Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* SCTP kernel implementation
3 * (C) Copyright IBM Corp. 2001, 2004
4 * Copyright (c) 1999-2000 Cisco, Inc.
5 * Copyright (c) 1999-2001 Motorola, Inc.
6 * Copyright (c) 2001-2003 Intel Corp.
7 * Copyright (c) 2001-2002 Nokia, Inc.
8 * Copyright (c) 2001 La Monte H.P. Yarroll
9 *
10 * This file is part of the SCTP kernel implementation
11 *
12 * These functions interface with the sockets layer to implement the
13 * SCTP Extensions for the Sockets API.
14 *
15 * Note that the descriptions from the specification are USER level
16 * functions--this file is the functions which populate the struct proto
17 * for SCTP which is the BOTTOM of the sockets interface.
18 *
19 * Please send any bug reports or fixes you make to the
20 * email address(es):
21 * lksctp developers <linux-sctp@vger.kernel.org>
22 *
23 * Written or modified by:
24 * La Monte H.P. Yarroll <piggy@acm.org>
25 * Narasimha Budihal <narsi@refcode.org>
26 * Karl Knutson <karl@athena.chicago.il.us>
27 * Jon Grimm <jgrimm@us.ibm.com>
28 * Xingang Guo <xingang.guo@intel.com>
29 * Daisy Chang <daisyc@us.ibm.com>
30 * Sridhar Samudrala <samudrala@us.ibm.com>
31 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com>
32 * Ardelle Fan <ardelle.fan@intel.com>
33 * Ryan Layer <rmlayer@us.ibm.com>
34 * Anup Pemmaiah <pemmaiah@cc.usu.edu>
35 * Kevin Gao <kevin.gao@intel.com>
36 */
37
38#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
39
40#include <crypto/hash.h>
41#include <linux/types.h>
42#include <linux/kernel.h>
43#include <linux/wait.h>
44#include <linux/time.h>
45#include <linux/sched/signal.h>
46#include <linux/ip.h>
47#include <linux/capability.h>
48#include <linux/fcntl.h>
49#include <linux/poll.h>
50#include <linux/init.h>
51#include <linux/slab.h>
52#include <linux/file.h>
53#include <linux/compat.h>
54#include <linux/rhashtable.h>
55
56#include <net/ip.h>
57#include <net/icmp.h>
58#include <net/route.h>
59#include <net/ipv6.h>
60#include <net/inet_common.h>
61#include <net/busy_poll.h>
62
63#include <linux/socket.h> /* for sa_family_t */
64#include <linux/export.h>
65#include <net/sock.h>
66#include <net/sctp/sctp.h>
67#include <net/sctp/sm.h>
68#include <net/sctp/stream_sched.h>
69
70/* Forward declarations for internal helper functions. */
71static bool sctp_writeable(struct sock *sk);
72static void sctp_wfree(struct sk_buff *skb);
73static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
74 size_t msg_len);
75static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
76static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
77static int sctp_wait_for_accept(struct sock *sk, long timeo);
78static void sctp_wait_for_close(struct sock *sk, long timeo);
79static void sctp_destruct_sock(struct sock *sk);
80static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
81 union sctp_addr *addr, int len);
82static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
83static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
84static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
85static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
86static int sctp_send_asconf(struct sctp_association *asoc,
87 struct sctp_chunk *chunk);
88static int sctp_do_bind(struct sock *, union sctp_addr *, int);
89static int sctp_autobind(struct sock *sk);
90static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
91 struct sctp_association *assoc,
92 enum sctp_socket_type type);
93
94static unsigned long sctp_memory_pressure;
95static atomic_long_t sctp_memory_allocated;
96struct percpu_counter sctp_sockets_allocated;
97
98static void sctp_enter_memory_pressure(struct sock *sk)
99{
100 sctp_memory_pressure = 1;
101}
102
103
104/* Get the sndbuf space available at the time on the association. */
105static inline int sctp_wspace(struct sctp_association *asoc)
106{
107 struct sock *sk = asoc->base.sk;
108
109 return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used
110 : sk_stream_wspace(sk);
111}
112
113/* Increment the used sndbuf space count of the corresponding association by
114 * the size of the outgoing data chunk.
115 * Also, set the skb destructor for sndbuf accounting later.
116 *
117 * Since it is always 1-1 between chunk and skb, and also a new skb is always
118 * allocated for chunk bundling in sctp_packet_transmit(), we can use the
119 * destructor in the data chunk skb for the purpose of the sndbuf space
120 * tracking.
121 */
122static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
123{
124 struct sctp_association *asoc = chunk->asoc;
125 struct sock *sk = asoc->base.sk;
126
127 /* The sndbuf space is tracked per association. */
128 sctp_association_hold(asoc);
129
130 if (chunk->shkey)
131 sctp_auth_shkey_hold(chunk->shkey);
132
133 skb_set_owner_w(chunk->skb, sk);
134
135 chunk->skb->destructor = sctp_wfree;
136 /* Save the chunk pointer in skb for sctp_wfree to use later. */
137 skb_shinfo(chunk->skb)->destructor_arg = chunk;
138
139 refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
140 asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk);
141 sk->sk_wmem_queued += chunk->skb->truesize + sizeof(struct sctp_chunk);
142 sk_mem_charge(sk, chunk->skb->truesize);
143}
144
145static void sctp_clear_owner_w(struct sctp_chunk *chunk)
146{
147 skb_orphan(chunk->skb);
148}
149
150#define traverse_and_process() \
151do { \
152 msg = chunk->msg; \
153 if (msg == prev_msg) \
154 continue; \
155 list_for_each_entry(c, &msg->chunks, frag_list) { \
156 if ((clear && asoc->base.sk == c->skb->sk) || \
157 (!clear && asoc->base.sk != c->skb->sk)) \
158 cb(c); \
159 } \
160 prev_msg = msg; \
161} while (0)
162
163static void sctp_for_each_tx_datachunk(struct sctp_association *asoc,
164 bool clear,
165 void (*cb)(struct sctp_chunk *))
166
167{
168 struct sctp_datamsg *msg, *prev_msg = NULL;
169 struct sctp_outq *q = &asoc->outqueue;
170 struct sctp_chunk *chunk, *c;
171 struct sctp_transport *t;
172
173 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports)
174 list_for_each_entry(chunk, &t->transmitted, transmitted_list)
175 traverse_and_process();
176
177 list_for_each_entry(chunk, &q->retransmit, transmitted_list)
178 traverse_and_process();
179
180 list_for_each_entry(chunk, &q->sacked, transmitted_list)
181 traverse_and_process();
182
183 list_for_each_entry(chunk, &q->abandoned, transmitted_list)
184 traverse_and_process();
185
186 list_for_each_entry(chunk, &q->out_chunk_list, list)
187 traverse_and_process();
188}
189
190static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk,
191 void (*cb)(struct sk_buff *, struct sock *))
192
193{
194 struct sk_buff *skb, *tmp;
195
196 sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp)
197 cb(skb, sk);
198
199 sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp)
200 cb(skb, sk);
201
202 sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp)
203 cb(skb, sk);
204}
205
206/* Verify that this is a valid address. */
207static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
208 int len)
209{
210 struct sctp_af *af;
211
212 /* Verify basic sockaddr. */
213 af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
214 if (!af)
215 return -EINVAL;
216
217 /* Is this a valid SCTP address? */
218 if (!af->addr_valid(addr, sctp_sk(sk), NULL))
219 return -EINVAL;
220
221 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
222 return -EINVAL;
223
224 return 0;
225}
226
227/* Look up the association by its id. If this is not a UDP-style
228 * socket, the ID field is always ignored.
229 */
230struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
231{
232 struct sctp_association *asoc = NULL;
233
234 /* If this is not a UDP-style socket, assoc id should be ignored. */
235 if (!sctp_style(sk, UDP)) {
236 /* Return NULL if the socket state is not ESTABLISHED. It
237 * could be a TCP-style listening socket or a socket which
238 * hasn't yet called connect() to establish an association.
239 */
240 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING))
241 return NULL;
242
243 /* Get the first and the only association from the list. */
244 if (!list_empty(&sctp_sk(sk)->ep->asocs))
245 asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
246 struct sctp_association, asocs);
247 return asoc;
248 }
249
250 /* Otherwise this is a UDP-style socket. */
251 if (id <= SCTP_ALL_ASSOC)
252 return NULL;
253
254 spin_lock_bh(&sctp_assocs_id_lock);
255 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
256 if (asoc && (asoc->base.sk != sk || asoc->base.dead))
257 asoc = NULL;
258 spin_unlock_bh(&sctp_assocs_id_lock);
259
260 return asoc;
261}
262
263/* Look up the transport from an address and an assoc id. If both address and
264 * id are specified, the associations matching the address and the id should be
265 * the same.
266 */
267static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
268 struct sockaddr_storage *addr,
269 sctp_assoc_t id)
270{
271 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
272 struct sctp_af *af = sctp_get_af_specific(addr->ss_family);
273 union sctp_addr *laddr = (union sctp_addr *)addr;
274 struct sctp_transport *transport;
275
276 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len))
277 return NULL;
278
279 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
280 laddr,
281 &transport);
282
283 if (!addr_asoc)
284 return NULL;
285
286 id_asoc = sctp_id2assoc(sk, id);
287 if (id_asoc && (id_asoc != addr_asoc))
288 return NULL;
289
290 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
291 (union sctp_addr *)addr);
292
293 return transport;
294}
295
296/* API 3.1.2 bind() - UDP Style Syntax
297 * The syntax of bind() is,
298 *
299 * ret = bind(int sd, struct sockaddr *addr, int addrlen);
300 *
301 * sd - the socket descriptor returned by socket().
302 * addr - the address structure (struct sockaddr_in or struct
303 * sockaddr_in6 [RFC 2553]),
304 * addr_len - the size of the address structure.
305 */
306static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
307{
308 int retval = 0;
309
310 lock_sock(sk);
311
312 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
313 addr, addr_len);
314
315 /* Disallow binding twice. */
316 if (!sctp_sk(sk)->ep->base.bind_addr.port)
317 retval = sctp_do_bind(sk, (union sctp_addr *)addr,
318 addr_len);
319 else
320 retval = -EINVAL;
321
322 release_sock(sk);
323
324 return retval;
325}
326
327static int sctp_get_port_local(struct sock *, union sctp_addr *);
328
329/* Verify this is a valid sockaddr. */
330static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
331 union sctp_addr *addr, int len)
332{
333 struct sctp_af *af;
334
335 /* Check minimum size. */
336 if (len < sizeof (struct sockaddr))
337 return NULL;
338
339 if (!opt->pf->af_supported(addr->sa.sa_family, opt))
340 return NULL;
341
342 if (addr->sa.sa_family == AF_INET6) {
343 if (len < SIN6_LEN_RFC2133)
344 return NULL;
345 /* V4 mapped address are really of AF_INET family */
346 if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) &&
347 !opt->pf->af_supported(AF_INET, opt))
348 return NULL;
349 }
350
351 /* If we get this far, af is valid. */
352 af = sctp_get_af_specific(addr->sa.sa_family);
353
354 if (len < af->sockaddr_len)
355 return NULL;
356
357 return af;
358}
359
360/* Bind a local address either to an endpoint or to an association. */
361static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
362{
363 struct net *net = sock_net(sk);
364 struct sctp_sock *sp = sctp_sk(sk);
365 struct sctp_endpoint *ep = sp->ep;
366 struct sctp_bind_addr *bp = &ep->base.bind_addr;
367 struct sctp_af *af;
368 unsigned short snum;
369 int ret = 0;
370
371 /* Common sockaddr verification. */
372 af = sctp_sockaddr_af(sp, addr, len);
373 if (!af) {
374 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
375 __func__, sk, addr, len);
376 return -EINVAL;
377 }
378
379 snum = ntohs(addr->v4.sin_port);
380
381 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
382 __func__, sk, &addr->sa, bp->port, snum, len);
383
384 /* PF specific bind() address verification. */
385 if (!sp->pf->bind_verify(sp, addr))
386 return -EADDRNOTAVAIL;
387
388 /* We must either be unbound, or bind to the same port.
389 * It's OK to allow 0 ports if we are already bound.
390 * We'll just inhert an already bound port in this case
391 */
392 if (bp->port) {
393 if (!snum)
394 snum = bp->port;
395 else if (snum != bp->port) {
396 pr_debug("%s: new port %d doesn't match existing port "
397 "%d\n", __func__, snum, bp->port);
398 return -EINVAL;
399 }
400 }
401
402 if (snum && inet_port_requires_bind_service(net, snum) &&
403 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
404 return -EACCES;
405
406 /* See if the address matches any of the addresses we may have
407 * already bound before checking against other endpoints.
408 */
409 if (sctp_bind_addr_match(bp, addr, sp))
410 return -EINVAL;
411
412 /* Make sure we are allowed to bind here.
413 * The function sctp_get_port_local() does duplicate address
414 * detection.
415 */
416 addr->v4.sin_port = htons(snum);
417 if (sctp_get_port_local(sk, addr))
418 return -EADDRINUSE;
419
420 /* Refresh ephemeral port. */
421 if (!bp->port)
422 bp->port = inet_sk(sk)->inet_num;
423
424 /* Add the address to the bind address list.
425 * Use GFP_ATOMIC since BHs will be disabled.
426 */
427 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len,
428 SCTP_ADDR_SRC, GFP_ATOMIC);
429
430 if (ret) {
431 sctp_put_port(sk);
432 return ret;
433 }
434 /* Copy back into socket for getsockname() use. */
435 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
436 sp->pf->to_sk_saddr(addr, sk);
437
438 return ret;
439}
440
441 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
442 *
443 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
444 * at any one time. If a sender, after sending an ASCONF chunk, decides
445 * it needs to transfer another ASCONF Chunk, it MUST wait until the
446 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
447 * subsequent ASCONF. Note this restriction binds each side, so at any
448 * time two ASCONF may be in-transit on any given association (one sent
449 * from each endpoint).
450 */
451static int sctp_send_asconf(struct sctp_association *asoc,
452 struct sctp_chunk *chunk)
453{
454 int retval = 0;
455
456 /* If there is an outstanding ASCONF chunk, queue it for later
457 * transmission.
458 */
459 if (asoc->addip_last_asconf) {
460 list_add_tail(&chunk->list, &asoc->addip_chunk_list);
461 goto out;
462 }
463
464 /* Hold the chunk until an ASCONF_ACK is received. */
465 sctp_chunk_hold(chunk);
466 retval = sctp_primitive_ASCONF(asoc->base.net, asoc, chunk);
467 if (retval)
468 sctp_chunk_free(chunk);
469 else
470 asoc->addip_last_asconf = chunk;
471
472out:
473 return retval;
474}
475
476/* Add a list of addresses as bind addresses to local endpoint or
477 * association.
478 *
479 * Basically run through each address specified in the addrs/addrcnt
480 * array/length pair, determine if it is IPv6 or IPv4 and call
481 * sctp_do_bind() on it.
482 *
483 * If any of them fails, then the operation will be reversed and the
484 * ones that were added will be removed.
485 *
486 * Only sctp_setsockopt_bindx() is supposed to call this function.
487 */
488static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
489{
490 int cnt;
491 int retval = 0;
492 void *addr_buf;
493 struct sockaddr *sa_addr;
494 struct sctp_af *af;
495
496 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
497 addrs, addrcnt);
498
499 addr_buf = addrs;
500 for (cnt = 0; cnt < addrcnt; cnt++) {
501 /* The list may contain either IPv4 or IPv6 address;
502 * determine the address length for walking thru the list.
503 */
504 sa_addr = addr_buf;
505 af = sctp_get_af_specific(sa_addr->sa_family);
506 if (!af) {
507 retval = -EINVAL;
508 goto err_bindx_add;
509 }
510
511 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
512 af->sockaddr_len);
513
514 addr_buf += af->sockaddr_len;
515
516err_bindx_add:
517 if (retval < 0) {
518 /* Failed. Cleanup the ones that have been added */
519 if (cnt > 0)
520 sctp_bindx_rem(sk, addrs, cnt);
521 return retval;
522 }
523 }
524
525 return retval;
526}
527
528/* Send an ASCONF chunk with Add IP address parameters to all the peers of the
529 * associations that are part of the endpoint indicating that a list of local
530 * addresses are added to the endpoint.
531 *
532 * If any of the addresses is already in the bind address list of the
533 * association, we do not send the chunk for that association. But it will not
534 * affect other associations.
535 *
536 * Only sctp_setsockopt_bindx() is supposed to call this function.
537 */
538static int sctp_send_asconf_add_ip(struct sock *sk,
539 struct sockaddr *addrs,
540 int addrcnt)
541{
542 struct sctp_sock *sp;
543 struct sctp_endpoint *ep;
544 struct sctp_association *asoc;
545 struct sctp_bind_addr *bp;
546 struct sctp_chunk *chunk;
547 struct sctp_sockaddr_entry *laddr;
548 union sctp_addr *addr;
549 union sctp_addr saveaddr;
550 void *addr_buf;
551 struct sctp_af *af;
552 struct list_head *p;
553 int i;
554 int retval = 0;
555
556 sp = sctp_sk(sk);
557 ep = sp->ep;
558
559 if (!ep->asconf_enable)
560 return retval;
561
562 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
563 __func__, sk, addrs, addrcnt);
564
565 list_for_each_entry(asoc, &ep->asocs, asocs) {
566 if (!asoc->peer.asconf_capable)
567 continue;
568
569 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
570 continue;
571
572 if (!sctp_state(asoc, ESTABLISHED))
573 continue;
574
575 /* Check if any address in the packed array of addresses is
576 * in the bind address list of the association. If so,
577 * do not send the asconf chunk to its peer, but continue with
578 * other associations.
579 */
580 addr_buf = addrs;
581 for (i = 0; i < addrcnt; i++) {
582 addr = addr_buf;
583 af = sctp_get_af_specific(addr->v4.sin_family);
584 if (!af) {
585 retval = -EINVAL;
586 goto out;
587 }
588
589 if (sctp_assoc_lookup_laddr(asoc, addr))
590 break;
591
592 addr_buf += af->sockaddr_len;
593 }
594 if (i < addrcnt)
595 continue;
596
597 /* Use the first valid address in bind addr list of
598 * association as Address Parameter of ASCONF CHUNK.
599 */
600 bp = &asoc->base.bind_addr;
601 p = bp->address_list.next;
602 laddr = list_entry(p, struct sctp_sockaddr_entry, list);
603 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
604 addrcnt, SCTP_PARAM_ADD_IP);
605 if (!chunk) {
606 retval = -ENOMEM;
607 goto out;
608 }
609
610 /* Add the new addresses to the bind address list with
611 * use_as_src set to 0.
612 */
613 addr_buf = addrs;
614 for (i = 0; i < addrcnt; i++) {
615 addr = addr_buf;
616 af = sctp_get_af_specific(addr->v4.sin_family);
617 memcpy(&saveaddr, addr, af->sockaddr_len);
618 retval = sctp_add_bind_addr(bp, &saveaddr,
619 sizeof(saveaddr),
620 SCTP_ADDR_NEW, GFP_ATOMIC);
621 addr_buf += af->sockaddr_len;
622 }
623 if (asoc->src_out_of_asoc_ok) {
624 struct sctp_transport *trans;
625
626 list_for_each_entry(trans,
627 &asoc->peer.transport_addr_list, transports) {
628 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
629 2*asoc->pathmtu, 4380));
630 trans->ssthresh = asoc->peer.i.a_rwnd;
631 trans->rto = asoc->rto_initial;
632 sctp_max_rto(asoc, trans);
633 trans->rtt = trans->srtt = trans->rttvar = 0;
634 /* Clear the source and route cache */
635 sctp_transport_route(trans, NULL,
636 sctp_sk(asoc->base.sk));
637 }
638 }
639 retval = sctp_send_asconf(asoc, chunk);
640 }
641
642out:
643 return retval;
644}
645
646/* Remove a list of addresses from bind addresses list. Do not remove the
647 * last address.
648 *
649 * Basically run through each address specified in the addrs/addrcnt
650 * array/length pair, determine if it is IPv6 or IPv4 and call
651 * sctp_del_bind() on it.
652 *
653 * If any of them fails, then the operation will be reversed and the
654 * ones that were removed will be added back.
655 *
656 * At least one address has to be left; if only one address is
657 * available, the operation will return -EBUSY.
658 *
659 * Only sctp_setsockopt_bindx() is supposed to call this function.
660 */
661static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
662{
663 struct sctp_sock *sp = sctp_sk(sk);
664 struct sctp_endpoint *ep = sp->ep;
665 int cnt;
666 struct sctp_bind_addr *bp = &ep->base.bind_addr;
667 int retval = 0;
668 void *addr_buf;
669 union sctp_addr *sa_addr;
670 struct sctp_af *af;
671
672 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
673 __func__, sk, addrs, addrcnt);
674
675 addr_buf = addrs;
676 for (cnt = 0; cnt < addrcnt; cnt++) {
677 /* If the bind address list is empty or if there is only one
678 * bind address, there is nothing more to be removed (we need
679 * at least one address here).
680 */
681 if (list_empty(&bp->address_list) ||
682 (sctp_list_single_entry(&bp->address_list))) {
683 retval = -EBUSY;
684 goto err_bindx_rem;
685 }
686
687 sa_addr = addr_buf;
688 af = sctp_get_af_specific(sa_addr->sa.sa_family);
689 if (!af) {
690 retval = -EINVAL;
691 goto err_bindx_rem;
692 }
693
694 if (!af->addr_valid(sa_addr, sp, NULL)) {
695 retval = -EADDRNOTAVAIL;
696 goto err_bindx_rem;
697 }
698
699 if (sa_addr->v4.sin_port &&
700 sa_addr->v4.sin_port != htons(bp->port)) {
701 retval = -EINVAL;
702 goto err_bindx_rem;
703 }
704
705 if (!sa_addr->v4.sin_port)
706 sa_addr->v4.sin_port = htons(bp->port);
707
708 /* FIXME - There is probably a need to check if sk->sk_saddr and
709 * sk->sk_rcv_addr are currently set to one of the addresses to
710 * be removed. This is something which needs to be looked into
711 * when we are fixing the outstanding issues with multi-homing
712 * socket routing and failover schemes. Refer to comments in
713 * sctp_do_bind(). -daisy
714 */
715 retval = sctp_del_bind_addr(bp, sa_addr);
716
717 addr_buf += af->sockaddr_len;
718err_bindx_rem:
719 if (retval < 0) {
720 /* Failed. Add the ones that has been removed back */
721 if (cnt > 0)
722 sctp_bindx_add(sk, addrs, cnt);
723 return retval;
724 }
725 }
726
727 return retval;
728}
729
730/* Send an ASCONF chunk with Delete IP address parameters to all the peers of
731 * the associations that are part of the endpoint indicating that a list of
732 * local addresses are removed from the endpoint.
733 *
734 * If any of the addresses is already in the bind address list of the
735 * association, we do not send the chunk for that association. But it will not
736 * affect other associations.
737 *
738 * Only sctp_setsockopt_bindx() is supposed to call this function.
739 */
740static int sctp_send_asconf_del_ip(struct sock *sk,
741 struct sockaddr *addrs,
742 int addrcnt)
743{
744 struct sctp_sock *sp;
745 struct sctp_endpoint *ep;
746 struct sctp_association *asoc;
747 struct sctp_transport *transport;
748 struct sctp_bind_addr *bp;
749 struct sctp_chunk *chunk;
750 union sctp_addr *laddr;
751 void *addr_buf;
752 struct sctp_af *af;
753 struct sctp_sockaddr_entry *saddr;
754 int i;
755 int retval = 0;
756 int stored = 0;
757
758 chunk = NULL;
759 sp = sctp_sk(sk);
760 ep = sp->ep;
761
762 if (!ep->asconf_enable)
763 return retval;
764
765 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
766 __func__, sk, addrs, addrcnt);
767
768 list_for_each_entry(asoc, &ep->asocs, asocs) {
769
770 if (!asoc->peer.asconf_capable)
771 continue;
772
773 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
774 continue;
775
776 if (!sctp_state(asoc, ESTABLISHED))
777 continue;
778
779 /* Check if any address in the packed array of addresses is
780 * not present in the bind address list of the association.
781 * If so, do not send the asconf chunk to its peer, but
782 * continue with other associations.
783 */
784 addr_buf = addrs;
785 for (i = 0; i < addrcnt; i++) {
786 laddr = addr_buf;
787 af = sctp_get_af_specific(laddr->v4.sin_family);
788 if (!af) {
789 retval = -EINVAL;
790 goto out;
791 }
792
793 if (!sctp_assoc_lookup_laddr(asoc, laddr))
794 break;
795
796 addr_buf += af->sockaddr_len;
797 }
798 if (i < addrcnt)
799 continue;
800
801 /* Find one address in the association's bind address list
802 * that is not in the packed array of addresses. This is to
803 * make sure that we do not delete all the addresses in the
804 * association.
805 */
806 bp = &asoc->base.bind_addr;
807 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
808 addrcnt, sp);
809 if ((laddr == NULL) && (addrcnt == 1)) {
810 if (asoc->asconf_addr_del_pending)
811 continue;
812 asoc->asconf_addr_del_pending =
813 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
814 if (asoc->asconf_addr_del_pending == NULL) {
815 retval = -ENOMEM;
816 goto out;
817 }
818 asoc->asconf_addr_del_pending->sa.sa_family =
819 addrs->sa_family;
820 asoc->asconf_addr_del_pending->v4.sin_port =
821 htons(bp->port);
822 if (addrs->sa_family == AF_INET) {
823 struct sockaddr_in *sin;
824
825 sin = (struct sockaddr_in *)addrs;
826 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
827 } else if (addrs->sa_family == AF_INET6) {
828 struct sockaddr_in6 *sin6;
829
830 sin6 = (struct sockaddr_in6 *)addrs;
831 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
832 }
833
834 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
835 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
836 asoc->asconf_addr_del_pending);
837
838 asoc->src_out_of_asoc_ok = 1;
839 stored = 1;
840 goto skip_mkasconf;
841 }
842
843 if (laddr == NULL)
844 return -EINVAL;
845
846 /* We do not need RCU protection throughout this loop
847 * because this is done under a socket lock from the
848 * setsockopt call.
849 */
850 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
851 SCTP_PARAM_DEL_IP);
852 if (!chunk) {
853 retval = -ENOMEM;
854 goto out;
855 }
856
857skip_mkasconf:
858 /* Reset use_as_src flag for the addresses in the bind address
859 * list that are to be deleted.
860 */
861 addr_buf = addrs;
862 for (i = 0; i < addrcnt; i++) {
863 laddr = addr_buf;
864 af = sctp_get_af_specific(laddr->v4.sin_family);
865 list_for_each_entry(saddr, &bp->address_list, list) {
866 if (sctp_cmp_addr_exact(&saddr->a, laddr))
867 saddr->state = SCTP_ADDR_DEL;
868 }
869 addr_buf += af->sockaddr_len;
870 }
871
872 /* Update the route and saddr entries for all the transports
873 * as some of the addresses in the bind address list are
874 * about to be deleted and cannot be used as source addresses.
875 */
876 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
877 transports) {
878 sctp_transport_route(transport, NULL,
879 sctp_sk(asoc->base.sk));
880 }
881
882 if (stored)
883 /* We don't need to transmit ASCONF */
884 continue;
885 retval = sctp_send_asconf(asoc, chunk);
886 }
887out:
888 return retval;
889}
890
891/* set addr events to assocs in the endpoint. ep and addr_wq must be locked */
892int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
893{
894 struct sock *sk = sctp_opt2sk(sp);
895 union sctp_addr *addr;
896 struct sctp_af *af;
897
898 /* It is safe to write port space in caller. */
899 addr = &addrw->a;
900 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
901 af = sctp_get_af_specific(addr->sa.sa_family);
902 if (!af)
903 return -EINVAL;
904 if (sctp_verify_addr(sk, addr, af->sockaddr_len))
905 return -EINVAL;
906
907 if (addrw->state == SCTP_ADDR_NEW)
908 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
909 else
910 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
911}
912
913/* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
914 *
915 * API 8.1
916 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
917 * int flags);
918 *
919 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
920 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
921 * or IPv6 addresses.
922 *
923 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
924 * Section 3.1.2 for this usage.
925 *
926 * addrs is a pointer to an array of one or more socket addresses. Each
927 * address is contained in its appropriate structure (i.e. struct
928 * sockaddr_in or struct sockaddr_in6) the family of the address type
929 * must be used to distinguish the address length (note that this
930 * representation is termed a "packed array" of addresses). The caller
931 * specifies the number of addresses in the array with addrcnt.
932 *
933 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
934 * -1, and sets errno to the appropriate error code.
935 *
936 * For SCTP, the port given in each socket address must be the same, or
937 * sctp_bindx() will fail, setting errno to EINVAL.
938 *
939 * The flags parameter is formed from the bitwise OR of zero or more of
940 * the following currently defined flags:
941 *
942 * SCTP_BINDX_ADD_ADDR
943 *
944 * SCTP_BINDX_REM_ADDR
945 *
946 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
947 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
948 * addresses from the association. The two flags are mutually exclusive;
949 * if both are given, sctp_bindx() will fail with EINVAL. A caller may
950 * not remove all addresses from an association; sctp_bindx() will
951 * reject such an attempt with EINVAL.
952 *
953 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
954 * additional addresses with an endpoint after calling bind(). Or use
955 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
956 * socket is associated with so that no new association accepted will be
957 * associated with those addresses. If the endpoint supports dynamic
958 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
959 * endpoint to send the appropriate message to the peer to change the
960 * peers address lists.
961 *
962 * Adding and removing addresses from a connected association is
963 * optional functionality. Implementations that do not support this
964 * functionality should return EOPNOTSUPP.
965 *
966 * Basically do nothing but copying the addresses from user to kernel
967 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
968 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
969 * from userspace.
970 *
971 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
972 * it.
973 *
974 * sk The sk of the socket
975 * addrs The pointer to the addresses
976 * addrssize Size of the addrs buffer
977 * op Operation to perform (add or remove, see the flags of
978 * sctp_bindx)
979 *
980 * Returns 0 if ok, <0 errno code on error.
981 */
982static int sctp_setsockopt_bindx(struct sock *sk, struct sockaddr *addrs,
983 int addrs_size, int op)
984{
985 int err;
986 int addrcnt = 0;
987 int walk_size = 0;
988 struct sockaddr *sa_addr;
989 void *addr_buf = addrs;
990 struct sctp_af *af;
991
992 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
993 __func__, sk, addr_buf, addrs_size, op);
994
995 if (unlikely(addrs_size <= 0))
996 return -EINVAL;
997
998 /* Walk through the addrs buffer and count the number of addresses. */
999 while (walk_size < addrs_size) {
1000 if (walk_size + sizeof(sa_family_t) > addrs_size)
1001 return -EINVAL;
1002
1003 sa_addr = addr_buf;
1004 af = sctp_get_af_specific(sa_addr->sa_family);
1005
1006 /* If the address family is not supported or if this address
1007 * causes the address buffer to overflow return EINVAL.
1008 */
1009 if (!af || (walk_size + af->sockaddr_len) > addrs_size)
1010 return -EINVAL;
1011 addrcnt++;
1012 addr_buf += af->sockaddr_len;
1013 walk_size += af->sockaddr_len;
1014 }
1015
1016 /* Do the work. */
1017 switch (op) {
1018 case SCTP_BINDX_ADD_ADDR:
1019 /* Allow security module to validate bindx addresses. */
1020 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD,
1021 addrs, addrs_size);
1022 if (err)
1023 return err;
1024 err = sctp_bindx_add(sk, addrs, addrcnt);
1025 if (err)
1026 return err;
1027 return sctp_send_asconf_add_ip(sk, addrs, addrcnt);
1028 case SCTP_BINDX_REM_ADDR:
1029 err = sctp_bindx_rem(sk, addrs, addrcnt);
1030 if (err)
1031 return err;
1032 return sctp_send_asconf_del_ip(sk, addrs, addrcnt);
1033
1034 default:
1035 return -EINVAL;
1036 }
1037}
1038
1039static int sctp_bind_add(struct sock *sk, struct sockaddr *addrs,
1040 int addrlen)
1041{
1042 int err;
1043
1044 lock_sock(sk);
1045 err = sctp_setsockopt_bindx(sk, addrs, addrlen, SCTP_BINDX_ADD_ADDR);
1046 release_sock(sk);
1047 return err;
1048}
1049
1050static int sctp_connect_new_asoc(struct sctp_endpoint *ep,
1051 const union sctp_addr *daddr,
1052 const struct sctp_initmsg *init,
1053 struct sctp_transport **tp)
1054{
1055 struct sctp_association *asoc;
1056 struct sock *sk = ep->base.sk;
1057 struct net *net = sock_net(sk);
1058 enum sctp_scope scope;
1059 int err;
1060
1061 if (sctp_endpoint_is_peeled_off(ep, daddr))
1062 return -EADDRNOTAVAIL;
1063
1064 if (!ep->base.bind_addr.port) {
1065 if (sctp_autobind(sk))
1066 return -EAGAIN;
1067 } else {
1068 if (inet_port_requires_bind_service(net, ep->base.bind_addr.port) &&
1069 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
1070 return -EACCES;
1071 }
1072
1073 scope = sctp_scope(daddr);
1074 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1075 if (!asoc)
1076 return -ENOMEM;
1077
1078 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1079 if (err < 0)
1080 goto free;
1081
1082 *tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN);
1083 if (!*tp) {
1084 err = -ENOMEM;
1085 goto free;
1086 }
1087
1088 if (!init)
1089 return 0;
1090
1091 if (init->sinit_num_ostreams) {
1092 __u16 outcnt = init->sinit_num_ostreams;
1093
1094 asoc->c.sinit_num_ostreams = outcnt;
1095 /* outcnt has been changed, need to re-init stream */
1096 err = sctp_stream_init(&asoc->stream, outcnt, 0, GFP_KERNEL);
1097 if (err)
1098 goto free;
1099 }
1100
1101 if (init->sinit_max_instreams)
1102 asoc->c.sinit_max_instreams = init->sinit_max_instreams;
1103
1104 if (init->sinit_max_attempts)
1105 asoc->max_init_attempts = init->sinit_max_attempts;
1106
1107 if (init->sinit_max_init_timeo)
1108 asoc->max_init_timeo =
1109 msecs_to_jiffies(init->sinit_max_init_timeo);
1110
1111 return 0;
1112free:
1113 sctp_association_free(asoc);
1114 return err;
1115}
1116
1117static int sctp_connect_add_peer(struct sctp_association *asoc,
1118 union sctp_addr *daddr, int addr_len)
1119{
1120 struct sctp_endpoint *ep = asoc->ep;
1121 struct sctp_association *old;
1122 struct sctp_transport *t;
1123 int err;
1124
1125 err = sctp_verify_addr(ep->base.sk, daddr, addr_len);
1126 if (err)
1127 return err;
1128
1129 old = sctp_endpoint_lookup_assoc(ep, daddr, &t);
1130 if (old && old != asoc)
1131 return old->state >= SCTP_STATE_ESTABLISHED ? -EISCONN
1132 : -EALREADY;
1133
1134 if (sctp_endpoint_is_peeled_off(ep, daddr))
1135 return -EADDRNOTAVAIL;
1136
1137 t = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN);
1138 if (!t)
1139 return -ENOMEM;
1140
1141 return 0;
1142}
1143
1144/* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1145 *
1146 * Common routine for handling connect() and sctp_connectx().
1147 * Connect will come in with just a single address.
1148 */
1149static int __sctp_connect(struct sock *sk, struct sockaddr *kaddrs,
1150 int addrs_size, int flags, sctp_assoc_t *assoc_id)
1151{
1152 struct sctp_sock *sp = sctp_sk(sk);
1153 struct sctp_endpoint *ep = sp->ep;
1154 struct sctp_transport *transport;
1155 struct sctp_association *asoc;
1156 void *addr_buf = kaddrs;
1157 union sctp_addr *daddr;
1158 struct sctp_af *af;
1159 int walk_size, err;
1160 long timeo;
1161
1162 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) ||
1163 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)))
1164 return -EISCONN;
1165
1166 daddr = addr_buf;
1167 af = sctp_get_af_specific(daddr->sa.sa_family);
1168 if (!af || af->sockaddr_len > addrs_size)
1169 return -EINVAL;
1170
1171 err = sctp_verify_addr(sk, daddr, af->sockaddr_len);
1172 if (err)
1173 return err;
1174
1175 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
1176 if (asoc)
1177 return asoc->state >= SCTP_STATE_ESTABLISHED ? -EISCONN
1178 : -EALREADY;
1179
1180 err = sctp_connect_new_asoc(ep, daddr, NULL, &transport);
1181 if (err)
1182 return err;
1183 asoc = transport->asoc;
1184
1185 addr_buf += af->sockaddr_len;
1186 walk_size = af->sockaddr_len;
1187 while (walk_size < addrs_size) {
1188 err = -EINVAL;
1189 if (walk_size + sizeof(sa_family_t) > addrs_size)
1190 goto out_free;
1191
1192 daddr = addr_buf;
1193 af = sctp_get_af_specific(daddr->sa.sa_family);
1194 if (!af || af->sockaddr_len + walk_size > addrs_size)
1195 goto out_free;
1196
1197 if (asoc->peer.port != ntohs(daddr->v4.sin_port))
1198 goto out_free;
1199
1200 err = sctp_connect_add_peer(asoc, daddr, af->sockaddr_len);
1201 if (err)
1202 goto out_free;
1203
1204 addr_buf += af->sockaddr_len;
1205 walk_size += af->sockaddr_len;
1206 }
1207
1208 /* In case the user of sctp_connectx() wants an association
1209 * id back, assign one now.
1210 */
1211 if (assoc_id) {
1212 err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1213 if (err < 0)
1214 goto out_free;
1215 }
1216
1217 err = sctp_primitive_ASSOCIATE(sock_net(sk), asoc, NULL);
1218 if (err < 0)
1219 goto out_free;
1220
1221 /* Initialize sk's dport and daddr for getpeername() */
1222 inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1223 sp->pf->to_sk_daddr(daddr, sk);
1224 sk->sk_err = 0;
1225
1226 if (assoc_id)
1227 *assoc_id = asoc->assoc_id;
1228
1229 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK);
1230 return sctp_wait_for_connect(asoc, &timeo);
1231
1232out_free:
1233 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1234 __func__, asoc, kaddrs, err);
1235 sctp_association_free(asoc);
1236 return err;
1237}
1238
1239/* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1240 *
1241 * API 8.9
1242 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1243 * sctp_assoc_t *asoc);
1244 *
1245 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1246 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1247 * or IPv6 addresses.
1248 *
1249 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1250 * Section 3.1.2 for this usage.
1251 *
1252 * addrs is a pointer to an array of one or more socket addresses. Each
1253 * address is contained in its appropriate structure (i.e. struct
1254 * sockaddr_in or struct sockaddr_in6) the family of the address type
1255 * must be used to distengish the address length (note that this
1256 * representation is termed a "packed array" of addresses). The caller
1257 * specifies the number of addresses in the array with addrcnt.
1258 *
1259 * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1260 * the association id of the new association. On failure, sctp_connectx()
1261 * returns -1, and sets errno to the appropriate error code. The assoc_id
1262 * is not touched by the kernel.
1263 *
1264 * For SCTP, the port given in each socket address must be the same, or
1265 * sctp_connectx() will fail, setting errno to EINVAL.
1266 *
1267 * An application can use sctp_connectx to initiate an association with
1268 * an endpoint that is multi-homed. Much like sctp_bindx() this call
1269 * allows a caller to specify multiple addresses at which a peer can be
1270 * reached. The way the SCTP stack uses the list of addresses to set up
1271 * the association is implementation dependent. This function only
1272 * specifies that the stack will try to make use of all the addresses in
1273 * the list when needed.
1274 *
1275 * Note that the list of addresses passed in is only used for setting up
1276 * the association. It does not necessarily equal the set of addresses
1277 * the peer uses for the resulting association. If the caller wants to
1278 * find out the set of peer addresses, it must use sctp_getpaddrs() to
1279 * retrieve them after the association has been set up.
1280 *
1281 * Basically do nothing but copying the addresses from user to kernel
1282 * land and invoking either sctp_connectx(). This is used for tunneling
1283 * the sctp_connectx() request through sctp_setsockopt() from userspace.
1284 *
1285 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1286 * it.
1287 *
1288 * sk The sk of the socket
1289 * addrs The pointer to the addresses
1290 * addrssize Size of the addrs buffer
1291 *
1292 * Returns >=0 if ok, <0 errno code on error.
1293 */
1294static int __sctp_setsockopt_connectx(struct sock *sk, struct sockaddr *kaddrs,
1295 int addrs_size, sctp_assoc_t *assoc_id)
1296{
1297 int err = 0, flags = 0;
1298
1299 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1300 __func__, sk, kaddrs, addrs_size);
1301
1302 /* make sure the 1st addr's sa_family is accessible later */
1303 if (unlikely(addrs_size < sizeof(sa_family_t)))
1304 return -EINVAL;
1305
1306 /* Allow security module to validate connectx addresses. */
1307 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX,
1308 (struct sockaddr *)kaddrs,
1309 addrs_size);
1310 if (err)
1311 return err;
1312
1313 /* in-kernel sockets don't generally have a file allocated to them
1314 * if all they do is call sock_create_kern().
1315 */
1316 if (sk->sk_socket->file)
1317 flags = sk->sk_socket->file->f_flags;
1318
1319 return __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id);
1320}
1321
1322/*
1323 * This is an older interface. It's kept for backward compatibility
1324 * to the option that doesn't provide association id.
1325 */
1326static int sctp_setsockopt_connectx_old(struct sock *sk,
1327 struct sockaddr *kaddrs,
1328 int addrs_size)
1329{
1330 return __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, NULL);
1331}
1332
1333/*
1334 * New interface for the API. The since the API is done with a socket
1335 * option, to make it simple we feed back the association id is as a return
1336 * indication to the call. Error is always negative and association id is
1337 * always positive.
1338 */
1339static int sctp_setsockopt_connectx(struct sock *sk,
1340 struct sockaddr *kaddrs,
1341 int addrs_size)
1342{
1343 sctp_assoc_t assoc_id = 0;
1344 int err = 0;
1345
1346 err = __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, &assoc_id);
1347
1348 if (err)
1349 return err;
1350 else
1351 return assoc_id;
1352}
1353
1354/*
1355 * New (hopefully final) interface for the API.
1356 * We use the sctp_getaddrs_old structure so that use-space library
1357 * can avoid any unnecessary allocations. The only different part
1358 * is that we store the actual length of the address buffer into the
1359 * addrs_num structure member. That way we can re-use the existing
1360 * code.
1361 */
1362#ifdef CONFIG_COMPAT
1363struct compat_sctp_getaddrs_old {
1364 sctp_assoc_t assoc_id;
1365 s32 addr_num;
1366 compat_uptr_t addrs; /* struct sockaddr * */
1367};
1368#endif
1369
1370static int sctp_getsockopt_connectx3(struct sock *sk, int len,
1371 char __user *optval,
1372 int __user *optlen)
1373{
1374 struct sctp_getaddrs_old param;
1375 sctp_assoc_t assoc_id = 0;
1376 struct sockaddr *kaddrs;
1377 int err = 0;
1378
1379#ifdef CONFIG_COMPAT
1380 if (in_compat_syscall()) {
1381 struct compat_sctp_getaddrs_old param32;
1382
1383 if (len < sizeof(param32))
1384 return -EINVAL;
1385 if (copy_from_user(¶m32, optval, sizeof(param32)))
1386 return -EFAULT;
1387
1388 param.assoc_id = param32.assoc_id;
1389 param.addr_num = param32.addr_num;
1390 param.addrs = compat_ptr(param32.addrs);
1391 } else
1392#endif
1393 {
1394 if (len < sizeof(param))
1395 return -EINVAL;
1396 if (copy_from_user(¶m, optval, sizeof(param)))
1397 return -EFAULT;
1398 }
1399
1400 kaddrs = memdup_user(param.addrs, param.addr_num);
1401 if (IS_ERR(kaddrs))
1402 return PTR_ERR(kaddrs);
1403
1404 err = __sctp_setsockopt_connectx(sk, kaddrs, param.addr_num, &assoc_id);
1405 kfree(kaddrs);
1406 if (err == 0 || err == -EINPROGRESS) {
1407 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1408 return -EFAULT;
1409 if (put_user(sizeof(assoc_id), optlen))
1410 return -EFAULT;
1411 }
1412
1413 return err;
1414}
1415
1416/* API 3.1.4 close() - UDP Style Syntax
1417 * Applications use close() to perform graceful shutdown (as described in
1418 * Section 10.1 of [SCTP]) on ALL the associations currently represented
1419 * by a UDP-style socket.
1420 *
1421 * The syntax is
1422 *
1423 * ret = close(int sd);
1424 *
1425 * sd - the socket descriptor of the associations to be closed.
1426 *
1427 * To gracefully shutdown a specific association represented by the
1428 * UDP-style socket, an application should use the sendmsg() call,
1429 * passing no user data, but including the appropriate flag in the
1430 * ancillary data (see Section xxxx).
1431 *
1432 * If sd in the close() call is a branched-off socket representing only
1433 * one association, the shutdown is performed on that association only.
1434 *
1435 * 4.1.6 close() - TCP Style Syntax
1436 *
1437 * Applications use close() to gracefully close down an association.
1438 *
1439 * The syntax is:
1440 *
1441 * int close(int sd);
1442 *
1443 * sd - the socket descriptor of the association to be closed.
1444 *
1445 * After an application calls close() on a socket descriptor, no further
1446 * socket operations will succeed on that descriptor.
1447 *
1448 * API 7.1.4 SO_LINGER
1449 *
1450 * An application using the TCP-style socket can use this option to
1451 * perform the SCTP ABORT primitive. The linger option structure is:
1452 *
1453 * struct linger {
1454 * int l_onoff; // option on/off
1455 * int l_linger; // linger time
1456 * };
1457 *
1458 * To enable the option, set l_onoff to 1. If the l_linger value is set
1459 * to 0, calling close() is the same as the ABORT primitive. If the
1460 * value is set to a negative value, the setsockopt() call will return
1461 * an error. If the value is set to a positive value linger_time, the
1462 * close() can be blocked for at most linger_time ms. If the graceful
1463 * shutdown phase does not finish during this period, close() will
1464 * return but the graceful shutdown phase continues in the system.
1465 */
1466static void sctp_close(struct sock *sk, long timeout)
1467{
1468 struct net *net = sock_net(sk);
1469 struct sctp_endpoint *ep;
1470 struct sctp_association *asoc;
1471 struct list_head *pos, *temp;
1472 unsigned int data_was_unread;
1473
1474 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1475
1476 lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
1477 sk->sk_shutdown = SHUTDOWN_MASK;
1478 inet_sk_set_state(sk, SCTP_SS_CLOSING);
1479
1480 ep = sctp_sk(sk)->ep;
1481
1482 /* Clean up any skbs sitting on the receive queue. */
1483 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1484 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1485
1486 /* Walk all associations on an endpoint. */
1487 list_for_each_safe(pos, temp, &ep->asocs) {
1488 asoc = list_entry(pos, struct sctp_association, asocs);
1489
1490 if (sctp_style(sk, TCP)) {
1491 /* A closed association can still be in the list if
1492 * it belongs to a TCP-style listening socket that is
1493 * not yet accepted. If so, free it. If not, send an
1494 * ABORT or SHUTDOWN based on the linger options.
1495 */
1496 if (sctp_state(asoc, CLOSED)) {
1497 sctp_association_free(asoc);
1498 continue;
1499 }
1500 }
1501
1502 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1503 !skb_queue_empty(&asoc->ulpq.reasm) ||
1504 !skb_queue_empty(&asoc->ulpq.reasm_uo) ||
1505 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1506 struct sctp_chunk *chunk;
1507
1508 chunk = sctp_make_abort_user(asoc, NULL, 0);
1509 sctp_primitive_ABORT(net, asoc, chunk);
1510 } else
1511 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1512 }
1513
1514 /* On a TCP-style socket, block for at most linger_time if set. */
1515 if (sctp_style(sk, TCP) && timeout)
1516 sctp_wait_for_close(sk, timeout);
1517
1518 /* This will run the backlog queue. */
1519 release_sock(sk);
1520
1521 /* Supposedly, no process has access to the socket, but
1522 * the net layers still may.
1523 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock
1524 * held and that should be grabbed before socket lock.
1525 */
1526 spin_lock_bh(&net->sctp.addr_wq_lock);
1527 bh_lock_sock_nested(sk);
1528
1529 /* Hold the sock, since sk_common_release() will put sock_put()
1530 * and we have just a little more cleanup.
1531 */
1532 sock_hold(sk);
1533 sk_common_release(sk);
1534
1535 bh_unlock_sock(sk);
1536 spin_unlock_bh(&net->sctp.addr_wq_lock);
1537
1538 sock_put(sk);
1539
1540 SCTP_DBG_OBJCNT_DEC(sock);
1541}
1542
1543/* Handle EPIPE error. */
1544static int sctp_error(struct sock *sk, int flags, int err)
1545{
1546 if (err == -EPIPE)
1547 err = sock_error(sk) ? : -EPIPE;
1548 if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1549 send_sig(SIGPIPE, current, 0);
1550 return err;
1551}
1552
1553/* API 3.1.3 sendmsg() - UDP Style Syntax
1554 *
1555 * An application uses sendmsg() and recvmsg() calls to transmit data to
1556 * and receive data from its peer.
1557 *
1558 * ssize_t sendmsg(int socket, const struct msghdr *message,
1559 * int flags);
1560 *
1561 * socket - the socket descriptor of the endpoint.
1562 * message - pointer to the msghdr structure which contains a single
1563 * user message and possibly some ancillary data.
1564 *
1565 * See Section 5 for complete description of the data
1566 * structures.
1567 *
1568 * flags - flags sent or received with the user message, see Section
1569 * 5 for complete description of the flags.
1570 *
1571 * Note: This function could use a rewrite especially when explicit
1572 * connect support comes in.
1573 */
1574/* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */
1575
1576static int sctp_msghdr_parse(const struct msghdr *msg,
1577 struct sctp_cmsgs *cmsgs);
1578
1579static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs,
1580 struct sctp_sndrcvinfo *srinfo,
1581 const struct msghdr *msg, size_t msg_len)
1582{
1583 __u16 sflags;
1584 int err;
1585
1586 if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP))
1587 return -EPIPE;
1588
1589 if (msg_len > sk->sk_sndbuf)
1590 return -EMSGSIZE;
1591
1592 memset(cmsgs, 0, sizeof(*cmsgs));
1593 err = sctp_msghdr_parse(msg, cmsgs);
1594 if (err) {
1595 pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1596 return err;
1597 }
1598
1599 memset(srinfo, 0, sizeof(*srinfo));
1600 if (cmsgs->srinfo) {
1601 srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream;
1602 srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags;
1603 srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid;
1604 srinfo->sinfo_context = cmsgs->srinfo->sinfo_context;
1605 srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id;
1606 srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive;
1607 }
1608
1609 if (cmsgs->sinfo) {
1610 srinfo->sinfo_stream = cmsgs->sinfo->snd_sid;
1611 srinfo->sinfo_flags = cmsgs->sinfo->snd_flags;
1612 srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid;
1613 srinfo->sinfo_context = cmsgs->sinfo->snd_context;
1614 srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id;
1615 }
1616
1617 if (cmsgs->prinfo) {
1618 srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value;
1619 SCTP_PR_SET_POLICY(srinfo->sinfo_flags,
1620 cmsgs->prinfo->pr_policy);
1621 }
1622
1623 sflags = srinfo->sinfo_flags;
1624 if (!sflags && msg_len)
1625 return 0;
1626
1627 if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT)))
1628 return -EINVAL;
1629
1630 if (((sflags & SCTP_EOF) && msg_len > 0) ||
1631 (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0))
1632 return -EINVAL;
1633
1634 if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name)
1635 return -EINVAL;
1636
1637 return 0;
1638}
1639
1640static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags,
1641 struct sctp_cmsgs *cmsgs,
1642 union sctp_addr *daddr,
1643 struct sctp_transport **tp)
1644{
1645 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
1646 struct sctp_association *asoc;
1647 struct cmsghdr *cmsg;
1648 __be32 flowinfo = 0;
1649 struct sctp_af *af;
1650 int err;
1651
1652 *tp = NULL;
1653
1654 if (sflags & (SCTP_EOF | SCTP_ABORT))
1655 return -EINVAL;
1656
1657 if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) ||
1658 sctp_sstate(sk, CLOSING)))
1659 return -EADDRNOTAVAIL;
1660
1661 /* Label connection socket for first association 1-to-many
1662 * style for client sequence socket()->sendmsg(). This
1663 * needs to be done before sctp_assoc_add_peer() as that will
1664 * set up the initial packet that needs to account for any
1665 * security ip options (CIPSO/CALIPSO) added to the packet.
1666 */
1667 af = sctp_get_af_specific(daddr->sa.sa_family);
1668 if (!af)
1669 return -EINVAL;
1670 err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT,
1671 (struct sockaddr *)daddr,
1672 af->sockaddr_len);
1673 if (err < 0)
1674 return err;
1675
1676 err = sctp_connect_new_asoc(ep, daddr, cmsgs->init, tp);
1677 if (err)
1678 return err;
1679 asoc = (*tp)->asoc;
1680
1681 if (!cmsgs->addrs_msg)
1682 return 0;
1683
1684 if (daddr->sa.sa_family == AF_INET6)
1685 flowinfo = daddr->v6.sin6_flowinfo;
1686
1687 /* sendv addr list parse */
1688 for_each_cmsghdr(cmsg, cmsgs->addrs_msg) {
1689 union sctp_addr _daddr;
1690 int dlen;
1691
1692 if (cmsg->cmsg_level != IPPROTO_SCTP ||
1693 (cmsg->cmsg_type != SCTP_DSTADDRV4 &&
1694 cmsg->cmsg_type != SCTP_DSTADDRV6))
1695 continue;
1696
1697 daddr = &_daddr;
1698 memset(daddr, 0, sizeof(*daddr));
1699 dlen = cmsg->cmsg_len - sizeof(struct cmsghdr);
1700 if (cmsg->cmsg_type == SCTP_DSTADDRV4) {
1701 if (dlen < sizeof(struct in_addr)) {
1702 err = -EINVAL;
1703 goto free;
1704 }
1705
1706 dlen = sizeof(struct in_addr);
1707 daddr->v4.sin_family = AF_INET;
1708 daddr->v4.sin_port = htons(asoc->peer.port);
1709 memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen);
1710 } else {
1711 if (dlen < sizeof(struct in6_addr)) {
1712 err = -EINVAL;
1713 goto free;
1714 }
1715
1716 dlen = sizeof(struct in6_addr);
1717 daddr->v6.sin6_flowinfo = flowinfo;
1718 daddr->v6.sin6_family = AF_INET6;
1719 daddr->v6.sin6_port = htons(asoc->peer.port);
1720 memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen);
1721 }
1722
1723 err = sctp_connect_add_peer(asoc, daddr, sizeof(*daddr));
1724 if (err)
1725 goto free;
1726 }
1727
1728 return 0;
1729
1730free:
1731 sctp_association_free(asoc);
1732 return err;
1733}
1734
1735static int sctp_sendmsg_check_sflags(struct sctp_association *asoc,
1736 __u16 sflags, struct msghdr *msg,
1737 size_t msg_len)
1738{
1739 struct sock *sk = asoc->base.sk;
1740 struct net *net = sock_net(sk);
1741
1742 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP))
1743 return -EPIPE;
1744
1745 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) &&
1746 !sctp_state(asoc, ESTABLISHED))
1747 return 0;
1748
1749 if (sflags & SCTP_EOF) {
1750 pr_debug("%s: shutting down association:%p\n", __func__, asoc);
1751 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1752
1753 return 0;
1754 }
1755
1756 if (sflags & SCTP_ABORT) {
1757 struct sctp_chunk *chunk;
1758
1759 chunk = sctp_make_abort_user(asoc, msg, msg_len);
1760 if (!chunk)
1761 return -ENOMEM;
1762
1763 pr_debug("%s: aborting association:%p\n", __func__, asoc);
1764 sctp_primitive_ABORT(net, asoc, chunk);
1765 iov_iter_revert(&msg->msg_iter, msg_len);
1766
1767 return 0;
1768 }
1769
1770 return 1;
1771}
1772
1773static int sctp_sendmsg_to_asoc(struct sctp_association *asoc,
1774 struct msghdr *msg, size_t msg_len,
1775 struct sctp_transport *transport,
1776 struct sctp_sndrcvinfo *sinfo)
1777{
1778 struct sock *sk = asoc->base.sk;
1779 struct sctp_sock *sp = sctp_sk(sk);
1780 struct net *net = sock_net(sk);
1781 struct sctp_datamsg *datamsg;
1782 bool wait_connect = false;
1783 struct sctp_chunk *chunk;
1784 long timeo;
1785 int err;
1786
1787 if (sinfo->sinfo_stream >= asoc->stream.outcnt) {
1788 err = -EINVAL;
1789 goto err;
1790 }
1791
1792 if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) {
1793 err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream);
1794 if (err)
1795 goto err;
1796 }
1797
1798 if (sp->disable_fragments && msg_len > asoc->frag_point) {
1799 err = -EMSGSIZE;
1800 goto err;
1801 }
1802
1803 if (asoc->pmtu_pending) {
1804 if (sp->param_flags & SPP_PMTUD_ENABLE)
1805 sctp_assoc_sync_pmtu(asoc);
1806 asoc->pmtu_pending = 0;
1807 }
1808
1809 if (sctp_wspace(asoc) < (int)msg_len)
1810 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc));
1811
1812 if (sk_under_memory_pressure(sk))
1813 sk_mem_reclaim(sk);
1814
1815 if (sctp_wspace(asoc) <= 0 || !sk_wmem_schedule(sk, msg_len)) {
1816 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1817 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1818 if (err)
1819 goto err;
1820 }
1821
1822 if (sctp_state(asoc, CLOSED)) {
1823 err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1824 if (err)
1825 goto err;
1826
1827 if (asoc->ep->intl_enable) {
1828 timeo = sock_sndtimeo(sk, 0);
1829 err = sctp_wait_for_connect(asoc, &timeo);
1830 if (err) {
1831 err = -ESRCH;
1832 goto err;
1833 }
1834 } else {
1835 wait_connect = true;
1836 }
1837
1838 pr_debug("%s: we associated primitively\n", __func__);
1839 }
1840
1841 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter);
1842 if (IS_ERR(datamsg)) {
1843 err = PTR_ERR(datamsg);
1844 goto err;
1845 }
1846
1847 asoc->force_delay = !!(msg->msg_flags & MSG_MORE);
1848
1849 list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1850 sctp_chunk_hold(chunk);
1851 sctp_set_owner_w(chunk);
1852 chunk->transport = transport;
1853 }
1854
1855 err = sctp_primitive_SEND(net, asoc, datamsg);
1856 if (err) {
1857 sctp_datamsg_free(datamsg);
1858 goto err;
1859 }
1860
1861 pr_debug("%s: we sent primitively\n", __func__);
1862
1863 sctp_datamsg_put(datamsg);
1864
1865 if (unlikely(wait_connect)) {
1866 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1867 sctp_wait_for_connect(asoc, &timeo);
1868 }
1869
1870 err = msg_len;
1871
1872err:
1873 return err;
1874}
1875
1876static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk,
1877 const struct msghdr *msg,
1878 struct sctp_cmsgs *cmsgs)
1879{
1880 union sctp_addr *daddr = NULL;
1881 int err;
1882
1883 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1884 int len = msg->msg_namelen;
1885
1886 if (len > sizeof(*daddr))
1887 len = sizeof(*daddr);
1888
1889 daddr = (union sctp_addr *)msg->msg_name;
1890
1891 err = sctp_verify_addr(sk, daddr, len);
1892 if (err)
1893 return ERR_PTR(err);
1894 }
1895
1896 return daddr;
1897}
1898
1899static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc,
1900 struct sctp_sndrcvinfo *sinfo,
1901 struct sctp_cmsgs *cmsgs)
1902{
1903 if (!cmsgs->srinfo && !cmsgs->sinfo) {
1904 sinfo->sinfo_stream = asoc->default_stream;
1905 sinfo->sinfo_ppid = asoc->default_ppid;
1906 sinfo->sinfo_context = asoc->default_context;
1907 sinfo->sinfo_assoc_id = sctp_assoc2id(asoc);
1908
1909 if (!cmsgs->prinfo)
1910 sinfo->sinfo_flags = asoc->default_flags;
1911 }
1912
1913 if (!cmsgs->srinfo && !cmsgs->prinfo)
1914 sinfo->sinfo_timetolive = asoc->default_timetolive;
1915
1916 if (cmsgs->authinfo) {
1917 /* Reuse sinfo_tsn to indicate that authinfo was set and
1918 * sinfo_ssn to save the keyid on tx path.
1919 */
1920 sinfo->sinfo_tsn = 1;
1921 sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber;
1922 }
1923}
1924
1925static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len)
1926{
1927 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
1928 struct sctp_transport *transport = NULL;
1929 struct sctp_sndrcvinfo _sinfo, *sinfo;
1930 struct sctp_association *asoc, *tmp;
1931 struct sctp_cmsgs cmsgs;
1932 union sctp_addr *daddr;
1933 bool new = false;
1934 __u16 sflags;
1935 int err;
1936
1937 /* Parse and get snd_info */
1938 err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len);
1939 if (err)
1940 goto out;
1941
1942 sinfo = &_sinfo;
1943 sflags = sinfo->sinfo_flags;
1944
1945 /* Get daddr from msg */
1946 daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs);
1947 if (IS_ERR(daddr)) {
1948 err = PTR_ERR(daddr);
1949 goto out;
1950 }
1951
1952 lock_sock(sk);
1953
1954 /* SCTP_SENDALL process */
1955 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) {
1956 list_for_each_entry_safe(asoc, tmp, &ep->asocs, asocs) {
1957 err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
1958 msg_len);
1959 if (err == 0)
1960 continue;
1961 if (err < 0)
1962 goto out_unlock;
1963
1964 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
1965
1966 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len,
1967 NULL, sinfo);
1968 if (err < 0)
1969 goto out_unlock;
1970
1971 iov_iter_revert(&msg->msg_iter, err);
1972 }
1973
1974 goto out_unlock;
1975 }
1976
1977 /* Get and check or create asoc */
1978 if (daddr) {
1979 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
1980 if (asoc) {
1981 err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
1982 msg_len);
1983 if (err <= 0)
1984 goto out_unlock;
1985 } else {
1986 err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr,
1987 &transport);
1988 if (err)
1989 goto out_unlock;
1990
1991 asoc = transport->asoc;
1992 new = true;
1993 }
1994
1995 if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER))
1996 transport = NULL;
1997 } else {
1998 asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id);
1999 if (!asoc) {
2000 err = -EPIPE;
2001 goto out_unlock;
2002 }
2003
2004 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len);
2005 if (err <= 0)
2006 goto out_unlock;
2007 }
2008
2009 /* Update snd_info with the asoc */
2010 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
2011
2012 /* Send msg to the asoc */
2013 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo);
2014 if (err < 0 && err != -ESRCH && new)
2015 sctp_association_free(asoc);
2016
2017out_unlock:
2018 release_sock(sk);
2019out:
2020 return sctp_error(sk, msg->msg_flags, err);
2021}
2022
2023/* This is an extended version of skb_pull() that removes the data from the
2024 * start of a skb even when data is spread across the list of skb's in the
2025 * frag_list. len specifies the total amount of data that needs to be removed.
2026 * when 'len' bytes could be removed from the skb, it returns 0.
2027 * If 'len' exceeds the total skb length, it returns the no. of bytes that
2028 * could not be removed.
2029 */
2030static int sctp_skb_pull(struct sk_buff *skb, int len)
2031{
2032 struct sk_buff *list;
2033 int skb_len = skb_headlen(skb);
2034 int rlen;
2035
2036 if (len <= skb_len) {
2037 __skb_pull(skb, len);
2038 return 0;
2039 }
2040 len -= skb_len;
2041 __skb_pull(skb, skb_len);
2042
2043 skb_walk_frags(skb, list) {
2044 rlen = sctp_skb_pull(list, len);
2045 skb->len -= (len-rlen);
2046 skb->data_len -= (len-rlen);
2047
2048 if (!rlen)
2049 return 0;
2050
2051 len = rlen;
2052 }
2053
2054 return len;
2055}
2056
2057/* API 3.1.3 recvmsg() - UDP Style Syntax
2058 *
2059 * ssize_t recvmsg(int socket, struct msghdr *message,
2060 * int flags);
2061 *
2062 * socket - the socket descriptor of the endpoint.
2063 * message - pointer to the msghdr structure which contains a single
2064 * user message and possibly some ancillary data.
2065 *
2066 * See Section 5 for complete description of the data
2067 * structures.
2068 *
2069 * flags - flags sent or received with the user message, see Section
2070 * 5 for complete description of the flags.
2071 */
2072static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2073 int noblock, int flags, int *addr_len)
2074{
2075 struct sctp_ulpevent *event = NULL;
2076 struct sctp_sock *sp = sctp_sk(sk);
2077 struct sk_buff *skb, *head_skb;
2078 int copied;
2079 int err = 0;
2080 int skb_len;
2081
2082 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
2083 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags,
2084 addr_len);
2085
2086 lock_sock(sk);
2087
2088 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) &&
2089 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) {
2090 err = -ENOTCONN;
2091 goto out;
2092 }
2093
2094 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2095 if (!skb)
2096 goto out;
2097
2098 /* Get the total length of the skb including any skb's in the
2099 * frag_list.
2100 */
2101 skb_len = skb->len;
2102
2103 copied = skb_len;
2104 if (copied > len)
2105 copied = len;
2106
2107 err = skb_copy_datagram_msg(skb, 0, msg, copied);
2108
2109 event = sctp_skb2event(skb);
2110
2111 if (err)
2112 goto out_free;
2113
2114 if (event->chunk && event->chunk->head_skb)
2115 head_skb = event->chunk->head_skb;
2116 else
2117 head_skb = skb;
2118 sock_recv_ts_and_drops(msg, sk, head_skb);
2119 if (sctp_ulpevent_is_notification(event)) {
2120 msg->msg_flags |= MSG_NOTIFICATION;
2121 sp->pf->event_msgname(event, msg->msg_name, addr_len);
2122 } else {
2123 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len);
2124 }
2125
2126 /* Check if we allow SCTP_NXTINFO. */
2127 if (sp->recvnxtinfo)
2128 sctp_ulpevent_read_nxtinfo(event, msg, sk);
2129 /* Check if we allow SCTP_RCVINFO. */
2130 if (sp->recvrcvinfo)
2131 sctp_ulpevent_read_rcvinfo(event, msg);
2132 /* Check if we allow SCTP_SNDRCVINFO. */
2133 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_DATA_IO_EVENT))
2134 sctp_ulpevent_read_sndrcvinfo(event, msg);
2135
2136 err = copied;
2137
2138 /* If skb's length exceeds the user's buffer, update the skb and
2139 * push it back to the receive_queue so that the next call to
2140 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2141 */
2142 if (skb_len > copied) {
2143 msg->msg_flags &= ~MSG_EOR;
2144 if (flags & MSG_PEEK)
2145 goto out_free;
2146 sctp_skb_pull(skb, copied);
2147 skb_queue_head(&sk->sk_receive_queue, skb);
2148
2149 /* When only partial message is copied to the user, increase
2150 * rwnd by that amount. If all the data in the skb is read,
2151 * rwnd is updated when the event is freed.
2152 */
2153 if (!sctp_ulpevent_is_notification(event))
2154 sctp_assoc_rwnd_increase(event->asoc, copied);
2155 goto out;
2156 } else if ((event->msg_flags & MSG_NOTIFICATION) ||
2157 (event->msg_flags & MSG_EOR))
2158 msg->msg_flags |= MSG_EOR;
2159 else
2160 msg->msg_flags &= ~MSG_EOR;
2161
2162out_free:
2163 if (flags & MSG_PEEK) {
2164 /* Release the skb reference acquired after peeking the skb in
2165 * sctp_skb_recv_datagram().
2166 */
2167 kfree_skb(skb);
2168 } else {
2169 /* Free the event which includes releasing the reference to
2170 * the owner of the skb, freeing the skb and updating the
2171 * rwnd.
2172 */
2173 sctp_ulpevent_free(event);
2174 }
2175out:
2176 release_sock(sk);
2177 return err;
2178}
2179
2180/* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2181 *
2182 * This option is a on/off flag. If enabled no SCTP message
2183 * fragmentation will be performed. Instead if a message being sent
2184 * exceeds the current PMTU size, the message will NOT be sent and
2185 * instead a error will be indicated to the user.
2186 */
2187static int sctp_setsockopt_disable_fragments(struct sock *sk, int *val,
2188 unsigned int optlen)
2189{
2190 if (optlen < sizeof(int))
2191 return -EINVAL;
2192 sctp_sk(sk)->disable_fragments = (*val == 0) ? 0 : 1;
2193 return 0;
2194}
2195
2196static int sctp_setsockopt_events(struct sock *sk, __u8 *sn_type,
2197 unsigned int optlen)
2198{
2199 struct sctp_sock *sp = sctp_sk(sk);
2200 struct sctp_association *asoc;
2201 int i;
2202
2203 if (optlen > sizeof(struct sctp_event_subscribe))
2204 return -EINVAL;
2205
2206 for (i = 0; i < optlen; i++)
2207 sctp_ulpevent_type_set(&sp->subscribe, SCTP_SN_TYPE_BASE + i,
2208 sn_type[i]);
2209
2210 list_for_each_entry(asoc, &sp->ep->asocs, asocs)
2211 asoc->subscribe = sctp_sk(sk)->subscribe;
2212
2213 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2214 * if there is no data to be sent or retransmit, the stack will
2215 * immediately send up this notification.
2216 */
2217 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_SENDER_DRY_EVENT)) {
2218 struct sctp_ulpevent *event;
2219
2220 asoc = sctp_id2assoc(sk, 0);
2221 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2222 event = sctp_ulpevent_make_sender_dry_event(asoc,
2223 GFP_USER | __GFP_NOWARN);
2224 if (!event)
2225 return -ENOMEM;
2226
2227 asoc->stream.si->enqueue_event(&asoc->ulpq, event);
2228 }
2229 }
2230
2231 return 0;
2232}
2233
2234/* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2235 *
2236 * This socket option is applicable to the UDP-style socket only. When
2237 * set it will cause associations that are idle for more than the
2238 * specified number of seconds to automatically close. An association
2239 * being idle is defined an association that has NOT sent or received
2240 * user data. The special value of '0' indicates that no automatic
2241 * close of any associations should be performed. The option expects an
2242 * integer defining the number of seconds of idle time before an
2243 * association is closed.
2244 */
2245static int sctp_setsockopt_autoclose(struct sock *sk, u32 *optval,
2246 unsigned int optlen)
2247{
2248 struct sctp_sock *sp = sctp_sk(sk);
2249 struct net *net = sock_net(sk);
2250
2251 /* Applicable to UDP-style socket only */
2252 if (sctp_style(sk, TCP))
2253 return -EOPNOTSUPP;
2254 if (optlen != sizeof(int))
2255 return -EINVAL;
2256
2257 sp->autoclose = *optval;
2258 if (sp->autoclose > net->sctp.max_autoclose)
2259 sp->autoclose = net->sctp.max_autoclose;
2260
2261 return 0;
2262}
2263
2264/* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2265 *
2266 * Applications can enable or disable heartbeats for any peer address of
2267 * an association, modify an address's heartbeat interval, force a
2268 * heartbeat to be sent immediately, and adjust the address's maximum
2269 * number of retransmissions sent before an address is considered
2270 * unreachable. The following structure is used to access and modify an
2271 * address's parameters:
2272 *
2273 * struct sctp_paddrparams {
2274 * sctp_assoc_t spp_assoc_id;
2275 * struct sockaddr_storage spp_address;
2276 * uint32_t spp_hbinterval;
2277 * uint16_t spp_pathmaxrxt;
2278 * uint32_t spp_pathmtu;
2279 * uint32_t spp_sackdelay;
2280 * uint32_t spp_flags;
2281 * uint32_t spp_ipv6_flowlabel;
2282 * uint8_t spp_dscp;
2283 * };
2284 *
2285 * spp_assoc_id - (one-to-many style socket) This is filled in the
2286 * application, and identifies the association for
2287 * this query.
2288 * spp_address - This specifies which address is of interest.
2289 * spp_hbinterval - This contains the value of the heartbeat interval,
2290 * in milliseconds. If a value of zero
2291 * is present in this field then no changes are to
2292 * be made to this parameter.
2293 * spp_pathmaxrxt - This contains the maximum number of
2294 * retransmissions before this address shall be
2295 * considered unreachable. If a value of zero
2296 * is present in this field then no changes are to
2297 * be made to this parameter.
2298 * spp_pathmtu - When Path MTU discovery is disabled the value
2299 * specified here will be the "fixed" path mtu.
2300 * Note that if the spp_address field is empty
2301 * then all associations on this address will
2302 * have this fixed path mtu set upon them.
2303 *
2304 * spp_sackdelay - When delayed sack is enabled, this value specifies
2305 * the number of milliseconds that sacks will be delayed
2306 * for. This value will apply to all addresses of an
2307 * association if the spp_address field is empty. Note
2308 * also, that if delayed sack is enabled and this
2309 * value is set to 0, no change is made to the last
2310 * recorded delayed sack timer value.
2311 *
2312 * spp_flags - These flags are used to control various features
2313 * on an association. The flag field may contain
2314 * zero or more of the following options.
2315 *
2316 * SPP_HB_ENABLE - Enable heartbeats on the
2317 * specified address. Note that if the address
2318 * field is empty all addresses for the association
2319 * have heartbeats enabled upon them.
2320 *
2321 * SPP_HB_DISABLE - Disable heartbeats on the
2322 * speicifed address. Note that if the address
2323 * field is empty all addresses for the association
2324 * will have their heartbeats disabled. Note also
2325 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
2326 * mutually exclusive, only one of these two should
2327 * be specified. Enabling both fields will have
2328 * undetermined results.
2329 *
2330 * SPP_HB_DEMAND - Request a user initiated heartbeat
2331 * to be made immediately.
2332 *
2333 * SPP_HB_TIME_IS_ZERO - Specify's that the time for
2334 * heartbeat delayis to be set to the value of 0
2335 * milliseconds.
2336 *
2337 * SPP_PMTUD_ENABLE - This field will enable PMTU
2338 * discovery upon the specified address. Note that
2339 * if the address feild is empty then all addresses
2340 * on the association are effected.
2341 *
2342 * SPP_PMTUD_DISABLE - This field will disable PMTU
2343 * discovery upon the specified address. Note that
2344 * if the address feild is empty then all addresses
2345 * on the association are effected. Not also that
2346 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2347 * exclusive. Enabling both will have undetermined
2348 * results.
2349 *
2350 * SPP_SACKDELAY_ENABLE - Setting this flag turns
2351 * on delayed sack. The time specified in spp_sackdelay
2352 * is used to specify the sack delay for this address. Note
2353 * that if spp_address is empty then all addresses will
2354 * enable delayed sack and take on the sack delay
2355 * value specified in spp_sackdelay.
2356 * SPP_SACKDELAY_DISABLE - Setting this flag turns
2357 * off delayed sack. If the spp_address field is blank then
2358 * delayed sack is disabled for the entire association. Note
2359 * also that this field is mutually exclusive to
2360 * SPP_SACKDELAY_ENABLE, setting both will have undefined
2361 * results.
2362 *
2363 * SPP_IPV6_FLOWLABEL: Setting this flag enables the
2364 * setting of the IPV6 flow label value. The value is
2365 * contained in the spp_ipv6_flowlabel field.
2366 * Upon retrieval, this flag will be set to indicate that
2367 * the spp_ipv6_flowlabel field has a valid value returned.
2368 * If a specific destination address is set (in the
2369 * spp_address field), then the value returned is that of
2370 * the address. If just an association is specified (and
2371 * no address), then the association's default flow label
2372 * is returned. If neither an association nor a destination
2373 * is specified, then the socket's default flow label is
2374 * returned. For non-IPv6 sockets, this flag will be left
2375 * cleared.
2376 *
2377 * SPP_DSCP: Setting this flag enables the setting of the
2378 * Differentiated Services Code Point (DSCP) value
2379 * associated with either the association or a specific
2380 * address. The value is obtained in the spp_dscp field.
2381 * Upon retrieval, this flag will be set to indicate that
2382 * the spp_dscp field has a valid value returned. If a
2383 * specific destination address is set when called (in the
2384 * spp_address field), then that specific destination
2385 * address's DSCP value is returned. If just an association
2386 * is specified, then the association's default DSCP is
2387 * returned. If neither an association nor a destination is
2388 * specified, then the socket's default DSCP is returned.
2389 *
2390 * spp_ipv6_flowlabel
2391 * - This field is used in conjunction with the
2392 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label.
2393 * The 20 least significant bits are used for the flow
2394 * label. This setting has precedence over any IPv6-layer
2395 * setting.
2396 *
2397 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag
2398 * and contains the DSCP. The 6 most significant bits are
2399 * used for the DSCP. This setting has precedence over any
2400 * IPv4- or IPv6- layer setting.
2401 */
2402static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2403 struct sctp_transport *trans,
2404 struct sctp_association *asoc,
2405 struct sctp_sock *sp,
2406 int hb_change,
2407 int pmtud_change,
2408 int sackdelay_change)
2409{
2410 int error;
2411
2412 if (params->spp_flags & SPP_HB_DEMAND && trans) {
2413 error = sctp_primitive_REQUESTHEARTBEAT(trans->asoc->base.net,
2414 trans->asoc, trans);
2415 if (error)
2416 return error;
2417 }
2418
2419 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2420 * this field is ignored. Note also that a value of zero indicates
2421 * the current setting should be left unchanged.
2422 */
2423 if (params->spp_flags & SPP_HB_ENABLE) {
2424
2425 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2426 * set. This lets us use 0 value when this flag
2427 * is set.
2428 */
2429 if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2430 params->spp_hbinterval = 0;
2431
2432 if (params->spp_hbinterval ||
2433 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2434 if (trans) {
2435 trans->hbinterval =
2436 msecs_to_jiffies(params->spp_hbinterval);
2437 } else if (asoc) {
2438 asoc->hbinterval =
2439 msecs_to_jiffies(params->spp_hbinterval);
2440 } else {
2441 sp->hbinterval = params->spp_hbinterval;
2442 }
2443 }
2444 }
2445
2446 if (hb_change) {
2447 if (trans) {
2448 trans->param_flags =
2449 (trans->param_flags & ~SPP_HB) | hb_change;
2450 } else if (asoc) {
2451 asoc->param_flags =
2452 (asoc->param_flags & ~SPP_HB) | hb_change;
2453 } else {
2454 sp->param_flags =
2455 (sp->param_flags & ~SPP_HB) | hb_change;
2456 }
2457 }
2458
2459 /* When Path MTU discovery is disabled the value specified here will
2460 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2461 * include the flag SPP_PMTUD_DISABLE for this field to have any
2462 * effect).
2463 */
2464 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2465 if (trans) {
2466 trans->pathmtu = params->spp_pathmtu;
2467 sctp_assoc_sync_pmtu(asoc);
2468 } else if (asoc) {
2469 sctp_assoc_set_pmtu(asoc, params->spp_pathmtu);
2470 } else {
2471 sp->pathmtu = params->spp_pathmtu;
2472 }
2473 }
2474
2475 if (pmtud_change) {
2476 if (trans) {
2477 int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2478 (params->spp_flags & SPP_PMTUD_ENABLE);
2479 trans->param_flags =
2480 (trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2481 if (update) {
2482 sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2483 sctp_assoc_sync_pmtu(asoc);
2484 }
2485 } else if (asoc) {
2486 asoc->param_flags =
2487 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2488 } else {
2489 sp->param_flags =
2490 (sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2491 }
2492 }
2493
2494 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2495 * value of this field is ignored. Note also that a value of zero
2496 * indicates the current setting should be left unchanged.
2497 */
2498 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2499 if (trans) {
2500 trans->sackdelay =
2501 msecs_to_jiffies(params->spp_sackdelay);
2502 } else if (asoc) {
2503 asoc->sackdelay =
2504 msecs_to_jiffies(params->spp_sackdelay);
2505 } else {
2506 sp->sackdelay = params->spp_sackdelay;
2507 }
2508 }
2509
2510 if (sackdelay_change) {
2511 if (trans) {
2512 trans->param_flags =
2513 (trans->param_flags & ~SPP_SACKDELAY) |
2514 sackdelay_change;
2515 } else if (asoc) {
2516 asoc->param_flags =
2517 (asoc->param_flags & ~SPP_SACKDELAY) |
2518 sackdelay_change;
2519 } else {
2520 sp->param_flags =
2521 (sp->param_flags & ~SPP_SACKDELAY) |
2522 sackdelay_change;
2523 }
2524 }
2525
2526 /* Note that a value of zero indicates the current setting should be
2527 left unchanged.
2528 */
2529 if (params->spp_pathmaxrxt) {
2530 if (trans) {
2531 trans->pathmaxrxt = params->spp_pathmaxrxt;
2532 } else if (asoc) {
2533 asoc->pathmaxrxt = params->spp_pathmaxrxt;
2534 } else {
2535 sp->pathmaxrxt = params->spp_pathmaxrxt;
2536 }
2537 }
2538
2539 if (params->spp_flags & SPP_IPV6_FLOWLABEL) {
2540 if (trans) {
2541 if (trans->ipaddr.sa.sa_family == AF_INET6) {
2542 trans->flowlabel = params->spp_ipv6_flowlabel &
2543 SCTP_FLOWLABEL_VAL_MASK;
2544 trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2545 }
2546 } else if (asoc) {
2547 struct sctp_transport *t;
2548
2549 list_for_each_entry(t, &asoc->peer.transport_addr_list,
2550 transports) {
2551 if (t->ipaddr.sa.sa_family != AF_INET6)
2552 continue;
2553 t->flowlabel = params->spp_ipv6_flowlabel &
2554 SCTP_FLOWLABEL_VAL_MASK;
2555 t->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2556 }
2557 asoc->flowlabel = params->spp_ipv6_flowlabel &
2558 SCTP_FLOWLABEL_VAL_MASK;
2559 asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2560 } else if (sctp_opt2sk(sp)->sk_family == AF_INET6) {
2561 sp->flowlabel = params->spp_ipv6_flowlabel &
2562 SCTP_FLOWLABEL_VAL_MASK;
2563 sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2564 }
2565 }
2566
2567 if (params->spp_flags & SPP_DSCP) {
2568 if (trans) {
2569 trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2570 trans->dscp |= SCTP_DSCP_SET_MASK;
2571 } else if (asoc) {
2572 struct sctp_transport *t;
2573
2574 list_for_each_entry(t, &asoc->peer.transport_addr_list,
2575 transports) {
2576 t->dscp = params->spp_dscp &
2577 SCTP_DSCP_VAL_MASK;
2578 t->dscp |= SCTP_DSCP_SET_MASK;
2579 }
2580 asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2581 asoc->dscp |= SCTP_DSCP_SET_MASK;
2582 } else {
2583 sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2584 sp->dscp |= SCTP_DSCP_SET_MASK;
2585 }
2586 }
2587
2588 return 0;
2589}
2590
2591static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2592 struct sctp_paddrparams *params,
2593 unsigned int optlen)
2594{
2595 struct sctp_transport *trans = NULL;
2596 struct sctp_association *asoc = NULL;
2597 struct sctp_sock *sp = sctp_sk(sk);
2598 int error;
2599 int hb_change, pmtud_change, sackdelay_change;
2600
2601 if (optlen == ALIGN(offsetof(struct sctp_paddrparams,
2602 spp_ipv6_flowlabel), 4)) {
2603 if (params->spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL))
2604 return -EINVAL;
2605 } else if (optlen != sizeof(*params)) {
2606 return -EINVAL;
2607 }
2608
2609 /* Validate flags and value parameters. */
2610 hb_change = params->spp_flags & SPP_HB;
2611 pmtud_change = params->spp_flags & SPP_PMTUD;
2612 sackdelay_change = params->spp_flags & SPP_SACKDELAY;
2613
2614 if (hb_change == SPP_HB ||
2615 pmtud_change == SPP_PMTUD ||
2616 sackdelay_change == SPP_SACKDELAY ||
2617 params->spp_sackdelay > 500 ||
2618 (params->spp_pathmtu &&
2619 params->spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2620 return -EINVAL;
2621
2622 /* If an address other than INADDR_ANY is specified, and
2623 * no transport is found, then the request is invalid.
2624 */
2625 if (!sctp_is_any(sk, (union sctp_addr *)¶ms->spp_address)) {
2626 trans = sctp_addr_id2transport(sk, ¶ms->spp_address,
2627 params->spp_assoc_id);
2628 if (!trans)
2629 return -EINVAL;
2630 }
2631
2632 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
2633 * socket is a one to many style socket, and an association
2634 * was not found, then the id was invalid.
2635 */
2636 asoc = sctp_id2assoc(sk, params->spp_assoc_id);
2637 if (!asoc && params->spp_assoc_id != SCTP_FUTURE_ASSOC &&
2638 sctp_style(sk, UDP))
2639 return -EINVAL;
2640
2641 /* Heartbeat demand can only be sent on a transport or
2642 * association, but not a socket.
2643 */
2644 if (params->spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2645 return -EINVAL;
2646
2647 /* Process parameters. */
2648 error = sctp_apply_peer_addr_params(params, trans, asoc, sp,
2649 hb_change, pmtud_change,
2650 sackdelay_change);
2651
2652 if (error)
2653 return error;
2654
2655 /* If changes are for association, also apply parameters to each
2656 * transport.
2657 */
2658 if (!trans && asoc) {
2659 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2660 transports) {
2661 sctp_apply_peer_addr_params(params, trans, asoc, sp,
2662 hb_change, pmtud_change,
2663 sackdelay_change);
2664 }
2665 }
2666
2667 return 0;
2668}
2669
2670static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags)
2671{
2672 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE;
2673}
2674
2675static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags)
2676{
2677 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE;
2678}
2679
2680static void sctp_apply_asoc_delayed_ack(struct sctp_sack_info *params,
2681 struct sctp_association *asoc)
2682{
2683 struct sctp_transport *trans;
2684
2685 if (params->sack_delay) {
2686 asoc->sackdelay = msecs_to_jiffies(params->sack_delay);
2687 asoc->param_flags =
2688 sctp_spp_sackdelay_enable(asoc->param_flags);
2689 }
2690 if (params->sack_freq == 1) {
2691 asoc->param_flags =
2692 sctp_spp_sackdelay_disable(asoc->param_flags);
2693 } else if (params->sack_freq > 1) {
2694 asoc->sackfreq = params->sack_freq;
2695 asoc->param_flags =
2696 sctp_spp_sackdelay_enable(asoc->param_flags);
2697 }
2698
2699 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2700 transports) {
2701 if (params->sack_delay) {
2702 trans->sackdelay = msecs_to_jiffies(params->sack_delay);
2703 trans->param_flags =
2704 sctp_spp_sackdelay_enable(trans->param_flags);
2705 }
2706 if (params->sack_freq == 1) {
2707 trans->param_flags =
2708 sctp_spp_sackdelay_disable(trans->param_flags);
2709 } else if (params->sack_freq > 1) {
2710 trans->sackfreq = params->sack_freq;
2711 trans->param_flags =
2712 sctp_spp_sackdelay_enable(trans->param_flags);
2713 }
2714 }
2715}
2716
2717/*
2718 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
2719 *
2720 * This option will effect the way delayed acks are performed. This
2721 * option allows you to get or set the delayed ack time, in
2722 * milliseconds. It also allows changing the delayed ack frequency.
2723 * Changing the frequency to 1 disables the delayed sack algorithm. If
2724 * the assoc_id is 0, then this sets or gets the endpoints default
2725 * values. If the assoc_id field is non-zero, then the set or get
2726 * effects the specified association for the one to many model (the
2727 * assoc_id field is ignored by the one to one model). Note that if
2728 * sack_delay or sack_freq are 0 when setting this option, then the
2729 * current values will remain unchanged.
2730 *
2731 * struct sctp_sack_info {
2732 * sctp_assoc_t sack_assoc_id;
2733 * uint32_t sack_delay;
2734 * uint32_t sack_freq;
2735 * };
2736 *
2737 * sack_assoc_id - This parameter, indicates which association the user
2738 * is performing an action upon. Note that if this field's value is
2739 * zero then the endpoints default value is changed (effecting future
2740 * associations only).
2741 *
2742 * sack_delay - This parameter contains the number of milliseconds that
2743 * the user is requesting the delayed ACK timer be set to. Note that
2744 * this value is defined in the standard to be between 200 and 500
2745 * milliseconds.
2746 *
2747 * sack_freq - This parameter contains the number of packets that must
2748 * be received before a sack is sent without waiting for the delay
2749 * timer to expire. The default value for this is 2, setting this
2750 * value to 1 will disable the delayed sack algorithm.
2751 */
2752static int __sctp_setsockopt_delayed_ack(struct sock *sk,
2753 struct sctp_sack_info *params)
2754{
2755 struct sctp_sock *sp = sctp_sk(sk);
2756 struct sctp_association *asoc;
2757
2758 /* Validate value parameter. */
2759 if (params->sack_delay > 500)
2760 return -EINVAL;
2761
2762 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the
2763 * socket is a one to many style socket, and an association
2764 * was not found, then the id was invalid.
2765 */
2766 asoc = sctp_id2assoc(sk, params->sack_assoc_id);
2767 if (!asoc && params->sack_assoc_id > SCTP_ALL_ASSOC &&
2768 sctp_style(sk, UDP))
2769 return -EINVAL;
2770
2771 if (asoc) {
2772 sctp_apply_asoc_delayed_ack(params, asoc);
2773
2774 return 0;
2775 }
2776
2777 if (sctp_style(sk, TCP))
2778 params->sack_assoc_id = SCTP_FUTURE_ASSOC;
2779
2780 if (params->sack_assoc_id == SCTP_FUTURE_ASSOC ||
2781 params->sack_assoc_id == SCTP_ALL_ASSOC) {
2782 if (params->sack_delay) {
2783 sp->sackdelay = params->sack_delay;
2784 sp->param_flags =
2785 sctp_spp_sackdelay_enable(sp->param_flags);
2786 }
2787 if (params->sack_freq == 1) {
2788 sp->param_flags =
2789 sctp_spp_sackdelay_disable(sp->param_flags);
2790 } else if (params->sack_freq > 1) {
2791 sp->sackfreq = params->sack_freq;
2792 sp->param_flags =
2793 sctp_spp_sackdelay_enable(sp->param_flags);
2794 }
2795 }
2796
2797 if (params->sack_assoc_id == SCTP_CURRENT_ASSOC ||
2798 params->sack_assoc_id == SCTP_ALL_ASSOC)
2799 list_for_each_entry(asoc, &sp->ep->asocs, asocs)
2800 sctp_apply_asoc_delayed_ack(params, asoc);
2801
2802 return 0;
2803}
2804
2805static int sctp_setsockopt_delayed_ack(struct sock *sk,
2806 struct sctp_sack_info *params,
2807 unsigned int optlen)
2808{
2809 if (optlen == sizeof(struct sctp_assoc_value)) {
2810 struct sctp_assoc_value *v = (struct sctp_assoc_value *)params;
2811 struct sctp_sack_info p;
2812
2813 pr_warn_ratelimited(DEPRECATED
2814 "%s (pid %d) "
2815 "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
2816 "Use struct sctp_sack_info instead\n",
2817 current->comm, task_pid_nr(current));
2818
2819 p.sack_assoc_id = v->assoc_id;
2820 p.sack_delay = v->assoc_value;
2821 p.sack_freq = v->assoc_value ? 0 : 1;
2822 return __sctp_setsockopt_delayed_ack(sk, &p);
2823 }
2824
2825 if (optlen != sizeof(struct sctp_sack_info))
2826 return -EINVAL;
2827 if (params->sack_delay == 0 && params->sack_freq == 0)
2828 return 0;
2829 return __sctp_setsockopt_delayed_ack(sk, params);
2830}
2831
2832/* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2833 *
2834 * Applications can specify protocol parameters for the default association
2835 * initialization. The option name argument to setsockopt() and getsockopt()
2836 * is SCTP_INITMSG.
2837 *
2838 * Setting initialization parameters is effective only on an unconnected
2839 * socket (for UDP-style sockets only future associations are effected
2840 * by the change). With TCP-style sockets, this option is inherited by
2841 * sockets derived from a listener socket.
2842 */
2843static int sctp_setsockopt_initmsg(struct sock *sk, struct sctp_initmsg *sinit,
2844 unsigned int optlen)
2845{
2846 struct sctp_sock *sp = sctp_sk(sk);
2847
2848 if (optlen != sizeof(struct sctp_initmsg))
2849 return -EINVAL;
2850
2851 if (sinit->sinit_num_ostreams)
2852 sp->initmsg.sinit_num_ostreams = sinit->sinit_num_ostreams;
2853 if (sinit->sinit_max_instreams)
2854 sp->initmsg.sinit_max_instreams = sinit->sinit_max_instreams;
2855 if (sinit->sinit_max_attempts)
2856 sp->initmsg.sinit_max_attempts = sinit->sinit_max_attempts;
2857 if (sinit->sinit_max_init_timeo)
2858 sp->initmsg.sinit_max_init_timeo = sinit->sinit_max_init_timeo;
2859
2860 return 0;
2861}
2862
2863/*
2864 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2865 *
2866 * Applications that wish to use the sendto() system call may wish to
2867 * specify a default set of parameters that would normally be supplied
2868 * through the inclusion of ancillary data. This socket option allows
2869 * such an application to set the default sctp_sndrcvinfo structure.
2870 * The application that wishes to use this socket option simply passes
2871 * in to this call the sctp_sndrcvinfo structure defined in Section
2872 * 5.2.2) The input parameters accepted by this call include
2873 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2874 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
2875 * to this call if the caller is using the UDP model.
2876 */
2877static int sctp_setsockopt_default_send_param(struct sock *sk,
2878 struct sctp_sndrcvinfo *info,
2879 unsigned int optlen)
2880{
2881 struct sctp_sock *sp = sctp_sk(sk);
2882 struct sctp_association *asoc;
2883
2884 if (optlen != sizeof(*info))
2885 return -EINVAL;
2886 if (info->sinfo_flags &
2887 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2888 SCTP_ABORT | SCTP_EOF))
2889 return -EINVAL;
2890
2891 asoc = sctp_id2assoc(sk, info->sinfo_assoc_id);
2892 if (!asoc && info->sinfo_assoc_id > SCTP_ALL_ASSOC &&
2893 sctp_style(sk, UDP))
2894 return -EINVAL;
2895
2896 if (asoc) {
2897 asoc->default_stream = info->sinfo_stream;
2898 asoc->default_flags = info->sinfo_flags;
2899 asoc->default_ppid = info->sinfo_ppid;
2900 asoc->default_context = info->sinfo_context;
2901 asoc->default_timetolive = info->sinfo_timetolive;
2902
2903 return 0;
2904 }
2905
2906 if (sctp_style(sk, TCP))
2907 info->sinfo_assoc_id = SCTP_FUTURE_ASSOC;
2908
2909 if (info->sinfo_assoc_id == SCTP_FUTURE_ASSOC ||
2910 info->sinfo_assoc_id == SCTP_ALL_ASSOC) {
2911 sp->default_stream = info->sinfo_stream;
2912 sp->default_flags = info->sinfo_flags;
2913 sp->default_ppid = info->sinfo_ppid;
2914 sp->default_context = info->sinfo_context;
2915 sp->default_timetolive = info->sinfo_timetolive;
2916 }
2917
2918 if (info->sinfo_assoc_id == SCTP_CURRENT_ASSOC ||
2919 info->sinfo_assoc_id == SCTP_ALL_ASSOC) {
2920 list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
2921 asoc->default_stream = info->sinfo_stream;
2922 asoc->default_flags = info->sinfo_flags;
2923 asoc->default_ppid = info->sinfo_ppid;
2924 asoc->default_context = info->sinfo_context;
2925 asoc->default_timetolive = info->sinfo_timetolive;
2926 }
2927 }
2928
2929 return 0;
2930}
2931
2932/* RFC6458, Section 8.1.31. Set/get Default Send Parameters
2933 * (SCTP_DEFAULT_SNDINFO)
2934 */
2935static int sctp_setsockopt_default_sndinfo(struct sock *sk,
2936 struct sctp_sndinfo *info,
2937 unsigned int optlen)
2938{
2939 struct sctp_sock *sp = sctp_sk(sk);
2940 struct sctp_association *asoc;
2941
2942 if (optlen != sizeof(*info))
2943 return -EINVAL;
2944 if (info->snd_flags &
2945 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2946 SCTP_ABORT | SCTP_EOF))
2947 return -EINVAL;
2948
2949 asoc = sctp_id2assoc(sk, info->snd_assoc_id);
2950 if (!asoc && info->snd_assoc_id > SCTP_ALL_ASSOC &&
2951 sctp_style(sk, UDP))
2952 return -EINVAL;
2953
2954 if (asoc) {
2955 asoc->default_stream = info->snd_sid;
2956 asoc->default_flags = info->snd_flags;
2957 asoc->default_ppid = info->snd_ppid;
2958 asoc->default_context = info->snd_context;
2959
2960 return 0;
2961 }
2962
2963 if (sctp_style(sk, TCP))
2964 info->snd_assoc_id = SCTP_FUTURE_ASSOC;
2965
2966 if (info->snd_assoc_id == SCTP_FUTURE_ASSOC ||
2967 info->snd_assoc_id == SCTP_ALL_ASSOC) {
2968 sp->default_stream = info->snd_sid;
2969 sp->default_flags = info->snd_flags;
2970 sp->default_ppid = info->snd_ppid;
2971 sp->default_context = info->snd_context;
2972 }
2973
2974 if (info->snd_assoc_id == SCTP_CURRENT_ASSOC ||
2975 info->snd_assoc_id == SCTP_ALL_ASSOC) {
2976 list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
2977 asoc->default_stream = info->snd_sid;
2978 asoc->default_flags = info->snd_flags;
2979 asoc->default_ppid = info->snd_ppid;
2980 asoc->default_context = info->snd_context;
2981 }
2982 }
2983
2984 return 0;
2985}
2986
2987/* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2988 *
2989 * Requests that the local SCTP stack use the enclosed peer address as
2990 * the association primary. The enclosed address must be one of the
2991 * association peer's addresses.
2992 */
2993static int sctp_setsockopt_primary_addr(struct sock *sk, struct sctp_prim *prim,
2994 unsigned int optlen)
2995{
2996 struct sctp_transport *trans;
2997 struct sctp_af *af;
2998 int err;
2999
3000 if (optlen != sizeof(struct sctp_prim))
3001 return -EINVAL;
3002
3003 /* Allow security module to validate address but need address len. */
3004 af = sctp_get_af_specific(prim->ssp_addr.ss_family);
3005 if (!af)
3006 return -EINVAL;
3007
3008 err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR,
3009 (struct sockaddr *)&prim->ssp_addr,
3010 af->sockaddr_len);
3011 if (err)
3012 return err;
3013
3014 trans = sctp_addr_id2transport(sk, &prim->ssp_addr, prim->ssp_assoc_id);
3015 if (!trans)
3016 return -EINVAL;
3017
3018 sctp_assoc_set_primary(trans->asoc, trans);
3019
3020 return 0;
3021}
3022
3023/*
3024 * 7.1.5 SCTP_NODELAY
3025 *
3026 * Turn on/off any Nagle-like algorithm. This means that packets are
3027 * generally sent as soon as possible and no unnecessary delays are
3028 * introduced, at the cost of more packets in the network. Expects an
3029 * integer boolean flag.
3030 */
3031static int sctp_setsockopt_nodelay(struct sock *sk, int *val,
3032 unsigned int optlen)
3033{
3034 if (optlen < sizeof(int))
3035 return -EINVAL;
3036 sctp_sk(sk)->nodelay = (*val == 0) ? 0 : 1;
3037 return 0;
3038}
3039
3040/*
3041 *
3042 * 7.1.1 SCTP_RTOINFO
3043 *
3044 * The protocol parameters used to initialize and bound retransmission
3045 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
3046 * and modify these parameters.
3047 * All parameters are time values, in milliseconds. A value of 0, when
3048 * modifying the parameters, indicates that the current value should not
3049 * be changed.
3050 *
3051 */
3052static int sctp_setsockopt_rtoinfo(struct sock *sk,
3053 struct sctp_rtoinfo *rtoinfo,
3054 unsigned int optlen)
3055{
3056 struct sctp_association *asoc;
3057 unsigned long rto_min, rto_max;
3058 struct sctp_sock *sp = sctp_sk(sk);
3059
3060 if (optlen != sizeof (struct sctp_rtoinfo))
3061 return -EINVAL;
3062
3063 asoc = sctp_id2assoc(sk, rtoinfo->srto_assoc_id);
3064
3065 /* Set the values to the specific association */
3066 if (!asoc && rtoinfo->srto_assoc_id != SCTP_FUTURE_ASSOC &&
3067 sctp_style(sk, UDP))
3068 return -EINVAL;
3069
3070 rto_max = rtoinfo->srto_max;
3071 rto_min = rtoinfo->srto_min;
3072
3073 if (rto_max)
3074 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
3075 else
3076 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
3077
3078 if (rto_min)
3079 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
3080 else
3081 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
3082
3083 if (rto_min > rto_max)
3084 return -EINVAL;
3085
3086 if (asoc) {
3087 if (rtoinfo->srto_initial != 0)
3088 asoc->rto_initial =
3089 msecs_to_jiffies(rtoinfo->srto_initial);
3090 asoc->rto_max = rto_max;
3091 asoc->rto_min = rto_min;
3092 } else {
3093 /* If there is no association or the association-id = 0
3094 * set the values to the endpoint.
3095 */
3096 if (rtoinfo->srto_initial != 0)
3097 sp->rtoinfo.srto_initial = rtoinfo->srto_initial;
3098 sp->rtoinfo.srto_max = rto_max;
3099 sp->rtoinfo.srto_min = rto_min;
3100 }
3101
3102 return 0;
3103}
3104
3105/*
3106 *
3107 * 7.1.2 SCTP_ASSOCINFO
3108 *
3109 * This option is used to tune the maximum retransmission attempts
3110 * of the association.
3111 * Returns an error if the new association retransmission value is
3112 * greater than the sum of the retransmission value of the peer.
3113 * See [SCTP] for more information.
3114 *
3115 */
3116static int sctp_setsockopt_associnfo(struct sock *sk,
3117 struct sctp_assocparams *assocparams,
3118 unsigned int optlen)
3119{
3120
3121 struct sctp_association *asoc;
3122
3123 if (optlen != sizeof(struct sctp_assocparams))
3124 return -EINVAL;
3125
3126 asoc = sctp_id2assoc(sk, assocparams->sasoc_assoc_id);
3127
3128 if (!asoc && assocparams->sasoc_assoc_id != SCTP_FUTURE_ASSOC &&
3129 sctp_style(sk, UDP))
3130 return -EINVAL;
3131
3132 /* Set the values to the specific association */
3133 if (asoc) {
3134 if (assocparams->sasoc_asocmaxrxt != 0) {
3135 __u32 path_sum = 0;
3136 int paths = 0;
3137 struct sctp_transport *peer_addr;
3138
3139 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
3140 transports) {
3141 path_sum += peer_addr->pathmaxrxt;
3142 paths++;
3143 }
3144
3145 /* Only validate asocmaxrxt if we have more than
3146 * one path/transport. We do this because path
3147 * retransmissions are only counted when we have more
3148 * then one path.
3149 */
3150 if (paths > 1 &&
3151 assocparams->sasoc_asocmaxrxt > path_sum)
3152 return -EINVAL;
3153
3154 asoc->max_retrans = assocparams->sasoc_asocmaxrxt;
3155 }
3156
3157 if (assocparams->sasoc_cookie_life != 0)
3158 asoc->cookie_life =
3159 ms_to_ktime(assocparams->sasoc_cookie_life);
3160 } else {
3161 /* Set the values to the endpoint */
3162 struct sctp_sock *sp = sctp_sk(sk);
3163
3164 if (assocparams->sasoc_asocmaxrxt != 0)
3165 sp->assocparams.sasoc_asocmaxrxt =
3166 assocparams->sasoc_asocmaxrxt;
3167 if (assocparams->sasoc_cookie_life != 0)
3168 sp->assocparams.sasoc_cookie_life =
3169 assocparams->sasoc_cookie_life;
3170 }
3171 return 0;
3172}
3173
3174/*
3175 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
3176 *
3177 * This socket option is a boolean flag which turns on or off mapped V4
3178 * addresses. If this option is turned on and the socket is type
3179 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
3180 * If this option is turned off, then no mapping will be done of V4
3181 * addresses and a user will receive both PF_INET6 and PF_INET type
3182 * addresses on the socket.
3183 */
3184static int sctp_setsockopt_mappedv4(struct sock *sk, int *val,
3185 unsigned int optlen)
3186{
3187 struct sctp_sock *sp = sctp_sk(sk);
3188
3189 if (optlen < sizeof(int))
3190 return -EINVAL;
3191 if (*val)
3192 sp->v4mapped = 1;
3193 else
3194 sp->v4mapped = 0;
3195
3196 return 0;
3197}
3198
3199/*
3200 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
3201 * This option will get or set the maximum size to put in any outgoing
3202 * SCTP DATA chunk. If a message is larger than this size it will be
3203 * fragmented by SCTP into the specified size. Note that the underlying
3204 * SCTP implementation may fragment into smaller sized chunks when the
3205 * PMTU of the underlying association is smaller than the value set by
3206 * the user. The default value for this option is '0' which indicates
3207 * the user is NOT limiting fragmentation and only the PMTU will effect
3208 * SCTP's choice of DATA chunk size. Note also that values set larger
3209 * than the maximum size of an IP datagram will effectively let SCTP
3210 * control fragmentation (i.e. the same as setting this option to 0).
3211 *
3212 * The following structure is used to access and modify this parameter:
3213 *
3214 * struct sctp_assoc_value {
3215 * sctp_assoc_t assoc_id;
3216 * uint32_t assoc_value;
3217 * };
3218 *
3219 * assoc_id: This parameter is ignored for one-to-one style sockets.
3220 * For one-to-many style sockets this parameter indicates which
3221 * association the user is performing an action upon. Note that if
3222 * this field's value is zero then the endpoints default value is
3223 * changed (effecting future associations only).
3224 * assoc_value: This parameter specifies the maximum size in bytes.
3225 */
3226static int sctp_setsockopt_maxseg(struct sock *sk,
3227 struct sctp_assoc_value *params,
3228 unsigned int optlen)
3229{
3230 struct sctp_sock *sp = sctp_sk(sk);
3231 struct sctp_association *asoc;
3232 sctp_assoc_t assoc_id;
3233 int val;
3234
3235 if (optlen == sizeof(int)) {
3236 pr_warn_ratelimited(DEPRECATED
3237 "%s (pid %d) "
3238 "Use of int in maxseg socket option.\n"
3239 "Use struct sctp_assoc_value instead\n",
3240 current->comm, task_pid_nr(current));
3241 assoc_id = SCTP_FUTURE_ASSOC;
3242 val = *(int *)params;
3243 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3244 assoc_id = params->assoc_id;
3245 val = params->assoc_value;
3246 } else {
3247 return -EINVAL;
3248 }
3249
3250 asoc = sctp_id2assoc(sk, assoc_id);
3251 if (!asoc && assoc_id != SCTP_FUTURE_ASSOC &&
3252 sctp_style(sk, UDP))
3253 return -EINVAL;
3254
3255 if (val) {
3256 int min_len, max_len;
3257 __u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) :
3258 sizeof(struct sctp_data_chunk);
3259
3260 min_len = sctp_min_frag_point(sp, datasize);
3261 max_len = SCTP_MAX_CHUNK_LEN - datasize;
3262
3263 if (val < min_len || val > max_len)
3264 return -EINVAL;
3265 }
3266
3267 if (asoc) {
3268 asoc->user_frag = val;
3269 sctp_assoc_update_frag_point(asoc);
3270 } else {
3271 sp->user_frag = val;
3272 }
3273
3274 return 0;
3275}
3276
3277
3278/*
3279 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3280 *
3281 * Requests that the peer mark the enclosed address as the association
3282 * primary. The enclosed address must be one of the association's
3283 * locally bound addresses. The following structure is used to make a
3284 * set primary request:
3285 */
3286static int sctp_setsockopt_peer_primary_addr(struct sock *sk,
3287 struct sctp_setpeerprim *prim,
3288 unsigned int optlen)
3289{
3290 struct sctp_sock *sp;
3291 struct sctp_association *asoc = NULL;
3292 struct sctp_chunk *chunk;
3293 struct sctp_af *af;
3294 int err;
3295
3296 sp = sctp_sk(sk);
3297
3298 if (!sp->ep->asconf_enable)
3299 return -EPERM;
3300
3301 if (optlen != sizeof(struct sctp_setpeerprim))
3302 return -EINVAL;
3303
3304 asoc = sctp_id2assoc(sk, prim->sspp_assoc_id);
3305 if (!asoc)
3306 return -EINVAL;
3307
3308 if (!asoc->peer.asconf_capable)
3309 return -EPERM;
3310
3311 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3312 return -EPERM;
3313
3314 if (!sctp_state(asoc, ESTABLISHED))
3315 return -ENOTCONN;
3316
3317 af = sctp_get_af_specific(prim->sspp_addr.ss_family);
3318 if (!af)
3319 return -EINVAL;
3320
3321 if (!af->addr_valid((union sctp_addr *)&prim->sspp_addr, sp, NULL))
3322 return -EADDRNOTAVAIL;
3323
3324 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim->sspp_addr))
3325 return -EADDRNOTAVAIL;
3326
3327 /* Allow security module to validate address. */
3328 err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR,
3329 (struct sockaddr *)&prim->sspp_addr,
3330 af->sockaddr_len);
3331 if (err)
3332 return err;
3333
3334 /* Create an ASCONF chunk with SET_PRIMARY parameter */
3335 chunk = sctp_make_asconf_set_prim(asoc,
3336 (union sctp_addr *)&prim->sspp_addr);
3337 if (!chunk)
3338 return -ENOMEM;
3339
3340 err = sctp_send_asconf(asoc, chunk);
3341
3342 pr_debug("%s: we set peer primary addr primitively\n", __func__);
3343
3344 return err;
3345}
3346
3347static int sctp_setsockopt_adaptation_layer(struct sock *sk,
3348 struct sctp_setadaptation *adapt,
3349 unsigned int optlen)
3350{
3351 if (optlen != sizeof(struct sctp_setadaptation))
3352 return -EINVAL;
3353
3354 sctp_sk(sk)->adaptation_ind = adapt->ssb_adaptation_ind;
3355
3356 return 0;
3357}
3358
3359/*
3360 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
3361 *
3362 * The context field in the sctp_sndrcvinfo structure is normally only
3363 * used when a failed message is retrieved holding the value that was
3364 * sent down on the actual send call. This option allows the setting of
3365 * a default context on an association basis that will be received on
3366 * reading messages from the peer. This is especially helpful in the
3367 * one-2-many model for an application to keep some reference to an
3368 * internal state machine that is processing messages on the
3369 * association. Note that the setting of this value only effects
3370 * received messages from the peer and does not effect the value that is
3371 * saved with outbound messages.
3372 */
3373static int sctp_setsockopt_context(struct sock *sk,
3374 struct sctp_assoc_value *params,
3375 unsigned int optlen)
3376{
3377 struct sctp_sock *sp = sctp_sk(sk);
3378 struct sctp_association *asoc;
3379
3380 if (optlen != sizeof(struct sctp_assoc_value))
3381 return -EINVAL;
3382
3383 asoc = sctp_id2assoc(sk, params->assoc_id);
3384 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC &&
3385 sctp_style(sk, UDP))
3386 return -EINVAL;
3387
3388 if (asoc) {
3389 asoc->default_rcv_context = params->assoc_value;
3390
3391 return 0;
3392 }
3393
3394 if (sctp_style(sk, TCP))
3395 params->assoc_id = SCTP_FUTURE_ASSOC;
3396
3397 if (params->assoc_id == SCTP_FUTURE_ASSOC ||
3398 params->assoc_id == SCTP_ALL_ASSOC)
3399 sp->default_rcv_context = params->assoc_value;
3400
3401 if (params->assoc_id == SCTP_CURRENT_ASSOC ||
3402 params->assoc_id == SCTP_ALL_ASSOC)
3403 list_for_each_entry(asoc, &sp->ep->asocs, asocs)
3404 asoc->default_rcv_context = params->assoc_value;
3405
3406 return 0;
3407}
3408
3409/*
3410 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3411 *
3412 * This options will at a minimum specify if the implementation is doing
3413 * fragmented interleave. Fragmented interleave, for a one to many
3414 * socket, is when subsequent calls to receive a message may return
3415 * parts of messages from different associations. Some implementations
3416 * may allow you to turn this value on or off. If so, when turned off,
3417 * no fragment interleave will occur (which will cause a head of line
3418 * blocking amongst multiple associations sharing the same one to many
3419 * socket). When this option is turned on, then each receive call may
3420 * come from a different association (thus the user must receive data
3421 * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3422 * association each receive belongs to.
3423 *
3424 * This option takes a boolean value. A non-zero value indicates that
3425 * fragmented interleave is on. A value of zero indicates that
3426 * fragmented interleave is off.
3427 *
3428 * Note that it is important that an implementation that allows this
3429 * option to be turned on, have it off by default. Otherwise an unaware
3430 * application using the one to many model may become confused and act
3431 * incorrectly.
3432 */
3433static int sctp_setsockopt_fragment_interleave(struct sock *sk, int *val,
3434 unsigned int optlen)
3435{
3436 if (optlen != sizeof(int))
3437 return -EINVAL;
3438
3439 sctp_sk(sk)->frag_interleave = !!*val;
3440
3441 if (!sctp_sk(sk)->frag_interleave)
3442 sctp_sk(sk)->ep->intl_enable = 0;
3443
3444 return 0;
3445}
3446
3447/*
3448 * 8.1.21. Set or Get the SCTP Partial Delivery Point
3449 * (SCTP_PARTIAL_DELIVERY_POINT)
3450 *
3451 * This option will set or get the SCTP partial delivery point. This
3452 * point is the size of a message where the partial delivery API will be
3453 * invoked to help free up rwnd space for the peer. Setting this to a
3454 * lower value will cause partial deliveries to happen more often. The
3455 * calls argument is an integer that sets or gets the partial delivery
3456 * point. Note also that the call will fail if the user attempts to set
3457 * this value larger than the socket receive buffer size.
3458 *
3459 * Note that any single message having a length smaller than or equal to
3460 * the SCTP partial delivery point will be delivered in one single read
3461 * call as long as the user provided buffer is large enough to hold the
3462 * message.
3463 */
3464static int sctp_setsockopt_partial_delivery_point(struct sock *sk, u32 *val,
3465 unsigned int optlen)
3466{
3467 if (optlen != sizeof(u32))
3468 return -EINVAL;
3469
3470 /* Note: We double the receive buffer from what the user sets
3471 * it to be, also initial rwnd is based on rcvbuf/2.
3472 */
3473 if (*val > (sk->sk_rcvbuf >> 1))
3474 return -EINVAL;
3475
3476 sctp_sk(sk)->pd_point = *val;
3477
3478 return 0; /* is this the right error code? */
3479}
3480
3481/*
3482 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
3483 *
3484 * This option will allow a user to change the maximum burst of packets
3485 * that can be emitted by this association. Note that the default value
3486 * is 4, and some implementations may restrict this setting so that it
3487 * can only be lowered.
3488 *
3489 * NOTE: This text doesn't seem right. Do this on a socket basis with
3490 * future associations inheriting the socket value.
3491 */
3492static int sctp_setsockopt_maxburst(struct sock *sk,
3493 struct sctp_assoc_value *params,
3494 unsigned int optlen)
3495{
3496 struct sctp_sock *sp = sctp_sk(sk);
3497 struct sctp_association *asoc;
3498 sctp_assoc_t assoc_id;
3499 u32 assoc_value;
3500
3501 if (optlen == sizeof(int)) {
3502 pr_warn_ratelimited(DEPRECATED
3503 "%s (pid %d) "
3504 "Use of int in max_burst socket option deprecated.\n"
3505 "Use struct sctp_assoc_value instead\n",
3506 current->comm, task_pid_nr(current));
3507 assoc_id = SCTP_FUTURE_ASSOC;
3508 assoc_value = *((int *)params);
3509 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3510 assoc_id = params->assoc_id;
3511 assoc_value = params->assoc_value;
3512 } else
3513 return -EINVAL;
3514
3515 asoc = sctp_id2assoc(sk, assoc_id);
3516 if (!asoc && assoc_id > SCTP_ALL_ASSOC && sctp_style(sk, UDP))
3517 return -EINVAL;
3518
3519 if (asoc) {
3520 asoc->max_burst = assoc_value;
3521
3522 return 0;
3523 }
3524
3525 if (sctp_style(sk, TCP))
3526 assoc_id = SCTP_FUTURE_ASSOC;
3527
3528 if (assoc_id == SCTP_FUTURE_ASSOC || assoc_id == SCTP_ALL_ASSOC)
3529 sp->max_burst = assoc_value;
3530
3531 if (assoc_id == SCTP_CURRENT_ASSOC || assoc_id == SCTP_ALL_ASSOC)
3532 list_for_each_entry(asoc, &sp->ep->asocs, asocs)
3533 asoc->max_burst = assoc_value;
3534
3535 return 0;
3536}
3537
3538/*
3539 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3540 *
3541 * This set option adds a chunk type that the user is requesting to be
3542 * received only in an authenticated way. Changes to the list of chunks
3543 * will only effect future associations on the socket.
3544 */
3545static int sctp_setsockopt_auth_chunk(struct sock *sk,
3546 struct sctp_authchunk *val,
3547 unsigned int optlen)
3548{
3549 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3550
3551 if (!ep->auth_enable)
3552 return -EACCES;
3553
3554 if (optlen != sizeof(struct sctp_authchunk))
3555 return -EINVAL;
3556
3557 switch (val->sauth_chunk) {
3558 case SCTP_CID_INIT:
3559 case SCTP_CID_INIT_ACK:
3560 case SCTP_CID_SHUTDOWN_COMPLETE:
3561 case SCTP_CID_AUTH:
3562 return -EINVAL;
3563 }
3564
3565 /* add this chunk id to the endpoint */
3566 return sctp_auth_ep_add_chunkid(ep, val->sauth_chunk);
3567}
3568
3569/*
3570 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3571 *
3572 * This option gets or sets the list of HMAC algorithms that the local
3573 * endpoint requires the peer to use.
3574 */
3575static int sctp_setsockopt_hmac_ident(struct sock *sk,
3576 struct sctp_hmacalgo *hmacs,
3577 unsigned int optlen)
3578{
3579 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3580 u32 idents;
3581
3582 if (!ep->auth_enable)
3583 return -EACCES;
3584
3585 if (optlen < sizeof(struct sctp_hmacalgo))
3586 return -EINVAL;
3587 optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) +
3588 SCTP_AUTH_NUM_HMACS * sizeof(u16));
3589
3590 idents = hmacs->shmac_num_idents;
3591 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3592 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo)))
3593 return -EINVAL;
3594
3595 return sctp_auth_ep_set_hmacs(ep, hmacs);
3596}
3597
3598/*
3599 * 7.1.20. Set a shared key (SCTP_AUTH_KEY)
3600 *
3601 * This option will set a shared secret key which is used to build an
3602 * association shared key.
3603 */
3604static int sctp_setsockopt_auth_key(struct sock *sk,
3605 struct sctp_authkey *authkey,
3606 unsigned int optlen)
3607{
3608 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3609 struct sctp_association *asoc;
3610 int ret = -EINVAL;
3611
3612 if (optlen <= sizeof(struct sctp_authkey))
3613 return -EINVAL;
3614 /* authkey->sca_keylength is u16, so optlen can't be bigger than
3615 * this.
3616 */
3617 optlen = min_t(unsigned int, optlen, USHRT_MAX + sizeof(*authkey));
3618
3619 if (authkey->sca_keylength > optlen - sizeof(*authkey))
3620 goto out;
3621
3622 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3623 if (!asoc && authkey->sca_assoc_id > SCTP_ALL_ASSOC &&
3624 sctp_style(sk, UDP))
3625 goto out;
3626
3627 if (asoc) {
3628 ret = sctp_auth_set_key(ep, asoc, authkey);
3629 goto out;
3630 }
3631
3632 if (sctp_style(sk, TCP))
3633 authkey->sca_assoc_id = SCTP_FUTURE_ASSOC;
3634
3635 if (authkey->sca_assoc_id == SCTP_FUTURE_ASSOC ||
3636 authkey->sca_assoc_id == SCTP_ALL_ASSOC) {
3637 ret = sctp_auth_set_key(ep, asoc, authkey);
3638 if (ret)
3639 goto out;
3640 }
3641
3642 ret = 0;
3643
3644 if (authkey->sca_assoc_id == SCTP_CURRENT_ASSOC ||
3645 authkey->sca_assoc_id == SCTP_ALL_ASSOC) {
3646 list_for_each_entry(asoc, &ep->asocs, asocs) {
3647 int res = sctp_auth_set_key(ep, asoc, authkey);
3648
3649 if (res && !ret)
3650 ret = res;
3651 }
3652 }
3653
3654out:
3655 memzero_explicit(authkey, optlen);
3656 return ret;
3657}
3658
3659/*
3660 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3661 *
3662 * This option will get or set the active shared key to be used to build
3663 * the association shared key.
3664 */
3665static int sctp_setsockopt_active_key(struct sock *sk,
3666 struct sctp_authkeyid *val,
3667 unsigned int optlen)
3668{
3669 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3670 struct sctp_association *asoc;
3671 int ret = 0;
3672
3673 if (optlen != sizeof(struct sctp_authkeyid))
3674 return -EINVAL;
3675
3676 asoc = sctp_id2assoc(sk, val->scact_assoc_id);
3677 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC &&
3678 sctp_style(sk, UDP))
3679 return -EINVAL;
3680
3681 if (asoc)
3682 return sctp_auth_set_active_key(ep, asoc, val->scact_keynumber);
3683
3684 if (sctp_style(sk, TCP))
3685 val->scact_assoc_id = SCTP_FUTURE_ASSOC;
3686
3687 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC ||
3688 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3689 ret = sctp_auth_set_active_key(ep, asoc, val->scact_keynumber);
3690 if (ret)
3691 return ret;
3692 }
3693
3694 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC ||
3695 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3696 list_for_each_entry(asoc, &ep->asocs, asocs) {
3697 int res = sctp_auth_set_active_key(ep, asoc,
3698 val->scact_keynumber);
3699
3700 if (res && !ret)
3701 ret = res;
3702 }
3703 }
3704
3705 return ret;
3706}
3707
3708/*
3709 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY)
3710 *
3711 * This set option will delete a shared secret key from use.
3712 */
3713static int sctp_setsockopt_del_key(struct sock *sk,
3714 struct sctp_authkeyid *val,
3715 unsigned int optlen)
3716{
3717 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3718 struct sctp_association *asoc;
3719 int ret = 0;
3720
3721 if (optlen != sizeof(struct sctp_authkeyid))
3722 return -EINVAL;
3723
3724 asoc = sctp_id2assoc(sk, val->scact_assoc_id);
3725 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC &&
3726 sctp_style(sk, UDP))
3727 return -EINVAL;
3728
3729 if (asoc)
3730 return sctp_auth_del_key_id(ep, asoc, val->scact_keynumber);
3731
3732 if (sctp_style(sk, TCP))
3733 val->scact_assoc_id = SCTP_FUTURE_ASSOC;
3734
3735 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC ||
3736 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3737 ret = sctp_auth_del_key_id(ep, asoc, val->scact_keynumber);
3738 if (ret)
3739 return ret;
3740 }
3741
3742 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC ||
3743 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3744 list_for_each_entry(asoc, &ep->asocs, asocs) {
3745 int res = sctp_auth_del_key_id(ep, asoc,
3746 val->scact_keynumber);
3747
3748 if (res && !ret)
3749 ret = res;
3750 }
3751 }
3752
3753 return ret;
3754}
3755
3756/*
3757 * 8.3.4 Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY)
3758 *
3759 * This set option will deactivate a shared secret key.
3760 */
3761static int sctp_setsockopt_deactivate_key(struct sock *sk,
3762 struct sctp_authkeyid *val,
3763 unsigned int optlen)
3764{
3765 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3766 struct sctp_association *asoc;
3767 int ret = 0;
3768
3769 if (optlen != sizeof(struct sctp_authkeyid))
3770 return -EINVAL;
3771
3772 asoc = sctp_id2assoc(sk, val->scact_assoc_id);
3773 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC &&
3774 sctp_style(sk, UDP))
3775 return -EINVAL;
3776
3777 if (asoc)
3778 return sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber);
3779
3780 if (sctp_style(sk, TCP))
3781 val->scact_assoc_id = SCTP_FUTURE_ASSOC;
3782
3783 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC ||
3784 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3785 ret = sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber);
3786 if (ret)
3787 return ret;
3788 }
3789
3790 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC ||
3791 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3792 list_for_each_entry(asoc, &ep->asocs, asocs) {
3793 int res = sctp_auth_deact_key_id(ep, asoc,
3794 val->scact_keynumber);
3795
3796 if (res && !ret)
3797 ret = res;
3798 }
3799 }
3800
3801 return ret;
3802}
3803
3804/*
3805 * 8.1.23 SCTP_AUTO_ASCONF
3806 *
3807 * This option will enable or disable the use of the automatic generation of
3808 * ASCONF chunks to add and delete addresses to an existing association. Note
3809 * that this option has two caveats namely: a) it only affects sockets that
3810 * are bound to all addresses available to the SCTP stack, and b) the system
3811 * administrator may have an overriding control that turns the ASCONF feature
3812 * off no matter what setting the socket option may have.
3813 * This option expects an integer boolean flag, where a non-zero value turns on
3814 * the option, and a zero value turns off the option.
3815 * Note. In this implementation, socket operation overrides default parameter
3816 * being set by sysctl as well as FreeBSD implementation
3817 */
3818static int sctp_setsockopt_auto_asconf(struct sock *sk, int *val,
3819 unsigned int optlen)
3820{
3821 struct sctp_sock *sp = sctp_sk(sk);
3822
3823 if (optlen < sizeof(int))
3824 return -EINVAL;
3825 if (!sctp_is_ep_boundall(sk) && *val)
3826 return -EINVAL;
3827 if ((*val && sp->do_auto_asconf) || (!*val && !sp->do_auto_asconf))
3828 return 0;
3829
3830 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3831 if (*val == 0 && sp->do_auto_asconf) {
3832 list_del(&sp->auto_asconf_list);
3833 sp->do_auto_asconf = 0;
3834 } else if (*val && !sp->do_auto_asconf) {
3835 list_add_tail(&sp->auto_asconf_list,
3836 &sock_net(sk)->sctp.auto_asconf_splist);
3837 sp->do_auto_asconf = 1;
3838 }
3839 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3840 return 0;
3841}
3842
3843/*
3844 * SCTP_PEER_ADDR_THLDS
3845 *
3846 * This option allows us to alter the partially failed threshold for one or all
3847 * transports in an association. See Section 6.1 of:
3848 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3849 */
3850static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3851 struct sctp_paddrthlds_v2 *val,
3852 unsigned int optlen, bool v2)
3853{
3854 struct sctp_transport *trans;
3855 struct sctp_association *asoc;
3856 int len;
3857
3858 len = v2 ? sizeof(*val) : sizeof(struct sctp_paddrthlds);
3859 if (optlen < len)
3860 return -EINVAL;
3861
3862 if (v2 && val->spt_pathpfthld > val->spt_pathcpthld)
3863 return -EINVAL;
3864
3865 if (!sctp_is_any(sk, (const union sctp_addr *)&val->spt_address)) {
3866 trans = sctp_addr_id2transport(sk, &val->spt_address,
3867 val->spt_assoc_id);
3868 if (!trans)
3869 return -ENOENT;
3870
3871 if (val->spt_pathmaxrxt)
3872 trans->pathmaxrxt = val->spt_pathmaxrxt;
3873 if (v2)
3874 trans->ps_retrans = val->spt_pathcpthld;
3875 trans->pf_retrans = val->spt_pathpfthld;
3876
3877 return 0;
3878 }
3879
3880 asoc = sctp_id2assoc(sk, val->spt_assoc_id);
3881 if (!asoc && val->spt_assoc_id != SCTP_FUTURE_ASSOC &&
3882 sctp_style(sk, UDP))
3883 return -EINVAL;
3884
3885 if (asoc) {
3886 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3887 transports) {
3888 if (val->spt_pathmaxrxt)
3889 trans->pathmaxrxt = val->spt_pathmaxrxt;
3890 if (v2)
3891 trans->ps_retrans = val->spt_pathcpthld;
3892 trans->pf_retrans = val->spt_pathpfthld;
3893 }
3894
3895 if (val->spt_pathmaxrxt)
3896 asoc->pathmaxrxt = val->spt_pathmaxrxt;
3897 if (v2)
3898 asoc->ps_retrans = val->spt_pathcpthld;
3899 asoc->pf_retrans = val->spt_pathpfthld;
3900 } else {
3901 struct sctp_sock *sp = sctp_sk(sk);
3902
3903 if (val->spt_pathmaxrxt)
3904 sp->pathmaxrxt = val->spt_pathmaxrxt;
3905 if (v2)
3906 sp->ps_retrans = val->spt_pathcpthld;
3907 sp->pf_retrans = val->spt_pathpfthld;
3908 }
3909
3910 return 0;
3911}
3912
3913static int sctp_setsockopt_recvrcvinfo(struct sock *sk, int *val,
3914 unsigned int optlen)
3915{
3916 if (optlen < sizeof(int))
3917 return -EINVAL;
3918
3919 sctp_sk(sk)->recvrcvinfo = (*val == 0) ? 0 : 1;
3920
3921 return 0;
3922}
3923
3924static int sctp_setsockopt_recvnxtinfo(struct sock *sk, int *val,
3925 unsigned int optlen)
3926{
3927 if (optlen < sizeof(int))
3928 return -EINVAL;
3929
3930 sctp_sk(sk)->recvnxtinfo = (*val == 0) ? 0 : 1;
3931
3932 return 0;
3933}
3934
3935static int sctp_setsockopt_pr_supported(struct sock *sk,
3936 struct sctp_assoc_value *params,
3937 unsigned int optlen)
3938{
3939 struct sctp_association *asoc;
3940
3941 if (optlen != sizeof(*params))
3942 return -EINVAL;
3943
3944 asoc = sctp_id2assoc(sk, params->assoc_id);
3945 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
3946 sctp_style(sk, UDP))
3947 return -EINVAL;
3948
3949 sctp_sk(sk)->ep->prsctp_enable = !!params->assoc_value;
3950
3951 return 0;
3952}
3953
3954static int sctp_setsockopt_default_prinfo(struct sock *sk,
3955 struct sctp_default_prinfo *info,
3956 unsigned int optlen)
3957{
3958 struct sctp_sock *sp = sctp_sk(sk);
3959 struct sctp_association *asoc;
3960 int retval = -EINVAL;
3961
3962 if (optlen != sizeof(*info))
3963 goto out;
3964
3965 if (info->pr_policy & ~SCTP_PR_SCTP_MASK)
3966 goto out;
3967
3968 if (info->pr_policy == SCTP_PR_SCTP_NONE)
3969 info->pr_value = 0;
3970
3971 asoc = sctp_id2assoc(sk, info->pr_assoc_id);
3972 if (!asoc && info->pr_assoc_id > SCTP_ALL_ASSOC &&
3973 sctp_style(sk, UDP))
3974 goto out;
3975
3976 retval = 0;
3977
3978 if (asoc) {
3979 SCTP_PR_SET_POLICY(asoc->default_flags, info->pr_policy);
3980 asoc->default_timetolive = info->pr_value;
3981 goto out;
3982 }
3983
3984 if (sctp_style(sk, TCP))
3985 info->pr_assoc_id = SCTP_FUTURE_ASSOC;
3986
3987 if (info->pr_assoc_id == SCTP_FUTURE_ASSOC ||
3988 info->pr_assoc_id == SCTP_ALL_ASSOC) {
3989 SCTP_PR_SET_POLICY(sp->default_flags, info->pr_policy);
3990 sp->default_timetolive = info->pr_value;
3991 }
3992
3993 if (info->pr_assoc_id == SCTP_CURRENT_ASSOC ||
3994 info->pr_assoc_id == SCTP_ALL_ASSOC) {
3995 list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
3996 SCTP_PR_SET_POLICY(asoc->default_flags,
3997 info->pr_policy);
3998 asoc->default_timetolive = info->pr_value;
3999 }
4000 }
4001
4002out:
4003 return retval;
4004}
4005
4006static int sctp_setsockopt_reconfig_supported(struct sock *sk,
4007 struct sctp_assoc_value *params,
4008 unsigned int optlen)
4009{
4010 struct sctp_association *asoc;
4011 int retval = -EINVAL;
4012
4013 if (optlen != sizeof(*params))
4014 goto out;
4015
4016 asoc = sctp_id2assoc(sk, params->assoc_id);
4017 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4018 sctp_style(sk, UDP))
4019 goto out;
4020
4021 sctp_sk(sk)->ep->reconf_enable = !!params->assoc_value;
4022
4023 retval = 0;
4024
4025out:
4026 return retval;
4027}
4028
4029static int sctp_setsockopt_enable_strreset(struct sock *sk,
4030 struct sctp_assoc_value *params,
4031 unsigned int optlen)
4032{
4033 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
4034 struct sctp_association *asoc;
4035 int retval = -EINVAL;
4036
4037 if (optlen != sizeof(*params))
4038 goto out;
4039
4040 if (params->assoc_value & (~SCTP_ENABLE_STRRESET_MASK))
4041 goto out;
4042
4043 asoc = sctp_id2assoc(sk, params->assoc_id);
4044 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC &&
4045 sctp_style(sk, UDP))
4046 goto out;
4047
4048 retval = 0;
4049
4050 if (asoc) {
4051 asoc->strreset_enable = params->assoc_value;
4052 goto out;
4053 }
4054
4055 if (sctp_style(sk, TCP))
4056 params->assoc_id = SCTP_FUTURE_ASSOC;
4057
4058 if (params->assoc_id == SCTP_FUTURE_ASSOC ||
4059 params->assoc_id == SCTP_ALL_ASSOC)
4060 ep->strreset_enable = params->assoc_value;
4061
4062 if (params->assoc_id == SCTP_CURRENT_ASSOC ||
4063 params->assoc_id == SCTP_ALL_ASSOC)
4064 list_for_each_entry(asoc, &ep->asocs, asocs)
4065 asoc->strreset_enable = params->assoc_value;
4066
4067out:
4068 return retval;
4069}
4070
4071static int sctp_setsockopt_reset_streams(struct sock *sk,
4072 struct sctp_reset_streams *params,
4073 unsigned int optlen)
4074{
4075 struct sctp_association *asoc;
4076
4077 if (optlen < sizeof(*params))
4078 return -EINVAL;
4079 /* srs_number_streams is u16, so optlen can't be bigger than this. */
4080 optlen = min_t(unsigned int, optlen, USHRT_MAX +
4081 sizeof(__u16) * sizeof(*params));
4082
4083 if (params->srs_number_streams * sizeof(__u16) >
4084 optlen - sizeof(*params))
4085 return -EINVAL;
4086
4087 asoc = sctp_id2assoc(sk, params->srs_assoc_id);
4088 if (!asoc)
4089 return -EINVAL;
4090
4091 return sctp_send_reset_streams(asoc, params);
4092}
4093
4094static int sctp_setsockopt_reset_assoc(struct sock *sk, sctp_assoc_t *associd,
4095 unsigned int optlen)
4096{
4097 struct sctp_association *asoc;
4098
4099 if (optlen != sizeof(*associd))
4100 return -EINVAL;
4101
4102 asoc = sctp_id2assoc(sk, *associd);
4103 if (!asoc)
4104 return -EINVAL;
4105
4106 return sctp_send_reset_assoc(asoc);
4107}
4108
4109static int sctp_setsockopt_add_streams(struct sock *sk,
4110 struct sctp_add_streams *params,
4111 unsigned int optlen)
4112{
4113 struct sctp_association *asoc;
4114
4115 if (optlen != sizeof(*params))
4116 return -EINVAL;
4117
4118 asoc = sctp_id2assoc(sk, params->sas_assoc_id);
4119 if (!asoc)
4120 return -EINVAL;
4121
4122 return sctp_send_add_streams(asoc, params);
4123}
4124
4125static int sctp_setsockopt_scheduler(struct sock *sk,
4126 struct sctp_assoc_value *params,
4127 unsigned int optlen)
4128{
4129 struct sctp_sock *sp = sctp_sk(sk);
4130 struct sctp_association *asoc;
4131 int retval = 0;
4132
4133 if (optlen < sizeof(*params))
4134 return -EINVAL;
4135
4136 if (params->assoc_value > SCTP_SS_MAX)
4137 return -EINVAL;
4138
4139 asoc = sctp_id2assoc(sk, params->assoc_id);
4140 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC &&
4141 sctp_style(sk, UDP))
4142 return -EINVAL;
4143
4144 if (asoc)
4145 return sctp_sched_set_sched(asoc, params->assoc_value);
4146
4147 if (sctp_style(sk, TCP))
4148 params->assoc_id = SCTP_FUTURE_ASSOC;
4149
4150 if (params->assoc_id == SCTP_FUTURE_ASSOC ||
4151 params->assoc_id == SCTP_ALL_ASSOC)
4152 sp->default_ss = params->assoc_value;
4153
4154 if (params->assoc_id == SCTP_CURRENT_ASSOC ||
4155 params->assoc_id == SCTP_ALL_ASSOC) {
4156 list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4157 int ret = sctp_sched_set_sched(asoc,
4158 params->assoc_value);
4159
4160 if (ret && !retval)
4161 retval = ret;
4162 }
4163 }
4164
4165 return retval;
4166}
4167
4168static int sctp_setsockopt_scheduler_value(struct sock *sk,
4169 struct sctp_stream_value *params,
4170 unsigned int optlen)
4171{
4172 struct sctp_association *asoc;
4173 int retval = -EINVAL;
4174
4175 if (optlen < sizeof(*params))
4176 goto out;
4177
4178 asoc = sctp_id2assoc(sk, params->assoc_id);
4179 if (!asoc && params->assoc_id != SCTP_CURRENT_ASSOC &&
4180 sctp_style(sk, UDP))
4181 goto out;
4182
4183 if (asoc) {
4184 retval = sctp_sched_set_value(asoc, params->stream_id,
4185 params->stream_value, GFP_KERNEL);
4186 goto out;
4187 }
4188
4189 retval = 0;
4190
4191 list_for_each_entry(asoc, &sctp_sk(sk)->ep->asocs, asocs) {
4192 int ret = sctp_sched_set_value(asoc, params->stream_id,
4193 params->stream_value,
4194 GFP_KERNEL);
4195 if (ret && !retval) /* try to return the 1st error. */
4196 retval = ret;
4197 }
4198
4199out:
4200 return retval;
4201}
4202
4203static int sctp_setsockopt_interleaving_supported(struct sock *sk,
4204 struct sctp_assoc_value *p,
4205 unsigned int optlen)
4206{
4207 struct sctp_sock *sp = sctp_sk(sk);
4208 struct sctp_association *asoc;
4209
4210 if (optlen < sizeof(*p))
4211 return -EINVAL;
4212
4213 asoc = sctp_id2assoc(sk, p->assoc_id);
4214 if (!asoc && p->assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP))
4215 return -EINVAL;
4216
4217 if (!sock_net(sk)->sctp.intl_enable || !sp->frag_interleave) {
4218 return -EPERM;
4219 }
4220
4221 sp->ep->intl_enable = !!p->assoc_value;
4222 return 0;
4223}
4224
4225static int sctp_setsockopt_reuse_port(struct sock *sk, int *val,
4226 unsigned int optlen)
4227{
4228 if (!sctp_style(sk, TCP))
4229 return -EOPNOTSUPP;
4230
4231 if (sctp_sk(sk)->ep->base.bind_addr.port)
4232 return -EFAULT;
4233
4234 if (optlen < sizeof(int))
4235 return -EINVAL;
4236
4237 sctp_sk(sk)->reuse = !!*val;
4238
4239 return 0;
4240}
4241
4242static int sctp_assoc_ulpevent_type_set(struct sctp_event *param,
4243 struct sctp_association *asoc)
4244{
4245 struct sctp_ulpevent *event;
4246
4247 sctp_ulpevent_type_set(&asoc->subscribe, param->se_type, param->se_on);
4248
4249 if (param->se_type == SCTP_SENDER_DRY_EVENT && param->se_on) {
4250 if (sctp_outq_is_empty(&asoc->outqueue)) {
4251 event = sctp_ulpevent_make_sender_dry_event(asoc,
4252 GFP_USER | __GFP_NOWARN);
4253 if (!event)
4254 return -ENOMEM;
4255
4256 asoc->stream.si->enqueue_event(&asoc->ulpq, event);
4257 }
4258 }
4259
4260 return 0;
4261}
4262
4263static int sctp_setsockopt_event(struct sock *sk, struct sctp_event *param,
4264 unsigned int optlen)
4265{
4266 struct sctp_sock *sp = sctp_sk(sk);
4267 struct sctp_association *asoc;
4268 int retval = 0;
4269
4270 if (optlen < sizeof(*param))
4271 return -EINVAL;
4272
4273 if (param->se_type < SCTP_SN_TYPE_BASE ||
4274 param->se_type > SCTP_SN_TYPE_MAX)
4275 return -EINVAL;
4276
4277 asoc = sctp_id2assoc(sk, param->se_assoc_id);
4278 if (!asoc && param->se_assoc_id > SCTP_ALL_ASSOC &&
4279 sctp_style(sk, UDP))
4280 return -EINVAL;
4281
4282 if (asoc)
4283 return sctp_assoc_ulpevent_type_set(param, asoc);
4284
4285 if (sctp_style(sk, TCP))
4286 param->se_assoc_id = SCTP_FUTURE_ASSOC;
4287
4288 if (param->se_assoc_id == SCTP_FUTURE_ASSOC ||
4289 param->se_assoc_id == SCTP_ALL_ASSOC)
4290 sctp_ulpevent_type_set(&sp->subscribe,
4291 param->se_type, param->se_on);
4292
4293 if (param->se_assoc_id == SCTP_CURRENT_ASSOC ||
4294 param->se_assoc_id == SCTP_ALL_ASSOC) {
4295 list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4296 int ret = sctp_assoc_ulpevent_type_set(param, asoc);
4297
4298 if (ret && !retval)
4299 retval = ret;
4300 }
4301 }
4302
4303 return retval;
4304}
4305
4306static int sctp_setsockopt_asconf_supported(struct sock *sk,
4307 struct sctp_assoc_value *params,
4308 unsigned int optlen)
4309{
4310 struct sctp_association *asoc;
4311 struct sctp_endpoint *ep;
4312 int retval = -EINVAL;
4313
4314 if (optlen != sizeof(*params))
4315 goto out;
4316
4317 asoc = sctp_id2assoc(sk, params->assoc_id);
4318 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4319 sctp_style(sk, UDP))
4320 goto out;
4321
4322 ep = sctp_sk(sk)->ep;
4323 ep->asconf_enable = !!params->assoc_value;
4324
4325 if (ep->asconf_enable && ep->auth_enable) {
4326 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF);
4327 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK);
4328 }
4329
4330 retval = 0;
4331
4332out:
4333 return retval;
4334}
4335
4336static int sctp_setsockopt_auth_supported(struct sock *sk,
4337 struct sctp_assoc_value *params,
4338 unsigned int optlen)
4339{
4340 struct sctp_association *asoc;
4341 struct sctp_endpoint *ep;
4342 int retval = -EINVAL;
4343
4344 if (optlen != sizeof(*params))
4345 goto out;
4346
4347 asoc = sctp_id2assoc(sk, params->assoc_id);
4348 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4349 sctp_style(sk, UDP))
4350 goto out;
4351
4352 ep = sctp_sk(sk)->ep;
4353 if (params->assoc_value) {
4354 retval = sctp_auth_init(ep, GFP_KERNEL);
4355 if (retval)
4356 goto out;
4357 if (ep->asconf_enable) {
4358 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF);
4359 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK);
4360 }
4361 }
4362
4363 ep->auth_enable = !!params->assoc_value;
4364 retval = 0;
4365
4366out:
4367 return retval;
4368}
4369
4370static int sctp_setsockopt_ecn_supported(struct sock *sk,
4371 struct sctp_assoc_value *params,
4372 unsigned int optlen)
4373{
4374 struct sctp_association *asoc;
4375 int retval = -EINVAL;
4376
4377 if (optlen != sizeof(*params))
4378 goto out;
4379
4380 asoc = sctp_id2assoc(sk, params->assoc_id);
4381 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4382 sctp_style(sk, UDP))
4383 goto out;
4384
4385 sctp_sk(sk)->ep->ecn_enable = !!params->assoc_value;
4386 retval = 0;
4387
4388out:
4389 return retval;
4390}
4391
4392static int sctp_setsockopt_pf_expose(struct sock *sk,
4393 struct sctp_assoc_value *params,
4394 unsigned int optlen)
4395{
4396 struct sctp_association *asoc;
4397 int retval = -EINVAL;
4398
4399 if (optlen != sizeof(*params))
4400 goto out;
4401
4402 if (params->assoc_value > SCTP_PF_EXPOSE_MAX)
4403 goto out;
4404
4405 asoc = sctp_id2assoc(sk, params->assoc_id);
4406 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4407 sctp_style(sk, UDP))
4408 goto out;
4409
4410 if (asoc)
4411 asoc->pf_expose = params->assoc_value;
4412 else
4413 sctp_sk(sk)->pf_expose = params->assoc_value;
4414 retval = 0;
4415
4416out:
4417 return retval;
4418}
4419
4420static int sctp_setsockopt_encap_port(struct sock *sk,
4421 struct sctp_udpencaps *encap,
4422 unsigned int optlen)
4423{
4424 struct sctp_association *asoc;
4425 struct sctp_transport *t;
4426 __be16 encap_port;
4427
4428 if (optlen != sizeof(*encap))
4429 return -EINVAL;
4430
4431 /* If an address other than INADDR_ANY is specified, and
4432 * no transport is found, then the request is invalid.
4433 */
4434 encap_port = (__force __be16)encap->sue_port;
4435 if (!sctp_is_any(sk, (union sctp_addr *)&encap->sue_address)) {
4436 t = sctp_addr_id2transport(sk, &encap->sue_address,
4437 encap->sue_assoc_id);
4438 if (!t)
4439 return -EINVAL;
4440
4441 t->encap_port = encap_port;
4442 return 0;
4443 }
4444
4445 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
4446 * socket is a one to many style socket, and an association
4447 * was not found, then the id was invalid.
4448 */
4449 asoc = sctp_id2assoc(sk, encap->sue_assoc_id);
4450 if (!asoc && encap->sue_assoc_id != SCTP_FUTURE_ASSOC &&
4451 sctp_style(sk, UDP))
4452 return -EINVAL;
4453
4454 /* If changes are for association, also apply encap_port to
4455 * each transport.
4456 */
4457 if (asoc) {
4458 list_for_each_entry(t, &asoc->peer.transport_addr_list,
4459 transports)
4460 t->encap_port = encap_port;
4461
4462 return 0;
4463 }
4464
4465 sctp_sk(sk)->encap_port = encap_port;
4466 return 0;
4467}
4468
4469/* API 6.2 setsockopt(), getsockopt()
4470 *
4471 * Applications use setsockopt() and getsockopt() to set or retrieve
4472 * socket options. Socket options are used to change the default
4473 * behavior of sockets calls. They are described in Section 7.
4474 *
4475 * The syntax is:
4476 *
4477 * ret = getsockopt(int sd, int level, int optname, void __user *optval,
4478 * int __user *optlen);
4479 * ret = setsockopt(int sd, int level, int optname, const void __user *optval,
4480 * int optlen);
4481 *
4482 * sd - the socket descript.
4483 * level - set to IPPROTO_SCTP for all SCTP options.
4484 * optname - the option name.
4485 * optval - the buffer to store the value of the option.
4486 * optlen - the size of the buffer.
4487 */
4488static int sctp_setsockopt(struct sock *sk, int level, int optname,
4489 sockptr_t optval, unsigned int optlen)
4490{
4491 void *kopt = NULL;
4492 int retval = 0;
4493
4494 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
4495
4496 /* I can hardly begin to describe how wrong this is. This is
4497 * so broken as to be worse than useless. The API draft
4498 * REALLY is NOT helpful here... I am not convinced that the
4499 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
4500 * are at all well-founded.
4501 */
4502 if (level != SOL_SCTP) {
4503 struct sctp_af *af = sctp_sk(sk)->pf->af;
4504
4505 return af->setsockopt(sk, level, optname, optval, optlen);
4506 }
4507
4508 if (optlen > 0) {
4509 kopt = memdup_sockptr(optval, optlen);
4510 if (IS_ERR(kopt))
4511 return PTR_ERR(kopt);
4512 }
4513
4514 lock_sock(sk);
4515
4516 switch (optname) {
4517 case SCTP_SOCKOPT_BINDX_ADD:
4518 /* 'optlen' is the size of the addresses buffer. */
4519 retval = sctp_setsockopt_bindx(sk, kopt, optlen,
4520 SCTP_BINDX_ADD_ADDR);
4521 break;
4522
4523 case SCTP_SOCKOPT_BINDX_REM:
4524 /* 'optlen' is the size of the addresses buffer. */
4525 retval = sctp_setsockopt_bindx(sk, kopt, optlen,
4526 SCTP_BINDX_REM_ADDR);
4527 break;
4528
4529 case SCTP_SOCKOPT_CONNECTX_OLD:
4530 /* 'optlen' is the size of the addresses buffer. */
4531 retval = sctp_setsockopt_connectx_old(sk, kopt, optlen);
4532 break;
4533
4534 case SCTP_SOCKOPT_CONNECTX:
4535 /* 'optlen' is the size of the addresses buffer. */
4536 retval = sctp_setsockopt_connectx(sk, kopt, optlen);
4537 break;
4538
4539 case SCTP_DISABLE_FRAGMENTS:
4540 retval = sctp_setsockopt_disable_fragments(sk, kopt, optlen);
4541 break;
4542
4543 case SCTP_EVENTS:
4544 retval = sctp_setsockopt_events(sk, kopt, optlen);
4545 break;
4546
4547 case SCTP_AUTOCLOSE:
4548 retval = sctp_setsockopt_autoclose(sk, kopt, optlen);
4549 break;
4550
4551 case SCTP_PEER_ADDR_PARAMS:
4552 retval = sctp_setsockopt_peer_addr_params(sk, kopt, optlen);
4553 break;
4554
4555 case SCTP_DELAYED_SACK:
4556 retval = sctp_setsockopt_delayed_ack(sk, kopt, optlen);
4557 break;
4558 case SCTP_PARTIAL_DELIVERY_POINT:
4559 retval = sctp_setsockopt_partial_delivery_point(sk, kopt, optlen);
4560 break;
4561
4562 case SCTP_INITMSG:
4563 retval = sctp_setsockopt_initmsg(sk, kopt, optlen);
4564 break;
4565 case SCTP_DEFAULT_SEND_PARAM:
4566 retval = sctp_setsockopt_default_send_param(sk, kopt, optlen);
4567 break;
4568 case SCTP_DEFAULT_SNDINFO:
4569 retval = sctp_setsockopt_default_sndinfo(sk, kopt, optlen);
4570 break;
4571 case SCTP_PRIMARY_ADDR:
4572 retval = sctp_setsockopt_primary_addr(sk, kopt, optlen);
4573 break;
4574 case SCTP_SET_PEER_PRIMARY_ADDR:
4575 retval = sctp_setsockopt_peer_primary_addr(sk, kopt, optlen);
4576 break;
4577 case SCTP_NODELAY:
4578 retval = sctp_setsockopt_nodelay(sk, kopt, optlen);
4579 break;
4580 case SCTP_RTOINFO:
4581 retval = sctp_setsockopt_rtoinfo(sk, kopt, optlen);
4582 break;
4583 case SCTP_ASSOCINFO:
4584 retval = sctp_setsockopt_associnfo(sk, kopt, optlen);
4585 break;
4586 case SCTP_I_WANT_MAPPED_V4_ADDR:
4587 retval = sctp_setsockopt_mappedv4(sk, kopt, optlen);
4588 break;
4589 case SCTP_MAXSEG:
4590 retval = sctp_setsockopt_maxseg(sk, kopt, optlen);
4591 break;
4592 case SCTP_ADAPTATION_LAYER:
4593 retval = sctp_setsockopt_adaptation_layer(sk, kopt, optlen);
4594 break;
4595 case SCTP_CONTEXT:
4596 retval = sctp_setsockopt_context(sk, kopt, optlen);
4597 break;
4598 case SCTP_FRAGMENT_INTERLEAVE:
4599 retval = sctp_setsockopt_fragment_interleave(sk, kopt, optlen);
4600 break;
4601 case SCTP_MAX_BURST:
4602 retval = sctp_setsockopt_maxburst(sk, kopt, optlen);
4603 break;
4604 case SCTP_AUTH_CHUNK:
4605 retval = sctp_setsockopt_auth_chunk(sk, kopt, optlen);
4606 break;
4607 case SCTP_HMAC_IDENT:
4608 retval = sctp_setsockopt_hmac_ident(sk, kopt, optlen);
4609 break;
4610 case SCTP_AUTH_KEY:
4611 retval = sctp_setsockopt_auth_key(sk, kopt, optlen);
4612 break;
4613 case SCTP_AUTH_ACTIVE_KEY:
4614 retval = sctp_setsockopt_active_key(sk, kopt, optlen);
4615 break;
4616 case SCTP_AUTH_DELETE_KEY:
4617 retval = sctp_setsockopt_del_key(sk, kopt, optlen);
4618 break;
4619 case SCTP_AUTH_DEACTIVATE_KEY:
4620 retval = sctp_setsockopt_deactivate_key(sk, kopt, optlen);
4621 break;
4622 case SCTP_AUTO_ASCONF:
4623 retval = sctp_setsockopt_auto_asconf(sk, kopt, optlen);
4624 break;
4625 case SCTP_PEER_ADDR_THLDS:
4626 retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen,
4627 false);
4628 break;
4629 case SCTP_PEER_ADDR_THLDS_V2:
4630 retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen,
4631 true);
4632 break;
4633 case SCTP_RECVRCVINFO:
4634 retval = sctp_setsockopt_recvrcvinfo(sk, kopt, optlen);
4635 break;
4636 case SCTP_RECVNXTINFO:
4637 retval = sctp_setsockopt_recvnxtinfo(sk, kopt, optlen);
4638 break;
4639 case SCTP_PR_SUPPORTED:
4640 retval = sctp_setsockopt_pr_supported(sk, kopt, optlen);
4641 break;
4642 case SCTP_DEFAULT_PRINFO:
4643 retval = sctp_setsockopt_default_prinfo(sk, kopt, optlen);
4644 break;
4645 case SCTP_RECONFIG_SUPPORTED:
4646 retval = sctp_setsockopt_reconfig_supported(sk, kopt, optlen);
4647 break;
4648 case SCTP_ENABLE_STREAM_RESET:
4649 retval = sctp_setsockopt_enable_strreset(sk, kopt, optlen);
4650 break;
4651 case SCTP_RESET_STREAMS:
4652 retval = sctp_setsockopt_reset_streams(sk, kopt, optlen);
4653 break;
4654 case SCTP_RESET_ASSOC:
4655 retval = sctp_setsockopt_reset_assoc(sk, kopt, optlen);
4656 break;
4657 case SCTP_ADD_STREAMS:
4658 retval = sctp_setsockopt_add_streams(sk, kopt, optlen);
4659 break;
4660 case SCTP_STREAM_SCHEDULER:
4661 retval = sctp_setsockopt_scheduler(sk, kopt, optlen);
4662 break;
4663 case SCTP_STREAM_SCHEDULER_VALUE:
4664 retval = sctp_setsockopt_scheduler_value(sk, kopt, optlen);
4665 break;
4666 case SCTP_INTERLEAVING_SUPPORTED:
4667 retval = sctp_setsockopt_interleaving_supported(sk, kopt,
4668 optlen);
4669 break;
4670 case SCTP_REUSE_PORT:
4671 retval = sctp_setsockopt_reuse_port(sk, kopt, optlen);
4672 break;
4673 case SCTP_EVENT:
4674 retval = sctp_setsockopt_event(sk, kopt, optlen);
4675 break;
4676 case SCTP_ASCONF_SUPPORTED:
4677 retval = sctp_setsockopt_asconf_supported(sk, kopt, optlen);
4678 break;
4679 case SCTP_AUTH_SUPPORTED:
4680 retval = sctp_setsockopt_auth_supported(sk, kopt, optlen);
4681 break;
4682 case SCTP_ECN_SUPPORTED:
4683 retval = sctp_setsockopt_ecn_supported(sk, kopt, optlen);
4684 break;
4685 case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE:
4686 retval = sctp_setsockopt_pf_expose(sk, kopt, optlen);
4687 break;
4688 case SCTP_REMOTE_UDP_ENCAPS_PORT:
4689 retval = sctp_setsockopt_encap_port(sk, kopt, optlen);
4690 break;
4691 default:
4692 retval = -ENOPROTOOPT;
4693 break;
4694 }
4695
4696 release_sock(sk);
4697 kfree(kopt);
4698 return retval;
4699}
4700
4701/* API 3.1.6 connect() - UDP Style Syntax
4702 *
4703 * An application may use the connect() call in the UDP model to initiate an
4704 * association without sending data.
4705 *
4706 * The syntax is:
4707 *
4708 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
4709 *
4710 * sd: the socket descriptor to have a new association added to.
4711 *
4712 * nam: the address structure (either struct sockaddr_in or struct
4713 * sockaddr_in6 defined in RFC2553 [7]).
4714 *
4715 * len: the size of the address.
4716 */
4717static int sctp_connect(struct sock *sk, struct sockaddr *addr,
4718 int addr_len, int flags)
4719{
4720 struct sctp_af *af;
4721 int err = -EINVAL;
4722
4723 lock_sock(sk);
4724 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
4725 addr, addr_len);
4726
4727 /* Validate addr_len before calling common connect/connectx routine. */
4728 af = sctp_get_af_specific(addr->sa_family);
4729 if (af && addr_len >= af->sockaddr_len)
4730 err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL);
4731
4732 release_sock(sk);
4733 return err;
4734}
4735
4736int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr,
4737 int addr_len, int flags)
4738{
4739 if (addr_len < sizeof(uaddr->sa_family))
4740 return -EINVAL;
4741
4742 if (uaddr->sa_family == AF_UNSPEC)
4743 return -EOPNOTSUPP;
4744
4745 return sctp_connect(sock->sk, uaddr, addr_len, flags);
4746}
4747
4748/* FIXME: Write comments. */
4749static int sctp_disconnect(struct sock *sk, int flags)
4750{
4751 return -EOPNOTSUPP; /* STUB */
4752}
4753
4754/* 4.1.4 accept() - TCP Style Syntax
4755 *
4756 * Applications use accept() call to remove an established SCTP
4757 * association from the accept queue of the endpoint. A new socket
4758 * descriptor will be returned from accept() to represent the newly
4759 * formed association.
4760 */
4761static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern)
4762{
4763 struct sctp_sock *sp;
4764 struct sctp_endpoint *ep;
4765 struct sock *newsk = NULL;
4766 struct sctp_association *asoc;
4767 long timeo;
4768 int error = 0;
4769
4770 lock_sock(sk);
4771
4772 sp = sctp_sk(sk);
4773 ep = sp->ep;
4774
4775 if (!sctp_style(sk, TCP)) {
4776 error = -EOPNOTSUPP;
4777 goto out;
4778 }
4779
4780 if (!sctp_sstate(sk, LISTENING)) {
4781 error = -EINVAL;
4782 goto out;
4783 }
4784
4785 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
4786
4787 error = sctp_wait_for_accept(sk, timeo);
4788 if (error)
4789 goto out;
4790
4791 /* We treat the list of associations on the endpoint as the accept
4792 * queue and pick the first association on the list.
4793 */
4794 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
4795
4796 newsk = sp->pf->create_accept_sk(sk, asoc, kern);
4797 if (!newsk) {
4798 error = -ENOMEM;
4799 goto out;
4800 }
4801
4802 /* Populate the fields of the newsk from the oldsk and migrate the
4803 * asoc to the newsk.
4804 */
4805 error = sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
4806 if (error) {
4807 sk_common_release(newsk);
4808 newsk = NULL;
4809 }
4810
4811out:
4812 release_sock(sk);
4813 *err = error;
4814 return newsk;
4815}
4816
4817/* The SCTP ioctl handler. */
4818static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
4819{
4820 int rc = -ENOTCONN;
4821
4822 lock_sock(sk);
4823
4824 /*
4825 * SEQPACKET-style sockets in LISTENING state are valid, for
4826 * SCTP, so only discard TCP-style sockets in LISTENING state.
4827 */
4828 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
4829 goto out;
4830
4831 switch (cmd) {
4832 case SIOCINQ: {
4833 struct sk_buff *skb;
4834 unsigned int amount = 0;
4835
4836 skb = skb_peek(&sk->sk_receive_queue);
4837 if (skb != NULL) {
4838 /*
4839 * We will only return the amount of this packet since
4840 * that is all that will be read.
4841 */
4842 amount = skb->len;
4843 }
4844 rc = put_user(amount, (int __user *)arg);
4845 break;
4846 }
4847 default:
4848 rc = -ENOIOCTLCMD;
4849 break;
4850 }
4851out:
4852 release_sock(sk);
4853 return rc;
4854}
4855
4856/* This is the function which gets called during socket creation to
4857 * initialized the SCTP-specific portion of the sock.
4858 * The sock structure should already be zero-filled memory.
4859 */
4860static int sctp_init_sock(struct sock *sk)
4861{
4862 struct net *net = sock_net(sk);
4863 struct sctp_sock *sp;
4864
4865 pr_debug("%s: sk:%p\n", __func__, sk);
4866
4867 sp = sctp_sk(sk);
4868
4869 /* Initialize the SCTP per socket area. */
4870 switch (sk->sk_type) {
4871 case SOCK_SEQPACKET:
4872 sp->type = SCTP_SOCKET_UDP;
4873 break;
4874 case SOCK_STREAM:
4875 sp->type = SCTP_SOCKET_TCP;
4876 break;
4877 default:
4878 return -ESOCKTNOSUPPORT;
4879 }
4880
4881 sk->sk_gso_type = SKB_GSO_SCTP;
4882
4883 /* Initialize default send parameters. These parameters can be
4884 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
4885 */
4886 sp->default_stream = 0;
4887 sp->default_ppid = 0;
4888 sp->default_flags = 0;
4889 sp->default_context = 0;
4890 sp->default_timetolive = 0;
4891
4892 sp->default_rcv_context = 0;
4893 sp->max_burst = net->sctp.max_burst;
4894
4895 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
4896
4897 /* Initialize default setup parameters. These parameters
4898 * can be modified with the SCTP_INITMSG socket option or
4899 * overridden by the SCTP_INIT CMSG.
4900 */
4901 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams;
4902 sp->initmsg.sinit_max_instreams = sctp_max_instreams;
4903 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init;
4904 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
4905
4906 /* Initialize default RTO related parameters. These parameters can
4907 * be modified for with the SCTP_RTOINFO socket option.
4908 */
4909 sp->rtoinfo.srto_initial = net->sctp.rto_initial;
4910 sp->rtoinfo.srto_max = net->sctp.rto_max;
4911 sp->rtoinfo.srto_min = net->sctp.rto_min;
4912
4913 /* Initialize default association related parameters. These parameters
4914 * can be modified with the SCTP_ASSOCINFO socket option.
4915 */
4916 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
4917 sp->assocparams.sasoc_number_peer_destinations = 0;
4918 sp->assocparams.sasoc_peer_rwnd = 0;
4919 sp->assocparams.sasoc_local_rwnd = 0;
4920 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
4921
4922 /* Initialize default event subscriptions. By default, all the
4923 * options are off.
4924 */
4925 sp->subscribe = 0;
4926
4927 /* Default Peer Address Parameters. These defaults can
4928 * be modified via SCTP_PEER_ADDR_PARAMS
4929 */
4930 sp->hbinterval = net->sctp.hb_interval;
4931 sp->udp_port = htons(net->sctp.udp_port);
4932 sp->encap_port = htons(net->sctp.encap_port);
4933 sp->pathmaxrxt = net->sctp.max_retrans_path;
4934 sp->pf_retrans = net->sctp.pf_retrans;
4935 sp->ps_retrans = net->sctp.ps_retrans;
4936 sp->pf_expose = net->sctp.pf_expose;
4937 sp->pathmtu = 0; /* allow default discovery */
4938 sp->sackdelay = net->sctp.sack_timeout;
4939 sp->sackfreq = 2;
4940 sp->param_flags = SPP_HB_ENABLE |
4941 SPP_PMTUD_ENABLE |
4942 SPP_SACKDELAY_ENABLE;
4943 sp->default_ss = SCTP_SS_DEFAULT;
4944
4945 /* If enabled no SCTP message fragmentation will be performed.
4946 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
4947 */
4948 sp->disable_fragments = 0;
4949
4950 /* Enable Nagle algorithm by default. */
4951 sp->nodelay = 0;
4952
4953 sp->recvrcvinfo = 0;
4954 sp->recvnxtinfo = 0;
4955
4956 /* Enable by default. */
4957 sp->v4mapped = 1;
4958
4959 /* Auto-close idle associations after the configured
4960 * number of seconds. A value of 0 disables this
4961 * feature. Configure through the SCTP_AUTOCLOSE socket option,
4962 * for UDP-style sockets only.
4963 */
4964 sp->autoclose = 0;
4965
4966 /* User specified fragmentation limit. */
4967 sp->user_frag = 0;
4968
4969 sp->adaptation_ind = 0;
4970
4971 sp->pf = sctp_get_pf_specific(sk->sk_family);
4972
4973 /* Control variables for partial data delivery. */
4974 atomic_set(&sp->pd_mode, 0);
4975 skb_queue_head_init(&sp->pd_lobby);
4976 sp->frag_interleave = 0;
4977
4978 /* Create a per socket endpoint structure. Even if we
4979 * change the data structure relationships, this may still
4980 * be useful for storing pre-connect address information.
4981 */
4982 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
4983 if (!sp->ep)
4984 return -ENOMEM;
4985
4986 sp->hmac = NULL;
4987
4988 sk->sk_destruct = sctp_destruct_sock;
4989
4990 SCTP_DBG_OBJCNT_INC(sock);
4991
4992 local_bh_disable();
4993 sk_sockets_allocated_inc(sk);
4994 sock_prot_inuse_add(net, sk->sk_prot, 1);
4995
4996 /* Nothing can fail after this block, otherwise
4997 * sctp_destroy_sock() will be called without addr_wq_lock held
4998 */
4999 if (net->sctp.default_auto_asconf) {
5000 spin_lock(&sock_net(sk)->sctp.addr_wq_lock);
5001 list_add_tail(&sp->auto_asconf_list,
5002 &net->sctp.auto_asconf_splist);
5003 sp->do_auto_asconf = 1;
5004 spin_unlock(&sock_net(sk)->sctp.addr_wq_lock);
5005 } else {
5006 sp->do_auto_asconf = 0;
5007 }
5008
5009 local_bh_enable();
5010
5011 return 0;
5012}
5013
5014/* Cleanup any SCTP per socket resources. Must be called with
5015 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true
5016 */
5017static void sctp_destroy_sock(struct sock *sk)
5018{
5019 struct sctp_sock *sp;
5020
5021 pr_debug("%s: sk:%p\n", __func__, sk);
5022
5023 /* Release our hold on the endpoint. */
5024 sp = sctp_sk(sk);
5025 /* This could happen during socket init, thus we bail out
5026 * early, since the rest of the below is not setup either.
5027 */
5028 if (sp->ep == NULL)
5029 return;
5030
5031 if (sp->do_auto_asconf) {
5032 sp->do_auto_asconf = 0;
5033 list_del(&sp->auto_asconf_list);
5034 }
5035 sctp_endpoint_free(sp->ep);
5036 local_bh_disable();
5037 sk_sockets_allocated_dec(sk);
5038 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
5039 local_bh_enable();
5040}
5041
5042/* Triggered when there are no references on the socket anymore */
5043static void sctp_destruct_sock(struct sock *sk)
5044{
5045 struct sctp_sock *sp = sctp_sk(sk);
5046
5047 /* Free up the HMAC transform. */
5048 crypto_free_shash(sp->hmac);
5049
5050 inet_sock_destruct(sk);
5051}
5052
5053/* API 4.1.7 shutdown() - TCP Style Syntax
5054 * int shutdown(int socket, int how);
5055 *
5056 * sd - the socket descriptor of the association to be closed.
5057 * how - Specifies the type of shutdown. The values are
5058 * as follows:
5059 * SHUT_RD
5060 * Disables further receive operations. No SCTP
5061 * protocol action is taken.
5062 * SHUT_WR
5063 * Disables further send operations, and initiates
5064 * the SCTP shutdown sequence.
5065 * SHUT_RDWR
5066 * Disables further send and receive operations
5067 * and initiates the SCTP shutdown sequence.
5068 */
5069static void sctp_shutdown(struct sock *sk, int how)
5070{
5071 struct net *net = sock_net(sk);
5072 struct sctp_endpoint *ep;
5073
5074 if (!sctp_style(sk, TCP))
5075 return;
5076
5077 ep = sctp_sk(sk)->ep;
5078 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) {
5079 struct sctp_association *asoc;
5080
5081 inet_sk_set_state(sk, SCTP_SS_CLOSING);
5082 asoc = list_entry(ep->asocs.next,
5083 struct sctp_association, asocs);
5084 sctp_primitive_SHUTDOWN(net, asoc, NULL);
5085 }
5086}
5087
5088int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc,
5089 struct sctp_info *info)
5090{
5091 struct sctp_transport *prim;
5092 struct list_head *pos;
5093 int mask;
5094
5095 memset(info, 0, sizeof(*info));
5096 if (!asoc) {
5097 struct sctp_sock *sp = sctp_sk(sk);
5098
5099 info->sctpi_s_autoclose = sp->autoclose;
5100 info->sctpi_s_adaptation_ind = sp->adaptation_ind;
5101 info->sctpi_s_pd_point = sp->pd_point;
5102 info->sctpi_s_nodelay = sp->nodelay;
5103 info->sctpi_s_disable_fragments = sp->disable_fragments;
5104 info->sctpi_s_v4mapped = sp->v4mapped;
5105 info->sctpi_s_frag_interleave = sp->frag_interleave;
5106 info->sctpi_s_type = sp->type;
5107
5108 return 0;
5109 }
5110
5111 info->sctpi_tag = asoc->c.my_vtag;
5112 info->sctpi_state = asoc->state;
5113 info->sctpi_rwnd = asoc->a_rwnd;
5114 info->sctpi_unackdata = asoc->unack_data;
5115 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
5116 info->sctpi_instrms = asoc->stream.incnt;
5117 info->sctpi_outstrms = asoc->stream.outcnt;
5118 list_for_each(pos, &asoc->base.inqueue.in_chunk_list)
5119 info->sctpi_inqueue++;
5120 list_for_each(pos, &asoc->outqueue.out_chunk_list)
5121 info->sctpi_outqueue++;
5122 info->sctpi_overall_error = asoc->overall_error_count;
5123 info->sctpi_max_burst = asoc->max_burst;
5124 info->sctpi_maxseg = asoc->frag_point;
5125 info->sctpi_peer_rwnd = asoc->peer.rwnd;
5126 info->sctpi_peer_tag = asoc->c.peer_vtag;
5127
5128 mask = asoc->peer.ecn_capable << 1;
5129 mask = (mask | asoc->peer.ipv4_address) << 1;
5130 mask = (mask | asoc->peer.ipv6_address) << 1;
5131 mask = (mask | asoc->peer.hostname_address) << 1;
5132 mask = (mask | asoc->peer.asconf_capable) << 1;
5133 mask = (mask | asoc->peer.prsctp_capable) << 1;
5134 mask = (mask | asoc->peer.auth_capable);
5135 info->sctpi_peer_capable = mask;
5136 mask = asoc->peer.sack_needed << 1;
5137 mask = (mask | asoc->peer.sack_generation) << 1;
5138 mask = (mask | asoc->peer.zero_window_announced);
5139 info->sctpi_peer_sack = mask;
5140
5141 info->sctpi_isacks = asoc->stats.isacks;
5142 info->sctpi_osacks = asoc->stats.osacks;
5143 info->sctpi_opackets = asoc->stats.opackets;
5144 info->sctpi_ipackets = asoc->stats.ipackets;
5145 info->sctpi_rtxchunks = asoc->stats.rtxchunks;
5146 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns;
5147 info->sctpi_idupchunks = asoc->stats.idupchunks;
5148 info->sctpi_gapcnt = asoc->stats.gapcnt;
5149 info->sctpi_ouodchunks = asoc->stats.ouodchunks;
5150 info->sctpi_iuodchunks = asoc->stats.iuodchunks;
5151 info->sctpi_oodchunks = asoc->stats.oodchunks;
5152 info->sctpi_iodchunks = asoc->stats.iodchunks;
5153 info->sctpi_octrlchunks = asoc->stats.octrlchunks;
5154 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks;
5155
5156 prim = asoc->peer.primary_path;
5157 memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr));
5158 info->sctpi_p_state = prim->state;
5159 info->sctpi_p_cwnd = prim->cwnd;
5160 info->sctpi_p_srtt = prim->srtt;
5161 info->sctpi_p_rto = jiffies_to_msecs(prim->rto);
5162 info->sctpi_p_hbinterval = prim->hbinterval;
5163 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt;
5164 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay);
5165 info->sctpi_p_ssthresh = prim->ssthresh;
5166 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked;
5167 info->sctpi_p_flight_size = prim->flight_size;
5168 info->sctpi_p_error = prim->error_count;
5169
5170 return 0;
5171}
5172EXPORT_SYMBOL_GPL(sctp_get_sctp_info);
5173
5174/* use callback to avoid exporting the core structure */
5175void sctp_transport_walk_start(struct rhashtable_iter *iter) __acquires(RCU)
5176{
5177 rhltable_walk_enter(&sctp_transport_hashtable, iter);
5178
5179 rhashtable_walk_start(iter);
5180}
5181
5182void sctp_transport_walk_stop(struct rhashtable_iter *iter) __releases(RCU)
5183{
5184 rhashtable_walk_stop(iter);
5185 rhashtable_walk_exit(iter);
5186}
5187
5188struct sctp_transport *sctp_transport_get_next(struct net *net,
5189 struct rhashtable_iter *iter)
5190{
5191 struct sctp_transport *t;
5192
5193 t = rhashtable_walk_next(iter);
5194 for (; t; t = rhashtable_walk_next(iter)) {
5195 if (IS_ERR(t)) {
5196 if (PTR_ERR(t) == -EAGAIN)
5197 continue;
5198 break;
5199 }
5200
5201 if (!sctp_transport_hold(t))
5202 continue;
5203
5204 if (net_eq(t->asoc->base.net, net) &&
5205 t->asoc->peer.primary_path == t)
5206 break;
5207
5208 sctp_transport_put(t);
5209 }
5210
5211 return t;
5212}
5213
5214struct sctp_transport *sctp_transport_get_idx(struct net *net,
5215 struct rhashtable_iter *iter,
5216 int pos)
5217{
5218 struct sctp_transport *t;
5219
5220 if (!pos)
5221 return SEQ_START_TOKEN;
5222
5223 while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) {
5224 if (!--pos)
5225 break;
5226 sctp_transport_put(t);
5227 }
5228
5229 return t;
5230}
5231
5232int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *),
5233 void *p) {
5234 int err = 0;
5235 int hash = 0;
5236 struct sctp_ep_common *epb;
5237 struct sctp_hashbucket *head;
5238
5239 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize;
5240 hash++, head++) {
5241 read_lock_bh(&head->lock);
5242 sctp_for_each_hentry(epb, &head->chain) {
5243 err = cb(sctp_ep(epb), p);
5244 if (err)
5245 break;
5246 }
5247 read_unlock_bh(&head->lock);
5248 }
5249
5250 return err;
5251}
5252EXPORT_SYMBOL_GPL(sctp_for_each_endpoint);
5253
5254int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *),
5255 struct net *net,
5256 const union sctp_addr *laddr,
5257 const union sctp_addr *paddr, void *p)
5258{
5259 struct sctp_transport *transport;
5260 int err;
5261
5262 rcu_read_lock();
5263 transport = sctp_addrs_lookup_transport(net, laddr, paddr);
5264 rcu_read_unlock();
5265 if (!transport)
5266 return -ENOENT;
5267
5268 err = cb(transport, p);
5269 sctp_transport_put(transport);
5270
5271 return err;
5272}
5273EXPORT_SYMBOL_GPL(sctp_transport_lookup_process);
5274
5275int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *),
5276 int (*cb_done)(struct sctp_transport *, void *),
5277 struct net *net, int *pos, void *p) {
5278 struct rhashtable_iter hti;
5279 struct sctp_transport *tsp;
5280 int ret;
5281
5282again:
5283 ret = 0;
5284 sctp_transport_walk_start(&hti);
5285
5286 tsp = sctp_transport_get_idx(net, &hti, *pos + 1);
5287 for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) {
5288 ret = cb(tsp, p);
5289 if (ret)
5290 break;
5291 (*pos)++;
5292 sctp_transport_put(tsp);
5293 }
5294 sctp_transport_walk_stop(&hti);
5295
5296 if (ret) {
5297 if (cb_done && !cb_done(tsp, p)) {
5298 (*pos)++;
5299 sctp_transport_put(tsp);
5300 goto again;
5301 }
5302 sctp_transport_put(tsp);
5303 }
5304
5305 return ret;
5306}
5307EXPORT_SYMBOL_GPL(sctp_for_each_transport);
5308
5309/* 7.2.1 Association Status (SCTP_STATUS)
5310
5311 * Applications can retrieve current status information about an
5312 * association, including association state, peer receiver window size,
5313 * number of unacked data chunks, and number of data chunks pending
5314 * receipt. This information is read-only.
5315 */
5316static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
5317 char __user *optval,
5318 int __user *optlen)
5319{
5320 struct sctp_status status;
5321 struct sctp_association *asoc = NULL;
5322 struct sctp_transport *transport;
5323 sctp_assoc_t associd;
5324 int retval = 0;
5325
5326 if (len < sizeof(status)) {
5327 retval = -EINVAL;
5328 goto out;
5329 }
5330
5331 len = sizeof(status);
5332 if (copy_from_user(&status, optval, len)) {
5333 retval = -EFAULT;
5334 goto out;
5335 }
5336
5337 associd = status.sstat_assoc_id;
5338 asoc = sctp_id2assoc(sk, associd);
5339 if (!asoc) {
5340 retval = -EINVAL;
5341 goto out;
5342 }
5343
5344 transport = asoc->peer.primary_path;
5345
5346 status.sstat_assoc_id = sctp_assoc2id(asoc);
5347 status.sstat_state = sctp_assoc_to_state(asoc);
5348 status.sstat_rwnd = asoc->peer.rwnd;
5349 status.sstat_unackdata = asoc->unack_data;
5350
5351 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
5352 status.sstat_instrms = asoc->stream.incnt;
5353 status.sstat_outstrms = asoc->stream.outcnt;
5354 status.sstat_fragmentation_point = asoc->frag_point;
5355 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
5356 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
5357 transport->af_specific->sockaddr_len);
5358 /* Map ipv4 address into v4-mapped-on-v6 address. */
5359 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
5360 (union sctp_addr *)&status.sstat_primary.spinfo_address);
5361 status.sstat_primary.spinfo_state = transport->state;
5362 status.sstat_primary.spinfo_cwnd = transport->cwnd;
5363 status.sstat_primary.spinfo_srtt = transport->srtt;
5364 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
5365 status.sstat_primary.spinfo_mtu = transport->pathmtu;
5366
5367 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
5368 status.sstat_primary.spinfo_state = SCTP_ACTIVE;
5369
5370 if (put_user(len, optlen)) {
5371 retval = -EFAULT;
5372 goto out;
5373 }
5374
5375 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
5376 __func__, len, status.sstat_state, status.sstat_rwnd,
5377 status.sstat_assoc_id);
5378
5379 if (copy_to_user(optval, &status, len)) {
5380 retval = -EFAULT;
5381 goto out;
5382 }
5383
5384out:
5385 return retval;
5386}
5387
5388
5389/* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
5390 *
5391 * Applications can retrieve information about a specific peer address
5392 * of an association, including its reachability state, congestion
5393 * window, and retransmission timer values. This information is
5394 * read-only.
5395 */
5396static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
5397 char __user *optval,
5398 int __user *optlen)
5399{
5400 struct sctp_paddrinfo pinfo;
5401 struct sctp_transport *transport;
5402 int retval = 0;
5403
5404 if (len < sizeof(pinfo)) {
5405 retval = -EINVAL;
5406 goto out;
5407 }
5408
5409 len = sizeof(pinfo);
5410 if (copy_from_user(&pinfo, optval, len)) {
5411 retval = -EFAULT;
5412 goto out;
5413 }
5414
5415 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
5416 pinfo.spinfo_assoc_id);
5417 if (!transport) {
5418 retval = -EINVAL;
5419 goto out;
5420 }
5421
5422 if (transport->state == SCTP_PF &&
5423 transport->asoc->pf_expose == SCTP_PF_EXPOSE_DISABLE) {
5424 retval = -EACCES;
5425 goto out;
5426 }
5427
5428 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
5429 pinfo.spinfo_state = transport->state;
5430 pinfo.spinfo_cwnd = transport->cwnd;
5431 pinfo.spinfo_srtt = transport->srtt;
5432 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
5433 pinfo.spinfo_mtu = transport->pathmtu;
5434
5435 if (pinfo.spinfo_state == SCTP_UNKNOWN)
5436 pinfo.spinfo_state = SCTP_ACTIVE;
5437
5438 if (put_user(len, optlen)) {
5439 retval = -EFAULT;
5440 goto out;
5441 }
5442
5443 if (copy_to_user(optval, &pinfo, len)) {
5444 retval = -EFAULT;
5445 goto out;
5446 }
5447
5448out:
5449 return retval;
5450}
5451
5452/* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
5453 *
5454 * This option is a on/off flag. If enabled no SCTP message
5455 * fragmentation will be performed. Instead if a message being sent
5456 * exceeds the current PMTU size, the message will NOT be sent and
5457 * instead a error will be indicated to the user.
5458 */
5459static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
5460 char __user *optval, int __user *optlen)
5461{
5462 int val;
5463
5464 if (len < sizeof(int))
5465 return -EINVAL;
5466
5467 len = sizeof(int);
5468 val = (sctp_sk(sk)->disable_fragments == 1);
5469 if (put_user(len, optlen))
5470 return -EFAULT;
5471 if (copy_to_user(optval, &val, len))
5472 return -EFAULT;
5473 return 0;
5474}
5475
5476/* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
5477 *
5478 * This socket option is used to specify various notifications and
5479 * ancillary data the user wishes to receive.
5480 */
5481static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
5482 int __user *optlen)
5483{
5484 struct sctp_event_subscribe subscribe;
5485 __u8 *sn_type = (__u8 *)&subscribe;
5486 int i;
5487
5488 if (len == 0)
5489 return -EINVAL;
5490 if (len > sizeof(struct sctp_event_subscribe))
5491 len = sizeof(struct sctp_event_subscribe);
5492 if (put_user(len, optlen))
5493 return -EFAULT;
5494
5495 for (i = 0; i < len; i++)
5496 sn_type[i] = sctp_ulpevent_type_enabled(sctp_sk(sk)->subscribe,
5497 SCTP_SN_TYPE_BASE + i);
5498
5499 if (copy_to_user(optval, &subscribe, len))
5500 return -EFAULT;
5501
5502 return 0;
5503}
5504
5505/* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
5506 *
5507 * This socket option is applicable to the UDP-style socket only. When
5508 * set it will cause associations that are idle for more than the
5509 * specified number of seconds to automatically close. An association
5510 * being idle is defined an association that has NOT sent or received
5511 * user data. The special value of '0' indicates that no automatic
5512 * close of any associations should be performed. The option expects an
5513 * integer defining the number of seconds of idle time before an
5514 * association is closed.
5515 */
5516static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
5517{
5518 /* Applicable to UDP-style socket only */
5519 if (sctp_style(sk, TCP))
5520 return -EOPNOTSUPP;
5521 if (len < sizeof(int))
5522 return -EINVAL;
5523 len = sizeof(int);
5524 if (put_user(len, optlen))
5525 return -EFAULT;
5526 if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval))
5527 return -EFAULT;
5528 return 0;
5529}
5530
5531/* Helper routine to branch off an association to a new socket. */
5532int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
5533{
5534 struct sctp_association *asoc = sctp_id2assoc(sk, id);
5535 struct sctp_sock *sp = sctp_sk(sk);
5536 struct socket *sock;
5537 int err = 0;
5538
5539 /* Do not peel off from one netns to another one. */
5540 if (!net_eq(current->nsproxy->net_ns, sock_net(sk)))
5541 return -EINVAL;
5542
5543 if (!asoc)
5544 return -EINVAL;
5545
5546 /* An association cannot be branched off from an already peeled-off
5547 * socket, nor is this supported for tcp style sockets.
5548 */
5549 if (!sctp_style(sk, UDP))
5550 return -EINVAL;
5551
5552 /* Create a new socket. */
5553 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
5554 if (err < 0)
5555 return err;
5556
5557 sctp_copy_sock(sock->sk, sk, asoc);
5558
5559 /* Make peeled-off sockets more like 1-1 accepted sockets.
5560 * Set the daddr and initialize id to something more random and also
5561 * copy over any ip options.
5562 */
5563 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk);
5564 sp->pf->copy_ip_options(sk, sock->sk);
5565
5566 /* Populate the fields of the newsk from the oldsk and migrate the
5567 * asoc to the newsk.
5568 */
5569 err = sctp_sock_migrate(sk, sock->sk, asoc,
5570 SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
5571 if (err) {
5572 sock_release(sock);
5573 sock = NULL;
5574 }
5575
5576 *sockp = sock;
5577
5578 return err;
5579}
5580EXPORT_SYMBOL(sctp_do_peeloff);
5581
5582static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff,
5583 struct file **newfile, unsigned flags)
5584{
5585 struct socket *newsock;
5586 int retval;
5587
5588 retval = sctp_do_peeloff(sk, peeloff->associd, &newsock);
5589 if (retval < 0)
5590 goto out;
5591
5592 /* Map the socket to an unused fd that can be returned to the user. */
5593 retval = get_unused_fd_flags(flags & SOCK_CLOEXEC);
5594 if (retval < 0) {
5595 sock_release(newsock);
5596 goto out;
5597 }
5598
5599 *newfile = sock_alloc_file(newsock, 0, NULL);
5600 if (IS_ERR(*newfile)) {
5601 put_unused_fd(retval);
5602 retval = PTR_ERR(*newfile);
5603 *newfile = NULL;
5604 return retval;
5605 }
5606
5607 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
5608 retval);
5609
5610 peeloff->sd = retval;
5611
5612 if (flags & SOCK_NONBLOCK)
5613 (*newfile)->f_flags |= O_NONBLOCK;
5614out:
5615 return retval;
5616}
5617
5618static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
5619{
5620 sctp_peeloff_arg_t peeloff;
5621 struct file *newfile = NULL;
5622 int retval = 0;
5623
5624 if (len < sizeof(sctp_peeloff_arg_t))
5625 return -EINVAL;
5626 len = sizeof(sctp_peeloff_arg_t);
5627 if (copy_from_user(&peeloff, optval, len))
5628 return -EFAULT;
5629
5630 retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0);
5631 if (retval < 0)
5632 goto out;
5633
5634 /* Return the fd mapped to the new socket. */
5635 if (put_user(len, optlen)) {
5636 fput(newfile);
5637 put_unused_fd(retval);
5638 return -EFAULT;
5639 }
5640
5641 if (copy_to_user(optval, &peeloff, len)) {
5642 fput(newfile);
5643 put_unused_fd(retval);
5644 return -EFAULT;
5645 }
5646 fd_install(retval, newfile);
5647out:
5648 return retval;
5649}
5650
5651static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len,
5652 char __user *optval, int __user *optlen)
5653{
5654 sctp_peeloff_flags_arg_t peeloff;
5655 struct file *newfile = NULL;
5656 int retval = 0;
5657
5658 if (len < sizeof(sctp_peeloff_flags_arg_t))
5659 return -EINVAL;
5660 len = sizeof(sctp_peeloff_flags_arg_t);
5661 if (copy_from_user(&peeloff, optval, len))
5662 return -EFAULT;
5663
5664 retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg,
5665 &newfile, peeloff.flags);
5666 if (retval < 0)
5667 goto out;
5668
5669 /* Return the fd mapped to the new socket. */
5670 if (put_user(len, optlen)) {
5671 fput(newfile);
5672 put_unused_fd(retval);
5673 return -EFAULT;
5674 }
5675
5676 if (copy_to_user(optval, &peeloff, len)) {
5677 fput(newfile);
5678 put_unused_fd(retval);
5679 return -EFAULT;
5680 }
5681 fd_install(retval, newfile);
5682out:
5683 return retval;
5684}
5685
5686/* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
5687 *
5688 * Applications can enable or disable heartbeats for any peer address of
5689 * an association, modify an address's heartbeat interval, force a
5690 * heartbeat to be sent immediately, and adjust the address's maximum
5691 * number of retransmissions sent before an address is considered
5692 * unreachable. The following structure is used to access and modify an
5693 * address's parameters:
5694 *
5695 * struct sctp_paddrparams {
5696 * sctp_assoc_t spp_assoc_id;
5697 * struct sockaddr_storage spp_address;
5698 * uint32_t spp_hbinterval;
5699 * uint16_t spp_pathmaxrxt;
5700 * uint32_t spp_pathmtu;
5701 * uint32_t spp_sackdelay;
5702 * uint32_t spp_flags;
5703 * };
5704 *
5705 * spp_assoc_id - (one-to-many style socket) This is filled in the
5706 * application, and identifies the association for
5707 * this query.
5708 * spp_address - This specifies which address is of interest.
5709 * spp_hbinterval - This contains the value of the heartbeat interval,
5710 * in milliseconds. If a value of zero
5711 * is present in this field then no changes are to
5712 * be made to this parameter.
5713 * spp_pathmaxrxt - This contains the maximum number of
5714 * retransmissions before this address shall be
5715 * considered unreachable. If a value of zero
5716 * is present in this field then no changes are to
5717 * be made to this parameter.
5718 * spp_pathmtu - When Path MTU discovery is disabled the value
5719 * specified here will be the "fixed" path mtu.
5720 * Note that if the spp_address field is empty
5721 * then all associations on this address will
5722 * have this fixed path mtu set upon them.
5723 *
5724 * spp_sackdelay - When delayed sack is enabled, this value specifies
5725 * the number of milliseconds that sacks will be delayed
5726 * for. This value will apply to all addresses of an
5727 * association if the spp_address field is empty. Note
5728 * also, that if delayed sack is enabled and this
5729 * value is set to 0, no change is made to the last
5730 * recorded delayed sack timer value.
5731 *
5732 * spp_flags - These flags are used to control various features
5733 * on an association. The flag field may contain
5734 * zero or more of the following options.
5735 *
5736 * SPP_HB_ENABLE - Enable heartbeats on the
5737 * specified address. Note that if the address
5738 * field is empty all addresses for the association
5739 * have heartbeats enabled upon them.
5740 *
5741 * SPP_HB_DISABLE - Disable heartbeats on the
5742 * speicifed address. Note that if the address
5743 * field is empty all addresses for the association
5744 * will have their heartbeats disabled. Note also
5745 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
5746 * mutually exclusive, only one of these two should
5747 * be specified. Enabling both fields will have
5748 * undetermined results.
5749 *
5750 * SPP_HB_DEMAND - Request a user initiated heartbeat
5751 * to be made immediately.
5752 *
5753 * SPP_PMTUD_ENABLE - This field will enable PMTU
5754 * discovery upon the specified address. Note that
5755 * if the address feild is empty then all addresses
5756 * on the association are effected.
5757 *
5758 * SPP_PMTUD_DISABLE - This field will disable PMTU
5759 * discovery upon the specified address. Note that
5760 * if the address feild is empty then all addresses
5761 * on the association are effected. Not also that
5762 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
5763 * exclusive. Enabling both will have undetermined
5764 * results.
5765 *
5766 * SPP_SACKDELAY_ENABLE - Setting this flag turns
5767 * on delayed sack. The time specified in spp_sackdelay
5768 * is used to specify the sack delay for this address. Note
5769 * that if spp_address is empty then all addresses will
5770 * enable delayed sack and take on the sack delay
5771 * value specified in spp_sackdelay.
5772 * SPP_SACKDELAY_DISABLE - Setting this flag turns
5773 * off delayed sack. If the spp_address field is blank then
5774 * delayed sack is disabled for the entire association. Note
5775 * also that this field is mutually exclusive to
5776 * SPP_SACKDELAY_ENABLE, setting both will have undefined
5777 * results.
5778 *
5779 * SPP_IPV6_FLOWLABEL: Setting this flag enables the
5780 * setting of the IPV6 flow label value. The value is
5781 * contained in the spp_ipv6_flowlabel field.
5782 * Upon retrieval, this flag will be set to indicate that
5783 * the spp_ipv6_flowlabel field has a valid value returned.
5784 * If a specific destination address is set (in the
5785 * spp_address field), then the value returned is that of
5786 * the address. If just an association is specified (and
5787 * no address), then the association's default flow label
5788 * is returned. If neither an association nor a destination
5789 * is specified, then the socket's default flow label is
5790 * returned. For non-IPv6 sockets, this flag will be left
5791 * cleared.
5792 *
5793 * SPP_DSCP: Setting this flag enables the setting of the
5794 * Differentiated Services Code Point (DSCP) value
5795 * associated with either the association or a specific
5796 * address. The value is obtained in the spp_dscp field.
5797 * Upon retrieval, this flag will be set to indicate that
5798 * the spp_dscp field has a valid value returned. If a
5799 * specific destination address is set when called (in the
5800 * spp_address field), then that specific destination
5801 * address's DSCP value is returned. If just an association
5802 * is specified, then the association's default DSCP is
5803 * returned. If neither an association nor a destination is
5804 * specified, then the socket's default DSCP is returned.
5805 *
5806 * spp_ipv6_flowlabel
5807 * - This field is used in conjunction with the
5808 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label.
5809 * The 20 least significant bits are used for the flow
5810 * label. This setting has precedence over any IPv6-layer
5811 * setting.
5812 *
5813 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag
5814 * and contains the DSCP. The 6 most significant bits are
5815 * used for the DSCP. This setting has precedence over any
5816 * IPv4- or IPv6- layer setting.
5817 */
5818static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
5819 char __user *optval, int __user *optlen)
5820{
5821 struct sctp_paddrparams params;
5822 struct sctp_transport *trans = NULL;
5823 struct sctp_association *asoc = NULL;
5824 struct sctp_sock *sp = sctp_sk(sk);
5825
5826 if (len >= sizeof(params))
5827 len = sizeof(params);
5828 else if (len >= ALIGN(offsetof(struct sctp_paddrparams,
5829 spp_ipv6_flowlabel), 4))
5830 len = ALIGN(offsetof(struct sctp_paddrparams,
5831 spp_ipv6_flowlabel), 4);
5832 else
5833 return -EINVAL;
5834
5835 if (copy_from_user(¶ms, optval, len))
5836 return -EFAULT;
5837
5838 /* If an address other than INADDR_ANY is specified, and
5839 * no transport is found, then the request is invalid.
5840 */
5841 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) {
5842 trans = sctp_addr_id2transport(sk, ¶ms.spp_address,
5843 params.spp_assoc_id);
5844 if (!trans) {
5845 pr_debug("%s: failed no transport\n", __func__);
5846 return -EINVAL;
5847 }
5848 }
5849
5850 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
5851 * socket is a one to many style socket, and an association
5852 * was not found, then the id was invalid.
5853 */
5854 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
5855 if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC &&
5856 sctp_style(sk, UDP)) {
5857 pr_debug("%s: failed no association\n", __func__);
5858 return -EINVAL;
5859 }
5860
5861 if (trans) {
5862 /* Fetch transport values. */
5863 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
5864 params.spp_pathmtu = trans->pathmtu;
5865 params.spp_pathmaxrxt = trans->pathmaxrxt;
5866 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay);
5867
5868 /*draft-11 doesn't say what to return in spp_flags*/
5869 params.spp_flags = trans->param_flags;
5870 if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5871 params.spp_ipv6_flowlabel = trans->flowlabel &
5872 SCTP_FLOWLABEL_VAL_MASK;
5873 params.spp_flags |= SPP_IPV6_FLOWLABEL;
5874 }
5875 if (trans->dscp & SCTP_DSCP_SET_MASK) {
5876 params.spp_dscp = trans->dscp & SCTP_DSCP_VAL_MASK;
5877 params.spp_flags |= SPP_DSCP;
5878 }
5879 } else if (asoc) {
5880 /* Fetch association values. */
5881 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
5882 params.spp_pathmtu = asoc->pathmtu;
5883 params.spp_pathmaxrxt = asoc->pathmaxrxt;
5884 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay);
5885
5886 /*draft-11 doesn't say what to return in spp_flags*/
5887 params.spp_flags = asoc->param_flags;
5888 if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5889 params.spp_ipv6_flowlabel = asoc->flowlabel &
5890 SCTP_FLOWLABEL_VAL_MASK;
5891 params.spp_flags |= SPP_IPV6_FLOWLABEL;
5892 }
5893 if (asoc->dscp & SCTP_DSCP_SET_MASK) {
5894 params.spp_dscp = asoc->dscp & SCTP_DSCP_VAL_MASK;
5895 params.spp_flags |= SPP_DSCP;
5896 }
5897 } else {
5898 /* Fetch socket values. */
5899 params.spp_hbinterval = sp->hbinterval;
5900 params.spp_pathmtu = sp->pathmtu;
5901 params.spp_sackdelay = sp->sackdelay;
5902 params.spp_pathmaxrxt = sp->pathmaxrxt;
5903
5904 /*draft-11 doesn't say what to return in spp_flags*/
5905 params.spp_flags = sp->param_flags;
5906 if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5907 params.spp_ipv6_flowlabel = sp->flowlabel &
5908 SCTP_FLOWLABEL_VAL_MASK;
5909 params.spp_flags |= SPP_IPV6_FLOWLABEL;
5910 }
5911 if (sp->dscp & SCTP_DSCP_SET_MASK) {
5912 params.spp_dscp = sp->dscp & SCTP_DSCP_VAL_MASK;
5913 params.spp_flags |= SPP_DSCP;
5914 }
5915 }
5916
5917 if (copy_to_user(optval, ¶ms, len))
5918 return -EFAULT;
5919
5920 if (put_user(len, optlen))
5921 return -EFAULT;
5922
5923 return 0;
5924}
5925
5926/*
5927 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
5928 *
5929 * This option will effect the way delayed acks are performed. This
5930 * option allows you to get or set the delayed ack time, in
5931 * milliseconds. It also allows changing the delayed ack frequency.
5932 * Changing the frequency to 1 disables the delayed sack algorithm. If
5933 * the assoc_id is 0, then this sets or gets the endpoints default
5934 * values. If the assoc_id field is non-zero, then the set or get
5935 * effects the specified association for the one to many model (the
5936 * assoc_id field is ignored by the one to one model). Note that if
5937 * sack_delay or sack_freq are 0 when setting this option, then the
5938 * current values will remain unchanged.
5939 *
5940 * struct sctp_sack_info {
5941 * sctp_assoc_t sack_assoc_id;
5942 * uint32_t sack_delay;
5943 * uint32_t sack_freq;
5944 * };
5945 *
5946 * sack_assoc_id - This parameter, indicates which association the user
5947 * is performing an action upon. Note that if this field's value is
5948 * zero then the endpoints default value is changed (effecting future
5949 * associations only).
5950 *
5951 * sack_delay - This parameter contains the number of milliseconds that
5952 * the user is requesting the delayed ACK timer be set to. Note that
5953 * this value is defined in the standard to be between 200 and 500
5954 * milliseconds.
5955 *
5956 * sack_freq - This parameter contains the number of packets that must
5957 * be received before a sack is sent without waiting for the delay
5958 * timer to expire. The default value for this is 2, setting this
5959 * value to 1 will disable the delayed sack algorithm.
5960 */
5961static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
5962 char __user *optval,
5963 int __user *optlen)
5964{
5965 struct sctp_sack_info params;
5966 struct sctp_association *asoc = NULL;
5967 struct sctp_sock *sp = sctp_sk(sk);
5968
5969 if (len >= sizeof(struct sctp_sack_info)) {
5970 len = sizeof(struct sctp_sack_info);
5971
5972 if (copy_from_user(¶ms, optval, len))
5973 return -EFAULT;
5974 } else if (len == sizeof(struct sctp_assoc_value)) {
5975 pr_warn_ratelimited(DEPRECATED
5976 "%s (pid %d) "
5977 "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
5978 "Use struct sctp_sack_info instead\n",
5979 current->comm, task_pid_nr(current));
5980 if (copy_from_user(¶ms, optval, len))
5981 return -EFAULT;
5982 } else
5983 return -EINVAL;
5984
5985 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the
5986 * socket is a one to many style socket, and an association
5987 * was not found, then the id was invalid.
5988 */
5989 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
5990 if (!asoc && params.sack_assoc_id != SCTP_FUTURE_ASSOC &&
5991 sctp_style(sk, UDP))
5992 return -EINVAL;
5993
5994 if (asoc) {
5995 /* Fetch association values. */
5996 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
5997 params.sack_delay = jiffies_to_msecs(asoc->sackdelay);
5998 params.sack_freq = asoc->sackfreq;
5999
6000 } else {
6001 params.sack_delay = 0;
6002 params.sack_freq = 1;
6003 }
6004 } else {
6005 /* Fetch socket values. */
6006 if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
6007 params.sack_delay = sp->sackdelay;
6008 params.sack_freq = sp->sackfreq;
6009 } else {
6010 params.sack_delay = 0;
6011 params.sack_freq = 1;
6012 }
6013 }
6014
6015 if (copy_to_user(optval, ¶ms, len))
6016 return -EFAULT;
6017
6018 if (put_user(len, optlen))
6019 return -EFAULT;
6020
6021 return 0;
6022}
6023
6024/* 7.1.3 Initialization Parameters (SCTP_INITMSG)
6025 *
6026 * Applications can specify protocol parameters for the default association
6027 * initialization. The option name argument to setsockopt() and getsockopt()
6028 * is SCTP_INITMSG.
6029 *
6030 * Setting initialization parameters is effective only on an unconnected
6031 * socket (for UDP-style sockets only future associations are effected
6032 * by the change). With TCP-style sockets, this option is inherited by
6033 * sockets derived from a listener socket.
6034 */
6035static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
6036{
6037 if (len < sizeof(struct sctp_initmsg))
6038 return -EINVAL;
6039 len = sizeof(struct sctp_initmsg);
6040 if (put_user(len, optlen))
6041 return -EFAULT;
6042 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
6043 return -EFAULT;
6044 return 0;
6045}
6046
6047
6048static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
6049 char __user *optval, int __user *optlen)
6050{
6051 struct sctp_association *asoc;
6052 int cnt = 0;
6053 struct sctp_getaddrs getaddrs;
6054 struct sctp_transport *from;
6055 void __user *to;
6056 union sctp_addr temp;
6057 struct sctp_sock *sp = sctp_sk(sk);
6058 int addrlen;
6059 size_t space_left;
6060 int bytes_copied;
6061
6062 if (len < sizeof(struct sctp_getaddrs))
6063 return -EINVAL;
6064
6065 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
6066 return -EFAULT;
6067
6068 /* For UDP-style sockets, id specifies the association to query. */
6069 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
6070 if (!asoc)
6071 return -EINVAL;
6072
6073 to = optval + offsetof(struct sctp_getaddrs, addrs);
6074 space_left = len - offsetof(struct sctp_getaddrs, addrs);
6075
6076 list_for_each_entry(from, &asoc->peer.transport_addr_list,
6077 transports) {
6078 memcpy(&temp, &from->ipaddr, sizeof(temp));
6079 addrlen = sctp_get_pf_specific(sk->sk_family)
6080 ->addr_to_user(sp, &temp);
6081 if (space_left < addrlen)
6082 return -ENOMEM;
6083 if (copy_to_user(to, &temp, addrlen))
6084 return -EFAULT;
6085 to += addrlen;
6086 cnt++;
6087 space_left -= addrlen;
6088 }
6089
6090 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
6091 return -EFAULT;
6092 bytes_copied = ((char __user *)to) - optval;
6093 if (put_user(bytes_copied, optlen))
6094 return -EFAULT;
6095
6096 return 0;
6097}
6098
6099static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
6100 size_t space_left, int *bytes_copied)
6101{
6102 struct sctp_sockaddr_entry *addr;
6103 union sctp_addr temp;
6104 int cnt = 0;
6105 int addrlen;
6106 struct net *net = sock_net(sk);
6107
6108 rcu_read_lock();
6109 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
6110 if (!addr->valid)
6111 continue;
6112
6113 if ((PF_INET == sk->sk_family) &&
6114 (AF_INET6 == addr->a.sa.sa_family))
6115 continue;
6116 if ((PF_INET6 == sk->sk_family) &&
6117 inet_v6_ipv6only(sk) &&
6118 (AF_INET == addr->a.sa.sa_family))
6119 continue;
6120 memcpy(&temp, &addr->a, sizeof(temp));
6121 if (!temp.v4.sin_port)
6122 temp.v4.sin_port = htons(port);
6123
6124 addrlen = sctp_get_pf_specific(sk->sk_family)
6125 ->addr_to_user(sctp_sk(sk), &temp);
6126
6127 if (space_left < addrlen) {
6128 cnt = -ENOMEM;
6129 break;
6130 }
6131 memcpy(to, &temp, addrlen);
6132
6133 to += addrlen;
6134 cnt++;
6135 space_left -= addrlen;
6136 *bytes_copied += addrlen;
6137 }
6138 rcu_read_unlock();
6139
6140 return cnt;
6141}
6142
6143
6144static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
6145 char __user *optval, int __user *optlen)
6146{
6147 struct sctp_bind_addr *bp;
6148 struct sctp_association *asoc;
6149 int cnt = 0;
6150 struct sctp_getaddrs getaddrs;
6151 struct sctp_sockaddr_entry *addr;
6152 void __user *to;
6153 union sctp_addr temp;
6154 struct sctp_sock *sp = sctp_sk(sk);
6155 int addrlen;
6156 int err = 0;
6157 size_t space_left;
6158 int bytes_copied = 0;
6159 void *addrs;
6160 void *buf;
6161
6162 if (len < sizeof(struct sctp_getaddrs))
6163 return -EINVAL;
6164
6165 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
6166 return -EFAULT;
6167
6168 /*
6169 * For UDP-style sockets, id specifies the association to query.
6170 * If the id field is set to the value '0' then the locally bound
6171 * addresses are returned without regard to any particular
6172 * association.
6173 */
6174 if (0 == getaddrs.assoc_id) {
6175 bp = &sctp_sk(sk)->ep->base.bind_addr;
6176 } else {
6177 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
6178 if (!asoc)
6179 return -EINVAL;
6180 bp = &asoc->base.bind_addr;
6181 }
6182
6183 to = optval + offsetof(struct sctp_getaddrs, addrs);
6184 space_left = len - offsetof(struct sctp_getaddrs, addrs);
6185
6186 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN);
6187 if (!addrs)
6188 return -ENOMEM;
6189
6190 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
6191 * addresses from the global local address list.
6192 */
6193 if (sctp_list_single_entry(&bp->address_list)) {
6194 addr = list_entry(bp->address_list.next,
6195 struct sctp_sockaddr_entry, list);
6196 if (sctp_is_any(sk, &addr->a)) {
6197 cnt = sctp_copy_laddrs(sk, bp->port, addrs,
6198 space_left, &bytes_copied);
6199 if (cnt < 0) {
6200 err = cnt;
6201 goto out;
6202 }
6203 goto copy_getaddrs;
6204 }
6205 }
6206
6207 buf = addrs;
6208 /* Protection on the bound address list is not needed since
6209 * in the socket option context we hold a socket lock and
6210 * thus the bound address list can't change.
6211 */
6212 list_for_each_entry(addr, &bp->address_list, list) {
6213 memcpy(&temp, &addr->a, sizeof(temp));
6214 addrlen = sctp_get_pf_specific(sk->sk_family)
6215 ->addr_to_user(sp, &temp);
6216 if (space_left < addrlen) {
6217 err = -ENOMEM; /*fixme: right error?*/
6218 goto out;
6219 }
6220 memcpy(buf, &temp, addrlen);
6221 buf += addrlen;
6222 bytes_copied += addrlen;
6223 cnt++;
6224 space_left -= addrlen;
6225 }
6226
6227copy_getaddrs:
6228 if (copy_to_user(to, addrs, bytes_copied)) {
6229 err = -EFAULT;
6230 goto out;
6231 }
6232 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
6233 err = -EFAULT;
6234 goto out;
6235 }
6236 /* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too,
6237 * but we can't change it anymore.
6238 */
6239 if (put_user(bytes_copied, optlen))
6240 err = -EFAULT;
6241out:
6242 kfree(addrs);
6243 return err;
6244}
6245
6246/* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
6247 *
6248 * Requests that the local SCTP stack use the enclosed peer address as
6249 * the association primary. The enclosed address must be one of the
6250 * association peer's addresses.
6251 */
6252static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
6253 char __user *optval, int __user *optlen)
6254{
6255 struct sctp_prim prim;
6256 struct sctp_association *asoc;
6257 struct sctp_sock *sp = sctp_sk(sk);
6258
6259 if (len < sizeof(struct sctp_prim))
6260 return -EINVAL;
6261
6262 len = sizeof(struct sctp_prim);
6263
6264 if (copy_from_user(&prim, optval, len))
6265 return -EFAULT;
6266
6267 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
6268 if (!asoc)
6269 return -EINVAL;
6270
6271 if (!asoc->peer.primary_path)
6272 return -ENOTCONN;
6273
6274 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
6275 asoc->peer.primary_path->af_specific->sockaddr_len);
6276
6277 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp,
6278 (union sctp_addr *)&prim.ssp_addr);
6279
6280 if (put_user(len, optlen))
6281 return -EFAULT;
6282 if (copy_to_user(optval, &prim, len))
6283 return -EFAULT;
6284
6285 return 0;
6286}
6287
6288/*
6289 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
6290 *
6291 * Requests that the local endpoint set the specified Adaptation Layer
6292 * Indication parameter for all future INIT and INIT-ACK exchanges.
6293 */
6294static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
6295 char __user *optval, int __user *optlen)
6296{
6297 struct sctp_setadaptation adaptation;
6298
6299 if (len < sizeof(struct sctp_setadaptation))
6300 return -EINVAL;
6301
6302 len = sizeof(struct sctp_setadaptation);
6303
6304 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
6305
6306 if (put_user(len, optlen))
6307 return -EFAULT;
6308 if (copy_to_user(optval, &adaptation, len))
6309 return -EFAULT;
6310
6311 return 0;
6312}
6313
6314/*
6315 *
6316 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
6317 *
6318 * Applications that wish to use the sendto() system call may wish to
6319 * specify a default set of parameters that would normally be supplied
6320 * through the inclusion of ancillary data. This socket option allows
6321 * such an application to set the default sctp_sndrcvinfo structure.
6322
6323
6324 * The application that wishes to use this socket option simply passes
6325 * in to this call the sctp_sndrcvinfo structure defined in Section
6326 * 5.2.2) The input parameters accepted by this call include
6327 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
6328 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
6329 * to this call if the caller is using the UDP model.
6330 *
6331 * For getsockopt, it get the default sctp_sndrcvinfo structure.
6332 */
6333static int sctp_getsockopt_default_send_param(struct sock *sk,
6334 int len, char __user *optval,
6335 int __user *optlen)
6336{
6337 struct sctp_sock *sp = sctp_sk(sk);
6338 struct sctp_association *asoc;
6339 struct sctp_sndrcvinfo info;
6340
6341 if (len < sizeof(info))
6342 return -EINVAL;
6343
6344 len = sizeof(info);
6345
6346 if (copy_from_user(&info, optval, len))
6347 return -EFAULT;
6348
6349 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
6350 if (!asoc && info.sinfo_assoc_id != SCTP_FUTURE_ASSOC &&
6351 sctp_style(sk, UDP))
6352 return -EINVAL;
6353
6354 if (asoc) {
6355 info.sinfo_stream = asoc->default_stream;
6356 info.sinfo_flags = asoc->default_flags;
6357 info.sinfo_ppid = asoc->default_ppid;
6358 info.sinfo_context = asoc->default_context;
6359 info.sinfo_timetolive = asoc->default_timetolive;
6360 } else {
6361 info.sinfo_stream = sp->default_stream;
6362 info.sinfo_flags = sp->default_flags;
6363 info.sinfo_ppid = sp->default_ppid;
6364 info.sinfo_context = sp->default_context;
6365 info.sinfo_timetolive = sp->default_timetolive;
6366 }
6367
6368 if (put_user(len, optlen))
6369 return -EFAULT;
6370 if (copy_to_user(optval, &info, len))
6371 return -EFAULT;
6372
6373 return 0;
6374}
6375
6376/* RFC6458, Section 8.1.31. Set/get Default Send Parameters
6377 * (SCTP_DEFAULT_SNDINFO)
6378 */
6379static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len,
6380 char __user *optval,
6381 int __user *optlen)
6382{
6383 struct sctp_sock *sp = sctp_sk(sk);
6384 struct sctp_association *asoc;
6385 struct sctp_sndinfo info;
6386
6387 if (len < sizeof(info))
6388 return -EINVAL;
6389
6390 len = sizeof(info);
6391
6392 if (copy_from_user(&info, optval, len))
6393 return -EFAULT;
6394
6395 asoc = sctp_id2assoc(sk, info.snd_assoc_id);
6396 if (!asoc && info.snd_assoc_id != SCTP_FUTURE_ASSOC &&
6397 sctp_style(sk, UDP))
6398 return -EINVAL;
6399
6400 if (asoc) {
6401 info.snd_sid = asoc->default_stream;
6402 info.snd_flags = asoc->default_flags;
6403 info.snd_ppid = asoc->default_ppid;
6404 info.snd_context = asoc->default_context;
6405 } else {
6406 info.snd_sid = sp->default_stream;
6407 info.snd_flags = sp->default_flags;
6408 info.snd_ppid = sp->default_ppid;
6409 info.snd_context = sp->default_context;
6410 }
6411
6412 if (put_user(len, optlen))
6413 return -EFAULT;
6414 if (copy_to_user(optval, &info, len))
6415 return -EFAULT;
6416
6417 return 0;
6418}
6419
6420/*
6421 *
6422 * 7.1.5 SCTP_NODELAY
6423 *
6424 * Turn on/off any Nagle-like algorithm. This means that packets are
6425 * generally sent as soon as possible and no unnecessary delays are
6426 * introduced, at the cost of more packets in the network. Expects an
6427 * integer boolean flag.
6428 */
6429
6430static int sctp_getsockopt_nodelay(struct sock *sk, int len,
6431 char __user *optval, int __user *optlen)
6432{
6433 int val;
6434
6435 if (len < sizeof(int))
6436 return -EINVAL;
6437
6438 len = sizeof(int);
6439 val = (sctp_sk(sk)->nodelay == 1);
6440 if (put_user(len, optlen))
6441 return -EFAULT;
6442 if (copy_to_user(optval, &val, len))
6443 return -EFAULT;
6444 return 0;
6445}
6446
6447/*
6448 *
6449 * 7.1.1 SCTP_RTOINFO
6450 *
6451 * The protocol parameters used to initialize and bound retransmission
6452 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
6453 * and modify these parameters.
6454 * All parameters are time values, in milliseconds. A value of 0, when
6455 * modifying the parameters, indicates that the current value should not
6456 * be changed.
6457 *
6458 */
6459static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
6460 char __user *optval,
6461 int __user *optlen) {
6462 struct sctp_rtoinfo rtoinfo;
6463 struct sctp_association *asoc;
6464
6465 if (len < sizeof (struct sctp_rtoinfo))
6466 return -EINVAL;
6467
6468 len = sizeof(struct sctp_rtoinfo);
6469
6470 if (copy_from_user(&rtoinfo, optval, len))
6471 return -EFAULT;
6472
6473 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
6474
6475 if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC &&
6476 sctp_style(sk, UDP))
6477 return -EINVAL;
6478
6479 /* Values corresponding to the specific association. */
6480 if (asoc) {
6481 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
6482 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
6483 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
6484 } else {
6485 /* Values corresponding to the endpoint. */
6486 struct sctp_sock *sp = sctp_sk(sk);
6487
6488 rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
6489 rtoinfo.srto_max = sp->rtoinfo.srto_max;
6490 rtoinfo.srto_min = sp->rtoinfo.srto_min;
6491 }
6492
6493 if (put_user(len, optlen))
6494 return -EFAULT;
6495
6496 if (copy_to_user(optval, &rtoinfo, len))
6497 return -EFAULT;
6498
6499 return 0;
6500}
6501
6502/*
6503 *
6504 * 7.1.2 SCTP_ASSOCINFO
6505 *
6506 * This option is used to tune the maximum retransmission attempts
6507 * of the association.
6508 * Returns an error if the new association retransmission value is
6509 * greater than the sum of the retransmission value of the peer.
6510 * See [SCTP] for more information.
6511 *
6512 */
6513static int sctp_getsockopt_associnfo(struct sock *sk, int len,
6514 char __user *optval,
6515 int __user *optlen)
6516{
6517
6518 struct sctp_assocparams assocparams;
6519 struct sctp_association *asoc;
6520 struct list_head *pos;
6521 int cnt = 0;
6522
6523 if (len < sizeof (struct sctp_assocparams))
6524 return -EINVAL;
6525
6526 len = sizeof(struct sctp_assocparams);
6527
6528 if (copy_from_user(&assocparams, optval, len))
6529 return -EFAULT;
6530
6531 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
6532
6533 if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC &&
6534 sctp_style(sk, UDP))
6535 return -EINVAL;
6536
6537 /* Values correspoinding to the specific association */
6538 if (asoc) {
6539 assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
6540 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
6541 assocparams.sasoc_local_rwnd = asoc->a_rwnd;
6542 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
6543
6544 list_for_each(pos, &asoc->peer.transport_addr_list) {
6545 cnt++;
6546 }
6547
6548 assocparams.sasoc_number_peer_destinations = cnt;
6549 } else {
6550 /* Values corresponding to the endpoint */
6551 struct sctp_sock *sp = sctp_sk(sk);
6552
6553 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
6554 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
6555 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
6556 assocparams.sasoc_cookie_life =
6557 sp->assocparams.sasoc_cookie_life;
6558 assocparams.sasoc_number_peer_destinations =
6559 sp->assocparams.
6560 sasoc_number_peer_destinations;
6561 }
6562
6563 if (put_user(len, optlen))
6564 return -EFAULT;
6565
6566 if (copy_to_user(optval, &assocparams, len))
6567 return -EFAULT;
6568
6569 return 0;
6570}
6571
6572/*
6573 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
6574 *
6575 * This socket option is a boolean flag which turns on or off mapped V4
6576 * addresses. If this option is turned on and the socket is type
6577 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
6578 * If this option is turned off, then no mapping will be done of V4
6579 * addresses and a user will receive both PF_INET6 and PF_INET type
6580 * addresses on the socket.
6581 */
6582static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
6583 char __user *optval, int __user *optlen)
6584{
6585 int val;
6586 struct sctp_sock *sp = sctp_sk(sk);
6587
6588 if (len < sizeof(int))
6589 return -EINVAL;
6590
6591 len = sizeof(int);
6592 val = sp->v4mapped;
6593 if (put_user(len, optlen))
6594 return -EFAULT;
6595 if (copy_to_user(optval, &val, len))
6596 return -EFAULT;
6597
6598 return 0;
6599}
6600
6601/*
6602 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
6603 * (chapter and verse is quoted at sctp_setsockopt_context())
6604 */
6605static int sctp_getsockopt_context(struct sock *sk, int len,
6606 char __user *optval, int __user *optlen)
6607{
6608 struct sctp_assoc_value params;
6609 struct sctp_association *asoc;
6610
6611 if (len < sizeof(struct sctp_assoc_value))
6612 return -EINVAL;
6613
6614 len = sizeof(struct sctp_assoc_value);
6615
6616 if (copy_from_user(¶ms, optval, len))
6617 return -EFAULT;
6618
6619 asoc = sctp_id2assoc(sk, params.assoc_id);
6620 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6621 sctp_style(sk, UDP))
6622 return -EINVAL;
6623
6624 params.assoc_value = asoc ? asoc->default_rcv_context
6625 : sctp_sk(sk)->default_rcv_context;
6626
6627 if (put_user(len, optlen))
6628 return -EFAULT;
6629 if (copy_to_user(optval, ¶ms, len))
6630 return -EFAULT;
6631
6632 return 0;
6633}
6634
6635/*
6636 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
6637 * This option will get or set the maximum size to put in any outgoing
6638 * SCTP DATA chunk. If a message is larger than this size it will be
6639 * fragmented by SCTP into the specified size. Note that the underlying
6640 * SCTP implementation may fragment into smaller sized chunks when the
6641 * PMTU of the underlying association is smaller than the value set by
6642 * the user. The default value for this option is '0' which indicates
6643 * the user is NOT limiting fragmentation and only the PMTU will effect
6644 * SCTP's choice of DATA chunk size. Note also that values set larger
6645 * than the maximum size of an IP datagram will effectively let SCTP
6646 * control fragmentation (i.e. the same as setting this option to 0).
6647 *
6648 * The following structure is used to access and modify this parameter:
6649 *
6650 * struct sctp_assoc_value {
6651 * sctp_assoc_t assoc_id;
6652 * uint32_t assoc_value;
6653 * };
6654 *
6655 * assoc_id: This parameter is ignored for one-to-one style sockets.
6656 * For one-to-many style sockets this parameter indicates which
6657 * association the user is performing an action upon. Note that if
6658 * this field's value is zero then the endpoints default value is
6659 * changed (effecting future associations only).
6660 * assoc_value: This parameter specifies the maximum size in bytes.
6661 */
6662static int sctp_getsockopt_maxseg(struct sock *sk, int len,
6663 char __user *optval, int __user *optlen)
6664{
6665 struct sctp_assoc_value params;
6666 struct sctp_association *asoc;
6667
6668 if (len == sizeof(int)) {
6669 pr_warn_ratelimited(DEPRECATED
6670 "%s (pid %d) "
6671 "Use of int in maxseg socket option.\n"
6672 "Use struct sctp_assoc_value instead\n",
6673 current->comm, task_pid_nr(current));
6674 params.assoc_id = SCTP_FUTURE_ASSOC;
6675 } else if (len >= sizeof(struct sctp_assoc_value)) {
6676 len = sizeof(struct sctp_assoc_value);
6677 if (copy_from_user(¶ms, optval, len))
6678 return -EFAULT;
6679 } else
6680 return -EINVAL;
6681
6682 asoc = sctp_id2assoc(sk, params.assoc_id);
6683 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6684 sctp_style(sk, UDP))
6685 return -EINVAL;
6686
6687 if (asoc)
6688 params.assoc_value = asoc->frag_point;
6689 else
6690 params.assoc_value = sctp_sk(sk)->user_frag;
6691
6692 if (put_user(len, optlen))
6693 return -EFAULT;
6694 if (len == sizeof(int)) {
6695 if (copy_to_user(optval, ¶ms.assoc_value, len))
6696 return -EFAULT;
6697 } else {
6698 if (copy_to_user(optval, ¶ms, len))
6699 return -EFAULT;
6700 }
6701
6702 return 0;
6703}
6704
6705/*
6706 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
6707 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
6708 */
6709static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
6710 char __user *optval, int __user *optlen)
6711{
6712 int val;
6713
6714 if (len < sizeof(int))
6715 return -EINVAL;
6716
6717 len = sizeof(int);
6718
6719 val = sctp_sk(sk)->frag_interleave;
6720 if (put_user(len, optlen))
6721 return -EFAULT;
6722 if (copy_to_user(optval, &val, len))
6723 return -EFAULT;
6724
6725 return 0;
6726}
6727
6728/*
6729 * 7.1.25. Set or Get the sctp partial delivery point
6730 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
6731 */
6732static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
6733 char __user *optval,
6734 int __user *optlen)
6735{
6736 u32 val;
6737
6738 if (len < sizeof(u32))
6739 return -EINVAL;
6740
6741 len = sizeof(u32);
6742
6743 val = sctp_sk(sk)->pd_point;
6744 if (put_user(len, optlen))
6745 return -EFAULT;
6746 if (copy_to_user(optval, &val, len))
6747 return -EFAULT;
6748
6749 return 0;
6750}
6751
6752/*
6753 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
6754 * (chapter and verse is quoted at sctp_setsockopt_maxburst())
6755 */
6756static int sctp_getsockopt_maxburst(struct sock *sk, int len,
6757 char __user *optval,
6758 int __user *optlen)
6759{
6760 struct sctp_assoc_value params;
6761 struct sctp_association *asoc;
6762
6763 if (len == sizeof(int)) {
6764 pr_warn_ratelimited(DEPRECATED
6765 "%s (pid %d) "
6766 "Use of int in max_burst socket option.\n"
6767 "Use struct sctp_assoc_value instead\n",
6768 current->comm, task_pid_nr(current));
6769 params.assoc_id = SCTP_FUTURE_ASSOC;
6770 } else if (len >= sizeof(struct sctp_assoc_value)) {
6771 len = sizeof(struct sctp_assoc_value);
6772 if (copy_from_user(¶ms, optval, len))
6773 return -EFAULT;
6774 } else
6775 return -EINVAL;
6776
6777 asoc = sctp_id2assoc(sk, params.assoc_id);
6778 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6779 sctp_style(sk, UDP))
6780 return -EINVAL;
6781
6782 params.assoc_value = asoc ? asoc->max_burst : sctp_sk(sk)->max_burst;
6783
6784 if (len == sizeof(int)) {
6785 if (copy_to_user(optval, ¶ms.assoc_value, len))
6786 return -EFAULT;
6787 } else {
6788 if (copy_to_user(optval, ¶ms, len))
6789 return -EFAULT;
6790 }
6791
6792 return 0;
6793
6794}
6795
6796static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
6797 char __user *optval, int __user *optlen)
6798{
6799 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6800 struct sctp_hmacalgo __user *p = (void __user *)optval;
6801 struct sctp_hmac_algo_param *hmacs;
6802 __u16 data_len = 0;
6803 u32 num_idents;
6804 int i;
6805
6806 if (!ep->auth_enable)
6807 return -EACCES;
6808
6809 hmacs = ep->auth_hmacs_list;
6810 data_len = ntohs(hmacs->param_hdr.length) -
6811 sizeof(struct sctp_paramhdr);
6812
6813 if (len < sizeof(struct sctp_hmacalgo) + data_len)
6814 return -EINVAL;
6815
6816 len = sizeof(struct sctp_hmacalgo) + data_len;
6817 num_idents = data_len / sizeof(u16);
6818
6819 if (put_user(len, optlen))
6820 return -EFAULT;
6821 if (put_user(num_idents, &p->shmac_num_idents))
6822 return -EFAULT;
6823 for (i = 0; i < num_idents; i++) {
6824 __u16 hmacid = ntohs(hmacs->hmac_ids[i]);
6825
6826 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16)))
6827 return -EFAULT;
6828 }
6829 return 0;
6830}
6831
6832static int sctp_getsockopt_active_key(struct sock *sk, int len,
6833 char __user *optval, int __user *optlen)
6834{
6835 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6836 struct sctp_authkeyid val;
6837 struct sctp_association *asoc;
6838
6839 if (len < sizeof(struct sctp_authkeyid))
6840 return -EINVAL;
6841
6842 len = sizeof(struct sctp_authkeyid);
6843 if (copy_from_user(&val, optval, len))
6844 return -EFAULT;
6845
6846 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
6847 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
6848 return -EINVAL;
6849
6850 if (asoc) {
6851 if (!asoc->peer.auth_capable)
6852 return -EACCES;
6853 val.scact_keynumber = asoc->active_key_id;
6854 } else {
6855 if (!ep->auth_enable)
6856 return -EACCES;
6857 val.scact_keynumber = ep->active_key_id;
6858 }
6859
6860 if (put_user(len, optlen))
6861 return -EFAULT;
6862 if (copy_to_user(optval, &val, len))
6863 return -EFAULT;
6864
6865 return 0;
6866}
6867
6868static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
6869 char __user *optval, int __user *optlen)
6870{
6871 struct sctp_authchunks __user *p = (void __user *)optval;
6872 struct sctp_authchunks val;
6873 struct sctp_association *asoc;
6874 struct sctp_chunks_param *ch;
6875 u32 num_chunks = 0;
6876 char __user *to;
6877
6878 if (len < sizeof(struct sctp_authchunks))
6879 return -EINVAL;
6880
6881 if (copy_from_user(&val, optval, sizeof(val)))
6882 return -EFAULT;
6883
6884 to = p->gauth_chunks;
6885 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
6886 if (!asoc)
6887 return -EINVAL;
6888
6889 if (!asoc->peer.auth_capable)
6890 return -EACCES;
6891
6892 ch = asoc->peer.peer_chunks;
6893 if (!ch)
6894 goto num;
6895
6896 /* See if the user provided enough room for all the data */
6897 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
6898 if (len < num_chunks)
6899 return -EINVAL;
6900
6901 if (copy_to_user(to, ch->chunks, num_chunks))
6902 return -EFAULT;
6903num:
6904 len = sizeof(struct sctp_authchunks) + num_chunks;
6905 if (put_user(len, optlen))
6906 return -EFAULT;
6907 if (put_user(num_chunks, &p->gauth_number_of_chunks))
6908 return -EFAULT;
6909 return 0;
6910}
6911
6912static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
6913 char __user *optval, int __user *optlen)
6914{
6915 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6916 struct sctp_authchunks __user *p = (void __user *)optval;
6917 struct sctp_authchunks val;
6918 struct sctp_association *asoc;
6919 struct sctp_chunks_param *ch;
6920 u32 num_chunks = 0;
6921 char __user *to;
6922
6923 if (len < sizeof(struct sctp_authchunks))
6924 return -EINVAL;
6925
6926 if (copy_from_user(&val, optval, sizeof(val)))
6927 return -EFAULT;
6928
6929 to = p->gauth_chunks;
6930 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
6931 if (!asoc && val.gauth_assoc_id != SCTP_FUTURE_ASSOC &&
6932 sctp_style(sk, UDP))
6933 return -EINVAL;
6934
6935 if (asoc) {
6936 if (!asoc->peer.auth_capable)
6937 return -EACCES;
6938 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks;
6939 } else {
6940 if (!ep->auth_enable)
6941 return -EACCES;
6942 ch = ep->auth_chunk_list;
6943 }
6944 if (!ch)
6945 goto num;
6946
6947 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
6948 if (len < sizeof(struct sctp_authchunks) + num_chunks)
6949 return -EINVAL;
6950
6951 if (copy_to_user(to, ch->chunks, num_chunks))
6952 return -EFAULT;
6953num:
6954 len = sizeof(struct sctp_authchunks) + num_chunks;
6955 if (put_user(len, optlen))
6956 return -EFAULT;
6957 if (put_user(num_chunks, &p->gauth_number_of_chunks))
6958 return -EFAULT;
6959
6960 return 0;
6961}
6962
6963/*
6964 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
6965 * This option gets the current number of associations that are attached
6966 * to a one-to-many style socket. The option value is an uint32_t.
6967 */
6968static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
6969 char __user *optval, int __user *optlen)
6970{
6971 struct sctp_sock *sp = sctp_sk(sk);
6972 struct sctp_association *asoc;
6973 u32 val = 0;
6974
6975 if (sctp_style(sk, TCP))
6976 return -EOPNOTSUPP;
6977
6978 if (len < sizeof(u32))
6979 return -EINVAL;
6980
6981 len = sizeof(u32);
6982
6983 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6984 val++;
6985 }
6986
6987 if (put_user(len, optlen))
6988 return -EFAULT;
6989 if (copy_to_user(optval, &val, len))
6990 return -EFAULT;
6991
6992 return 0;
6993}
6994
6995/*
6996 * 8.1.23 SCTP_AUTO_ASCONF
6997 * See the corresponding setsockopt entry as description
6998 */
6999static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
7000 char __user *optval, int __user *optlen)
7001{
7002 int val = 0;
7003
7004 if (len < sizeof(int))
7005 return -EINVAL;
7006
7007 len = sizeof(int);
7008 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
7009 val = 1;
7010 if (put_user(len, optlen))
7011 return -EFAULT;
7012 if (copy_to_user(optval, &val, len))
7013 return -EFAULT;
7014 return 0;
7015}
7016
7017/*
7018 * 8.2.6. Get the Current Identifiers of Associations
7019 * (SCTP_GET_ASSOC_ID_LIST)
7020 *
7021 * This option gets the current list of SCTP association identifiers of
7022 * the SCTP associations handled by a one-to-many style socket.
7023 */
7024static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
7025 char __user *optval, int __user *optlen)
7026{
7027 struct sctp_sock *sp = sctp_sk(sk);
7028 struct sctp_association *asoc;
7029 struct sctp_assoc_ids *ids;
7030 u32 num = 0;
7031
7032 if (sctp_style(sk, TCP))
7033 return -EOPNOTSUPP;
7034
7035 if (len < sizeof(struct sctp_assoc_ids))
7036 return -EINVAL;
7037
7038 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
7039 num++;
7040 }
7041
7042 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
7043 return -EINVAL;
7044
7045 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
7046
7047 ids = kmalloc(len, GFP_USER | __GFP_NOWARN);
7048 if (unlikely(!ids))
7049 return -ENOMEM;
7050
7051 ids->gaids_number_of_ids = num;
7052 num = 0;
7053 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
7054 ids->gaids_assoc_id[num++] = asoc->assoc_id;
7055 }
7056
7057 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
7058 kfree(ids);
7059 return -EFAULT;
7060 }
7061
7062 kfree(ids);
7063 return 0;
7064}
7065
7066/*
7067 * SCTP_PEER_ADDR_THLDS
7068 *
7069 * This option allows us to fetch the partially failed threshold for one or all
7070 * transports in an association. See Section 6.1 of:
7071 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
7072 */
7073static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
7074 char __user *optval, int len,
7075 int __user *optlen, bool v2)
7076{
7077 struct sctp_paddrthlds_v2 val;
7078 struct sctp_transport *trans;
7079 struct sctp_association *asoc;
7080 int min;
7081
7082 min = v2 ? sizeof(val) : sizeof(struct sctp_paddrthlds);
7083 if (len < min)
7084 return -EINVAL;
7085 len = min;
7086 if (copy_from_user(&val, optval, len))
7087 return -EFAULT;
7088
7089 if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
7090 trans = sctp_addr_id2transport(sk, &val.spt_address,
7091 val.spt_assoc_id);
7092 if (!trans)
7093 return -ENOENT;
7094
7095 val.spt_pathmaxrxt = trans->pathmaxrxt;
7096 val.spt_pathpfthld = trans->pf_retrans;
7097 val.spt_pathcpthld = trans->ps_retrans;
7098
7099 goto out;
7100 }
7101
7102 asoc = sctp_id2assoc(sk, val.spt_assoc_id);
7103 if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC &&
7104 sctp_style(sk, UDP))
7105 return -EINVAL;
7106
7107 if (asoc) {
7108 val.spt_pathpfthld = asoc->pf_retrans;
7109 val.spt_pathmaxrxt = asoc->pathmaxrxt;
7110 val.spt_pathcpthld = asoc->ps_retrans;
7111 } else {
7112 struct sctp_sock *sp = sctp_sk(sk);
7113
7114 val.spt_pathpfthld = sp->pf_retrans;
7115 val.spt_pathmaxrxt = sp->pathmaxrxt;
7116 val.spt_pathcpthld = sp->ps_retrans;
7117 }
7118
7119out:
7120 if (put_user(len, optlen) || copy_to_user(optval, &val, len))
7121 return -EFAULT;
7122
7123 return 0;
7124}
7125
7126/*
7127 * SCTP_GET_ASSOC_STATS
7128 *
7129 * This option retrieves local per endpoint statistics. It is modeled
7130 * after OpenSolaris' implementation
7131 */
7132static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
7133 char __user *optval,
7134 int __user *optlen)
7135{
7136 struct sctp_assoc_stats sas;
7137 struct sctp_association *asoc = NULL;
7138
7139 /* User must provide at least the assoc id */
7140 if (len < sizeof(sctp_assoc_t))
7141 return -EINVAL;
7142
7143 /* Allow the struct to grow and fill in as much as possible */
7144 len = min_t(size_t, len, sizeof(sas));
7145
7146 if (copy_from_user(&sas, optval, len))
7147 return -EFAULT;
7148
7149 asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
7150 if (!asoc)
7151 return -EINVAL;
7152
7153 sas.sas_rtxchunks = asoc->stats.rtxchunks;
7154 sas.sas_gapcnt = asoc->stats.gapcnt;
7155 sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
7156 sas.sas_osacks = asoc->stats.osacks;
7157 sas.sas_isacks = asoc->stats.isacks;
7158 sas.sas_octrlchunks = asoc->stats.octrlchunks;
7159 sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
7160 sas.sas_oodchunks = asoc->stats.oodchunks;
7161 sas.sas_iodchunks = asoc->stats.iodchunks;
7162 sas.sas_ouodchunks = asoc->stats.ouodchunks;
7163 sas.sas_iuodchunks = asoc->stats.iuodchunks;
7164 sas.sas_idupchunks = asoc->stats.idupchunks;
7165 sas.sas_opackets = asoc->stats.opackets;
7166 sas.sas_ipackets = asoc->stats.ipackets;
7167
7168 /* New high max rto observed, will return 0 if not a single
7169 * RTO update took place. obs_rto_ipaddr will be bogus
7170 * in such a case
7171 */
7172 sas.sas_maxrto = asoc->stats.max_obs_rto;
7173 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
7174 sizeof(struct sockaddr_storage));
7175
7176 /* Mark beginning of a new observation period */
7177 asoc->stats.max_obs_rto = asoc->rto_min;
7178
7179 if (put_user(len, optlen))
7180 return -EFAULT;
7181
7182 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
7183
7184 if (copy_to_user(optval, &sas, len))
7185 return -EFAULT;
7186
7187 return 0;
7188}
7189
7190static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len,
7191 char __user *optval,
7192 int __user *optlen)
7193{
7194 int val = 0;
7195
7196 if (len < sizeof(int))
7197 return -EINVAL;
7198
7199 len = sizeof(int);
7200 if (sctp_sk(sk)->recvrcvinfo)
7201 val = 1;
7202 if (put_user(len, optlen))
7203 return -EFAULT;
7204 if (copy_to_user(optval, &val, len))
7205 return -EFAULT;
7206
7207 return 0;
7208}
7209
7210static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len,
7211 char __user *optval,
7212 int __user *optlen)
7213{
7214 int val = 0;
7215
7216 if (len < sizeof(int))
7217 return -EINVAL;
7218
7219 len = sizeof(int);
7220 if (sctp_sk(sk)->recvnxtinfo)
7221 val = 1;
7222 if (put_user(len, optlen))
7223 return -EFAULT;
7224 if (copy_to_user(optval, &val, len))
7225 return -EFAULT;
7226
7227 return 0;
7228}
7229
7230static int sctp_getsockopt_pr_supported(struct sock *sk, int len,
7231 char __user *optval,
7232 int __user *optlen)
7233{
7234 struct sctp_assoc_value params;
7235 struct sctp_association *asoc;
7236 int retval = -EFAULT;
7237
7238 if (len < sizeof(params)) {
7239 retval = -EINVAL;
7240 goto out;
7241 }
7242
7243 len = sizeof(params);
7244 if (copy_from_user(¶ms, optval, len))
7245 goto out;
7246
7247 asoc = sctp_id2assoc(sk, params.assoc_id);
7248 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7249 sctp_style(sk, UDP)) {
7250 retval = -EINVAL;
7251 goto out;
7252 }
7253
7254 params.assoc_value = asoc ? asoc->peer.prsctp_capable
7255 : sctp_sk(sk)->ep->prsctp_enable;
7256
7257 if (put_user(len, optlen))
7258 goto out;
7259
7260 if (copy_to_user(optval, ¶ms, len))
7261 goto out;
7262
7263 retval = 0;
7264
7265out:
7266 return retval;
7267}
7268
7269static int sctp_getsockopt_default_prinfo(struct sock *sk, int len,
7270 char __user *optval,
7271 int __user *optlen)
7272{
7273 struct sctp_default_prinfo info;
7274 struct sctp_association *asoc;
7275 int retval = -EFAULT;
7276
7277 if (len < sizeof(info)) {
7278 retval = -EINVAL;
7279 goto out;
7280 }
7281
7282 len = sizeof(info);
7283 if (copy_from_user(&info, optval, len))
7284 goto out;
7285
7286 asoc = sctp_id2assoc(sk, info.pr_assoc_id);
7287 if (!asoc && info.pr_assoc_id != SCTP_FUTURE_ASSOC &&
7288 sctp_style(sk, UDP)) {
7289 retval = -EINVAL;
7290 goto out;
7291 }
7292
7293 if (asoc) {
7294 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags);
7295 info.pr_value = asoc->default_timetolive;
7296 } else {
7297 struct sctp_sock *sp = sctp_sk(sk);
7298
7299 info.pr_policy = SCTP_PR_POLICY(sp->default_flags);
7300 info.pr_value = sp->default_timetolive;
7301 }
7302
7303 if (put_user(len, optlen))
7304 goto out;
7305
7306 if (copy_to_user(optval, &info, len))
7307 goto out;
7308
7309 retval = 0;
7310
7311out:
7312 return retval;
7313}
7314
7315static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len,
7316 char __user *optval,
7317 int __user *optlen)
7318{
7319 struct sctp_prstatus params;
7320 struct sctp_association *asoc;
7321 int policy;
7322 int retval = -EINVAL;
7323
7324 if (len < sizeof(params))
7325 goto out;
7326
7327 len = sizeof(params);
7328 if (copy_from_user(¶ms, optval, len)) {
7329 retval = -EFAULT;
7330 goto out;
7331 }
7332
7333 policy = params.sprstat_policy;
7334 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) ||
7335 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK)))
7336 goto out;
7337
7338 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
7339 if (!asoc)
7340 goto out;
7341
7342 if (policy == SCTP_PR_SCTP_ALL) {
7343 params.sprstat_abandoned_unsent = 0;
7344 params.sprstat_abandoned_sent = 0;
7345 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
7346 params.sprstat_abandoned_unsent +=
7347 asoc->abandoned_unsent[policy];
7348 params.sprstat_abandoned_sent +=
7349 asoc->abandoned_sent[policy];
7350 }
7351 } else {
7352 params.sprstat_abandoned_unsent =
7353 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)];
7354 params.sprstat_abandoned_sent =
7355 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)];
7356 }
7357
7358 if (put_user(len, optlen)) {
7359 retval = -EFAULT;
7360 goto out;
7361 }
7362
7363 if (copy_to_user(optval, ¶ms, len)) {
7364 retval = -EFAULT;
7365 goto out;
7366 }
7367
7368 retval = 0;
7369
7370out:
7371 return retval;
7372}
7373
7374static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len,
7375 char __user *optval,
7376 int __user *optlen)
7377{
7378 struct sctp_stream_out_ext *streamoute;
7379 struct sctp_association *asoc;
7380 struct sctp_prstatus params;
7381 int retval = -EINVAL;
7382 int policy;
7383
7384 if (len < sizeof(params))
7385 goto out;
7386
7387 len = sizeof(params);
7388 if (copy_from_user(¶ms, optval, len)) {
7389 retval = -EFAULT;
7390 goto out;
7391 }
7392
7393 policy = params.sprstat_policy;
7394 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) ||
7395 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK)))
7396 goto out;
7397
7398 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
7399 if (!asoc || params.sprstat_sid >= asoc->stream.outcnt)
7400 goto out;
7401
7402 streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext;
7403 if (!streamoute) {
7404 /* Not allocated yet, means all stats are 0 */
7405 params.sprstat_abandoned_unsent = 0;
7406 params.sprstat_abandoned_sent = 0;
7407 retval = 0;
7408 goto out;
7409 }
7410
7411 if (policy == SCTP_PR_SCTP_ALL) {
7412 params.sprstat_abandoned_unsent = 0;
7413 params.sprstat_abandoned_sent = 0;
7414 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
7415 params.sprstat_abandoned_unsent +=
7416 streamoute->abandoned_unsent[policy];
7417 params.sprstat_abandoned_sent +=
7418 streamoute->abandoned_sent[policy];
7419 }
7420 } else {
7421 params.sprstat_abandoned_unsent =
7422 streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)];
7423 params.sprstat_abandoned_sent =
7424 streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)];
7425 }
7426
7427 if (put_user(len, optlen) || copy_to_user(optval, ¶ms, len)) {
7428 retval = -EFAULT;
7429 goto out;
7430 }
7431
7432 retval = 0;
7433
7434out:
7435 return retval;
7436}
7437
7438static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len,
7439 char __user *optval,
7440 int __user *optlen)
7441{
7442 struct sctp_assoc_value params;
7443 struct sctp_association *asoc;
7444 int retval = -EFAULT;
7445
7446 if (len < sizeof(params)) {
7447 retval = -EINVAL;
7448 goto out;
7449 }
7450
7451 len = sizeof(params);
7452 if (copy_from_user(¶ms, optval, len))
7453 goto out;
7454
7455 asoc = sctp_id2assoc(sk, params.assoc_id);
7456 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7457 sctp_style(sk, UDP)) {
7458 retval = -EINVAL;
7459 goto out;
7460 }
7461
7462 params.assoc_value = asoc ? asoc->peer.reconf_capable
7463 : sctp_sk(sk)->ep->reconf_enable;
7464
7465 if (put_user(len, optlen))
7466 goto out;
7467
7468 if (copy_to_user(optval, ¶ms, len))
7469 goto out;
7470
7471 retval = 0;
7472
7473out:
7474 return retval;
7475}
7476
7477static int sctp_getsockopt_enable_strreset(struct sock *sk, int len,
7478 char __user *optval,
7479 int __user *optlen)
7480{
7481 struct sctp_assoc_value params;
7482 struct sctp_association *asoc;
7483 int retval = -EFAULT;
7484
7485 if (len < sizeof(params)) {
7486 retval = -EINVAL;
7487 goto out;
7488 }
7489
7490 len = sizeof(params);
7491 if (copy_from_user(¶ms, optval, len))
7492 goto out;
7493
7494 asoc = sctp_id2assoc(sk, params.assoc_id);
7495 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7496 sctp_style(sk, UDP)) {
7497 retval = -EINVAL;
7498 goto out;
7499 }
7500
7501 params.assoc_value = asoc ? asoc->strreset_enable
7502 : sctp_sk(sk)->ep->strreset_enable;
7503
7504 if (put_user(len, optlen))
7505 goto out;
7506
7507 if (copy_to_user(optval, ¶ms, len))
7508 goto out;
7509
7510 retval = 0;
7511
7512out:
7513 return retval;
7514}
7515
7516static int sctp_getsockopt_scheduler(struct sock *sk, int len,
7517 char __user *optval,
7518 int __user *optlen)
7519{
7520 struct sctp_assoc_value params;
7521 struct sctp_association *asoc;
7522 int retval = -EFAULT;
7523
7524 if (len < sizeof(params)) {
7525 retval = -EINVAL;
7526 goto out;
7527 }
7528
7529 len = sizeof(params);
7530 if (copy_from_user(¶ms, optval, len))
7531 goto out;
7532
7533 asoc = sctp_id2assoc(sk, params.assoc_id);
7534 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7535 sctp_style(sk, UDP)) {
7536 retval = -EINVAL;
7537 goto out;
7538 }
7539
7540 params.assoc_value = asoc ? sctp_sched_get_sched(asoc)
7541 : sctp_sk(sk)->default_ss;
7542
7543 if (put_user(len, optlen))
7544 goto out;
7545
7546 if (copy_to_user(optval, ¶ms, len))
7547 goto out;
7548
7549 retval = 0;
7550
7551out:
7552 return retval;
7553}
7554
7555static int sctp_getsockopt_scheduler_value(struct sock *sk, int len,
7556 char __user *optval,
7557 int __user *optlen)
7558{
7559 struct sctp_stream_value params;
7560 struct sctp_association *asoc;
7561 int retval = -EFAULT;
7562
7563 if (len < sizeof(params)) {
7564 retval = -EINVAL;
7565 goto out;
7566 }
7567
7568 len = sizeof(params);
7569 if (copy_from_user(¶ms, optval, len))
7570 goto out;
7571
7572 asoc = sctp_id2assoc(sk, params.assoc_id);
7573 if (!asoc) {
7574 retval = -EINVAL;
7575 goto out;
7576 }
7577
7578 retval = sctp_sched_get_value(asoc, params.stream_id,
7579 ¶ms.stream_value);
7580 if (retval)
7581 goto out;
7582
7583 if (put_user(len, optlen)) {
7584 retval = -EFAULT;
7585 goto out;
7586 }
7587
7588 if (copy_to_user(optval, ¶ms, len)) {
7589 retval = -EFAULT;
7590 goto out;
7591 }
7592
7593out:
7594 return retval;
7595}
7596
7597static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len,
7598 char __user *optval,
7599 int __user *optlen)
7600{
7601 struct sctp_assoc_value params;
7602 struct sctp_association *asoc;
7603 int retval = -EFAULT;
7604
7605 if (len < sizeof(params)) {
7606 retval = -EINVAL;
7607 goto out;
7608 }
7609
7610 len = sizeof(params);
7611 if (copy_from_user(¶ms, optval, len))
7612 goto out;
7613
7614 asoc = sctp_id2assoc(sk, params.assoc_id);
7615 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7616 sctp_style(sk, UDP)) {
7617 retval = -EINVAL;
7618 goto out;
7619 }
7620
7621 params.assoc_value = asoc ? asoc->peer.intl_capable
7622 : sctp_sk(sk)->ep->intl_enable;
7623
7624 if (put_user(len, optlen))
7625 goto out;
7626
7627 if (copy_to_user(optval, ¶ms, len))
7628 goto out;
7629
7630 retval = 0;
7631
7632out:
7633 return retval;
7634}
7635
7636static int sctp_getsockopt_reuse_port(struct sock *sk, int len,
7637 char __user *optval,
7638 int __user *optlen)
7639{
7640 int val;
7641
7642 if (len < sizeof(int))
7643 return -EINVAL;
7644
7645 len = sizeof(int);
7646 val = sctp_sk(sk)->reuse;
7647 if (put_user(len, optlen))
7648 return -EFAULT;
7649
7650 if (copy_to_user(optval, &val, len))
7651 return -EFAULT;
7652
7653 return 0;
7654}
7655
7656static int sctp_getsockopt_event(struct sock *sk, int len, char __user *optval,
7657 int __user *optlen)
7658{
7659 struct sctp_association *asoc;
7660 struct sctp_event param;
7661 __u16 subscribe;
7662
7663 if (len < sizeof(param))
7664 return -EINVAL;
7665
7666 len = sizeof(param);
7667 if (copy_from_user(¶m, optval, len))
7668 return -EFAULT;
7669
7670 if (param.se_type < SCTP_SN_TYPE_BASE ||
7671 param.se_type > SCTP_SN_TYPE_MAX)
7672 return -EINVAL;
7673
7674 asoc = sctp_id2assoc(sk, param.se_assoc_id);
7675 if (!asoc && param.se_assoc_id != SCTP_FUTURE_ASSOC &&
7676 sctp_style(sk, UDP))
7677 return -EINVAL;
7678
7679 subscribe = asoc ? asoc->subscribe : sctp_sk(sk)->subscribe;
7680 param.se_on = sctp_ulpevent_type_enabled(subscribe, param.se_type);
7681
7682 if (put_user(len, optlen))
7683 return -EFAULT;
7684
7685 if (copy_to_user(optval, ¶m, len))
7686 return -EFAULT;
7687
7688 return 0;
7689}
7690
7691static int sctp_getsockopt_asconf_supported(struct sock *sk, int len,
7692 char __user *optval,
7693 int __user *optlen)
7694{
7695 struct sctp_assoc_value params;
7696 struct sctp_association *asoc;
7697 int retval = -EFAULT;
7698
7699 if (len < sizeof(params)) {
7700 retval = -EINVAL;
7701 goto out;
7702 }
7703
7704 len = sizeof(params);
7705 if (copy_from_user(¶ms, optval, len))
7706 goto out;
7707
7708 asoc = sctp_id2assoc(sk, params.assoc_id);
7709 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7710 sctp_style(sk, UDP)) {
7711 retval = -EINVAL;
7712 goto out;
7713 }
7714
7715 params.assoc_value = asoc ? asoc->peer.asconf_capable
7716 : sctp_sk(sk)->ep->asconf_enable;
7717
7718 if (put_user(len, optlen))
7719 goto out;
7720
7721 if (copy_to_user(optval, ¶ms, len))
7722 goto out;
7723
7724 retval = 0;
7725
7726out:
7727 return retval;
7728}
7729
7730static int sctp_getsockopt_auth_supported(struct sock *sk, int len,
7731 char __user *optval,
7732 int __user *optlen)
7733{
7734 struct sctp_assoc_value params;
7735 struct sctp_association *asoc;
7736 int retval = -EFAULT;
7737
7738 if (len < sizeof(params)) {
7739 retval = -EINVAL;
7740 goto out;
7741 }
7742
7743 len = sizeof(params);
7744 if (copy_from_user(¶ms, optval, len))
7745 goto out;
7746
7747 asoc = sctp_id2assoc(sk, params.assoc_id);
7748 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7749 sctp_style(sk, UDP)) {
7750 retval = -EINVAL;
7751 goto out;
7752 }
7753
7754 params.assoc_value = asoc ? asoc->peer.auth_capable
7755 : sctp_sk(sk)->ep->auth_enable;
7756
7757 if (put_user(len, optlen))
7758 goto out;
7759
7760 if (copy_to_user(optval, ¶ms, len))
7761 goto out;
7762
7763 retval = 0;
7764
7765out:
7766 return retval;
7767}
7768
7769static int sctp_getsockopt_ecn_supported(struct sock *sk, int len,
7770 char __user *optval,
7771 int __user *optlen)
7772{
7773 struct sctp_assoc_value params;
7774 struct sctp_association *asoc;
7775 int retval = -EFAULT;
7776
7777 if (len < sizeof(params)) {
7778 retval = -EINVAL;
7779 goto out;
7780 }
7781
7782 len = sizeof(params);
7783 if (copy_from_user(¶ms, optval, len))
7784 goto out;
7785
7786 asoc = sctp_id2assoc(sk, params.assoc_id);
7787 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7788 sctp_style(sk, UDP)) {
7789 retval = -EINVAL;
7790 goto out;
7791 }
7792
7793 params.assoc_value = asoc ? asoc->peer.ecn_capable
7794 : sctp_sk(sk)->ep->ecn_enable;
7795
7796 if (put_user(len, optlen))
7797 goto out;
7798
7799 if (copy_to_user(optval, ¶ms, len))
7800 goto out;
7801
7802 retval = 0;
7803
7804out:
7805 return retval;
7806}
7807
7808static int sctp_getsockopt_pf_expose(struct sock *sk, int len,
7809 char __user *optval,
7810 int __user *optlen)
7811{
7812 struct sctp_assoc_value params;
7813 struct sctp_association *asoc;
7814 int retval = -EFAULT;
7815
7816 if (len < sizeof(params)) {
7817 retval = -EINVAL;
7818 goto out;
7819 }
7820
7821 len = sizeof(params);
7822 if (copy_from_user(¶ms, optval, len))
7823 goto out;
7824
7825 asoc = sctp_id2assoc(sk, params.assoc_id);
7826 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7827 sctp_style(sk, UDP)) {
7828 retval = -EINVAL;
7829 goto out;
7830 }
7831
7832 params.assoc_value = asoc ? asoc->pf_expose
7833 : sctp_sk(sk)->pf_expose;
7834
7835 if (put_user(len, optlen))
7836 goto out;
7837
7838 if (copy_to_user(optval, ¶ms, len))
7839 goto out;
7840
7841 retval = 0;
7842
7843out:
7844 return retval;
7845}
7846
7847static int sctp_getsockopt_encap_port(struct sock *sk, int len,
7848 char __user *optval, int __user *optlen)
7849{
7850 struct sctp_association *asoc;
7851 struct sctp_udpencaps encap;
7852 struct sctp_transport *t;
7853 __be16 encap_port;
7854
7855 if (len < sizeof(encap))
7856 return -EINVAL;
7857
7858 len = sizeof(encap);
7859 if (copy_from_user(&encap, optval, len))
7860 return -EFAULT;
7861
7862 /* If an address other than INADDR_ANY is specified, and
7863 * no transport is found, then the request is invalid.
7864 */
7865 if (!sctp_is_any(sk, (union sctp_addr *)&encap.sue_address)) {
7866 t = sctp_addr_id2transport(sk, &encap.sue_address,
7867 encap.sue_assoc_id);
7868 if (!t) {
7869 pr_debug("%s: failed no transport\n", __func__);
7870 return -EINVAL;
7871 }
7872
7873 encap_port = t->encap_port;
7874 goto out;
7875 }
7876
7877 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
7878 * socket is a one to many style socket, and an association
7879 * was not found, then the id was invalid.
7880 */
7881 asoc = sctp_id2assoc(sk, encap.sue_assoc_id);
7882 if (!asoc && encap.sue_assoc_id != SCTP_FUTURE_ASSOC &&
7883 sctp_style(sk, UDP)) {
7884 pr_debug("%s: failed no association\n", __func__);
7885 return -EINVAL;
7886 }
7887
7888 if (asoc) {
7889 encap_port = asoc->encap_port;
7890 goto out;
7891 }
7892
7893 encap_port = sctp_sk(sk)->encap_port;
7894
7895out:
7896 encap.sue_port = (__force uint16_t)encap_port;
7897 if (copy_to_user(optval, &encap, len))
7898 return -EFAULT;
7899
7900 if (put_user(len, optlen))
7901 return -EFAULT;
7902
7903 return 0;
7904}
7905
7906static int sctp_getsockopt(struct sock *sk, int level, int optname,
7907 char __user *optval, int __user *optlen)
7908{
7909 int retval = 0;
7910 int len;
7911
7912 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
7913
7914 /* I can hardly begin to describe how wrong this is. This is
7915 * so broken as to be worse than useless. The API draft
7916 * REALLY is NOT helpful here... I am not convinced that the
7917 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
7918 * are at all well-founded.
7919 */
7920 if (level != SOL_SCTP) {
7921 struct sctp_af *af = sctp_sk(sk)->pf->af;
7922
7923 retval = af->getsockopt(sk, level, optname, optval, optlen);
7924 return retval;
7925 }
7926
7927 if (get_user(len, optlen))
7928 return -EFAULT;
7929
7930 if (len < 0)
7931 return -EINVAL;
7932
7933 lock_sock(sk);
7934
7935 switch (optname) {
7936 case SCTP_STATUS:
7937 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
7938 break;
7939 case SCTP_DISABLE_FRAGMENTS:
7940 retval = sctp_getsockopt_disable_fragments(sk, len, optval,
7941 optlen);
7942 break;
7943 case SCTP_EVENTS:
7944 retval = sctp_getsockopt_events(sk, len, optval, optlen);
7945 break;
7946 case SCTP_AUTOCLOSE:
7947 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
7948 break;
7949 case SCTP_SOCKOPT_PEELOFF:
7950 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
7951 break;
7952 case SCTP_SOCKOPT_PEELOFF_FLAGS:
7953 retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen);
7954 break;
7955 case SCTP_PEER_ADDR_PARAMS:
7956 retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
7957 optlen);
7958 break;
7959 case SCTP_DELAYED_SACK:
7960 retval = sctp_getsockopt_delayed_ack(sk, len, optval,
7961 optlen);
7962 break;
7963 case SCTP_INITMSG:
7964 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
7965 break;
7966 case SCTP_GET_PEER_ADDRS:
7967 retval = sctp_getsockopt_peer_addrs(sk, len, optval,
7968 optlen);
7969 break;
7970 case SCTP_GET_LOCAL_ADDRS:
7971 retval = sctp_getsockopt_local_addrs(sk, len, optval,
7972 optlen);
7973 break;
7974 case SCTP_SOCKOPT_CONNECTX3:
7975 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
7976 break;
7977 case SCTP_DEFAULT_SEND_PARAM:
7978 retval = sctp_getsockopt_default_send_param(sk, len,
7979 optval, optlen);
7980 break;
7981 case SCTP_DEFAULT_SNDINFO:
7982 retval = sctp_getsockopt_default_sndinfo(sk, len,
7983 optval, optlen);
7984 break;
7985 case SCTP_PRIMARY_ADDR:
7986 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
7987 break;
7988 case SCTP_NODELAY:
7989 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
7990 break;
7991 case SCTP_RTOINFO:
7992 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
7993 break;
7994 case SCTP_ASSOCINFO:
7995 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
7996 break;
7997 case SCTP_I_WANT_MAPPED_V4_ADDR:
7998 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
7999 break;
8000 case SCTP_MAXSEG:
8001 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
8002 break;
8003 case SCTP_GET_PEER_ADDR_INFO:
8004 retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
8005 optlen);
8006 break;
8007 case SCTP_ADAPTATION_LAYER:
8008 retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
8009 optlen);
8010 break;
8011 case SCTP_CONTEXT:
8012 retval = sctp_getsockopt_context(sk, len, optval, optlen);
8013 break;
8014 case SCTP_FRAGMENT_INTERLEAVE:
8015 retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
8016 optlen);
8017 break;
8018 case SCTP_PARTIAL_DELIVERY_POINT:
8019 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
8020 optlen);
8021 break;
8022 case SCTP_MAX_BURST:
8023 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
8024 break;
8025 case SCTP_AUTH_KEY:
8026 case SCTP_AUTH_CHUNK:
8027 case SCTP_AUTH_DELETE_KEY:
8028 case SCTP_AUTH_DEACTIVATE_KEY:
8029 retval = -EOPNOTSUPP;
8030 break;
8031 case SCTP_HMAC_IDENT:
8032 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
8033 break;
8034 case SCTP_AUTH_ACTIVE_KEY:
8035 retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
8036 break;
8037 case SCTP_PEER_AUTH_CHUNKS:
8038 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
8039 optlen);
8040 break;
8041 case SCTP_LOCAL_AUTH_CHUNKS:
8042 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
8043 optlen);
8044 break;
8045 case SCTP_GET_ASSOC_NUMBER:
8046 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
8047 break;
8048 case SCTP_GET_ASSOC_ID_LIST:
8049 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
8050 break;
8051 case SCTP_AUTO_ASCONF:
8052 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
8053 break;
8054 case SCTP_PEER_ADDR_THLDS:
8055 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len,
8056 optlen, false);
8057 break;
8058 case SCTP_PEER_ADDR_THLDS_V2:
8059 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len,
8060 optlen, true);
8061 break;
8062 case SCTP_GET_ASSOC_STATS:
8063 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
8064 break;
8065 case SCTP_RECVRCVINFO:
8066 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen);
8067 break;
8068 case SCTP_RECVNXTINFO:
8069 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen);
8070 break;
8071 case SCTP_PR_SUPPORTED:
8072 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen);
8073 break;
8074 case SCTP_DEFAULT_PRINFO:
8075 retval = sctp_getsockopt_default_prinfo(sk, len, optval,
8076 optlen);
8077 break;
8078 case SCTP_PR_ASSOC_STATUS:
8079 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval,
8080 optlen);
8081 break;
8082 case SCTP_PR_STREAM_STATUS:
8083 retval = sctp_getsockopt_pr_streamstatus(sk, len, optval,
8084 optlen);
8085 break;
8086 case SCTP_RECONFIG_SUPPORTED:
8087 retval = sctp_getsockopt_reconfig_supported(sk, len, optval,
8088 optlen);
8089 break;
8090 case SCTP_ENABLE_STREAM_RESET:
8091 retval = sctp_getsockopt_enable_strreset(sk, len, optval,
8092 optlen);
8093 break;
8094 case SCTP_STREAM_SCHEDULER:
8095 retval = sctp_getsockopt_scheduler(sk, len, optval,
8096 optlen);
8097 break;
8098 case SCTP_STREAM_SCHEDULER_VALUE:
8099 retval = sctp_getsockopt_scheduler_value(sk, len, optval,
8100 optlen);
8101 break;
8102 case SCTP_INTERLEAVING_SUPPORTED:
8103 retval = sctp_getsockopt_interleaving_supported(sk, len, optval,
8104 optlen);
8105 break;
8106 case SCTP_REUSE_PORT:
8107 retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen);
8108 break;
8109 case SCTP_EVENT:
8110 retval = sctp_getsockopt_event(sk, len, optval, optlen);
8111 break;
8112 case SCTP_ASCONF_SUPPORTED:
8113 retval = sctp_getsockopt_asconf_supported(sk, len, optval,
8114 optlen);
8115 break;
8116 case SCTP_AUTH_SUPPORTED:
8117 retval = sctp_getsockopt_auth_supported(sk, len, optval,
8118 optlen);
8119 break;
8120 case SCTP_ECN_SUPPORTED:
8121 retval = sctp_getsockopt_ecn_supported(sk, len, optval, optlen);
8122 break;
8123 case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE:
8124 retval = sctp_getsockopt_pf_expose(sk, len, optval, optlen);
8125 break;
8126 case SCTP_REMOTE_UDP_ENCAPS_PORT:
8127 retval = sctp_getsockopt_encap_port(sk, len, optval, optlen);
8128 break;
8129 default:
8130 retval = -ENOPROTOOPT;
8131 break;
8132 }
8133
8134 release_sock(sk);
8135 return retval;
8136}
8137
8138static int sctp_hash(struct sock *sk)
8139{
8140 /* STUB */
8141 return 0;
8142}
8143
8144static void sctp_unhash(struct sock *sk)
8145{
8146 /* STUB */
8147}
8148
8149/* Check if port is acceptable. Possibly find first available port.
8150 *
8151 * The port hash table (contained in the 'global' SCTP protocol storage
8152 * returned by struct sctp_protocol *sctp_get_protocol()). The hash
8153 * table is an array of 4096 lists (sctp_bind_hashbucket). Each
8154 * list (the list number is the port number hashed out, so as you
8155 * would expect from a hash function, all the ports in a given list have
8156 * such a number that hashes out to the same list number; you were
8157 * expecting that, right?); so each list has a set of ports, with a
8158 * link to the socket (struct sock) that uses it, the port number and
8159 * a fastreuse flag (FIXME: NPI ipg).
8160 */
8161static struct sctp_bind_bucket *sctp_bucket_create(
8162 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
8163
8164static int sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
8165{
8166 struct sctp_sock *sp = sctp_sk(sk);
8167 bool reuse = (sk->sk_reuse || sp->reuse);
8168 struct sctp_bind_hashbucket *head; /* hash list */
8169 struct net *net = sock_net(sk);
8170 kuid_t uid = sock_i_uid(sk);
8171 struct sctp_bind_bucket *pp;
8172 unsigned short snum;
8173 int ret;
8174
8175 snum = ntohs(addr->v4.sin_port);
8176
8177 pr_debug("%s: begins, snum:%d\n", __func__, snum);
8178
8179 if (snum == 0) {
8180 /* Search for an available port. */
8181 int low, high, remaining, index;
8182 unsigned int rover;
8183
8184 inet_get_local_port_range(net, &low, &high);
8185 remaining = (high - low) + 1;
8186 rover = prandom_u32() % remaining + low;
8187
8188 do {
8189 rover++;
8190 if ((rover < low) || (rover > high))
8191 rover = low;
8192 if (inet_is_local_reserved_port(net, rover))
8193 continue;
8194 index = sctp_phashfn(net, rover);
8195 head = &sctp_port_hashtable[index];
8196 spin_lock_bh(&head->lock);
8197 sctp_for_each_hentry(pp, &head->chain)
8198 if ((pp->port == rover) &&
8199 net_eq(net, pp->net))
8200 goto next;
8201 break;
8202 next:
8203 spin_unlock_bh(&head->lock);
8204 cond_resched();
8205 } while (--remaining > 0);
8206
8207 /* Exhausted local port range during search? */
8208 ret = 1;
8209 if (remaining <= 0)
8210 return ret;
8211
8212 /* OK, here is the one we will use. HEAD (the port
8213 * hash table list entry) is non-NULL and we hold it's
8214 * mutex.
8215 */
8216 snum = rover;
8217 } else {
8218 /* We are given an specific port number; we verify
8219 * that it is not being used. If it is used, we will
8220 * exahust the search in the hash list corresponding
8221 * to the port number (snum) - we detect that with the
8222 * port iterator, pp being NULL.
8223 */
8224 head = &sctp_port_hashtable[sctp_phashfn(net, snum)];
8225 spin_lock_bh(&head->lock);
8226 sctp_for_each_hentry(pp, &head->chain) {
8227 if ((pp->port == snum) && net_eq(pp->net, net))
8228 goto pp_found;
8229 }
8230 }
8231 pp = NULL;
8232 goto pp_not_found;
8233pp_found:
8234 if (!hlist_empty(&pp->owner)) {
8235 /* We had a port hash table hit - there is an
8236 * available port (pp != NULL) and it is being
8237 * used by other socket (pp->owner not empty); that other
8238 * socket is going to be sk2.
8239 */
8240 struct sock *sk2;
8241
8242 pr_debug("%s: found a possible match\n", __func__);
8243
8244 if ((pp->fastreuse && reuse &&
8245 sk->sk_state != SCTP_SS_LISTENING) ||
8246 (pp->fastreuseport && sk->sk_reuseport &&
8247 uid_eq(pp->fastuid, uid)))
8248 goto success;
8249
8250 /* Run through the list of sockets bound to the port
8251 * (pp->port) [via the pointers bind_next and
8252 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
8253 * we get the endpoint they describe and run through
8254 * the endpoint's list of IP (v4 or v6) addresses,
8255 * comparing each of the addresses with the address of
8256 * the socket sk. If we find a match, then that means
8257 * that this port/socket (sk) combination are already
8258 * in an endpoint.
8259 */
8260 sk_for_each_bound(sk2, &pp->owner) {
8261 struct sctp_sock *sp2 = sctp_sk(sk2);
8262 struct sctp_endpoint *ep2 = sp2->ep;
8263
8264 if (sk == sk2 ||
8265 (reuse && (sk2->sk_reuse || sp2->reuse) &&
8266 sk2->sk_state != SCTP_SS_LISTENING) ||
8267 (sk->sk_reuseport && sk2->sk_reuseport &&
8268 uid_eq(uid, sock_i_uid(sk2))))
8269 continue;
8270
8271 if (sctp_bind_addr_conflict(&ep2->base.bind_addr,
8272 addr, sp2, sp)) {
8273 ret = 1;
8274 goto fail_unlock;
8275 }
8276 }
8277
8278 pr_debug("%s: found a match\n", __func__);
8279 }
8280pp_not_found:
8281 /* If there was a hash table miss, create a new port. */
8282 ret = 1;
8283 if (!pp && !(pp = sctp_bucket_create(head, net, snum)))
8284 goto fail_unlock;
8285
8286 /* In either case (hit or miss), make sure fastreuse is 1 only
8287 * if sk->sk_reuse is too (that is, if the caller requested
8288 * SO_REUSEADDR on this socket -sk-).
8289 */
8290 if (hlist_empty(&pp->owner)) {
8291 if (reuse && sk->sk_state != SCTP_SS_LISTENING)
8292 pp->fastreuse = 1;
8293 else
8294 pp->fastreuse = 0;
8295
8296 if (sk->sk_reuseport) {
8297 pp->fastreuseport = 1;
8298 pp->fastuid = uid;
8299 } else {
8300 pp->fastreuseport = 0;
8301 }
8302 } else {
8303 if (pp->fastreuse &&
8304 (!reuse || sk->sk_state == SCTP_SS_LISTENING))
8305 pp->fastreuse = 0;
8306
8307 if (pp->fastreuseport &&
8308 (!sk->sk_reuseport || !uid_eq(pp->fastuid, uid)))
8309 pp->fastreuseport = 0;
8310 }
8311
8312 /* We are set, so fill up all the data in the hash table
8313 * entry, tie the socket list information with the rest of the
8314 * sockets FIXME: Blurry, NPI (ipg).
8315 */
8316success:
8317 if (!sp->bind_hash) {
8318 inet_sk(sk)->inet_num = snum;
8319 sk_add_bind_node(sk, &pp->owner);
8320 sp->bind_hash = pp;
8321 }
8322 ret = 0;
8323
8324fail_unlock:
8325 spin_unlock_bh(&head->lock);
8326 return ret;
8327}
8328
8329/* Assign a 'snum' port to the socket. If snum == 0, an ephemeral
8330 * port is requested.
8331 */
8332static int sctp_get_port(struct sock *sk, unsigned short snum)
8333{
8334 union sctp_addr addr;
8335 struct sctp_af *af = sctp_sk(sk)->pf->af;
8336
8337 /* Set up a dummy address struct from the sk. */
8338 af->from_sk(&addr, sk);
8339 addr.v4.sin_port = htons(snum);
8340
8341 /* Note: sk->sk_num gets filled in if ephemeral port request. */
8342 return sctp_get_port_local(sk, &addr);
8343}
8344
8345/*
8346 * Move a socket to LISTENING state.
8347 */
8348static int sctp_listen_start(struct sock *sk, int backlog)
8349{
8350 struct sctp_sock *sp = sctp_sk(sk);
8351 struct sctp_endpoint *ep = sp->ep;
8352 struct crypto_shash *tfm = NULL;
8353 char alg[32];
8354
8355 /* Allocate HMAC for generating cookie. */
8356 if (!sp->hmac && sp->sctp_hmac_alg) {
8357 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
8358 tfm = crypto_alloc_shash(alg, 0, 0);
8359 if (IS_ERR(tfm)) {
8360 net_info_ratelimited("failed to load transform for %s: %ld\n",
8361 sp->sctp_hmac_alg, PTR_ERR(tfm));
8362 return -ENOSYS;
8363 }
8364 sctp_sk(sk)->hmac = tfm;
8365 }
8366
8367 /*
8368 * If a bind() or sctp_bindx() is not called prior to a listen()
8369 * call that allows new associations to be accepted, the system
8370 * picks an ephemeral port and will choose an address set equivalent
8371 * to binding with a wildcard address.
8372 *
8373 * This is not currently spelled out in the SCTP sockets
8374 * extensions draft, but follows the practice as seen in TCP
8375 * sockets.
8376 *
8377 */
8378 inet_sk_set_state(sk, SCTP_SS_LISTENING);
8379 if (!ep->base.bind_addr.port) {
8380 if (sctp_autobind(sk))
8381 return -EAGAIN;
8382 } else {
8383 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
8384 inet_sk_set_state(sk, SCTP_SS_CLOSED);
8385 return -EADDRINUSE;
8386 }
8387 }
8388
8389 WRITE_ONCE(sk->sk_max_ack_backlog, backlog);
8390 return sctp_hash_endpoint(ep);
8391}
8392
8393/*
8394 * 4.1.3 / 5.1.3 listen()
8395 *
8396 * By default, new associations are not accepted for UDP style sockets.
8397 * An application uses listen() to mark a socket as being able to
8398 * accept new associations.
8399 *
8400 * On TCP style sockets, applications use listen() to ready the SCTP
8401 * endpoint for accepting inbound associations.
8402 *
8403 * On both types of endpoints a backlog of '0' disables listening.
8404 *
8405 * Move a socket to LISTENING state.
8406 */
8407int sctp_inet_listen(struct socket *sock, int backlog)
8408{
8409 struct sock *sk = sock->sk;
8410 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
8411 int err = -EINVAL;
8412
8413 if (unlikely(backlog < 0))
8414 return err;
8415
8416 lock_sock(sk);
8417
8418 /* Peeled-off sockets are not allowed to listen(). */
8419 if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
8420 goto out;
8421
8422 if (sock->state != SS_UNCONNECTED)
8423 goto out;
8424
8425 if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED))
8426 goto out;
8427
8428 /* If backlog is zero, disable listening. */
8429 if (!backlog) {
8430 if (sctp_sstate(sk, CLOSED))
8431 goto out;
8432
8433 err = 0;
8434 sctp_unhash_endpoint(ep);
8435 sk->sk_state = SCTP_SS_CLOSED;
8436 if (sk->sk_reuse || sctp_sk(sk)->reuse)
8437 sctp_sk(sk)->bind_hash->fastreuse = 1;
8438 goto out;
8439 }
8440
8441 /* If we are already listening, just update the backlog */
8442 if (sctp_sstate(sk, LISTENING))
8443 WRITE_ONCE(sk->sk_max_ack_backlog, backlog);
8444 else {
8445 err = sctp_listen_start(sk, backlog);
8446 if (err)
8447 goto out;
8448 }
8449
8450 err = 0;
8451out:
8452 release_sock(sk);
8453 return err;
8454}
8455
8456/*
8457 * This function is done by modeling the current datagram_poll() and the
8458 * tcp_poll(). Note that, based on these implementations, we don't
8459 * lock the socket in this function, even though it seems that,
8460 * ideally, locking or some other mechanisms can be used to ensure
8461 * the integrity of the counters (sndbuf and wmem_alloc) used
8462 * in this place. We assume that we don't need locks either until proven
8463 * otherwise.
8464 *
8465 * Another thing to note is that we include the Async I/O support
8466 * here, again, by modeling the current TCP/UDP code. We don't have
8467 * a good way to test with it yet.
8468 */
8469__poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
8470{
8471 struct sock *sk = sock->sk;
8472 struct sctp_sock *sp = sctp_sk(sk);
8473 __poll_t mask;
8474
8475 poll_wait(file, sk_sleep(sk), wait);
8476
8477 sock_rps_record_flow(sk);
8478
8479 /* A TCP-style listening socket becomes readable when the accept queue
8480 * is not empty.
8481 */
8482 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
8483 return (!list_empty(&sp->ep->asocs)) ?
8484 (EPOLLIN | EPOLLRDNORM) : 0;
8485
8486 mask = 0;
8487
8488 /* Is there any exceptional events? */
8489 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
8490 mask |= EPOLLERR |
8491 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0);
8492 if (sk->sk_shutdown & RCV_SHUTDOWN)
8493 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM;
8494 if (sk->sk_shutdown == SHUTDOWN_MASK)
8495 mask |= EPOLLHUP;
8496
8497 /* Is it readable? Reconsider this code with TCP-style support. */
8498 if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
8499 mask |= EPOLLIN | EPOLLRDNORM;
8500
8501 /* The association is either gone or not ready. */
8502 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
8503 return mask;
8504
8505 /* Is it writable? */
8506 if (sctp_writeable(sk)) {
8507 mask |= EPOLLOUT | EPOLLWRNORM;
8508 } else {
8509 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
8510 /*
8511 * Since the socket is not locked, the buffer
8512 * might be made available after the writeable check and
8513 * before the bit is set. This could cause a lost I/O
8514 * signal. tcp_poll() has a race breaker for this race
8515 * condition. Based on their implementation, we put
8516 * in the following code to cover it as well.
8517 */
8518 if (sctp_writeable(sk))
8519 mask |= EPOLLOUT | EPOLLWRNORM;
8520 }
8521 return mask;
8522}
8523
8524/********************************************************************
8525 * 2nd Level Abstractions
8526 ********************************************************************/
8527
8528static struct sctp_bind_bucket *sctp_bucket_create(
8529 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
8530{
8531 struct sctp_bind_bucket *pp;
8532
8533 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
8534 if (pp) {
8535 SCTP_DBG_OBJCNT_INC(bind_bucket);
8536 pp->port = snum;
8537 pp->fastreuse = 0;
8538 INIT_HLIST_HEAD(&pp->owner);
8539 pp->net = net;
8540 hlist_add_head(&pp->node, &head->chain);
8541 }
8542 return pp;
8543}
8544
8545/* Caller must hold hashbucket lock for this tb with local BH disabled */
8546static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
8547{
8548 if (pp && hlist_empty(&pp->owner)) {
8549 __hlist_del(&pp->node);
8550 kmem_cache_free(sctp_bucket_cachep, pp);
8551 SCTP_DBG_OBJCNT_DEC(bind_bucket);
8552 }
8553}
8554
8555/* Release this socket's reference to a local port. */
8556static inline void __sctp_put_port(struct sock *sk)
8557{
8558 struct sctp_bind_hashbucket *head =
8559 &sctp_port_hashtable[sctp_phashfn(sock_net(sk),
8560 inet_sk(sk)->inet_num)];
8561 struct sctp_bind_bucket *pp;
8562
8563 spin_lock(&head->lock);
8564 pp = sctp_sk(sk)->bind_hash;
8565 __sk_del_bind_node(sk);
8566 sctp_sk(sk)->bind_hash = NULL;
8567 inet_sk(sk)->inet_num = 0;
8568 sctp_bucket_destroy(pp);
8569 spin_unlock(&head->lock);
8570}
8571
8572void sctp_put_port(struct sock *sk)
8573{
8574 local_bh_disable();
8575 __sctp_put_port(sk);
8576 local_bh_enable();
8577}
8578
8579/*
8580 * The system picks an ephemeral port and choose an address set equivalent
8581 * to binding with a wildcard address.
8582 * One of those addresses will be the primary address for the association.
8583 * This automatically enables the multihoming capability of SCTP.
8584 */
8585static int sctp_autobind(struct sock *sk)
8586{
8587 union sctp_addr autoaddr;
8588 struct sctp_af *af;
8589 __be16 port;
8590
8591 /* Initialize a local sockaddr structure to INADDR_ANY. */
8592 af = sctp_sk(sk)->pf->af;
8593
8594 port = htons(inet_sk(sk)->inet_num);
8595 af->inaddr_any(&autoaddr, port);
8596
8597 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
8598}
8599
8600/* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation.
8601 *
8602 * From RFC 2292
8603 * 4.2 The cmsghdr Structure *
8604 *
8605 * When ancillary data is sent or received, any number of ancillary data
8606 * objects can be specified by the msg_control and msg_controllen members of
8607 * the msghdr structure, because each object is preceded by
8608 * a cmsghdr structure defining the object's length (the cmsg_len member).
8609 * Historically Berkeley-derived implementations have passed only one object
8610 * at a time, but this API allows multiple objects to be
8611 * passed in a single call to sendmsg() or recvmsg(). The following example
8612 * shows two ancillary data objects in a control buffer.
8613 *
8614 * |<--------------------------- msg_controllen -------------------------->|
8615 * | |
8616 *
8617 * |<----- ancillary data object ----->|<----- ancillary data object ----->|
8618 *
8619 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
8620 * | | |
8621 *
8622 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| |
8623 *
8624 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| |
8625 * | | | | |
8626 *
8627 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
8628 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX|
8629 *
8630 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX|
8631 *
8632 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
8633 * ^
8634 * |
8635 *
8636 * msg_control
8637 * points here
8638 */
8639static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs)
8640{
8641 struct msghdr *my_msg = (struct msghdr *)msg;
8642 struct cmsghdr *cmsg;
8643
8644 for_each_cmsghdr(cmsg, my_msg) {
8645 if (!CMSG_OK(my_msg, cmsg))
8646 return -EINVAL;
8647
8648 /* Should we parse this header or ignore? */
8649 if (cmsg->cmsg_level != IPPROTO_SCTP)
8650 continue;
8651
8652 /* Strictly check lengths following example in SCM code. */
8653 switch (cmsg->cmsg_type) {
8654 case SCTP_INIT:
8655 /* SCTP Socket API Extension
8656 * 5.3.1 SCTP Initiation Structure (SCTP_INIT)
8657 *
8658 * This cmsghdr structure provides information for
8659 * initializing new SCTP associations with sendmsg().
8660 * The SCTP_INITMSG socket option uses this same data
8661 * structure. This structure is not used for
8662 * recvmsg().
8663 *
8664 * cmsg_level cmsg_type cmsg_data[]
8665 * ------------ ------------ ----------------------
8666 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg
8667 */
8668 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg)))
8669 return -EINVAL;
8670
8671 cmsgs->init = CMSG_DATA(cmsg);
8672 break;
8673
8674 case SCTP_SNDRCV:
8675 /* SCTP Socket API Extension
8676 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV)
8677 *
8678 * This cmsghdr structure specifies SCTP options for
8679 * sendmsg() and describes SCTP header information
8680 * about a received message through recvmsg().
8681 *
8682 * cmsg_level cmsg_type cmsg_data[]
8683 * ------------ ------------ ----------------------
8684 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo
8685 */
8686 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
8687 return -EINVAL;
8688
8689 cmsgs->srinfo = CMSG_DATA(cmsg);
8690
8691 if (cmsgs->srinfo->sinfo_flags &
8692 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
8693 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
8694 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
8695 return -EINVAL;
8696 break;
8697
8698 case SCTP_SNDINFO:
8699 /* SCTP Socket API Extension
8700 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO)
8701 *
8702 * This cmsghdr structure specifies SCTP options for
8703 * sendmsg(). This structure and SCTP_RCVINFO replaces
8704 * SCTP_SNDRCV which has been deprecated.
8705 *
8706 * cmsg_level cmsg_type cmsg_data[]
8707 * ------------ ------------ ---------------------
8708 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo
8709 */
8710 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo)))
8711 return -EINVAL;
8712
8713 cmsgs->sinfo = CMSG_DATA(cmsg);
8714
8715 if (cmsgs->sinfo->snd_flags &
8716 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
8717 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
8718 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
8719 return -EINVAL;
8720 break;
8721 case SCTP_PRINFO:
8722 /* SCTP Socket API Extension
8723 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO)
8724 *
8725 * This cmsghdr structure specifies SCTP options for sendmsg().
8726 *
8727 * cmsg_level cmsg_type cmsg_data[]
8728 * ------------ ------------ ---------------------
8729 * IPPROTO_SCTP SCTP_PRINFO struct sctp_prinfo
8730 */
8731 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo)))
8732 return -EINVAL;
8733
8734 cmsgs->prinfo = CMSG_DATA(cmsg);
8735 if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK)
8736 return -EINVAL;
8737
8738 if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE)
8739 cmsgs->prinfo->pr_value = 0;
8740 break;
8741 case SCTP_AUTHINFO:
8742 /* SCTP Socket API Extension
8743 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO)
8744 *
8745 * This cmsghdr structure specifies SCTP options for sendmsg().
8746 *
8747 * cmsg_level cmsg_type cmsg_data[]
8748 * ------------ ------------ ---------------------
8749 * IPPROTO_SCTP SCTP_AUTHINFO struct sctp_authinfo
8750 */
8751 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo)))
8752 return -EINVAL;
8753
8754 cmsgs->authinfo = CMSG_DATA(cmsg);
8755 break;
8756 case SCTP_DSTADDRV4:
8757 case SCTP_DSTADDRV6:
8758 /* SCTP Socket API Extension
8759 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6)
8760 *
8761 * This cmsghdr structure specifies SCTP options for sendmsg().
8762 *
8763 * cmsg_level cmsg_type cmsg_data[]
8764 * ------------ ------------ ---------------------
8765 * IPPROTO_SCTP SCTP_DSTADDRV4 struct in_addr
8766 * ------------ ------------ ---------------------
8767 * IPPROTO_SCTP SCTP_DSTADDRV6 struct in6_addr
8768 */
8769 cmsgs->addrs_msg = my_msg;
8770 break;
8771 default:
8772 return -EINVAL;
8773 }
8774 }
8775
8776 return 0;
8777}
8778
8779/*
8780 * Wait for a packet..
8781 * Note: This function is the same function as in core/datagram.c
8782 * with a few modifications to make lksctp work.
8783 */
8784static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p)
8785{
8786 int error;
8787 DEFINE_WAIT(wait);
8788
8789 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
8790
8791 /* Socket errors? */
8792 error = sock_error(sk);
8793 if (error)
8794 goto out;
8795
8796 if (!skb_queue_empty(&sk->sk_receive_queue))
8797 goto ready;
8798
8799 /* Socket shut down? */
8800 if (sk->sk_shutdown & RCV_SHUTDOWN)
8801 goto out;
8802
8803 /* Sequenced packets can come disconnected. If so we report the
8804 * problem.
8805 */
8806 error = -ENOTCONN;
8807
8808 /* Is there a good reason to think that we may receive some data? */
8809 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
8810 goto out;
8811
8812 /* Handle signals. */
8813 if (signal_pending(current))
8814 goto interrupted;
8815
8816 /* Let another process have a go. Since we are going to sleep
8817 * anyway. Note: This may cause odd behaviors if the message
8818 * does not fit in the user's buffer, but this seems to be the
8819 * only way to honor MSG_DONTWAIT realistically.
8820 */
8821 release_sock(sk);
8822 *timeo_p = schedule_timeout(*timeo_p);
8823 lock_sock(sk);
8824
8825ready:
8826 finish_wait(sk_sleep(sk), &wait);
8827 return 0;
8828
8829interrupted:
8830 error = sock_intr_errno(*timeo_p);
8831
8832out:
8833 finish_wait(sk_sleep(sk), &wait);
8834 *err = error;
8835 return error;
8836}
8837
8838/* Receive a datagram.
8839 * Note: This is pretty much the same routine as in core/datagram.c
8840 * with a few changes to make lksctp work.
8841 */
8842struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
8843 int noblock, int *err)
8844{
8845 int error;
8846 struct sk_buff *skb;
8847 long timeo;
8848
8849 timeo = sock_rcvtimeo(sk, noblock);
8850
8851 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
8852 MAX_SCHEDULE_TIMEOUT);
8853
8854 do {
8855 /* Again only user level code calls this function,
8856 * so nothing interrupt level
8857 * will suddenly eat the receive_queue.
8858 *
8859 * Look at current nfs client by the way...
8860 * However, this function was correct in any case. 8)
8861 */
8862 if (flags & MSG_PEEK) {
8863 skb = skb_peek(&sk->sk_receive_queue);
8864 if (skb)
8865 refcount_inc(&skb->users);
8866 } else {
8867 skb = __skb_dequeue(&sk->sk_receive_queue);
8868 }
8869
8870 if (skb)
8871 return skb;
8872
8873 /* Caller is allowed not to check sk->sk_err before calling. */
8874 error = sock_error(sk);
8875 if (error)
8876 goto no_packet;
8877
8878 if (sk->sk_shutdown & RCV_SHUTDOWN)
8879 break;
8880
8881 if (sk_can_busy_loop(sk)) {
8882 sk_busy_loop(sk, noblock);
8883
8884 if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
8885 continue;
8886 }
8887
8888 /* User doesn't want to wait. */
8889 error = -EAGAIN;
8890 if (!timeo)
8891 goto no_packet;
8892 } while (sctp_wait_for_packet(sk, err, &timeo) == 0);
8893
8894 return NULL;
8895
8896no_packet:
8897 *err = error;
8898 return NULL;
8899}
8900
8901/* If sndbuf has changed, wake up per association sndbuf waiters. */
8902static void __sctp_write_space(struct sctp_association *asoc)
8903{
8904 struct sock *sk = asoc->base.sk;
8905
8906 if (sctp_wspace(asoc) <= 0)
8907 return;
8908
8909 if (waitqueue_active(&asoc->wait))
8910 wake_up_interruptible(&asoc->wait);
8911
8912 if (sctp_writeable(sk)) {
8913 struct socket_wq *wq;
8914
8915 rcu_read_lock();
8916 wq = rcu_dereference(sk->sk_wq);
8917 if (wq) {
8918 if (waitqueue_active(&wq->wait))
8919 wake_up_interruptible(&wq->wait);
8920
8921 /* Note that we try to include the Async I/O support
8922 * here by modeling from the current TCP/UDP code.
8923 * We have not tested with it yet.
8924 */
8925 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
8926 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT);
8927 }
8928 rcu_read_unlock();
8929 }
8930}
8931
8932static void sctp_wake_up_waiters(struct sock *sk,
8933 struct sctp_association *asoc)
8934{
8935 struct sctp_association *tmp = asoc;
8936
8937 /* We do accounting for the sndbuf space per association,
8938 * so we only need to wake our own association.
8939 */
8940 if (asoc->ep->sndbuf_policy)
8941 return __sctp_write_space(asoc);
8942
8943 /* If association goes down and is just flushing its
8944 * outq, then just normally notify others.
8945 */
8946 if (asoc->base.dead)
8947 return sctp_write_space(sk);
8948
8949 /* Accounting for the sndbuf space is per socket, so we
8950 * need to wake up others, try to be fair and in case of
8951 * other associations, let them have a go first instead
8952 * of just doing a sctp_write_space() call.
8953 *
8954 * Note that we reach sctp_wake_up_waiters() only when
8955 * associations free up queued chunks, thus we are under
8956 * lock and the list of associations on a socket is
8957 * guaranteed not to change.
8958 */
8959 for (tmp = list_next_entry(tmp, asocs); 1;
8960 tmp = list_next_entry(tmp, asocs)) {
8961 /* Manually skip the head element. */
8962 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs))
8963 continue;
8964 /* Wake up association. */
8965 __sctp_write_space(tmp);
8966 /* We've reached the end. */
8967 if (tmp == asoc)
8968 break;
8969 }
8970}
8971
8972/* Do accounting for the sndbuf space.
8973 * Decrement the used sndbuf space of the corresponding association by the
8974 * data size which was just transmitted(freed).
8975 */
8976static void sctp_wfree(struct sk_buff *skb)
8977{
8978 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg;
8979 struct sctp_association *asoc = chunk->asoc;
8980 struct sock *sk = asoc->base.sk;
8981
8982 sk_mem_uncharge(sk, skb->truesize);
8983 sk->sk_wmem_queued -= skb->truesize + sizeof(struct sctp_chunk);
8984 asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk);
8985 WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk),
8986 &sk->sk_wmem_alloc));
8987
8988 if (chunk->shkey) {
8989 struct sctp_shared_key *shkey = chunk->shkey;
8990
8991 /* refcnt == 2 and !list_empty mean after this release, it's
8992 * not being used anywhere, and it's time to notify userland
8993 * that this shkey can be freed if it's been deactivated.
8994 */
8995 if (shkey->deactivated && !list_empty(&shkey->key_list) &&
8996 refcount_read(&shkey->refcnt) == 2) {
8997 struct sctp_ulpevent *ev;
8998
8999 ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id,
9000 SCTP_AUTH_FREE_KEY,
9001 GFP_KERNEL);
9002 if (ev)
9003 asoc->stream.si->enqueue_event(&asoc->ulpq, ev);
9004 }
9005 sctp_auth_shkey_release(chunk->shkey);
9006 }
9007
9008 sock_wfree(skb);
9009 sctp_wake_up_waiters(sk, asoc);
9010
9011 sctp_association_put(asoc);
9012}
9013
9014/* Do accounting for the receive space on the socket.
9015 * Accounting for the association is done in ulpevent.c
9016 * We set this as a destructor for the cloned data skbs so that
9017 * accounting is done at the correct time.
9018 */
9019void sctp_sock_rfree(struct sk_buff *skb)
9020{
9021 struct sock *sk = skb->sk;
9022 struct sctp_ulpevent *event = sctp_skb2event(skb);
9023
9024 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
9025
9026 /*
9027 * Mimic the behavior of sock_rfree
9028 */
9029 sk_mem_uncharge(sk, event->rmem_len);
9030}
9031
9032
9033/* Helper function to wait for space in the sndbuf. */
9034static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
9035 size_t msg_len)
9036{
9037 struct sock *sk = asoc->base.sk;
9038 long current_timeo = *timeo_p;
9039 DEFINE_WAIT(wait);
9040 int err = 0;
9041
9042 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
9043 *timeo_p, msg_len);
9044
9045 /* Increment the association's refcnt. */
9046 sctp_association_hold(asoc);
9047
9048 /* Wait on the association specific sndbuf space. */
9049 for (;;) {
9050 prepare_to_wait_exclusive(&asoc->wait, &wait,
9051 TASK_INTERRUPTIBLE);
9052 if (asoc->base.dead)
9053 goto do_dead;
9054 if (!*timeo_p)
9055 goto do_nonblock;
9056 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING)
9057 goto do_error;
9058 if (signal_pending(current))
9059 goto do_interrupted;
9060 if (sk_under_memory_pressure(sk))
9061 sk_mem_reclaim(sk);
9062 if ((int)msg_len <= sctp_wspace(asoc) &&
9063 sk_wmem_schedule(sk, msg_len))
9064 break;
9065
9066 /* Let another process have a go. Since we are going
9067 * to sleep anyway.
9068 */
9069 release_sock(sk);
9070 current_timeo = schedule_timeout(current_timeo);
9071 lock_sock(sk);
9072 if (sk != asoc->base.sk)
9073 goto do_error;
9074
9075 *timeo_p = current_timeo;
9076 }
9077
9078out:
9079 finish_wait(&asoc->wait, &wait);
9080
9081 /* Release the association's refcnt. */
9082 sctp_association_put(asoc);
9083
9084 return err;
9085
9086do_dead:
9087 err = -ESRCH;
9088 goto out;
9089
9090do_error:
9091 err = -EPIPE;
9092 goto out;
9093
9094do_interrupted:
9095 err = sock_intr_errno(*timeo_p);
9096 goto out;
9097
9098do_nonblock:
9099 err = -EAGAIN;
9100 goto out;
9101}
9102
9103void sctp_data_ready(struct sock *sk)
9104{
9105 struct socket_wq *wq;
9106
9107 rcu_read_lock();
9108 wq = rcu_dereference(sk->sk_wq);
9109 if (skwq_has_sleeper(wq))
9110 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN |
9111 EPOLLRDNORM | EPOLLRDBAND);
9112 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
9113 rcu_read_unlock();
9114}
9115
9116/* If socket sndbuf has changed, wake up all per association waiters. */
9117void sctp_write_space(struct sock *sk)
9118{
9119 struct sctp_association *asoc;
9120
9121 /* Wake up the tasks in each wait queue. */
9122 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
9123 __sctp_write_space(asoc);
9124 }
9125}
9126
9127/* Is there any sndbuf space available on the socket?
9128 *
9129 * Note that sk_wmem_alloc is the sum of the send buffers on all of the
9130 * associations on the same socket. For a UDP-style socket with
9131 * multiple associations, it is possible for it to be "unwriteable"
9132 * prematurely. I assume that this is acceptable because
9133 * a premature "unwriteable" is better than an accidental "writeable" which
9134 * would cause an unwanted block under certain circumstances. For the 1-1
9135 * UDP-style sockets or TCP-style sockets, this code should work.
9136 * - Daisy
9137 */
9138static bool sctp_writeable(struct sock *sk)
9139{
9140 return sk->sk_sndbuf > sk->sk_wmem_queued;
9141}
9142
9143/* Wait for an association to go into ESTABLISHED state. If timeout is 0,
9144 * returns immediately with EINPROGRESS.
9145 */
9146static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
9147{
9148 struct sock *sk = asoc->base.sk;
9149 int err = 0;
9150 long current_timeo = *timeo_p;
9151 DEFINE_WAIT(wait);
9152
9153 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
9154
9155 /* Increment the association's refcnt. */
9156 sctp_association_hold(asoc);
9157
9158 for (;;) {
9159 prepare_to_wait_exclusive(&asoc->wait, &wait,
9160 TASK_INTERRUPTIBLE);
9161 if (!*timeo_p)
9162 goto do_nonblock;
9163 if (sk->sk_shutdown & RCV_SHUTDOWN)
9164 break;
9165 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
9166 asoc->base.dead)
9167 goto do_error;
9168 if (signal_pending(current))
9169 goto do_interrupted;
9170
9171 if (sctp_state(asoc, ESTABLISHED))
9172 break;
9173
9174 /* Let another process have a go. Since we are going
9175 * to sleep anyway.
9176 */
9177 release_sock(sk);
9178 current_timeo = schedule_timeout(current_timeo);
9179 lock_sock(sk);
9180
9181 *timeo_p = current_timeo;
9182 }
9183
9184out:
9185 finish_wait(&asoc->wait, &wait);
9186
9187 /* Release the association's refcnt. */
9188 sctp_association_put(asoc);
9189
9190 return err;
9191
9192do_error:
9193 if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
9194 err = -ETIMEDOUT;
9195 else
9196 err = -ECONNREFUSED;
9197 goto out;
9198
9199do_interrupted:
9200 err = sock_intr_errno(*timeo_p);
9201 goto out;
9202
9203do_nonblock:
9204 err = -EINPROGRESS;
9205 goto out;
9206}
9207
9208static int sctp_wait_for_accept(struct sock *sk, long timeo)
9209{
9210 struct sctp_endpoint *ep;
9211 int err = 0;
9212 DEFINE_WAIT(wait);
9213
9214 ep = sctp_sk(sk)->ep;
9215
9216
9217 for (;;) {
9218 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
9219 TASK_INTERRUPTIBLE);
9220
9221 if (list_empty(&ep->asocs)) {
9222 release_sock(sk);
9223 timeo = schedule_timeout(timeo);
9224 lock_sock(sk);
9225 }
9226
9227 err = -EINVAL;
9228 if (!sctp_sstate(sk, LISTENING))
9229 break;
9230
9231 err = 0;
9232 if (!list_empty(&ep->asocs))
9233 break;
9234
9235 err = sock_intr_errno(timeo);
9236 if (signal_pending(current))
9237 break;
9238
9239 err = -EAGAIN;
9240 if (!timeo)
9241 break;
9242 }
9243
9244 finish_wait(sk_sleep(sk), &wait);
9245
9246 return err;
9247}
9248
9249static void sctp_wait_for_close(struct sock *sk, long timeout)
9250{
9251 DEFINE_WAIT(wait);
9252
9253 do {
9254 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
9255 if (list_empty(&sctp_sk(sk)->ep->asocs))
9256 break;
9257 release_sock(sk);
9258 timeout = schedule_timeout(timeout);
9259 lock_sock(sk);
9260 } while (!signal_pending(current) && timeout);
9261
9262 finish_wait(sk_sleep(sk), &wait);
9263}
9264
9265static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
9266{
9267 struct sk_buff *frag;
9268
9269 if (!skb->data_len)
9270 goto done;
9271
9272 /* Don't forget the fragments. */
9273 skb_walk_frags(skb, frag)
9274 sctp_skb_set_owner_r_frag(frag, sk);
9275
9276done:
9277 sctp_skb_set_owner_r(skb, sk);
9278}
9279
9280void sctp_copy_sock(struct sock *newsk, struct sock *sk,
9281 struct sctp_association *asoc)
9282{
9283 struct inet_sock *inet = inet_sk(sk);
9284 struct inet_sock *newinet;
9285 struct sctp_sock *sp = sctp_sk(sk);
9286 struct sctp_endpoint *ep = sp->ep;
9287
9288 newsk->sk_type = sk->sk_type;
9289 newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
9290 newsk->sk_flags = sk->sk_flags;
9291 newsk->sk_tsflags = sk->sk_tsflags;
9292 newsk->sk_no_check_tx = sk->sk_no_check_tx;
9293 newsk->sk_no_check_rx = sk->sk_no_check_rx;
9294 newsk->sk_reuse = sk->sk_reuse;
9295 sctp_sk(newsk)->reuse = sp->reuse;
9296
9297 newsk->sk_shutdown = sk->sk_shutdown;
9298 newsk->sk_destruct = sctp_destruct_sock;
9299 newsk->sk_family = sk->sk_family;
9300 newsk->sk_protocol = IPPROTO_SCTP;
9301 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
9302 newsk->sk_sndbuf = sk->sk_sndbuf;
9303 newsk->sk_rcvbuf = sk->sk_rcvbuf;
9304 newsk->sk_lingertime = sk->sk_lingertime;
9305 newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
9306 newsk->sk_sndtimeo = sk->sk_sndtimeo;
9307 newsk->sk_rxhash = sk->sk_rxhash;
9308
9309 newinet = inet_sk(newsk);
9310
9311 /* Initialize sk's sport, dport, rcv_saddr and daddr for
9312 * getsockname() and getpeername()
9313 */
9314 newinet->inet_sport = inet->inet_sport;
9315 newinet->inet_saddr = inet->inet_saddr;
9316 newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
9317 newinet->inet_dport = htons(asoc->peer.port);
9318 newinet->pmtudisc = inet->pmtudisc;
9319 newinet->inet_id = prandom_u32();
9320
9321 newinet->uc_ttl = inet->uc_ttl;
9322 newinet->mc_loop = 1;
9323 newinet->mc_ttl = 1;
9324 newinet->mc_index = 0;
9325 newinet->mc_list = NULL;
9326
9327 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
9328 net_enable_timestamp();
9329
9330 /* Set newsk security attributes from orginal sk and connection
9331 * security attribute from ep.
9332 */
9333 security_sctp_sk_clone(ep, sk, newsk);
9334}
9335
9336static inline void sctp_copy_descendant(struct sock *sk_to,
9337 const struct sock *sk_from)
9338{
9339 size_t ancestor_size = sizeof(struct inet_sock);
9340
9341 ancestor_size += sk_from->sk_prot->obj_size;
9342 ancestor_size -= offsetof(struct sctp_sock, pd_lobby);
9343 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size);
9344}
9345
9346/* Populate the fields of the newsk from the oldsk and migrate the assoc
9347 * and its messages to the newsk.
9348 */
9349static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
9350 struct sctp_association *assoc,
9351 enum sctp_socket_type type)
9352{
9353 struct sctp_sock *oldsp = sctp_sk(oldsk);
9354 struct sctp_sock *newsp = sctp_sk(newsk);
9355 struct sctp_bind_bucket *pp; /* hash list port iterator */
9356 struct sctp_endpoint *newep = newsp->ep;
9357 struct sk_buff *skb, *tmp;
9358 struct sctp_ulpevent *event;
9359 struct sctp_bind_hashbucket *head;
9360 int err;
9361
9362 /* Migrate socket buffer sizes and all the socket level options to the
9363 * new socket.
9364 */
9365 newsk->sk_sndbuf = oldsk->sk_sndbuf;
9366 newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
9367 /* Brute force copy old sctp opt. */
9368 sctp_copy_descendant(newsk, oldsk);
9369
9370 /* Restore the ep value that was overwritten with the above structure
9371 * copy.
9372 */
9373 newsp->ep = newep;
9374 newsp->hmac = NULL;
9375
9376 /* Hook this new socket in to the bind_hash list. */
9377 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
9378 inet_sk(oldsk)->inet_num)];
9379 spin_lock_bh(&head->lock);
9380 pp = sctp_sk(oldsk)->bind_hash;
9381 sk_add_bind_node(newsk, &pp->owner);
9382 sctp_sk(newsk)->bind_hash = pp;
9383 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
9384 spin_unlock_bh(&head->lock);
9385
9386 /* Copy the bind_addr list from the original endpoint to the new
9387 * endpoint so that we can handle restarts properly
9388 */
9389 err = sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
9390 &oldsp->ep->base.bind_addr, GFP_KERNEL);
9391 if (err)
9392 return err;
9393
9394 /* New ep's auth_hmacs should be set if old ep's is set, in case
9395 * that net->sctp.auth_enable has been changed to 0 by users and
9396 * new ep's auth_hmacs couldn't be set in sctp_endpoint_init().
9397 */
9398 if (oldsp->ep->auth_hmacs) {
9399 err = sctp_auth_init_hmacs(newsp->ep, GFP_KERNEL);
9400 if (err)
9401 return err;
9402 }
9403
9404 /* Move any messages in the old socket's receive queue that are for the
9405 * peeled off association to the new socket's receive queue.
9406 */
9407 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
9408 event = sctp_skb2event(skb);
9409 if (event->asoc == assoc) {
9410 __skb_unlink(skb, &oldsk->sk_receive_queue);
9411 __skb_queue_tail(&newsk->sk_receive_queue, skb);
9412 sctp_skb_set_owner_r_frag(skb, newsk);
9413 }
9414 }
9415
9416 /* Clean up any messages pending delivery due to partial
9417 * delivery. Three cases:
9418 * 1) No partial deliver; no work.
9419 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
9420 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
9421 */
9422 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
9423
9424 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
9425 struct sk_buff_head *queue;
9426
9427 /* Decide which queue to move pd_lobby skbs to. */
9428 if (assoc->ulpq.pd_mode) {
9429 queue = &newsp->pd_lobby;
9430 } else
9431 queue = &newsk->sk_receive_queue;
9432
9433 /* Walk through the pd_lobby, looking for skbs that
9434 * need moved to the new socket.
9435 */
9436 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
9437 event = sctp_skb2event(skb);
9438 if (event->asoc == assoc) {
9439 __skb_unlink(skb, &oldsp->pd_lobby);
9440 __skb_queue_tail(queue, skb);
9441 sctp_skb_set_owner_r_frag(skb, newsk);
9442 }
9443 }
9444
9445 /* Clear up any skbs waiting for the partial
9446 * delivery to finish.
9447 */
9448 if (assoc->ulpq.pd_mode)
9449 sctp_clear_pd(oldsk, NULL);
9450
9451 }
9452
9453 sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag);
9454
9455 /* Set the type of socket to indicate that it is peeled off from the
9456 * original UDP-style socket or created with the accept() call on a
9457 * TCP-style socket..
9458 */
9459 newsp->type = type;
9460
9461 /* Mark the new socket "in-use" by the user so that any packets
9462 * that may arrive on the association after we've moved it are
9463 * queued to the backlog. This prevents a potential race between
9464 * backlog processing on the old socket and new-packet processing
9465 * on the new socket.
9466 *
9467 * The caller has just allocated newsk so we can guarantee that other
9468 * paths won't try to lock it and then oldsk.
9469 */
9470 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
9471 sctp_for_each_tx_datachunk(assoc, true, sctp_clear_owner_w);
9472 sctp_assoc_migrate(assoc, newsk);
9473 sctp_for_each_tx_datachunk(assoc, false, sctp_set_owner_w);
9474
9475 /* If the association on the newsk is already closed before accept()
9476 * is called, set RCV_SHUTDOWN flag.
9477 */
9478 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) {
9479 inet_sk_set_state(newsk, SCTP_SS_CLOSED);
9480 newsk->sk_shutdown |= RCV_SHUTDOWN;
9481 } else {
9482 inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED);
9483 }
9484
9485 release_sock(newsk);
9486
9487 return 0;
9488}
9489
9490
9491/* This proto struct describes the ULP interface for SCTP. */
9492struct proto sctp_prot = {
9493 .name = "SCTP",
9494 .owner = THIS_MODULE,
9495 .close = sctp_close,
9496 .disconnect = sctp_disconnect,
9497 .accept = sctp_accept,
9498 .ioctl = sctp_ioctl,
9499 .init = sctp_init_sock,
9500 .destroy = sctp_destroy_sock,
9501 .shutdown = sctp_shutdown,
9502 .setsockopt = sctp_setsockopt,
9503 .getsockopt = sctp_getsockopt,
9504 .sendmsg = sctp_sendmsg,
9505 .recvmsg = sctp_recvmsg,
9506 .bind = sctp_bind,
9507 .bind_add = sctp_bind_add,
9508 .backlog_rcv = sctp_backlog_rcv,
9509 .hash = sctp_hash,
9510 .unhash = sctp_unhash,
9511 .no_autobind = true,
9512 .obj_size = sizeof(struct sctp_sock),
9513 .useroffset = offsetof(struct sctp_sock, subscribe),
9514 .usersize = offsetof(struct sctp_sock, initmsg) -
9515 offsetof(struct sctp_sock, subscribe) +
9516 sizeof_field(struct sctp_sock, initmsg),
9517 .sysctl_mem = sysctl_sctp_mem,
9518 .sysctl_rmem = sysctl_sctp_rmem,
9519 .sysctl_wmem = sysctl_sctp_wmem,
9520 .memory_pressure = &sctp_memory_pressure,
9521 .enter_memory_pressure = sctp_enter_memory_pressure,
9522 .memory_allocated = &sctp_memory_allocated,
9523 .sockets_allocated = &sctp_sockets_allocated,
9524};
9525
9526#if IS_ENABLED(CONFIG_IPV6)
9527
9528#include <net/transp_v6.h>
9529static void sctp_v6_destroy_sock(struct sock *sk)
9530{
9531 sctp_destroy_sock(sk);
9532 inet6_destroy_sock(sk);
9533}
9534
9535struct proto sctpv6_prot = {
9536 .name = "SCTPv6",
9537 .owner = THIS_MODULE,
9538 .close = sctp_close,
9539 .disconnect = sctp_disconnect,
9540 .accept = sctp_accept,
9541 .ioctl = sctp_ioctl,
9542 .init = sctp_init_sock,
9543 .destroy = sctp_v6_destroy_sock,
9544 .shutdown = sctp_shutdown,
9545 .setsockopt = sctp_setsockopt,
9546 .getsockopt = sctp_getsockopt,
9547 .sendmsg = sctp_sendmsg,
9548 .recvmsg = sctp_recvmsg,
9549 .bind = sctp_bind,
9550 .bind_add = sctp_bind_add,
9551 .backlog_rcv = sctp_backlog_rcv,
9552 .hash = sctp_hash,
9553 .unhash = sctp_unhash,
9554 .no_autobind = true,
9555 .obj_size = sizeof(struct sctp6_sock),
9556 .useroffset = offsetof(struct sctp6_sock, sctp.subscribe),
9557 .usersize = offsetof(struct sctp6_sock, sctp.initmsg) -
9558 offsetof(struct sctp6_sock, sctp.subscribe) +
9559 sizeof_field(struct sctp6_sock, sctp.initmsg),
9560 .sysctl_mem = sysctl_sctp_mem,
9561 .sysctl_rmem = sysctl_sctp_rmem,
9562 .sysctl_wmem = sysctl_sctp_wmem,
9563 .memory_pressure = &sctp_memory_pressure,
9564 .enter_memory_pressure = sctp_enter_memory_pressure,
9565 .memory_allocated = &sctp_memory_allocated,
9566 .sockets_allocated = &sctp_sockets_allocated,
9567};
9568#endif /* IS_ENABLED(CONFIG_IPV6) */