)) {
3312 struct ethhdr *eth;
3313
3314 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3315 return 0;
3316
3317 eth = (struct ethhdr *)skb->data;
3318 type = eth->h_proto;
3319 }
3320
3321 return __vlan_get_protocol(skb, type, depth);
3322}
3323
3324/**
3325 * skb_mac_gso_segment - mac layer segmentation handler.
3326 * @skb: buffer to segment
3327 * @features: features for the output path (see dev->features)
3328 */
3329struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3330 netdev_features_t features)
3331{
3332 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3333 struct packet_offload *ptype;
3334 int vlan_depth = skb->mac_len;
3335 __be16 type = skb_network_protocol(skb, &vlan_depth);
3336
3337 if (unlikely(!type))
3338 return ERR_PTR(-EINVAL);
3339
3340 __skb_pull(skb, vlan_depth);
3341
3342 rcu_read_lock();
3343 list_for_each_entry_rcu(ptype, &offload_base, list) {
3344 if (ptype->type == type && ptype->callbacks.gso_segment) {
3345 segs = ptype->callbacks.gso_segment(skb, features);
3346 break;
3347 }
3348 }
3349 rcu_read_unlock();
3350
3351 __skb_push(skb, skb->data - skb_mac_header(skb));
3352
3353 return segs;
3354}
3355EXPORT_SYMBOL(skb_mac_gso_segment);
3356
3357
3358/* openvswitch calls this on rx path, so we need a different check.
3359 */
3360static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3361{
3362 if (tx_path)
3363 return skb->ip_summed != CHECKSUM_PARTIAL &&
3364 skb->ip_summed != CHECKSUM_UNNECESSARY;
3365
3366 return skb->ip_summed == CHECKSUM_NONE;
3367}
3368
3369/**
3370 * __skb_gso_segment - Perform segmentation on skb.
3371 * @skb: buffer to segment
3372 * @features: features for the output path (see dev->features)
3373 * @tx_path: whether it is called in TX path
3374 *
3375 * This function segments the given skb and returns a list of segments.
3376 *
3377 * It may return NULL if the skb requires no segmentation. This is
3378 * only possible when GSO is used for verifying header integrity.
3379 *
3380 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3381 */
3382struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3383 netdev_features_t features, bool tx_path)
3384{
3385 struct sk_buff *segs;
3386
3387 if (unlikely(skb_needs_check(skb, tx_path))) {
3388 int err;
3389
3390 /* We're going to init ->check field in TCP or UDP header */
3391 err = skb_cow_head(skb, 0);
3392 if (err < 0)
3393 return ERR_PTR(err);
3394 }
3395
3396 /* Only report GSO partial support if it will enable us to
3397 * support segmentation on this frame without needing additional
3398 * work.
3399 */
3400 if (features & NETIF_F_GSO_PARTIAL) {
3401 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3402 struct net_device *dev = skb->dev;
3403
3404 partial_features |= dev->features & dev->gso_partial_features;
3405 if (!skb_gso_ok(skb, features | partial_features))
3406 features &= ~NETIF_F_GSO_PARTIAL;
3407 }
3408
3409 BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3410 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3411
3412 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3413 SKB_GSO_CB(skb)->encap_level = 0;
3414
3415 skb_reset_mac_header(skb);
3416 skb_reset_mac_len(skb);
3417
3418 segs = skb_mac_gso_segment(skb, features);
3419
3420 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3421 skb_warn_bad_offload(skb);
3422
3423 return segs;
3424}
3425EXPORT_SYMBOL(__skb_gso_segment);
3426
3427/* Take action when hardware reception checksum errors are detected. */
3428#ifdef CONFIG_BUG
3429void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3430{
3431 if (net_ratelimit()) {
3432 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3433 skb_dump(KERN_ERR, skb, true);
3434 dump_stack();
3435 }
3436}
3437EXPORT_SYMBOL(netdev_rx_csum_fault);
3438#endif
3439
3440/* XXX: check that highmem exists at all on the given machine. */
3441static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3442{
3443#ifdef CONFIG_HIGHMEM
3444 int i;
3445
3446 if (!(dev->features & NETIF_F_HIGHDMA)) {
3447 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3448 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3449
3450 if (PageHighMem(skb_frag_page(frag)))
3451 return 1;
3452 }
3453 }
3454#endif
3455 return 0;
3456}
3457
3458/* If MPLS offload request, verify we are testing hardware MPLS features
3459 * instead of standard features for the netdev.
3460 */
3461#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3462static netdev_features_t net_mpls_features(struct sk_buff *skb,
3463 netdev_features_t features,
3464 __be16 type)
3465{
3466 if (eth_p_mpls(type))
3467 features &= skb->dev->mpls_features;
3468
3469 return features;
3470}
3471#else
3472static netdev_features_t net_mpls_features(struct sk_buff *skb,
3473 netdev_features_t features,
3474 __be16 type)
3475{
3476 return features;
3477}
3478#endif
3479
3480static netdev_features_t harmonize_features(struct sk_buff *skb,
3481 netdev_features_t features)
3482{
3483 __be16 type;
3484
3485 type = skb_network_protocol(skb, NULL);
3486 features = net_mpls_features(skb, features, type);
3487
3488 if (skb->ip_summed != CHECKSUM_NONE &&
3489 !can_checksum_protocol(features, type)) {
3490 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3491 }
3492 if (illegal_highdma(skb->dev, skb))
3493 features &= ~NETIF_F_SG;
3494
3495 return features;
3496}
3497
3498netdev_features_t passthru_features_check(struct sk_buff *skb,
3499 struct net_device *dev,
3500 netdev_features_t features)
3501{
3502 return features;
3503}
3504EXPORT_SYMBOL(passthru_features_check);
3505
3506static netdev_features_t dflt_features_check(struct sk_buff *skb,
3507 struct net_device *dev,
3508 netdev_features_t features)
3509{
3510 return vlan_features_check(skb, features);
3511}
3512
3513static netdev_features_t gso_features_check(const struct sk_buff *skb,
3514 struct net_device *dev,
3515 netdev_features_t features)
3516{
3517 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3518
3519 if (gso_segs > dev->gso_max_segs)
3520 return features & ~NETIF_F_GSO_MASK;
3521
3522 if (!skb_shinfo(skb)->gso_type) {
3523 skb_warn_bad_offload(skb);
3524 return features & ~NETIF_F_GSO_MASK;
3525 }
3526
3527 /* Support for GSO partial features requires software
3528 * intervention before we can actually process the packets
3529 * so we need to strip support for any partial features now
3530 * and we can pull them back in after we have partially
3531 * segmented the frame.
3532 */
3533 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3534 features &= ~dev->gso_partial_features;
3535
3536 /* Make sure to clear the IPv4 ID mangling feature if the
3537 * IPv4 header has the potential to be fragmented.
3538 */
3539 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3540 struct iphdr *iph = skb->encapsulation ?
3541 inner_ip_hdr(skb) : ip_hdr(skb);
3542
3543 if (!(iph->frag_off & htons(IP_DF)))
3544 features &= ~NETIF_F_TSO_MANGLEID;
3545 }
3546
3547 return features;
3548}
3549
3550netdev_features_t netif_skb_features(struct sk_buff *skb)
3551{
3552 struct net_device *dev = skb->dev;
3553 netdev_features_t features = dev->features;
3554
3555 if (skb_is_gso(skb))
3556 features = gso_features_check(skb, dev, features);
3557
3558 /* If encapsulation offload request, verify we are testing
3559 * hardware encapsulation features instead of standard
3560 * features for the netdev
3561 */
3562 if (skb->encapsulation)
3563 features &= dev->hw_enc_features;
3564
3565 if (skb_vlan_tagged(skb))
3566 features = netdev_intersect_features(features,
3567 dev->vlan_features |
3568 NETIF_F_HW_VLAN_CTAG_TX |
3569 NETIF_F_HW_VLAN_STAG_TX);
3570
3571 if (dev->netdev_ops->ndo_features_check)
3572 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3573 features);
3574 else
3575 features &= dflt_features_check(skb, dev, features);
3576
3577 return harmonize_features(skb, features);
3578}
3579EXPORT_SYMBOL(netif_skb_features);
3580
3581static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3582 struct netdev_queue *txq, bool more)
3583{
3584 unsigned int len;
3585 int rc;
3586
3587 if (dev_nit_active(dev))
3588 dev_queue_xmit_nit(skb, dev);
3589
3590 len = skb->len;
3591 PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3592 trace_net_dev_start_xmit(skb, dev);
3593 rc = netdev_start_xmit(skb, dev, txq, more);
3594 trace_net_dev_xmit(skb, rc, dev, len);
3595
3596 return rc;
3597}
3598
3599struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3600 struct netdev_queue *txq, int *ret)
3601{
3602 struct sk_buff *skb = first;
3603 int rc = NETDEV_TX_OK;
3604
3605 while (skb) {
3606 struct sk_buff *next = skb->next;
3607
3608 skb_mark_not_on_list(skb);
3609 rc = xmit_one(skb, dev, txq, next != NULL);
3610 if (unlikely(!dev_xmit_complete(rc))) {
3611 skb->next = next;
3612 goto out;
3613 }
3614
3615 skb = next;
3616 if (netif_tx_queue_stopped(txq) && skb) {
3617 rc = NETDEV_TX_BUSY;
3618 break;
3619 }
3620 }
3621
3622out:
3623 *ret = rc;
3624 return skb;
3625}
3626
3627static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3628 netdev_features_t features)
3629{
3630 if (skb_vlan_tag_present(skb) &&
3631 !vlan_hw_offload_capable(features, skb->vlan_proto))
3632 skb = __vlan_hwaccel_push_inside(skb);
3633 return skb;
3634}
3635
3636int skb_csum_hwoffload_help(struct sk_buff *skb,
3637 const netdev_features_t features)
3638{
3639 if (unlikely(skb_csum_is_sctp(skb)))
3640 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3641 skb_crc32c_csum_help(skb);
3642
3643 if (features & NETIF_F_HW_CSUM)
3644 return 0;
3645
3646 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3647 switch (skb->csum_offset) {
3648 case offsetof(struct tcphdr, check):
3649 case offsetof(struct udphdr, check):
3650 return 0;
3651 }
3652 }
3653
3654 return skb_checksum_help(skb);
3655}
3656EXPORT_SYMBOL(skb_csum_hwoffload_help);
3657
3658static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3659{
3660 netdev_features_t features;
3661
3662 features = netif_skb_features(skb);
3663 skb = validate_xmit_vlan(skb, features);
3664 if (unlikely(!skb))
3665 goto out_null;
3666
3667 skb = sk_validate_xmit_skb(skb, dev);
3668 if (unlikely(!skb))
3669 goto out_null;
3670
3671 if (netif_needs_gso(skb, features)) {
3672 struct sk_buff *segs;
3673
3674 segs = skb_gso_segment(skb, features);
3675 if (IS_ERR(segs)) {
3676 goto out_kfree_skb;
3677 } else if (segs) {
3678 consume_skb(skb);
3679 skb = segs;
3680 }
3681 } else {
3682 if (skb_needs_linearize(skb, features) &&
3683 __skb_linearize(skb))
3684 goto out_kfree_skb;
3685
3686 /* If packet is not checksummed and device does not
3687 * support checksumming for this protocol, complete
3688 * checksumming here.
3689 */
3690 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3691 if (skb->encapsulation)
3692 skb_set_inner_transport_header(skb,
3693 skb_checksum_start_offset(skb));
3694 else
3695 skb_set_transport_header(skb,
3696 skb_checksum_start_offset(skb));
3697 if (skb_csum_hwoffload_help(skb, features))
3698 goto out_kfree_skb;
3699 }
3700 }
3701
3702 skb = validate_xmit_xfrm(skb, features, again);
3703
3704 return skb;
3705
3706out_kfree_skb:
3707 kfree_skb(skb);
3708out_null:
3709 atomic_long_inc(&dev->tx_dropped);
3710 return NULL;
3711}
3712
3713struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3714{
3715 struct sk_buff *next, *head = NULL, *tail;
3716
3717 for (; skb != NULL; skb = next) {
3718 next = skb->next;
3719 skb_mark_not_on_list(skb);
3720
3721 /* in case skb wont be segmented, point to itself */
3722 skb->prev = skb;
3723
3724 skb = validate_xmit_skb(skb, dev, again);
3725 if (!skb)
3726 continue;
3727
3728 if (!head)
3729 head = skb;
3730 else
3731 tail->next = skb;
3732 /* If skb was segmented, skb->prev points to
3733 * the last segment. If not, it still contains skb.
3734 */
3735 tail = skb->prev;
3736 }
3737 return head;
3738}
3739EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3740
3741static void qdisc_pkt_len_init(struct sk_buff *skb)
3742{
3743 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3744
3745 qdisc_skb_cb(skb)->pkt_len = skb->len;
3746
3747 /* To get more precise estimation of bytes sent on wire,
3748 * we add to pkt_len the headers size of all segments
3749 */
3750 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3751 unsigned int hdr_len;
3752 u16 gso_segs = shinfo->gso_segs;
3753
3754 /* mac layer + network layer */
3755 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3756
3757 /* + transport layer */
3758 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3759 const struct tcphdr *th;
3760 struct tcphdr _tcphdr;
3761
3762 th = skb_header_pointer(skb, skb_transport_offset(skb),
3763 sizeof(_tcphdr), &_tcphdr);
3764 if (likely(th))
3765 hdr_len += __tcp_hdrlen(th);
3766 } else {
3767 struct udphdr _udphdr;
3768
3769 if (skb_header_pointer(skb, skb_transport_offset(skb),
3770 sizeof(_udphdr), &_udphdr))
3771 hdr_len += sizeof(struct udphdr);
3772 }
3773
3774 if (shinfo->gso_type & SKB_GSO_DODGY)
3775 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3776 shinfo->gso_size);
3777
3778 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3779 }
3780}
3781
3782static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3783 struct net_device *dev,
3784 struct netdev_queue *txq)
3785{
3786 spinlock_t *root_lock = qdisc_lock(q);
3787 struct sk_buff *to_free = NULL;
3788 bool contended;
3789 int rc;
3790
3791 qdisc_calculate_pkt_len(skb, q);
3792
3793 if (q->flags & TCQ_F_NOLOCK) {
3794 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3795 qdisc_run(q);
3796
3797 if (unlikely(to_free))
3798 kfree_skb_list(to_free);
3799 return rc;
3800 }
3801
3802 /*
3803 * Heuristic to force contended enqueues to serialize on a
3804 * separate lock before trying to get qdisc main lock.
3805 * This permits qdisc->running owner to get the lock more
3806 * often and dequeue packets faster.
3807 */
3808 contended = qdisc_is_running(q);
3809 if (unlikely(contended))
3810 spin_lock(&q->busylock);
3811
3812 spin_lock(root_lock);
3813 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3814 __qdisc_drop(skb, &to_free);
3815 rc = NET_XMIT_DROP;
3816 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3817 qdisc_run_begin(q)) {
3818 /*
3819 * This is a work-conserving queue; there are no old skbs
3820 * waiting to be sent out; and the qdisc is not running -
3821 * xmit the skb directly.
3822 */
3823
3824 qdisc_bstats_update(q, skb);
3825
3826 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3827 if (unlikely(contended)) {
3828 spin_unlock(&q->busylock);
3829 contended = false;
3830 }
3831 __qdisc_run(q);
3832 }
3833
3834 qdisc_run_end(q);
3835 rc = NET_XMIT_SUCCESS;
3836 } else {
3837 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3838 if (qdisc_run_begin(q)) {
3839 if (unlikely(contended)) {
3840 spin_unlock(&q->busylock);
3841 contended = false;
3842 }
3843 __qdisc_run(q);
3844 qdisc_run_end(q);
3845 }
3846 }
3847 spin_unlock(root_lock);
3848 if (unlikely(to_free))
3849 kfree_skb_list(to_free);
3850 if (unlikely(contended))
3851 spin_unlock(&q->busylock);
3852 return rc;
3853}
3854
3855#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3856static void skb_update_prio(struct sk_buff *skb)
3857{
3858 const struct netprio_map *map;
3859 const struct sock *sk;
3860 unsigned int prioidx;
3861
3862 if (skb->priority)
3863 return;
3864 map = rcu_dereference_bh(skb->dev->priomap);
3865 if (!map)
3866 return;
3867 sk = skb_to_full_sk(skb);
3868 if (!sk)
3869 return;
3870
3871 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3872
3873 if (prioidx < map->priomap_len)
3874 skb->priority = map->priomap[prioidx];
3875}
3876#else
3877#define skb_update_prio(skb)
3878#endif
3879
3880/**
3881 * dev_loopback_xmit - loop back @skb
3882 * @net: network namespace this loopback is happening in
3883 * @sk: sk needed to be a netfilter okfn
3884 * @skb: buffer to transmit
3885 */
3886int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3887{
3888 skb_reset_mac_header(skb);
3889 __skb_pull(skb, skb_network_offset(skb));
3890 skb->pkt_type = PACKET_LOOPBACK;
3891 skb->ip_summed = CHECKSUM_UNNECESSARY;
3892 WARN_ON(!skb_dst(skb));
3893 skb_dst_force(skb);
3894 netif_rx_ni(skb);
3895 return 0;
3896}
3897EXPORT_SYMBOL(dev_loopback_xmit);
3898
3899#ifdef CONFIG_NET_EGRESS
3900static struct sk_buff *
3901sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3902{
3903 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3904 struct tcf_result cl_res;
3905
3906 if (!miniq)
3907 return skb;
3908
3909 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3910 qdisc_skb_cb(skb)->mru = 0;
3911 qdisc_skb_cb(skb)->post_ct = false;
3912 mini_qdisc_bstats_cpu_update(miniq, skb);
3913
3914 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3915 case TC_ACT_OK:
3916 case TC_ACT_RECLASSIFY:
3917 skb->tc_index = TC_H_MIN(cl_res.classid);
3918 break;
3919 case TC_ACT_SHOT:
3920 mini_qdisc_qstats_cpu_drop(miniq);
3921 *ret = NET_XMIT_DROP;
3922 kfree_skb(skb);
3923 return NULL;
3924 case TC_ACT_STOLEN:
3925 case TC_ACT_QUEUED:
3926 case TC_ACT_TRAP:
3927 *ret = NET_XMIT_SUCCESS;
3928 consume_skb(skb);
3929 return NULL;
3930 case TC_ACT_REDIRECT:
3931 /* No need to push/pop skb's mac_header here on egress! */
3932 skb_do_redirect(skb);
3933 *ret = NET_XMIT_SUCCESS;
3934 return NULL;
3935 default:
3936 break;
3937 }
3938
3939 return skb;
3940}
3941#endif /* CONFIG_NET_EGRESS */
3942
3943#ifdef CONFIG_XPS
3944static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3945 struct xps_dev_maps *dev_maps, unsigned int tci)
3946{
3947 struct xps_map *map;
3948 int queue_index = -1;
3949
3950 if (dev->num_tc) {
3951 tci *= dev->num_tc;
3952 tci += netdev_get_prio_tc_map(dev, skb->priority);
3953 }
3954
3955 map = rcu_dereference(dev_maps->attr_map[tci]);
3956 if (map) {
3957 if (map->len == 1)
3958 queue_index = map->queues[0];
3959 else
3960 queue_index = map->queues[reciprocal_scale(
3961 skb_get_hash(skb), map->len)];
3962 if (unlikely(queue_index >= dev->real_num_tx_queues))
3963 queue_index = -1;
3964 }
3965 return queue_index;
3966}
3967#endif
3968
3969static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3970 struct sk_buff *skb)
3971{
3972#ifdef CONFIG_XPS
3973 struct xps_dev_maps *dev_maps;
3974 struct sock *sk = skb->sk;
3975 int queue_index = -1;
3976
3977 if (!static_key_false(&xps_needed))
3978 return -1;
3979
3980 rcu_read_lock();
3981 if (!static_key_false(&xps_rxqs_needed))
3982 goto get_cpus_map;
3983
3984 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3985 if (dev_maps) {
3986 int tci = sk_rx_queue_get(sk);
3987
3988 if (tci >= 0 && tci < dev->num_rx_queues)
3989 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3990 tci);
3991 }
3992
3993get_cpus_map:
3994 if (queue_index < 0) {
3995 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3996 if (dev_maps) {
3997 unsigned int tci = skb->sender_cpu - 1;
3998
3999 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4000 tci);
4001 }
4002 }
4003 rcu_read_unlock();
4004
4005 return queue_index;
4006#else
4007 return -1;
4008#endif
4009}
4010
4011u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4012 struct net_device *sb_dev)
4013{
4014 return 0;
4015}
4016EXPORT_SYMBOL(dev_pick_tx_zero);
4017
4018u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4019 struct net_device *sb_dev)
4020{
4021 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4022}
4023EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4024
4025u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4026 struct net_device *sb_dev)
4027{
4028 struct sock *sk = skb->sk;
4029 int queue_index = sk_tx_queue_get(sk);
4030
4031 sb_dev = sb_dev ? : dev;
4032
4033 if (queue_index < 0 || skb->ooo_okay ||
4034 queue_index >= dev->real_num_tx_queues) {
4035 int new_index = get_xps_queue(dev, sb_dev, skb);
4036
4037 if (new_index < 0)
4038 new_index = skb_tx_hash(dev, sb_dev, skb);
4039
4040 if (queue_index != new_index && sk &&
4041 sk_fullsock(sk) &&
4042 rcu_access_pointer(sk->sk_dst_cache))
4043 sk_tx_queue_set(sk, new_index);
4044
4045 queue_index = new_index;
4046 }
4047
4048 return queue_index;
4049}
4050EXPORT_SYMBOL(netdev_pick_tx);
4051
4052struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4053 struct sk_buff *skb,
4054 struct net_device *sb_dev)
4055{
4056 int queue_index = 0;
4057
4058#ifdef CONFIG_XPS
4059 u32 sender_cpu = skb->sender_cpu - 1;
4060
4061 if (sender_cpu >= (u32)NR_CPUS)
4062 skb->sender_cpu = raw_smp_processor_id() + 1;
4063#endif
4064
4065 if (dev->real_num_tx_queues != 1) {
4066 const struct net_device_ops *ops = dev->netdev_ops;
4067
4068 if (ops->ndo_select_queue)
4069 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4070 else
4071 queue_index = netdev_pick_tx(dev, skb, sb_dev);
4072
4073 queue_index = netdev_cap_txqueue(dev, queue_index);
4074 }
4075
4076 skb_set_queue_mapping(skb, queue_index);
4077 return netdev_get_tx_queue(dev, queue_index);
4078}
4079
4080/**
4081 * __dev_queue_xmit - transmit a buffer
4082 * @skb: buffer to transmit
4083 * @sb_dev: suboordinate device used for L2 forwarding offload
4084 *
4085 * Queue a buffer for transmission to a network device. The caller must
4086 * have set the device and priority and built the buffer before calling
4087 * this function. The function can be called from an interrupt.
4088 *
4089 * A negative errno code is returned on a failure. A success does not
4090 * guarantee the frame will be transmitted as it may be dropped due
4091 * to congestion or traffic shaping.
4092 *
4093 * -----------------------------------------------------------------------------------
4094 * I notice this method can also return errors from the queue disciplines,
4095 * including NET_XMIT_DROP, which is a positive value. So, errors can also
4096 * be positive.
4097 *
4098 * Regardless of the return value, the skb is consumed, so it is currently
4099 * difficult to retry a send to this method. (You can bump the ref count
4100 * before sending to hold a reference for retry if you are careful.)
4101 *
4102 * When calling this method, interrupts MUST be enabled. This is because
4103 * the BH enable code must have IRQs enabled so that it will not deadlock.
4104 * --BLG
4105 */
4106static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4107{
4108 struct net_device *dev = skb->dev;
4109 struct netdev_queue *txq;
4110 struct Qdisc *q;
4111 int rc = -ENOMEM;
4112 bool again = false;
4113
4114 skb_reset_mac_header(skb);
4115
4116 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4117 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4118
4119 /* Disable soft irqs for various locks below. Also
4120 * stops preemption for RCU.
4121 */
4122 rcu_read_lock_bh();
4123
4124 skb_update_prio(skb);
4125
4126 qdisc_pkt_len_init(skb);
4127#ifdef CONFIG_NET_CLS_ACT
4128 skb->tc_at_ingress = 0;
4129# ifdef CONFIG_NET_EGRESS
4130 if (static_branch_unlikely(&egress_needed_key)) {
4131 skb = sch_handle_egress(skb, &rc, dev);
4132 if (!skb)
4133 goto out;
4134 }
4135# endif
4136#endif
4137 /* If device/qdisc don't need skb->dst, release it right now while
4138 * its hot in this cpu cache.
4139 */
4140 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4141 skb_dst_drop(skb);
4142 else
4143 skb_dst_force(skb);
4144
4145 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4146 q = rcu_dereference_bh(txq->qdisc);
4147
4148 trace_net_dev_queue(skb);
4149 if (q->enqueue) {
4150 rc = __dev_xmit_skb(skb, q, dev, txq);
4151 goto out;
4152 }
4153
4154 /* The device has no queue. Common case for software devices:
4155 * loopback, all the sorts of tunnels...
4156
4157 * Really, it is unlikely that netif_tx_lock protection is necessary
4158 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4159 * counters.)
4160 * However, it is possible, that they rely on protection
4161 * made by us here.
4162
4163 * Check this and shot the lock. It is not prone from deadlocks.
4164 *Either shot noqueue qdisc, it is even simpler 8)
4165 */
4166 if (dev->flags & IFF_UP) {
4167 int cpu = smp_processor_id(); /* ok because BHs are off */
4168
4169 if (txq->xmit_lock_owner != cpu) {
4170 if (dev_xmit_recursion())
4171 goto recursion_alert;
4172
4173 skb = validate_xmit_skb(skb, dev, &again);
4174 if (!skb)
4175 goto out;
4176
4177 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4178 HARD_TX_LOCK(dev, txq, cpu);
4179
4180 if (!netif_xmit_stopped(txq)) {
4181 dev_xmit_recursion_inc();
4182 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4183 dev_xmit_recursion_dec();
4184 if (dev_xmit_complete(rc)) {
4185 HARD_TX_UNLOCK(dev, txq);
4186 goto out;
4187 }
4188 }
4189 HARD_TX_UNLOCK(dev, txq);
4190 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4191 dev->name);
4192 } else {
4193 /* Recursion is detected! It is possible,
4194 * unfortunately
4195 */
4196recursion_alert:
4197 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4198 dev->name);
4199 }
4200 }
4201
4202 rc = -ENETDOWN;
4203 rcu_read_unlock_bh();
4204
4205 atomic_long_inc(&dev->tx_dropped);
4206 kfree_skb_list(skb);
4207 return rc;
4208out:
4209 rcu_read_unlock_bh();
4210 return rc;
4211}
4212
4213int dev_queue_xmit(struct sk_buff *skb)
4214{
4215 return __dev_queue_xmit(skb, NULL);
4216}
4217EXPORT_SYMBOL(dev_queue_xmit);
4218
4219int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4220{
4221 return __dev_queue_xmit(skb, sb_dev);
4222}
4223EXPORT_SYMBOL(dev_queue_xmit_accel);
4224
4225int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4226{
4227 struct net_device *dev = skb->dev;
4228 struct sk_buff *orig_skb = skb;
4229 struct netdev_queue *txq;
4230 int ret = NETDEV_TX_BUSY;
4231 bool again = false;
4232
4233 if (unlikely(!netif_running(dev) ||
4234 !netif_carrier_ok(dev)))
4235 goto drop;
4236
4237 skb = validate_xmit_skb_list(skb, dev, &again);
4238 if (skb != orig_skb)
4239 goto drop;
4240
4241 skb_set_queue_mapping(skb, queue_id);
4242 txq = skb_get_tx_queue(dev, skb);
4243 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4244
4245 local_bh_disable();
4246
4247 dev_xmit_recursion_inc();
4248 HARD_TX_LOCK(dev, txq, smp_processor_id());
4249 if (!netif_xmit_frozen_or_drv_stopped(txq))
4250 ret = netdev_start_xmit(skb, dev, txq, false);
4251 HARD_TX_UNLOCK(dev, txq);
4252 dev_xmit_recursion_dec();
4253
4254 local_bh_enable();
4255 return ret;
4256drop:
4257 atomic_long_inc(&dev->tx_dropped);
4258 kfree_skb_list(skb);
4259 return NET_XMIT_DROP;
4260}
4261EXPORT_SYMBOL(__dev_direct_xmit);
4262
4263/*************************************************************************
4264 * Receiver routines
4265 *************************************************************************/
4266
4267int netdev_max_backlog __read_mostly = 1000;
4268EXPORT_SYMBOL(netdev_max_backlog);
4269
4270int netdev_tstamp_prequeue __read_mostly = 1;
4271int netdev_budget __read_mostly = 300;
4272/* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4273unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4274int weight_p __read_mostly = 64; /* old backlog weight */
4275int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4276int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4277int dev_rx_weight __read_mostly = 64;
4278int dev_tx_weight __read_mostly = 64;
4279/* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4280int gro_normal_batch __read_mostly = 8;
4281
4282/* Called with irq disabled */
4283static inline void ____napi_schedule(struct softnet_data *sd,
4284 struct napi_struct *napi)
4285{
4286 struct task_struct *thread;
4287
4288 if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4289 /* Paired with smp_mb__before_atomic() in
4290 * napi_enable()/dev_set_threaded().
4291 * Use READ_ONCE() to guarantee a complete
4292 * read on napi->thread. Only call
4293 * wake_up_process() when it's not NULL.
4294 */
4295 thread = READ_ONCE(napi->thread);
4296 if (thread) {
4297 wake_up_process(thread);
4298 return;
4299 }
4300 }
4301
4302 list_add_tail(&napi->poll_list, &sd->poll_list);
4303 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4304}
4305
4306#ifdef CONFIG_RPS
4307
4308/* One global table that all flow-based protocols share. */
4309struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4310EXPORT_SYMBOL(rps_sock_flow_table);
4311u32 rps_cpu_mask __read_mostly;
4312EXPORT_SYMBOL(rps_cpu_mask);
4313
4314struct static_key_false rps_needed __read_mostly;
4315EXPORT_SYMBOL(rps_needed);
4316struct static_key_false rfs_needed __read_mostly;
4317EXPORT_SYMBOL(rfs_needed);
4318
4319static struct rps_dev_flow *
4320set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4321 struct rps_dev_flow *rflow, u16 next_cpu)
4322{
4323 if (next_cpu < nr_cpu_ids) {
4324#ifdef CONFIG_RFS_ACCEL
4325 struct netdev_rx_queue *rxqueue;
4326 struct rps_dev_flow_table *flow_table;
4327 struct rps_dev_flow *old_rflow;
4328 u32 flow_id;
4329 u16 rxq_index;
4330 int rc;
4331
4332 /* Should we steer this flow to a different hardware queue? */
4333 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4334 !(dev->features & NETIF_F_NTUPLE))
4335 goto out;
4336 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4337 if (rxq_index == skb_get_rx_queue(skb))
4338 goto out;
4339
4340 rxqueue = dev->_rx + rxq_index;
4341 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4342 if (!flow_table)
4343 goto out;
4344 flow_id = skb_get_hash(skb) & flow_table->mask;
4345 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4346 rxq_index, flow_id);
4347 if (rc < 0)
4348 goto out;
4349 old_rflow = rflow;
4350 rflow = &flow_table->flows[flow_id];
4351 rflow->filter = rc;
4352 if (old_rflow->filter == rflow->filter)
4353 old_rflow->filter = RPS_NO_FILTER;
4354 out:
4355#endif
4356 rflow->last_qtail =
4357 per_cpu(softnet_data, next_cpu).input_queue_head;
4358 }
4359
4360 rflow->cpu = next_cpu;
4361 return rflow;
4362}
4363
4364/*
4365 * get_rps_cpu is called from netif_receive_skb and returns the target
4366 * CPU from the RPS map of the receiving queue for a given skb.
4367 * rcu_read_lock must be held on entry.
4368 */
4369static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4370 struct rps_dev_flow **rflowp)
4371{
4372 const struct rps_sock_flow_table *sock_flow_table;
4373 struct netdev_rx_queue *rxqueue = dev->_rx;
4374 struct rps_dev_flow_table *flow_table;
4375 struct rps_map *map;
4376 int cpu = -1;
4377 u32 tcpu;
4378 u32 hash;
4379
4380 if (skb_rx_queue_recorded(skb)) {
4381 u16 index = skb_get_rx_queue(skb);
4382
4383 if (unlikely(index >= dev->real_num_rx_queues)) {
4384 WARN_ONCE(dev->real_num_rx_queues > 1,
4385 "%s received packet on queue %u, but number "
4386 "of RX queues is %u\n",
4387 dev->name, index, dev->real_num_rx_queues);
4388 goto done;
4389 }
4390 rxqueue += index;
4391 }
4392
4393 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4394
4395 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4396 map = rcu_dereference(rxqueue->rps_map);
4397 if (!flow_table && !map)
4398 goto done;
4399
4400 skb_reset_network_header(skb);
4401 hash = skb_get_hash(skb);
4402 if (!hash)
4403 goto done;
4404
4405 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4406 if (flow_table && sock_flow_table) {
4407 struct rps_dev_flow *rflow;
4408 u32 next_cpu;
4409 u32 ident;
4410
4411 /* First check into global flow table if there is a match */
4412 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4413 if ((ident ^ hash) & ~rps_cpu_mask)
4414 goto try_rps;
4415
4416 next_cpu = ident & rps_cpu_mask;
4417
4418 /* OK, now we know there is a match,
4419 * we can look at the local (per receive queue) flow table
4420 */
4421 rflow = &flow_table->flows[hash & flow_table->mask];
4422 tcpu = rflow->cpu;
4423
4424 /*
4425 * If the desired CPU (where last recvmsg was done) is
4426 * different from current CPU (one in the rx-queue flow
4427 * table entry), switch if one of the following holds:
4428 * - Current CPU is unset (>= nr_cpu_ids).
4429 * - Current CPU is offline.
4430 * - The current CPU's queue tail has advanced beyond the
4431 * last packet that was enqueued using this table entry.
4432 * This guarantees that all previous packets for the flow
4433 * have been dequeued, thus preserving in order delivery.
4434 */
4435 if (unlikely(tcpu != next_cpu) &&
4436 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4437 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4438 rflow->last_qtail)) >= 0)) {
4439 tcpu = next_cpu;
4440 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4441 }
4442
4443 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4444 *rflowp = rflow;
4445 cpu = tcpu;
4446 goto done;
4447 }
4448 }
4449
4450try_rps:
4451
4452 if (map) {
4453 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4454 if (cpu_online(tcpu)) {
4455 cpu = tcpu;
4456 goto done;
4457 }
4458 }
4459
4460done:
4461 return cpu;
4462}
4463
4464#ifdef CONFIG_RFS_ACCEL
4465
4466/**
4467 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4468 * @dev: Device on which the filter was set
4469 * @rxq_index: RX queue index
4470 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4471 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4472 *
4473 * Drivers that implement ndo_rx_flow_steer() should periodically call
4474 * this function for each installed filter and remove the filters for
4475 * which it returns %true.
4476 */
4477bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4478 u32 flow_id, u16 filter_id)
4479{
4480 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4481 struct rps_dev_flow_table *flow_table;
4482 struct rps_dev_flow *rflow;
4483 bool expire = true;
4484 unsigned int cpu;
4485
4486 rcu_read_lock();
4487 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4488 if (flow_table && flow_id <= flow_table->mask) {
4489 rflow = &flow_table->flows[flow_id];
4490 cpu = READ_ONCE(rflow->cpu);
4491 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4492 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4493 rflow->last_qtail) <
4494 (int)(10 * flow_table->mask)))
4495 expire = false;
4496 }
4497 rcu_read_unlock();
4498 return expire;
4499}
4500EXPORT_SYMBOL(rps_may_expire_flow);
4501
4502#endif /* CONFIG_RFS_ACCEL */
4503
4504/* Called from hardirq (IPI) context */
4505static void rps_trigger_softirq(void *data)
4506{
4507 struct softnet_data *sd = data;
4508
4509 ____napi_schedule(sd, &sd->backlog);
4510 sd->received_rps++;
4511}
4512
4513#endif /* CONFIG_RPS */
4514
4515/*
4516 * Check if this softnet_data structure is another cpu one
4517 * If yes, queue it to our IPI list and return 1
4518 * If no, return 0
4519 */
4520static int rps_ipi_queued(struct softnet_data *sd)
4521{
4522#ifdef CONFIG_RPS
4523 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4524
4525 if (sd != mysd) {
4526 sd->rps_ipi_next = mysd->rps_ipi_list;
4527 mysd->rps_ipi_list = sd;
4528
4529 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4530 return 1;
4531 }
4532#endif /* CONFIG_RPS */
4533 return 0;
4534}
4535
4536#ifdef CONFIG_NET_FLOW_LIMIT
4537int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4538#endif
4539
4540static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4541{
4542#ifdef CONFIG_NET_FLOW_LIMIT
4543 struct sd_flow_limit *fl;
4544 struct softnet_data *sd;
4545 unsigned int old_flow, new_flow;
4546
4547 if (qlen < (netdev_max_backlog >> 1))
4548 return false;
4549
4550 sd = this_cpu_ptr(&softnet_data);
4551
4552 rcu_read_lock();
4553 fl = rcu_dereference(sd->flow_limit);
4554 if (fl) {
4555 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4556 old_flow = fl->history[fl->history_head];
4557 fl->history[fl->history_head] = new_flow;
4558
4559 fl->history_head++;
4560 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4561
4562 if (likely(fl->buckets[old_flow]))
4563 fl->buckets[old_flow]--;
4564
4565 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4566 fl->count++;
4567 rcu_read_unlock();
4568 return true;
4569 }
4570 }
4571 rcu_read_unlock();
4572#endif
4573 return false;
4574}
4575
4576/*
4577 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4578 * queue (may be a remote CPU queue).
4579 */
4580static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4581 unsigned int *qtail)
4582{
4583 struct softnet_data *sd;
4584 unsigned long flags;
4585 unsigned int qlen;
4586
4587 sd = &per_cpu(softnet_data, cpu);
4588
4589 local_irq_save(flags);
4590
4591 rps_lock(sd);
4592 if (!netif_running(skb->dev))
4593 goto drop;
4594 qlen = skb_queue_len(&sd->input_pkt_queue);
4595 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4596 if (qlen) {
4597enqueue:
4598 __skb_queue_tail(&sd->input_pkt_queue, skb);
4599 input_queue_tail_incr_save(sd, qtail);
4600 rps_unlock(sd);
4601 local_irq_restore(flags);
4602 return NET_RX_SUCCESS;
4603 }
4604
4605 /* Schedule NAPI for backlog device
4606 * We can use non atomic operation since we own the queue lock
4607 */
4608 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4609 if (!rps_ipi_queued(sd))
4610 ____napi_schedule(sd, &sd->backlog);
4611 }
4612 goto enqueue;
4613 }
4614
4615drop:
4616 sd->dropped++;
4617 rps_unlock(sd);
4618
4619 local_irq_restore(flags);
4620
4621 atomic_long_inc(&skb->dev->rx_dropped);
4622 kfree_skb(skb);
4623 return NET_RX_DROP;
4624}
4625
4626static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4627{
4628 struct net_device *dev = skb->dev;
4629 struct netdev_rx_queue *rxqueue;
4630
4631 rxqueue = dev->_rx;
4632
4633 if (skb_rx_queue_recorded(skb)) {
4634 u16 index = skb_get_rx_queue(skb);
4635
4636 if (unlikely(index >= dev->real_num_rx_queues)) {
4637 WARN_ONCE(dev->real_num_rx_queues > 1,
4638 "%s received packet on queue %u, but number "
4639 "of RX queues is %u\n",
4640 dev->name, index, dev->real_num_rx_queues);
4641
4642 return rxqueue; /* Return first rxqueue */
4643 }
4644 rxqueue += index;
4645 }
4646 return rxqueue;
4647}
4648
4649static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4650 struct xdp_buff *xdp,
4651 struct bpf_prog *xdp_prog)
4652{
4653 void *orig_data, *orig_data_end, *hard_start;
4654 struct netdev_rx_queue *rxqueue;
4655 u32 metalen, act = XDP_DROP;
4656 u32 mac_len, frame_sz;
4657 __be16 orig_eth_type;
4658 struct ethhdr *eth;
4659 bool orig_bcast;
4660 int off;
4661
4662 /* Reinjected packets coming from act_mirred or similar should
4663 * not get XDP generic processing.
4664 */
4665 if (skb_is_redirected(skb))
4666 return XDP_PASS;
4667
4668 /* XDP packets must be linear and must have sufficient headroom
4669 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4670 * native XDP provides, thus we need to do it here as well.
4671 */
4672 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4673 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4674 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4675 int troom = skb->tail + skb->data_len - skb->end;
4676
4677 /* In case we have to go down the path and also linearize,
4678 * then lets do the pskb_expand_head() work just once here.
4679 */
4680 if (pskb_expand_head(skb,
4681 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4682 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4683 goto do_drop;
4684 if (skb_linearize(skb))
4685 goto do_drop;
4686 }
4687
4688 /* The XDP program wants to see the packet starting at the MAC
4689 * header.
4690 */
4691 mac_len = skb->data - skb_mac_header(skb);
4692 hard_start = skb->data - skb_headroom(skb);
4693
4694 /* SKB "head" area always have tailroom for skb_shared_info */
4695 frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4696 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4697
4698 rxqueue = netif_get_rxqueue(skb);
4699 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4700 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4701 skb_headlen(skb) + mac_len, true);
4702
4703 orig_data_end = xdp->data_end;
4704 orig_data = xdp->data;
4705 eth = (struct ethhdr *)xdp->data;
4706 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4707 orig_eth_type = eth->h_proto;
4708
4709 act = bpf_prog_run_xdp(xdp_prog, xdp);
4710
4711 /* check if bpf_xdp_adjust_head was used */
4712 off = xdp->data - orig_data;
4713 if (off) {
4714 if (off > 0)
4715 __skb_pull(skb, off);
4716 else if (off < 0)
4717 __skb_push(skb, -off);
4718
4719 skb->mac_header += off;
4720 skb_reset_network_header(skb);
4721 }
4722
4723 /* check if bpf_xdp_adjust_tail was used */
4724 off = xdp->data_end - orig_data_end;
4725 if (off != 0) {
4726 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4727 skb->len += off; /* positive on grow, negative on shrink */
4728 }
4729
4730 /* check if XDP changed eth hdr such SKB needs update */
4731 eth = (struct ethhdr *)xdp->data;
4732 if ((orig_eth_type != eth->h_proto) ||
4733 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4734 __skb_push(skb, ETH_HLEN);
4735 skb->protocol = eth_type_trans(skb, skb->dev);
4736 }
4737
4738 switch (act) {
4739 case XDP_REDIRECT:
4740 case XDP_TX:
4741 __skb_push(skb, mac_len);
4742 break;
4743 case XDP_PASS:
4744 metalen = xdp->data - xdp->data_meta;
4745 if (metalen)
4746 skb_metadata_set(skb, metalen);
4747 break;
4748 default:
4749 bpf_warn_invalid_xdp_action(act);
4750 fallthrough;
4751 case XDP_ABORTED:
4752 trace_xdp_exception(skb->dev, xdp_prog, act);
4753 fallthrough;
4754 case XDP_DROP:
4755 do_drop:
4756 kfree_skb(skb);
4757 break;
4758 }
4759
4760 return act;
4761}
4762
4763/* When doing generic XDP we have to bypass the qdisc layer and the
4764 * network taps in order to match in-driver-XDP behavior.
4765 */
4766void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4767{
4768 struct net_device *dev = skb->dev;
4769 struct netdev_queue *txq;
4770 bool free_skb = true;
4771 int cpu, rc;
4772
4773 txq = netdev_core_pick_tx(dev, skb, NULL);
4774 cpu = smp_processor_id();
4775 HARD_TX_LOCK(dev, txq, cpu);
4776 if (!netif_xmit_stopped(txq)) {
4777 rc = netdev_start_xmit(skb, dev, txq, 0);
4778 if (dev_xmit_complete(rc))
4779 free_skb = false;
4780 }
4781 HARD_TX_UNLOCK(dev, txq);
4782 if (free_skb) {
4783 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4784 kfree_skb(skb);
4785 }
4786}
4787
4788static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4789
4790int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4791{
4792 if (xdp_prog) {
4793 struct xdp_buff xdp;
4794 u32 act;
4795 int err;
4796
4797 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4798 if (act != XDP_PASS) {
4799 switch (act) {
4800 case XDP_REDIRECT:
4801 err = xdp_do_generic_redirect(skb->dev, skb,
4802 &xdp, xdp_prog);
4803 if (err)
4804 goto out_redir;
4805 break;
4806 case XDP_TX:
4807 generic_xdp_tx(skb, xdp_prog);
4808 break;
4809 }
4810 return XDP_DROP;
4811 }
4812 }
4813 return XDP_PASS;
4814out_redir:
4815 kfree_skb(skb);
4816 return XDP_DROP;
4817}
4818EXPORT_SYMBOL_GPL(do_xdp_generic);
4819
4820static int netif_rx_internal(struct sk_buff *skb)
4821{
4822 int ret;
4823
4824 net_timestamp_check(netdev_tstamp_prequeue, skb);
4825
4826 trace_netif_rx(skb);
4827
4828#ifdef CONFIG_RPS
4829 if (static_branch_unlikely(&rps_needed)) {
4830 struct rps_dev_flow voidflow, *rflow = &voidflow;
4831 int cpu;
4832
4833 preempt_disable();
4834 rcu_read_lock();
4835
4836 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4837 if (cpu < 0)
4838 cpu = smp_processor_id();
4839
4840 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4841
4842 rcu_read_unlock();
4843 preempt_enable();
4844 } else
4845#endif
4846 {
4847 unsigned int qtail;
4848
4849 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4850 put_cpu();
4851 }
4852 return ret;
4853}
4854
4855/**
4856 * netif_rx - post buffer to the network code
4857 * @skb: buffer to post
4858 *
4859 * This function receives a packet from a device driver and queues it for
4860 * the upper (protocol) levels to process. It always succeeds. The buffer
4861 * may be dropped during processing for congestion control or by the
4862 * protocol layers.
4863 *
4864 * return values:
4865 * NET_RX_SUCCESS (no congestion)
4866 * NET_RX_DROP (packet was dropped)
4867 *
4868 */
4869
4870int netif_rx(struct sk_buff *skb)
4871{
4872 int ret;
4873
4874 trace_netif_rx_entry(skb);
4875
4876 ret = netif_rx_internal(skb);
4877 trace_netif_rx_exit(ret);
4878
4879 return ret;
4880}
4881EXPORT_SYMBOL(netif_rx);
4882
4883int netif_rx_ni(struct sk_buff *skb)
4884{
4885 int err;
4886
4887 trace_netif_rx_ni_entry(skb);
4888
4889 preempt_disable();
4890 err = netif_rx_internal(skb);
4891 if (local_softirq_pending())
4892 do_softirq();
4893 preempt_enable();
4894 trace_netif_rx_ni_exit(err);
4895
4896 return err;
4897}
4898EXPORT_SYMBOL(netif_rx_ni);
4899
4900int netif_rx_any_context(struct sk_buff *skb)
4901{
4902 /*
4903 * If invoked from contexts which do not invoke bottom half
4904 * processing either at return from interrupt or when softrqs are
4905 * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4906 * directly.
4907 */
4908 if (in_interrupt())
4909 return netif_rx(skb);
4910 else
4911 return netif_rx_ni(skb);
4912}
4913EXPORT_SYMBOL(netif_rx_any_context);
4914
4915static __latent_entropy void net_tx_action(struct softirq_action *h)
4916{
4917 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4918
4919 if (sd->completion_queue) {
4920 struct sk_buff *clist;
4921
4922 local_irq_disable();
4923 clist = sd->completion_queue;
4924 sd->completion_queue = NULL;
4925 local_irq_enable();
4926
4927 while (clist) {
4928 struct sk_buff *skb = clist;
4929
4930 clist = clist->next;
4931
4932 WARN_ON(refcount_read(&skb->users));
4933 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4934 trace_consume_skb(skb);
4935 else
4936 trace_kfree_skb(skb, net_tx_action);
4937
4938 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4939 __kfree_skb(skb);
4940 else
4941 __kfree_skb_defer(skb);
4942 }
4943 }
4944
4945 if (sd->output_queue) {
4946 struct Qdisc *head;
4947
4948 local_irq_disable();
4949 head = sd->output_queue;
4950 sd->output_queue = NULL;
4951 sd->output_queue_tailp = &sd->output_queue;
4952 local_irq_enable();
4953
4954 while (head) {
4955 struct Qdisc *q = head;
4956 spinlock_t *root_lock = NULL;
4957
4958 head = head->next_sched;
4959
4960 if (!(q->flags & TCQ_F_NOLOCK)) {
4961 root_lock = qdisc_lock(q);
4962 spin_lock(root_lock);
4963 }
4964 /* We need to make sure head->next_sched is read
4965 * before clearing __QDISC_STATE_SCHED
4966 */
4967 smp_mb__before_atomic();
4968 clear_bit(__QDISC_STATE_SCHED, &q->state);
4969 qdisc_run(q);
4970 if (root_lock)
4971 spin_unlock(root_lock);
4972 }
4973 }
4974
4975 xfrm_dev_backlog(sd);
4976}
4977
4978#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4979/* This hook is defined here for ATM LANE */
4980int (*br_fdb_test_addr_hook)(struct net_device *dev,
4981 unsigned char *addr) __read_mostly;
4982EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4983#endif
4984
4985static inline struct sk_buff *
4986sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4987 struct net_device *orig_dev, bool *another)
4988{
4989#ifdef CONFIG_NET_CLS_ACT
4990 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4991 struct tcf_result cl_res;
4992
4993 /* If there's at least one ingress present somewhere (so
4994 * we get here via enabled static key), remaining devices
4995 * that are not configured with an ingress qdisc will bail
4996 * out here.
4997 */
4998 if (!miniq)
4999 return skb;
5000
5001 if (*pt_prev) {
5002 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5003 *pt_prev = NULL;
5004 }
5005
5006 qdisc_skb_cb(skb)->pkt_len = skb->len;
5007 qdisc_skb_cb(skb)->mru = 0;
5008 qdisc_skb_cb(skb)->post_ct = false;
5009 skb->tc_at_ingress = 1;
5010 mini_qdisc_bstats_cpu_update(miniq, skb);
5011
5012 switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
5013 &cl_res, false)) {
5014 case TC_ACT_OK:
5015 case TC_ACT_RECLASSIFY:
5016 skb->tc_index = TC_H_MIN(cl_res.classid);
5017 break;
5018 case TC_ACT_SHOT:
5019 mini_qdisc_qstats_cpu_drop(miniq);
5020 kfree_skb(skb);
5021 return NULL;
5022 case TC_ACT_STOLEN:
5023 case TC_ACT_QUEUED:
5024 case TC_ACT_TRAP:
5025 consume_skb(skb);
5026 return NULL;
5027 case TC_ACT_REDIRECT:
5028 /* skb_mac_header check was done by cls/act_bpf, so
5029 * we can safely push the L2 header back before
5030 * redirecting to another netdev
5031 */
5032 __skb_push(skb, skb->mac_len);
5033 if (skb_do_redirect(skb) == -EAGAIN) {
5034 __skb_pull(skb, skb->mac_len);
5035 *another = true;
5036 break;
5037 }
5038 return NULL;
5039 case TC_ACT_CONSUMED:
5040 return NULL;
5041 default:
5042 break;
5043 }
5044#endif /* CONFIG_NET_CLS_ACT */
5045 return skb;
5046}
5047
5048/**
5049 * netdev_is_rx_handler_busy - check if receive handler is registered
5050 * @dev: device to check
5051 *
5052 * Check if a receive handler is already registered for a given device.
5053 * Return true if there one.
5054 *
5055 * The caller must hold the rtnl_mutex.
5056 */
5057bool netdev_is_rx_handler_busy(struct net_device *dev)
5058{
5059 ASSERT_RTNL();
5060 return dev && rtnl_dereference(dev->rx_handler);
5061}
5062EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5063
5064/**
5065 * netdev_rx_handler_register - register receive handler
5066 * @dev: device to register a handler for
5067 * @rx_handler: receive handler to register
5068 * @rx_handler_data: data pointer that is used by rx handler
5069 *
5070 * Register a receive handler for a device. This handler will then be
5071 * called from __netif_receive_skb. A negative errno code is returned
5072 * on a failure.
5073 *
5074 * The caller must hold the rtnl_mutex.
5075 *
5076 * For a general description of rx_handler, see enum rx_handler_result.
5077 */
5078int netdev_rx_handler_register(struct net_device *dev,
5079 rx_handler_func_t *rx_handler,
5080 void *rx_handler_data)
5081{
5082 if (netdev_is_rx_handler_busy(dev))
5083 return -EBUSY;
5084
5085 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5086 return -EINVAL;
5087
5088 /* Note: rx_handler_data must be set before rx_handler */
5089 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5090 rcu_assign_pointer(dev->rx_handler, rx_handler);
5091
5092 return 0;
5093}
5094EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5095
5096/**
5097 * netdev_rx_handler_unregister - unregister receive handler
5098 * @dev: device to unregister a handler from
5099 *
5100 * Unregister a receive handler from a device.
5101 *
5102 * The caller must hold the rtnl_mutex.
5103 */
5104void netdev_rx_handler_unregister(struct net_device *dev)
5105{
5106
5107 ASSERT_RTNL();
5108 RCU_INIT_POINTER(dev->rx_handler, NULL);
5109 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5110 * section has a guarantee to see a non NULL rx_handler_data
5111 * as well.
5112 */
5113 synchronize_net();
5114 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5115}
5116EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5117
5118/*
5119 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5120 * the special handling of PFMEMALLOC skbs.
5121 */
5122static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5123{
5124 switch (skb->protocol) {
5125 case htons(ETH_P_ARP):
5126 case htons(ETH_P_IP):
5127 case htons(ETH_P_IPV6):
5128 case htons(ETH_P_8021Q):
5129 case htons(ETH_P_8021AD):
5130 return true;
5131 default:
5132 return false;
5133 }
5134}
5135
5136static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5137 int *ret, struct net_device *orig_dev)
5138{
5139 if (nf_hook_ingress_active(skb)) {
5140 int ingress_retval;
5141
5142 if (*pt_prev) {
5143 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5144 *pt_prev = NULL;
5145 }
5146
5147 rcu_read_lock();
5148 ingress_retval = nf_hook_ingress(skb);
5149 rcu_read_unlock();
5150 return ingress_retval;
5151 }
5152 return 0;
5153}
5154
5155static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5156 struct packet_type **ppt_prev)
5157{
5158 struct packet_type *ptype, *pt_prev;
5159 rx_handler_func_t *rx_handler;
5160 struct sk_buff *skb = *pskb;
5161 struct net_device *orig_dev;
5162 bool deliver_exact = false;
5163 int ret = NET_RX_DROP;
5164 __be16 type;
5165
5166 net_timestamp_check(!netdev_tstamp_prequeue, skb);
5167
5168 trace_netif_receive_skb(skb);
5169
5170 orig_dev = skb->dev;
5171
5172 skb_reset_network_header(skb);
5173 if (!skb_transport_header_was_set(skb))
5174 skb_reset_transport_header(skb);
5175 skb_reset_mac_len(skb);
5176
5177 pt_prev = NULL;
5178
5179another_round:
5180 skb->skb_iif = skb->dev->ifindex;
5181
5182 __this_cpu_inc(softnet_data.processed);
5183
5184 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5185 int ret2;
5186
5187 preempt_disable();
5188 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5189 preempt_enable();
5190
5191 if (ret2 != XDP_PASS) {
5192 ret = NET_RX_DROP;
5193 goto out;
5194 }
5195 skb_reset_mac_len(skb);
5196 }
5197
5198 if (eth_type_vlan(skb->protocol)) {
5199 skb = skb_vlan_untag(skb);
5200 if (unlikely(!skb))
5201 goto out;
5202 }
5203
5204 if (skb_skip_tc_classify(skb))
5205 goto skip_classify;
5206
5207 if (pfmemalloc)
5208 goto skip_taps;
5209
5210 list_for_each_entry_rcu(ptype, &ptype_all, list) {
5211 if (pt_prev)
5212 ret = deliver_skb(skb, pt_prev, orig_dev);
5213 pt_prev = ptype;
5214 }
5215
5216 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5217 if (pt_prev)
5218 ret = deliver_skb(skb, pt_prev, orig_dev);
5219 pt_prev = ptype;
5220 }
5221
5222skip_taps:
5223#ifdef CONFIG_NET_INGRESS
5224 if (static_branch_unlikely(&ingress_needed_key)) {
5225 bool another = false;
5226
5227 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5228 &another);
5229 if (another)
5230 goto another_round;
5231 if (!skb)
5232 goto out;
5233
5234 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5235 goto out;
5236 }
5237#endif
5238 skb_reset_redirect(skb);
5239skip_classify:
5240 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5241 goto drop;
5242
5243 if (skb_vlan_tag_present(skb)) {
5244 if (pt_prev) {
5245 ret = deliver_skb(skb, pt_prev, orig_dev);
5246 pt_prev = NULL;
5247 }
5248 if (vlan_do_receive(&skb))
5249 goto another_round;
5250 else if (unlikely(!skb))
5251 goto out;
5252 }
5253
5254 rx_handler = rcu_dereference(skb->dev->rx_handler);
5255 if (rx_handler) {
5256 if (pt_prev) {
5257 ret = deliver_skb(skb, pt_prev, orig_dev);
5258 pt_prev = NULL;
5259 }
5260 switch (rx_handler(&skb)) {
5261 case RX_HANDLER_CONSUMED:
5262 ret = NET_RX_SUCCESS;
5263 goto out;
5264 case RX_HANDLER_ANOTHER:
5265 goto another_round;
5266 case RX_HANDLER_EXACT:
5267 deliver_exact = true;
5268 case RX_HANDLER_PASS:
5269 break;
5270 default:
5271 BUG();
5272 }
5273 }
5274
5275 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5276check_vlan_id:
5277 if (skb_vlan_tag_get_id(skb)) {
5278 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5279 * find vlan device.
5280 */
5281 skb->pkt_type = PACKET_OTHERHOST;
5282 } else if (eth_type_vlan(skb->protocol)) {
5283 /* Outer header is 802.1P with vlan 0, inner header is
5284 * 802.1Q or 802.1AD and vlan_do_receive() above could
5285 * not find vlan dev for vlan id 0.
5286 */
5287 __vlan_hwaccel_clear_tag(skb);
5288 skb = skb_vlan_untag(skb);
5289 if (unlikely(!skb))
5290 goto out;
5291 if (vlan_do_receive(&skb))
5292 /* After stripping off 802.1P header with vlan 0
5293 * vlan dev is found for inner header.
5294 */
5295 goto another_round;
5296 else if (unlikely(!skb))
5297 goto out;
5298 else
5299 /* We have stripped outer 802.1P vlan 0 header.
5300 * But could not find vlan dev.
5301 * check again for vlan id to set OTHERHOST.
5302 */
5303 goto check_vlan_id;
5304 }
5305 /* Note: we might in the future use prio bits
5306 * and set skb->priority like in vlan_do_receive()
5307 * For the time being, just ignore Priority Code Point
5308 */
5309 __vlan_hwaccel_clear_tag(skb);
5310 }
5311
5312 type = skb->protocol;
5313
5314 /* deliver only exact match when indicated */
5315 if (likely(!deliver_exact)) {
5316 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5317 &ptype_base[ntohs(type) &
5318 PTYPE_HASH_MASK]);
5319 }
5320
5321 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5322 &orig_dev->ptype_specific);
5323
5324 if (unlikely(skb->dev != orig_dev)) {
5325 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5326 &skb->dev->ptype_specific);
5327 }
5328
5329 if (pt_prev) {
5330 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5331 goto drop;
5332 *ppt_prev = pt_prev;
5333 } else {
5334drop:
5335 if (!deliver_exact)
5336 atomic_long_inc(&skb->dev->rx_dropped);
5337 else
5338 atomic_long_inc(&skb->dev->rx_nohandler);
5339 kfree_skb(skb);
5340 /* Jamal, now you will not able to escape explaining
5341 * me how you were going to use this. :-)
5342 */
5343 ret = NET_RX_DROP;
5344 }
5345
5346out:
5347 /* The invariant here is that if *ppt_prev is not NULL
5348 * then skb should also be non-NULL.
5349 *
5350 * Apparently *ppt_prev assignment above holds this invariant due to
5351 * skb dereferencing near it.
5352 */
5353 *pskb = skb;
5354 return ret;
5355}
5356
5357static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5358{
5359 struct net_device *orig_dev = skb->dev;
5360 struct packet_type *pt_prev = NULL;
5361 int ret;
5362
5363 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5364 if (pt_prev)
5365 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5366 skb->dev, pt_prev, orig_dev);
5367 return ret;
5368}
5369
5370/**
5371 * netif_receive_skb_core - special purpose version of netif_receive_skb
5372 * @skb: buffer to process
5373 *
5374 * More direct receive version of netif_receive_skb(). It should
5375 * only be used by callers that have a need to skip RPS and Generic XDP.
5376 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5377 *
5378 * This function may only be called from softirq context and interrupts
5379 * should be enabled.
5380 *
5381 * Return values (usually ignored):
5382 * NET_RX_SUCCESS: no congestion
5383 * NET_RX_DROP: packet was dropped
5384 */
5385int netif_receive_skb_core(struct sk_buff *skb)
5386{
5387 int ret;
5388
5389 rcu_read_lock();
5390 ret = __netif_receive_skb_one_core(skb, false);
5391 rcu_read_unlock();
5392
5393 return ret;
5394}
5395EXPORT_SYMBOL(netif_receive_skb_core);
5396
5397static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5398 struct packet_type *pt_prev,
5399 struct net_device *orig_dev)
5400{
5401 struct sk_buff *skb, *next;
5402
5403 if (!pt_prev)
5404 return;
5405 if (list_empty(head))
5406 return;
5407 if (pt_prev->list_func != NULL)
5408 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5409 ip_list_rcv, head, pt_prev, orig_dev);
5410 else
5411 list_for_each_entry_safe(skb, next, head, list) {
5412 skb_list_del_init(skb);
5413 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5414 }
5415}
5416
5417static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5418{
5419 /* Fast-path assumptions:
5420 * - There is no RX handler.
5421 * - Only one packet_type matches.
5422 * If either of these fails, we will end up doing some per-packet
5423 * processing in-line, then handling the 'last ptype' for the whole
5424 * sublist. This can't cause out-of-order delivery to any single ptype,
5425 * because the 'last ptype' must be constant across the sublist, and all
5426 * other ptypes are handled per-packet.
5427 */
5428 /* Current (common) ptype of sublist */
5429 struct packet_type *pt_curr = NULL;
5430 /* Current (common) orig_dev of sublist */
5431 struct net_device *od_curr = NULL;
5432 struct list_head sublist;
5433 struct sk_buff *skb, *next;
5434
5435 INIT_LIST_HEAD(&sublist);
5436 list_for_each_entry_safe(skb, next, head, list) {
5437 struct net_device *orig_dev = skb->dev;
5438 struct packet_type *pt_prev = NULL;
5439
5440 skb_list_del_init(skb);
5441 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5442 if (!pt_prev)
5443 continue;
5444 if (pt_curr != pt_prev || od_curr != orig_dev) {
5445 /* dispatch old sublist */
5446 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5447 /* start new sublist */
5448 INIT_LIST_HEAD(&sublist);
5449 pt_curr = pt_prev;
5450 od_curr = orig_dev;
5451 }
5452 list_add_tail(&skb->list, &sublist);
5453 }
5454
5455 /* dispatch final sublist */
5456 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5457}
5458
5459static int __netif_receive_skb(struct sk_buff *skb)
5460{
5461 int ret;
5462
5463 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5464 unsigned int noreclaim_flag;
5465
5466 /*
5467 * PFMEMALLOC skbs are special, they should
5468 * - be delivered to SOCK_MEMALLOC sockets only
5469 * - stay away from userspace
5470 * - have bounded memory usage
5471 *
5472 * Use PF_MEMALLOC as this saves us from propagating the allocation
5473 * context down to all allocation sites.
5474 */
5475 noreclaim_flag = memalloc_noreclaim_save();
5476 ret = __netif_receive_skb_one_core(skb, true);
5477 memalloc_noreclaim_restore(noreclaim_flag);
5478 } else
5479 ret = __netif_receive_skb_one_core(skb, false);
5480
5481 return ret;
5482}
5483
5484static void __netif_receive_skb_list(struct list_head *head)
5485{
5486 unsigned long noreclaim_flag = 0;
5487 struct sk_buff *skb, *next;
5488 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5489
5490 list_for_each_entry_safe(skb, next, head, list) {
5491 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5492 struct list_head sublist;
5493
5494 /* Handle the previous sublist */
5495 list_cut_before(&sublist, head, &skb->list);
5496 if (!list_empty(&sublist))
5497 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5498 pfmemalloc = !pfmemalloc;
5499 /* See comments in __netif_receive_skb */
5500 if (pfmemalloc)
5501 noreclaim_flag = memalloc_noreclaim_save();
5502 else
5503 memalloc_noreclaim_restore(noreclaim_flag);
5504 }
5505 }
5506 /* Handle the remaining sublist */
5507 if (!list_empty(head))
5508 __netif_receive_skb_list_core(head, pfmemalloc);
5509 /* Restore pflags */
5510 if (pfmemalloc)
5511 memalloc_noreclaim_restore(noreclaim_flag);
5512}
5513
5514static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5515{
5516 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5517 struct bpf_prog *new = xdp->prog;
5518 int ret = 0;
5519
5520 if (new) {
5521 u32 i;
5522
5523 mutex_lock(&new->aux->used_maps_mutex);
5524
5525 /* generic XDP does not work with DEVMAPs that can
5526 * have a bpf_prog installed on an entry
5527 */
5528 for (i = 0; i < new->aux->used_map_cnt; i++) {
5529 if (dev_map_can_have_prog(new->aux->used_maps[i]) ||
5530 cpu_map_prog_allowed(new->aux->used_maps[i])) {
5531 mutex_unlock(&new->aux->used_maps_mutex);
5532 return -EINVAL;
5533 }
5534 }
5535
5536 mutex_unlock(&new->aux->used_maps_mutex);
5537 }
5538
5539 switch (xdp->command) {
5540 case XDP_SETUP_PROG:
5541 rcu_assign_pointer(dev->xdp_prog, new);
5542 if (old)
5543 bpf_prog_put(old);
5544
5545 if (old && !new) {
5546 static_branch_dec(&generic_xdp_needed_key);
5547 } else if (new && !old) {
5548 static_branch_inc(&generic_xdp_needed_key);
5549 dev_disable_lro(dev);
5550 dev_disable_gro_hw(dev);
5551 }
5552 break;
5553
5554 default:
5555 ret = -EINVAL;
5556 break;
5557 }
5558
5559 return ret;
5560}
5561
5562static int netif_receive_skb_internal(struct sk_buff *skb)
5563{
5564 int ret;
5565
5566 net_timestamp_check(netdev_tstamp_prequeue, skb);
5567
5568 if (skb_defer_rx_timestamp(skb))
5569 return NET_RX_SUCCESS;
5570
5571 rcu_read_lock();
5572#ifdef CONFIG_RPS
5573 if (static_branch_unlikely(&rps_needed)) {
5574 struct rps_dev_flow voidflow, *rflow = &voidflow;
5575 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5576
5577 if (cpu >= 0) {
5578 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5579 rcu_read_unlock();
5580 return ret;
5581 }
5582 }
5583#endif
5584 ret = __netif_receive_skb(skb);
5585 rcu_read_unlock();
5586 return ret;
5587}
5588
5589static void netif_receive_skb_list_internal(struct list_head *head)
5590{
5591 struct sk_buff *skb, *next;
5592 struct list_head sublist;
5593
5594 INIT_LIST_HEAD(&sublist);
5595 list_for_each_entry_safe(skb, next, head, list) {
5596 net_timestamp_check(netdev_tstamp_prequeue, skb);
5597 skb_list_del_init(skb);
5598 if (!skb_defer_rx_timestamp(skb))
5599 list_add_tail(&skb->list, &sublist);
5600 }
5601 list_splice_init(&sublist, head);
5602
5603 rcu_read_lock();
5604#ifdef CONFIG_RPS
5605 if (static_branch_unlikely(&rps_needed)) {
5606 list_for_each_entry_safe(skb, next, head, list) {
5607 struct rps_dev_flow voidflow, *rflow = &voidflow;
5608 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5609
5610 if (cpu >= 0) {
5611 /* Will be handled, remove from list */
5612 skb_list_del_init(skb);
5613 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5614 }
5615 }
5616 }
5617#endif
5618 __netif_receive_skb_list(head);
5619 rcu_read_unlock();
5620}
5621
5622/**
5623 * netif_receive_skb - process receive buffer from network
5624 * @skb: buffer to process
5625 *
5626 * netif_receive_skb() is the main receive data processing function.
5627 * It always succeeds. The buffer may be dropped during processing
5628 * for congestion control or by the protocol layers.
5629 *
5630 * This function may only be called from softirq context and interrupts
5631 * should be enabled.
5632 *
5633 * Return values (usually ignored):
5634 * NET_RX_SUCCESS: no congestion
5635 * NET_RX_DROP: packet was dropped
5636 */
5637int netif_receive_skb(struct sk_buff *skb)
5638{
5639 int ret;
5640
5641 trace_netif_receive_skb_entry(skb);
5642
5643 ret = netif_receive_skb_internal(skb);
5644 trace_netif_receive_skb_exit(ret);
5645
5646 return ret;
5647}
5648EXPORT_SYMBOL(netif_receive_skb);
5649
5650/**
5651 * netif_receive_skb_list - process many receive buffers from network
5652 * @head: list of skbs to process.
5653 *
5654 * Since return value of netif_receive_skb() is normally ignored, and
5655 * wouldn't be meaningful for a list, this function returns void.
5656 *
5657 * This function may only be called from softirq context and interrupts
5658 * should be enabled.
5659 */
5660void netif_receive_skb_list(struct list_head *head)
5661{
5662 struct sk_buff *skb;
5663
5664 if (list_empty(head))
5665 return;
5666 if (trace_netif_receive_skb_list_entry_enabled()) {
5667 list_for_each_entry(skb, head, list)
5668 trace_netif_receive_skb_list_entry(skb);
5669 }
5670 netif_receive_skb_list_internal(head);
5671 trace_netif_receive_skb_list_exit(0);
5672}
5673EXPORT_SYMBOL(netif_receive_skb_list);
5674
5675static DEFINE_PER_CPU(struct work_struct, flush_works);
5676
5677/* Network device is going away, flush any packets still pending */
5678static void flush_backlog(struct work_struct *work)
5679{
5680 struct sk_buff *skb, *tmp;
5681 struct softnet_data *sd;
5682
5683 local_bh_disable();
5684 sd = this_cpu_ptr(&softnet_data);
5685
5686 local_irq_disable();
5687 rps_lock(sd);
5688 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5689 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5690 __skb_unlink(skb, &sd->input_pkt_queue);
5691 dev_kfree_skb_irq(skb);
5692 input_queue_head_incr(sd);
5693 }
5694 }
5695 rps_unlock(sd);
5696 local_irq_enable();
5697
5698 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5699 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5700 __skb_unlink(skb, &sd->process_queue);
5701 kfree_skb(skb);
5702 input_queue_head_incr(sd);
5703 }
5704 }
5705 local_bh_enable();
5706}
5707
5708static bool flush_required(int cpu)
5709{
5710#if IS_ENABLED(CONFIG_RPS)
5711 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5712 bool do_flush;
5713
5714 local_irq_disable();
5715 rps_lock(sd);
5716
5717 /* as insertion into process_queue happens with the rps lock held,
5718 * process_queue access may race only with dequeue
5719 */
5720 do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5721 !skb_queue_empty_lockless(&sd->process_queue);
5722 rps_unlock(sd);
5723 local_irq_enable();
5724
5725 return do_flush;
5726#endif
5727 /* without RPS we can't safely check input_pkt_queue: during a
5728 * concurrent remote skb_queue_splice() we can detect as empty both
5729 * input_pkt_queue and process_queue even if the latter could end-up
5730 * containing a lot of packets.
5731 */
5732 return true;
5733}
5734
5735static void flush_all_backlogs(void)
5736{
5737 static cpumask_t flush_cpus;
5738 unsigned int cpu;
5739
5740 /* since we are under rtnl lock protection we can use static data
5741 * for the cpumask and avoid allocating on stack the possibly
5742 * large mask
5743 */
5744 ASSERT_RTNL();
5745
5746 get_online_cpus();
5747
5748 cpumask_clear(&flush_cpus);
5749 for_each_online_cpu(cpu) {
5750 if (flush_required(cpu)) {
5751 queue_work_on(cpu, system_highpri_wq,
5752 per_cpu_ptr(&flush_works, cpu));
5753 cpumask_set_cpu(cpu, &flush_cpus);
5754 }
5755 }
5756
5757 /* we can have in flight packet[s] on the cpus we are not flushing,
5758 * synchronize_net() in unregister_netdevice_many() will take care of
5759 * them
5760 */
5761 for_each_cpu(cpu, &flush_cpus)
5762 flush_work(per_cpu_ptr(&flush_works, cpu));
5763
5764 put_online_cpus();
5765}
5766
5767/* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5768static void gro_normal_list(struct napi_struct *napi)
5769{
5770 if (!napi->rx_count)
5771 return;
5772 netif_receive_skb_list_internal(&napi->rx_list);
5773 INIT_LIST_HEAD(&napi->rx_list);
5774 napi->rx_count = 0;
5775}
5776
5777/* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5778 * pass the whole batch up to the stack.
5779 */
5780static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs)
5781{
5782 list_add_tail(&skb->list, &napi->rx_list);
5783 napi->rx_count += segs;
5784 if (napi->rx_count >= gro_normal_batch)
5785 gro_normal_list(napi);
5786}
5787
5788static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5789{
5790 struct packet_offload *ptype;
5791 __be16 type = skb->protocol;
5792 struct list_head *head = &offload_base;
5793 int err = -ENOENT;
5794
5795 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5796
5797 if (NAPI_GRO_CB(skb)->count == 1) {
5798 skb_shinfo(skb)->gso_size = 0;
5799 goto out;
5800 }
5801
5802 rcu_read_lock();
5803 list_for_each_entry_rcu(ptype, head, list) {
5804 if (ptype->type != type || !ptype->callbacks.gro_complete)
5805 continue;
5806
5807 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5808 ipv6_gro_complete, inet_gro_complete,
5809 skb, 0);
5810 break;
5811 }
5812 rcu_read_unlock();
5813
5814 if (err) {
5815 WARN_ON(&ptype->list == head);
5816 kfree_skb(skb);
5817 return NET_RX_SUCCESS;
5818 }
5819
5820out:
5821 gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count);
5822 return NET_RX_SUCCESS;
5823}
5824
5825static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5826 bool flush_old)
5827{
5828 struct list_head *head = &napi->gro_hash[index].list;
5829 struct sk_buff *skb, *p;
5830
5831 list_for_each_entry_safe_reverse(skb, p, head, list) {
5832 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5833 return;
5834 skb_list_del_init(skb);
5835 napi_gro_complete(napi, skb);
5836 napi->gro_hash[index].count--;
5837 }
5838
5839 if (!napi->gro_hash[index].count)
5840 __clear_bit(index, &napi->gro_bitmask);
5841}
5842
5843/* napi->gro_hash[].list contains packets ordered by age.
5844 * youngest packets at the head of it.
5845 * Complete skbs in reverse order to reduce latencies.
5846 */
5847void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5848{
5849 unsigned long bitmask = napi->gro_bitmask;
5850 unsigned int i, base = ~0U;
5851
5852 while ((i = ffs(bitmask)) != 0) {
5853 bitmask >>= i;
5854 base += i;
5855 __napi_gro_flush_chain(napi, base, flush_old);
5856 }
5857}
5858EXPORT_SYMBOL(napi_gro_flush);
5859
5860static struct list_head *gro_list_prepare(struct napi_struct *napi,
5861 struct sk_buff *skb)
5862{
5863 unsigned int maclen = skb->dev->hard_header_len;
5864 u32 hash = skb_get_hash_raw(skb);
5865 struct list_head *head;
5866 struct sk_buff *p;
5867
5868 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5869 list_for_each_entry(p, head, list) {
5870 unsigned long diffs;
5871
5872 NAPI_GRO_CB(p)->flush = 0;
5873
5874 if (hash != skb_get_hash_raw(p)) {
5875 NAPI_GRO_CB(p)->same_flow = 0;
5876 continue;
5877 }
5878
5879 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5880 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5881 if (skb_vlan_tag_present(p))
5882 diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5883 diffs |= skb_metadata_dst_cmp(p, skb);
5884 diffs |= skb_metadata_differs(p, skb);
5885 if (maclen == ETH_HLEN)
5886 diffs |= compare_ether_header(skb_mac_header(p),
5887 skb_mac_header(skb));
5888 else if (!diffs)
5889 diffs = memcmp(skb_mac_header(p),
5890 skb_mac_header(skb),
5891 maclen);
5892 NAPI_GRO_CB(p)->same_flow = !diffs;
5893 }
5894
5895 return head;
5896}
5897
5898static void skb_gro_reset_offset(struct sk_buff *skb)
5899{
5900 const struct skb_shared_info *pinfo = skb_shinfo(skb);
5901 const skb_frag_t *frag0 = &pinfo->frags[0];
5902
5903 NAPI_GRO_CB(skb)->data_offset = 0;
5904 NAPI_GRO_CB(skb)->frag0 = NULL;
5905 NAPI_GRO_CB(skb)->frag0_len = 0;
5906
5907 if (!skb_headlen(skb) && pinfo->nr_frags &&
5908 !PageHighMem(skb_frag_page(frag0))) {
5909 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5910 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5911 skb_frag_size(frag0),
5912 skb->end - skb->tail);
5913 }
5914}
5915
5916static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5917{
5918 struct skb_shared_info *pinfo = skb_shinfo(skb);
5919
5920 BUG_ON(skb->end - skb->tail < grow);
5921
5922 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5923
5924 skb->data_len -= grow;
5925 skb->tail += grow;
5926
5927 skb_frag_off_add(&pinfo->frags[0], grow);
5928 skb_frag_size_sub(&pinfo->frags[0], grow);
5929
5930 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5931 skb_frag_unref(skb, 0);
5932 memmove(pinfo->frags, pinfo->frags + 1,
5933 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5934 }
5935}
5936
5937static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
5938{
5939 struct sk_buff *oldest;
5940
5941 oldest = list_last_entry(head, struct sk_buff, list);
5942
5943 /* We are called with head length >= MAX_GRO_SKBS, so this is
5944 * impossible.
5945 */
5946 if (WARN_ON_ONCE(!oldest))
5947 return;
5948
5949 /* Do not adjust napi->gro_hash[].count, caller is adding a new
5950 * SKB to the chain.
5951 */
5952 skb_list_del_init(oldest);
5953 napi_gro_complete(napi, oldest);
5954}
5955
5956static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5957{
5958 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5959 struct list_head *head = &offload_base;
5960 struct packet_offload *ptype;
5961 __be16 type = skb->protocol;
5962 struct list_head *gro_head;
5963 struct sk_buff *pp = NULL;
5964 enum gro_result ret;
5965 int same_flow;
5966 int grow;
5967
5968 if (netif_elide_gro(skb->dev))
5969 goto normal;
5970
5971 gro_head = gro_list_prepare(napi, skb);
5972
5973 rcu_read_lock();
5974 list_for_each_entry_rcu(ptype, head, list) {
5975 if (ptype->type != type || !ptype->callbacks.gro_receive)
5976 continue;
5977
5978 skb_set_network_header(skb, skb_gro_offset(skb));
5979 skb_reset_mac_len(skb);
5980 NAPI_GRO_CB(skb)->same_flow = 0;
5981 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5982 NAPI_GRO_CB(skb)->free = 0;
5983 NAPI_GRO_CB(skb)->encap_mark = 0;
5984 NAPI_GRO_CB(skb)->recursion_counter = 0;
5985 NAPI_GRO_CB(skb)->is_fou = 0;
5986 NAPI_GRO_CB(skb)->is_atomic = 1;
5987 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5988
5989 /* Setup for GRO checksum validation */
5990 switch (skb->ip_summed) {
5991 case CHECKSUM_COMPLETE:
5992 NAPI_GRO_CB(skb)->csum = skb->csum;
5993 NAPI_GRO_CB(skb)->csum_valid = 1;
5994 NAPI_GRO_CB(skb)->csum_cnt = 0;
5995 break;
5996 case CHECKSUM_UNNECESSARY:
5997 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5998 NAPI_GRO_CB(skb)->csum_valid = 0;
5999 break;
6000 default:
6001 NAPI_GRO_CB(skb)->csum_cnt = 0;
6002 NAPI_GRO_CB(skb)->csum_valid = 0;
6003 }
6004
6005 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
6006 ipv6_gro_receive, inet_gro_receive,
6007 gro_head, skb);
6008 break;
6009 }
6010 rcu_read_unlock();
6011
6012 if (&ptype->list == head)
6013 goto normal;
6014
6015 if (PTR_ERR(pp) == -EINPROGRESS) {
6016 ret = GRO_CONSUMED;
6017 goto ok;
6018 }
6019
6020 same_flow = NAPI_GRO_CB(skb)->same_flow;
6021 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
6022
6023 if (pp) {
6024 skb_list_del_init(pp);
6025 napi_gro_complete(napi, pp);
6026 napi->gro_hash[hash].count--;
6027 }
6028
6029 if (same_flow)
6030 goto ok;
6031
6032 if (NAPI_GRO_CB(skb)->flush)
6033 goto normal;
6034
6035 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
6036 gro_flush_oldest(napi, gro_head);
6037 } else {
6038 napi->gro_hash[hash].count++;
6039 }
6040 NAPI_GRO_CB(skb)->count = 1;
6041 NAPI_GRO_CB(skb)->age = jiffies;
6042 NAPI_GRO_CB(skb)->last = skb;
6043 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
6044 list_add(&skb->list, gro_head);
6045 ret = GRO_HELD;
6046
6047pull:
6048 grow = skb_gro_offset(skb) - skb_headlen(skb);
6049 if (grow > 0)
6050 gro_pull_from_frag0(skb, grow);
6051ok:
6052 if (napi->gro_hash[hash].count) {
6053 if (!test_bit(hash, &napi->gro_bitmask))
6054 __set_bit(hash, &napi->gro_bitmask);
6055 } else if (test_bit(hash, &napi->gro_bitmask)) {
6056 __clear_bit(hash, &napi->gro_bitmask);
6057 }
6058
6059 return ret;
6060
6061normal:
6062 ret = GRO_NORMAL;
6063 goto pull;
6064}
6065
6066struct packet_offload *gro_find_receive_by_type(__be16 type)
6067{
6068 struct list_head *offload_head = &offload_base;
6069 struct packet_offload *ptype;
6070
6071 list_for_each_entry_rcu(ptype, offload_head, list) {
6072 if (ptype->type != type || !ptype->callbacks.gro_receive)
6073 continue;
6074 return ptype;
6075 }
6076 return NULL;
6077}
6078EXPORT_SYMBOL(gro_find_receive_by_type);
6079
6080struct packet_offload *gro_find_complete_by_type(__be16 type)
6081{
6082 struct list_head *offload_head = &offload_base;
6083 struct packet_offload *ptype;
6084
6085 list_for_each_entry_rcu(ptype, offload_head, list) {
6086 if (ptype->type != type || !ptype->callbacks.gro_complete)
6087 continue;
6088 return ptype;
6089 }
6090 return NULL;
6091}
6092EXPORT_SYMBOL(gro_find_complete_by_type);
6093
6094static gro_result_t napi_skb_finish(struct napi_struct *napi,
6095 struct sk_buff *skb,
6096 gro_result_t ret)
6097{
6098 switch (ret) {
6099 case GRO_NORMAL:
6100 gro_normal_one(napi, skb, 1);
6101 break;
6102
6103 case GRO_MERGED_FREE:
6104 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6105 napi_skb_free_stolen_head(skb);
6106 else
6107 __kfree_skb_defer(skb);
6108 break;
6109
6110 case GRO_HELD:
6111 case GRO_MERGED:
6112 case GRO_CONSUMED:
6113 break;
6114 }
6115
6116 return ret;
6117}
6118
6119gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6120{
6121 gro_result_t ret;
6122
6123 skb_mark_napi_id(skb, napi);
6124 trace_napi_gro_receive_entry(skb);
6125
6126 skb_gro_reset_offset(skb);
6127
6128 ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6129 trace_napi_gro_receive_exit(ret);
6130
6131 return ret;
6132}
6133EXPORT_SYMBOL(napi_gro_receive);
6134
6135static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6136{
6137 if (unlikely(skb->pfmemalloc)) {
6138 consume_skb(skb);
6139 return;
6140 }
6141 __skb_pull(skb, skb_headlen(skb));
6142 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
6143 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6144 __vlan_hwaccel_clear_tag(skb);
6145 skb->dev = napi->dev;
6146 skb->skb_iif = 0;
6147
6148 /* eth_type_trans() assumes pkt_type is PACKET_HOST */
6149 skb->pkt_type = PACKET_HOST;
6150
6151 skb->encapsulation = 0;
6152 skb_shinfo(skb)->gso_type = 0;
6153 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6154 skb_ext_reset(skb);
6155
6156 napi->skb = skb;
6157}
6158
6159struct sk_buff *napi_get_frags(struct napi_struct *napi)
6160{
6161 struct sk_buff *skb = napi->skb;
6162
6163 if (!skb) {
6164 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6165 if (skb) {
6166 napi->skb = skb;
6167 skb_mark_napi_id(skb, napi);
6168 }
6169 }
6170 return skb;
6171}
6172EXPORT_SYMBOL(napi_get_frags);
6173
6174static gro_result_t napi_frags_finish(struct napi_struct *napi,
6175 struct sk_buff *skb,
6176 gro_result_t ret)
6177{
6178 switch (ret) {
6179 case GRO_NORMAL:
6180 case GRO_HELD:
6181 __skb_push(skb, ETH_HLEN);
6182 skb->protocol = eth_type_trans(skb, skb->dev);
6183 if (ret == GRO_NORMAL)
6184 gro_normal_one(napi, skb, 1);
6185 break;
6186
6187 case GRO_MERGED_FREE:
6188 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6189 napi_skb_free_stolen_head(skb);
6190 else
6191 napi_reuse_skb(napi, skb);
6192 break;
6193
6194 case GRO_MERGED:
6195 case GRO_CONSUMED:
6196 break;
6197 }
6198
6199 return ret;
6200}
6201
6202/* Upper GRO stack assumes network header starts at gro_offset=0
6203 * Drivers could call both napi_gro_frags() and napi_gro_receive()
6204 * We copy ethernet header into skb->data to have a common layout.
6205 */
6206static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6207{
6208 struct sk_buff *skb = napi->skb;
6209 const struct ethhdr *eth;
6210 unsigned int hlen = sizeof(*eth);
6211
6212 napi->skb = NULL;
6213
6214 skb_reset_mac_header(skb);
6215 skb_gro_reset_offset(skb);
6216
6217 if (unlikely(skb_gro_header_hard(skb, hlen))) {
6218 eth = skb_gro_header_slow(skb, hlen, 0);
6219 if (unlikely(!eth)) {
6220 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6221 __func__, napi->dev->name);
6222 napi_reuse_skb(napi, skb);
6223 return NULL;
6224 }
6225 } else {
6226 eth = (const struct ethhdr *)skb->data;
6227 gro_pull_from_frag0(skb, hlen);
6228 NAPI_GRO_CB(skb)->frag0 += hlen;
6229 NAPI_GRO_CB(skb)->frag0_len -= hlen;
6230 }
6231 __skb_pull(skb, hlen);
6232
6233 /*
6234 * This works because the only protocols we care about don't require
6235 * special handling.
6236 * We'll fix it up properly in napi_frags_finish()
6237 */
6238 skb->protocol = eth->h_proto;
6239
6240 return skb;
6241}
6242
6243gro_result_t napi_gro_frags(struct napi_struct *napi)
6244{
6245 gro_result_t ret;
6246 struct sk_buff *skb = napi_frags_skb(napi);
6247
6248 trace_napi_gro_frags_entry(skb);
6249
6250 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6251 trace_napi_gro_frags_exit(ret);
6252
6253 return ret;
6254}
6255EXPORT_SYMBOL(napi_gro_frags);
6256
6257/* Compute the checksum from gro_offset and return the folded value
6258 * after adding in any pseudo checksum.
6259 */
6260__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6261{
6262 __wsum wsum;
6263 __sum16 sum;
6264
6265 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6266
6267 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6268 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6269 /* See comments in __skb_checksum_complete(). */
6270 if (likely(!sum)) {
6271 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6272 !skb->csum_complete_sw)
6273 netdev_rx_csum_fault(skb->dev, skb);
6274 }
6275
6276 NAPI_GRO_CB(skb)->csum = wsum;
6277 NAPI_GRO_CB(skb)->csum_valid = 1;
6278
6279 return sum;
6280}
6281EXPORT_SYMBOL(__skb_gro_checksum_complete);
6282
6283static void net_rps_send_ipi(struct softnet_data *remsd)
6284{
6285#ifdef CONFIG_RPS
6286 while (remsd) {
6287 struct softnet_data *next = remsd->rps_ipi_next;
6288
6289 if (cpu_online(remsd->cpu))
6290 smp_call_function_single_async(remsd->cpu, &remsd->csd);
6291 remsd = next;
6292 }
6293#endif
6294}
6295
6296/*
6297 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6298 * Note: called with local irq disabled, but exits with local irq enabled.
6299 */
6300static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6301{
6302#ifdef CONFIG_RPS
6303 struct softnet_data *remsd = sd->rps_ipi_list;
6304
6305 if (remsd) {
6306 sd->rps_ipi_list = NULL;
6307
6308 local_irq_enable();
6309
6310 /* Send pending IPI's to kick RPS processing on remote cpus. */
6311 net_rps_send_ipi(remsd);
6312 } else
6313#endif
6314 local_irq_enable();
6315}
6316
6317static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6318{
6319#ifdef CONFIG_RPS
6320 return sd->rps_ipi_list != NULL;
6321#else
6322 return false;
6323#endif
6324}
6325
6326static int process_backlog(struct napi_struct *napi, int quota)
6327{
6328 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6329 bool again = true;
6330 int work = 0;
6331
6332 /* Check if we have pending ipi, its better to send them now,
6333 * not waiting net_rx_action() end.
6334 */
6335 if (sd_has_rps_ipi_waiting(sd)) {
6336 local_irq_disable();
6337 net_rps_action_and_irq_enable(sd);
6338 }
6339
6340 napi->weight = dev_rx_weight;
6341 while (again) {
6342 struct sk_buff *skb;
6343
6344 while ((skb = __skb_dequeue(&sd->process_queue))) {
6345 rcu_read_lock();
6346 __netif_receive_skb(skb);
6347 rcu_read_unlock();
6348 input_queue_head_incr(sd);
6349 if (++work >= quota)
6350 return work;
6351
6352 }
6353
6354 local_irq_disable();
6355 rps_lock(sd);
6356 if (skb_queue_empty(&sd->input_pkt_queue)) {
6357 /*
6358 * Inline a custom version of __napi_complete().
6359 * only current cpu owns and manipulates this napi,
6360 * and NAPI_STATE_SCHED is the only possible flag set
6361 * on backlog.
6362 * We can use a plain write instead of clear_bit(),
6363 * and we dont need an smp_mb() memory barrier.
6364 */
6365 napi->state = 0;
6366 again = false;
6367 } else {
6368 skb_queue_splice_tail_init(&sd->input_pkt_queue,
6369 &sd->process_queue);
6370 }
6371 rps_unlock(sd);
6372 local_irq_enable();
6373 }
6374
6375 return work;
6376}
6377
6378/**
6379 * __napi_schedule - schedule for receive
6380 * @n: entry to schedule
6381 *
6382 * The entry's receive function will be scheduled to run.
6383 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6384 */
6385void __napi_schedule(struct napi_struct *n)
6386{
6387 unsigned long flags;
6388
6389 local_irq_save(flags);
6390 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6391 local_irq_restore(flags);
6392}
6393EXPORT_SYMBOL(__napi_schedule);
6394
6395/**
6396 * napi_schedule_prep - check if napi can be scheduled
6397 * @n: napi context
6398 *
6399 * Test if NAPI routine is already running, and if not mark
6400 * it as running. This is used as a condition variable to
6401 * insure only one NAPI poll instance runs. We also make
6402 * sure there is no pending NAPI disable.
6403 */
6404bool napi_schedule_prep(struct napi_struct *n)
6405{
6406 unsigned long val, new;
6407
6408 do {
6409 val = READ_ONCE(n->state);
6410 if (unlikely(val & NAPIF_STATE_DISABLE))
6411 return false;
6412 new = val | NAPIF_STATE_SCHED;
6413
6414 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6415 * This was suggested by Alexander Duyck, as compiler
6416 * emits better code than :
6417 * if (val & NAPIF_STATE_SCHED)
6418 * new |= NAPIF_STATE_MISSED;
6419 */
6420 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6421 NAPIF_STATE_MISSED;
6422 } while (cmpxchg(&n->state, val, new) != val);
6423
6424 return !(val & NAPIF_STATE_SCHED);
6425}
6426EXPORT_SYMBOL(napi_schedule_prep);
6427
6428/**
6429 * __napi_schedule_irqoff - schedule for receive
6430 * @n: entry to schedule
6431 *
6432 * Variant of __napi_schedule() assuming hard irqs are masked
6433 */
6434void __napi_schedule_irqoff(struct napi_struct *n)
6435{
6436 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6437}
6438EXPORT_SYMBOL(__napi_schedule_irqoff);
6439
6440bool napi_complete_done(struct napi_struct *n, int work_done)
6441{
6442 unsigned long flags, val, new, timeout = 0;
6443 bool ret = true;
6444
6445 /*
6446 * 1) Don't let napi dequeue from the cpu poll list
6447 * just in case its running on a different cpu.
6448 * 2) If we are busy polling, do nothing here, we have
6449 * the guarantee we will be called later.
6450 */
6451 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6452 NAPIF_STATE_IN_BUSY_POLL)))
6453 return false;
6454
6455 if (work_done) {
6456 if (n->gro_bitmask)
6457 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6458 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6459 }
6460 if (n->defer_hard_irqs_count > 0) {
6461 n->defer_hard_irqs_count--;
6462 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6463 if (timeout)
6464 ret = false;
6465 }
6466 if (n->gro_bitmask) {
6467 /* When the NAPI instance uses a timeout and keeps postponing
6468 * it, we need to bound somehow the time packets are kept in
6469 * the GRO layer
6470 */
6471 napi_gro_flush(n, !!timeout);
6472 }
6473
6474 gro_normal_list(n);
6475
6476 if (unlikely(!list_empty(&n->poll_list))) {
6477 /* If n->poll_list is not empty, we need to mask irqs */
6478 local_irq_save(flags);
6479 list_del_init(&n->poll_list);
6480 local_irq_restore(flags);
6481 }
6482
6483 do {
6484 val = READ_ONCE(n->state);
6485
6486 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6487
6488 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6489 NAPIF_STATE_PREFER_BUSY_POLL);
6490
6491 /* If STATE_MISSED was set, leave STATE_SCHED set,
6492 * because we will call napi->poll() one more time.
6493 * This C code was suggested by Alexander Duyck to help gcc.
6494 */
6495 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6496 NAPIF_STATE_SCHED;
6497 } while (cmpxchg(&n->state, val, new) != val);
6498
6499 if (unlikely(val & NAPIF_STATE_MISSED)) {
6500 __napi_schedule(n);
6501 return false;
6502 }
6503
6504 if (timeout)
6505 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6506 HRTIMER_MODE_REL_PINNED);
6507 return ret;
6508}
6509EXPORT_SYMBOL(napi_complete_done);
6510
6511/* must be called under rcu_read_lock(), as we dont take a reference */
6512static struct napi_struct *napi_by_id(unsigned int napi_id)
6513{
6514 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6515 struct napi_struct *napi;
6516
6517 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6518 if (napi->napi_id == napi_id)
6519 return napi;
6520
6521 return NULL;
6522}
6523
6524#if defined(CONFIG_NET_RX_BUSY_POLL)
6525
6526static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6527{
6528 if (!skip_schedule) {
6529 gro_normal_list(napi);
6530 __napi_schedule(napi);
6531 return;
6532 }
6533
6534 if (napi->gro_bitmask) {
6535 /* flush too old packets
6536 * If HZ < 1000, flush all packets.
6537 */
6538 napi_gro_flush(napi, HZ >= 1000);
6539 }
6540
6541 gro_normal_list(napi);
6542 clear_bit(NAPI_STATE_SCHED, &napi->state);
6543}
6544
6545static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6546 u16 budget)
6547{
6548 bool skip_schedule = false;
6549 unsigned long timeout;
6550 int rc;
6551
6552 /* Busy polling means there is a high chance device driver hard irq
6553 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6554 * set in napi_schedule_prep().
6555 * Since we are about to call napi->poll() once more, we can safely
6556 * clear NAPI_STATE_MISSED.
6557 *
6558 * Note: x86 could use a single "lock and ..." instruction
6559 * to perform these two clear_bit()
6560 */
6561 clear_bit(NAPI_STATE_MISSED, &napi->state);
6562 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6563
6564 local_bh_disable();
6565
6566 if (prefer_busy_poll) {
6567 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6568 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6569 if (napi->defer_hard_irqs_count && timeout) {
6570 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6571 skip_schedule = true;
6572 }
6573 }
6574
6575 /* All we really want here is to re-enable device interrupts.
6576 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6577 */
6578 rc = napi->poll(napi, budget);
6579 /* We can't gro_normal_list() here, because napi->poll() might have
6580 * rearmed the napi (napi_complete_done()) in which case it could
6581 * already be running on another CPU.
6582 */
6583 trace_napi_poll(napi, rc, budget);
6584 netpoll_poll_unlock(have_poll_lock);
6585 if (rc == budget)
6586 __busy_poll_stop(napi, skip_schedule);
6587 local_bh_enable();
6588}
6589
6590void napi_busy_loop(unsigned int napi_id,
6591 bool (*loop_end)(void *, unsigned long),
6592 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6593{
6594 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6595 int (*napi_poll)(struct napi_struct *napi, int budget);
6596 void *have_poll_lock = NULL;
6597 struct napi_struct *napi;
6598
6599restart:
6600 napi_poll = NULL;
6601
6602 rcu_read_lock();
6603
6604 napi = napi_by_id(napi_id);
6605 if (!napi)
6606 goto out;
6607
6608 preempt_disable();
6609 for (;;) {
6610 int work = 0;
6611
6612 local_bh_disable();
6613 if (!napi_poll) {
6614 unsigned long val = READ_ONCE(napi->state);
6615
6616 /* If multiple threads are competing for this napi,
6617 * we avoid dirtying napi->state as much as we can.
6618 */
6619 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6620 NAPIF_STATE_IN_BUSY_POLL)) {
6621 if (prefer_busy_poll)
6622 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6623 goto count;
6624 }
6625 if (cmpxchg(&napi->state, val,
6626 val | NAPIF_STATE_IN_BUSY_POLL |
6627 NAPIF_STATE_SCHED) != val) {
6628 if (prefer_busy_poll)
6629 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6630 goto count;
6631 }
6632 have_poll_lock = netpoll_poll_lock(napi);
6633 napi_poll = napi->poll;
6634 }
6635 work = napi_poll(napi, budget);
6636 trace_napi_poll(napi, work, budget);
6637 gro_normal_list(napi);
6638count:
6639 if (work > 0)
6640 __NET_ADD_STATS(dev_net(napi->dev),
6641 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6642 local_bh_enable();
6643
6644 if (!loop_end || loop_end(loop_end_arg, start_time))
6645 break;
6646
6647 if (unlikely(need_resched())) {
6648 if (napi_poll)
6649 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6650 preempt_enable();
6651 rcu_read_unlock();
6652 cond_resched();
6653 if (loop_end(loop_end_arg, start_time))
6654 return;
6655 goto restart;
6656 }
6657 cpu_relax();
6658 }
6659 if (napi_poll)
6660 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6661 preempt_enable();
6662out:
6663 rcu_read_unlock();
6664}
6665EXPORT_SYMBOL(napi_busy_loop);
6666
6667#endif /* CONFIG_NET_RX_BUSY_POLL */
6668
6669static void napi_hash_add(struct napi_struct *napi)
6670{
6671 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6672 return;
6673
6674 spin_lock(&napi_hash_lock);
6675
6676 /* 0..NR_CPUS range is reserved for sender_cpu use */
6677 do {
6678 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6679 napi_gen_id = MIN_NAPI_ID;
6680 } while (napi_by_id(napi_gen_id));
6681 napi->napi_id = napi_gen_id;
6682
6683 hlist_add_head_rcu(&napi->napi_hash_node,
6684 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6685
6686 spin_unlock(&napi_hash_lock);
6687}
6688
6689/* Warning : caller is responsible to make sure rcu grace period
6690 * is respected before freeing memory containing @napi
6691 */
6692static void napi_hash_del(struct napi_struct *napi)
6693{
6694 spin_lock(&napi_hash_lock);
6695
6696 hlist_del_init_rcu(&napi->napi_hash_node);
6697
6698 spin_unlock(&napi_hash_lock);
6699}
6700
6701static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6702{
6703 struct napi_struct *napi;
6704
6705 napi = container_of(timer, struct napi_struct, timer);
6706
6707 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6708 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6709 */
6710 if (!napi_disable_pending(napi) &&
6711 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6712 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6713 __napi_schedule_irqoff(napi);
6714 }
6715
6716 return HRTIMER_NORESTART;
6717}
6718
6719static void init_gro_hash(struct napi_struct *napi)
6720{
6721 int i;
6722
6723 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6724 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6725 napi->gro_hash[i].count = 0;
6726 }
6727 napi->gro_bitmask = 0;
6728}
6729
6730int dev_set_threaded(struct net_device *dev, bool threaded)
6731{
6732 struct napi_struct *napi;
6733 int err = 0;
6734
6735 if (dev->threaded == threaded)
6736 return 0;
6737
6738 if (threaded) {
6739 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6740 if (!napi->thread) {
6741 err = napi_kthread_create(napi);
6742 if (err) {
6743 threaded = false;
6744 break;
6745 }
6746 }
6747 }
6748 }
6749
6750 dev->threaded = threaded;
6751
6752 /* Make sure kthread is created before THREADED bit
6753 * is set.
6754 */
6755 smp_mb__before_atomic();
6756
6757 /* Setting/unsetting threaded mode on a napi might not immediately
6758 * take effect, if the current napi instance is actively being
6759 * polled. In this case, the switch between threaded mode and
6760 * softirq mode will happen in the next round of napi_schedule().
6761 * This should not cause hiccups/stalls to the live traffic.
6762 */
6763 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6764 if (threaded)
6765 set_bit(NAPI_STATE_THREADED, &napi->state);
6766 else
6767 clear_bit(NAPI_STATE_THREADED, &napi->state);
6768 }
6769
6770 return err;
6771}
6772
6773void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6774 int (*poll)(struct napi_struct *, int), int weight)
6775{
6776 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6777 return;
6778
6779 INIT_LIST_HEAD(&napi->poll_list);
6780 INIT_HLIST_NODE(&napi->napi_hash_node);
6781 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6782 napi->timer.function = napi_watchdog;
6783 init_gro_hash(napi);
6784 napi->skb = NULL;
6785 INIT_LIST_HEAD(&napi->rx_list);
6786 napi->rx_count = 0;
6787 napi->poll = poll;
6788 if (weight > NAPI_POLL_WEIGHT)
6789 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6790 weight);
6791 napi->weight = weight;
6792 napi->dev = dev;
6793#ifdef CONFIG_NETPOLL
6794 napi->poll_owner = -1;
6795#endif
6796 set_bit(NAPI_STATE_SCHED, &napi->state);
6797 set_bit(NAPI_STATE_NPSVC, &napi->state);
6798 list_add_rcu(&napi->dev_list, &dev->napi_list);
6799 napi_hash_add(napi);
6800 /* Create kthread for this napi if dev->threaded is set.
6801 * Clear dev->threaded if kthread creation failed so that
6802 * threaded mode will not be enabled in napi_enable().
6803 */
6804 if (dev->threaded && napi_kthread_create(napi))
6805 dev->threaded = 0;
6806}
6807EXPORT_SYMBOL(netif_napi_add);
6808
6809void napi_disable(struct napi_struct *n)
6810{
6811 might_sleep();
6812 set_bit(NAPI_STATE_DISABLE, &n->state);
6813
6814 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6815 msleep(1);
6816 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6817 msleep(1);
6818
6819 hrtimer_cancel(&n->timer);
6820
6821 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
6822 clear_bit(NAPI_STATE_DISABLE, &n->state);
6823 clear_bit(NAPI_STATE_THREADED, &n->state);
6824}
6825EXPORT_SYMBOL(napi_disable);
6826
6827/**
6828 * napi_enable - enable NAPI scheduling
6829 * @n: NAPI context
6830 *
6831 * Resume NAPI from being scheduled on this context.
6832 * Must be paired with napi_disable.
6833 */
6834void napi_enable(struct napi_struct *n)
6835{
6836 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
6837 smp_mb__before_atomic();
6838 clear_bit(NAPI_STATE_SCHED, &n->state);
6839 clear_bit(NAPI_STATE_NPSVC, &n->state);
6840 if (n->dev->threaded && n->thread)
6841 set_bit(NAPI_STATE_THREADED, &n->state);
6842}
6843EXPORT_SYMBOL(napi_enable);
6844
6845static void flush_gro_hash(struct napi_struct *napi)
6846{
6847 int i;
6848
6849 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6850 struct sk_buff *skb, *n;
6851
6852 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6853 kfree_skb(skb);
6854 napi->gro_hash[i].count = 0;
6855 }
6856}
6857
6858/* Must be called in process context */
6859void __netif_napi_del(struct napi_struct *napi)
6860{
6861 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6862 return;
6863
6864 napi_hash_del(napi);
6865 list_del_rcu(&napi->dev_list);
6866 napi_free_frags(napi);
6867
6868 flush_gro_hash(napi);
6869 napi->gro_bitmask = 0;
6870
6871 if (napi->thread) {
6872 kthread_stop(napi->thread);
6873 napi->thread = NULL;
6874 }
6875}
6876EXPORT_SYMBOL(__netif_napi_del);
6877
6878static int __napi_poll(struct napi_struct *n, bool *repoll)
6879{
6880 int work, weight;
6881
6882 weight = n->weight;
6883
6884 /* This NAPI_STATE_SCHED test is for avoiding a race
6885 * with netpoll's poll_napi(). Only the entity which
6886 * obtains the lock and sees NAPI_STATE_SCHED set will
6887 * actually make the ->poll() call. Therefore we avoid
6888 * accidentally calling ->poll() when NAPI is not scheduled.
6889 */
6890 work = 0;
6891 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6892 work = n->poll(n, weight);
6893 trace_napi_poll(n, work, weight);
6894 }
6895
6896 if (unlikely(work > weight))
6897 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6898 n->poll, work, weight);
6899
6900 if (likely(work < weight))
6901 return work;
6902
6903 /* Drivers must not modify the NAPI state if they
6904 * consume the entire weight. In such cases this code
6905 * still "owns" the NAPI instance and therefore can
6906 * move the instance around on the list at-will.
6907 */
6908 if (unlikely(napi_disable_pending(n))) {
6909 napi_complete(n);
6910 return work;
6911 }
6912
6913 /* The NAPI context has more processing work, but busy-polling
6914 * is preferred. Exit early.
6915 */
6916 if (napi_prefer_busy_poll(n)) {
6917 if (napi_complete_done(n, work)) {
6918 /* If timeout is not set, we need to make sure
6919 * that the NAPI is re-scheduled.
6920 */
6921 napi_schedule(n);
6922 }
6923 return work;
6924 }
6925
6926 if (n->gro_bitmask) {
6927 /* flush too old packets
6928 * If HZ < 1000, flush all packets.
6929 */
6930 napi_gro_flush(n, HZ >= 1000);
6931 }
6932
6933 gro_normal_list(n);
6934
6935 /* Some drivers may have called napi_schedule
6936 * prior to exhausting their budget.
6937 */
6938 if (unlikely(!list_empty(&n->poll_list))) {
6939 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6940 n->dev ? n->dev->name : "backlog");
6941 return work;
6942 }
6943
6944 *repoll = true;
6945
6946 return work;
6947}
6948
6949static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6950{
6951 bool do_repoll = false;
6952 void *have;
6953 int work;
6954
6955 list_del_init(&n->poll_list);
6956
6957 have = netpoll_poll_lock(n);
6958
6959 work = __napi_poll(n, &do_repoll);
6960
6961 if (do_repoll)
6962 list_add_tail(&n->poll_list, repoll);
6963
6964 netpoll_poll_unlock(have);
6965
6966 return work;
6967}
6968
6969static int napi_thread_wait(struct napi_struct *napi)
6970{
6971 set_current_state(TASK_INTERRUPTIBLE);
6972
6973 while (!kthread_should_stop() && !napi_disable_pending(napi)) {
6974 if (test_bit(NAPI_STATE_SCHED, &napi->state)) {
6975 WARN_ON(!list_empty(&napi->poll_list));
6976 __set_current_state(TASK_RUNNING);
6977 return 0;
6978 }
6979
6980 schedule();
6981 set_current_state(TASK_INTERRUPTIBLE);
6982 }
6983 __set_current_state(TASK_RUNNING);
6984 return -1;
6985}
6986
6987static int napi_threaded_poll(void *data)
6988{
6989 struct napi_struct *napi = data;
6990 void *have;
6991
6992 while (!napi_thread_wait(napi)) {
6993 for (;;) {
6994 bool repoll = false;
6995
6996 local_bh_disable();
6997
6998 have = netpoll_poll_lock(napi);
6999 __napi_poll(napi, &repoll);
7000 netpoll_poll_unlock(have);
7001
7002 local_bh_enable();
7003
7004 if (!repoll)
7005 break;
7006
7007 cond_resched();
7008 }
7009 }
7010 return 0;
7011}
7012
7013static __latent_entropy void net_rx_action(struct softirq_action *h)
7014{
7015 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7016 unsigned long time_limit = jiffies +
7017 usecs_to_jiffies(netdev_budget_usecs);
7018 int budget = netdev_budget;
7019 LIST_HEAD(list);
7020 LIST_HEAD(repoll);
7021
7022 local_irq_disable();
7023 list_splice_init(&sd->poll_list, &list);
7024 local_irq_enable();
7025
7026 for (;;) {
7027 struct napi_struct *n;
7028
7029 if (list_empty(&list)) {
7030 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
7031 return;
7032 break;
7033 }
7034
7035 n = list_first_entry(&list, struct napi_struct, poll_list);
7036 budget -= napi_poll(n, &repoll);
7037
7038 /* If softirq window is exhausted then punt.
7039 * Allow this to run for 2 jiffies since which will allow
7040 * an average latency of 1.5/HZ.
7041 */
7042 if (unlikely(budget <= 0 ||
7043 time_after_eq(jiffies, time_limit))) {
7044 sd->time_squeeze++;
7045 break;
7046 }
7047 }
7048
7049 local_irq_disable();
7050
7051 list_splice_tail_init(&sd->poll_list, &list);
7052 list_splice_tail(&repoll, &list);
7053 list_splice(&list, &sd->poll_list);
7054 if (!list_empty(&sd->poll_list))
7055 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
7056
7057 net_rps_action_and_irq_enable(sd);
7058}
7059
7060struct netdev_adjacent {
7061 struct net_device *dev;
7062
7063 /* upper master flag, there can only be one master device per list */
7064 bool master;
7065
7066 /* lookup ignore flag */
7067 bool ignore;
7068
7069 /* counter for the number of times this device was added to us */
7070 u16 ref_nr;
7071
7072 /* private field for the users */
7073 void *private;
7074
7075 struct list_head list;
7076 struct rcu_head rcu;
7077};
7078
7079static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7080 struct list_head *adj_list)
7081{
7082 struct netdev_adjacent *adj;
7083
7084 list_for_each_entry(adj, adj_list, list) {
7085 if (adj->dev == adj_dev)
7086 return adj;
7087 }
7088 return NULL;
7089}
7090
7091static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7092 struct netdev_nested_priv *priv)
7093{
7094 struct net_device *dev = (struct net_device *)priv->data;
7095
7096 return upper_dev == dev;
7097}
7098
7099/**
7100 * netdev_has_upper_dev - Check if device is linked to an upper device
7101 * @dev: device
7102 * @upper_dev: upper device to check
7103 *
7104 * Find out if a device is linked to specified upper device and return true
7105 * in case it is. Note that this checks only immediate upper device,
7106 * not through a complete stack of devices. The caller must hold the RTNL lock.
7107 */
7108bool netdev_has_upper_dev(struct net_device *dev,
7109 struct net_device *upper_dev)
7110{
7111 struct netdev_nested_priv priv = {
7112 .data = (void *)upper_dev,
7113 };
7114
7115 ASSERT_RTNL();
7116
7117 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7118 &priv);
7119}
7120EXPORT_SYMBOL(netdev_has_upper_dev);
7121
7122/**
7123 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7124 * @dev: device
7125 * @upper_dev: upper device to check
7126 *
7127 * Find out if a device is linked to specified upper device and return true
7128 * in case it is. Note that this checks the entire upper device chain.
7129 * The caller must hold rcu lock.
7130 */
7131
7132bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7133 struct net_device *upper_dev)
7134{
7135 struct netdev_nested_priv priv = {
7136 .data = (void *)upper_dev,
7137 };
7138
7139 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7140 &priv);
7141}
7142EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7143
7144/**
7145 * netdev_has_any_upper_dev - Check if device is linked to some device
7146 * @dev: device
7147 *
7148 * Find out if a device is linked to an upper device and return true in case
7149 * it is. The caller must hold the RTNL lock.
7150 */
7151bool netdev_has_any_upper_dev(struct net_device *dev)
7152{
7153 ASSERT_RTNL();
7154
7155 return !list_empty(&dev->adj_list.upper);
7156}
7157EXPORT_SYMBOL(netdev_has_any_upper_dev);
7158
7159/**
7160 * netdev_master_upper_dev_get - Get master upper device
7161 * @dev: device
7162 *
7163 * Find a master upper device and return pointer to it or NULL in case
7164 * it's not there. The caller must hold the RTNL lock.
7165 */
7166struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7167{
7168 struct netdev_adjacent *upper;
7169
7170 ASSERT_RTNL();
7171
7172 if (list_empty(&dev->adj_list.upper))
7173 return NULL;
7174
7175 upper = list_first_entry(&dev->adj_list.upper,
7176 struct netdev_adjacent, list);
7177 if (likely(upper->master))
7178 return upper->dev;
7179 return NULL;
7180}
7181EXPORT_SYMBOL(netdev_master_upper_dev_get);
7182
7183static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7184{
7185 struct netdev_adjacent *upper;
7186
7187 ASSERT_RTNL();
7188
7189 if (list_empty(&dev->adj_list.upper))
7190 return NULL;
7191
7192 upper = list_first_entry(&dev->adj_list.upper,
7193 struct netdev_adjacent, list);
7194 if (likely(upper->master) && !upper->ignore)
7195 return upper->dev;
7196 return NULL;
7197}
7198
7199/**
7200 * netdev_has_any_lower_dev - Check if device is linked to some device
7201 * @dev: device
7202 *
7203 * Find out if a device is linked to a lower device and return true in case
7204 * it is. The caller must hold the RTNL lock.
7205 */
7206static bool netdev_has_any_lower_dev(struct net_device *dev)
7207{
7208 ASSERT_RTNL();
7209
7210 return !list_empty(&dev->adj_list.lower);
7211}
7212
7213void *netdev_adjacent_get_private(struct list_head *adj_list)
7214{
7215 struct netdev_adjacent *adj;
7216
7217 adj = list_entry(adj_list, struct netdev_adjacent, list);
7218
7219 return adj->private;
7220}
7221EXPORT_SYMBOL(netdev_adjacent_get_private);
7222
7223/**
7224 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7225 * @dev: device
7226 * @iter: list_head ** of the current position
7227 *
7228 * Gets the next device from the dev's upper list, starting from iter
7229 * position. The caller must hold RCU read lock.
7230 */
7231struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7232 struct list_head **iter)
7233{
7234 struct netdev_adjacent *upper;
7235
7236 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7237
7238 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7239
7240 if (&upper->list == &dev->adj_list.upper)
7241 return NULL;
7242
7243 *iter = &upper->list;
7244
7245 return upper->dev;
7246}
7247EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7248
7249static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7250 struct list_head **iter,
7251 bool *ignore)
7252{
7253 struct netdev_adjacent *upper;
7254
7255 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7256
7257 if (&upper->list == &dev->adj_list.upper)
7258 return NULL;
7259
7260 *iter = &upper->list;
7261 *ignore = upper->ignore;
7262
7263 return upper->dev;
7264}
7265
7266static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7267 struct list_head **iter)
7268{
7269 struct netdev_adjacent *upper;
7270
7271 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7272
7273 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7274
7275 if (&upper->list == &dev->adj_list.upper)
7276 return NULL;
7277
7278 *iter = &upper->list;
7279
7280 return upper->dev;
7281}
7282
7283static int __netdev_walk_all_upper_dev(struct net_device *dev,
7284 int (*fn)(struct net_device *dev,
7285 struct netdev_nested_priv *priv),
7286 struct netdev_nested_priv *priv)
7287{
7288 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7289 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7290 int ret, cur = 0;
7291 bool ignore;
7292
7293 now = dev;
7294 iter = &dev->adj_list.upper;
7295
7296 while (1) {
7297 if (now != dev) {
7298 ret = fn(now, priv);
7299 if (ret)
7300 return ret;
7301 }
7302
7303 next = NULL;
7304 while (1) {
7305 udev = __netdev_next_upper_dev(now, &iter, &ignore);
7306 if (!udev)
7307 break;
7308 if (ignore)
7309 continue;
7310
7311 next = udev;
7312 niter = &udev->adj_list.upper;
7313 dev_stack[cur] = now;
7314 iter_stack[cur++] = iter;
7315 break;
7316 }
7317
7318 if (!next) {
7319 if (!cur)
7320 return 0;
7321 next = dev_stack[--cur];
7322 niter = iter_stack[cur];
7323 }
7324
7325 now = next;
7326 iter = niter;
7327 }
7328
7329 return 0;
7330}
7331
7332int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7333 int (*fn)(struct net_device *dev,
7334 struct netdev_nested_priv *priv),
7335 struct netdev_nested_priv *priv)
7336{
7337 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7338 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7339 int ret, cur = 0;
7340
7341 now = dev;
7342 iter = &dev->adj_list.upper;
7343
7344 while (1) {
7345 if (now != dev) {
7346 ret = fn(now, priv);
7347 if (ret)
7348 return ret;
7349 }
7350
7351 next = NULL;
7352 while (1) {
7353 udev = netdev_next_upper_dev_rcu(now, &iter);
7354 if (!udev)
7355 break;
7356
7357 next = udev;
7358 niter = &udev->adj_list.upper;
7359 dev_stack[cur] = now;
7360 iter_stack[cur++] = iter;
7361 break;
7362 }
7363
7364 if (!next) {
7365 if (!cur)
7366 return 0;
7367 next = dev_stack[--cur];
7368 niter = iter_stack[cur];
7369 }
7370
7371 now = next;
7372 iter = niter;
7373 }
7374
7375 return 0;
7376}
7377EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7378
7379static bool __netdev_has_upper_dev(struct net_device *dev,
7380 struct net_device *upper_dev)
7381{
7382 struct netdev_nested_priv priv = {
7383 .flags = 0,
7384 .data = (void *)upper_dev,
7385 };
7386
7387 ASSERT_RTNL();
7388
7389 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7390 &priv);
7391}
7392
7393/**
7394 * netdev_lower_get_next_private - Get the next ->private from the
7395 * lower neighbour list
7396 * @dev: device
7397 * @iter: list_head ** of the current position
7398 *
7399 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7400 * list, starting from iter position. The caller must hold either hold the
7401 * RTNL lock or its own locking that guarantees that the neighbour lower
7402 * list will remain unchanged.
7403 */
7404void *netdev_lower_get_next_private(struct net_device *dev,
7405 struct list_head **iter)
7406{
7407 struct netdev_adjacent *lower;
7408
7409 lower = list_entry(*iter, struct netdev_adjacent, list);
7410
7411 if (&lower->list == &dev->adj_list.lower)
7412 return NULL;
7413
7414 *iter = lower->list.next;
7415
7416 return lower->private;
7417}
7418EXPORT_SYMBOL(netdev_lower_get_next_private);
7419
7420/**
7421 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7422 * lower neighbour list, RCU
7423 * variant
7424 * @dev: device
7425 * @iter: list_head ** of the current position
7426 *
7427 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7428 * list, starting from iter position. The caller must hold RCU read lock.
7429 */
7430void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7431 struct list_head **iter)
7432{
7433 struct netdev_adjacent *lower;
7434
7435 WARN_ON_ONCE(!rcu_read_lock_held());
7436
7437 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7438
7439 if (&lower->list == &dev->adj_list.lower)
7440 return NULL;
7441
7442 *iter = &lower->list;
7443
7444 return lower->private;
7445}
7446EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7447
7448/**
7449 * netdev_lower_get_next - Get the next device from the lower neighbour
7450 * list
7451 * @dev: device
7452 * @iter: list_head ** of the current position
7453 *
7454 * Gets the next netdev_adjacent from the dev's lower neighbour
7455 * list, starting from iter position. The caller must hold RTNL lock or
7456 * its own locking that guarantees that the neighbour lower
7457 * list will remain unchanged.
7458 */
7459void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7460{
7461 struct netdev_adjacent *lower;
7462
7463 lower = list_entry(*iter, struct netdev_adjacent, list);
7464
7465 if (&lower->list == &dev->adj_list.lower)
7466 return NULL;
7467
7468 *iter = lower->list.next;
7469
7470 return lower->dev;
7471}
7472EXPORT_SYMBOL(netdev_lower_get_next);
7473
7474static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7475 struct list_head **iter)
7476{
7477 struct netdev_adjacent *lower;
7478
7479 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7480
7481 if (&lower->list == &dev->adj_list.lower)
7482 return NULL;
7483
7484 *iter = &lower->list;
7485
7486 return lower->dev;
7487}
7488
7489static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7490 struct list_head **iter,
7491 bool *ignore)
7492{
7493 struct netdev_adjacent *lower;
7494
7495 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7496
7497 if (&lower->list == &dev->adj_list.lower)
7498 return NULL;
7499
7500 *iter = &lower->list;
7501 *ignore = lower->ignore;
7502
7503 return lower->dev;
7504}
7505
7506int netdev_walk_all_lower_dev(struct net_device *dev,
7507 int (*fn)(struct net_device *dev,
7508 struct netdev_nested_priv *priv),
7509 struct netdev_nested_priv *priv)
7510{
7511 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7512 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7513 int ret, cur = 0;
7514
7515 now = dev;
7516 iter = &dev->adj_list.lower;
7517
7518 while (1) {
7519 if (now != dev) {
7520 ret = fn(now, priv);
7521 if (ret)
7522 return ret;
7523 }
7524
7525 next = NULL;
7526 while (1) {
7527 ldev = netdev_next_lower_dev(now, &iter);
7528 if (!ldev)
7529 break;
7530
7531 next = ldev;
7532 niter = &ldev->adj_list.lower;
7533 dev_stack[cur] = now;
7534 iter_stack[cur++] = iter;
7535 break;
7536 }
7537
7538 if (!next) {
7539 if (!cur)
7540 return 0;
7541 next = dev_stack[--cur];
7542 niter = iter_stack[cur];
7543 }
7544
7545 now = next;
7546 iter = niter;
7547 }
7548
7549 return 0;
7550}
7551EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7552
7553static int __netdev_walk_all_lower_dev(struct net_device *dev,
7554 int (*fn)(struct net_device *dev,
7555 struct netdev_nested_priv *priv),
7556 struct netdev_nested_priv *priv)
7557{
7558 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7559 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7560 int ret, cur = 0;
7561 bool ignore;
7562
7563 now = dev;
7564 iter = &dev->adj_list.lower;
7565
7566 while (1) {
7567 if (now != dev) {
7568 ret = fn(now, priv);
7569 if (ret)
7570 return ret;
7571 }
7572
7573 next = NULL;
7574 while (1) {
7575 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7576 if (!ldev)
7577 break;
7578 if (ignore)
7579 continue;
7580
7581 next = ldev;
7582 niter = &ldev->adj_list.lower;
7583 dev_stack[cur] = now;
7584 iter_stack[cur++] = iter;
7585 break;
7586 }
7587
7588 if (!next) {
7589 if (!cur)
7590 return 0;
7591 next = dev_stack[--cur];
7592 niter = iter_stack[cur];
7593 }
7594
7595 now = next;
7596 iter = niter;
7597 }
7598
7599 return 0;
7600}
7601
7602struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7603 struct list_head **iter)
7604{
7605 struct netdev_adjacent *lower;
7606
7607 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7608 if (&lower->list == &dev->adj_list.lower)
7609 return NULL;
7610
7611 *iter = &lower->list;
7612
7613 return lower->dev;
7614}
7615EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7616
7617static u8 __netdev_upper_depth(struct net_device *dev)
7618{
7619 struct net_device *udev;
7620 struct list_head *iter;
7621 u8 max_depth = 0;
7622 bool ignore;
7623
7624 for (iter = &dev->adj_list.upper,
7625 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7626 udev;
7627 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7628 if (ignore)
7629 continue;
7630 if (max_depth < udev->upper_level)
7631 max_depth = udev->upper_level;
7632 }
7633
7634 return max_depth;
7635}
7636
7637static u8 __netdev_lower_depth(struct net_device *dev)
7638{
7639 struct net_device *ldev;
7640 struct list_head *iter;
7641 u8 max_depth = 0;
7642 bool ignore;
7643
7644 for (iter = &dev->adj_list.lower,
7645 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7646 ldev;
7647 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7648 if (ignore)
7649 continue;
7650 if (max_depth < ldev->lower_level)
7651 max_depth = ldev->lower_level;
7652 }
7653
7654 return max_depth;
7655}
7656
7657static int __netdev_update_upper_level(struct net_device *dev,
7658 struct netdev_nested_priv *__unused)
7659{
7660 dev->upper_level = __netdev_upper_depth(dev) + 1;
7661 return 0;
7662}
7663
7664static int __netdev_update_lower_level(struct net_device *dev,
7665 struct netdev_nested_priv *priv)
7666{
7667 dev->lower_level = __netdev_lower_depth(dev) + 1;
7668
7669#ifdef CONFIG_LOCKDEP
7670 if (!priv)
7671 return 0;
7672
7673 if (priv->flags & NESTED_SYNC_IMM)
7674 dev->nested_level = dev->lower_level - 1;
7675 if (priv->flags & NESTED_SYNC_TODO)
7676 net_unlink_todo(dev);
7677#endif
7678 return 0;
7679}
7680
7681int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7682 int (*fn)(struct net_device *dev,
7683 struct netdev_nested_priv *priv),
7684 struct netdev_nested_priv *priv)
7685{
7686 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7687 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7688 int ret, cur = 0;
7689
7690 now = dev;
7691 iter = &dev->adj_list.lower;
7692
7693 while (1) {
7694 if (now != dev) {
7695 ret = fn(now, priv);
7696 if (ret)
7697 return ret;
7698 }
7699
7700 next = NULL;
7701 while (1) {
7702 ldev = netdev_next_lower_dev_rcu(now, &iter);
7703 if (!ldev)
7704 break;
7705
7706 next = ldev;
7707 niter = &ldev->adj_list.lower;
7708 dev_stack[cur] = now;
7709 iter_stack[cur++] = iter;
7710 break;
7711 }
7712
7713 if (!next) {
7714 if (!cur)
7715 return 0;
7716 next = dev_stack[--cur];
7717 niter = iter_stack[cur];
7718 }
7719
7720 now = next;
7721 iter = niter;
7722 }
7723
7724 return 0;
7725}
7726EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7727
7728/**
7729 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7730 * lower neighbour list, RCU
7731 * variant
7732 * @dev: device
7733 *
7734 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7735 * list. The caller must hold RCU read lock.
7736 */
7737void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7738{
7739 struct netdev_adjacent *lower;
7740
7741 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7742 struct netdev_adjacent, list);
7743 if (lower)
7744 return lower->private;
7745 return NULL;
7746}
7747EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7748
7749/**
7750 * netdev_master_upper_dev_get_rcu - Get master upper device
7751 * @dev: device
7752 *
7753 * Find a master upper device and return pointer to it or NULL in case
7754 * it's not there. The caller must hold the RCU read lock.
7755 */
7756struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7757{
7758 struct netdev_adjacent *upper;
7759
7760 upper = list_first_or_null_rcu(&dev->adj_list.upper,
7761 struct netdev_adjacent, list);
7762 if (upper && likely(upper->master))
7763 return upper->dev;
7764 return NULL;
7765}
7766EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7767
7768static int netdev_adjacent_sysfs_add(struct net_device *dev,
7769 struct net_device *adj_dev,
7770 struct list_head *dev_list)
7771{
7772 char linkname[IFNAMSIZ+7];
7773
7774 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7775 "upper_%s" : "lower_%s", adj_dev->name);
7776 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7777 linkname);
7778}
7779static void netdev_adjacent_sysfs_del(struct net_device *dev,
7780 char *name,
7781 struct list_head *dev_list)
7782{
7783 char linkname[IFNAMSIZ+7];
7784
7785 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7786 "upper_%s" : "lower_%s", name);
7787 sysfs_remove_link(&(dev->dev.kobj), linkname);
7788}
7789
7790static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7791 struct net_device *adj_dev,
7792 struct list_head *dev_list)
7793{
7794 return (dev_list == &dev->adj_list.upper ||
7795 dev_list == &dev->adj_list.lower) &&
7796 net_eq(dev_net(dev), dev_net(adj_dev));
7797}
7798
7799static int __netdev_adjacent_dev_insert(struct net_device *dev,
7800 struct net_device *adj_dev,
7801 struct list_head *dev_list,
7802 void *private, bool master)
7803{
7804 struct netdev_adjacent *adj;
7805 int ret;
7806
7807 adj = __netdev_find_adj(adj_dev, dev_list);
7808
7809 if (adj) {
7810 adj->ref_nr += 1;
7811 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7812 dev->name, adj_dev->name, adj->ref_nr);
7813
7814 return 0;
7815 }
7816
7817 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7818 if (!adj)
7819 return -ENOMEM;
7820
7821 adj->dev = adj_dev;
7822 adj->master = master;
7823 adj->ref_nr = 1;
7824 adj->private = private;
7825 adj->ignore = false;
7826 dev_hold(adj_dev);
7827
7828 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7829 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7830
7831 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7832 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7833 if (ret)
7834 goto free_adj;
7835 }
7836
7837 /* Ensure that master link is always the first item in list. */
7838 if (master) {
7839 ret = sysfs_create_link(&(dev->dev.kobj),
7840 &(adj_dev->dev.kobj), "master");
7841 if (ret)
7842 goto remove_symlinks;
7843
7844 list_add_rcu(&adj->list, dev_list);
7845 } else {
7846 list_add_tail_rcu(&adj->list, dev_list);
7847 }
7848
7849 return 0;
7850
7851remove_symlinks:
7852 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7853 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7854free_adj:
7855 kfree(adj);
7856 dev_put(adj_dev);
7857
7858 return ret;
7859}
7860
7861static void __netdev_adjacent_dev_remove(struct net_device *dev,
7862 struct net_device *adj_dev,
7863 u16 ref_nr,
7864 struct list_head *dev_list)
7865{
7866 struct netdev_adjacent *adj;
7867
7868 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7869 dev->name, adj_dev->name, ref_nr);
7870
7871 adj = __netdev_find_adj(adj_dev, dev_list);
7872
7873 if (!adj) {
7874 pr_err("Adjacency does not exist for device %s from %s\n",
7875 dev->name, adj_dev->name);
7876 WARN_ON(1);
7877 return;
7878 }
7879
7880 if (adj->ref_nr > ref_nr) {
7881 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7882 dev->name, adj_dev->name, ref_nr,
7883 adj->ref_nr - ref_nr);
7884 adj->ref_nr -= ref_nr;
7885 return;
7886 }
7887
7888 if (adj->master)
7889 sysfs_remove_link(&(dev->dev.kobj), "master");
7890
7891 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7892 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7893
7894 list_del_rcu(&adj->list);
7895 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7896 adj_dev->name, dev->name, adj_dev->name);
7897 dev_put(adj_dev);
7898 kfree_rcu(adj, rcu);
7899}
7900
7901static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7902 struct net_device *upper_dev,
7903 struct list_head *up_list,
7904 struct list_head *down_list,
7905 void *private, bool master)
7906{
7907 int ret;
7908
7909 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7910 private, master);
7911 if (ret)
7912 return ret;
7913
7914 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7915 private, false);
7916 if (ret) {
7917 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7918 return ret;
7919 }
7920
7921 return 0;
7922}
7923
7924static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7925 struct net_device *upper_dev,
7926 u16 ref_nr,
7927 struct list_head *up_list,
7928 struct list_head *down_list)
7929{
7930 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7931 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7932}
7933
7934static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7935 struct net_device *upper_dev,
7936 void *private, bool master)
7937{
7938 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7939 &dev->adj_list.upper,
7940 &upper_dev->adj_list.lower,
7941 private, master);
7942}
7943
7944static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7945 struct net_device *upper_dev)
7946{
7947 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7948 &dev->adj_list.upper,
7949 &upper_dev->adj_list.lower);
7950}
7951
7952static int __netdev_upper_dev_link(struct net_device *dev,
7953 struct net_device *upper_dev, bool master,
7954 void *upper_priv, void *upper_info,
7955 struct netdev_nested_priv *priv,
7956 struct netlink_ext_ack *extack)
7957{
7958 struct netdev_notifier_changeupper_info changeupper_info = {
7959 .info = {
7960 .dev = dev,
7961 .extack = extack,
7962 },
7963 .upper_dev = upper_dev,
7964 .master = master,
7965 .linking = true,
7966 .upper_info = upper_info,
7967 };
7968 struct net_device *master_dev;
7969 int ret = 0;
7970
7971 ASSERT_RTNL();
7972
7973 if (dev == upper_dev)
7974 return -EBUSY;
7975
7976 /* To prevent loops, check if dev is not upper device to upper_dev. */
7977 if (__netdev_has_upper_dev(upper_dev, dev))
7978 return -EBUSY;
7979
7980 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7981 return -EMLINK;
7982
7983 if (!master) {
7984 if (__netdev_has_upper_dev(dev, upper_dev))
7985 return -EEXIST;
7986 } else {
7987 master_dev = __netdev_master_upper_dev_get(dev);
7988 if (master_dev)
7989 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7990 }
7991
7992 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7993 &changeupper_info.info);
7994 ret = notifier_to_errno(ret);
7995 if (ret)
7996 return ret;
7997
7998 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7999 master);
8000 if (ret)
8001 return ret;
8002
8003 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8004 &changeupper_info.info);
8005 ret = notifier_to_errno(ret);
8006 if (ret)
8007 goto rollback;
8008
8009 __netdev_update_upper_level(dev, NULL);
8010 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8011
8012 __netdev_update_lower_level(upper_dev, priv);
8013 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8014 priv);
8015
8016 return 0;
8017
8018rollback:
8019 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8020
8021 return ret;
8022}
8023
8024/**
8025 * netdev_upper_dev_link - Add a link to the upper device
8026 * @dev: device
8027 * @upper_dev: new upper device
8028 * @extack: netlink extended ack
8029 *
8030 * Adds a link to device which is upper to this one. The caller must hold
8031 * the RTNL lock. On a failure a negative errno code is returned.
8032 * On success the reference counts are adjusted and the function
8033 * returns zero.
8034 */
8035int netdev_upper_dev_link(struct net_device *dev,
8036 struct net_device *upper_dev,
8037 struct netlink_ext_ack *extack)
8038{
8039 struct netdev_nested_priv priv = {
8040 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8041 .data = NULL,
8042 };
8043
8044 return __netdev_upper_dev_link(dev, upper_dev, false,
8045 NULL, NULL, &priv, extack);
8046}
8047EXPORT_SYMBOL(netdev_upper_dev_link);
8048
8049/**
8050 * netdev_master_upper_dev_link - Add a master link to the upper device
8051 * @dev: device
8052 * @upper_dev: new upper device
8053 * @upper_priv: upper device private
8054 * @upper_info: upper info to be passed down via notifier
8055 * @extack: netlink extended ack
8056 *
8057 * Adds a link to device which is upper to this one. In this case, only
8058 * one master upper device can be linked, although other non-master devices
8059 * might be linked as well. The caller must hold the RTNL lock.
8060 * On a failure a negative errno code is returned. On success the reference
8061 * counts are adjusted and the function returns zero.
8062 */
8063int netdev_master_upper_dev_link(struct net_device *dev,
8064 struct net_device *upper_dev,
8065 void *upper_priv, void *upper_info,
8066 struct netlink_ext_ack *extack)
8067{
8068 struct netdev_nested_priv priv = {
8069 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8070 .data = NULL,
8071 };
8072
8073 return __netdev_upper_dev_link(dev, upper_dev, true,
8074 upper_priv, upper_info, &priv, extack);
8075}
8076EXPORT_SYMBOL(netdev_master_upper_dev_link);
8077
8078static void __netdev_upper_dev_unlink(struct net_device *dev,
8079 struct net_device *upper_dev,
8080 struct netdev_nested_priv *priv)
8081{
8082 struct netdev_notifier_changeupper_info changeupper_info = {
8083 .info = {
8084 .dev = dev,
8085 },
8086 .upper_dev = upper_dev,
8087 .linking = false,
8088 };
8089
8090 ASSERT_RTNL();
8091
8092 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8093
8094 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8095 &changeupper_info.info);
8096
8097 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8098
8099 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8100 &changeupper_info.info);
8101
8102 __netdev_update_upper_level(dev, NULL);
8103 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8104
8105 __netdev_update_lower_level(upper_dev, priv);
8106 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8107 priv);
8108}
8109
8110/**
8111 * netdev_upper_dev_unlink - Removes a link to upper device
8112 * @dev: device
8113 * @upper_dev: new upper device
8114 *
8115 * Removes a link to device which is upper to this one. The caller must hold
8116 * the RTNL lock.
8117 */
8118void netdev_upper_dev_unlink(struct net_device *dev,
8119 struct net_device *upper_dev)
8120{
8121 struct netdev_nested_priv priv = {
8122 .flags = NESTED_SYNC_TODO,
8123 .data = NULL,
8124 };
8125
8126 __netdev_upper_dev_unlink(dev, upper_dev, &priv);
8127}
8128EXPORT_SYMBOL(netdev_upper_dev_unlink);
8129
8130static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8131 struct net_device *lower_dev,
8132 bool val)
8133{
8134 struct netdev_adjacent *adj;
8135
8136 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8137 if (adj)
8138 adj->ignore = val;
8139
8140 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8141 if (adj)
8142 adj->ignore = val;
8143}
8144
8145static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8146 struct net_device *lower_dev)
8147{
8148 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8149}
8150
8151static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8152 struct net_device *lower_dev)
8153{
8154 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8155}
8156
8157int netdev_adjacent_change_prepare(struct net_device *old_dev,
8158 struct net_device *new_dev,
8159 struct net_device *dev,
8160 struct netlink_ext_ack *extack)
8161{
8162 struct netdev_nested_priv priv = {
8163 .flags = 0,
8164 .data = NULL,
8165 };
8166 int err;
8167
8168 if (!new_dev)
8169 return 0;
8170
8171 if (old_dev && new_dev != old_dev)
8172 netdev_adjacent_dev_disable(dev, old_dev);
8173 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8174 extack);
8175 if (err) {
8176 if (old_dev && new_dev != old_dev)
8177 netdev_adjacent_dev_enable(dev, old_dev);
8178 return err;
8179 }
8180
8181 return 0;
8182}
8183EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8184
8185void netdev_adjacent_change_commit(struct net_device *old_dev,
8186 struct net_device *new_dev,
8187 struct net_device *dev)
8188{
8189 struct netdev_nested_priv priv = {
8190 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8191 .data = NULL,
8192 };
8193
8194 if (!new_dev || !old_dev)
8195 return;
8196
8197 if (new_dev == old_dev)
8198 return;
8199
8200 netdev_adjacent_dev_enable(dev, old_dev);
8201 __netdev_upper_dev_unlink(old_dev, dev, &priv);
8202}
8203EXPORT_SYMBOL(netdev_adjacent_change_commit);
8204
8205void netdev_adjacent_change_abort(struct net_device *old_dev,
8206 struct net_device *new_dev,
8207 struct net_device *dev)
8208{
8209 struct netdev_nested_priv priv = {
8210 .flags = 0,
8211 .data = NULL,
8212 };
8213
8214 if (!new_dev)
8215 return;
8216
8217 if (old_dev && new_dev != old_dev)
8218 netdev_adjacent_dev_enable(dev, old_dev);
8219
8220 __netdev_upper_dev_unlink(new_dev, dev, &priv);
8221}
8222EXPORT_SYMBOL(netdev_adjacent_change_abort);
8223
8224/**
8225 * netdev_bonding_info_change - Dispatch event about slave change
8226 * @dev: device
8227 * @bonding_info: info to dispatch
8228 *
8229 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8230 * The caller must hold the RTNL lock.
8231 */
8232void netdev_bonding_info_change(struct net_device *dev,
8233 struct netdev_bonding_info *bonding_info)
8234{
8235 struct netdev_notifier_bonding_info info = {
8236 .info.dev = dev,
8237 };
8238
8239 memcpy(&info.bonding_info, bonding_info,
8240 sizeof(struct netdev_bonding_info));
8241 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8242 &info.info);
8243}
8244EXPORT_SYMBOL(netdev_bonding_info_change);
8245
8246/**
8247 * netdev_get_xmit_slave - Get the xmit slave of master device
8248 * @dev: device
8249 * @skb: The packet
8250 * @all_slaves: assume all the slaves are active
8251 *
8252 * The reference counters are not incremented so the caller must be
8253 * careful with locks. The caller must hold RCU lock.
8254 * %NULL is returned if no slave is found.
8255 */
8256
8257struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8258 struct sk_buff *skb,
8259 bool all_slaves)
8260{
8261 const struct net_device_ops *ops = dev->netdev_ops;
8262
8263 if (!ops->ndo_get_xmit_slave)
8264 return NULL;
8265 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8266}
8267EXPORT_SYMBOL(netdev_get_xmit_slave);
8268
8269static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8270 struct sock *sk)
8271{
8272 const struct net_device_ops *ops = dev->netdev_ops;
8273
8274 if (!ops->ndo_sk_get_lower_dev)
8275 return NULL;
8276 return ops->ndo_sk_get_lower_dev(dev, sk);
8277}
8278
8279/**
8280 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8281 * @dev: device
8282 * @sk: the socket
8283 *
8284 * %NULL is returned if no lower device is found.
8285 */
8286
8287struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8288 struct sock *sk)
8289{
8290 struct net_device *lower;
8291
8292 lower = netdev_sk_get_lower_dev(dev, sk);
8293 while (lower) {
8294 dev = lower;
8295 lower = netdev_sk_get_lower_dev(dev, sk);
8296 }
8297
8298 return dev;
8299}
8300EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8301
8302static void netdev_adjacent_add_links(struct net_device *dev)
8303{
8304 struct netdev_adjacent *iter;
8305
8306 struct net *net = dev_net(dev);
8307
8308 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8309 if (!net_eq(net, dev_net(iter->dev)))
8310 continue;
8311 netdev_adjacent_sysfs_add(iter->dev, dev,
8312 &iter->dev->adj_list.lower);
8313 netdev_adjacent_sysfs_add(dev, iter->dev,
8314 &dev->adj_list.upper);
8315 }
8316
8317 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8318 if (!net_eq(net, dev_net(iter->dev)))
8319 continue;
8320 netdev_adjacent_sysfs_add(iter->dev, dev,
8321 &iter->dev->adj_list.upper);
8322 netdev_adjacent_sysfs_add(dev, iter->dev,
8323 &dev->adj_list.lower);
8324 }
8325}
8326
8327static void netdev_adjacent_del_links(struct net_device *dev)
8328{
8329 struct netdev_adjacent *iter;
8330
8331 struct net *net = dev_net(dev);
8332
8333 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8334 if (!net_eq(net, dev_net(iter->dev)))
8335 continue;
8336 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8337 &iter->dev->adj_list.lower);
8338 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8339 &dev->adj_list.upper);
8340 }
8341
8342 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8343 if (!net_eq(net, dev_net(iter->dev)))
8344 continue;
8345 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8346 &iter->dev->adj_list.upper);
8347 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8348 &dev->adj_list.lower);
8349 }
8350}
8351
8352void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8353{
8354 struct netdev_adjacent *iter;
8355
8356 struct net *net = dev_net(dev);
8357
8358 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8359 if (!net_eq(net, dev_net(iter->dev)))
8360 continue;
8361 netdev_adjacent_sysfs_del(iter->dev, oldname,
8362 &iter->dev->adj_list.lower);
8363 netdev_adjacent_sysfs_add(iter->dev, dev,
8364 &iter->dev->adj_list.lower);
8365 }
8366
8367 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8368 if (!net_eq(net, dev_net(iter->dev)))
8369 continue;
8370 netdev_adjacent_sysfs_del(iter->dev, oldname,
8371 &iter->dev->adj_list.upper);
8372 netdev_adjacent_sysfs_add(iter->dev, dev,
8373 &iter->dev->adj_list.upper);
8374 }
8375}
8376
8377void *netdev_lower_dev_get_private(struct net_device *dev,
8378 struct net_device *lower_dev)
8379{
8380 struct netdev_adjacent *lower;
8381
8382 if (!lower_dev)
8383 return NULL;
8384 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8385 if (!lower)
8386 return NULL;
8387
8388 return lower->private;
8389}
8390EXPORT_SYMBOL(netdev_lower_dev_get_private);
8391
8392
8393/**
8394 * netdev_lower_state_changed - Dispatch event about lower device state change
8395 * @lower_dev: device
8396 * @lower_state_info: state to dispatch
8397 *
8398 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8399 * The caller must hold the RTNL lock.
8400 */
8401void netdev_lower_state_changed(struct net_device *lower_dev,
8402 void *lower_state_info)
8403{
8404 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8405 .info.dev = lower_dev,
8406 };
8407
8408 ASSERT_RTNL();
8409 changelowerstate_info.lower_state_info = lower_state_info;
8410 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8411 &changelowerstate_info.info);
8412}
8413EXPORT_SYMBOL(netdev_lower_state_changed);
8414
8415static void dev_change_rx_flags(struct net_device *dev, int flags)
8416{
8417 const struct net_device_ops *ops = dev->netdev_ops;
8418
8419 if (ops->ndo_change_rx_flags)
8420 ops->ndo_change_rx_flags(dev, flags);
8421}
8422
8423static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8424{
8425 unsigned int old_flags = dev->flags;
8426 kuid_t uid;
8427 kgid_t gid;
8428
8429 ASSERT_RTNL();
8430
8431 dev->flags |= IFF_PROMISC;
8432 dev->promiscuity += inc;
8433 if (dev->promiscuity == 0) {
8434 /*
8435 * Avoid overflow.
8436 * If inc causes overflow, untouch promisc and return error.
8437 */
8438 if (inc < 0)
8439 dev->flags &= ~IFF_PROMISC;
8440 else {
8441 dev->promiscuity -= inc;
8442 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8443 dev->name);
8444 return -EOVERFLOW;
8445 }
8446 }
8447 if (dev->flags != old_flags) {
8448 pr_info("device %s %s promiscuous mode\n",
8449 dev->name,
8450 dev->flags & IFF_PROMISC ? "entered" : "left");
8451 if (audit_enabled) {
8452 current_uid_gid(&uid, &gid);
8453 audit_log(audit_context(), GFP_ATOMIC,
8454 AUDIT_ANOM_PROMISCUOUS,
8455 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8456 dev->name, (dev->flags & IFF_PROMISC),
8457 (old_flags & IFF_PROMISC),
8458 from_kuid(&init_user_ns, audit_get_loginuid(current)),
8459 from_kuid(&init_user_ns, uid),
8460 from_kgid(&init_user_ns, gid),
8461 audit_get_sessionid(current));
8462 }
8463
8464 dev_change_rx_flags(dev, IFF_PROMISC);
8465 }
8466 if (notify)
8467 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8468 return 0;
8469}
8470
8471/**
8472 * dev_set_promiscuity - update promiscuity count on a device
8473 * @dev: device
8474 * @inc: modifier
8475 *
8476 * Add or remove promiscuity from a device. While the count in the device
8477 * remains above zero the interface remains promiscuous. Once it hits zero
8478 * the device reverts back to normal filtering operation. A negative inc
8479 * value is used to drop promiscuity on the device.
8480 * Return 0 if successful or a negative errno code on error.
8481 */
8482int dev_set_promiscuity(struct net_device *dev, int inc)
8483{
8484 unsigned int old_flags = dev->flags;
8485 int err;
8486
8487 err = __dev_set_promiscuity(dev, inc, true);
8488 if (err < 0)
8489 return err;
8490 if (dev->flags != old_flags)
8491 dev_set_rx_mode(dev);
8492 return err;
8493}
8494EXPORT_SYMBOL(dev_set_promiscuity);
8495
8496static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8497{
8498 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8499
8500 ASSERT_RTNL();
8501
8502 dev->flags |= IFF_ALLMULTI;
8503 dev->allmulti += inc;
8504 if (dev->allmulti == 0) {
8505 /*
8506 * Avoid overflow.
8507 * If inc causes overflow, untouch allmulti and return error.
8508 */
8509 if (inc < 0)
8510 dev->flags &= ~IFF_ALLMULTI;
8511 else {
8512 dev->allmulti -= inc;
8513 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8514 dev->name);
8515 return -EOVERFLOW;
8516 }
8517 }
8518 if (dev->flags ^ old_flags) {
8519 dev_change_rx_flags(dev, IFF_ALLMULTI);
8520 dev_set_rx_mode(dev);
8521 if (notify)
8522 __dev_notify_flags(dev, old_flags,
8523 dev->gflags ^ old_gflags);
8524 }
8525 return 0;
8526}
8527
8528/**
8529 * dev_set_allmulti - update allmulti count on a device
8530 * @dev: device
8531 * @inc: modifier
8532 *
8533 * Add or remove reception of all multicast frames to a device. While the
8534 * count in the device remains above zero the interface remains listening
8535 * to all interfaces. Once it hits zero the device reverts back to normal
8536 * filtering operation. A negative @inc value is used to drop the counter
8537 * when releasing a resource needing all multicasts.
8538 * Return 0 if successful or a negative errno code on error.
8539 */
8540
8541int dev_set_allmulti(struct net_device *dev, int inc)
8542{
8543 return __dev_set_allmulti(dev, inc, true);
8544}
8545EXPORT_SYMBOL(dev_set_allmulti);
8546
8547/*
8548 * Upload unicast and multicast address lists to device and
8549 * configure RX filtering. When the device doesn't support unicast
8550 * filtering it is put in promiscuous mode while unicast addresses
8551 * are present.
8552 */
8553void __dev_set_rx_mode(struct net_device *dev)
8554{
8555 const struct net_device_ops *ops = dev->netdev_ops;
8556
8557 /* dev_open will call this function so the list will stay sane. */
8558 if (!(dev->flags&IFF_UP))
8559 return;
8560
8561 if (!netif_device_present(dev))
8562 return;
8563
8564 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8565 /* Unicast addresses changes may only happen under the rtnl,
8566 * therefore calling __dev_set_promiscuity here is safe.
8567 */
8568 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8569 __dev_set_promiscuity(dev, 1, false);
8570 dev->uc_promisc = true;
8571 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8572 __dev_set_promiscuity(dev, -1, false);
8573 dev->uc_promisc = false;
8574 }
8575 }
8576
8577 if (ops->ndo_set_rx_mode)
8578 ops->ndo_set_rx_mode(dev);
8579}
8580
8581void dev_set_rx_mode(struct net_device *dev)
8582{
8583 netif_addr_lock_bh(dev);
8584 __dev_set_rx_mode(dev);
8585 netif_addr_unlock_bh(dev);
8586}
8587
8588/**
8589 * dev_get_flags - get flags reported to userspace
8590 * @dev: device
8591 *
8592 * Get the combination of flag bits exported through APIs to userspace.
8593 */
8594unsigned int dev_get_flags(const struct net_device *dev)
8595{
8596 unsigned int flags;
8597
8598 flags = (dev->flags & ~(IFF_PROMISC |
8599 IFF_ALLMULTI |
8600 IFF_RUNNING |
8601 IFF_LOWER_UP |
8602 IFF_DORMANT)) |
8603 (dev->gflags & (IFF_PROMISC |
8604 IFF_ALLMULTI));
8605
8606 if (netif_running(dev)) {
8607 if (netif_oper_up(dev))
8608 flags |= IFF_RUNNING;
8609 if (netif_carrier_ok(dev))
8610 flags |= IFF_LOWER_UP;
8611 if (netif_dormant(dev))
8612 flags |= IFF_DORMANT;
8613 }
8614
8615 return flags;
8616}
8617EXPORT_SYMBOL(dev_get_flags);
8618
8619int __dev_change_flags(struct net_device *dev, unsigned int flags,
8620 struct netlink_ext_ack *extack)
8621{
8622 unsigned int old_flags = dev->flags;
8623 int ret;
8624
8625 ASSERT_RTNL();
8626
8627 /*
8628 * Set the flags on our device.
8629 */
8630
8631 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8632 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8633 IFF_AUTOMEDIA)) |
8634 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8635 IFF_ALLMULTI));
8636
8637 /*
8638 * Load in the correct multicast list now the flags have changed.
8639 */
8640
8641 if ((old_flags ^ flags) & IFF_MULTICAST)
8642 dev_change_rx_flags(dev, IFF_MULTICAST);
8643
8644 dev_set_rx_mode(dev);
8645
8646 /*
8647 * Have we downed the interface. We handle IFF_UP ourselves
8648 * according to user attempts to set it, rather than blindly
8649 * setting it.
8650 */
8651
8652 ret = 0;
8653 if ((old_flags ^ flags) & IFF_UP) {
8654 if (old_flags & IFF_UP)
8655 __dev_close(dev);
8656 else
8657 ret = __dev_open(dev, extack);
8658 }
8659
8660 if ((flags ^ dev->gflags) & IFF_PROMISC) {
8661 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8662 unsigned int old_flags = dev->flags;
8663
8664 dev->gflags ^= IFF_PROMISC;
8665
8666 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8667 if (dev->flags != old_flags)
8668 dev_set_rx_mode(dev);
8669 }
8670
8671 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8672 * is important. Some (broken) drivers set IFF_PROMISC, when
8673 * IFF_ALLMULTI is requested not asking us and not reporting.
8674 */
8675 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8676 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8677
8678 dev->gflags ^= IFF_ALLMULTI;
8679 __dev_set_allmulti(dev, inc, false);
8680 }
8681
8682 return ret;
8683}
8684
8685void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8686 unsigned int gchanges)
8687{
8688 unsigned int changes = dev->flags ^ old_flags;
8689
8690 if (gchanges)
8691 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8692
8693 if (changes & IFF_UP) {
8694 if (dev->flags & IFF_UP)
8695 call_netdevice_notifiers(NETDEV_UP, dev);
8696 else
8697 call_netdevice_notifiers(NETDEV_DOWN, dev);
8698 }
8699
8700 if (dev->flags & IFF_UP &&
8701 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8702 struct netdev_notifier_change_info change_info = {
8703 .info = {
8704 .dev = dev,
8705 },
8706 .flags_changed = changes,
8707 };
8708
8709 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8710 }
8711}
8712
8713/**
8714 * dev_change_flags - change device settings
8715 * @dev: device
8716 * @flags: device state flags
8717 * @extack: netlink extended ack
8718 *
8719 * Change settings on device based state flags. The flags are
8720 * in the userspace exported format.
8721 */
8722int dev_change_flags(struct net_device *dev, unsigned int flags,
8723 struct netlink_ext_ack *extack)
8724{
8725 int ret;
8726 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8727
8728 ret = __dev_change_flags(dev, flags, extack);
8729 if (ret < 0)
8730 return ret;
8731
8732 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8733 __dev_notify_flags(dev, old_flags, changes);
8734 return ret;
8735}
8736EXPORT_SYMBOL(dev_change_flags);
8737
8738int __dev_set_mtu(struct net_device *dev, int new_mtu)
8739{
8740 const struct net_device_ops *ops = dev->netdev_ops;
8741
8742 if (ops->ndo_change_mtu)
8743 return ops->ndo_change_mtu(dev, new_mtu);
8744
8745 /* Pairs with all the lockless reads of dev->mtu in the stack */
8746 WRITE_ONCE(dev->mtu, new_mtu);
8747 return 0;
8748}
8749EXPORT_SYMBOL(__dev_set_mtu);
8750
8751int dev_validate_mtu(struct net_device *dev, int new_mtu,
8752 struct netlink_ext_ack *extack)
8753{
8754 /* MTU must be positive, and in range */
8755 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8756 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8757 return -EINVAL;
8758 }
8759
8760 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8761 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8762 return -EINVAL;
8763 }
8764 return 0;
8765}
8766
8767/**
8768 * dev_set_mtu_ext - Change maximum transfer unit
8769 * @dev: device
8770 * @new_mtu: new transfer unit
8771 * @extack: netlink extended ack
8772 *
8773 * Change the maximum transfer size of the network device.
8774 */
8775int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8776 struct netlink_ext_ack *extack)
8777{
8778 int err, orig_mtu;
8779
8780 if (new_mtu == dev->mtu)
8781 return 0;
8782
8783 err = dev_validate_mtu(dev, new_mtu, extack);
8784 if (err)
8785 return err;
8786
8787 if (!netif_device_present(dev))
8788 return -ENODEV;
8789
8790 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8791 err = notifier_to_errno(err);
8792 if (err)
8793 return err;
8794
8795 orig_mtu = dev->mtu;
8796 err = __dev_set_mtu(dev, new_mtu);
8797
8798 if (!err) {
8799 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8800 orig_mtu);
8801 err = notifier_to_errno(err);
8802 if (err) {
8803 /* setting mtu back and notifying everyone again,
8804 * so that they have a chance to revert changes.
8805 */
8806 __dev_set_mtu(dev, orig_mtu);
8807 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8808 new_mtu);
8809 }
8810 }
8811 return err;
8812}
8813
8814int dev_set_mtu(struct net_device *dev, int new_mtu)
8815{
8816 struct netlink_ext_ack extack;
8817 int err;
8818
8819 memset(&extack, 0, sizeof(extack));
8820 err = dev_set_mtu_ext(dev, new_mtu, &extack);
8821 if (err && extack._msg)
8822 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8823 return err;
8824}
8825EXPORT_SYMBOL(dev_set_mtu);
8826
8827/**
8828 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8829 * @dev: device
8830 * @new_len: new tx queue length
8831 */
8832int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8833{
8834 unsigned int orig_len = dev->tx_queue_len;
8835 int res;
8836
8837 if (new_len != (unsigned int)new_len)
8838 return -ERANGE;
8839
8840 if (new_len != orig_len) {
8841 dev->tx_queue_len = new_len;
8842 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8843 res = notifier_to_errno(res);
8844 if (res)
8845 goto err_rollback;
8846 res = dev_qdisc_change_tx_queue_len(dev);
8847 if (res)
8848 goto err_rollback;
8849 }
8850
8851 return 0;
8852
8853err_rollback:
8854 netdev_err(dev, "refused to change device tx_queue_len\n");
8855 dev->tx_queue_len = orig_len;
8856 return res;
8857}
8858
8859/**
8860 * dev_set_group - Change group this device belongs to
8861 * @dev: device
8862 * @new_group: group this device should belong to
8863 */
8864void dev_set_group(struct net_device *dev, int new_group)
8865{
8866 dev->group = new_group;
8867}
8868EXPORT_SYMBOL(dev_set_group);
8869
8870/**
8871 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8872 * @dev: device
8873 * @addr: new address
8874 * @extack: netlink extended ack
8875 */
8876int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8877 struct netlink_ext_ack *extack)
8878{
8879 struct netdev_notifier_pre_changeaddr_info info = {
8880 .info.dev = dev,
8881 .info.extack = extack,
8882 .dev_addr = addr,
8883 };
8884 int rc;
8885
8886 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8887 return notifier_to_errno(rc);
8888}
8889EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8890
8891/**
8892 * dev_set_mac_address - Change Media Access Control Address
8893 * @dev: device
8894 * @sa: new address
8895 * @extack: netlink extended ack
8896 *
8897 * Change the hardware (MAC) address of the device
8898 */
8899int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8900 struct netlink_ext_ack *extack)
8901{
8902 const struct net_device_ops *ops = dev->netdev_ops;
8903 int err;
8904
8905 if (!ops->ndo_set_mac_address)
8906 return -EOPNOTSUPP;
8907 if (sa->sa_family != dev->type)
8908 return -EINVAL;
8909 if (!netif_device_present(dev))
8910 return -ENODEV;
8911 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8912 if (err)
8913 return err;
8914 err = ops->ndo_set_mac_address(dev, sa);
8915 if (err)
8916 return err;
8917 dev->addr_assign_type = NET_ADDR_SET;
8918 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8919 add_device_randomness(dev->dev_addr, dev->addr_len);
8920 return 0;
8921}
8922EXPORT_SYMBOL(dev_set_mac_address);
8923
8924static DECLARE_RWSEM(dev_addr_sem);
8925
8926int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8927 struct netlink_ext_ack *extack)
8928{
8929 int ret;
8930
8931 down_write(&dev_addr_sem);
8932 ret = dev_set_mac_address(dev, sa, extack);
8933 up_write(&dev_addr_sem);
8934 return ret;
8935}
8936EXPORT_SYMBOL(dev_set_mac_address_user);
8937
8938int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8939{
8940 size_t size = sizeof(sa->sa_data);
8941 struct net_device *dev;
8942 int ret = 0;
8943
8944 down_read(&dev_addr_sem);
8945 rcu_read_lock();
8946
8947 dev = dev_get_by_name_rcu(net, dev_name);
8948 if (!dev) {
8949 ret = -ENODEV;
8950 goto unlock;
8951 }
8952 if (!dev->addr_len)
8953 memset(sa->sa_data, 0, size);
8954 else
8955 memcpy(sa->sa_data, dev->dev_addr,
8956 min_t(size_t, size, dev->addr_len));
8957 sa->sa_family = dev->type;
8958
8959unlock:
8960 rcu_read_unlock();
8961 up_read(&dev_addr_sem);
8962 return ret;
8963}
8964EXPORT_SYMBOL(dev_get_mac_address);
8965
8966/**
8967 * dev_change_carrier - Change device carrier
8968 * @dev: device
8969 * @new_carrier: new value
8970 *
8971 * Change device carrier
8972 */
8973int dev_change_carrier(struct net_device *dev, bool new_carrier)
8974{
8975 const struct net_device_ops *ops = dev->netdev_ops;
8976
8977 if (!ops->ndo_change_carrier)
8978 return -EOPNOTSUPP;
8979 if (!netif_device_present(dev))
8980 return -ENODEV;
8981 return ops->ndo_change_carrier(dev, new_carrier);
8982}
8983EXPORT_SYMBOL(dev_change_carrier);
8984
8985/**
8986 * dev_get_phys_port_id - Get device physical port ID
8987 * @dev: device
8988 * @ppid: port ID
8989 *
8990 * Get device physical port ID
8991 */
8992int dev_get_phys_port_id(struct net_device *dev,
8993 struct netdev_phys_item_id *ppid)
8994{
8995 const struct net_device_ops *ops = dev->netdev_ops;
8996
8997 if (!ops->ndo_get_phys_port_id)
8998 return -EOPNOTSUPP;
8999 return ops->ndo_get_phys_port_id(dev, ppid);
9000}
9001EXPORT_SYMBOL(dev_get_phys_port_id);
9002
9003/**
9004 * dev_get_phys_port_name - Get device physical port name
9005 * @dev: device
9006 * @name: port name
9007 * @len: limit of bytes to copy to name
9008 *
9009 * Get device physical port name
9010 */
9011int dev_get_phys_port_name(struct net_device *dev,
9012 char *name, size_t len)
9013{
9014 const struct net_device_ops *ops = dev->netdev_ops;
9015 int err;
9016
9017 if (ops->ndo_get_phys_port_name) {
9018 err = ops->ndo_get_phys_port_name(dev, name, len);
9019 if (err != -EOPNOTSUPP)
9020 return err;
9021 }
9022 return devlink_compat_phys_port_name_get(dev, name, len);
9023}
9024EXPORT_SYMBOL(dev_get_phys_port_name);
9025
9026/**
9027 * dev_get_port_parent_id - Get the device's port parent identifier
9028 * @dev: network device
9029 * @ppid: pointer to a storage for the port's parent identifier
9030 * @recurse: allow/disallow recursion to lower devices
9031 *
9032 * Get the devices's port parent identifier
9033 */
9034int dev_get_port_parent_id(struct net_device *dev,
9035 struct netdev_phys_item_id *ppid,
9036 bool recurse)
9037{
9038 const struct net_device_ops *ops = dev->netdev_ops;
9039 struct netdev_phys_item_id first = { };
9040 struct net_device *lower_dev;
9041 struct list_head *iter;
9042 int err;
9043
9044 if (ops->ndo_get_port_parent_id) {
9045 err = ops->ndo_get_port_parent_id(dev, ppid);
9046 if (err != -EOPNOTSUPP)
9047 return err;
9048 }
9049
9050 err = devlink_compat_switch_id_get(dev, ppid);
9051 if (!err || err != -EOPNOTSUPP)
9052 return err;
9053
9054 if (!recurse)
9055 return -EOPNOTSUPP;
9056
9057 netdev_for_each_lower_dev(dev, lower_dev, iter) {
9058 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
9059 if (err)
9060 break;
9061 if (!first.id_len)
9062 first = *ppid;
9063 else if (memcmp(&first, ppid, sizeof(*ppid)))
9064 return -EOPNOTSUPP;
9065 }
9066
9067 return err;
9068}
9069EXPORT_SYMBOL(dev_get_port_parent_id);
9070
9071/**
9072 * netdev_port_same_parent_id - Indicate if two network devices have
9073 * the same port parent identifier
9074 * @a: first network device
9075 * @b: second network device
9076 */
9077bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9078{
9079 struct netdev_phys_item_id a_id = { };
9080 struct netdev_phys_item_id b_id = { };
9081
9082 if (dev_get_port_parent_id(a, &a_id, true) ||
9083 dev_get_port_parent_id(b, &b_id, true))
9084 return false;
9085
9086 return netdev_phys_item_id_same(&a_id, &b_id);
9087}
9088EXPORT_SYMBOL(netdev_port_same_parent_id);
9089
9090/**
9091 * dev_change_proto_down - update protocol port state information
9092 * @dev: device
9093 * @proto_down: new value
9094 *
9095 * This info can be used by switch drivers to set the phys state of the
9096 * port.
9097 */
9098int dev_change_proto_down(struct net_device *dev, bool proto_down)
9099{
9100 const struct net_device_ops *ops = dev->netdev_ops;
9101
9102 if (!ops->ndo_change_proto_down)
9103 return -EOPNOTSUPP;
9104 if (!netif_device_present(dev))
9105 return -ENODEV;
9106 return ops->ndo_change_proto_down(dev, proto_down);
9107}
9108EXPORT_SYMBOL(dev_change_proto_down);
9109
9110/**
9111 * dev_change_proto_down_generic - generic implementation for
9112 * ndo_change_proto_down that sets carrier according to
9113 * proto_down.
9114 *
9115 * @dev: device
9116 * @proto_down: new value
9117 */
9118int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
9119{
9120 if (proto_down)
9121 netif_carrier_off(dev);
9122 else
9123 netif_carrier_on(dev);
9124 dev->proto_down = proto_down;
9125 return 0;
9126}
9127EXPORT_SYMBOL(dev_change_proto_down_generic);
9128
9129/**
9130 * dev_change_proto_down_reason - proto down reason
9131 *
9132 * @dev: device
9133 * @mask: proto down mask
9134 * @value: proto down value
9135 */
9136void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9137 u32 value)
9138{
9139 int b;
9140
9141 if (!mask) {
9142 dev->proto_down_reason = value;
9143 } else {
9144 for_each_set_bit(b, &mask, 32) {
9145 if (value & (1 << b))
9146 dev->proto_down_reason |= BIT(b);
9147 else
9148 dev->proto_down_reason &= ~BIT(b);
9149 }
9150 }
9151}
9152EXPORT_SYMBOL(dev_change_proto_down_reason);
9153
9154struct bpf_xdp_link {
9155 struct bpf_link link;
9156 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9157 int flags;
9158};
9159
9160static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9161{
9162 if (flags & XDP_FLAGS_HW_MODE)
9163 return XDP_MODE_HW;
9164 if (flags & XDP_FLAGS_DRV_MODE)
9165 return XDP_MODE_DRV;
9166 if (flags & XDP_FLAGS_SKB_MODE)
9167 return XDP_MODE_SKB;
9168 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9169}
9170
9171static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9172{
9173 switch (mode) {
9174 case XDP_MODE_SKB:
9175 return generic_xdp_install;
9176 case XDP_MODE_DRV:
9177 case XDP_MODE_HW:
9178 return dev->netdev_ops->ndo_bpf;
9179 default:
9180 return NULL;
9181 }
9182}
9183
9184static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9185 enum bpf_xdp_mode mode)
9186{
9187 return dev->xdp_state[mode].link;
9188}
9189
9190static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9191 enum bpf_xdp_mode mode)
9192{
9193 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9194
9195 if (link)
9196 return link->link.prog;
9197 return dev->xdp_state[mode].prog;
9198}
9199
9200static u8 dev_xdp_prog_count(struct net_device *dev)
9201{
9202 u8 count = 0;
9203 int i;
9204
9205 for (i = 0; i < __MAX_XDP_MODE; i++)
9206 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9207 count++;
9208 return count;
9209}
9210
9211u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9212{
9213 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9214
9215 return prog ? prog->aux->id : 0;
9216}
9217
9218static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9219 struct bpf_xdp_link *link)
9220{
9221 dev->xdp_state[mode].link = link;
9222 dev->xdp_state[mode].prog = NULL;
9223}
9224
9225static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9226 struct bpf_prog *prog)
9227{
9228 dev->xdp_state[mode].link = NULL;
9229 dev->xdp_state[mode].prog = prog;
9230}
9231
9232static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9233 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9234 u32 flags, struct bpf_prog *prog)
9235{
9236 struct netdev_bpf xdp;
9237 int err;
9238
9239 memset(&xdp, 0, sizeof(xdp));
9240 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9241 xdp.extack = extack;
9242 xdp.flags = flags;
9243 xdp.prog = prog;
9244
9245 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9246 * "moved" into driver), so they don't increment it on their own, but
9247 * they do decrement refcnt when program is detached or replaced.
9248 * Given net_device also owns link/prog, we need to bump refcnt here
9249 * to prevent drivers from underflowing it.
9250 */
9251 if (prog)
9252 bpf_prog_inc(prog);
9253 err = bpf_op(dev, &xdp);
9254 if (err) {
9255 if (prog)
9256 bpf_prog_put(prog);
9257 return err;
9258 }
9259
9260 if (mode != XDP_MODE_HW)
9261 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9262
9263 return 0;
9264}
9265
9266static void dev_xdp_uninstall(struct net_device *dev)
9267{
9268 struct bpf_xdp_link *link;
9269 struct bpf_prog *prog;
9270 enum bpf_xdp_mode mode;
9271 bpf_op_t bpf_op;
9272
9273 ASSERT_RTNL();
9274
9275 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9276 prog = dev_xdp_prog(dev, mode);
9277 if (!prog)
9278 continue;
9279
9280 bpf_op = dev_xdp_bpf_op(dev, mode);
9281 if (!bpf_op)
9282 continue;
9283
9284 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9285
9286 /* auto-detach link from net device */
9287 link = dev_xdp_link(dev, mode);
9288 if (link)
9289 link->dev = NULL;
9290 else
9291 bpf_prog_put(prog);
9292
9293 dev_xdp_set_link(dev, mode, NULL);
9294 }
9295}
9296
9297static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9298 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9299 struct bpf_prog *old_prog, u32 flags)
9300{
9301 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9302 struct bpf_prog *cur_prog;
9303 enum bpf_xdp_mode mode;
9304 bpf_op_t bpf_op;
9305 int err;
9306
9307 ASSERT_RTNL();
9308
9309 /* either link or prog attachment, never both */
9310 if (link && (new_prog || old_prog))
9311 return -EINVAL;
9312 /* link supports only XDP mode flags */
9313 if (link && (flags & ~XDP_FLAGS_MODES)) {
9314 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9315 return -EINVAL;
9316 }
9317 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9318 if (num_modes > 1) {
9319 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9320 return -EINVAL;
9321 }
9322 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9323 if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9324 NL_SET_ERR_MSG(extack,
9325 "More than one program loaded, unset mode is ambiguous");
9326 return -EINVAL;
9327 }
9328 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9329 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9330 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9331 return -EINVAL;
9332 }
9333
9334 mode = dev_xdp_mode(dev, flags);
9335 /* can't replace attached link */
9336 if (dev_xdp_link(dev, mode)) {
9337 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9338 return -EBUSY;
9339 }
9340
9341 cur_prog = dev_xdp_prog(dev, mode);
9342 /* can't replace attached prog with link */
9343 if (link && cur_prog) {
9344 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9345 return -EBUSY;
9346 }
9347 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9348 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9349 return -EEXIST;
9350 }
9351
9352 /* put effective new program into new_prog */
9353 if (link)
9354 new_prog = link->link.prog;
9355
9356 if (new_prog) {
9357 bool offload = mode == XDP_MODE_HW;
9358 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9359 ? XDP_MODE_DRV : XDP_MODE_SKB;
9360
9361 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9362 NL_SET_ERR_MSG(extack, "XDP program already attached");
9363 return -EBUSY;
9364 }
9365 if (!offload && dev_xdp_prog(dev, other_mode)) {
9366 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9367 return -EEXIST;
9368 }
9369 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9370 NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9371 return -EINVAL;
9372 }
9373 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9374 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9375 return -EINVAL;
9376 }
9377 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9378 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9379 return -EINVAL;
9380 }
9381 }
9382
9383 /* don't call drivers if the effective program didn't change */
9384 if (new_prog != cur_prog) {
9385 bpf_op = dev_xdp_bpf_op(dev, mode);
9386 if (!bpf_op) {
9387 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9388 return -EOPNOTSUPP;
9389 }
9390
9391 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9392 if (err)
9393 return err;
9394 }
9395
9396 if (link)
9397 dev_xdp_set_link(dev, mode, link);
9398 else
9399 dev_xdp_set_prog(dev, mode, new_prog);
9400 if (cur_prog)
9401 bpf_prog_put(cur_prog);
9402
9403 return 0;
9404}
9405
9406static int dev_xdp_attach_link(struct net_device *dev,
9407 struct netlink_ext_ack *extack,
9408 struct bpf_xdp_link *link)
9409{
9410 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9411}
9412
9413static int dev_xdp_detach_link(struct net_device *dev,
9414 struct netlink_ext_ack *extack,
9415 struct bpf_xdp_link *link)
9416{
9417 enum bpf_xdp_mode mode;
9418 bpf_op_t bpf_op;
9419
9420 ASSERT_RTNL();
9421
9422 mode = dev_xdp_mode(dev, link->flags);
9423 if (dev_xdp_link(dev, mode) != link)
9424 return -EINVAL;
9425
9426 bpf_op = dev_xdp_bpf_op(dev, mode);
9427 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9428 dev_xdp_set_link(dev, mode, NULL);
9429 return 0;
9430}
9431
9432static void bpf_xdp_link_release(struct bpf_link *link)
9433{
9434 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9435
9436 rtnl_lock();
9437
9438 /* if racing with net_device's tear down, xdp_link->dev might be
9439 * already NULL, in which case link was already auto-detached
9440 */
9441 if (xdp_link->dev) {
9442 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9443 xdp_link->dev = NULL;
9444 }
9445
9446 rtnl_unlock();
9447}
9448
9449static int bpf_xdp_link_detach(struct bpf_link *link)
9450{
9451 bpf_xdp_link_release(link);
9452 return 0;
9453}
9454
9455static void bpf_xdp_link_dealloc(struct bpf_link *link)
9456{
9457 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9458
9459 kfree(xdp_link);
9460}
9461
9462static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9463 struct seq_file *seq)
9464{
9465 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9466 u32 ifindex = 0;
9467
9468 rtnl_lock();
9469 if (xdp_link->dev)
9470 ifindex = xdp_link->dev->ifindex;
9471 rtnl_unlock();
9472
9473 seq_printf(seq, "ifindex:\t%u\n", ifindex);
9474}
9475
9476static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9477 struct bpf_link_info *info)
9478{
9479 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9480 u32 ifindex = 0;
9481
9482 rtnl_lock();
9483 if (xdp_link->dev)
9484 ifindex = xdp_link->dev->ifindex;
9485 rtnl_unlock();
9486
9487 info->xdp.ifindex = ifindex;
9488 return 0;
9489}
9490
9491static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9492 struct bpf_prog *old_prog)
9493{
9494 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9495 enum bpf_xdp_mode mode;
9496 bpf_op_t bpf_op;
9497 int err = 0;
9498
9499 rtnl_lock();
9500
9501 /* link might have been auto-released already, so fail */
9502 if (!xdp_link->dev) {
9503 err = -ENOLINK;
9504 goto out_unlock;
9505 }
9506
9507 if (old_prog && link->prog != old_prog) {
9508 err = -EPERM;
9509 goto out_unlock;
9510 }
9511 old_prog = link->prog;
9512 if (old_prog == new_prog) {
9513 /* no-op, don't disturb drivers */
9514 bpf_prog_put(new_prog);
9515 goto out_unlock;
9516 }
9517
9518 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9519 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9520 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9521 xdp_link->flags, new_prog);
9522 if (err)
9523 goto out_unlock;
9524
9525 old_prog = xchg(&link->prog, new_prog);
9526 bpf_prog_put(old_prog);
9527
9528out_unlock:
9529 rtnl_unlock();
9530 return err;
9531}
9532
9533static const struct bpf_link_ops bpf_xdp_link_lops = {
9534 .release = bpf_xdp_link_release,
9535 .dealloc = bpf_xdp_link_dealloc,
9536 .detach = bpf_xdp_link_detach,
9537 .show_fdinfo = bpf_xdp_link_show_fdinfo,
9538 .fill_link_info = bpf_xdp_link_fill_link_info,
9539 .update_prog = bpf_xdp_link_update,
9540};
9541
9542int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9543{
9544 struct net *net = current->nsproxy->net_ns;
9545 struct bpf_link_primer link_primer;
9546 struct bpf_xdp_link *link;
9547 struct net_device *dev;
9548 int err, fd;
9549
9550 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9551 if (!dev)
9552 return -EINVAL;
9553
9554 link = kzalloc(sizeof(*link), GFP_USER);
9555 if (!link) {
9556 err = -ENOMEM;
9557 goto out_put_dev;
9558 }
9559
9560 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9561 link->dev = dev;
9562 link->flags = attr->link_create.flags;
9563
9564 err = bpf_link_prime(&link->link, &link_primer);
9565 if (err) {
9566 kfree(link);
9567 goto out_put_dev;
9568 }
9569
9570 rtnl_lock();
9571 err = dev_xdp_attach_link(dev, NULL, link);
9572 rtnl_unlock();
9573
9574 if (err) {
9575 bpf_link_cleanup(&link_primer);
9576 goto out_put_dev;
9577 }
9578
9579 fd = bpf_link_settle(&link_primer);
9580 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9581 dev_put(dev);
9582 return fd;
9583
9584out_put_dev:
9585 dev_put(dev);
9586 return err;
9587}
9588
9589/**
9590 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
9591 * @dev: device
9592 * @extack: netlink extended ack
9593 * @fd: new program fd or negative value to clear
9594 * @expected_fd: old program fd that userspace expects to replace or clear
9595 * @flags: xdp-related flags
9596 *
9597 * Set or clear a bpf program for a device
9598 */
9599int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9600 int fd, int expected_fd, u32 flags)
9601{
9602 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9603 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9604 int err;
9605
9606 ASSERT_RTNL();
9607
9608 if (fd >= 0) {
9609 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9610 mode != XDP_MODE_SKB);
9611 if (IS_ERR(new_prog))
9612 return PTR_ERR(new_prog);
9613 }
9614
9615 if (expected_fd >= 0) {
9616 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9617 mode != XDP_MODE_SKB);
9618 if (IS_ERR(old_prog)) {
9619 err = PTR_ERR(old_prog);
9620 old_prog = NULL;
9621 goto err_out;
9622 }
9623 }
9624
9625 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9626
9627err_out:
9628 if (err && new_prog)
9629 bpf_prog_put(new_prog);
9630 if (old_prog)
9631 bpf_prog_put(old_prog);
9632 return err;
9633}
9634
9635/**
9636 * dev_new_index - allocate an ifindex
9637 * @net: the applicable net namespace
9638 *
9639 * Returns a suitable unique value for a new device interface
9640 * number. The caller must hold the rtnl semaphore or the
9641 * dev_base_lock to be sure it remains unique.
9642 */
9643static int dev_new_index(struct net *net)
9644{
9645 int ifindex = net->ifindex;
9646
9647 for (;;) {
9648 if (++ifindex <= 0)
9649 ifindex = 1;
9650 if (!__dev_get_by_index(net, ifindex))
9651 return net->ifindex = ifindex;
9652 }
9653}
9654
9655/* Delayed registration/unregisteration */
9656static LIST_HEAD(net_todo_list);
9657DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9658
9659static void net_set_todo(struct net_device *dev)
9660{
9661 list_add_tail(&dev->todo_list, &net_todo_list);
9662 dev_net(dev)->dev_unreg_count++;
9663}
9664
9665static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9666 struct net_device *upper, netdev_features_t features)
9667{
9668 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9669 netdev_features_t feature;
9670 int feature_bit;
9671
9672 for_each_netdev_feature(upper_disables, feature_bit) {
9673 feature = __NETIF_F_BIT(feature_bit);
9674 if (!(upper->wanted_features & feature)
9675 && (features & feature)) {
9676 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9677 &feature, upper->name);
9678 features &= ~feature;
9679 }
9680 }
9681
9682 return features;
9683}
9684
9685static void netdev_sync_lower_features(struct net_device *upper,
9686 struct net_device *lower, netdev_features_t features)
9687{
9688 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9689 netdev_features_t feature;
9690 int feature_bit;
9691
9692 for_each_netdev_feature(upper_disables, feature_bit) {
9693 feature = __NETIF_F_BIT(feature_bit);
9694 if (!(features & feature) && (lower->features & feature)) {
9695 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9696 &feature, lower->name);
9697 lower->wanted_features &= ~feature;
9698 __netdev_update_features(lower);
9699
9700 if (unlikely(lower->features & feature))
9701 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9702 &feature, lower->name);
9703 else
9704 netdev_features_change(lower);
9705 }
9706 }
9707}
9708
9709static netdev_features_t netdev_fix_features(struct net_device *dev,
9710 netdev_features_t features)
9711{
9712 /* Fix illegal checksum combinations */
9713 if ((features & NETIF_F_HW_CSUM) &&
9714 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9715 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9716 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9717 }
9718
9719 /* TSO requires that SG is present as well. */
9720 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9721 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9722 features &= ~NETIF_F_ALL_TSO;
9723 }
9724
9725 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9726 !(features & NETIF_F_IP_CSUM)) {
9727 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9728 features &= ~NETIF_F_TSO;
9729 features &= ~NETIF_F_TSO_ECN;
9730 }
9731
9732 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9733 !(features & NETIF_F_IPV6_CSUM)) {
9734 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9735 features &= ~NETIF_F_TSO6;
9736 }
9737
9738 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9739 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9740 features &= ~NETIF_F_TSO_MANGLEID;
9741
9742 /* TSO ECN requires that TSO is present as well. */
9743 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9744 features &= ~NETIF_F_TSO_ECN;
9745
9746 /* Software GSO depends on SG. */
9747 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9748 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9749 features &= ~NETIF_F_GSO;
9750 }
9751
9752 /* GSO partial features require GSO partial be set */
9753 if ((features & dev->gso_partial_features) &&
9754 !(features & NETIF_F_GSO_PARTIAL)) {
9755 netdev_dbg(dev,
9756 "Dropping partially supported GSO features since no GSO partial.\n");
9757 features &= ~dev->gso_partial_features;
9758 }
9759
9760 if (!(features & NETIF_F_RXCSUM)) {
9761 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9762 * successfully merged by hardware must also have the
9763 * checksum verified by hardware. If the user does not
9764 * want to enable RXCSUM, logically, we should disable GRO_HW.
9765 */
9766 if (features & NETIF_F_GRO_HW) {
9767 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9768 features &= ~NETIF_F_GRO_HW;
9769 }
9770 }
9771
9772 /* LRO/HW-GRO features cannot be combined with RX-FCS */
9773 if (features & NETIF_F_RXFCS) {
9774 if (features & NETIF_F_LRO) {
9775 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9776 features &= ~NETIF_F_LRO;
9777 }
9778
9779 if (features & NETIF_F_GRO_HW) {
9780 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9781 features &= ~NETIF_F_GRO_HW;
9782 }
9783 }
9784
9785 if (features & NETIF_F_HW_TLS_TX) {
9786 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9787 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9788 bool hw_csum = features & NETIF_F_HW_CSUM;
9789
9790 if (!ip_csum && !hw_csum) {
9791 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9792 features &= ~NETIF_F_HW_TLS_TX;
9793 }
9794 }
9795
9796 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9797 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9798 features &= ~NETIF_F_HW_TLS_RX;
9799 }
9800
9801 return features;
9802}
9803
9804int __netdev_update_features(struct net_device *dev)
9805{
9806 struct net_device *upper, *lower;
9807 netdev_features_t features;
9808 struct list_head *iter;
9809 int err = -1;
9810
9811 ASSERT_RTNL();
9812
9813 features = netdev_get_wanted_features(dev);
9814
9815 if (dev->netdev_ops->ndo_fix_features)
9816 features = dev->netdev_ops->ndo_fix_features(dev, features);
9817
9818 /* driver might be less strict about feature dependencies */
9819 features = netdev_fix_features(dev, features);
9820
9821 /* some features can't be enabled if they're off on an upper device */
9822 netdev_for_each_upper_dev_rcu(dev, upper, iter)
9823 features = netdev_sync_upper_features(dev, upper, features);
9824
9825 if (dev->features == features)
9826 goto sync_lower;
9827
9828 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9829 &dev->features, &features);
9830
9831 if (dev->netdev_ops->ndo_set_features)
9832 err = dev->netdev_ops->ndo_set_features(dev, features);
9833 else
9834 err = 0;
9835
9836 if (unlikely(err < 0)) {
9837 netdev_err(dev,
9838 "set_features() failed (%d); wanted %pNF, left %pNF\n",
9839 err, &features, &dev->features);
9840 /* return non-0 since some features might have changed and
9841 * it's better to fire a spurious notification than miss it
9842 */
9843 return -1;
9844 }
9845
9846sync_lower:
9847 /* some features must be disabled on lower devices when disabled
9848 * on an upper device (think: bonding master or bridge)
9849 */
9850 netdev_for_each_lower_dev(dev, lower, iter)
9851 netdev_sync_lower_features(dev, lower, features);
9852
9853 if (!err) {
9854 netdev_features_t diff = features ^ dev->features;
9855
9856 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9857 /* udp_tunnel_{get,drop}_rx_info both need
9858 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9859 * device, or they won't do anything.
9860 * Thus we need to update dev->features
9861 * *before* calling udp_tunnel_get_rx_info,
9862 * but *after* calling udp_tunnel_drop_rx_info.
9863 */
9864 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9865 dev->features = features;
9866 udp_tunnel_get_rx_info(dev);
9867 } else {
9868 udp_tunnel_drop_rx_info(dev);
9869 }
9870 }
9871
9872 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9873 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9874 dev->features = features;
9875 err |= vlan_get_rx_ctag_filter_info(dev);
9876 } else {
9877 vlan_drop_rx_ctag_filter_info(dev);
9878 }
9879 }
9880
9881 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9882 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9883 dev->features = features;
9884 err |= vlan_get_rx_stag_filter_info(dev);
9885 } else {
9886 vlan_drop_rx_stag_filter_info(dev);
9887 }
9888 }
9889
9890 dev->features = features;
9891 }
9892
9893 return err < 0 ? 0 : 1;
9894}
9895
9896/**
9897 * netdev_update_features - recalculate device features
9898 * @dev: the device to check
9899 *
9900 * Recalculate dev->features set and send notifications if it
9901 * has changed. Should be called after driver or hardware dependent
9902 * conditions might have changed that influence the features.
9903 */
9904void netdev_update_features(struct net_device *dev)
9905{
9906 if (__netdev_update_features(dev))
9907 netdev_features_change(dev);
9908}
9909EXPORT_SYMBOL(netdev_update_features);
9910
9911/**
9912 * netdev_change_features - recalculate device features
9913 * @dev: the device to check
9914 *
9915 * Recalculate dev->features set and send notifications even
9916 * if they have not changed. Should be called instead of
9917 * netdev_update_features() if also dev->vlan_features might
9918 * have changed to allow the changes to be propagated to stacked
9919 * VLAN devices.
9920 */
9921void netdev_change_features(struct net_device *dev)
9922{
9923 __netdev_update_features(dev);
9924 netdev_features_change(dev);
9925}
9926EXPORT_SYMBOL(netdev_change_features);
9927
9928/**
9929 * netif_stacked_transfer_operstate - transfer operstate
9930 * @rootdev: the root or lower level device to transfer state from
9931 * @dev: the device to transfer operstate to
9932 *
9933 * Transfer operational state from root to device. This is normally
9934 * called when a stacking relationship exists between the root
9935 * device and the device(a leaf device).
9936 */
9937void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9938 struct net_device *dev)
9939{
9940 if (rootdev->operstate == IF_OPER_DORMANT)
9941 netif_dormant_on(dev);
9942 else
9943 netif_dormant_off(dev);
9944
9945 if (rootdev->operstate == IF_OPER_TESTING)
9946 netif_testing_on(dev);
9947 else
9948 netif_testing_off(dev);
9949
9950 if (netif_carrier_ok(rootdev))
9951 netif_carrier_on(dev);
9952 else
9953 netif_carrier_off(dev);
9954}
9955EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9956
9957static int netif_alloc_rx_queues(struct net_device *dev)
9958{
9959 unsigned int i, count = dev->num_rx_queues;
9960 struct netdev_rx_queue *rx;
9961 size_t sz = count * sizeof(*rx);
9962 int err = 0;
9963
9964 BUG_ON(count < 1);
9965
9966 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9967 if (!rx)
9968 return -ENOMEM;
9969
9970 dev->_rx = rx;
9971
9972 for (i = 0; i < count; i++) {
9973 rx[i].dev = dev;
9974
9975 /* XDP RX-queue setup */
9976 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9977 if (err < 0)
9978 goto err_rxq_info;
9979 }
9980 return 0;
9981
9982err_rxq_info:
9983 /* Rollback successful reg's and free other resources */
9984 while (i--)
9985 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9986 kvfree(dev->_rx);
9987 dev->_rx = NULL;
9988 return err;
9989}
9990
9991static void netif_free_rx_queues(struct net_device *dev)
9992{
9993 unsigned int i, count = dev->num_rx_queues;
9994
9995 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9996 if (!dev->_rx)
9997 return;
9998
9999 for (i = 0; i < count; i++)
10000 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10001
10002 kvfree(dev->_rx);
10003}
10004
10005static void netdev_init_one_queue(struct net_device *dev,
10006 struct netdev_queue *queue, void *_unused)
10007{
10008 /* Initialize queue lock */
10009 spin_lock_init(&queue->_xmit_lock);
10010 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10011 queue->xmit_lock_owner = -1;
10012 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10013 queue->dev = dev;
10014#ifdef CONFIG_BQL
10015 dql_init(&queue->dql, HZ);
10016#endif
10017}
10018
10019static void netif_free_tx_queues(struct net_device *dev)
10020{
10021 kvfree(dev->_tx);
10022}
10023
10024static int netif_alloc_netdev_queues(struct net_device *dev)
10025{
10026 unsigned int count = dev->num_tx_queues;
10027 struct netdev_queue *tx;
10028 size_t sz = count * sizeof(*tx);
10029
10030 if (count < 1 || count > 0xffff)
10031 return -EINVAL;
10032
10033 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10034 if (!tx)
10035 return -ENOMEM;
10036
10037 dev->_tx = tx;
10038
10039 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10040 spin_lock_init(&dev->tx_global_lock);
10041
10042 return 0;
10043}
10044
10045void netif_tx_stop_all_queues(struct net_device *dev)
10046{
10047 unsigned int i;
10048
10049 for (i = 0; i < dev->num_tx_queues; i++) {
10050 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10051
10052 netif_tx_stop_queue(txq);
10053 }
10054}
10055EXPORT_SYMBOL(netif_tx_stop_all_queues);
10056
10057/**
10058 * register_netdevice - register a network device
10059 * @dev: device to register
10060 *
10061 * Take a completed network device structure and add it to the kernel
10062 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10063 * chain. 0 is returned on success. A negative errno code is returned
10064 * on a failure to set up the device, or if the name is a duplicate.
10065 *
10066 * Callers must hold the rtnl semaphore. You may want
10067 * register_netdev() instead of this.
10068 *
10069 * BUGS:
10070 * The locking appears insufficient to guarantee two parallel registers
10071 * will not get the same name.
10072 */
10073
10074int register_netdevice(struct net_device *dev)
10075{
10076 int ret;
10077 struct net *net = dev_net(dev);
10078
10079 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10080 NETDEV_FEATURE_COUNT);
10081 BUG_ON(dev_boot_phase);
10082 ASSERT_RTNL();
10083
10084 might_sleep();
10085
10086 /* When net_device's are persistent, this will be fatal. */
10087 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10088 BUG_ON(!net);
10089
10090 ret = ethtool_check_ops(dev->ethtool_ops);
10091 if (ret)
10092 return ret;
10093
10094 spin_lock_init(&dev->addr_list_lock);
10095 netdev_set_addr_lockdep_class(dev);
10096
10097 ret = dev_get_valid_name(net, dev, dev->name);
10098 if (ret < 0)
10099 goto out;
10100
10101 ret = -ENOMEM;
10102 dev->name_node = netdev_name_node_head_alloc(dev);
10103 if (!dev->name_node)
10104 goto out;
10105
10106 /* Init, if this function is available */
10107 if (dev->netdev_ops->ndo_init) {
10108 ret = dev->netdev_ops->ndo_init(dev);
10109 if (ret) {
10110 if (ret > 0)
10111 ret = -EIO;
10112 goto err_free_name;
10113 }
10114 }
10115
10116 if (((dev->hw_features | dev->features) &
10117 NETIF_F_HW_VLAN_CTAG_FILTER) &&
10118 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10119 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10120 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10121 ret = -EINVAL;
10122 goto err_uninit;
10123 }
10124
10125 ret = -EBUSY;
10126 if (!dev->ifindex)
10127 dev->ifindex = dev_new_index(net);
10128 else if (__dev_get_by_index(net, dev->ifindex))
10129 goto err_uninit;
10130
10131 /* Transfer changeable features to wanted_features and enable
10132 * software offloads (GSO and GRO).
10133 */
10134 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10135 dev->features |= NETIF_F_SOFT_FEATURES;
10136
10137 if (dev->udp_tunnel_nic_info) {
10138 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10139 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10140 }
10141
10142 dev->wanted_features = dev->features & dev->hw_features;
10143
10144 if (!(dev->flags & IFF_LOOPBACK))
10145 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10146
10147 /* If IPv4 TCP segmentation offload is supported we should also
10148 * allow the device to enable segmenting the frame with the option
10149 * of ignoring a static IP ID value. This doesn't enable the
10150 * feature itself but allows the user to enable it later.
10151 */
10152 if (dev->hw_features & NETIF_F_TSO)
10153 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10154 if (dev->vlan_features & NETIF_F_TSO)
10155 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10156 if (dev->mpls_features & NETIF_F_TSO)
10157 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10158 if (dev->hw_enc_features & NETIF_F_TSO)
10159 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10160
10161 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10162 */
10163 dev->vlan_features |= NETIF_F_HIGHDMA;
10164
10165 /* Make NETIF_F_SG inheritable to tunnel devices.
10166 */
10167 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10168
10169 /* Make NETIF_F_SG inheritable to MPLS.
10170 */
10171 dev->mpls_features |= NETIF_F_SG;
10172
10173 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10174 ret = notifier_to_errno(ret);
10175 if (ret)
10176 goto err_uninit;
10177
10178 ret = netdev_register_kobject(dev);
10179 if (ret) {
10180 dev->reg_state = NETREG_UNREGISTERED;
10181 goto err_uninit;
10182 }
10183 dev->reg_state = NETREG_REGISTERED;
10184
10185 __netdev_update_features(dev);
10186
10187 /*
10188 * Default initial state at registry is that the
10189 * device is present.
10190 */
10191
10192 set_bit(__LINK_STATE_PRESENT, &dev->state);
10193
10194 linkwatch_init_dev(dev);
10195
10196 dev_init_scheduler(dev);
10197 dev_hold(dev);
10198 list_netdevice(dev);
10199 add_device_randomness(dev->dev_addr, dev->addr_len);
10200
10201 /* If the device has permanent device address, driver should
10202 * set dev_addr and also addr_assign_type should be set to
10203 * NET_ADDR_PERM (default value).
10204 */
10205 if (dev->addr_assign_type == NET_ADDR_PERM)
10206 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10207
10208 /* Notify protocols, that a new device appeared. */
10209 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10210 ret = notifier_to_errno(ret);
10211 if (ret) {
10212 /* Expect explicit free_netdev() on failure */
10213 dev->needs_free_netdev = false;
10214 unregister_netdevice_queue(dev, NULL);
10215 goto out;
10216 }
10217 /*
10218 * Prevent userspace races by waiting until the network
10219 * device is fully setup before sending notifications.
10220 */
10221 if (!dev->rtnl_link_ops ||
10222 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10223 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10224
10225out:
10226 return ret;
10227
10228err_uninit:
10229 if (dev->netdev_ops->ndo_uninit)
10230 dev->netdev_ops->ndo_uninit(dev);
10231 if (dev->priv_destructor)
10232 dev->priv_destructor(dev);
10233err_free_name:
10234 netdev_name_node_free(dev->name_node);
10235 goto out;
10236}
10237EXPORT_SYMBOL(register_netdevice);
10238
10239/**
10240 * init_dummy_netdev - init a dummy network device for NAPI
10241 * @dev: device to init
10242 *
10243 * This takes a network device structure and initialize the minimum
10244 * amount of fields so it can be used to schedule NAPI polls without
10245 * registering a full blown interface. This is to be used by drivers
10246 * that need to tie several hardware interfaces to a single NAPI
10247 * poll scheduler due to HW limitations.
10248 */
10249int init_dummy_netdev(struct net_device *dev)
10250{
10251 /* Clear everything. Note we don't initialize spinlocks
10252 * are they aren't supposed to be taken by any of the
10253 * NAPI code and this dummy netdev is supposed to be
10254 * only ever used for NAPI polls
10255 */
10256 memset(dev, 0, sizeof(struct net_device));
10257
10258 /* make sure we BUG if trying to hit standard
10259 * register/unregister code path
10260 */
10261 dev->reg_state = NETREG_DUMMY;
10262
10263 /* NAPI wants this */
10264 INIT_LIST_HEAD(&dev->napi_list);
10265
10266 /* a dummy interface is started by default */
10267 set_bit(__LINK_STATE_PRESENT, &dev->state);
10268 set_bit(__LINK_STATE_START, &dev->state);
10269
10270 /* napi_busy_loop stats accounting wants this */
10271 dev_net_set(dev, &init_net);
10272
10273 /* Note : We dont allocate pcpu_refcnt for dummy devices,
10274 * because users of this 'device' dont need to change
10275 * its refcount.
10276 */
10277
10278 return 0;
10279}
10280EXPORT_SYMBOL_GPL(init_dummy_netdev);
10281
10282
10283/**
10284 * register_netdev - register a network device
10285 * @dev: device to register
10286 *
10287 * Take a completed network device structure and add it to the kernel
10288 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10289 * chain. 0 is returned on success. A negative errno code is returned
10290 * on a failure to set up the device, or if the name is a duplicate.
10291 *
10292 * This is a wrapper around register_netdevice that takes the rtnl semaphore
10293 * and expands the device name if you passed a format string to
10294 * alloc_netdev.
10295 */
10296int register_netdev(struct net_device *dev)
10297{
10298 int err;
10299
10300 if (rtnl_lock_killable())
10301 return -EINTR;
10302 err = register_netdevice(dev);
10303 rtnl_unlock();
10304 return err;
10305}
10306EXPORT_SYMBOL(register_netdev);
10307
10308int netdev_refcnt_read(const struct net_device *dev)
10309{
10310 int i, refcnt = 0;
10311
10312 for_each_possible_cpu(i)
10313 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10314 return refcnt;
10315}
10316EXPORT_SYMBOL(netdev_refcnt_read);
10317
10318#define WAIT_REFS_MIN_MSECS 1
10319#define WAIT_REFS_MAX_MSECS 250
10320/**
10321 * netdev_wait_allrefs - wait until all references are gone.
10322 * @dev: target net_device
10323 *
10324 * This is called when unregistering network devices.
10325 *
10326 * Any protocol or device that holds a reference should register
10327 * for netdevice notification, and cleanup and put back the
10328 * reference if they receive an UNREGISTER event.
10329 * We can get stuck here if buggy protocols don't correctly
10330 * call dev_put.
10331 */
10332static void netdev_wait_allrefs(struct net_device *dev)
10333{
10334 unsigned long rebroadcast_time, warning_time;
10335 int wait = 0, refcnt;
10336
10337 linkwatch_forget_dev(dev);
10338
10339 rebroadcast_time = warning_time = jiffies;
10340 refcnt = netdev_refcnt_read(dev);
10341
10342 while (refcnt != 0) {
10343 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10344 rtnl_lock();
10345
10346 /* Rebroadcast unregister notification */
10347 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10348
10349 __rtnl_unlock();
10350 rcu_barrier();
10351 rtnl_lock();
10352
10353 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10354 &dev->state)) {
10355 /* We must not have linkwatch events
10356 * pending on unregister. If this
10357 * happens, we simply run the queue
10358 * unscheduled, resulting in a noop
10359 * for this device.
10360 */
10361 linkwatch_run_queue();
10362 }
10363
10364 __rtnl_unlock();
10365
10366 rebroadcast_time = jiffies;
10367 }
10368
10369 if (!wait) {
10370 rcu_barrier();
10371 wait = WAIT_REFS_MIN_MSECS;
10372 } else {
10373 msleep(wait);
10374 wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10375 }
10376
10377 refcnt = netdev_refcnt_read(dev);
10378
10379 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
10380 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10381 dev->name, refcnt);
10382 warning_time = jiffies;
10383 }
10384 }
10385}
10386
10387/* The sequence is:
10388 *
10389 * rtnl_lock();
10390 * ...
10391 * register_netdevice(x1);
10392 * register_netdevice(x2);
10393 * ...
10394 * unregister_netdevice(y1);
10395 * unregister_netdevice(y2);
10396 * ...
10397 * rtnl_unlock();
10398 * free_netdev(y1);
10399 * free_netdev(y2);
10400 *
10401 * We are invoked by rtnl_unlock().
10402 * This allows us to deal with problems:
10403 * 1) We can delete sysfs objects which invoke hotplug
10404 * without deadlocking with linkwatch via keventd.
10405 * 2) Since we run with the RTNL semaphore not held, we can sleep
10406 * safely in order to wait for the netdev refcnt to drop to zero.
10407 *
10408 * We must not return until all unregister events added during
10409 * the interval the lock was held have been completed.
10410 */
10411void netdev_run_todo(void)
10412{
10413 struct list_head list;
10414#ifdef CONFIG_LOCKDEP
10415 struct list_head unlink_list;
10416
10417 list_replace_init(&net_unlink_list, &unlink_list);
10418
10419 while (!list_empty(&unlink_list)) {
10420 struct net_device *dev = list_first_entry(&unlink_list,
10421 struct net_device,
10422 unlink_list);
10423 list_del_init(&dev->unlink_list);
10424 dev->nested_level = dev->lower_level - 1;
10425 }
10426#endif
10427
10428 /* Snapshot list, allow later requests */
10429 list_replace_init(&net_todo_list, &list);
10430
10431 __rtnl_unlock();
10432
10433
10434 /* Wait for rcu callbacks to finish before next phase */
10435 if (!list_empty(&list))
10436 rcu_barrier();
10437
10438 while (!list_empty(&list)) {
10439 struct net_device *dev
10440 = list_first_entry(&list, struct net_device, todo_list);
10441 list_del(&dev->todo_list);
10442
10443 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10444 pr_err("network todo '%s' but state %d\n",
10445 dev->name, dev->reg_state);
10446 dump_stack();
10447 continue;
10448 }
10449
10450 dev->reg_state = NETREG_UNREGISTERED;
10451
10452 netdev_wait_allrefs(dev);
10453
10454 /* paranoia */
10455 BUG_ON(netdev_refcnt_read(dev));
10456 BUG_ON(!list_empty(&dev->ptype_all));
10457 BUG_ON(!list_empty(&dev->ptype_specific));
10458 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10459 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10460#if IS_ENABLED(CONFIG_DECNET)
10461 WARN_ON(dev->dn_ptr);
10462#endif
10463 if (dev->priv_destructor)
10464 dev->priv_destructor(dev);
10465 if (dev->needs_free_netdev)
10466 free_netdev(dev);
10467
10468 /* Report a network device has been unregistered */
10469 rtnl_lock();
10470 dev_net(dev)->dev_unreg_count--;
10471 __rtnl_unlock();
10472 wake_up(&netdev_unregistering_wq);
10473
10474 /* Free network device */
10475 kobject_put(&dev->dev.kobj);
10476 }
10477}
10478
10479/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10480 * all the same fields in the same order as net_device_stats, with only
10481 * the type differing, but rtnl_link_stats64 may have additional fields
10482 * at the end for newer counters.
10483 */
10484void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10485 const struct net_device_stats *netdev_stats)
10486{
10487#if BITS_PER_LONG == 64
10488 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10489 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10490 /* zero out counters that only exist in rtnl_link_stats64 */
10491 memset((char *)stats64 + sizeof(*netdev_stats), 0,
10492 sizeof(*stats64) - sizeof(*netdev_stats));
10493#else
10494 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10495 const unsigned long *src = (const unsigned long *)netdev_stats;
10496 u64 *dst = (u64 *)stats64;
10497
10498 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10499 for (i = 0; i < n; i++)
10500 dst[i] = src[i];
10501 /* zero out counters that only exist in rtnl_link_stats64 */
10502 memset((char *)stats64 + n * sizeof(u64), 0,
10503 sizeof(*stats64) - n * sizeof(u64));
10504#endif
10505}
10506EXPORT_SYMBOL(netdev_stats_to_stats64);
10507
10508/**
10509 * dev_get_stats - get network device statistics
10510 * @dev: device to get statistics from
10511 * @storage: place to store stats
10512 *
10513 * Get network statistics from device. Return @storage.
10514 * The device driver may provide its own method by setting
10515 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10516 * otherwise the internal statistics structure is used.
10517 */
10518struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10519 struct rtnl_link_stats64 *storage)
10520{
10521 const struct net_device_ops *ops = dev->netdev_ops;
10522
10523 if (ops->ndo_get_stats64) {
10524 memset(storage, 0, sizeof(*storage));
10525 ops->ndo_get_stats64(dev, storage);
10526 } else if (ops->ndo_get_stats) {
10527 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10528 } else {
10529 netdev_stats_to_stats64(storage, &dev->stats);
10530 }
10531 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10532 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10533 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10534 return storage;
10535}
10536EXPORT_SYMBOL(dev_get_stats);
10537
10538/**
10539 * dev_fetch_sw_netstats - get per-cpu network device statistics
10540 * @s: place to store stats
10541 * @netstats: per-cpu network stats to read from
10542 *
10543 * Read per-cpu network statistics and populate the related fields in @s.
10544 */
10545void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10546 const struct pcpu_sw_netstats __percpu *netstats)
10547{
10548 int cpu;
10549
10550 for_each_possible_cpu(cpu) {
10551 const struct pcpu_sw_netstats *stats;
10552 struct pcpu_sw_netstats tmp;
10553 unsigned int start;
10554
10555 stats = per_cpu_ptr(netstats, cpu);
10556 do {
10557 start = u64_stats_fetch_begin_irq(&stats->syncp);
10558 tmp.rx_packets = stats->rx_packets;
10559 tmp.rx_bytes = stats->rx_bytes;
10560 tmp.tx_packets = stats->tx_packets;
10561 tmp.tx_bytes = stats->tx_bytes;
10562 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10563
10564 s->rx_packets += tmp.rx_packets;
10565 s->rx_bytes += tmp.rx_bytes;
10566 s->tx_packets += tmp.tx_packets;
10567 s->tx_bytes += tmp.tx_bytes;
10568 }
10569}
10570EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10571
10572/**
10573 * dev_get_tstats64 - ndo_get_stats64 implementation
10574 * @dev: device to get statistics from
10575 * @s: place to store stats
10576 *
10577 * Populate @s from dev->stats and dev->tstats. Can be used as
10578 * ndo_get_stats64() callback.
10579 */
10580void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10581{
10582 netdev_stats_to_stats64(s, &dev->stats);
10583 dev_fetch_sw_netstats(s, dev->tstats);
10584}
10585EXPORT_SYMBOL_GPL(dev_get_tstats64);
10586
10587struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10588{
10589 struct netdev_queue *queue = dev_ingress_queue(dev);
10590
10591#ifdef CONFIG_NET_CLS_ACT
10592 if (queue)
10593 return queue;
10594 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10595 if (!queue)
10596 return NULL;
10597 netdev_init_one_queue(dev, queue, NULL);
10598 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10599 queue->qdisc_sleeping = &noop_qdisc;
10600 rcu_assign_pointer(dev->ingress_queue, queue);
10601#endif
10602 return queue;
10603}
10604
10605static const struct ethtool_ops default_ethtool_ops;
10606
10607void netdev_set_default_ethtool_ops(struct net_device *dev,
10608 const struct ethtool_ops *ops)
10609{
10610 if (dev->ethtool_ops == &default_ethtool_ops)
10611 dev->ethtool_ops = ops;
10612}
10613EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10614
10615void netdev_freemem(struct net_device *dev)
10616{
10617 char *addr = (char *)dev - dev->padded;
10618
10619 kvfree(addr);
10620}
10621
10622/**
10623 * alloc_netdev_mqs - allocate network device
10624 * @sizeof_priv: size of private data to allocate space for
10625 * @name: device name format string
10626 * @name_assign_type: origin of device name
10627 * @setup: callback to initialize device
10628 * @txqs: the number of TX subqueues to allocate
10629 * @rxqs: the number of RX subqueues to allocate
10630 *
10631 * Allocates a struct net_device with private data area for driver use
10632 * and performs basic initialization. Also allocates subqueue structs
10633 * for each queue on the device.
10634 */
10635struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10636 unsigned char name_assign_type,
10637 void (*setup)(struct net_device *),
10638 unsigned int txqs, unsigned int rxqs)
10639{
10640 struct net_device *dev;
10641 unsigned int alloc_size;
10642 struct net_device *p;
10643
10644 BUG_ON(strlen(name) >= sizeof(dev->name));
10645
10646 if (txqs < 1) {
10647 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10648 return NULL;
10649 }
10650
10651 if (rxqs < 1) {
10652 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10653 return NULL;
10654 }
10655
10656 alloc_size = sizeof(struct net_device);
10657 if (sizeof_priv) {
10658 /* ensure 32-byte alignment of private area */
10659 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10660 alloc_size += sizeof_priv;
10661 }
10662 /* ensure 32-byte alignment of whole construct */
10663 alloc_size += NETDEV_ALIGN - 1;
10664
10665 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10666 if (!p)
10667 return NULL;
10668
10669 dev = PTR_ALIGN(p, NETDEV_ALIGN);
10670 dev->padded = (char *)dev - (char *)p;
10671
10672 dev->pcpu_refcnt = alloc_percpu(int);
10673 if (!dev->pcpu_refcnt)
10674 goto free_dev;
10675
10676 if (dev_addr_init(dev))
10677 goto free_pcpu;
10678
10679 dev_mc_init(dev);
10680 dev_uc_init(dev);
10681
10682 dev_net_set(dev, &init_net);
10683
10684 dev->gso_max_size = GSO_MAX_SIZE;
10685 dev->gso_max_segs = GSO_MAX_SEGS;
10686 dev->upper_level = 1;
10687 dev->lower_level = 1;
10688#ifdef CONFIG_LOCKDEP
10689 dev->nested_level = 0;
10690 INIT_LIST_HEAD(&dev->unlink_list);
10691#endif
10692
10693 INIT_LIST_HEAD(&dev->napi_list);
10694 INIT_LIST_HEAD(&dev->unreg_list);
10695 INIT_LIST_HEAD(&dev->close_list);
10696 INIT_LIST_HEAD(&dev->link_watch_list);
10697 INIT_LIST_HEAD(&dev->adj_list.upper);
10698 INIT_LIST_HEAD(&dev->adj_list.lower);
10699 INIT_LIST_HEAD(&dev->ptype_all);
10700 INIT_LIST_HEAD(&dev->ptype_specific);
10701 INIT_LIST_HEAD(&dev->net_notifier_list);
10702#ifdef CONFIG_NET_SCHED
10703 hash_init(dev->qdisc_hash);
10704#endif
10705 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10706 setup(dev);
10707
10708 if (!dev->tx_queue_len) {
10709 dev->priv_flags |= IFF_NO_QUEUE;
10710 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10711 }
10712
10713 dev->num_tx_queues = txqs;
10714 dev->real_num_tx_queues = txqs;
10715 if (netif_alloc_netdev_queues(dev))
10716 goto free_all;
10717
10718 dev->num_rx_queues = rxqs;
10719 dev->real_num_rx_queues = rxqs;
10720 if (netif_alloc_rx_queues(dev))
10721 goto free_all;
10722
10723 strcpy(dev->name, name);
10724 dev->name_assign_type = name_assign_type;
10725 dev->group = INIT_NETDEV_GROUP;
10726 if (!dev->ethtool_ops)
10727 dev->ethtool_ops = &default_ethtool_ops;
10728
10729 nf_hook_ingress_init(dev);
10730
10731 return dev;
10732
10733free_all:
10734 free_netdev(dev);
10735 return NULL;
10736
10737free_pcpu:
10738 free_percpu(dev->pcpu_refcnt);
10739free_dev:
10740 netdev_freemem(dev);
10741 return NULL;
10742}
10743EXPORT_SYMBOL(alloc_netdev_mqs);
10744
10745/**
10746 * free_netdev - free network device
10747 * @dev: device
10748 *
10749 * This function does the last stage of destroying an allocated device
10750 * interface. The reference to the device object is released. If this
10751 * is the last reference then it will be freed.Must be called in process
10752 * context.
10753 */
10754void free_netdev(struct net_device *dev)
10755{
10756 struct napi_struct *p, *n;
10757
10758 might_sleep();
10759
10760 /* When called immediately after register_netdevice() failed the unwind
10761 * handling may still be dismantling the device. Handle that case by
10762 * deferring the free.
10763 */
10764 if (dev->reg_state == NETREG_UNREGISTERING) {
10765 ASSERT_RTNL();
10766 dev->needs_free_netdev = true;
10767 return;
10768 }
10769
10770 netif_free_tx_queues(dev);
10771 netif_free_rx_queues(dev);
10772
10773 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10774
10775 /* Flush device addresses */
10776 dev_addr_flush(dev);
10777
10778 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10779 netif_napi_del(p);
10780
10781 free_percpu(dev->pcpu_refcnt);
10782 dev->pcpu_refcnt = NULL;
10783 free_percpu(dev->xdp_bulkq);
10784 dev->xdp_bulkq = NULL;
10785
10786 /* Compatibility with error handling in drivers */
10787 if (dev->reg_state == NETREG_UNINITIALIZED) {
10788 netdev_freemem(dev);
10789 return;
10790 }
10791
10792 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10793 dev->reg_state = NETREG_RELEASED;
10794
10795 /* will free via device release */
10796 put_device(&dev->dev);
10797}
10798EXPORT_SYMBOL(free_netdev);
10799
10800/**
10801 * synchronize_net - Synchronize with packet receive processing
10802 *
10803 * Wait for packets currently being received to be done.
10804 * Does not block later packets from starting.
10805 */
10806void synchronize_net(void)
10807{
10808 might_sleep();
10809 if (rtnl_is_locked())
10810 synchronize_rcu_expedited();
10811 else
10812 synchronize_rcu();
10813}
10814EXPORT_SYMBOL(synchronize_net);
10815
10816/**
10817 * unregister_netdevice_queue - remove device from the kernel
10818 * @dev: device
10819 * @head: list
10820 *
10821 * This function shuts down a device interface and removes it
10822 * from the kernel tables.
10823 * If head not NULL, device is queued to be unregistered later.
10824 *
10825 * Callers must hold the rtnl semaphore. You may want
10826 * unregister_netdev() instead of this.
10827 */
10828
10829void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10830{
10831 ASSERT_RTNL();
10832
10833 if (head) {
10834 list_move_tail(&dev->unreg_list, head);
10835 } else {
10836 LIST_HEAD(single);
10837
10838 list_add(&dev->unreg_list, &single);
10839 unregister_netdevice_many(&single);
10840 }
10841}
10842EXPORT_SYMBOL(unregister_netdevice_queue);
10843
10844/**
10845 * unregister_netdevice_many - unregister many devices
10846 * @head: list of devices
10847 *
10848 * Note: As most callers use a stack allocated list_head,
10849 * we force a list_del() to make sure stack wont be corrupted later.
10850 */
10851void unregister_netdevice_many(struct list_head *head)
10852{
10853 struct net_device *dev, *tmp;
10854 LIST_HEAD(close_head);
10855
10856 BUG_ON(dev_boot_phase);
10857 ASSERT_RTNL();
10858
10859 if (list_empty(head))
10860 return;
10861
10862 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10863 /* Some devices call without registering
10864 * for initialization unwind. Remove those
10865 * devices and proceed with the remaining.
10866 */
10867 if (dev->reg_state == NETREG_UNINITIALIZED) {
10868 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10869 dev->name, dev);
10870
10871 WARN_ON(1);
10872 list_del(&dev->unreg_list);
10873 continue;
10874 }
10875 dev->dismantle = true;
10876 BUG_ON(dev->reg_state != NETREG_REGISTERED);
10877 }
10878
10879 /* If device is running, close it first. */
10880 list_for_each_entry(dev, head, unreg_list)
10881 list_add_tail(&dev->close_list, &close_head);
10882 dev_close_many(&close_head, true);
10883
10884 list_for_each_entry(dev, head, unreg_list) {
10885 /* And unlink it from device chain. */
10886 unlist_netdevice(dev);
10887
10888 dev->reg_state = NETREG_UNREGISTERING;
10889 }
10890 flush_all_backlogs();
10891
10892 synchronize_net();
10893
10894 list_for_each_entry(dev, head, unreg_list) {
10895 struct sk_buff *skb = NULL;
10896
10897 /* Shutdown queueing discipline. */
10898 dev_shutdown(dev);
10899
10900 dev_xdp_uninstall(dev);
10901
10902 /* Notify protocols, that we are about to destroy
10903 * this device. They should clean all the things.
10904 */
10905 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10906
10907 if (!dev->rtnl_link_ops ||
10908 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10909 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10910 GFP_KERNEL, NULL, 0);
10911
10912 /*
10913 * Flush the unicast and multicast chains
10914 */
10915 dev_uc_flush(dev);
10916 dev_mc_flush(dev);
10917
10918 netdev_name_node_alt_flush(dev);
10919 netdev_name_node_free(dev->name_node);
10920
10921 if (dev->netdev_ops->ndo_uninit)
10922 dev->netdev_ops->ndo_uninit(dev);
10923
10924 if (skb)
10925 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
10926
10927 /* Notifier chain MUST detach us all upper devices. */
10928 WARN_ON(netdev_has_any_upper_dev(dev));
10929 WARN_ON(netdev_has_any_lower_dev(dev));
10930
10931 /* Remove entries from kobject tree */
10932 netdev_unregister_kobject(dev);
10933#ifdef CONFIG_XPS
10934 /* Remove XPS queueing entries */
10935 netif_reset_xps_queues_gt(dev, 0);
10936#endif
10937 }
10938
10939 synchronize_net();
10940
10941 list_for_each_entry(dev, head, unreg_list) {
10942 dev_put(dev);
10943 net_set_todo(dev);
10944 }
10945
10946 list_del(head);
10947}
10948EXPORT_SYMBOL(unregister_netdevice_many);
10949
10950/**
10951 * unregister_netdev - remove device from the kernel
10952 * @dev: device
10953 *
10954 * This function shuts down a device interface and removes it
10955 * from the kernel tables.
10956 *
10957 * This is just a wrapper for unregister_netdevice that takes
10958 * the rtnl semaphore. In general you want to use this and not
10959 * unregister_netdevice.
10960 */
10961void unregister_netdev(struct net_device *dev)
10962{
10963 rtnl_lock();
10964 unregister_netdevice(dev);
10965 rtnl_unlock();
10966}
10967EXPORT_SYMBOL(unregister_netdev);
10968
10969/**
10970 * dev_change_net_namespace - move device to different nethost namespace
10971 * @dev: device
10972 * @net: network namespace
10973 * @pat: If not NULL name pattern to try if the current device name
10974 * is already taken in the destination network namespace.
10975 *
10976 * This function shuts down a device interface and moves it
10977 * to a new network namespace. On success 0 is returned, on
10978 * a failure a netagive errno code is returned.
10979 *
10980 * Callers must hold the rtnl semaphore.
10981 */
10982
10983int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
10984{
10985 struct net *net_old = dev_net(dev);
10986 int err, new_nsid, new_ifindex;
10987
10988 ASSERT_RTNL();
10989
10990 /* Don't allow namespace local devices to be moved. */
10991 err = -EINVAL;
10992 if (dev->features & NETIF_F_NETNS_LOCAL)
10993 goto out;
10994
10995 /* Ensure the device has been registrered */
10996 if (dev->reg_state != NETREG_REGISTERED)
10997 goto out;
10998
10999 /* Get out if there is nothing todo */
11000 err = 0;
11001 if (net_eq(net_old, net))
11002 goto out;
11003
11004 /* Pick the destination device name, and ensure
11005 * we can use it in the destination network namespace.
11006 */
11007 err = -EEXIST;
11008 if (__dev_get_by_name(net, dev->name)) {
11009 /* We get here if we can't use the current device name */
11010 if (!pat)
11011 goto out;
11012 err = dev_get_valid_name(net, dev, pat);
11013 if (err < 0)
11014 goto out;
11015 }
11016
11017 /*
11018 * And now a mini version of register_netdevice unregister_netdevice.
11019 */
11020
11021 /* If device is running close it first. */
11022 dev_close(dev);
11023
11024 /* And unlink it from device chain */
11025 unlist_netdevice(dev);
11026
11027 synchronize_net();
11028
11029 /* Shutdown queueing discipline. */
11030 dev_shutdown(dev);
11031
11032 /* Notify protocols, that we are about to destroy
11033 * this device. They should clean all the things.
11034 *
11035 * Note that dev->reg_state stays at NETREG_REGISTERED.
11036 * This is wanted because this way 8021q and macvlan know
11037 * the device is just moving and can keep their slaves up.
11038 */
11039 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11040 rcu_barrier();
11041
11042 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11043 /* If there is an ifindex conflict assign a new one */
11044 if (__dev_get_by_index(net, dev->ifindex))
11045 new_ifindex = dev_new_index(net);
11046 else
11047 new_ifindex = dev->ifindex;
11048
11049 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11050 new_ifindex);
11051
11052 /*
11053 * Flush the unicast and multicast chains
11054 */
11055 dev_uc_flush(dev);
11056 dev_mc_flush(dev);
11057
11058 /* Send a netdev-removed uevent to the old namespace */
11059 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11060 netdev_adjacent_del_links(dev);
11061
11062 /* Move per-net netdevice notifiers that are following the netdevice */
11063 move_netdevice_notifiers_dev_net(dev, net);
11064
11065 /* Actually switch the network namespace */
11066 dev_net_set(dev, net);
11067 dev->ifindex = new_ifindex;
11068
11069 /* Send a netdev-add uevent to the new namespace */
11070 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11071 netdev_adjacent_add_links(dev);
11072
11073 /* Fixup kobjects */
11074 err = device_rename(&dev->dev, dev->name);
11075 WARN_ON(err);
11076
11077 /* Adapt owner in case owning user namespace of target network
11078 * namespace is different from the original one.
11079 */
11080 err = netdev_change_owner(dev, net_old, net);
11081 WARN_ON(err);
11082
11083 /* Add the device back in the hashes */
11084 list_netdevice(dev);
11085
11086 /* Notify protocols, that a new device appeared. */
11087 call_netdevice_notifiers(NETDEV_REGISTER, dev);
11088
11089 /*
11090 * Prevent userspace races by waiting until the network
11091 * device is fully setup before sending notifications.
11092 */
11093 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
11094
11095 synchronize_net();
11096 err = 0;
11097out:
11098 return err;
11099}
11100EXPORT_SYMBOL_GPL(dev_change_net_namespace);
11101
11102static int dev_cpu_dead(unsigned int oldcpu)
11103{
11104 struct sk_buff **list_skb;
11105 struct sk_buff *skb;
11106 unsigned int cpu;
11107 struct softnet_data *sd, *oldsd, *remsd = NULL;
11108
11109 local_irq_disable();
11110 cpu = smp_processor_id();
11111 sd = &per_cpu(softnet_data, cpu);
11112 oldsd = &per_cpu(softnet_data, oldcpu);
11113
11114 /* Find end of our completion_queue. */
11115 list_skb = &sd->completion_queue;
11116 while (*list_skb)
11117 list_skb = &(*list_skb)->next;
11118 /* Append completion queue from offline CPU. */
11119 *list_skb = oldsd->completion_queue;
11120 oldsd->completion_queue = NULL;
11121
11122 /* Append output queue from offline CPU. */
11123 if (oldsd->output_queue) {
11124 *sd->output_queue_tailp = oldsd->output_queue;
11125 sd->output_queue_tailp = oldsd->output_queue_tailp;
11126 oldsd->output_queue = NULL;
11127 oldsd->output_queue_tailp = &oldsd->output_queue;
11128 }
11129 /* Append NAPI poll list from offline CPU, with one exception :
11130 * process_backlog() must be called by cpu owning percpu backlog.
11131 * We properly handle process_queue & input_pkt_queue later.
11132 */
11133 while (!list_empty(&oldsd->poll_list)) {
11134 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11135 struct napi_struct,
11136 poll_list);
11137
11138 list_del_init(&napi->poll_list);
11139 if (napi->poll == process_backlog)
11140 napi->state = 0;
11141 else
11142 ____napi_schedule(sd, napi);
11143 }
11144
11145 raise_softirq_irqoff(NET_TX_SOFTIRQ);
11146 local_irq_enable();
11147
11148#ifdef CONFIG_RPS
11149 remsd = oldsd->rps_ipi_list;
11150 oldsd->rps_ipi_list = NULL;
11151#endif
11152 /* send out pending IPI's on offline CPU */
11153 net_rps_send_ipi(remsd);
11154
11155 /* Process offline CPU's input_pkt_queue */
11156 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11157 netif_rx_ni(skb);
11158 input_queue_head_incr(oldsd);
11159 }
11160 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11161 netif_rx_ni(skb);
11162 input_queue_head_incr(oldsd);
11163 }
11164
11165 return 0;
11166}
11167
11168/**
11169 * netdev_increment_features - increment feature set by one
11170 * @all: current feature set
11171 * @one: new feature set
11172 * @mask: mask feature set
11173 *
11174 * Computes a new feature set after adding a device with feature set
11175 * @one to the master device with current feature set @all. Will not
11176 * enable anything that is off in @mask. Returns the new feature set.
11177 */
11178netdev_features_t netdev_increment_features(netdev_features_t all,
11179 netdev_features_t one, netdev_features_t mask)
11180{
11181 if (mask & NETIF_F_HW_CSUM)
11182 mask |= NETIF_F_CSUM_MASK;
11183 mask |= NETIF_F_VLAN_CHALLENGED;
11184
11185 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11186 all &= one | ~NETIF_F_ALL_FOR_ALL;
11187
11188 /* If one device supports hw checksumming, set for all. */
11189 if (all & NETIF_F_HW_CSUM)
11190 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11191
11192 return all;
11193}
11194EXPORT_SYMBOL(netdev_increment_features);
11195
11196static struct hlist_head * __net_init netdev_create_hash(void)
11197{
11198 int i;
11199 struct hlist_head *hash;
11200
11201 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11202 if (hash != NULL)
11203 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11204 INIT_HLIST_HEAD(&hash[i]);
11205
11206 return hash;
11207}
11208
11209/* Initialize per network namespace state */
11210static int __net_init netdev_init(struct net *net)
11211{
11212 BUILD_BUG_ON(GRO_HASH_BUCKETS >
11213 8 * sizeof_field(struct napi_struct, gro_bitmask));
11214
11215 if (net != &init_net)
11216 INIT_LIST_HEAD(&net->dev_base_head);
11217
11218 net->dev_name_head = netdev_create_hash();
11219 if (net->dev_name_head == NULL)
11220 goto err_name;
11221
11222 net->dev_index_head = netdev_create_hash();
11223 if (net->dev_index_head == NULL)
11224 goto err_idx;
11225
11226 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11227
11228 return 0;
11229
11230err_idx:
11231 kfree(net->dev_name_head);
11232err_name:
11233 return -ENOMEM;
11234}
11235
11236/**
11237 * netdev_drivername - network driver for the device
11238 * @dev: network device
11239 *
11240 * Determine network driver for device.
11241 */
11242const char *netdev_drivername(const struct net_device *dev)
11243{
11244 const struct device_driver *driver;
11245 const struct device *parent;
11246 const char *empty = "";
11247
11248 parent = dev->dev.parent;
11249 if (!parent)
11250 return empty;
11251
11252 driver = parent->driver;
11253 if (driver && driver->name)
11254 return driver->name;
11255 return empty;
11256}
11257
11258static void __netdev_printk(const char *level, const struct net_device *dev,
11259 struct va_format *vaf)
11260{
11261 if (dev && dev->dev.parent) {
11262 dev_printk_emit(level[1] - '0',
11263 dev->dev.parent,
11264 "%s %s %s%s: %pV",
11265 dev_driver_string(dev->dev.parent),
11266 dev_name(dev->dev.parent),
11267 netdev_name(dev), netdev_reg_state(dev),
11268 vaf);
11269 } else if (dev) {
11270 printk("%s%s%s: %pV",
11271 level, netdev_name(dev), netdev_reg_state(dev), vaf);
11272 } else {
11273 printk("%s(NULL net_device): %pV", level, vaf);
11274 }
11275}
11276
11277void netdev_printk(const char *level, const struct net_device *dev,
11278 const char *format, ...)
11279{
11280 struct va_format vaf;
11281 va_list args;
11282
11283 va_start(args, format);
11284
11285 vaf.fmt = format;
11286 vaf.va = &args;
11287
11288 __netdev_printk(level, dev, &vaf);
11289
11290 va_end(args);
11291}
11292EXPORT_SYMBOL(netdev_printk);
11293
11294#define define_netdev_printk_level(func, level) \
11295void func(const struct net_device *dev, const char *fmt, ...) \
11296{ \
11297 struct va_format vaf; \
11298 va_list args; \
11299 \
11300 va_start(args, fmt); \
11301 \
11302 vaf.fmt = fmt; \
11303 vaf.va = &args; \
11304 \
11305 __netdev_printk(level, dev, &vaf); \
11306 \
11307 va_end(args); \
11308} \
11309EXPORT_SYMBOL(func);
11310
11311define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11312define_netdev_printk_level(netdev_alert, KERN_ALERT);
11313define_netdev_printk_level(netdev_crit, KERN_CRIT);
11314define_netdev_printk_level(netdev_err, KERN_ERR);
11315define_netdev_printk_level(netdev_warn, KERN_WARNING);
11316define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11317define_netdev_printk_level(netdev_info, KERN_INFO);
11318
11319static void __net_exit netdev_exit(struct net *net)
11320{
11321 kfree(net->dev_name_head);
11322 kfree(net->dev_index_head);
11323 if (net != &init_net)
11324 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11325}
11326
11327static struct pernet_operations __net_initdata netdev_net_ops = {
11328 .init = netdev_init,
11329 .exit = netdev_exit,
11330};
11331
11332static void __net_exit default_device_exit(struct net *net)
11333{
11334 struct net_device *dev, *aux;
11335 /*
11336 * Push all migratable network devices back to the
11337 * initial network namespace
11338 */
11339 rtnl_lock();
11340 for_each_netdev_safe(net, dev, aux) {
11341 int err;
11342 char fb_name[IFNAMSIZ];
11343
11344 /* Ignore unmoveable devices (i.e. loopback) */
11345 if (dev->features & NETIF_F_NETNS_LOCAL)
11346 continue;
11347
11348 /* Leave virtual devices for the generic cleanup */
11349 if (dev->rtnl_link_ops)
11350 continue;
11351
11352 /* Push remaining network devices to init_net */
11353 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11354 if (__dev_get_by_name(&init_net, fb_name))
11355 snprintf(fb_name, IFNAMSIZ, "dev%%d");
11356 err = dev_change_net_namespace(dev, &init_net, fb_name);
11357 if (err) {
11358 pr_emerg("%s: failed to move %s to init_net: %d\n",
11359 __func__, dev->name, err);
11360 BUG();
11361 }
11362 }
11363 rtnl_unlock();
11364}
11365
11366static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11367{
11368 /* Return with the rtnl_lock held when there are no network
11369 * devices unregistering in any network namespace in net_list.
11370 */
11371 struct net *net;
11372 bool unregistering;
11373 DEFINE_WAIT_FUNC(wait, woken_wake_function);
11374
11375 add_wait_queue(&netdev_unregistering_wq, &wait);
11376 for (;;) {
11377 unregistering = false;
11378 rtnl_lock();
11379 list_for_each_entry(net, net_list, exit_list) {
11380 if (net->dev_unreg_count > 0) {
11381 unregistering = true;
11382 break;
11383 }
11384 }
11385 if (!unregistering)
11386 break;
11387 __rtnl_unlock();
11388
11389 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11390 }
11391 remove_wait_queue(&netdev_unregistering_wq, &wait);
11392}
11393
11394static void __net_exit default_device_exit_batch(struct list_head *net_list)
11395{
11396 /* At exit all network devices most be removed from a network
11397 * namespace. Do this in the reverse order of registration.
11398 * Do this across as many network namespaces as possible to
11399 * improve batching efficiency.
11400 */
11401 struct net_device *dev;
11402 struct net *net;
11403 LIST_HEAD(dev_kill_list);
11404
11405 /* To prevent network device cleanup code from dereferencing
11406 * loopback devices or network devices that have been freed
11407 * wait here for all pending unregistrations to complete,
11408 * before unregistring the loopback device and allowing the
11409 * network namespace be freed.
11410 *
11411 * The netdev todo list containing all network devices
11412 * unregistrations that happen in default_device_exit_batch
11413 * will run in the rtnl_unlock() at the end of
11414 * default_device_exit_batch.
11415 */
11416 rtnl_lock_unregistering(net_list);
11417 list_for_each_entry(net, net_list, exit_list) {
11418 for_each_netdev_reverse(net, dev) {
11419 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11420 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11421 else
11422 unregister_netdevice_queue(dev, &dev_kill_list);
11423 }
11424 }
11425 unregister_netdevice_many(&dev_kill_list);
11426 rtnl_unlock();
11427}
11428
11429static struct pernet_operations __net_initdata default_device_ops = {
11430 .exit = default_device_exit,
11431 .exit_batch = default_device_exit_batch,
11432};
11433
11434/*
11435 * Initialize the DEV module. At boot time this walks the device list and
11436 * unhooks any devices that fail to initialise (normally hardware not
11437 * present) and leaves us with a valid list of present and active devices.
11438 *
11439 */
11440
11441/*
11442 * This is called single threaded during boot, so no need
11443 * to take the rtnl semaphore.
11444 */
11445static int __init net_dev_init(void)
11446{
11447 int i, rc = -ENOMEM;
11448
11449 BUG_ON(!dev_boot_phase);
11450
11451 if (dev_proc_init())
11452 goto out;
11453
11454 if (netdev_kobject_init())
11455 goto out;
11456
11457 INIT_LIST_HEAD(&ptype_all);
11458 for (i = 0; i < PTYPE_HASH_SIZE; i++)
11459 INIT_LIST_HEAD(&ptype_base[i]);
11460
11461 INIT_LIST_HEAD(&offload_base);
11462
11463 if (register_pernet_subsys(&netdev_net_ops))
11464 goto out;
11465
11466 /*
11467 * Initialise the packet receive queues.
11468 */
11469
11470 for_each_possible_cpu(i) {
11471 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11472 struct softnet_data *sd = &per_cpu(softnet_data, i);
11473
11474 INIT_WORK(flush, flush_backlog);
11475
11476 skb_queue_head_init(&sd->input_pkt_queue);
11477 skb_queue_head_init(&sd->process_queue);
11478#ifdef CONFIG_XFRM_OFFLOAD
11479 skb_queue_head_init(&sd->xfrm_backlog);
11480#endif
11481 INIT_LIST_HEAD(&sd->poll_list);
11482 sd->output_queue_tailp = &sd->output_queue;
11483#ifdef CONFIG_RPS
11484 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11485 sd->cpu = i;
11486#endif
11487
11488 init_gro_hash(&sd->backlog);
11489 sd->backlog.poll = process_backlog;
11490 sd->backlog.weight = weight_p;
11491 }
11492
11493 dev_boot_phase = 0;
11494
11495 /* The loopback device is special if any other network devices
11496 * is present in a network namespace the loopback device must
11497 * be present. Since we now dynamically allocate and free the
11498 * loopback device ensure this invariant is maintained by
11499 * keeping the loopback device as the first device on the
11500 * list of network devices. Ensuring the loopback devices
11501 * is the first device that appears and the last network device
11502 * that disappears.
11503 */
11504 if (register_pernet_device(&loopback_net_ops))
11505 goto out;
11506
11507 if (register_pernet_device(&default_device_ops))
11508 goto out;
11509
11510 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11511 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11512
11513 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11514 NULL, dev_cpu_dead);
11515 WARN_ON(rc < 0);
11516 rc = 0;
11517out:
11518 return rc;
11519}
11520
11521subsys_initcall(net_dev_init);