Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * vrf.c: device driver to encapsulate a VRF space
4 *
5 * Copyright (c) 2015 Cumulus Networks. All rights reserved.
6 * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
7 * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
8 *
9 * Based on dummy, team and ipvlan drivers
10 */
11
12#include <linux/ethtool.h>
13#include <linux/module.h>
14#include <linux/kernel.h>
15#include <linux/netdevice.h>
16#include <linux/etherdevice.h>
17#include <linux/ip.h>
18#include <linux/init.h>
19#include <linux/moduleparam.h>
20#include <linux/netfilter.h>
21#include <linux/rtnetlink.h>
22#include <net/rtnetlink.h>
23#include <linux/u64_stats_sync.h>
24#include <linux/hashtable.h>
25#include <linux/spinlock_types.h>
26
27#include <linux/inetdevice.h>
28#include <net/arp.h>
29#include <net/ip.h>
30#include <net/ip_fib.h>
31#include <net/ip6_fib.h>
32#include <net/ip6_route.h>
33#include <net/route.h>
34#include <net/addrconf.h>
35#include <net/l3mdev.h>
36#include <net/fib_rules.h>
37#include <net/netns/generic.h>
38
39#define DRV_NAME "vrf"
40#define DRV_VERSION "1.1"
41
42#define FIB_RULE_PREF 1000 /* default preference for FIB rules */
43
44#define HT_MAP_BITS 4
45#define HASH_INITVAL ((u32)0xcafef00d)
46
47struct vrf_map {
48 DECLARE_HASHTABLE(ht, HT_MAP_BITS);
49 spinlock_t vmap_lock;
50
51 /* shared_tables:
52 * count how many distinct tables do not comply with the strict mode
53 * requirement.
54 * shared_tables value must be 0 in order to enable the strict mode.
55 *
56 * example of the evolution of shared_tables:
57 * | time
58 * add vrf0 --> table 100 shared_tables = 0 | t0
59 * add vrf1 --> table 101 shared_tables = 0 | t1
60 * add vrf2 --> table 100 shared_tables = 1 | t2
61 * add vrf3 --> table 100 shared_tables = 1 | t3
62 * add vrf4 --> table 101 shared_tables = 2 v t4
63 *
64 * shared_tables is a "step function" (or "staircase function")
65 * and it is increased by one when the second vrf is associated to a
66 * table.
67 *
68 * at t2, vrf0 and vrf2 are bound to table 100: shared_tables = 1.
69 *
70 * at t3, another dev (vrf3) is bound to the same table 100 but the
71 * value of shared_tables is still 1.
72 * This means that no matter how many new vrfs will register on the
73 * table 100, the shared_tables will not increase (considering only
74 * table 100).
75 *
76 * at t4, vrf4 is bound to table 101, and shared_tables = 2.
77 *
78 * Looking at the value of shared_tables we can immediately know if
79 * the strict_mode can or cannot be enforced. Indeed, strict_mode
80 * can be enforced iff shared_tables = 0.
81 *
82 * Conversely, shared_tables is decreased when a vrf is de-associated
83 * from a table with exactly two associated vrfs.
84 */
85 u32 shared_tables;
86
87 bool strict_mode;
88};
89
90struct vrf_map_elem {
91 struct hlist_node hnode;
92 struct list_head vrf_list; /* VRFs registered to this table */
93
94 u32 table_id;
95 int users;
96 int ifindex;
97};
98
99static unsigned int vrf_net_id;
100
101/* per netns vrf data */
102struct netns_vrf {
103 /* protected by rtnl lock */
104 bool add_fib_rules;
105
106 struct vrf_map vmap;
107 struct ctl_table_header *ctl_hdr;
108};
109
110struct net_vrf {
111 struct rtable __rcu *rth;
112 struct rt6_info __rcu *rt6;
113#if IS_ENABLED(CONFIG_IPV6)
114 struct fib6_table *fib6_table;
115#endif
116 u32 tb_id;
117
118 struct list_head me_list; /* entry in vrf_map_elem */
119 int ifindex;
120};
121
122struct pcpu_dstats {
123 u64 tx_pkts;
124 u64 tx_bytes;
125 u64 tx_drps;
126 u64 rx_pkts;
127 u64 rx_bytes;
128 u64 rx_drps;
129 struct u64_stats_sync syncp;
130};
131
132static void vrf_rx_stats(struct net_device *dev, int len)
133{
134 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
135
136 u64_stats_update_begin(&dstats->syncp);
137 dstats->rx_pkts++;
138 dstats->rx_bytes += len;
139 u64_stats_update_end(&dstats->syncp);
140}
141
142static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
143{
144 vrf_dev->stats.tx_errors++;
145 kfree_skb(skb);
146}
147
148static void vrf_get_stats64(struct net_device *dev,
149 struct rtnl_link_stats64 *stats)
150{
151 int i;
152
153 for_each_possible_cpu(i) {
154 const struct pcpu_dstats *dstats;
155 u64 tbytes, tpkts, tdrops, rbytes, rpkts;
156 unsigned int start;
157
158 dstats = per_cpu_ptr(dev->dstats, i);
159 do {
160 start = u64_stats_fetch_begin_irq(&dstats->syncp);
161 tbytes = dstats->tx_bytes;
162 tpkts = dstats->tx_pkts;
163 tdrops = dstats->tx_drps;
164 rbytes = dstats->rx_bytes;
165 rpkts = dstats->rx_pkts;
166 } while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
167 stats->tx_bytes += tbytes;
168 stats->tx_packets += tpkts;
169 stats->tx_dropped += tdrops;
170 stats->rx_bytes += rbytes;
171 stats->rx_packets += rpkts;
172 }
173}
174
175static struct vrf_map *netns_vrf_map(struct net *net)
176{
177 struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
178
179 return &nn_vrf->vmap;
180}
181
182static struct vrf_map *netns_vrf_map_by_dev(struct net_device *dev)
183{
184 return netns_vrf_map(dev_net(dev));
185}
186
187static int vrf_map_elem_get_vrf_ifindex(struct vrf_map_elem *me)
188{
189 struct list_head *me_head = &me->vrf_list;
190 struct net_vrf *vrf;
191
192 if (list_empty(me_head))
193 return -ENODEV;
194
195 vrf = list_first_entry(me_head, struct net_vrf, me_list);
196
197 return vrf->ifindex;
198}
199
200static struct vrf_map_elem *vrf_map_elem_alloc(gfp_t flags)
201{
202 struct vrf_map_elem *me;
203
204 me = kmalloc(sizeof(*me), flags);
205 if (!me)
206 return NULL;
207
208 return me;
209}
210
211static void vrf_map_elem_free(struct vrf_map_elem *me)
212{
213 kfree(me);
214}
215
216static void vrf_map_elem_init(struct vrf_map_elem *me, int table_id,
217 int ifindex, int users)
218{
219 me->table_id = table_id;
220 me->ifindex = ifindex;
221 me->users = users;
222 INIT_LIST_HEAD(&me->vrf_list);
223}
224
225static struct vrf_map_elem *vrf_map_lookup_elem(struct vrf_map *vmap,
226 u32 table_id)
227{
228 struct vrf_map_elem *me;
229 u32 key;
230
231 key = jhash_1word(table_id, HASH_INITVAL);
232 hash_for_each_possible(vmap->ht, me, hnode, key) {
233 if (me->table_id == table_id)
234 return me;
235 }
236
237 return NULL;
238}
239
240static void vrf_map_add_elem(struct vrf_map *vmap, struct vrf_map_elem *me)
241{
242 u32 table_id = me->table_id;
243 u32 key;
244
245 key = jhash_1word(table_id, HASH_INITVAL);
246 hash_add(vmap->ht, &me->hnode, key);
247}
248
249static void vrf_map_del_elem(struct vrf_map_elem *me)
250{
251 hash_del(&me->hnode);
252}
253
254static void vrf_map_lock(struct vrf_map *vmap) __acquires(&vmap->vmap_lock)
255{
256 spin_lock(&vmap->vmap_lock);
257}
258
259static void vrf_map_unlock(struct vrf_map *vmap) __releases(&vmap->vmap_lock)
260{
261 spin_unlock(&vmap->vmap_lock);
262}
263
264/* called with rtnl lock held */
265static int
266vrf_map_register_dev(struct net_device *dev, struct netlink_ext_ack *extack)
267{
268 struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
269 struct net_vrf *vrf = netdev_priv(dev);
270 struct vrf_map_elem *new_me, *me;
271 u32 table_id = vrf->tb_id;
272 bool free_new_me = false;
273 int users;
274 int res;
275
276 /* we pre-allocate elements used in the spin-locked section (so that we
277 * keep the spinlock as short as possibile).
278 */
279 new_me = vrf_map_elem_alloc(GFP_KERNEL);
280 if (!new_me)
281 return -ENOMEM;
282
283 vrf_map_elem_init(new_me, table_id, dev->ifindex, 0);
284
285 vrf_map_lock(vmap);
286
287 me = vrf_map_lookup_elem(vmap, table_id);
288 if (!me) {
289 me = new_me;
290 vrf_map_add_elem(vmap, me);
291 goto link_vrf;
292 }
293
294 /* we already have an entry in the vrf_map, so it means there is (at
295 * least) a vrf registered on the specific table.
296 */
297 free_new_me = true;
298 if (vmap->strict_mode) {
299 /* vrfs cannot share the same table */
300 NL_SET_ERR_MSG(extack, "Table is used by another VRF");
301 res = -EBUSY;
302 goto unlock;
303 }
304
305link_vrf:
306 users = ++me->users;
307 if (users == 2)
308 ++vmap->shared_tables;
309
310 list_add(&vrf->me_list, &me->vrf_list);
311
312 res = 0;
313
314unlock:
315 vrf_map_unlock(vmap);
316
317 /* clean-up, if needed */
318 if (free_new_me)
319 vrf_map_elem_free(new_me);
320
321 return res;
322}
323
324/* called with rtnl lock held */
325static void vrf_map_unregister_dev(struct net_device *dev)
326{
327 struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
328 struct net_vrf *vrf = netdev_priv(dev);
329 u32 table_id = vrf->tb_id;
330 struct vrf_map_elem *me;
331 int users;
332
333 vrf_map_lock(vmap);
334
335 me = vrf_map_lookup_elem(vmap, table_id);
336 if (!me)
337 goto unlock;
338
339 list_del(&vrf->me_list);
340
341 users = --me->users;
342 if (users == 1) {
343 --vmap->shared_tables;
344 } else if (users == 0) {
345 vrf_map_del_elem(me);
346
347 /* no one will refer to this element anymore */
348 vrf_map_elem_free(me);
349 }
350
351unlock:
352 vrf_map_unlock(vmap);
353}
354
355/* return the vrf device index associated with the table_id */
356static int vrf_ifindex_lookup_by_table_id(struct net *net, u32 table_id)
357{
358 struct vrf_map *vmap = netns_vrf_map(net);
359 struct vrf_map_elem *me;
360 int ifindex;
361
362 vrf_map_lock(vmap);
363
364 if (!vmap->strict_mode) {
365 ifindex = -EPERM;
366 goto unlock;
367 }
368
369 me = vrf_map_lookup_elem(vmap, table_id);
370 if (!me) {
371 ifindex = -ENODEV;
372 goto unlock;
373 }
374
375 ifindex = vrf_map_elem_get_vrf_ifindex(me);
376
377unlock:
378 vrf_map_unlock(vmap);
379
380 return ifindex;
381}
382
383/* by default VRF devices do not have a qdisc and are expected
384 * to be created with only a single queue.
385 */
386static bool qdisc_tx_is_default(const struct net_device *dev)
387{
388 struct netdev_queue *txq;
389 struct Qdisc *qdisc;
390
391 if (dev->num_tx_queues > 1)
392 return false;
393
394 txq = netdev_get_tx_queue(dev, 0);
395 qdisc = rcu_access_pointer(txq->qdisc);
396
397 return !qdisc->enqueue;
398}
399
400/* Local traffic destined to local address. Reinsert the packet to rx
401 * path, similar to loopback handling.
402 */
403static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
404 struct dst_entry *dst)
405{
406 int len = skb->len;
407
408 skb_orphan(skb);
409
410 skb_dst_set(skb, dst);
411
412 /* set pkt_type to avoid skb hitting packet taps twice -
413 * once on Tx and again in Rx processing
414 */
415 skb->pkt_type = PACKET_LOOPBACK;
416
417 skb->protocol = eth_type_trans(skb, dev);
418
419 if (likely(netif_rx(skb) == NET_RX_SUCCESS))
420 vrf_rx_stats(dev, len);
421 else
422 this_cpu_inc(dev->dstats->rx_drps);
423
424 return NETDEV_TX_OK;
425}
426
427#if IS_ENABLED(CONFIG_IPV6)
428static int vrf_ip6_local_out(struct net *net, struct sock *sk,
429 struct sk_buff *skb)
430{
431 int err;
432
433 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
434 sk, skb, NULL, skb_dst(skb)->dev, dst_output);
435
436 if (likely(err == 1))
437 err = dst_output(net, sk, skb);
438
439 return err;
440}
441
442static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
443 struct net_device *dev)
444{
445 const struct ipv6hdr *iph;
446 struct net *net = dev_net(skb->dev);
447 struct flowi6 fl6;
448 int ret = NET_XMIT_DROP;
449 struct dst_entry *dst;
450 struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
451
452 if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct ipv6hdr)))
453 goto err;
454
455 iph = ipv6_hdr(skb);
456
457 memset(&fl6, 0, sizeof(fl6));
458 /* needed to match OIF rule */
459 fl6.flowi6_oif = dev->ifindex;
460 fl6.flowi6_iif = LOOPBACK_IFINDEX;
461 fl6.daddr = iph->daddr;
462 fl6.saddr = iph->saddr;
463 fl6.flowlabel = ip6_flowinfo(iph);
464 fl6.flowi6_mark = skb->mark;
465 fl6.flowi6_proto = iph->nexthdr;
466 fl6.flowi6_flags = FLOWI_FLAG_SKIP_NH_OIF;
467
468 dst = ip6_dst_lookup_flow(net, NULL, &fl6, NULL);
469 if (IS_ERR(dst) || dst == dst_null)
470 goto err;
471
472 skb_dst_drop(skb);
473
474 /* if dst.dev is loopback or the VRF device again this is locally
475 * originated traffic destined to a local address. Short circuit
476 * to Rx path
477 */
478 if (dst->dev == dev)
479 return vrf_local_xmit(skb, dev, dst);
480
481 skb_dst_set(skb, dst);
482
483 /* strip the ethernet header added for pass through VRF device */
484 __skb_pull(skb, skb_network_offset(skb));
485
486 ret = vrf_ip6_local_out(net, skb->sk, skb);
487 if (unlikely(net_xmit_eval(ret)))
488 dev->stats.tx_errors++;
489 else
490 ret = NET_XMIT_SUCCESS;
491
492 return ret;
493err:
494 vrf_tx_error(dev, skb);
495 return NET_XMIT_DROP;
496}
497#else
498static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
499 struct net_device *dev)
500{
501 vrf_tx_error(dev, skb);
502 return NET_XMIT_DROP;
503}
504#endif
505
506/* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
507static int vrf_ip_local_out(struct net *net, struct sock *sk,
508 struct sk_buff *skb)
509{
510 int err;
511
512 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
513 skb, NULL, skb_dst(skb)->dev, dst_output);
514 if (likely(err == 1))
515 err = dst_output(net, sk, skb);
516
517 return err;
518}
519
520static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
521 struct net_device *vrf_dev)
522{
523 struct iphdr *ip4h;
524 int ret = NET_XMIT_DROP;
525 struct flowi4 fl4;
526 struct net *net = dev_net(vrf_dev);
527 struct rtable *rt;
528
529 if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct iphdr)))
530 goto err;
531
532 ip4h = ip_hdr(skb);
533
534 memset(&fl4, 0, sizeof(fl4));
535 /* needed to match OIF rule */
536 fl4.flowi4_oif = vrf_dev->ifindex;
537 fl4.flowi4_iif = LOOPBACK_IFINDEX;
538 fl4.flowi4_tos = RT_TOS(ip4h->tos);
539 fl4.flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_SKIP_NH_OIF;
540 fl4.flowi4_proto = ip4h->protocol;
541 fl4.daddr = ip4h->daddr;
542 fl4.saddr = ip4h->saddr;
543
544 rt = ip_route_output_flow(net, &fl4, NULL);
545 if (IS_ERR(rt))
546 goto err;
547
548 skb_dst_drop(skb);
549
550 /* if dst.dev is loopback or the VRF device again this is locally
551 * originated traffic destined to a local address. Short circuit
552 * to Rx path
553 */
554 if (rt->dst.dev == vrf_dev)
555 return vrf_local_xmit(skb, vrf_dev, &rt->dst);
556
557 skb_dst_set(skb, &rt->dst);
558
559 /* strip the ethernet header added for pass through VRF device */
560 __skb_pull(skb, skb_network_offset(skb));
561
562 if (!ip4h->saddr) {
563 ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
564 RT_SCOPE_LINK);
565 }
566
567 ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
568 if (unlikely(net_xmit_eval(ret)))
569 vrf_dev->stats.tx_errors++;
570 else
571 ret = NET_XMIT_SUCCESS;
572
573out:
574 return ret;
575err:
576 vrf_tx_error(vrf_dev, skb);
577 goto out;
578}
579
580static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
581{
582 switch (skb->protocol) {
583 case htons(ETH_P_IP):
584 return vrf_process_v4_outbound(skb, dev);
585 case htons(ETH_P_IPV6):
586 return vrf_process_v6_outbound(skb, dev);
587 default:
588 vrf_tx_error(dev, skb);
589 return NET_XMIT_DROP;
590 }
591}
592
593static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
594{
595 int len = skb->len;
596 netdev_tx_t ret = is_ip_tx_frame(skb, dev);
597
598 if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
599 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
600
601 u64_stats_update_begin(&dstats->syncp);
602 dstats->tx_pkts++;
603 dstats->tx_bytes += len;
604 u64_stats_update_end(&dstats->syncp);
605 } else {
606 this_cpu_inc(dev->dstats->tx_drps);
607 }
608
609 return ret;
610}
611
612static void vrf_finish_direct(struct sk_buff *skb)
613{
614 struct net_device *vrf_dev = skb->dev;
615
616 if (!list_empty(&vrf_dev->ptype_all) &&
617 likely(skb_headroom(skb) >= ETH_HLEN)) {
618 struct ethhdr *eth = skb_push(skb, ETH_HLEN);
619
620 ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
621 eth_zero_addr(eth->h_dest);
622 eth->h_proto = skb->protocol;
623
624 rcu_read_lock_bh();
625 dev_queue_xmit_nit(skb, vrf_dev);
626 rcu_read_unlock_bh();
627
628 skb_pull(skb, ETH_HLEN);
629 }
630
631 /* reset skb device */
632 nf_reset_ct(skb);
633}
634
635#if IS_ENABLED(CONFIG_IPV6)
636/* modelled after ip6_finish_output2 */
637static int vrf_finish_output6(struct net *net, struct sock *sk,
638 struct sk_buff *skb)
639{
640 struct dst_entry *dst = skb_dst(skb);
641 struct net_device *dev = dst->dev;
642 const struct in6_addr *nexthop;
643 struct neighbour *neigh;
644 int ret;
645
646 nf_reset_ct(skb);
647
648 skb->protocol = htons(ETH_P_IPV6);
649 skb->dev = dev;
650
651 rcu_read_lock_bh();
652 nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
653 neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
654 if (unlikely(!neigh))
655 neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
656 if (!IS_ERR(neigh)) {
657 sock_confirm_neigh(skb, neigh);
658 ret = neigh_output(neigh, skb, false);
659 rcu_read_unlock_bh();
660 return ret;
661 }
662 rcu_read_unlock_bh();
663
664 IP6_INC_STATS(dev_net(dst->dev),
665 ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
666 kfree_skb(skb);
667 return -EINVAL;
668}
669
670/* modelled after ip6_output */
671static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
672{
673 return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
674 net, sk, skb, NULL, skb_dst(skb)->dev,
675 vrf_finish_output6,
676 !(IP6CB(skb)->flags & IP6SKB_REROUTED));
677}
678
679/* set dst on skb to send packet to us via dev_xmit path. Allows
680 * packet to go through device based features such as qdisc, netfilter
681 * hooks and packet sockets with skb->dev set to vrf device.
682 */
683static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev,
684 struct sk_buff *skb)
685{
686 struct net_vrf *vrf = netdev_priv(vrf_dev);
687 struct dst_entry *dst = NULL;
688 struct rt6_info *rt6;
689
690 rcu_read_lock();
691
692 rt6 = rcu_dereference(vrf->rt6);
693 if (likely(rt6)) {
694 dst = &rt6->dst;
695 dst_hold(dst);
696 }
697
698 rcu_read_unlock();
699
700 if (unlikely(!dst)) {
701 vrf_tx_error(vrf_dev, skb);
702 return NULL;
703 }
704
705 skb_dst_drop(skb);
706 skb_dst_set(skb, dst);
707
708 return skb;
709}
710
711static int vrf_output6_direct_finish(struct net *net, struct sock *sk,
712 struct sk_buff *skb)
713{
714 vrf_finish_direct(skb);
715
716 return vrf_ip6_local_out(net, sk, skb);
717}
718
719static int vrf_output6_direct(struct net *net, struct sock *sk,
720 struct sk_buff *skb)
721{
722 int err = 1;
723
724 skb->protocol = htons(ETH_P_IPV6);
725
726 if (!(IPCB(skb)->flags & IPSKB_REROUTED))
727 err = nf_hook(NFPROTO_IPV6, NF_INET_POST_ROUTING, net, sk, skb,
728 NULL, skb->dev, vrf_output6_direct_finish);
729
730 if (likely(err == 1))
731 vrf_finish_direct(skb);
732
733 return err;
734}
735
736static int vrf_ip6_out_direct_finish(struct net *net, struct sock *sk,
737 struct sk_buff *skb)
738{
739 int err;
740
741 err = vrf_output6_direct(net, sk, skb);
742 if (likely(err == 1))
743 err = vrf_ip6_local_out(net, sk, skb);
744
745 return err;
746}
747
748static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev,
749 struct sock *sk,
750 struct sk_buff *skb)
751{
752 struct net *net = dev_net(vrf_dev);
753 int err;
754
755 skb->dev = vrf_dev;
756
757 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk,
758 skb, NULL, vrf_dev, vrf_ip6_out_direct_finish);
759
760 if (likely(err == 1))
761 err = vrf_output6_direct(net, sk, skb);
762
763 if (likely(err == 1))
764 return skb;
765
766 return NULL;
767}
768
769static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
770 struct sock *sk,
771 struct sk_buff *skb)
772{
773 /* don't divert link scope packets */
774 if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
775 return skb;
776
777 if (qdisc_tx_is_default(vrf_dev) ||
778 IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
779 return vrf_ip6_out_direct(vrf_dev, sk, skb);
780
781 return vrf_ip6_out_redirect(vrf_dev, skb);
782}
783
784/* holding rtnl */
785static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
786{
787 struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
788 struct net *net = dev_net(dev);
789 struct dst_entry *dst;
790
791 RCU_INIT_POINTER(vrf->rt6, NULL);
792 synchronize_rcu();
793
794 /* move dev in dst's to loopback so this VRF device can be deleted
795 * - based on dst_ifdown
796 */
797 if (rt6) {
798 dst = &rt6->dst;
799 dev_put(dst->dev);
800 dst->dev = net->loopback_dev;
801 dev_hold(dst->dev);
802 dst_release(dst);
803 }
804}
805
806static int vrf_rt6_create(struct net_device *dev)
807{
808 int flags = DST_NOPOLICY | DST_NOXFRM;
809 struct net_vrf *vrf = netdev_priv(dev);
810 struct net *net = dev_net(dev);
811 struct rt6_info *rt6;
812 int rc = -ENOMEM;
813
814 /* IPv6 can be CONFIG enabled and then disabled runtime */
815 if (!ipv6_mod_enabled())
816 return 0;
817
818 vrf->fib6_table = fib6_new_table(net, vrf->tb_id);
819 if (!vrf->fib6_table)
820 goto out;
821
822 /* create a dst for routing packets out a VRF device */
823 rt6 = ip6_dst_alloc(net, dev, flags);
824 if (!rt6)
825 goto out;
826
827 rt6->dst.output = vrf_output6;
828
829 rcu_assign_pointer(vrf->rt6, rt6);
830
831 rc = 0;
832out:
833 return rc;
834}
835#else
836static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
837 struct sock *sk,
838 struct sk_buff *skb)
839{
840 return skb;
841}
842
843static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
844{
845}
846
847static int vrf_rt6_create(struct net_device *dev)
848{
849 return 0;
850}
851#endif
852
853/* modelled after ip_finish_output2 */
854static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
855{
856 struct dst_entry *dst = skb_dst(skb);
857 struct rtable *rt = (struct rtable *)dst;
858 struct net_device *dev = dst->dev;
859 unsigned int hh_len = LL_RESERVED_SPACE(dev);
860 struct neighbour *neigh;
861 bool is_v6gw = false;
862 int ret = -EINVAL;
863
864 nf_reset_ct(skb);
865
866 /* Be paranoid, rather than too clever. */
867 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
868 struct sk_buff *skb2;
869
870 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
871 if (!skb2) {
872 ret = -ENOMEM;
873 goto err;
874 }
875 if (skb->sk)
876 skb_set_owner_w(skb2, skb->sk);
877
878 consume_skb(skb);
879 skb = skb2;
880 }
881
882 rcu_read_lock_bh();
883
884 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
885 if (!IS_ERR(neigh)) {
886 sock_confirm_neigh(skb, neigh);
887 /* if crossing protocols, can not use the cached header */
888 ret = neigh_output(neigh, skb, is_v6gw);
889 rcu_read_unlock_bh();
890 return ret;
891 }
892
893 rcu_read_unlock_bh();
894err:
895 vrf_tx_error(skb->dev, skb);
896 return ret;
897}
898
899static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
900{
901 struct net_device *dev = skb_dst(skb)->dev;
902
903 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
904
905 skb->dev = dev;
906 skb->protocol = htons(ETH_P_IP);
907
908 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
909 net, sk, skb, NULL, dev,
910 vrf_finish_output,
911 !(IPCB(skb)->flags & IPSKB_REROUTED));
912}
913
914/* set dst on skb to send packet to us via dev_xmit path. Allows
915 * packet to go through device based features such as qdisc, netfilter
916 * hooks and packet sockets with skb->dev set to vrf device.
917 */
918static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev,
919 struct sk_buff *skb)
920{
921 struct net_vrf *vrf = netdev_priv(vrf_dev);
922 struct dst_entry *dst = NULL;
923 struct rtable *rth;
924
925 rcu_read_lock();
926
927 rth = rcu_dereference(vrf->rth);
928 if (likely(rth)) {
929 dst = &rth->dst;
930 dst_hold(dst);
931 }
932
933 rcu_read_unlock();
934
935 if (unlikely(!dst)) {
936 vrf_tx_error(vrf_dev, skb);
937 return NULL;
938 }
939
940 skb_dst_drop(skb);
941 skb_dst_set(skb, dst);
942
943 return skb;
944}
945
946static int vrf_output_direct_finish(struct net *net, struct sock *sk,
947 struct sk_buff *skb)
948{
949 vrf_finish_direct(skb);
950
951 return vrf_ip_local_out(net, sk, skb);
952}
953
954static int vrf_output_direct(struct net *net, struct sock *sk,
955 struct sk_buff *skb)
956{
957 int err = 1;
958
959 skb->protocol = htons(ETH_P_IP);
960
961 if (!(IPCB(skb)->flags & IPSKB_REROUTED))
962 err = nf_hook(NFPROTO_IPV4, NF_INET_POST_ROUTING, net, sk, skb,
963 NULL, skb->dev, vrf_output_direct_finish);
964
965 if (likely(err == 1))
966 vrf_finish_direct(skb);
967
968 return err;
969}
970
971static int vrf_ip_out_direct_finish(struct net *net, struct sock *sk,
972 struct sk_buff *skb)
973{
974 int err;
975
976 err = vrf_output_direct(net, sk, skb);
977 if (likely(err == 1))
978 err = vrf_ip_local_out(net, sk, skb);
979
980 return err;
981}
982
983static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev,
984 struct sock *sk,
985 struct sk_buff *skb)
986{
987 struct net *net = dev_net(vrf_dev);
988 int err;
989
990 skb->dev = vrf_dev;
991
992 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
993 skb, NULL, vrf_dev, vrf_ip_out_direct_finish);
994
995 if (likely(err == 1))
996 err = vrf_output_direct(net, sk, skb);
997
998 if (likely(err == 1))
999 return skb;
1000
1001 return NULL;
1002}
1003
1004static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
1005 struct sock *sk,
1006 struct sk_buff *skb)
1007{
1008 /* don't divert multicast or local broadcast */
1009 if (ipv4_is_multicast(ip_hdr(skb)->daddr) ||
1010 ipv4_is_lbcast(ip_hdr(skb)->daddr))
1011 return skb;
1012
1013 if (qdisc_tx_is_default(vrf_dev) ||
1014 IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
1015 return vrf_ip_out_direct(vrf_dev, sk, skb);
1016
1017 return vrf_ip_out_redirect(vrf_dev, skb);
1018}
1019
1020/* called with rcu lock held */
1021static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
1022 struct sock *sk,
1023 struct sk_buff *skb,
1024 u16 proto)
1025{
1026 switch (proto) {
1027 case AF_INET:
1028 return vrf_ip_out(vrf_dev, sk, skb);
1029 case AF_INET6:
1030 return vrf_ip6_out(vrf_dev, sk, skb);
1031 }
1032
1033 return skb;
1034}
1035
1036/* holding rtnl */
1037static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
1038{
1039 struct rtable *rth = rtnl_dereference(vrf->rth);
1040 struct net *net = dev_net(dev);
1041 struct dst_entry *dst;
1042
1043 RCU_INIT_POINTER(vrf->rth, NULL);
1044 synchronize_rcu();
1045
1046 /* move dev in dst's to loopback so this VRF device can be deleted
1047 * - based on dst_ifdown
1048 */
1049 if (rth) {
1050 dst = &rth->dst;
1051 dev_put(dst->dev);
1052 dst->dev = net->loopback_dev;
1053 dev_hold(dst->dev);
1054 dst_release(dst);
1055 }
1056}
1057
1058static int vrf_rtable_create(struct net_device *dev)
1059{
1060 struct net_vrf *vrf = netdev_priv(dev);
1061 struct rtable *rth;
1062
1063 if (!fib_new_table(dev_net(dev), vrf->tb_id))
1064 return -ENOMEM;
1065
1066 /* create a dst for routing packets out through a VRF device */
1067 rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1);
1068 if (!rth)
1069 return -ENOMEM;
1070
1071 rth->dst.output = vrf_output;
1072
1073 rcu_assign_pointer(vrf->rth, rth);
1074
1075 return 0;
1076}
1077
1078/**************************** device handling ********************/
1079
1080/* cycle interface to flush neighbor cache and move routes across tables */
1081static void cycle_netdev(struct net_device *dev,
1082 struct netlink_ext_ack *extack)
1083{
1084 unsigned int flags = dev->flags;
1085 int ret;
1086
1087 if (!netif_running(dev))
1088 return;
1089
1090 ret = dev_change_flags(dev, flags & ~IFF_UP, extack);
1091 if (ret >= 0)
1092 ret = dev_change_flags(dev, flags, extack);
1093
1094 if (ret < 0) {
1095 netdev_err(dev,
1096 "Failed to cycle device %s; route tables might be wrong!\n",
1097 dev->name);
1098 }
1099}
1100
1101static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1102 struct netlink_ext_ack *extack)
1103{
1104 int ret;
1105
1106 /* do not allow loopback device to be enslaved to a VRF.
1107 * The vrf device acts as the loopback for the vrf.
1108 */
1109 if (port_dev == dev_net(dev)->loopback_dev) {
1110 NL_SET_ERR_MSG(extack,
1111 "Can not enslave loopback device to a VRF");
1112 return -EOPNOTSUPP;
1113 }
1114
1115 port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
1116 ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack);
1117 if (ret < 0)
1118 goto err;
1119
1120 cycle_netdev(port_dev, extack);
1121
1122 return 0;
1123
1124err:
1125 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1126 return ret;
1127}
1128
1129static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1130 struct netlink_ext_ack *extack)
1131{
1132 if (netif_is_l3_master(port_dev)) {
1133 NL_SET_ERR_MSG(extack,
1134 "Can not enslave an L3 master device to a VRF");
1135 return -EINVAL;
1136 }
1137
1138 if (netif_is_l3_slave(port_dev))
1139 return -EINVAL;
1140
1141 return do_vrf_add_slave(dev, port_dev, extack);
1142}
1143
1144/* inverse of do_vrf_add_slave */
1145static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1146{
1147 netdev_upper_dev_unlink(port_dev, dev);
1148 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1149
1150 cycle_netdev(port_dev, NULL);
1151
1152 return 0;
1153}
1154
1155static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1156{
1157 return do_vrf_del_slave(dev, port_dev);
1158}
1159
1160static void vrf_dev_uninit(struct net_device *dev)
1161{
1162 struct net_vrf *vrf = netdev_priv(dev);
1163
1164 vrf_rtable_release(dev, vrf);
1165 vrf_rt6_release(dev, vrf);
1166
1167 free_percpu(dev->dstats);
1168 dev->dstats = NULL;
1169}
1170
1171static int vrf_dev_init(struct net_device *dev)
1172{
1173 struct net_vrf *vrf = netdev_priv(dev);
1174
1175 dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
1176 if (!dev->dstats)
1177 goto out_nomem;
1178
1179 /* create the default dst which points back to us */
1180 if (vrf_rtable_create(dev) != 0)
1181 goto out_stats;
1182
1183 if (vrf_rt6_create(dev) != 0)
1184 goto out_rth;
1185
1186 dev->flags = IFF_MASTER | IFF_NOARP;
1187
1188 /* MTU is irrelevant for VRF device; set to 64k similar to lo */
1189 dev->mtu = 64 * 1024;
1190
1191 /* similarly, oper state is irrelevant; set to up to avoid confusion */
1192 dev->operstate = IF_OPER_UP;
1193 netdev_lockdep_set_classes(dev);
1194 return 0;
1195
1196out_rth:
1197 vrf_rtable_release(dev, vrf);
1198out_stats:
1199 free_percpu(dev->dstats);
1200 dev->dstats = NULL;
1201out_nomem:
1202 return -ENOMEM;
1203}
1204
1205static const struct net_device_ops vrf_netdev_ops = {
1206 .ndo_init = vrf_dev_init,
1207 .ndo_uninit = vrf_dev_uninit,
1208 .ndo_start_xmit = vrf_xmit,
1209 .ndo_set_mac_address = eth_mac_addr,
1210 .ndo_get_stats64 = vrf_get_stats64,
1211 .ndo_add_slave = vrf_add_slave,
1212 .ndo_del_slave = vrf_del_slave,
1213};
1214
1215static u32 vrf_fib_table(const struct net_device *dev)
1216{
1217 struct net_vrf *vrf = netdev_priv(dev);
1218
1219 return vrf->tb_id;
1220}
1221
1222static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
1223{
1224 kfree_skb(skb);
1225 return 0;
1226}
1227
1228static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
1229 struct sk_buff *skb,
1230 struct net_device *dev)
1231{
1232 struct net *net = dev_net(dev);
1233
1234 if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1)
1235 skb = NULL; /* kfree_skb(skb) handled by nf code */
1236
1237 return skb;
1238}
1239
1240static int vrf_prepare_mac_header(struct sk_buff *skb,
1241 struct net_device *vrf_dev, u16 proto)
1242{
1243 struct ethhdr *eth;
1244 int err;
1245
1246 /* in general, we do not know if there is enough space in the head of
1247 * the packet for hosting the mac header.
1248 */
1249 err = skb_cow_head(skb, LL_RESERVED_SPACE(vrf_dev));
1250 if (unlikely(err))
1251 /* no space in the skb head */
1252 return -ENOBUFS;
1253
1254 __skb_push(skb, ETH_HLEN);
1255 eth = (struct ethhdr *)skb->data;
1256
1257 skb_reset_mac_header(skb);
1258
1259 /* we set the ethernet destination and the source addresses to the
1260 * address of the VRF device.
1261 */
1262 ether_addr_copy(eth->h_dest, vrf_dev->dev_addr);
1263 ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
1264 eth->h_proto = htons(proto);
1265
1266 /* the destination address of the Ethernet frame corresponds to the
1267 * address set on the VRF interface; therefore, the packet is intended
1268 * to be processed locally.
1269 */
1270 skb->protocol = eth->h_proto;
1271 skb->pkt_type = PACKET_HOST;
1272
1273 skb_postpush_rcsum(skb, skb->data, ETH_HLEN);
1274
1275 skb_pull_inline(skb, ETH_HLEN);
1276
1277 return 0;
1278}
1279
1280/* prepare and add the mac header to the packet if it was not set previously.
1281 * In this way, packet sniffers such as tcpdump can parse the packet correctly.
1282 * If the mac header was already set, the original mac header is left
1283 * untouched and the function returns immediately.
1284 */
1285static int vrf_add_mac_header_if_unset(struct sk_buff *skb,
1286 struct net_device *vrf_dev,
1287 u16 proto)
1288{
1289 if (skb_mac_header_was_set(skb))
1290 return 0;
1291
1292 return vrf_prepare_mac_header(skb, vrf_dev, proto);
1293}
1294
1295#if IS_ENABLED(CONFIG_IPV6)
1296/* neighbor handling is done with actual device; do not want
1297 * to flip skb->dev for those ndisc packets. This really fails
1298 * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
1299 * a start.
1300 */
1301static bool ipv6_ndisc_frame(const struct sk_buff *skb)
1302{
1303 const struct ipv6hdr *iph = ipv6_hdr(skb);
1304 bool rc = false;
1305
1306 if (iph->nexthdr == NEXTHDR_ICMP) {
1307 const struct icmp6hdr *icmph;
1308 struct icmp6hdr _icmph;
1309
1310 icmph = skb_header_pointer(skb, sizeof(*iph),
1311 sizeof(_icmph), &_icmph);
1312 if (!icmph)
1313 goto out;
1314
1315 switch (icmph->icmp6_type) {
1316 case NDISC_ROUTER_SOLICITATION:
1317 case NDISC_ROUTER_ADVERTISEMENT:
1318 case NDISC_NEIGHBOUR_SOLICITATION:
1319 case NDISC_NEIGHBOUR_ADVERTISEMENT:
1320 case NDISC_REDIRECT:
1321 rc = true;
1322 break;
1323 }
1324 }
1325
1326out:
1327 return rc;
1328}
1329
1330static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
1331 const struct net_device *dev,
1332 struct flowi6 *fl6,
1333 int ifindex,
1334 const struct sk_buff *skb,
1335 int flags)
1336{
1337 struct net_vrf *vrf = netdev_priv(dev);
1338
1339 return ip6_pol_route(net, vrf->fib6_table, ifindex, fl6, skb, flags);
1340}
1341
1342static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
1343 int ifindex)
1344{
1345 const struct ipv6hdr *iph = ipv6_hdr(skb);
1346 struct flowi6 fl6 = {
1347 .flowi6_iif = ifindex,
1348 .flowi6_mark = skb->mark,
1349 .flowi6_proto = iph->nexthdr,
1350 .daddr = iph->daddr,
1351 .saddr = iph->saddr,
1352 .flowlabel = ip6_flowinfo(iph),
1353 };
1354 struct net *net = dev_net(vrf_dev);
1355 struct rt6_info *rt6;
1356
1357 rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, skb,
1358 RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
1359 if (unlikely(!rt6))
1360 return;
1361
1362 if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
1363 return;
1364
1365 skb_dst_set(skb, &rt6->dst);
1366}
1367
1368static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1369 struct sk_buff *skb)
1370{
1371 int orig_iif = skb->skb_iif;
1372 bool need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
1373 bool is_ndisc = ipv6_ndisc_frame(skb);
1374 bool is_ll_src;
1375
1376 /* loopback, multicast & non-ND link-local traffic; do not push through
1377 * packet taps again. Reset pkt_type for upper layers to process skb.
1378 * for packets with lladdr src, however, skip so that the dst can be
1379 * determine at input using original ifindex in the case that daddr
1380 * needs strict
1381 */
1382 is_ll_src = ipv6_addr_type(&ipv6_hdr(skb)->saddr) & IPV6_ADDR_LINKLOCAL;
1383 if (skb->pkt_type == PACKET_LOOPBACK ||
1384 (need_strict && !is_ndisc && !is_ll_src)) {
1385 skb->dev = vrf_dev;
1386 skb->skb_iif = vrf_dev->ifindex;
1387 IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1388 if (skb->pkt_type == PACKET_LOOPBACK)
1389 skb->pkt_type = PACKET_HOST;
1390 goto out;
1391 }
1392
1393 /* if packet is NDISC then keep the ingress interface */
1394 if (!is_ndisc) {
1395 vrf_rx_stats(vrf_dev, skb->len);
1396 skb->dev = vrf_dev;
1397 skb->skb_iif = vrf_dev->ifindex;
1398
1399 if (!list_empty(&vrf_dev->ptype_all)) {
1400 int err;
1401
1402 err = vrf_add_mac_header_if_unset(skb, vrf_dev,
1403 ETH_P_IPV6);
1404 if (likely(!err)) {
1405 skb_push(skb, skb->mac_len);
1406 dev_queue_xmit_nit(skb, vrf_dev);
1407 skb_pull(skb, skb->mac_len);
1408 }
1409 }
1410
1411 IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1412 }
1413
1414 if (need_strict)
1415 vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1416
1417 skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
1418out:
1419 return skb;
1420}
1421
1422#else
1423static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1424 struct sk_buff *skb)
1425{
1426 return skb;
1427}
1428#endif
1429
1430static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
1431 struct sk_buff *skb)
1432{
1433 skb->dev = vrf_dev;
1434 skb->skb_iif = vrf_dev->ifindex;
1435 IPCB(skb)->flags |= IPSKB_L3SLAVE;
1436
1437 if (ipv4_is_multicast(ip_hdr(skb)->daddr))
1438 goto out;
1439
1440 /* loopback traffic; do not push through packet taps again.
1441 * Reset pkt_type for upper layers to process skb
1442 */
1443 if (skb->pkt_type == PACKET_LOOPBACK) {
1444 skb->pkt_type = PACKET_HOST;
1445 goto out;
1446 }
1447
1448 vrf_rx_stats(vrf_dev, skb->len);
1449
1450 if (!list_empty(&vrf_dev->ptype_all)) {
1451 int err;
1452
1453 err = vrf_add_mac_header_if_unset(skb, vrf_dev, ETH_P_IP);
1454 if (likely(!err)) {
1455 skb_push(skb, skb->mac_len);
1456 dev_queue_xmit_nit(skb, vrf_dev);
1457 skb_pull(skb, skb->mac_len);
1458 }
1459 }
1460
1461 skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
1462out:
1463 return skb;
1464}
1465
1466/* called with rcu lock held */
1467static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
1468 struct sk_buff *skb,
1469 u16 proto)
1470{
1471 switch (proto) {
1472 case AF_INET:
1473 return vrf_ip_rcv(vrf_dev, skb);
1474 case AF_INET6:
1475 return vrf_ip6_rcv(vrf_dev, skb);
1476 }
1477
1478 return skb;
1479}
1480
1481#if IS_ENABLED(CONFIG_IPV6)
1482/* send to link-local or multicast address via interface enslaved to
1483 * VRF device. Force lookup to VRF table without changing flow struct
1484 * Note: Caller to this function must hold rcu_read_lock() and no refcnt
1485 * is taken on the dst by this function.
1486 */
1487static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
1488 struct flowi6 *fl6)
1489{
1490 struct net *net = dev_net(dev);
1491 int flags = RT6_LOOKUP_F_IFACE | RT6_LOOKUP_F_DST_NOREF;
1492 struct dst_entry *dst = NULL;
1493 struct rt6_info *rt;
1494
1495 /* VRF device does not have a link-local address and
1496 * sending packets to link-local or mcast addresses over
1497 * a VRF device does not make sense
1498 */
1499 if (fl6->flowi6_oif == dev->ifindex) {
1500 dst = &net->ipv6.ip6_null_entry->dst;
1501 return dst;
1502 }
1503
1504 if (!ipv6_addr_any(&fl6->saddr))
1505 flags |= RT6_LOOKUP_F_HAS_SADDR;
1506
1507 rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, NULL, flags);
1508 if (rt)
1509 dst = &rt->dst;
1510
1511 return dst;
1512}
1513#endif
1514
1515static const struct l3mdev_ops vrf_l3mdev_ops = {
1516 .l3mdev_fib_table = vrf_fib_table,
1517 .l3mdev_l3_rcv = vrf_l3_rcv,
1518 .l3mdev_l3_out = vrf_l3_out,
1519#if IS_ENABLED(CONFIG_IPV6)
1520 .l3mdev_link_scope_lookup = vrf_link_scope_lookup,
1521#endif
1522};
1523
1524static void vrf_get_drvinfo(struct net_device *dev,
1525 struct ethtool_drvinfo *info)
1526{
1527 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1528 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1529}
1530
1531static const struct ethtool_ops vrf_ethtool_ops = {
1532 .get_drvinfo = vrf_get_drvinfo,
1533};
1534
1535static inline size_t vrf_fib_rule_nl_size(void)
1536{
1537 size_t sz;
1538
1539 sz = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
1540 sz += nla_total_size(sizeof(u8)); /* FRA_L3MDEV */
1541 sz += nla_total_size(sizeof(u32)); /* FRA_PRIORITY */
1542 sz += nla_total_size(sizeof(u8)); /* FRA_PROTOCOL */
1543
1544 return sz;
1545}
1546
1547static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
1548{
1549 struct fib_rule_hdr *frh;
1550 struct nlmsghdr *nlh;
1551 struct sk_buff *skb;
1552 int err;
1553
1554 if ((family == AF_INET6 || family == RTNL_FAMILY_IP6MR) &&
1555 !ipv6_mod_enabled())
1556 return 0;
1557
1558 skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
1559 if (!skb)
1560 return -ENOMEM;
1561
1562 nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
1563 if (!nlh)
1564 goto nla_put_failure;
1565
1566 /* rule only needs to appear once */
1567 nlh->nlmsg_flags |= NLM_F_EXCL;
1568
1569 frh = nlmsg_data(nlh);
1570 memset(frh, 0, sizeof(*frh));
1571 frh->family = family;
1572 frh->action = FR_ACT_TO_TBL;
1573
1574 if (nla_put_u8(skb, FRA_PROTOCOL, RTPROT_KERNEL))
1575 goto nla_put_failure;
1576
1577 if (nla_put_u8(skb, FRA_L3MDEV, 1))
1578 goto nla_put_failure;
1579
1580 if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
1581 goto nla_put_failure;
1582
1583 nlmsg_end(skb, nlh);
1584
1585 /* fib_nl_{new,del}rule handling looks for net from skb->sk */
1586 skb->sk = dev_net(dev)->rtnl;
1587 if (add_it) {
1588 err = fib_nl_newrule(skb, nlh, NULL);
1589 if (err == -EEXIST)
1590 err = 0;
1591 } else {
1592 err = fib_nl_delrule(skb, nlh, NULL);
1593 if (err == -ENOENT)
1594 err = 0;
1595 }
1596 nlmsg_free(skb);
1597
1598 return err;
1599
1600nla_put_failure:
1601 nlmsg_free(skb);
1602
1603 return -EMSGSIZE;
1604}
1605
1606static int vrf_add_fib_rules(const struct net_device *dev)
1607{
1608 int err;
1609
1610 err = vrf_fib_rule(dev, AF_INET, true);
1611 if (err < 0)
1612 goto out_err;
1613
1614 err = vrf_fib_rule(dev, AF_INET6, true);
1615 if (err < 0)
1616 goto ipv6_err;
1617
1618#if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1619 err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
1620 if (err < 0)
1621 goto ipmr_err;
1622#endif
1623
1624#if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1625 err = vrf_fib_rule(dev, RTNL_FAMILY_IP6MR, true);
1626 if (err < 0)
1627 goto ip6mr_err;
1628#endif
1629
1630 return 0;
1631
1632#if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1633ip6mr_err:
1634 vrf_fib_rule(dev, RTNL_FAMILY_IPMR, false);
1635#endif
1636
1637#if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1638ipmr_err:
1639 vrf_fib_rule(dev, AF_INET6, false);
1640#endif
1641
1642ipv6_err:
1643 vrf_fib_rule(dev, AF_INET, false);
1644
1645out_err:
1646 netdev_err(dev, "Failed to add FIB rules.\n");
1647 return err;
1648}
1649
1650static void vrf_setup(struct net_device *dev)
1651{
1652 ether_setup(dev);
1653
1654 /* Initialize the device structure. */
1655 dev->netdev_ops = &vrf_netdev_ops;
1656 dev->l3mdev_ops = &vrf_l3mdev_ops;
1657 dev->ethtool_ops = &vrf_ethtool_ops;
1658 dev->needs_free_netdev = true;
1659
1660 /* Fill in device structure with ethernet-generic values. */
1661 eth_hw_addr_random(dev);
1662
1663 /* don't acquire vrf device's netif_tx_lock when transmitting */
1664 dev->features |= NETIF_F_LLTX;
1665
1666 /* don't allow vrf devices to change network namespaces. */
1667 dev->features |= NETIF_F_NETNS_LOCAL;
1668
1669 /* does not make sense for a VLAN to be added to a vrf device */
1670 dev->features |= NETIF_F_VLAN_CHALLENGED;
1671
1672 /* enable offload features */
1673 dev->features |= NETIF_F_GSO_SOFTWARE;
1674 dev->features |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC;
1675 dev->features |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
1676
1677 dev->hw_features = dev->features;
1678 dev->hw_enc_features = dev->features;
1679
1680 /* default to no qdisc; user can add if desired */
1681 dev->priv_flags |= IFF_NO_QUEUE;
1682 dev->priv_flags |= IFF_NO_RX_HANDLER;
1683 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1684
1685 /* VRF devices do not care about MTU, but if the MTU is set
1686 * too low then the ipv4 and ipv6 protocols are disabled
1687 * which breaks networking.
1688 */
1689 dev->min_mtu = IPV6_MIN_MTU;
1690 dev->max_mtu = ETH_MAX_MTU;
1691}
1692
1693static int vrf_validate(struct nlattr *tb[], struct nlattr *data[],
1694 struct netlink_ext_ack *extack)
1695{
1696 if (tb[IFLA_ADDRESS]) {
1697 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) {
1698 NL_SET_ERR_MSG(extack, "Invalid hardware address");
1699 return -EINVAL;
1700 }
1701 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) {
1702 NL_SET_ERR_MSG(extack, "Invalid hardware address");
1703 return -EADDRNOTAVAIL;
1704 }
1705 }
1706 return 0;
1707}
1708
1709static void vrf_dellink(struct net_device *dev, struct list_head *head)
1710{
1711 struct net_device *port_dev;
1712 struct list_head *iter;
1713
1714 netdev_for_each_lower_dev(dev, port_dev, iter)
1715 vrf_del_slave(dev, port_dev);
1716
1717 vrf_map_unregister_dev(dev);
1718
1719 unregister_netdevice_queue(dev, head);
1720}
1721
1722static int vrf_newlink(struct net *src_net, struct net_device *dev,
1723 struct nlattr *tb[], struct nlattr *data[],
1724 struct netlink_ext_ack *extack)
1725{
1726 struct net_vrf *vrf = netdev_priv(dev);
1727 struct netns_vrf *nn_vrf;
1728 bool *add_fib_rules;
1729 struct net *net;
1730 int err;
1731
1732 if (!data || !data[IFLA_VRF_TABLE]) {
1733 NL_SET_ERR_MSG(extack, "VRF table id is missing");
1734 return -EINVAL;
1735 }
1736
1737 vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
1738 if (vrf->tb_id == RT_TABLE_UNSPEC) {
1739 NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE],
1740 "Invalid VRF table id");
1741 return -EINVAL;
1742 }
1743
1744 dev->priv_flags |= IFF_L3MDEV_MASTER;
1745
1746 err = register_netdevice(dev);
1747 if (err)
1748 goto out;
1749
1750 /* mapping between table_id and vrf;
1751 * note: such binding could not be done in the dev init function
1752 * because dev->ifindex id is not available yet.
1753 */
1754 vrf->ifindex = dev->ifindex;
1755
1756 err = vrf_map_register_dev(dev, extack);
1757 if (err) {
1758 unregister_netdevice(dev);
1759 goto out;
1760 }
1761
1762 net = dev_net(dev);
1763 nn_vrf = net_generic(net, vrf_net_id);
1764
1765 add_fib_rules = &nn_vrf->add_fib_rules;
1766 if (*add_fib_rules) {
1767 err = vrf_add_fib_rules(dev);
1768 if (err) {
1769 vrf_map_unregister_dev(dev);
1770 unregister_netdevice(dev);
1771 goto out;
1772 }
1773 *add_fib_rules = false;
1774 }
1775
1776out:
1777 return err;
1778}
1779
1780static size_t vrf_nl_getsize(const struct net_device *dev)
1781{
1782 return nla_total_size(sizeof(u32)); /* IFLA_VRF_TABLE */
1783}
1784
1785static int vrf_fillinfo(struct sk_buff *skb,
1786 const struct net_device *dev)
1787{
1788 struct net_vrf *vrf = netdev_priv(dev);
1789
1790 return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
1791}
1792
1793static size_t vrf_get_slave_size(const struct net_device *bond_dev,
1794 const struct net_device *slave_dev)
1795{
1796 return nla_total_size(sizeof(u32)); /* IFLA_VRF_PORT_TABLE */
1797}
1798
1799static int vrf_fill_slave_info(struct sk_buff *skb,
1800 const struct net_device *vrf_dev,
1801 const struct net_device *slave_dev)
1802{
1803 struct net_vrf *vrf = netdev_priv(vrf_dev);
1804
1805 if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
1806 return -EMSGSIZE;
1807
1808 return 0;
1809}
1810
1811static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
1812 [IFLA_VRF_TABLE] = { .type = NLA_U32 },
1813};
1814
1815static struct rtnl_link_ops vrf_link_ops __read_mostly = {
1816 .kind = DRV_NAME,
1817 .priv_size = sizeof(struct net_vrf),
1818
1819 .get_size = vrf_nl_getsize,
1820 .policy = vrf_nl_policy,
1821 .validate = vrf_validate,
1822 .fill_info = vrf_fillinfo,
1823
1824 .get_slave_size = vrf_get_slave_size,
1825 .fill_slave_info = vrf_fill_slave_info,
1826
1827 .newlink = vrf_newlink,
1828 .dellink = vrf_dellink,
1829 .setup = vrf_setup,
1830 .maxtype = IFLA_VRF_MAX,
1831};
1832
1833static int vrf_device_event(struct notifier_block *unused,
1834 unsigned long event, void *ptr)
1835{
1836 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1837
1838 /* only care about unregister events to drop slave references */
1839 if (event == NETDEV_UNREGISTER) {
1840 struct net_device *vrf_dev;
1841
1842 if (!netif_is_l3_slave(dev))
1843 goto out;
1844
1845 vrf_dev = netdev_master_upper_dev_get(dev);
1846 vrf_del_slave(vrf_dev, dev);
1847 }
1848out:
1849 return NOTIFY_DONE;
1850}
1851
1852static struct notifier_block vrf_notifier_block __read_mostly = {
1853 .notifier_call = vrf_device_event,
1854};
1855
1856static int vrf_map_init(struct vrf_map *vmap)
1857{
1858 spin_lock_init(&vmap->vmap_lock);
1859 hash_init(vmap->ht);
1860
1861 vmap->strict_mode = false;
1862
1863 return 0;
1864}
1865
1866#ifdef CONFIG_SYSCTL
1867static bool vrf_strict_mode(struct vrf_map *vmap)
1868{
1869 bool strict_mode;
1870
1871 vrf_map_lock(vmap);
1872 strict_mode = vmap->strict_mode;
1873 vrf_map_unlock(vmap);
1874
1875 return strict_mode;
1876}
1877
1878static int vrf_strict_mode_change(struct vrf_map *vmap, bool new_mode)
1879{
1880 bool *cur_mode;
1881 int res = 0;
1882
1883 vrf_map_lock(vmap);
1884
1885 cur_mode = &vmap->strict_mode;
1886 if (*cur_mode == new_mode)
1887 goto unlock;
1888
1889 if (*cur_mode) {
1890 /* disable strict mode */
1891 *cur_mode = false;
1892 } else {
1893 if (vmap->shared_tables) {
1894 /* we cannot allow strict_mode because there are some
1895 * vrfs that share one or more tables.
1896 */
1897 res = -EBUSY;
1898 goto unlock;
1899 }
1900
1901 /* no tables are shared among vrfs, so we can go back
1902 * to 1:1 association between a vrf with its table.
1903 */
1904 *cur_mode = true;
1905 }
1906
1907unlock:
1908 vrf_map_unlock(vmap);
1909
1910 return res;
1911}
1912
1913static int vrf_shared_table_handler(struct ctl_table *table, int write,
1914 void *buffer, size_t *lenp, loff_t *ppos)
1915{
1916 struct net *net = (struct net *)table->extra1;
1917 struct vrf_map *vmap = netns_vrf_map(net);
1918 int proc_strict_mode = 0;
1919 struct ctl_table tmp = {
1920 .procname = table->procname,
1921 .data = &proc_strict_mode,
1922 .maxlen = sizeof(int),
1923 .mode = table->mode,
1924 .extra1 = SYSCTL_ZERO,
1925 .extra2 = SYSCTL_ONE,
1926 };
1927 int ret;
1928
1929 if (!write)
1930 proc_strict_mode = vrf_strict_mode(vmap);
1931
1932 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
1933
1934 if (write && ret == 0)
1935 ret = vrf_strict_mode_change(vmap, (bool)proc_strict_mode);
1936
1937 return ret;
1938}
1939
1940static const struct ctl_table vrf_table[] = {
1941 {
1942 .procname = "strict_mode",
1943 .data = NULL,
1944 .maxlen = sizeof(int),
1945 .mode = 0644,
1946 .proc_handler = vrf_shared_table_handler,
1947 /* set by the vrf_netns_init */
1948 .extra1 = NULL,
1949 },
1950 { },
1951};
1952
1953static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1954{
1955 struct ctl_table *table;
1956
1957 table = kmemdup(vrf_table, sizeof(vrf_table), GFP_KERNEL);
1958 if (!table)
1959 return -ENOMEM;
1960
1961 /* init the extra1 parameter with the reference to current netns */
1962 table[0].extra1 = net;
1963
1964 nn_vrf->ctl_hdr = register_net_sysctl(net, "net/vrf", table);
1965 if (!nn_vrf->ctl_hdr) {
1966 kfree(table);
1967 return -ENOMEM;
1968 }
1969
1970 return 0;
1971}
1972
1973static void vrf_netns_exit_sysctl(struct net *net)
1974{
1975 struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1976 struct ctl_table *table;
1977
1978 table = nn_vrf->ctl_hdr->ctl_table_arg;
1979 unregister_net_sysctl_table(nn_vrf->ctl_hdr);
1980 kfree(table);
1981}
1982#else
1983static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1984{
1985 return 0;
1986}
1987
1988static void vrf_netns_exit_sysctl(struct net *net)
1989{
1990}
1991#endif
1992
1993/* Initialize per network namespace state */
1994static int __net_init vrf_netns_init(struct net *net)
1995{
1996 struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1997
1998 nn_vrf->add_fib_rules = true;
1999 vrf_map_init(&nn_vrf->vmap);
2000
2001 return vrf_netns_init_sysctl(net, nn_vrf);
2002}
2003
2004static void __net_exit vrf_netns_exit(struct net *net)
2005{
2006 vrf_netns_exit_sysctl(net);
2007}
2008
2009static struct pernet_operations vrf_net_ops __net_initdata = {
2010 .init = vrf_netns_init,
2011 .exit = vrf_netns_exit,
2012 .id = &vrf_net_id,
2013 .size = sizeof(struct netns_vrf),
2014};
2015
2016static int __init vrf_init_module(void)
2017{
2018 int rc;
2019
2020 register_netdevice_notifier(&vrf_notifier_block);
2021
2022 rc = register_pernet_subsys(&vrf_net_ops);
2023 if (rc < 0)
2024 goto error;
2025
2026 rc = l3mdev_table_lookup_register(L3MDEV_TYPE_VRF,
2027 vrf_ifindex_lookup_by_table_id);
2028 if (rc < 0)
2029 goto unreg_pernet;
2030
2031 rc = rtnl_link_register(&vrf_link_ops);
2032 if (rc < 0)
2033 goto table_lookup_unreg;
2034
2035 return 0;
2036
2037table_lookup_unreg:
2038 l3mdev_table_lookup_unregister(L3MDEV_TYPE_VRF,
2039 vrf_ifindex_lookup_by_table_id);
2040
2041unreg_pernet:
2042 unregister_pernet_subsys(&vrf_net_ops);
2043
2044error:
2045 unregister_netdevice_notifier(&vrf_notifier_block);
2046 return rc;
2047}
2048
2049module_init(vrf_init_module);
2050MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
2051MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
2052MODULE_LICENSE("GPL");
2053MODULE_ALIAS_RTNL_LINK(DRV_NAME);
2054MODULE_VERSION(DRV_VERSION);