at v5.12-rc2 7.3 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_MATH64_H 3#define _LINUX_MATH64_H 4 5#include <linux/types.h> 6#include <vdso/math64.h> 7#include <asm/div64.h> 8 9#if BITS_PER_LONG == 64 10 11#define div64_long(x, y) div64_s64((x), (y)) 12#define div64_ul(x, y) div64_u64((x), (y)) 13 14/** 15 * div_u64_rem - unsigned 64bit divide with 32bit divisor with remainder 16 * @dividend: unsigned 64bit dividend 17 * @divisor: unsigned 32bit divisor 18 * @remainder: pointer to unsigned 32bit remainder 19 * 20 * Return: sets ``*remainder``, then returns dividend / divisor 21 * 22 * This is commonly provided by 32bit archs to provide an optimized 64bit 23 * divide. 24 */ 25static inline u64 div_u64_rem(u64 dividend, u32 divisor, u32 *remainder) 26{ 27 *remainder = dividend % divisor; 28 return dividend / divisor; 29} 30 31/* 32 * div_s64_rem - signed 64bit divide with 32bit divisor with remainder 33 * @dividend: signed 64bit dividend 34 * @divisor: signed 32bit divisor 35 * @remainder: pointer to signed 32bit remainder 36 * 37 * Return: sets ``*remainder``, then returns dividend / divisor 38 */ 39static inline s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder) 40{ 41 *remainder = dividend % divisor; 42 return dividend / divisor; 43} 44 45/* 46 * div64_u64_rem - unsigned 64bit divide with 64bit divisor and remainder 47 * @dividend: unsigned 64bit dividend 48 * @divisor: unsigned 64bit divisor 49 * @remainder: pointer to unsigned 64bit remainder 50 * 51 * Return: sets ``*remainder``, then returns dividend / divisor 52 */ 53static inline u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder) 54{ 55 *remainder = dividend % divisor; 56 return dividend / divisor; 57} 58 59/* 60 * div64_u64 - unsigned 64bit divide with 64bit divisor 61 * @dividend: unsigned 64bit dividend 62 * @divisor: unsigned 64bit divisor 63 * 64 * Return: dividend / divisor 65 */ 66static inline u64 div64_u64(u64 dividend, u64 divisor) 67{ 68 return dividend / divisor; 69} 70 71/* 72 * div64_s64 - signed 64bit divide with 64bit divisor 73 * @dividend: signed 64bit dividend 74 * @divisor: signed 64bit divisor 75 * 76 * Return: dividend / divisor 77 */ 78static inline s64 div64_s64(s64 dividend, s64 divisor) 79{ 80 return dividend / divisor; 81} 82 83#elif BITS_PER_LONG == 32 84 85#define div64_long(x, y) div_s64((x), (y)) 86#define div64_ul(x, y) div_u64((x), (y)) 87 88#ifndef div_u64_rem 89static inline u64 div_u64_rem(u64 dividend, u32 divisor, u32 *remainder) 90{ 91 *remainder = do_div(dividend, divisor); 92 return dividend; 93} 94#endif 95 96#ifndef div_s64_rem 97extern s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder); 98#endif 99 100#ifndef div64_u64_rem 101extern u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder); 102#endif 103 104#ifndef div64_u64 105extern u64 div64_u64(u64 dividend, u64 divisor); 106#endif 107 108#ifndef div64_s64 109extern s64 div64_s64(s64 dividend, s64 divisor); 110#endif 111 112#endif /* BITS_PER_LONG */ 113 114/** 115 * div_u64 - unsigned 64bit divide with 32bit divisor 116 * @dividend: unsigned 64bit dividend 117 * @divisor: unsigned 32bit divisor 118 * 119 * This is the most common 64bit divide and should be used if possible, 120 * as many 32bit archs can optimize this variant better than a full 64bit 121 * divide. 122 */ 123#ifndef div_u64 124static inline u64 div_u64(u64 dividend, u32 divisor) 125{ 126 u32 remainder; 127 return div_u64_rem(dividend, divisor, &remainder); 128} 129#endif 130 131/** 132 * div_s64 - signed 64bit divide with 32bit divisor 133 * @dividend: signed 64bit dividend 134 * @divisor: signed 32bit divisor 135 */ 136#ifndef div_s64 137static inline s64 div_s64(s64 dividend, s32 divisor) 138{ 139 s32 remainder; 140 return div_s64_rem(dividend, divisor, &remainder); 141} 142#endif 143 144u32 iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder); 145 146#ifndef mul_u32_u32 147/* 148 * Many a GCC version messes this up and generates a 64x64 mult :-( 149 */ 150static inline u64 mul_u32_u32(u32 a, u32 b) 151{ 152 return (u64)a * b; 153} 154#endif 155 156#if defined(CONFIG_ARCH_SUPPORTS_INT128) && defined(__SIZEOF_INT128__) 157 158#ifndef mul_u64_u32_shr 159static inline u64 mul_u64_u32_shr(u64 a, u32 mul, unsigned int shift) 160{ 161 return (u64)(((unsigned __int128)a * mul) >> shift); 162} 163#endif /* mul_u64_u32_shr */ 164 165#ifndef mul_u64_u64_shr 166static inline u64 mul_u64_u64_shr(u64 a, u64 mul, unsigned int shift) 167{ 168 return (u64)(((unsigned __int128)a * mul) >> shift); 169} 170#endif /* mul_u64_u64_shr */ 171 172#else 173 174#ifndef mul_u64_u32_shr 175static inline u64 mul_u64_u32_shr(u64 a, u32 mul, unsigned int shift) 176{ 177 u32 ah, al; 178 u64 ret; 179 180 al = a; 181 ah = a >> 32; 182 183 ret = mul_u32_u32(al, mul) >> shift; 184 if (ah) 185 ret += mul_u32_u32(ah, mul) << (32 - shift); 186 187 return ret; 188} 189#endif /* mul_u64_u32_shr */ 190 191#ifndef mul_u64_u64_shr 192static inline u64 mul_u64_u64_shr(u64 a, u64 b, unsigned int shift) 193{ 194 union { 195 u64 ll; 196 struct { 197#ifdef __BIG_ENDIAN 198 u32 high, low; 199#else 200 u32 low, high; 201#endif 202 } l; 203 } rl, rm, rn, rh, a0, b0; 204 u64 c; 205 206 a0.ll = a; 207 b0.ll = b; 208 209 rl.ll = mul_u32_u32(a0.l.low, b0.l.low); 210 rm.ll = mul_u32_u32(a0.l.low, b0.l.high); 211 rn.ll = mul_u32_u32(a0.l.high, b0.l.low); 212 rh.ll = mul_u32_u32(a0.l.high, b0.l.high); 213 214 /* 215 * Each of these lines computes a 64-bit intermediate result into "c", 216 * starting at bits 32-95. The low 32-bits go into the result of the 217 * multiplication, the high 32-bits are carried into the next step. 218 */ 219 rl.l.high = c = (u64)rl.l.high + rm.l.low + rn.l.low; 220 rh.l.low = c = (c >> 32) + rm.l.high + rn.l.high + rh.l.low; 221 rh.l.high = (c >> 32) + rh.l.high; 222 223 /* 224 * The 128-bit result of the multiplication is in rl.ll and rh.ll, 225 * shift it right and throw away the high part of the result. 226 */ 227 if (shift == 0) 228 return rl.ll; 229 if (shift < 64) 230 return (rl.ll >> shift) | (rh.ll << (64 - shift)); 231 return rh.ll >> (shift & 63); 232} 233#endif /* mul_u64_u64_shr */ 234 235#endif 236 237#ifndef mul_u64_u32_div 238static inline u64 mul_u64_u32_div(u64 a, u32 mul, u32 divisor) 239{ 240 union { 241 u64 ll; 242 struct { 243#ifdef __BIG_ENDIAN 244 u32 high, low; 245#else 246 u32 low, high; 247#endif 248 } l; 249 } u, rl, rh; 250 251 u.ll = a; 252 rl.ll = mul_u32_u32(u.l.low, mul); 253 rh.ll = mul_u32_u32(u.l.high, mul) + rl.l.high; 254 255 /* Bits 32-63 of the result will be in rh.l.low. */ 256 rl.l.high = do_div(rh.ll, divisor); 257 258 /* Bits 0-31 of the result will be in rl.l.low. */ 259 do_div(rl.ll, divisor); 260 261 rl.l.high = rh.l.low; 262 return rl.ll; 263} 264#endif /* mul_u64_u32_div */ 265 266u64 mul_u64_u64_div_u64(u64 a, u64 mul, u64 div); 267 268#define DIV64_U64_ROUND_UP(ll, d) \ 269 ({ u64 _tmp = (d); div64_u64((ll) + _tmp - 1, _tmp); }) 270 271/** 272 * DIV64_U64_ROUND_CLOSEST - unsigned 64bit divide with 64bit divisor rounded to nearest integer 273 * @dividend: unsigned 64bit dividend 274 * @divisor: unsigned 64bit divisor 275 * 276 * Divide unsigned 64bit dividend by unsigned 64bit divisor 277 * and round to closest integer. 278 * 279 * Return: dividend / divisor rounded to nearest integer 280 */ 281#define DIV64_U64_ROUND_CLOSEST(dividend, divisor) \ 282 ({ u64 _tmp = (divisor); div64_u64((dividend) + _tmp / 2, _tmp); }) 283 284/* 285 * DIV_S64_ROUND_CLOSEST - signed 64bit divide with 32bit divisor rounded to nearest integer 286 * @dividend: signed 64bit dividend 287 * @divisor: signed 32bit divisor 288 * 289 * Divide signed 64bit dividend by signed 32bit divisor 290 * and round to closest integer. 291 * 292 * Return: dividend / divisor rounded to nearest integer 293 */ 294#define DIV_S64_ROUND_CLOSEST(dividend, divisor)( \ 295{ \ 296 s64 __x = (dividend); \ 297 s32 __d = (divisor); \ 298 ((__x > 0) == (__d > 0)) ? \ 299 div_s64((__x + (__d / 2)), __d) : \ 300 div_s64((__x - (__d / 2)), __d); \ 301} \ 302) 303#endif /* _LINUX_MATH64_H */