Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2/*
3 * Performance events:
4 *
5 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
6 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
7 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
8 *
9 * Data type definitions, declarations, prototypes.
10 *
11 * Started by: Thomas Gleixner and Ingo Molnar
12 *
13 * For licencing details see kernel-base/COPYING
14 */
15#ifndef _UAPI_LINUX_PERF_EVENT_H
16#define _UAPI_LINUX_PERF_EVENT_H
17
18#include <linux/types.h>
19#include <linux/ioctl.h>
20#include <asm/byteorder.h>
21
22/*
23 * User-space ABI bits:
24 */
25
26/*
27 * attr.type
28 */
29enum perf_type_id {
30 PERF_TYPE_HARDWARE = 0,
31 PERF_TYPE_SOFTWARE = 1,
32 PERF_TYPE_TRACEPOINT = 2,
33 PERF_TYPE_HW_CACHE = 3,
34 PERF_TYPE_RAW = 4,
35 PERF_TYPE_BREAKPOINT = 5,
36
37 PERF_TYPE_MAX, /* non-ABI */
38};
39
40/*
41 * Generalized performance event event_id types, used by the
42 * attr.event_id parameter of the sys_perf_event_open()
43 * syscall:
44 */
45enum perf_hw_id {
46 /*
47 * Common hardware events, generalized by the kernel:
48 */
49 PERF_COUNT_HW_CPU_CYCLES = 0,
50 PERF_COUNT_HW_INSTRUCTIONS = 1,
51 PERF_COUNT_HW_CACHE_REFERENCES = 2,
52 PERF_COUNT_HW_CACHE_MISSES = 3,
53 PERF_COUNT_HW_BRANCH_INSTRUCTIONS = 4,
54 PERF_COUNT_HW_BRANCH_MISSES = 5,
55 PERF_COUNT_HW_BUS_CYCLES = 6,
56 PERF_COUNT_HW_STALLED_CYCLES_FRONTEND = 7,
57 PERF_COUNT_HW_STALLED_CYCLES_BACKEND = 8,
58 PERF_COUNT_HW_REF_CPU_CYCLES = 9,
59
60 PERF_COUNT_HW_MAX, /* non-ABI */
61};
62
63/*
64 * Generalized hardware cache events:
65 *
66 * { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x
67 * { read, write, prefetch } x
68 * { accesses, misses }
69 */
70enum perf_hw_cache_id {
71 PERF_COUNT_HW_CACHE_L1D = 0,
72 PERF_COUNT_HW_CACHE_L1I = 1,
73 PERF_COUNT_HW_CACHE_LL = 2,
74 PERF_COUNT_HW_CACHE_DTLB = 3,
75 PERF_COUNT_HW_CACHE_ITLB = 4,
76 PERF_COUNT_HW_CACHE_BPU = 5,
77 PERF_COUNT_HW_CACHE_NODE = 6,
78
79 PERF_COUNT_HW_CACHE_MAX, /* non-ABI */
80};
81
82enum perf_hw_cache_op_id {
83 PERF_COUNT_HW_CACHE_OP_READ = 0,
84 PERF_COUNT_HW_CACHE_OP_WRITE = 1,
85 PERF_COUNT_HW_CACHE_OP_PREFETCH = 2,
86
87 PERF_COUNT_HW_CACHE_OP_MAX, /* non-ABI */
88};
89
90enum perf_hw_cache_op_result_id {
91 PERF_COUNT_HW_CACHE_RESULT_ACCESS = 0,
92 PERF_COUNT_HW_CACHE_RESULT_MISS = 1,
93
94 PERF_COUNT_HW_CACHE_RESULT_MAX, /* non-ABI */
95};
96
97/*
98 * Special "software" events provided by the kernel, even if the hardware
99 * does not support performance events. These events measure various
100 * physical and sw events of the kernel (and allow the profiling of them as
101 * well):
102 */
103enum perf_sw_ids {
104 PERF_COUNT_SW_CPU_CLOCK = 0,
105 PERF_COUNT_SW_TASK_CLOCK = 1,
106 PERF_COUNT_SW_PAGE_FAULTS = 2,
107 PERF_COUNT_SW_CONTEXT_SWITCHES = 3,
108 PERF_COUNT_SW_CPU_MIGRATIONS = 4,
109 PERF_COUNT_SW_PAGE_FAULTS_MIN = 5,
110 PERF_COUNT_SW_PAGE_FAULTS_MAJ = 6,
111 PERF_COUNT_SW_ALIGNMENT_FAULTS = 7,
112 PERF_COUNT_SW_EMULATION_FAULTS = 8,
113 PERF_COUNT_SW_DUMMY = 9,
114 PERF_COUNT_SW_BPF_OUTPUT = 10,
115
116 PERF_COUNT_SW_MAX, /* non-ABI */
117};
118
119/*
120 * Bits that can be set in attr.sample_type to request information
121 * in the overflow packets.
122 */
123enum perf_event_sample_format {
124 PERF_SAMPLE_IP = 1U << 0,
125 PERF_SAMPLE_TID = 1U << 1,
126 PERF_SAMPLE_TIME = 1U << 2,
127 PERF_SAMPLE_ADDR = 1U << 3,
128 PERF_SAMPLE_READ = 1U << 4,
129 PERF_SAMPLE_CALLCHAIN = 1U << 5,
130 PERF_SAMPLE_ID = 1U << 6,
131 PERF_SAMPLE_CPU = 1U << 7,
132 PERF_SAMPLE_PERIOD = 1U << 8,
133 PERF_SAMPLE_STREAM_ID = 1U << 9,
134 PERF_SAMPLE_RAW = 1U << 10,
135 PERF_SAMPLE_BRANCH_STACK = 1U << 11,
136 PERF_SAMPLE_REGS_USER = 1U << 12,
137 PERF_SAMPLE_STACK_USER = 1U << 13,
138 PERF_SAMPLE_WEIGHT = 1U << 14,
139 PERF_SAMPLE_DATA_SRC = 1U << 15,
140 PERF_SAMPLE_IDENTIFIER = 1U << 16,
141 PERF_SAMPLE_TRANSACTION = 1U << 17,
142 PERF_SAMPLE_REGS_INTR = 1U << 18,
143 PERF_SAMPLE_PHYS_ADDR = 1U << 19,
144 PERF_SAMPLE_AUX = 1U << 20,
145 PERF_SAMPLE_CGROUP = 1U << 21,
146 PERF_SAMPLE_DATA_PAGE_SIZE = 1U << 22,
147 PERF_SAMPLE_CODE_PAGE_SIZE = 1U << 23,
148
149 PERF_SAMPLE_MAX = 1U << 24, /* non-ABI */
150
151 __PERF_SAMPLE_CALLCHAIN_EARLY = 1ULL << 63, /* non-ABI; internal use */
152};
153
154/*
155 * values to program into branch_sample_type when PERF_SAMPLE_BRANCH is set
156 *
157 * If the user does not pass priv level information via branch_sample_type,
158 * the kernel uses the event's priv level. Branch and event priv levels do
159 * not have to match. Branch priv level is checked for permissions.
160 *
161 * The branch types can be combined, however BRANCH_ANY covers all types
162 * of branches and therefore it supersedes all the other types.
163 */
164enum perf_branch_sample_type_shift {
165 PERF_SAMPLE_BRANCH_USER_SHIFT = 0, /* user branches */
166 PERF_SAMPLE_BRANCH_KERNEL_SHIFT = 1, /* kernel branches */
167 PERF_SAMPLE_BRANCH_HV_SHIFT = 2, /* hypervisor branches */
168
169 PERF_SAMPLE_BRANCH_ANY_SHIFT = 3, /* any branch types */
170 PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT = 4, /* any call branch */
171 PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT = 5, /* any return branch */
172 PERF_SAMPLE_BRANCH_IND_CALL_SHIFT = 6, /* indirect calls */
173 PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT = 7, /* transaction aborts */
174 PERF_SAMPLE_BRANCH_IN_TX_SHIFT = 8, /* in transaction */
175 PERF_SAMPLE_BRANCH_NO_TX_SHIFT = 9, /* not in transaction */
176 PERF_SAMPLE_BRANCH_COND_SHIFT = 10, /* conditional branches */
177
178 PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT = 11, /* call/ret stack */
179 PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT = 12, /* indirect jumps */
180 PERF_SAMPLE_BRANCH_CALL_SHIFT = 13, /* direct call */
181
182 PERF_SAMPLE_BRANCH_NO_FLAGS_SHIFT = 14, /* no flags */
183 PERF_SAMPLE_BRANCH_NO_CYCLES_SHIFT = 15, /* no cycles */
184
185 PERF_SAMPLE_BRANCH_TYPE_SAVE_SHIFT = 16, /* save branch type */
186
187 PERF_SAMPLE_BRANCH_HW_INDEX_SHIFT = 17, /* save low level index of raw branch records */
188
189 PERF_SAMPLE_BRANCH_MAX_SHIFT /* non-ABI */
190};
191
192enum perf_branch_sample_type {
193 PERF_SAMPLE_BRANCH_USER = 1U << PERF_SAMPLE_BRANCH_USER_SHIFT,
194 PERF_SAMPLE_BRANCH_KERNEL = 1U << PERF_SAMPLE_BRANCH_KERNEL_SHIFT,
195 PERF_SAMPLE_BRANCH_HV = 1U << PERF_SAMPLE_BRANCH_HV_SHIFT,
196
197 PERF_SAMPLE_BRANCH_ANY = 1U << PERF_SAMPLE_BRANCH_ANY_SHIFT,
198 PERF_SAMPLE_BRANCH_ANY_CALL = 1U << PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT,
199 PERF_SAMPLE_BRANCH_ANY_RETURN = 1U << PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT,
200 PERF_SAMPLE_BRANCH_IND_CALL = 1U << PERF_SAMPLE_BRANCH_IND_CALL_SHIFT,
201 PERF_SAMPLE_BRANCH_ABORT_TX = 1U << PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT,
202 PERF_SAMPLE_BRANCH_IN_TX = 1U << PERF_SAMPLE_BRANCH_IN_TX_SHIFT,
203 PERF_SAMPLE_BRANCH_NO_TX = 1U << PERF_SAMPLE_BRANCH_NO_TX_SHIFT,
204 PERF_SAMPLE_BRANCH_COND = 1U << PERF_SAMPLE_BRANCH_COND_SHIFT,
205
206 PERF_SAMPLE_BRANCH_CALL_STACK = 1U << PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT,
207 PERF_SAMPLE_BRANCH_IND_JUMP = 1U << PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT,
208 PERF_SAMPLE_BRANCH_CALL = 1U << PERF_SAMPLE_BRANCH_CALL_SHIFT,
209
210 PERF_SAMPLE_BRANCH_NO_FLAGS = 1U << PERF_SAMPLE_BRANCH_NO_FLAGS_SHIFT,
211 PERF_SAMPLE_BRANCH_NO_CYCLES = 1U << PERF_SAMPLE_BRANCH_NO_CYCLES_SHIFT,
212
213 PERF_SAMPLE_BRANCH_TYPE_SAVE =
214 1U << PERF_SAMPLE_BRANCH_TYPE_SAVE_SHIFT,
215
216 PERF_SAMPLE_BRANCH_HW_INDEX = 1U << PERF_SAMPLE_BRANCH_HW_INDEX_SHIFT,
217
218 PERF_SAMPLE_BRANCH_MAX = 1U << PERF_SAMPLE_BRANCH_MAX_SHIFT,
219};
220
221/*
222 * Common flow change classification
223 */
224enum {
225 PERF_BR_UNKNOWN = 0, /* unknown */
226 PERF_BR_COND = 1, /* conditional */
227 PERF_BR_UNCOND = 2, /* unconditional */
228 PERF_BR_IND = 3, /* indirect */
229 PERF_BR_CALL = 4, /* function call */
230 PERF_BR_IND_CALL = 5, /* indirect function call */
231 PERF_BR_RET = 6, /* function return */
232 PERF_BR_SYSCALL = 7, /* syscall */
233 PERF_BR_SYSRET = 8, /* syscall return */
234 PERF_BR_COND_CALL = 9, /* conditional function call */
235 PERF_BR_COND_RET = 10, /* conditional function return */
236 PERF_BR_MAX,
237};
238
239#define PERF_SAMPLE_BRANCH_PLM_ALL \
240 (PERF_SAMPLE_BRANCH_USER|\
241 PERF_SAMPLE_BRANCH_KERNEL|\
242 PERF_SAMPLE_BRANCH_HV)
243
244/*
245 * Values to determine ABI of the registers dump.
246 */
247enum perf_sample_regs_abi {
248 PERF_SAMPLE_REGS_ABI_NONE = 0,
249 PERF_SAMPLE_REGS_ABI_32 = 1,
250 PERF_SAMPLE_REGS_ABI_64 = 2,
251};
252
253/*
254 * Values for the memory transaction event qualifier, mostly for
255 * abort events. Multiple bits can be set.
256 */
257enum {
258 PERF_TXN_ELISION = (1 << 0), /* From elision */
259 PERF_TXN_TRANSACTION = (1 << 1), /* From transaction */
260 PERF_TXN_SYNC = (1 << 2), /* Instruction is related */
261 PERF_TXN_ASYNC = (1 << 3), /* Instruction not related */
262 PERF_TXN_RETRY = (1 << 4), /* Retry possible */
263 PERF_TXN_CONFLICT = (1 << 5), /* Conflict abort */
264 PERF_TXN_CAPACITY_WRITE = (1 << 6), /* Capacity write abort */
265 PERF_TXN_CAPACITY_READ = (1 << 7), /* Capacity read abort */
266
267 PERF_TXN_MAX = (1 << 8), /* non-ABI */
268
269 /* bits 32..63 are reserved for the abort code */
270
271 PERF_TXN_ABORT_MASK = (0xffffffffULL << 32),
272 PERF_TXN_ABORT_SHIFT = 32,
273};
274
275/*
276 * The format of the data returned by read() on a perf event fd,
277 * as specified by attr.read_format:
278 *
279 * struct read_format {
280 * { u64 value;
281 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
282 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
283 * { u64 id; } && PERF_FORMAT_ID
284 * } && !PERF_FORMAT_GROUP
285 *
286 * { u64 nr;
287 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
288 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
289 * { u64 value;
290 * { u64 id; } && PERF_FORMAT_ID
291 * } cntr[nr];
292 * } && PERF_FORMAT_GROUP
293 * };
294 */
295enum perf_event_read_format {
296 PERF_FORMAT_TOTAL_TIME_ENABLED = 1U << 0,
297 PERF_FORMAT_TOTAL_TIME_RUNNING = 1U << 1,
298 PERF_FORMAT_ID = 1U << 2,
299 PERF_FORMAT_GROUP = 1U << 3,
300
301 PERF_FORMAT_MAX = 1U << 4, /* non-ABI */
302};
303
304#define PERF_ATTR_SIZE_VER0 64 /* sizeof first published struct */
305#define PERF_ATTR_SIZE_VER1 72 /* add: config2 */
306#define PERF_ATTR_SIZE_VER2 80 /* add: branch_sample_type */
307#define PERF_ATTR_SIZE_VER3 96 /* add: sample_regs_user */
308 /* add: sample_stack_user */
309#define PERF_ATTR_SIZE_VER4 104 /* add: sample_regs_intr */
310#define PERF_ATTR_SIZE_VER5 112 /* add: aux_watermark */
311#define PERF_ATTR_SIZE_VER6 120 /* add: aux_sample_size */
312
313/*
314 * Hardware event_id to monitor via a performance monitoring event:
315 *
316 * @sample_max_stack: Max number of frame pointers in a callchain,
317 * should be < /proc/sys/kernel/perf_event_max_stack
318 */
319struct perf_event_attr {
320
321 /*
322 * Major type: hardware/software/tracepoint/etc.
323 */
324 __u32 type;
325
326 /*
327 * Size of the attr structure, for fwd/bwd compat.
328 */
329 __u32 size;
330
331 /*
332 * Type specific configuration information.
333 */
334 __u64 config;
335
336 union {
337 __u64 sample_period;
338 __u64 sample_freq;
339 };
340
341 __u64 sample_type;
342 __u64 read_format;
343
344 __u64 disabled : 1, /* off by default */
345 inherit : 1, /* children inherit it */
346 pinned : 1, /* must always be on PMU */
347 exclusive : 1, /* only group on PMU */
348 exclude_user : 1, /* don't count user */
349 exclude_kernel : 1, /* ditto kernel */
350 exclude_hv : 1, /* ditto hypervisor */
351 exclude_idle : 1, /* don't count when idle */
352 mmap : 1, /* include mmap data */
353 comm : 1, /* include comm data */
354 freq : 1, /* use freq, not period */
355 inherit_stat : 1, /* per task counts */
356 enable_on_exec : 1, /* next exec enables */
357 task : 1, /* trace fork/exit */
358 watermark : 1, /* wakeup_watermark */
359 /*
360 * precise_ip:
361 *
362 * 0 - SAMPLE_IP can have arbitrary skid
363 * 1 - SAMPLE_IP must have constant skid
364 * 2 - SAMPLE_IP requested to have 0 skid
365 * 3 - SAMPLE_IP must have 0 skid
366 *
367 * See also PERF_RECORD_MISC_EXACT_IP
368 */
369 precise_ip : 2, /* skid constraint */
370 mmap_data : 1, /* non-exec mmap data */
371 sample_id_all : 1, /* sample_type all events */
372
373 exclude_host : 1, /* don't count in host */
374 exclude_guest : 1, /* don't count in guest */
375
376 exclude_callchain_kernel : 1, /* exclude kernel callchains */
377 exclude_callchain_user : 1, /* exclude user callchains */
378 mmap2 : 1, /* include mmap with inode data */
379 comm_exec : 1, /* flag comm events that are due to an exec */
380 use_clockid : 1, /* use @clockid for time fields */
381 context_switch : 1, /* context switch data */
382 write_backward : 1, /* Write ring buffer from end to beginning */
383 namespaces : 1, /* include namespaces data */
384 ksymbol : 1, /* include ksymbol events */
385 bpf_event : 1, /* include bpf events */
386 aux_output : 1, /* generate AUX records instead of events */
387 cgroup : 1, /* include cgroup events */
388 text_poke : 1, /* include text poke events */
389 __reserved_1 : 30;
390
391 union {
392 __u32 wakeup_events; /* wakeup every n events */
393 __u32 wakeup_watermark; /* bytes before wakeup */
394 };
395
396 __u32 bp_type;
397 union {
398 __u64 bp_addr;
399 __u64 kprobe_func; /* for perf_kprobe */
400 __u64 uprobe_path; /* for perf_uprobe */
401 __u64 config1; /* extension of config */
402 };
403 union {
404 __u64 bp_len;
405 __u64 kprobe_addr; /* when kprobe_func == NULL */
406 __u64 probe_offset; /* for perf_[k,u]probe */
407 __u64 config2; /* extension of config1 */
408 };
409 __u64 branch_sample_type; /* enum perf_branch_sample_type */
410
411 /*
412 * Defines set of user regs to dump on samples.
413 * See asm/perf_regs.h for details.
414 */
415 __u64 sample_regs_user;
416
417 /*
418 * Defines size of the user stack to dump on samples.
419 */
420 __u32 sample_stack_user;
421
422 __s32 clockid;
423 /*
424 * Defines set of regs to dump for each sample
425 * state captured on:
426 * - precise = 0: PMU interrupt
427 * - precise > 0: sampled instruction
428 *
429 * See asm/perf_regs.h for details.
430 */
431 __u64 sample_regs_intr;
432
433 /*
434 * Wakeup watermark for AUX area
435 */
436 __u32 aux_watermark;
437 __u16 sample_max_stack;
438 __u16 __reserved_2;
439 __u32 aux_sample_size;
440 __u32 __reserved_3;
441};
442
443/*
444 * Structure used by below PERF_EVENT_IOC_QUERY_BPF command
445 * to query bpf programs attached to the same perf tracepoint
446 * as the given perf event.
447 */
448struct perf_event_query_bpf {
449 /*
450 * The below ids array length
451 */
452 __u32 ids_len;
453 /*
454 * Set by the kernel to indicate the number of
455 * available programs
456 */
457 __u32 prog_cnt;
458 /*
459 * User provided buffer to store program ids
460 */
461 __u32 ids[0];
462};
463
464/*
465 * Ioctls that can be done on a perf event fd:
466 */
467#define PERF_EVENT_IOC_ENABLE _IO ('$', 0)
468#define PERF_EVENT_IOC_DISABLE _IO ('$', 1)
469#define PERF_EVENT_IOC_REFRESH _IO ('$', 2)
470#define PERF_EVENT_IOC_RESET _IO ('$', 3)
471#define PERF_EVENT_IOC_PERIOD _IOW('$', 4, __u64)
472#define PERF_EVENT_IOC_SET_OUTPUT _IO ('$', 5)
473#define PERF_EVENT_IOC_SET_FILTER _IOW('$', 6, char *)
474#define PERF_EVENT_IOC_ID _IOR('$', 7, __u64 *)
475#define PERF_EVENT_IOC_SET_BPF _IOW('$', 8, __u32)
476#define PERF_EVENT_IOC_PAUSE_OUTPUT _IOW('$', 9, __u32)
477#define PERF_EVENT_IOC_QUERY_BPF _IOWR('$', 10, struct perf_event_query_bpf *)
478#define PERF_EVENT_IOC_MODIFY_ATTRIBUTES _IOW('$', 11, struct perf_event_attr *)
479
480enum perf_event_ioc_flags {
481 PERF_IOC_FLAG_GROUP = 1U << 0,
482};
483
484/*
485 * Structure of the page that can be mapped via mmap
486 */
487struct perf_event_mmap_page {
488 __u32 version; /* version number of this structure */
489 __u32 compat_version; /* lowest version this is compat with */
490
491 /*
492 * Bits needed to read the hw events in user-space.
493 *
494 * u32 seq, time_mult, time_shift, index, width;
495 * u64 count, enabled, running;
496 * u64 cyc, time_offset;
497 * s64 pmc = 0;
498 *
499 * do {
500 * seq = pc->lock;
501 * barrier()
502 *
503 * enabled = pc->time_enabled;
504 * running = pc->time_running;
505 *
506 * if (pc->cap_usr_time && enabled != running) {
507 * cyc = rdtsc();
508 * time_offset = pc->time_offset;
509 * time_mult = pc->time_mult;
510 * time_shift = pc->time_shift;
511 * }
512 *
513 * index = pc->index;
514 * count = pc->offset;
515 * if (pc->cap_user_rdpmc && index) {
516 * width = pc->pmc_width;
517 * pmc = rdpmc(index - 1);
518 * }
519 *
520 * barrier();
521 * } while (pc->lock != seq);
522 *
523 * NOTE: for obvious reason this only works on self-monitoring
524 * processes.
525 */
526 __u32 lock; /* seqlock for synchronization */
527 __u32 index; /* hardware event identifier */
528 __s64 offset; /* add to hardware event value */
529 __u64 time_enabled; /* time event active */
530 __u64 time_running; /* time event on cpu */
531 union {
532 __u64 capabilities;
533 struct {
534 __u64 cap_bit0 : 1, /* Always 0, deprecated, see commit 860f085b74e9 */
535 cap_bit0_is_deprecated : 1, /* Always 1, signals that bit 0 is zero */
536
537 cap_user_rdpmc : 1, /* The RDPMC instruction can be used to read counts */
538 cap_user_time : 1, /* The time_{shift,mult,offset} fields are used */
539 cap_user_time_zero : 1, /* The time_zero field is used */
540 cap_user_time_short : 1, /* the time_{cycle,mask} fields are used */
541 cap_____res : 58;
542 };
543 };
544
545 /*
546 * If cap_user_rdpmc this field provides the bit-width of the value
547 * read using the rdpmc() or equivalent instruction. This can be used
548 * to sign extend the result like:
549 *
550 * pmc <<= 64 - width;
551 * pmc >>= 64 - width; // signed shift right
552 * count += pmc;
553 */
554 __u16 pmc_width;
555
556 /*
557 * If cap_usr_time the below fields can be used to compute the time
558 * delta since time_enabled (in ns) using rdtsc or similar.
559 *
560 * u64 quot, rem;
561 * u64 delta;
562 *
563 * quot = (cyc >> time_shift);
564 * rem = cyc & (((u64)1 << time_shift) - 1);
565 * delta = time_offset + quot * time_mult +
566 * ((rem * time_mult) >> time_shift);
567 *
568 * Where time_offset,time_mult,time_shift and cyc are read in the
569 * seqcount loop described above. This delta can then be added to
570 * enabled and possible running (if index), improving the scaling:
571 *
572 * enabled += delta;
573 * if (index)
574 * running += delta;
575 *
576 * quot = count / running;
577 * rem = count % running;
578 * count = quot * enabled + (rem * enabled) / running;
579 */
580 __u16 time_shift;
581 __u32 time_mult;
582 __u64 time_offset;
583 /*
584 * If cap_usr_time_zero, the hardware clock (e.g. TSC) can be calculated
585 * from sample timestamps.
586 *
587 * time = timestamp - time_zero;
588 * quot = time / time_mult;
589 * rem = time % time_mult;
590 * cyc = (quot << time_shift) + (rem << time_shift) / time_mult;
591 *
592 * And vice versa:
593 *
594 * quot = cyc >> time_shift;
595 * rem = cyc & (((u64)1 << time_shift) - 1);
596 * timestamp = time_zero + quot * time_mult +
597 * ((rem * time_mult) >> time_shift);
598 */
599 __u64 time_zero;
600
601 __u32 size; /* Header size up to __reserved[] fields. */
602 __u32 __reserved_1;
603
604 /*
605 * If cap_usr_time_short, the hardware clock is less than 64bit wide
606 * and we must compute the 'cyc' value, as used by cap_usr_time, as:
607 *
608 * cyc = time_cycles + ((cyc - time_cycles) & time_mask)
609 *
610 * NOTE: this form is explicitly chosen such that cap_usr_time_short
611 * is a correction on top of cap_usr_time, and code that doesn't
612 * know about cap_usr_time_short still works under the assumption
613 * the counter doesn't wrap.
614 */
615 __u64 time_cycles;
616 __u64 time_mask;
617
618 /*
619 * Hole for extension of the self monitor capabilities
620 */
621
622 __u8 __reserved[116*8]; /* align to 1k. */
623
624 /*
625 * Control data for the mmap() data buffer.
626 *
627 * User-space reading the @data_head value should issue an smp_rmb(),
628 * after reading this value.
629 *
630 * When the mapping is PROT_WRITE the @data_tail value should be
631 * written by userspace to reflect the last read data, after issueing
632 * an smp_mb() to separate the data read from the ->data_tail store.
633 * In this case the kernel will not over-write unread data.
634 *
635 * See perf_output_put_handle() for the data ordering.
636 *
637 * data_{offset,size} indicate the location and size of the perf record
638 * buffer within the mmapped area.
639 */
640 __u64 data_head; /* head in the data section */
641 __u64 data_tail; /* user-space written tail */
642 __u64 data_offset; /* where the buffer starts */
643 __u64 data_size; /* data buffer size */
644
645 /*
646 * AUX area is defined by aux_{offset,size} fields that should be set
647 * by the userspace, so that
648 *
649 * aux_offset >= data_offset + data_size
650 *
651 * prior to mmap()ing it. Size of the mmap()ed area should be aux_size.
652 *
653 * Ring buffer pointers aux_{head,tail} have the same semantics as
654 * data_{head,tail} and same ordering rules apply.
655 */
656 __u64 aux_head;
657 __u64 aux_tail;
658 __u64 aux_offset;
659 __u64 aux_size;
660};
661
662#define PERF_RECORD_MISC_CPUMODE_MASK (7 << 0)
663#define PERF_RECORD_MISC_CPUMODE_UNKNOWN (0 << 0)
664#define PERF_RECORD_MISC_KERNEL (1 << 0)
665#define PERF_RECORD_MISC_USER (2 << 0)
666#define PERF_RECORD_MISC_HYPERVISOR (3 << 0)
667#define PERF_RECORD_MISC_GUEST_KERNEL (4 << 0)
668#define PERF_RECORD_MISC_GUEST_USER (5 << 0)
669
670/*
671 * Indicates that /proc/PID/maps parsing are truncated by time out.
672 */
673#define PERF_RECORD_MISC_PROC_MAP_PARSE_TIMEOUT (1 << 12)
674/*
675 * Following PERF_RECORD_MISC_* are used on different
676 * events, so can reuse the same bit position:
677 *
678 * PERF_RECORD_MISC_MMAP_DATA - PERF_RECORD_MMAP* events
679 * PERF_RECORD_MISC_COMM_EXEC - PERF_RECORD_COMM event
680 * PERF_RECORD_MISC_FORK_EXEC - PERF_RECORD_FORK event (perf internal)
681 * PERF_RECORD_MISC_SWITCH_OUT - PERF_RECORD_SWITCH* events
682 */
683#define PERF_RECORD_MISC_MMAP_DATA (1 << 13)
684#define PERF_RECORD_MISC_COMM_EXEC (1 << 13)
685#define PERF_RECORD_MISC_FORK_EXEC (1 << 13)
686#define PERF_RECORD_MISC_SWITCH_OUT (1 << 13)
687/*
688 * These PERF_RECORD_MISC_* flags below are safely reused
689 * for the following events:
690 *
691 * PERF_RECORD_MISC_EXACT_IP - PERF_RECORD_SAMPLE of precise events
692 * PERF_RECORD_MISC_SWITCH_OUT_PREEMPT - PERF_RECORD_SWITCH* events
693 *
694 *
695 * PERF_RECORD_MISC_EXACT_IP:
696 * Indicates that the content of PERF_SAMPLE_IP points to
697 * the actual instruction that triggered the event. See also
698 * perf_event_attr::precise_ip.
699 *
700 * PERF_RECORD_MISC_SWITCH_OUT_PREEMPT:
701 * Indicates that thread was preempted in TASK_RUNNING state.
702 */
703#define PERF_RECORD_MISC_EXACT_IP (1 << 14)
704#define PERF_RECORD_MISC_SWITCH_OUT_PREEMPT (1 << 14)
705/*
706 * Reserve the last bit to indicate some extended misc field
707 */
708#define PERF_RECORD_MISC_EXT_RESERVED (1 << 15)
709
710struct perf_event_header {
711 __u32 type;
712 __u16 misc;
713 __u16 size;
714};
715
716struct perf_ns_link_info {
717 __u64 dev;
718 __u64 ino;
719};
720
721enum {
722 NET_NS_INDEX = 0,
723 UTS_NS_INDEX = 1,
724 IPC_NS_INDEX = 2,
725 PID_NS_INDEX = 3,
726 USER_NS_INDEX = 4,
727 MNT_NS_INDEX = 5,
728 CGROUP_NS_INDEX = 6,
729
730 NR_NAMESPACES, /* number of available namespaces */
731};
732
733enum perf_event_type {
734
735 /*
736 * If perf_event_attr.sample_id_all is set then all event types will
737 * have the sample_type selected fields related to where/when
738 * (identity) an event took place (TID, TIME, ID, STREAM_ID, CPU,
739 * IDENTIFIER) described in PERF_RECORD_SAMPLE below, it will be stashed
740 * just after the perf_event_header and the fields already present for
741 * the existing fields, i.e. at the end of the payload. That way a newer
742 * perf.data file will be supported by older perf tools, with these new
743 * optional fields being ignored.
744 *
745 * struct sample_id {
746 * { u32 pid, tid; } && PERF_SAMPLE_TID
747 * { u64 time; } && PERF_SAMPLE_TIME
748 * { u64 id; } && PERF_SAMPLE_ID
749 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID
750 * { u32 cpu, res; } && PERF_SAMPLE_CPU
751 * { u64 id; } && PERF_SAMPLE_IDENTIFIER
752 * } && perf_event_attr::sample_id_all
753 *
754 * Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID. The
755 * advantage of PERF_SAMPLE_IDENTIFIER is that its position is fixed
756 * relative to header.size.
757 */
758
759 /*
760 * The MMAP events record the PROT_EXEC mappings so that we can
761 * correlate userspace IPs to code. They have the following structure:
762 *
763 * struct {
764 * struct perf_event_header header;
765 *
766 * u32 pid, tid;
767 * u64 addr;
768 * u64 len;
769 * u64 pgoff;
770 * char filename[];
771 * struct sample_id sample_id;
772 * };
773 */
774 PERF_RECORD_MMAP = 1,
775
776 /*
777 * struct {
778 * struct perf_event_header header;
779 * u64 id;
780 * u64 lost;
781 * struct sample_id sample_id;
782 * };
783 */
784 PERF_RECORD_LOST = 2,
785
786 /*
787 * struct {
788 * struct perf_event_header header;
789 *
790 * u32 pid, tid;
791 * char comm[];
792 * struct sample_id sample_id;
793 * };
794 */
795 PERF_RECORD_COMM = 3,
796
797 /*
798 * struct {
799 * struct perf_event_header header;
800 * u32 pid, ppid;
801 * u32 tid, ptid;
802 * u64 time;
803 * struct sample_id sample_id;
804 * };
805 */
806 PERF_RECORD_EXIT = 4,
807
808 /*
809 * struct {
810 * struct perf_event_header header;
811 * u64 time;
812 * u64 id;
813 * u64 stream_id;
814 * struct sample_id sample_id;
815 * };
816 */
817 PERF_RECORD_THROTTLE = 5,
818 PERF_RECORD_UNTHROTTLE = 6,
819
820 /*
821 * struct {
822 * struct perf_event_header header;
823 * u32 pid, ppid;
824 * u32 tid, ptid;
825 * u64 time;
826 * struct sample_id sample_id;
827 * };
828 */
829 PERF_RECORD_FORK = 7,
830
831 /*
832 * struct {
833 * struct perf_event_header header;
834 * u32 pid, tid;
835 *
836 * struct read_format values;
837 * struct sample_id sample_id;
838 * };
839 */
840 PERF_RECORD_READ = 8,
841
842 /*
843 * struct {
844 * struct perf_event_header header;
845 *
846 * #
847 * # Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID.
848 * # The advantage of PERF_SAMPLE_IDENTIFIER is that its position
849 * # is fixed relative to header.
850 * #
851 *
852 * { u64 id; } && PERF_SAMPLE_IDENTIFIER
853 * { u64 ip; } && PERF_SAMPLE_IP
854 * { u32 pid, tid; } && PERF_SAMPLE_TID
855 * { u64 time; } && PERF_SAMPLE_TIME
856 * { u64 addr; } && PERF_SAMPLE_ADDR
857 * { u64 id; } && PERF_SAMPLE_ID
858 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID
859 * { u32 cpu, res; } && PERF_SAMPLE_CPU
860 * { u64 period; } && PERF_SAMPLE_PERIOD
861 *
862 * { struct read_format values; } && PERF_SAMPLE_READ
863 *
864 * { u64 nr,
865 * u64 ips[nr]; } && PERF_SAMPLE_CALLCHAIN
866 *
867 * #
868 * # The RAW record below is opaque data wrt the ABI
869 * #
870 * # That is, the ABI doesn't make any promises wrt to
871 * # the stability of its content, it may vary depending
872 * # on event, hardware, kernel version and phase of
873 * # the moon.
874 * #
875 * # In other words, PERF_SAMPLE_RAW contents are not an ABI.
876 * #
877 *
878 * { u32 size;
879 * char data[size];}&& PERF_SAMPLE_RAW
880 *
881 * { u64 nr;
882 * { u64 hw_idx; } && PERF_SAMPLE_BRANCH_HW_INDEX
883 * { u64 from, to, flags } lbr[nr];
884 * } && PERF_SAMPLE_BRANCH_STACK
885 *
886 * { u64 abi; # enum perf_sample_regs_abi
887 * u64 regs[weight(mask)]; } && PERF_SAMPLE_REGS_USER
888 *
889 * { u64 size;
890 * char data[size];
891 * u64 dyn_size; } && PERF_SAMPLE_STACK_USER
892 *
893 * { u64 weight; } && PERF_SAMPLE_WEIGHT
894 * { u64 data_src; } && PERF_SAMPLE_DATA_SRC
895 * { u64 transaction; } && PERF_SAMPLE_TRANSACTION
896 * { u64 abi; # enum perf_sample_regs_abi
897 * u64 regs[weight(mask)]; } && PERF_SAMPLE_REGS_INTR
898 * { u64 phys_addr;} && PERF_SAMPLE_PHYS_ADDR
899 * { u64 size;
900 * char data[size]; } && PERF_SAMPLE_AUX
901 * { u64 data_page_size;} && PERF_SAMPLE_DATA_PAGE_SIZE
902 * { u64 code_page_size;} && PERF_SAMPLE_CODE_PAGE_SIZE
903 * };
904 */
905 PERF_RECORD_SAMPLE = 9,
906
907 /*
908 * The MMAP2 records are an augmented version of MMAP, they add
909 * maj, min, ino numbers to be used to uniquely identify each mapping
910 *
911 * struct {
912 * struct perf_event_header header;
913 *
914 * u32 pid, tid;
915 * u64 addr;
916 * u64 len;
917 * u64 pgoff;
918 * u32 maj;
919 * u32 min;
920 * u64 ino;
921 * u64 ino_generation;
922 * u32 prot, flags;
923 * char filename[];
924 * struct sample_id sample_id;
925 * };
926 */
927 PERF_RECORD_MMAP2 = 10,
928
929 /*
930 * Records that new data landed in the AUX buffer part.
931 *
932 * struct {
933 * struct perf_event_header header;
934 *
935 * u64 aux_offset;
936 * u64 aux_size;
937 * u64 flags;
938 * struct sample_id sample_id;
939 * };
940 */
941 PERF_RECORD_AUX = 11,
942
943 /*
944 * Indicates that instruction trace has started
945 *
946 * struct {
947 * struct perf_event_header header;
948 * u32 pid;
949 * u32 tid;
950 * struct sample_id sample_id;
951 * };
952 */
953 PERF_RECORD_ITRACE_START = 12,
954
955 /*
956 * Records the dropped/lost sample number.
957 *
958 * struct {
959 * struct perf_event_header header;
960 *
961 * u64 lost;
962 * struct sample_id sample_id;
963 * };
964 */
965 PERF_RECORD_LOST_SAMPLES = 13,
966
967 /*
968 * Records a context switch in or out (flagged by
969 * PERF_RECORD_MISC_SWITCH_OUT). See also
970 * PERF_RECORD_SWITCH_CPU_WIDE.
971 *
972 * struct {
973 * struct perf_event_header header;
974 * struct sample_id sample_id;
975 * };
976 */
977 PERF_RECORD_SWITCH = 14,
978
979 /*
980 * CPU-wide version of PERF_RECORD_SWITCH with next_prev_pid and
981 * next_prev_tid that are the next (switching out) or previous
982 * (switching in) pid/tid.
983 *
984 * struct {
985 * struct perf_event_header header;
986 * u32 next_prev_pid;
987 * u32 next_prev_tid;
988 * struct sample_id sample_id;
989 * };
990 */
991 PERF_RECORD_SWITCH_CPU_WIDE = 15,
992
993 /*
994 * struct {
995 * struct perf_event_header header;
996 * u32 pid;
997 * u32 tid;
998 * u64 nr_namespaces;
999 * { u64 dev, inode; } [nr_namespaces];
1000 * struct sample_id sample_id;
1001 * };
1002 */
1003 PERF_RECORD_NAMESPACES = 16,
1004
1005 /*
1006 * Record ksymbol register/unregister events:
1007 *
1008 * struct {
1009 * struct perf_event_header header;
1010 * u64 addr;
1011 * u32 len;
1012 * u16 ksym_type;
1013 * u16 flags;
1014 * char name[];
1015 * struct sample_id sample_id;
1016 * };
1017 */
1018 PERF_RECORD_KSYMBOL = 17,
1019
1020 /*
1021 * Record bpf events:
1022 * enum perf_bpf_event_type {
1023 * PERF_BPF_EVENT_UNKNOWN = 0,
1024 * PERF_BPF_EVENT_PROG_LOAD = 1,
1025 * PERF_BPF_EVENT_PROG_UNLOAD = 2,
1026 * };
1027 *
1028 * struct {
1029 * struct perf_event_header header;
1030 * u16 type;
1031 * u16 flags;
1032 * u32 id;
1033 * u8 tag[BPF_TAG_SIZE];
1034 * struct sample_id sample_id;
1035 * };
1036 */
1037 PERF_RECORD_BPF_EVENT = 18,
1038
1039 /*
1040 * struct {
1041 * struct perf_event_header header;
1042 * u64 id;
1043 * char path[];
1044 * struct sample_id sample_id;
1045 * };
1046 */
1047 PERF_RECORD_CGROUP = 19,
1048
1049 /*
1050 * Records changes to kernel text i.e. self-modified code. 'old_len' is
1051 * the number of old bytes, 'new_len' is the number of new bytes. Either
1052 * 'old_len' or 'new_len' may be zero to indicate, for example, the
1053 * addition or removal of a trampoline. 'bytes' contains the old bytes
1054 * followed immediately by the new bytes.
1055 *
1056 * struct {
1057 * struct perf_event_header header;
1058 * u64 addr;
1059 * u16 old_len;
1060 * u16 new_len;
1061 * u8 bytes[];
1062 * struct sample_id sample_id;
1063 * };
1064 */
1065 PERF_RECORD_TEXT_POKE = 20,
1066
1067 PERF_RECORD_MAX, /* non-ABI */
1068};
1069
1070enum perf_record_ksymbol_type {
1071 PERF_RECORD_KSYMBOL_TYPE_UNKNOWN = 0,
1072 PERF_RECORD_KSYMBOL_TYPE_BPF = 1,
1073 /*
1074 * Out of line code such as kprobe-replaced instructions or optimized
1075 * kprobes or ftrace trampolines.
1076 */
1077 PERF_RECORD_KSYMBOL_TYPE_OOL = 2,
1078 PERF_RECORD_KSYMBOL_TYPE_MAX /* non-ABI */
1079};
1080
1081#define PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER (1 << 0)
1082
1083enum perf_bpf_event_type {
1084 PERF_BPF_EVENT_UNKNOWN = 0,
1085 PERF_BPF_EVENT_PROG_LOAD = 1,
1086 PERF_BPF_EVENT_PROG_UNLOAD = 2,
1087 PERF_BPF_EVENT_MAX, /* non-ABI */
1088};
1089
1090#define PERF_MAX_STACK_DEPTH 127
1091#define PERF_MAX_CONTEXTS_PER_STACK 8
1092
1093enum perf_callchain_context {
1094 PERF_CONTEXT_HV = (__u64)-32,
1095 PERF_CONTEXT_KERNEL = (__u64)-128,
1096 PERF_CONTEXT_USER = (__u64)-512,
1097
1098 PERF_CONTEXT_GUEST = (__u64)-2048,
1099 PERF_CONTEXT_GUEST_KERNEL = (__u64)-2176,
1100 PERF_CONTEXT_GUEST_USER = (__u64)-2560,
1101
1102 PERF_CONTEXT_MAX = (__u64)-4095,
1103};
1104
1105/**
1106 * PERF_RECORD_AUX::flags bits
1107 */
1108#define PERF_AUX_FLAG_TRUNCATED 0x01 /* record was truncated to fit */
1109#define PERF_AUX_FLAG_OVERWRITE 0x02 /* snapshot from overwrite mode */
1110#define PERF_AUX_FLAG_PARTIAL 0x04 /* record contains gaps */
1111#define PERF_AUX_FLAG_COLLISION 0x08 /* sample collided with another */
1112
1113#define PERF_FLAG_FD_NO_GROUP (1UL << 0)
1114#define PERF_FLAG_FD_OUTPUT (1UL << 1)
1115#define PERF_FLAG_PID_CGROUP (1UL << 2) /* pid=cgroup id, per-cpu mode only */
1116#define PERF_FLAG_FD_CLOEXEC (1UL << 3) /* O_CLOEXEC */
1117
1118#if defined(__LITTLE_ENDIAN_BITFIELD)
1119union perf_mem_data_src {
1120 __u64 val;
1121 struct {
1122 __u64 mem_op:5, /* type of opcode */
1123 mem_lvl:14, /* memory hierarchy level */
1124 mem_snoop:5, /* snoop mode */
1125 mem_lock:2, /* lock instr */
1126 mem_dtlb:7, /* tlb access */
1127 mem_lvl_num:4, /* memory hierarchy level number */
1128 mem_remote:1, /* remote */
1129 mem_snoopx:2, /* snoop mode, ext */
1130 mem_rsvd:24;
1131 };
1132};
1133#elif defined(__BIG_ENDIAN_BITFIELD)
1134union perf_mem_data_src {
1135 __u64 val;
1136 struct {
1137 __u64 mem_rsvd:24,
1138 mem_snoopx:2, /* snoop mode, ext */
1139 mem_remote:1, /* remote */
1140 mem_lvl_num:4, /* memory hierarchy level number */
1141 mem_dtlb:7, /* tlb access */
1142 mem_lock:2, /* lock instr */
1143 mem_snoop:5, /* snoop mode */
1144 mem_lvl:14, /* memory hierarchy level */
1145 mem_op:5; /* type of opcode */
1146 };
1147};
1148#else
1149#error "Unknown endianness"
1150#endif
1151
1152/* type of opcode (load/store/prefetch,code) */
1153#define PERF_MEM_OP_NA 0x01 /* not available */
1154#define PERF_MEM_OP_LOAD 0x02 /* load instruction */
1155#define PERF_MEM_OP_STORE 0x04 /* store instruction */
1156#define PERF_MEM_OP_PFETCH 0x08 /* prefetch */
1157#define PERF_MEM_OP_EXEC 0x10 /* code (execution) */
1158#define PERF_MEM_OP_SHIFT 0
1159
1160/* memory hierarchy (memory level, hit or miss) */
1161#define PERF_MEM_LVL_NA 0x01 /* not available */
1162#define PERF_MEM_LVL_HIT 0x02 /* hit level */
1163#define PERF_MEM_LVL_MISS 0x04 /* miss level */
1164#define PERF_MEM_LVL_L1 0x08 /* L1 */
1165#define PERF_MEM_LVL_LFB 0x10 /* Line Fill Buffer */
1166#define PERF_MEM_LVL_L2 0x20 /* L2 */
1167#define PERF_MEM_LVL_L3 0x40 /* L3 */
1168#define PERF_MEM_LVL_LOC_RAM 0x80 /* Local DRAM */
1169#define PERF_MEM_LVL_REM_RAM1 0x100 /* Remote DRAM (1 hop) */
1170#define PERF_MEM_LVL_REM_RAM2 0x200 /* Remote DRAM (2 hops) */
1171#define PERF_MEM_LVL_REM_CCE1 0x400 /* Remote Cache (1 hop) */
1172#define PERF_MEM_LVL_REM_CCE2 0x800 /* Remote Cache (2 hops) */
1173#define PERF_MEM_LVL_IO 0x1000 /* I/O memory */
1174#define PERF_MEM_LVL_UNC 0x2000 /* Uncached memory */
1175#define PERF_MEM_LVL_SHIFT 5
1176
1177#define PERF_MEM_REMOTE_REMOTE 0x01 /* Remote */
1178#define PERF_MEM_REMOTE_SHIFT 37
1179
1180#define PERF_MEM_LVLNUM_L1 0x01 /* L1 */
1181#define PERF_MEM_LVLNUM_L2 0x02 /* L2 */
1182#define PERF_MEM_LVLNUM_L3 0x03 /* L3 */
1183#define PERF_MEM_LVLNUM_L4 0x04 /* L4 */
1184/* 5-0xa available */
1185#define PERF_MEM_LVLNUM_ANY_CACHE 0x0b /* Any cache */
1186#define PERF_MEM_LVLNUM_LFB 0x0c /* LFB */
1187#define PERF_MEM_LVLNUM_RAM 0x0d /* RAM */
1188#define PERF_MEM_LVLNUM_PMEM 0x0e /* PMEM */
1189#define PERF_MEM_LVLNUM_NA 0x0f /* N/A */
1190
1191#define PERF_MEM_LVLNUM_SHIFT 33
1192
1193/* snoop mode */
1194#define PERF_MEM_SNOOP_NA 0x01 /* not available */
1195#define PERF_MEM_SNOOP_NONE 0x02 /* no snoop */
1196#define PERF_MEM_SNOOP_HIT 0x04 /* snoop hit */
1197#define PERF_MEM_SNOOP_MISS 0x08 /* snoop miss */
1198#define PERF_MEM_SNOOP_HITM 0x10 /* snoop hit modified */
1199#define PERF_MEM_SNOOP_SHIFT 19
1200
1201#define PERF_MEM_SNOOPX_FWD 0x01 /* forward */
1202/* 1 free */
1203#define PERF_MEM_SNOOPX_SHIFT 38
1204
1205/* locked instruction */
1206#define PERF_MEM_LOCK_NA 0x01 /* not available */
1207#define PERF_MEM_LOCK_LOCKED 0x02 /* locked transaction */
1208#define PERF_MEM_LOCK_SHIFT 24
1209
1210/* TLB access */
1211#define PERF_MEM_TLB_NA 0x01 /* not available */
1212#define PERF_MEM_TLB_HIT 0x02 /* hit level */
1213#define PERF_MEM_TLB_MISS 0x04 /* miss level */
1214#define PERF_MEM_TLB_L1 0x08 /* L1 */
1215#define PERF_MEM_TLB_L2 0x10 /* L2 */
1216#define PERF_MEM_TLB_WK 0x20 /* Hardware Walker*/
1217#define PERF_MEM_TLB_OS 0x40 /* OS fault handler */
1218#define PERF_MEM_TLB_SHIFT 26
1219
1220#define PERF_MEM_S(a, s) \
1221 (((__u64)PERF_MEM_##a##_##s) << PERF_MEM_##a##_SHIFT)
1222
1223/*
1224 * single taken branch record layout:
1225 *
1226 * from: source instruction (may not always be a branch insn)
1227 * to: branch target
1228 * mispred: branch target was mispredicted
1229 * predicted: branch target was predicted
1230 *
1231 * support for mispred, predicted is optional. In case it
1232 * is not supported mispred = predicted = 0.
1233 *
1234 * in_tx: running in a hardware transaction
1235 * abort: aborting a hardware transaction
1236 * cycles: cycles from last branch (or 0 if not supported)
1237 * type: branch type
1238 */
1239struct perf_branch_entry {
1240 __u64 from;
1241 __u64 to;
1242 __u64 mispred:1, /* target mispredicted */
1243 predicted:1,/* target predicted */
1244 in_tx:1, /* in transaction */
1245 abort:1, /* transaction abort */
1246 cycles:16, /* cycle count to last branch */
1247 type:4, /* branch type */
1248 reserved:40;
1249};
1250
1251#endif /* _UAPI_LINUX_PERF_EVENT_H */