at v5.12-rc2 44 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_PGTABLE_H 3#define _LINUX_PGTABLE_H 4 5#include <linux/pfn.h> 6#include <asm/pgtable.h> 7 8#ifndef __ASSEMBLY__ 9#ifdef CONFIG_MMU 10 11#include <linux/mm_types.h> 12#include <linux/bug.h> 13#include <linux/errno.h> 14#include <asm-generic/pgtable_uffd.h> 15 16#if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \ 17 defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS 18#error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED 19#endif 20 21/* 22 * On almost all architectures and configurations, 0 can be used as the 23 * upper ceiling to free_pgtables(): on many architectures it has the same 24 * effect as using TASK_SIZE. However, there is one configuration which 25 * must impose a more careful limit, to avoid freeing kernel pgtables. 26 */ 27#ifndef USER_PGTABLES_CEILING 28#define USER_PGTABLES_CEILING 0UL 29#endif 30 31/* 32 * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD] 33 * 34 * The pXx_index() functions return the index of the entry in the page 35 * table page which would control the given virtual address 36 * 37 * As these functions may be used by the same code for different levels of 38 * the page table folding, they are always available, regardless of 39 * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0 40 * because in such cases PTRS_PER_PxD equals 1. 41 */ 42 43static inline unsigned long pte_index(unsigned long address) 44{ 45 return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 46} 47 48#ifndef pmd_index 49static inline unsigned long pmd_index(unsigned long address) 50{ 51 return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1); 52} 53#define pmd_index pmd_index 54#endif 55 56#ifndef pud_index 57static inline unsigned long pud_index(unsigned long address) 58{ 59 return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1); 60} 61#define pud_index pud_index 62#endif 63 64#ifndef pgd_index 65/* Must be a compile-time constant, so implement it as a macro */ 66#define pgd_index(a) (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)) 67#endif 68 69#ifndef pte_offset_kernel 70static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address) 71{ 72 return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address); 73} 74#define pte_offset_kernel pte_offset_kernel 75#endif 76 77#if defined(CONFIG_HIGHPTE) 78#define pte_offset_map(dir, address) \ 79 ((pte_t *)kmap_atomic(pmd_page(*(dir))) + \ 80 pte_index((address))) 81#define pte_unmap(pte) kunmap_atomic((pte)) 82#else 83#define pte_offset_map(dir, address) pte_offset_kernel((dir), (address)) 84#define pte_unmap(pte) ((void)(pte)) /* NOP */ 85#endif 86 87/* Find an entry in the second-level page table.. */ 88#ifndef pmd_offset 89static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address) 90{ 91 return (pmd_t *)pud_page_vaddr(*pud) + pmd_index(address); 92} 93#define pmd_offset pmd_offset 94#endif 95 96#ifndef pud_offset 97static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address) 98{ 99 return (pud_t *)p4d_page_vaddr(*p4d) + pud_index(address); 100} 101#define pud_offset pud_offset 102#endif 103 104static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address) 105{ 106 return (pgd + pgd_index(address)); 107}; 108 109/* 110 * a shortcut to get a pgd_t in a given mm 111 */ 112#ifndef pgd_offset 113#define pgd_offset(mm, address) pgd_offset_pgd((mm)->pgd, (address)) 114#endif 115 116/* 117 * a shortcut which implies the use of the kernel's pgd, instead 118 * of a process's 119 */ 120#ifndef pgd_offset_k 121#define pgd_offset_k(address) pgd_offset(&init_mm, (address)) 122#endif 123 124/* 125 * In many cases it is known that a virtual address is mapped at PMD or PTE 126 * level, so instead of traversing all the page table levels, we can get a 127 * pointer to the PMD entry in user or kernel page table or translate a virtual 128 * address to the pointer in the PTE in the kernel page tables with simple 129 * helpers. 130 */ 131static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va) 132{ 133 return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va); 134} 135 136static inline pmd_t *pmd_off_k(unsigned long va) 137{ 138 return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va); 139} 140 141static inline pte_t *virt_to_kpte(unsigned long vaddr) 142{ 143 pmd_t *pmd = pmd_off_k(vaddr); 144 145 return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr); 146} 147 148#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 149extern int ptep_set_access_flags(struct vm_area_struct *vma, 150 unsigned long address, pte_t *ptep, 151 pte_t entry, int dirty); 152#endif 153 154#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 155#ifdef CONFIG_TRANSPARENT_HUGEPAGE 156extern int pmdp_set_access_flags(struct vm_area_struct *vma, 157 unsigned long address, pmd_t *pmdp, 158 pmd_t entry, int dirty); 159extern int pudp_set_access_flags(struct vm_area_struct *vma, 160 unsigned long address, pud_t *pudp, 161 pud_t entry, int dirty); 162#else 163static inline int pmdp_set_access_flags(struct vm_area_struct *vma, 164 unsigned long address, pmd_t *pmdp, 165 pmd_t entry, int dirty) 166{ 167 BUILD_BUG(); 168 return 0; 169} 170static inline int pudp_set_access_flags(struct vm_area_struct *vma, 171 unsigned long address, pud_t *pudp, 172 pud_t entry, int dirty) 173{ 174 BUILD_BUG(); 175 return 0; 176} 177#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 178#endif 179 180#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 181static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, 182 unsigned long address, 183 pte_t *ptep) 184{ 185 pte_t pte = *ptep; 186 int r = 1; 187 if (!pte_young(pte)) 188 r = 0; 189 else 190 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte)); 191 return r; 192} 193#endif 194 195#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 196#ifdef CONFIG_TRANSPARENT_HUGEPAGE 197static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 198 unsigned long address, 199 pmd_t *pmdp) 200{ 201 pmd_t pmd = *pmdp; 202 int r = 1; 203 if (!pmd_young(pmd)) 204 r = 0; 205 else 206 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd)); 207 return r; 208} 209#else 210static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 211 unsigned long address, 212 pmd_t *pmdp) 213{ 214 BUILD_BUG(); 215 return 0; 216} 217#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 218#endif 219 220#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 221int ptep_clear_flush_young(struct vm_area_struct *vma, 222 unsigned long address, pte_t *ptep); 223#endif 224 225#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH 226#ifdef CONFIG_TRANSPARENT_HUGEPAGE 227extern int pmdp_clear_flush_young(struct vm_area_struct *vma, 228 unsigned long address, pmd_t *pmdp); 229#else 230/* 231 * Despite relevant to THP only, this API is called from generic rmap code 232 * under PageTransHuge(), hence needs a dummy implementation for !THP 233 */ 234static inline int pmdp_clear_flush_young(struct vm_area_struct *vma, 235 unsigned long address, pmd_t *pmdp) 236{ 237 BUILD_BUG(); 238 return 0; 239} 240#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 241#endif 242 243#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR 244static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 245 unsigned long address, 246 pte_t *ptep) 247{ 248 pte_t pte = *ptep; 249 pte_clear(mm, address, ptep); 250 return pte; 251} 252#endif 253 254#ifndef __HAVE_ARCH_PTEP_GET 255static inline pte_t ptep_get(pte_t *ptep) 256{ 257 return READ_ONCE(*ptep); 258} 259#endif 260 261#ifdef CONFIG_GUP_GET_PTE_LOW_HIGH 262/* 263 * WARNING: only to be used in the get_user_pages_fast() implementation. 264 * 265 * With get_user_pages_fast(), we walk down the pagetables without taking any 266 * locks. For this we would like to load the pointers atomically, but sometimes 267 * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE). What 268 * we do have is the guarantee that a PTE will only either go from not present 269 * to present, or present to not present or both -- it will not switch to a 270 * completely different present page without a TLB flush in between; something 271 * that we are blocking by holding interrupts off. 272 * 273 * Setting ptes from not present to present goes: 274 * 275 * ptep->pte_high = h; 276 * smp_wmb(); 277 * ptep->pte_low = l; 278 * 279 * And present to not present goes: 280 * 281 * ptep->pte_low = 0; 282 * smp_wmb(); 283 * ptep->pte_high = 0; 284 * 285 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'. 286 * We load pte_high *after* loading pte_low, which ensures we don't see an older 287 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't 288 * picked up a changed pte high. We might have gotten rubbish values from 289 * pte_low and pte_high, but we are guaranteed that pte_low will not have the 290 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only 291 * operates on present ptes we're safe. 292 */ 293static inline pte_t ptep_get_lockless(pte_t *ptep) 294{ 295 pte_t pte; 296 297 do { 298 pte.pte_low = ptep->pte_low; 299 smp_rmb(); 300 pte.pte_high = ptep->pte_high; 301 smp_rmb(); 302 } while (unlikely(pte.pte_low != ptep->pte_low)); 303 304 return pte; 305} 306#else /* CONFIG_GUP_GET_PTE_LOW_HIGH */ 307/* 308 * We require that the PTE can be read atomically. 309 */ 310static inline pte_t ptep_get_lockless(pte_t *ptep) 311{ 312 return ptep_get(ptep); 313} 314#endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */ 315 316#ifdef CONFIG_TRANSPARENT_HUGEPAGE 317#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR 318static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, 319 unsigned long address, 320 pmd_t *pmdp) 321{ 322 pmd_t pmd = *pmdp; 323 pmd_clear(pmdp); 324 return pmd; 325} 326#endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */ 327#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR 328static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm, 329 unsigned long address, 330 pud_t *pudp) 331{ 332 pud_t pud = *pudp; 333 334 pud_clear(pudp); 335 return pud; 336} 337#endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */ 338#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 339 340#ifdef CONFIG_TRANSPARENT_HUGEPAGE 341#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL 342static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma, 343 unsigned long address, pmd_t *pmdp, 344 int full) 345{ 346 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp); 347} 348#endif 349 350#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL 351static inline pud_t pudp_huge_get_and_clear_full(struct mm_struct *mm, 352 unsigned long address, pud_t *pudp, 353 int full) 354{ 355 return pudp_huge_get_and_clear(mm, address, pudp); 356} 357#endif 358#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 359 360#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL 361static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, 362 unsigned long address, pte_t *ptep, 363 int full) 364{ 365 pte_t pte; 366 pte = ptep_get_and_clear(mm, address, ptep); 367 return pte; 368} 369#endif 370 371 372/* 373 * If two threads concurrently fault at the same page, the thread that 374 * won the race updates the PTE and its local TLB/Cache. The other thread 375 * gives up, simply does nothing, and continues; on architectures where 376 * software can update TLB, local TLB can be updated here to avoid next page 377 * fault. This function updates TLB only, do nothing with cache or others. 378 * It is the difference with function update_mmu_cache. 379 */ 380#ifndef __HAVE_ARCH_UPDATE_MMU_TLB 381static inline void update_mmu_tlb(struct vm_area_struct *vma, 382 unsigned long address, pte_t *ptep) 383{ 384} 385#define __HAVE_ARCH_UPDATE_MMU_TLB 386#endif 387 388/* 389 * Some architectures may be able to avoid expensive synchronization 390 * primitives when modifications are made to PTE's which are already 391 * not present, or in the process of an address space destruction. 392 */ 393#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL 394static inline void pte_clear_not_present_full(struct mm_struct *mm, 395 unsigned long address, 396 pte_t *ptep, 397 int full) 398{ 399 pte_clear(mm, address, ptep); 400} 401#endif 402 403#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH 404extern pte_t ptep_clear_flush(struct vm_area_struct *vma, 405 unsigned long address, 406 pte_t *ptep); 407#endif 408 409#ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH 410extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma, 411 unsigned long address, 412 pmd_t *pmdp); 413extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma, 414 unsigned long address, 415 pud_t *pudp); 416#endif 417 418#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT 419struct mm_struct; 420static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep) 421{ 422 pte_t old_pte = *ptep; 423 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte)); 424} 425#endif 426 427/* 428 * On some architectures hardware does not set page access bit when accessing 429 * memory page, it is responsibilty of software setting this bit. It brings 430 * out extra page fault penalty to track page access bit. For optimization page 431 * access bit can be set during all page fault flow on these arches. 432 * To be differentiate with macro pte_mkyoung, this macro is used on platforms 433 * where software maintains page access bit. 434 */ 435#ifndef pte_savedwrite 436#define pte_savedwrite pte_write 437#endif 438 439#ifndef pte_mk_savedwrite 440#define pte_mk_savedwrite pte_mkwrite 441#endif 442 443#ifndef pte_clear_savedwrite 444#define pte_clear_savedwrite pte_wrprotect 445#endif 446 447#ifndef pmd_savedwrite 448#define pmd_savedwrite pmd_write 449#endif 450 451#ifndef pmd_mk_savedwrite 452#define pmd_mk_savedwrite pmd_mkwrite 453#endif 454 455#ifndef pmd_clear_savedwrite 456#define pmd_clear_savedwrite pmd_wrprotect 457#endif 458 459#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT 460#ifdef CONFIG_TRANSPARENT_HUGEPAGE 461static inline void pmdp_set_wrprotect(struct mm_struct *mm, 462 unsigned long address, pmd_t *pmdp) 463{ 464 pmd_t old_pmd = *pmdp; 465 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd)); 466} 467#else 468static inline void pmdp_set_wrprotect(struct mm_struct *mm, 469 unsigned long address, pmd_t *pmdp) 470{ 471 BUILD_BUG(); 472} 473#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 474#endif 475#ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT 476#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 477static inline void pudp_set_wrprotect(struct mm_struct *mm, 478 unsigned long address, pud_t *pudp) 479{ 480 pud_t old_pud = *pudp; 481 482 set_pud_at(mm, address, pudp, pud_wrprotect(old_pud)); 483} 484#else 485static inline void pudp_set_wrprotect(struct mm_struct *mm, 486 unsigned long address, pud_t *pudp) 487{ 488 BUILD_BUG(); 489} 490#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 491#endif 492 493#ifndef pmdp_collapse_flush 494#ifdef CONFIG_TRANSPARENT_HUGEPAGE 495extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, 496 unsigned long address, pmd_t *pmdp); 497#else 498static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, 499 unsigned long address, 500 pmd_t *pmdp) 501{ 502 BUILD_BUG(); 503 return *pmdp; 504} 505#define pmdp_collapse_flush pmdp_collapse_flush 506#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 507#endif 508 509#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT 510extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, 511 pgtable_t pgtable); 512#endif 513 514#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW 515extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp); 516#endif 517 518#ifdef CONFIG_TRANSPARENT_HUGEPAGE 519/* 520 * This is an implementation of pmdp_establish() that is only suitable for an 521 * architecture that doesn't have hardware dirty/accessed bits. In this case we 522 * can't race with CPU which sets these bits and non-atomic aproach is fine. 523 */ 524static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma, 525 unsigned long address, pmd_t *pmdp, pmd_t pmd) 526{ 527 pmd_t old_pmd = *pmdp; 528 set_pmd_at(vma->vm_mm, address, pmdp, pmd); 529 return old_pmd; 530} 531#endif 532 533#ifndef __HAVE_ARCH_PMDP_INVALIDATE 534extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, 535 pmd_t *pmdp); 536#endif 537 538#ifndef __HAVE_ARCH_PTE_SAME 539static inline int pte_same(pte_t pte_a, pte_t pte_b) 540{ 541 return pte_val(pte_a) == pte_val(pte_b); 542} 543#endif 544 545#ifndef __HAVE_ARCH_PTE_UNUSED 546/* 547 * Some architectures provide facilities to virtualization guests 548 * so that they can flag allocated pages as unused. This allows the 549 * host to transparently reclaim unused pages. This function returns 550 * whether the pte's page is unused. 551 */ 552static inline int pte_unused(pte_t pte) 553{ 554 return 0; 555} 556#endif 557 558#ifndef pte_access_permitted 559#define pte_access_permitted(pte, write) \ 560 (pte_present(pte) && (!(write) || pte_write(pte))) 561#endif 562 563#ifndef pmd_access_permitted 564#define pmd_access_permitted(pmd, write) \ 565 (pmd_present(pmd) && (!(write) || pmd_write(pmd))) 566#endif 567 568#ifndef pud_access_permitted 569#define pud_access_permitted(pud, write) \ 570 (pud_present(pud) && (!(write) || pud_write(pud))) 571#endif 572 573#ifndef p4d_access_permitted 574#define p4d_access_permitted(p4d, write) \ 575 (p4d_present(p4d) && (!(write) || p4d_write(p4d))) 576#endif 577 578#ifndef pgd_access_permitted 579#define pgd_access_permitted(pgd, write) \ 580 (pgd_present(pgd) && (!(write) || pgd_write(pgd))) 581#endif 582 583#ifndef __HAVE_ARCH_PMD_SAME 584static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b) 585{ 586 return pmd_val(pmd_a) == pmd_val(pmd_b); 587} 588 589static inline int pud_same(pud_t pud_a, pud_t pud_b) 590{ 591 return pud_val(pud_a) == pud_val(pud_b); 592} 593#endif 594 595#ifndef __HAVE_ARCH_P4D_SAME 596static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b) 597{ 598 return p4d_val(p4d_a) == p4d_val(p4d_b); 599} 600#endif 601 602#ifndef __HAVE_ARCH_PGD_SAME 603static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b) 604{ 605 return pgd_val(pgd_a) == pgd_val(pgd_b); 606} 607#endif 608 609/* 610 * Use set_p*_safe(), and elide TLB flushing, when confident that *no* 611 * TLB flush will be required as a result of the "set". For example, use 612 * in scenarios where it is known ahead of time that the routine is 613 * setting non-present entries, or re-setting an existing entry to the 614 * same value. Otherwise, use the typical "set" helpers and flush the 615 * TLB. 616 */ 617#define set_pte_safe(ptep, pte) \ 618({ \ 619 WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \ 620 set_pte(ptep, pte); \ 621}) 622 623#define set_pmd_safe(pmdp, pmd) \ 624({ \ 625 WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \ 626 set_pmd(pmdp, pmd); \ 627}) 628 629#define set_pud_safe(pudp, pud) \ 630({ \ 631 WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \ 632 set_pud(pudp, pud); \ 633}) 634 635#define set_p4d_safe(p4dp, p4d) \ 636({ \ 637 WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \ 638 set_p4d(p4dp, p4d); \ 639}) 640 641#define set_pgd_safe(pgdp, pgd) \ 642({ \ 643 WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \ 644 set_pgd(pgdp, pgd); \ 645}) 646 647#ifndef __HAVE_ARCH_DO_SWAP_PAGE 648/* 649 * Some architectures support metadata associated with a page. When a 650 * page is being swapped out, this metadata must be saved so it can be 651 * restored when the page is swapped back in. SPARC M7 and newer 652 * processors support an ADI (Application Data Integrity) tag for the 653 * page as metadata for the page. arch_do_swap_page() can restore this 654 * metadata when a page is swapped back in. 655 */ 656static inline void arch_do_swap_page(struct mm_struct *mm, 657 struct vm_area_struct *vma, 658 unsigned long addr, 659 pte_t pte, pte_t oldpte) 660{ 661 662} 663#endif 664 665#ifndef __HAVE_ARCH_UNMAP_ONE 666/* 667 * Some architectures support metadata associated with a page. When a 668 * page is being swapped out, this metadata must be saved so it can be 669 * restored when the page is swapped back in. SPARC M7 and newer 670 * processors support an ADI (Application Data Integrity) tag for the 671 * page as metadata for the page. arch_unmap_one() can save this 672 * metadata on a swap-out of a page. 673 */ 674static inline int arch_unmap_one(struct mm_struct *mm, 675 struct vm_area_struct *vma, 676 unsigned long addr, 677 pte_t orig_pte) 678{ 679 return 0; 680} 681#endif 682 683/* 684 * Allow architectures to preserve additional metadata associated with 685 * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function 686 * prototypes must be defined in the arch-specific asm/pgtable.h file. 687 */ 688#ifndef __HAVE_ARCH_PREPARE_TO_SWAP 689static inline int arch_prepare_to_swap(struct page *page) 690{ 691 return 0; 692} 693#endif 694 695#ifndef __HAVE_ARCH_SWAP_INVALIDATE 696static inline void arch_swap_invalidate_page(int type, pgoff_t offset) 697{ 698} 699 700static inline void arch_swap_invalidate_area(int type) 701{ 702} 703#endif 704 705#ifndef __HAVE_ARCH_SWAP_RESTORE 706static inline void arch_swap_restore(swp_entry_t entry, struct page *page) 707{ 708} 709#endif 710 711#ifndef __HAVE_ARCH_PGD_OFFSET_GATE 712#define pgd_offset_gate(mm, addr) pgd_offset(mm, addr) 713#endif 714 715#ifndef __HAVE_ARCH_MOVE_PTE 716#define move_pte(pte, prot, old_addr, new_addr) (pte) 717#endif 718 719#ifndef pte_accessible 720# define pte_accessible(mm, pte) ((void)(pte), 1) 721#endif 722 723#ifndef flush_tlb_fix_spurious_fault 724#define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address) 725#endif 726 727/* 728 * When walking page tables, get the address of the next boundary, 729 * or the end address of the range if that comes earlier. Although no 730 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout. 731 */ 732 733#define pgd_addr_end(addr, end) \ 734({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \ 735 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 736}) 737 738#ifndef p4d_addr_end 739#define p4d_addr_end(addr, end) \ 740({ unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK; \ 741 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 742}) 743#endif 744 745#ifndef pud_addr_end 746#define pud_addr_end(addr, end) \ 747({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \ 748 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 749}) 750#endif 751 752#ifndef pmd_addr_end 753#define pmd_addr_end(addr, end) \ 754({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \ 755 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 756}) 757#endif 758 759/* 760 * When walking page tables, we usually want to skip any p?d_none entries; 761 * and any p?d_bad entries - reporting the error before resetting to none. 762 * Do the tests inline, but report and clear the bad entry in mm/memory.c. 763 */ 764void pgd_clear_bad(pgd_t *); 765 766#ifndef __PAGETABLE_P4D_FOLDED 767void p4d_clear_bad(p4d_t *); 768#else 769#define p4d_clear_bad(p4d) do { } while (0) 770#endif 771 772#ifndef __PAGETABLE_PUD_FOLDED 773void pud_clear_bad(pud_t *); 774#else 775#define pud_clear_bad(p4d) do { } while (0) 776#endif 777 778void pmd_clear_bad(pmd_t *); 779 780static inline int pgd_none_or_clear_bad(pgd_t *pgd) 781{ 782 if (pgd_none(*pgd)) 783 return 1; 784 if (unlikely(pgd_bad(*pgd))) { 785 pgd_clear_bad(pgd); 786 return 1; 787 } 788 return 0; 789} 790 791static inline int p4d_none_or_clear_bad(p4d_t *p4d) 792{ 793 if (p4d_none(*p4d)) 794 return 1; 795 if (unlikely(p4d_bad(*p4d))) { 796 p4d_clear_bad(p4d); 797 return 1; 798 } 799 return 0; 800} 801 802static inline int pud_none_or_clear_bad(pud_t *pud) 803{ 804 if (pud_none(*pud)) 805 return 1; 806 if (unlikely(pud_bad(*pud))) { 807 pud_clear_bad(pud); 808 return 1; 809 } 810 return 0; 811} 812 813static inline int pmd_none_or_clear_bad(pmd_t *pmd) 814{ 815 if (pmd_none(*pmd)) 816 return 1; 817 if (unlikely(pmd_bad(*pmd))) { 818 pmd_clear_bad(pmd); 819 return 1; 820 } 821 return 0; 822} 823 824static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma, 825 unsigned long addr, 826 pte_t *ptep) 827{ 828 /* 829 * Get the current pte state, but zero it out to make it 830 * non-present, preventing the hardware from asynchronously 831 * updating it. 832 */ 833 return ptep_get_and_clear(vma->vm_mm, addr, ptep); 834} 835 836static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma, 837 unsigned long addr, 838 pte_t *ptep, pte_t pte) 839{ 840 /* 841 * The pte is non-present, so there's no hardware state to 842 * preserve. 843 */ 844 set_pte_at(vma->vm_mm, addr, ptep, pte); 845} 846 847#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION 848/* 849 * Start a pte protection read-modify-write transaction, which 850 * protects against asynchronous hardware modifications to the pte. 851 * The intention is not to prevent the hardware from making pte 852 * updates, but to prevent any updates it may make from being lost. 853 * 854 * This does not protect against other software modifications of the 855 * pte; the appropriate pte lock must be held over the transation. 856 * 857 * Note that this interface is intended to be batchable, meaning that 858 * ptep_modify_prot_commit may not actually update the pte, but merely 859 * queue the update to be done at some later time. The update must be 860 * actually committed before the pte lock is released, however. 861 */ 862static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma, 863 unsigned long addr, 864 pte_t *ptep) 865{ 866 return __ptep_modify_prot_start(vma, addr, ptep); 867} 868 869/* 870 * Commit an update to a pte, leaving any hardware-controlled bits in 871 * the PTE unmodified. 872 */ 873static inline void ptep_modify_prot_commit(struct vm_area_struct *vma, 874 unsigned long addr, 875 pte_t *ptep, pte_t old_pte, pte_t pte) 876{ 877 __ptep_modify_prot_commit(vma, addr, ptep, pte); 878} 879#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */ 880#endif /* CONFIG_MMU */ 881 882/* 883 * No-op macros that just return the current protection value. Defined here 884 * because these macros can be used even if CONFIG_MMU is not defined. 885 */ 886 887#ifndef pgprot_nx 888#define pgprot_nx(prot) (prot) 889#endif 890 891#ifndef pgprot_noncached 892#define pgprot_noncached(prot) (prot) 893#endif 894 895#ifndef pgprot_writecombine 896#define pgprot_writecombine pgprot_noncached 897#endif 898 899#ifndef pgprot_writethrough 900#define pgprot_writethrough pgprot_noncached 901#endif 902 903#ifndef pgprot_device 904#define pgprot_device pgprot_noncached 905#endif 906 907#ifdef CONFIG_MMU 908#ifndef pgprot_modify 909#define pgprot_modify pgprot_modify 910static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot) 911{ 912 if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot))) 913 newprot = pgprot_noncached(newprot); 914 if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot))) 915 newprot = pgprot_writecombine(newprot); 916 if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot))) 917 newprot = pgprot_device(newprot); 918 return newprot; 919} 920#endif 921#endif /* CONFIG_MMU */ 922 923#ifndef pgprot_encrypted 924#define pgprot_encrypted(prot) (prot) 925#endif 926 927#ifndef pgprot_decrypted 928#define pgprot_decrypted(prot) (prot) 929#endif 930 931/* 932 * A facility to provide lazy MMU batching. This allows PTE updates and 933 * page invalidations to be delayed until a call to leave lazy MMU mode 934 * is issued. Some architectures may benefit from doing this, and it is 935 * beneficial for both shadow and direct mode hypervisors, which may batch 936 * the PTE updates which happen during this window. Note that using this 937 * interface requires that read hazards be removed from the code. A read 938 * hazard could result in the direct mode hypervisor case, since the actual 939 * write to the page tables may not yet have taken place, so reads though 940 * a raw PTE pointer after it has been modified are not guaranteed to be 941 * up to date. This mode can only be entered and left under the protection of 942 * the page table locks for all page tables which may be modified. In the UP 943 * case, this is required so that preemption is disabled, and in the SMP case, 944 * it must synchronize the delayed page table writes properly on other CPUs. 945 */ 946#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE 947#define arch_enter_lazy_mmu_mode() do {} while (0) 948#define arch_leave_lazy_mmu_mode() do {} while (0) 949#define arch_flush_lazy_mmu_mode() do {} while (0) 950#endif 951 952/* 953 * A facility to provide batching of the reload of page tables and 954 * other process state with the actual context switch code for 955 * paravirtualized guests. By convention, only one of the batched 956 * update (lazy) modes (CPU, MMU) should be active at any given time, 957 * entry should never be nested, and entry and exits should always be 958 * paired. This is for sanity of maintaining and reasoning about the 959 * kernel code. In this case, the exit (end of the context switch) is 960 * in architecture-specific code, and so doesn't need a generic 961 * definition. 962 */ 963#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH 964#define arch_start_context_switch(prev) do {} while (0) 965#endif 966 967#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY 968#ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION 969static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) 970{ 971 return pmd; 972} 973 974static inline int pmd_swp_soft_dirty(pmd_t pmd) 975{ 976 return 0; 977} 978 979static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) 980{ 981 return pmd; 982} 983#endif 984#else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */ 985static inline int pte_soft_dirty(pte_t pte) 986{ 987 return 0; 988} 989 990static inline int pmd_soft_dirty(pmd_t pmd) 991{ 992 return 0; 993} 994 995static inline pte_t pte_mksoft_dirty(pte_t pte) 996{ 997 return pte; 998} 999 1000static inline pmd_t pmd_mksoft_dirty(pmd_t pmd) 1001{ 1002 return pmd; 1003} 1004 1005static inline pte_t pte_clear_soft_dirty(pte_t pte) 1006{ 1007 return pte; 1008} 1009 1010static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd) 1011{ 1012 return pmd; 1013} 1014 1015static inline pte_t pte_swp_mksoft_dirty(pte_t pte) 1016{ 1017 return pte; 1018} 1019 1020static inline int pte_swp_soft_dirty(pte_t pte) 1021{ 1022 return 0; 1023} 1024 1025static inline pte_t pte_swp_clear_soft_dirty(pte_t pte) 1026{ 1027 return pte; 1028} 1029 1030static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) 1031{ 1032 return pmd; 1033} 1034 1035static inline int pmd_swp_soft_dirty(pmd_t pmd) 1036{ 1037 return 0; 1038} 1039 1040static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) 1041{ 1042 return pmd; 1043} 1044#endif 1045 1046#ifndef __HAVE_PFNMAP_TRACKING 1047/* 1048 * Interfaces that can be used by architecture code to keep track of 1049 * memory type of pfn mappings specified by the remap_pfn_range, 1050 * vmf_insert_pfn. 1051 */ 1052 1053/* 1054 * track_pfn_remap is called when a _new_ pfn mapping is being established 1055 * by remap_pfn_range() for physical range indicated by pfn and size. 1056 */ 1057static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, 1058 unsigned long pfn, unsigned long addr, 1059 unsigned long size) 1060{ 1061 return 0; 1062} 1063 1064/* 1065 * track_pfn_insert is called when a _new_ single pfn is established 1066 * by vmf_insert_pfn(). 1067 */ 1068static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, 1069 pfn_t pfn) 1070{ 1071} 1072 1073/* 1074 * track_pfn_copy is called when vma that is covering the pfnmap gets 1075 * copied through copy_page_range(). 1076 */ 1077static inline int track_pfn_copy(struct vm_area_struct *vma) 1078{ 1079 return 0; 1080} 1081 1082/* 1083 * untrack_pfn is called while unmapping a pfnmap for a region. 1084 * untrack can be called for a specific region indicated by pfn and size or 1085 * can be for the entire vma (in which case pfn, size are zero). 1086 */ 1087static inline void untrack_pfn(struct vm_area_struct *vma, 1088 unsigned long pfn, unsigned long size) 1089{ 1090} 1091 1092/* 1093 * untrack_pfn_moved is called while mremapping a pfnmap for a new region. 1094 */ 1095static inline void untrack_pfn_moved(struct vm_area_struct *vma) 1096{ 1097} 1098#else 1099extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, 1100 unsigned long pfn, unsigned long addr, 1101 unsigned long size); 1102extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, 1103 pfn_t pfn); 1104extern int track_pfn_copy(struct vm_area_struct *vma); 1105extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn, 1106 unsigned long size); 1107extern void untrack_pfn_moved(struct vm_area_struct *vma); 1108#endif 1109 1110#ifdef __HAVE_COLOR_ZERO_PAGE 1111static inline int is_zero_pfn(unsigned long pfn) 1112{ 1113 extern unsigned long zero_pfn; 1114 unsigned long offset_from_zero_pfn = pfn - zero_pfn; 1115 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT); 1116} 1117 1118#define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr)) 1119 1120#else 1121static inline int is_zero_pfn(unsigned long pfn) 1122{ 1123 extern unsigned long zero_pfn; 1124 return pfn == zero_pfn; 1125} 1126 1127static inline unsigned long my_zero_pfn(unsigned long addr) 1128{ 1129 extern unsigned long zero_pfn; 1130 return zero_pfn; 1131} 1132#endif 1133 1134#ifdef CONFIG_MMU 1135 1136#ifndef CONFIG_TRANSPARENT_HUGEPAGE 1137static inline int pmd_trans_huge(pmd_t pmd) 1138{ 1139 return 0; 1140} 1141#ifndef pmd_write 1142static inline int pmd_write(pmd_t pmd) 1143{ 1144 BUG(); 1145 return 0; 1146} 1147#endif /* pmd_write */ 1148#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1149 1150#ifndef pud_write 1151static inline int pud_write(pud_t pud) 1152{ 1153 BUG(); 1154 return 0; 1155} 1156#endif /* pud_write */ 1157 1158#if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE) 1159static inline int pmd_devmap(pmd_t pmd) 1160{ 1161 return 0; 1162} 1163static inline int pud_devmap(pud_t pud) 1164{ 1165 return 0; 1166} 1167static inline int pgd_devmap(pgd_t pgd) 1168{ 1169 return 0; 1170} 1171#endif 1172 1173#if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \ 1174 (defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 1175 !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)) 1176static inline int pud_trans_huge(pud_t pud) 1177{ 1178 return 0; 1179} 1180#endif 1181 1182/* See pmd_none_or_trans_huge_or_clear_bad for discussion. */ 1183static inline int pud_none_or_trans_huge_or_dev_or_clear_bad(pud_t *pud) 1184{ 1185 pud_t pudval = READ_ONCE(*pud); 1186 1187 if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval)) 1188 return 1; 1189 if (unlikely(pud_bad(pudval))) { 1190 pud_clear_bad(pud); 1191 return 1; 1192 } 1193 return 0; 1194} 1195 1196/* See pmd_trans_unstable for discussion. */ 1197static inline int pud_trans_unstable(pud_t *pud) 1198{ 1199#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 1200 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 1201 return pud_none_or_trans_huge_or_dev_or_clear_bad(pud); 1202#else 1203 return 0; 1204#endif 1205} 1206 1207#ifndef pmd_read_atomic 1208static inline pmd_t pmd_read_atomic(pmd_t *pmdp) 1209{ 1210 /* 1211 * Depend on compiler for an atomic pmd read. NOTE: this is 1212 * only going to work, if the pmdval_t isn't larger than 1213 * an unsigned long. 1214 */ 1215 return *pmdp; 1216} 1217#endif 1218 1219#ifndef arch_needs_pgtable_deposit 1220#define arch_needs_pgtable_deposit() (false) 1221#endif 1222/* 1223 * This function is meant to be used by sites walking pagetables with 1224 * the mmap_lock held in read mode to protect against MADV_DONTNEED and 1225 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd 1226 * into a null pmd and the transhuge page fault can convert a null pmd 1227 * into an hugepmd or into a regular pmd (if the hugepage allocation 1228 * fails). While holding the mmap_lock in read mode the pmd becomes 1229 * stable and stops changing under us only if it's not null and not a 1230 * transhuge pmd. When those races occurs and this function makes a 1231 * difference vs the standard pmd_none_or_clear_bad, the result is 1232 * undefined so behaving like if the pmd was none is safe (because it 1233 * can return none anyway). The compiler level barrier() is critically 1234 * important to compute the two checks atomically on the same pmdval. 1235 * 1236 * For 32bit kernels with a 64bit large pmd_t this automatically takes 1237 * care of reading the pmd atomically to avoid SMP race conditions 1238 * against pmd_populate() when the mmap_lock is hold for reading by the 1239 * caller (a special atomic read not done by "gcc" as in the generic 1240 * version above, is also needed when THP is disabled because the page 1241 * fault can populate the pmd from under us). 1242 */ 1243static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd) 1244{ 1245 pmd_t pmdval = pmd_read_atomic(pmd); 1246 /* 1247 * The barrier will stabilize the pmdval in a register or on 1248 * the stack so that it will stop changing under the code. 1249 * 1250 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE, 1251 * pmd_read_atomic is allowed to return a not atomic pmdval 1252 * (for example pointing to an hugepage that has never been 1253 * mapped in the pmd). The below checks will only care about 1254 * the low part of the pmd with 32bit PAE x86 anyway, with the 1255 * exception of pmd_none(). So the important thing is that if 1256 * the low part of the pmd is found null, the high part will 1257 * be also null or the pmd_none() check below would be 1258 * confused. 1259 */ 1260#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1261 barrier(); 1262#endif 1263 /* 1264 * !pmd_present() checks for pmd migration entries 1265 * 1266 * The complete check uses is_pmd_migration_entry() in linux/swapops.h 1267 * But using that requires moving current function and pmd_trans_unstable() 1268 * to linux/swapops.h to resovle dependency, which is too much code move. 1269 * 1270 * !pmd_present() is equivalent to is_pmd_migration_entry() currently, 1271 * because !pmd_present() pages can only be under migration not swapped 1272 * out. 1273 * 1274 * pmd_none() is preseved for future condition checks on pmd migration 1275 * entries and not confusing with this function name, although it is 1276 * redundant with !pmd_present(). 1277 */ 1278 if (pmd_none(pmdval) || pmd_trans_huge(pmdval) || 1279 (IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION) && !pmd_present(pmdval))) 1280 return 1; 1281 if (unlikely(pmd_bad(pmdval))) { 1282 pmd_clear_bad(pmd); 1283 return 1; 1284 } 1285 return 0; 1286} 1287 1288/* 1289 * This is a noop if Transparent Hugepage Support is not built into 1290 * the kernel. Otherwise it is equivalent to 1291 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in 1292 * places that already verified the pmd is not none and they want to 1293 * walk ptes while holding the mmap sem in read mode (write mode don't 1294 * need this). If THP is not enabled, the pmd can't go away under the 1295 * code even if MADV_DONTNEED runs, but if THP is enabled we need to 1296 * run a pmd_trans_unstable before walking the ptes after 1297 * split_huge_pmd returns (because it may have run when the pmd become 1298 * null, but then a page fault can map in a THP and not a regular page). 1299 */ 1300static inline int pmd_trans_unstable(pmd_t *pmd) 1301{ 1302#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1303 return pmd_none_or_trans_huge_or_clear_bad(pmd); 1304#else 1305 return 0; 1306#endif 1307} 1308 1309/* 1310 * the ordering of these checks is important for pmds with _page_devmap set. 1311 * if we check pmd_trans_unstable() first we will trip the bad_pmd() check 1312 * inside of pmd_none_or_trans_huge_or_clear_bad(). this will end up correctly 1313 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output. 1314 */ 1315static inline int pmd_devmap_trans_unstable(pmd_t *pmd) 1316{ 1317 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd); 1318} 1319 1320#ifndef CONFIG_NUMA_BALANCING 1321/* 1322 * Technically a PTE can be PROTNONE even when not doing NUMA balancing but 1323 * the only case the kernel cares is for NUMA balancing and is only ever set 1324 * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked 1325 * _PAGE_PROTNONE so by default, implement the helper as "always no". It 1326 * is the responsibility of the caller to distinguish between PROT_NONE 1327 * protections and NUMA hinting fault protections. 1328 */ 1329static inline int pte_protnone(pte_t pte) 1330{ 1331 return 0; 1332} 1333 1334static inline int pmd_protnone(pmd_t pmd) 1335{ 1336 return 0; 1337} 1338#endif /* CONFIG_NUMA_BALANCING */ 1339 1340#endif /* CONFIG_MMU */ 1341 1342#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP 1343 1344#ifndef __PAGETABLE_P4D_FOLDED 1345int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot); 1346int p4d_clear_huge(p4d_t *p4d); 1347#else 1348static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot) 1349{ 1350 return 0; 1351} 1352static inline int p4d_clear_huge(p4d_t *p4d) 1353{ 1354 return 0; 1355} 1356#endif /* !__PAGETABLE_P4D_FOLDED */ 1357 1358int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot); 1359int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot); 1360int pud_clear_huge(pud_t *pud); 1361int pmd_clear_huge(pmd_t *pmd); 1362int p4d_free_pud_page(p4d_t *p4d, unsigned long addr); 1363int pud_free_pmd_page(pud_t *pud, unsigned long addr); 1364int pmd_free_pte_page(pmd_t *pmd, unsigned long addr); 1365#else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */ 1366static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot) 1367{ 1368 return 0; 1369} 1370static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot) 1371{ 1372 return 0; 1373} 1374static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot) 1375{ 1376 return 0; 1377} 1378static inline int p4d_clear_huge(p4d_t *p4d) 1379{ 1380 return 0; 1381} 1382static inline int pud_clear_huge(pud_t *pud) 1383{ 1384 return 0; 1385} 1386static inline int pmd_clear_huge(pmd_t *pmd) 1387{ 1388 return 0; 1389} 1390static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr) 1391{ 1392 return 0; 1393} 1394static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr) 1395{ 1396 return 0; 1397} 1398static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr) 1399{ 1400 return 0; 1401} 1402#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ 1403 1404#ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE 1405#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1406/* 1407 * ARCHes with special requirements for evicting THP backing TLB entries can 1408 * implement this. Otherwise also, it can help optimize normal TLB flush in 1409 * THP regime. Stock flush_tlb_range() typically has optimization to nuke the 1410 * entire TLB if flush span is greater than a threshold, which will 1411 * likely be true for a single huge page. Thus a single THP flush will 1412 * invalidate the entire TLB which is not desirable. 1413 * e.g. see arch/arc: flush_pmd_tlb_range 1414 */ 1415#define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) 1416#define flush_pud_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) 1417#else 1418#define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG() 1419#define flush_pud_tlb_range(vma, addr, end) BUILD_BUG() 1420#endif 1421#endif 1422 1423struct file; 1424int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn, 1425 unsigned long size, pgprot_t *vma_prot); 1426 1427#ifndef CONFIG_X86_ESPFIX64 1428static inline void init_espfix_bsp(void) { } 1429#endif 1430 1431extern void __init pgtable_cache_init(void); 1432 1433#ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED 1434static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot) 1435{ 1436 return true; 1437} 1438 1439static inline bool arch_has_pfn_modify_check(void) 1440{ 1441 return false; 1442} 1443#endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */ 1444 1445/* 1446 * Architecture PAGE_KERNEL_* fallbacks 1447 * 1448 * Some architectures don't define certain PAGE_KERNEL_* flags. This is either 1449 * because they really don't support them, or the port needs to be updated to 1450 * reflect the required functionality. Below are a set of relatively safe 1451 * fallbacks, as best effort, which we can count on in lieu of the architectures 1452 * not defining them on their own yet. 1453 */ 1454 1455#ifndef PAGE_KERNEL_RO 1456# define PAGE_KERNEL_RO PAGE_KERNEL 1457#endif 1458 1459#ifndef PAGE_KERNEL_EXEC 1460# define PAGE_KERNEL_EXEC PAGE_KERNEL 1461#endif 1462 1463/* 1464 * Page Table Modification bits for pgtbl_mod_mask. 1465 * 1466 * These are used by the p?d_alloc_track*() set of functions an in the generic 1467 * vmalloc/ioremap code to track at which page-table levels entries have been 1468 * modified. Based on that the code can better decide when vmalloc and ioremap 1469 * mapping changes need to be synchronized to other page-tables in the system. 1470 */ 1471#define __PGTBL_PGD_MODIFIED 0 1472#define __PGTBL_P4D_MODIFIED 1 1473#define __PGTBL_PUD_MODIFIED 2 1474#define __PGTBL_PMD_MODIFIED 3 1475#define __PGTBL_PTE_MODIFIED 4 1476 1477#define PGTBL_PGD_MODIFIED BIT(__PGTBL_PGD_MODIFIED) 1478#define PGTBL_P4D_MODIFIED BIT(__PGTBL_P4D_MODIFIED) 1479#define PGTBL_PUD_MODIFIED BIT(__PGTBL_PUD_MODIFIED) 1480#define PGTBL_PMD_MODIFIED BIT(__PGTBL_PMD_MODIFIED) 1481#define PGTBL_PTE_MODIFIED BIT(__PGTBL_PTE_MODIFIED) 1482 1483/* Page-Table Modification Mask */ 1484typedef unsigned int pgtbl_mod_mask; 1485 1486#endif /* !__ASSEMBLY__ */ 1487 1488#if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT) 1489#ifdef CONFIG_PHYS_ADDR_T_64BIT 1490/* 1491 * ZSMALLOC needs to know the highest PFN on 32-bit architectures 1492 * with physical address space extension, but falls back to 1493 * BITS_PER_LONG otherwise. 1494 */ 1495#error Missing MAX_POSSIBLE_PHYSMEM_BITS definition 1496#else 1497#define MAX_POSSIBLE_PHYSMEM_BITS 32 1498#endif 1499#endif 1500 1501#ifndef has_transparent_hugepage 1502#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1503#define has_transparent_hugepage() 1 1504#else 1505#define has_transparent_hugepage() 0 1506#endif 1507#endif 1508 1509/* 1510 * On some architectures it depends on the mm if the p4d/pud or pmd 1511 * layer of the page table hierarchy is folded or not. 1512 */ 1513#ifndef mm_p4d_folded 1514#define mm_p4d_folded(mm) __is_defined(__PAGETABLE_P4D_FOLDED) 1515#endif 1516 1517#ifndef mm_pud_folded 1518#define mm_pud_folded(mm) __is_defined(__PAGETABLE_PUD_FOLDED) 1519#endif 1520 1521#ifndef mm_pmd_folded 1522#define mm_pmd_folded(mm) __is_defined(__PAGETABLE_PMD_FOLDED) 1523#endif 1524 1525#ifndef p4d_offset_lockless 1526#define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address) 1527#endif 1528#ifndef pud_offset_lockless 1529#define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address) 1530#endif 1531#ifndef pmd_offset_lockless 1532#define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address) 1533#endif 1534 1535/* 1536 * p?d_leaf() - true if this entry is a final mapping to a physical address. 1537 * This differs from p?d_huge() by the fact that they are always available (if 1538 * the architecture supports large pages at the appropriate level) even 1539 * if CONFIG_HUGETLB_PAGE is not defined. 1540 * Only meaningful when called on a valid entry. 1541 */ 1542#ifndef pgd_leaf 1543#define pgd_leaf(x) 0 1544#endif 1545#ifndef p4d_leaf 1546#define p4d_leaf(x) 0 1547#endif 1548#ifndef pud_leaf 1549#define pud_leaf(x) 0 1550#endif 1551#ifndef pmd_leaf 1552#define pmd_leaf(x) 0 1553#endif 1554 1555#ifndef pgd_leaf_size 1556#define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT) 1557#endif 1558#ifndef p4d_leaf_size 1559#define p4d_leaf_size(x) P4D_SIZE 1560#endif 1561#ifndef pud_leaf_size 1562#define pud_leaf_size(x) PUD_SIZE 1563#endif 1564#ifndef pmd_leaf_size 1565#define pmd_leaf_size(x) PMD_SIZE 1566#endif 1567#ifndef pte_leaf_size 1568#define pte_leaf_size(x) PAGE_SIZE 1569#endif 1570 1571#endif /* _LINUX_PGTABLE_H */