Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*
3 * Definitions for the 'struct sk_buff' memory handlers.
4 *
5 * Authors:
6 * Alan Cox, <gw4pts@gw4pts.ampr.org>
7 * Florian La Roche, <rzsfl@rz.uni-sb.de>
8 */
9
10#ifndef _LINUX_SKBUFF_H
11#define _LINUX_SKBUFF_H
12
13#include <linux/kernel.h>
14#include <linux/compiler.h>
15#include <linux/time.h>
16#include <linux/bug.h>
17#include <linux/bvec.h>
18#include <linux/cache.h>
19#include <linux/rbtree.h>
20#include <linux/socket.h>
21#include <linux/refcount.h>
22
23#include <linux/atomic.h>
24#include <asm/types.h>
25#include <linux/spinlock.h>
26#include <linux/net.h>
27#include <linux/textsearch.h>
28#include <net/checksum.h>
29#include <linux/rcupdate.h>
30#include <linux/hrtimer.h>
31#include <linux/dma-mapping.h>
32#include <linux/netdev_features.h>
33#include <linux/sched.h>
34#include <linux/sched/clock.h>
35#include <net/flow_dissector.h>
36#include <linux/splice.h>
37#include <linux/in6.h>
38#include <linux/if_packet.h>
39#include <net/flow.h>
40#if IS_ENABLED(CONFIG_NF_CONNTRACK)
41#include <linux/netfilter/nf_conntrack_common.h>
42#endif
43
44/* The interface for checksum offload between the stack and networking drivers
45 * is as follows...
46 *
47 * A. IP checksum related features
48 *
49 * Drivers advertise checksum offload capabilities in the features of a device.
50 * From the stack's point of view these are capabilities offered by the driver.
51 * A driver typically only advertises features that it is capable of offloading
52 * to its device.
53 *
54 * The checksum related features are:
55 *
56 * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one
57 * IP (one's complement) checksum for any combination
58 * of protocols or protocol layering. The checksum is
59 * computed and set in a packet per the CHECKSUM_PARTIAL
60 * interface (see below).
61 *
62 * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
63 * TCP or UDP packets over IPv4. These are specifically
64 * unencapsulated packets of the form IPv4|TCP or
65 * IPv4|UDP where the Protocol field in the IPv4 header
66 * is TCP or UDP. The IPv4 header may contain IP options.
67 * This feature cannot be set in features for a device
68 * with NETIF_F_HW_CSUM also set. This feature is being
69 * DEPRECATED (see below).
70 *
71 * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
72 * TCP or UDP packets over IPv6. These are specifically
73 * unencapsulated packets of the form IPv6|TCP or
74 * IPv6|UDP where the Next Header field in the IPv6
75 * header is either TCP or UDP. IPv6 extension headers
76 * are not supported with this feature. This feature
77 * cannot be set in features for a device with
78 * NETIF_F_HW_CSUM also set. This feature is being
79 * DEPRECATED (see below).
80 *
81 * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
82 * This flag is only used to disable the RX checksum
83 * feature for a device. The stack will accept receive
84 * checksum indication in packets received on a device
85 * regardless of whether NETIF_F_RXCSUM is set.
86 *
87 * B. Checksumming of received packets by device. Indication of checksum
88 * verification is set in skb->ip_summed. Possible values are:
89 *
90 * CHECKSUM_NONE:
91 *
92 * Device did not checksum this packet e.g. due to lack of capabilities.
93 * The packet contains full (though not verified) checksum in packet but
94 * not in skb->csum. Thus, skb->csum is undefined in this case.
95 *
96 * CHECKSUM_UNNECESSARY:
97 *
98 * The hardware you're dealing with doesn't calculate the full checksum
99 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
100 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
101 * if their checksums are okay. skb->csum is still undefined in this case
102 * though. A driver or device must never modify the checksum field in the
103 * packet even if checksum is verified.
104 *
105 * CHECKSUM_UNNECESSARY is applicable to following protocols:
106 * TCP: IPv6 and IPv4.
107 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
108 * zero UDP checksum for either IPv4 or IPv6, the networking stack
109 * may perform further validation in this case.
110 * GRE: only if the checksum is present in the header.
111 * SCTP: indicates the CRC in SCTP header has been validated.
112 * FCOE: indicates the CRC in FC frame has been validated.
113 *
114 * skb->csum_level indicates the number of consecutive checksums found in
115 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
116 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
117 * and a device is able to verify the checksums for UDP (possibly zero),
118 * GRE (checksum flag is set) and TCP, skb->csum_level would be set to
119 * two. If the device were only able to verify the UDP checksum and not
120 * GRE, either because it doesn't support GRE checksum or because GRE
121 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is
122 * not considered in this case).
123 *
124 * CHECKSUM_COMPLETE:
125 *
126 * This is the most generic way. The device supplied checksum of the _whole_
127 * packet as seen by netif_rx() and fills in skb->csum. This means the
128 * hardware doesn't need to parse L3/L4 headers to implement this.
129 *
130 * Notes:
131 * - Even if device supports only some protocols, but is able to produce
132 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
133 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
134 *
135 * CHECKSUM_PARTIAL:
136 *
137 * A checksum is set up to be offloaded to a device as described in the
138 * output description for CHECKSUM_PARTIAL. This may occur on a packet
139 * received directly from another Linux OS, e.g., a virtualized Linux kernel
140 * on the same host, or it may be set in the input path in GRO or remote
141 * checksum offload. For the purposes of checksum verification, the checksum
142 * referred to by skb->csum_start + skb->csum_offset and any preceding
143 * checksums in the packet are considered verified. Any checksums in the
144 * packet that are after the checksum being offloaded are not considered to
145 * be verified.
146 *
147 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
148 * in the skb->ip_summed for a packet. Values are:
149 *
150 * CHECKSUM_PARTIAL:
151 *
152 * The driver is required to checksum the packet as seen by hard_start_xmit()
153 * from skb->csum_start up to the end, and to record/write the checksum at
154 * offset skb->csum_start + skb->csum_offset. A driver may verify that the
155 * csum_start and csum_offset values are valid values given the length and
156 * offset of the packet, but it should not attempt to validate that the
157 * checksum refers to a legitimate transport layer checksum -- it is the
158 * purview of the stack to validate that csum_start and csum_offset are set
159 * correctly.
160 *
161 * When the stack requests checksum offload for a packet, the driver MUST
162 * ensure that the checksum is set correctly. A driver can either offload the
163 * checksum calculation to the device, or call skb_checksum_help (in the case
164 * that the device does not support offload for a particular checksum).
165 *
166 * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
167 * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
168 * checksum offload capability.
169 * skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
170 * on network device checksumming capabilities: if a packet does not match
171 * them, skb_checksum_help or skb_crc32c_help (depending on the value of
172 * csum_not_inet, see item D.) is called to resolve the checksum.
173 *
174 * CHECKSUM_NONE:
175 *
176 * The skb was already checksummed by the protocol, or a checksum is not
177 * required.
178 *
179 * CHECKSUM_UNNECESSARY:
180 *
181 * This has the same meaning as CHECKSUM_NONE for checksum offload on
182 * output.
183 *
184 * CHECKSUM_COMPLETE:
185 * Not used in checksum output. If a driver observes a packet with this value
186 * set in skbuff, it should treat the packet as if CHECKSUM_NONE were set.
187 *
188 * D. Non-IP checksum (CRC) offloads
189 *
190 * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
191 * offloading the SCTP CRC in a packet. To perform this offload the stack
192 * will set csum_start and csum_offset accordingly, set ip_summed to
193 * CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
194 * the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
195 * A driver that supports both IP checksum offload and SCTP CRC32c offload
196 * must verify which offload is configured for a packet by testing the
197 * value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
198 * CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
199 *
200 * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
201 * offloading the FCOE CRC in a packet. To perform this offload the stack
202 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
203 * accordingly. Note that there is no indication in the skbuff that the
204 * CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
205 * both IP checksum offload and FCOE CRC offload must verify which offload
206 * is configured for a packet, presumably by inspecting packet headers.
207 *
208 * E. Checksumming on output with GSO.
209 *
210 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
211 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
212 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
213 * part of the GSO operation is implied. If a checksum is being offloaded
214 * with GSO then ip_summed is CHECKSUM_PARTIAL, and both csum_start and
215 * csum_offset are set to refer to the outermost checksum being offloaded
216 * (two offloaded checksums are possible with UDP encapsulation).
217 */
218
219/* Don't change this without changing skb_csum_unnecessary! */
220#define CHECKSUM_NONE 0
221#define CHECKSUM_UNNECESSARY 1
222#define CHECKSUM_COMPLETE 2
223#define CHECKSUM_PARTIAL 3
224
225/* Maximum value in skb->csum_level */
226#define SKB_MAX_CSUM_LEVEL 3
227
228#define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
229#define SKB_WITH_OVERHEAD(X) \
230 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
231#define SKB_MAX_ORDER(X, ORDER) \
232 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
233#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
234#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
235
236/* return minimum truesize of one skb containing X bytes of data */
237#define SKB_TRUESIZE(X) ((X) + \
238 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
239 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
240
241struct ahash_request;
242struct net_device;
243struct scatterlist;
244struct pipe_inode_info;
245struct iov_iter;
246struct napi_struct;
247struct bpf_prog;
248union bpf_attr;
249struct skb_ext;
250
251#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
252struct nf_bridge_info {
253 enum {
254 BRNF_PROTO_UNCHANGED,
255 BRNF_PROTO_8021Q,
256 BRNF_PROTO_PPPOE
257 } orig_proto:8;
258 u8 pkt_otherhost:1;
259 u8 in_prerouting:1;
260 u8 bridged_dnat:1;
261 __u16 frag_max_size;
262 struct net_device *physindev;
263
264 /* always valid & non-NULL from FORWARD on, for physdev match */
265 struct net_device *physoutdev;
266 union {
267 /* prerouting: detect dnat in orig/reply direction */
268 __be32 ipv4_daddr;
269 struct in6_addr ipv6_daddr;
270
271 /* after prerouting + nat detected: store original source
272 * mac since neigh resolution overwrites it, only used while
273 * skb is out in neigh layer.
274 */
275 char neigh_header[8];
276 };
277};
278#endif
279
280#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
281/* Chain in tc_skb_ext will be used to share the tc chain with
282 * ovs recirc_id. It will be set to the current chain by tc
283 * and read by ovs to recirc_id.
284 */
285struct tc_skb_ext {
286 __u32 chain;
287 __u16 mru;
288};
289#endif
290
291struct sk_buff_head {
292 /* These two members must be first. */
293 struct sk_buff *next;
294 struct sk_buff *prev;
295
296 __u32 qlen;
297 spinlock_t lock;
298};
299
300struct sk_buff;
301
302/* To allow 64K frame to be packed as single skb without frag_list we
303 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
304 * buffers which do not start on a page boundary.
305 *
306 * Since GRO uses frags we allocate at least 16 regardless of page
307 * size.
308 */
309#if (65536/PAGE_SIZE + 1) < 16
310#define MAX_SKB_FRAGS 16UL
311#else
312#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
313#endif
314extern int sysctl_max_skb_frags;
315
316/* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
317 * segment using its current segmentation instead.
318 */
319#define GSO_BY_FRAGS 0xFFFF
320
321typedef struct bio_vec skb_frag_t;
322
323/**
324 * skb_frag_size() - Returns the size of a skb fragment
325 * @frag: skb fragment
326 */
327static inline unsigned int skb_frag_size(const skb_frag_t *frag)
328{
329 return frag->bv_len;
330}
331
332/**
333 * skb_frag_size_set() - Sets the size of a skb fragment
334 * @frag: skb fragment
335 * @size: size of fragment
336 */
337static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
338{
339 frag->bv_len = size;
340}
341
342/**
343 * skb_frag_size_add() - Increments the size of a skb fragment by @delta
344 * @frag: skb fragment
345 * @delta: value to add
346 */
347static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
348{
349 frag->bv_len += delta;
350}
351
352/**
353 * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
354 * @frag: skb fragment
355 * @delta: value to subtract
356 */
357static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
358{
359 frag->bv_len -= delta;
360}
361
362/**
363 * skb_frag_must_loop - Test if %p is a high memory page
364 * @p: fragment's page
365 */
366static inline bool skb_frag_must_loop(struct page *p)
367{
368#if defined(CONFIG_HIGHMEM)
369 if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
370 return true;
371#endif
372 return false;
373}
374
375/**
376 * skb_frag_foreach_page - loop over pages in a fragment
377 *
378 * @f: skb frag to operate on
379 * @f_off: offset from start of f->bv_page
380 * @f_len: length from f_off to loop over
381 * @p: (temp var) current page
382 * @p_off: (temp var) offset from start of current page,
383 * non-zero only on first page.
384 * @p_len: (temp var) length in current page,
385 * < PAGE_SIZE only on first and last page.
386 * @copied: (temp var) length so far, excluding current p_len.
387 *
388 * A fragment can hold a compound page, in which case per-page
389 * operations, notably kmap_atomic, must be called for each
390 * regular page.
391 */
392#define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \
393 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \
394 p_off = (f_off) & (PAGE_SIZE - 1), \
395 p_len = skb_frag_must_loop(p) ? \
396 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \
397 copied = 0; \
398 copied < f_len; \
399 copied += p_len, p++, p_off = 0, \
400 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \
401
402#define HAVE_HW_TIME_STAMP
403
404/**
405 * struct skb_shared_hwtstamps - hardware time stamps
406 * @hwtstamp: hardware time stamp transformed into duration
407 * since arbitrary point in time
408 *
409 * Software time stamps generated by ktime_get_real() are stored in
410 * skb->tstamp.
411 *
412 * hwtstamps can only be compared against other hwtstamps from
413 * the same device.
414 *
415 * This structure is attached to packets as part of the
416 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
417 */
418struct skb_shared_hwtstamps {
419 ktime_t hwtstamp;
420};
421
422/* Definitions for tx_flags in struct skb_shared_info */
423enum {
424 /* generate hardware time stamp */
425 SKBTX_HW_TSTAMP = 1 << 0,
426
427 /* generate software time stamp when queueing packet to NIC */
428 SKBTX_SW_TSTAMP = 1 << 1,
429
430 /* device driver is going to provide hardware time stamp */
431 SKBTX_IN_PROGRESS = 1 << 2,
432
433 /* device driver supports TX zero-copy buffers */
434 SKBTX_DEV_ZEROCOPY = 1 << 3,
435
436 /* generate wifi status information (where possible) */
437 SKBTX_WIFI_STATUS = 1 << 4,
438
439 /* This indicates at least one fragment might be overwritten
440 * (as in vmsplice(), sendfile() ...)
441 * If we need to compute a TX checksum, we'll need to copy
442 * all frags to avoid possible bad checksum
443 */
444 SKBTX_SHARED_FRAG = 1 << 5,
445
446 /* generate software time stamp when entering packet scheduling */
447 SKBTX_SCHED_TSTAMP = 1 << 6,
448};
449
450#define SKBTX_ZEROCOPY_FRAG (SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
451#define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
452 SKBTX_SCHED_TSTAMP)
453#define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
454
455/*
456 * The callback notifies userspace to release buffers when skb DMA is done in
457 * lower device, the skb last reference should be 0 when calling this.
458 * The zerocopy_success argument is true if zero copy transmit occurred,
459 * false on data copy or out of memory error caused by data copy attempt.
460 * The ctx field is used to track device context.
461 * The desc field is used to track userspace buffer index.
462 */
463struct ubuf_info {
464 void (*callback)(struct ubuf_info *, bool zerocopy_success);
465 union {
466 struct {
467 unsigned long desc;
468 void *ctx;
469 };
470 struct {
471 u32 id;
472 u16 len;
473 u16 zerocopy:1;
474 u32 bytelen;
475 };
476 };
477 refcount_t refcnt;
478
479 struct mmpin {
480 struct user_struct *user;
481 unsigned int num_pg;
482 } mmp;
483};
484
485#define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
486
487int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
488void mm_unaccount_pinned_pages(struct mmpin *mmp);
489
490struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
491struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
492 struct ubuf_info *uarg);
493
494static inline void sock_zerocopy_get(struct ubuf_info *uarg)
495{
496 refcount_inc(&uarg->refcnt);
497}
498
499void sock_zerocopy_put(struct ubuf_info *uarg);
500void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
501
502void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
503
504int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len);
505int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
506 struct msghdr *msg, int len,
507 struct ubuf_info *uarg);
508
509/* This data is invariant across clones and lives at
510 * the end of the header data, ie. at skb->end.
511 */
512struct skb_shared_info {
513 __u8 __unused;
514 __u8 meta_len;
515 __u8 nr_frags;
516 __u8 tx_flags;
517 unsigned short gso_size;
518 /* Warning: this field is not always filled in (UFO)! */
519 unsigned short gso_segs;
520 struct sk_buff *frag_list;
521 struct skb_shared_hwtstamps hwtstamps;
522 unsigned int gso_type;
523 u32 tskey;
524
525 /*
526 * Warning : all fields before dataref are cleared in __alloc_skb()
527 */
528 atomic_t dataref;
529
530 /* Intermediate layers must ensure that destructor_arg
531 * remains valid until skb destructor */
532 void * destructor_arg;
533
534 /* must be last field, see pskb_expand_head() */
535 skb_frag_t frags[MAX_SKB_FRAGS];
536};
537
538/* We divide dataref into two halves. The higher 16 bits hold references
539 * to the payload part of skb->data. The lower 16 bits hold references to
540 * the entire skb->data. A clone of a headerless skb holds the length of
541 * the header in skb->hdr_len.
542 *
543 * All users must obey the rule that the skb->data reference count must be
544 * greater than or equal to the payload reference count.
545 *
546 * Holding a reference to the payload part means that the user does not
547 * care about modifications to the header part of skb->data.
548 */
549#define SKB_DATAREF_SHIFT 16
550#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
551
552
553enum {
554 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
555 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */
556 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */
557};
558
559enum {
560 SKB_GSO_TCPV4 = 1 << 0,
561
562 /* This indicates the skb is from an untrusted source. */
563 SKB_GSO_DODGY = 1 << 1,
564
565 /* This indicates the tcp segment has CWR set. */
566 SKB_GSO_TCP_ECN = 1 << 2,
567
568 SKB_GSO_TCP_FIXEDID = 1 << 3,
569
570 SKB_GSO_TCPV6 = 1 << 4,
571
572 SKB_GSO_FCOE = 1 << 5,
573
574 SKB_GSO_GRE = 1 << 6,
575
576 SKB_GSO_GRE_CSUM = 1 << 7,
577
578 SKB_GSO_IPXIP4 = 1 << 8,
579
580 SKB_GSO_IPXIP6 = 1 << 9,
581
582 SKB_GSO_UDP_TUNNEL = 1 << 10,
583
584 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
585
586 SKB_GSO_PARTIAL = 1 << 12,
587
588 SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
589
590 SKB_GSO_SCTP = 1 << 14,
591
592 SKB_GSO_ESP = 1 << 15,
593
594 SKB_GSO_UDP = 1 << 16,
595
596 SKB_GSO_UDP_L4 = 1 << 17,
597
598 SKB_GSO_FRAGLIST = 1 << 18,
599};
600
601#if BITS_PER_LONG > 32
602#define NET_SKBUFF_DATA_USES_OFFSET 1
603#endif
604
605#ifdef NET_SKBUFF_DATA_USES_OFFSET
606typedef unsigned int sk_buff_data_t;
607#else
608typedef unsigned char *sk_buff_data_t;
609#endif
610
611/**
612 * struct sk_buff - socket buffer
613 * @next: Next buffer in list
614 * @prev: Previous buffer in list
615 * @tstamp: Time we arrived/left
616 * @skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
617 * for retransmit timer
618 * @rbnode: RB tree node, alternative to next/prev for netem/tcp
619 * @list: queue head
620 * @sk: Socket we are owned by
621 * @ip_defrag_offset: (aka @sk) alternate use of @sk, used in
622 * fragmentation management
623 * @dev: Device we arrived on/are leaving by
624 * @dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
625 * @cb: Control buffer. Free for use by every layer. Put private vars here
626 * @_skb_refdst: destination entry (with norefcount bit)
627 * @sp: the security path, used for xfrm
628 * @len: Length of actual data
629 * @data_len: Data length
630 * @mac_len: Length of link layer header
631 * @hdr_len: writable header length of cloned skb
632 * @csum: Checksum (must include start/offset pair)
633 * @csum_start: Offset from skb->head where checksumming should start
634 * @csum_offset: Offset from csum_start where checksum should be stored
635 * @priority: Packet queueing priority
636 * @ignore_df: allow local fragmentation
637 * @cloned: Head may be cloned (check refcnt to be sure)
638 * @ip_summed: Driver fed us an IP checksum
639 * @nohdr: Payload reference only, must not modify header
640 * @pkt_type: Packet class
641 * @fclone: skbuff clone status
642 * @ipvs_property: skbuff is owned by ipvs
643 * @inner_protocol_type: whether the inner protocol is
644 * ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
645 * @remcsum_offload: remote checksum offload is enabled
646 * @offload_fwd_mark: Packet was L2-forwarded in hardware
647 * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware
648 * @tc_skip_classify: do not classify packet. set by IFB device
649 * @tc_at_ingress: used within tc_classify to distinguish in/egress
650 * @redirected: packet was redirected by packet classifier
651 * @from_ingress: packet was redirected from the ingress path
652 * @peeked: this packet has been seen already, so stats have been
653 * done for it, don't do them again
654 * @nf_trace: netfilter packet trace flag
655 * @protocol: Packet protocol from driver
656 * @destructor: Destruct function
657 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
658 * @_nfct: Associated connection, if any (with nfctinfo bits)
659 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
660 * @skb_iif: ifindex of device we arrived on
661 * @tc_index: Traffic control index
662 * @hash: the packet hash
663 * @queue_mapping: Queue mapping for multiqueue devices
664 * @head_frag: skb was allocated from page fragments,
665 * not allocated by kmalloc() or vmalloc().
666 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
667 * @active_extensions: active extensions (skb_ext_id types)
668 * @ndisc_nodetype: router type (from link layer)
669 * @ooo_okay: allow the mapping of a socket to a queue to be changed
670 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
671 * ports.
672 * @sw_hash: indicates hash was computed in software stack
673 * @wifi_acked_valid: wifi_acked was set
674 * @wifi_acked: whether frame was acked on wifi or not
675 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
676 * @encapsulation: indicates the inner headers in the skbuff are valid
677 * @encap_hdr_csum: software checksum is needed
678 * @csum_valid: checksum is already valid
679 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
680 * @csum_complete_sw: checksum was completed by software
681 * @csum_level: indicates the number of consecutive checksums found in
682 * the packet minus one that have been verified as
683 * CHECKSUM_UNNECESSARY (max 3)
684 * @dst_pending_confirm: need to confirm neighbour
685 * @decrypted: Decrypted SKB
686 * @napi_id: id of the NAPI struct this skb came from
687 * @sender_cpu: (aka @napi_id) source CPU in XPS
688 * @secmark: security marking
689 * @mark: Generic packet mark
690 * @reserved_tailroom: (aka @mark) number of bytes of free space available
691 * at the tail of an sk_buff
692 * @vlan_present: VLAN tag is present
693 * @vlan_proto: vlan encapsulation protocol
694 * @vlan_tci: vlan tag control information
695 * @inner_protocol: Protocol (encapsulation)
696 * @inner_ipproto: (aka @inner_protocol) stores ipproto when
697 * skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
698 * @inner_transport_header: Inner transport layer header (encapsulation)
699 * @inner_network_header: Network layer header (encapsulation)
700 * @inner_mac_header: Link layer header (encapsulation)
701 * @transport_header: Transport layer header
702 * @network_header: Network layer header
703 * @mac_header: Link layer header
704 * @kcov_handle: KCOV remote handle for remote coverage collection
705 * @tail: Tail pointer
706 * @end: End pointer
707 * @head: Head of buffer
708 * @data: Data head pointer
709 * @truesize: Buffer size
710 * @users: User count - see {datagram,tcp}.c
711 * @extensions: allocated extensions, valid if active_extensions is nonzero
712 */
713
714struct sk_buff {
715 union {
716 struct {
717 /* These two members must be first. */
718 struct sk_buff *next;
719 struct sk_buff *prev;
720
721 union {
722 struct net_device *dev;
723 /* Some protocols might use this space to store information,
724 * while device pointer would be NULL.
725 * UDP receive path is one user.
726 */
727 unsigned long dev_scratch;
728 };
729 };
730 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */
731 struct list_head list;
732 };
733
734 union {
735 struct sock *sk;
736 int ip_defrag_offset;
737 };
738
739 union {
740 ktime_t tstamp;
741 u64 skb_mstamp_ns; /* earliest departure time */
742 };
743 /*
744 * This is the control buffer. It is free to use for every
745 * layer. Please put your private variables there. If you
746 * want to keep them across layers you have to do a skb_clone()
747 * first. This is owned by whoever has the skb queued ATM.
748 */
749 char cb[48] __aligned(8);
750
751 union {
752 struct {
753 unsigned long _skb_refdst;
754 void (*destructor)(struct sk_buff *skb);
755 };
756 struct list_head tcp_tsorted_anchor;
757 };
758
759#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
760 unsigned long _nfct;
761#endif
762 unsigned int len,
763 data_len;
764 __u16 mac_len,
765 hdr_len;
766
767 /* Following fields are _not_ copied in __copy_skb_header()
768 * Note that queue_mapping is here mostly to fill a hole.
769 */
770 __u16 queue_mapping;
771
772/* if you move cloned around you also must adapt those constants */
773#ifdef __BIG_ENDIAN_BITFIELD
774#define CLONED_MASK (1 << 7)
775#else
776#define CLONED_MASK 1
777#endif
778#define CLONED_OFFSET() offsetof(struct sk_buff, __cloned_offset)
779
780 /* private: */
781 __u8 __cloned_offset[0];
782 /* public: */
783 __u8 cloned:1,
784 nohdr:1,
785 fclone:2,
786 peeked:1,
787 head_frag:1,
788 pfmemalloc:1;
789#ifdef CONFIG_SKB_EXTENSIONS
790 __u8 active_extensions;
791#endif
792 /* fields enclosed in headers_start/headers_end are copied
793 * using a single memcpy() in __copy_skb_header()
794 */
795 /* private: */
796 __u32 headers_start[0];
797 /* public: */
798
799/* if you move pkt_type around you also must adapt those constants */
800#ifdef __BIG_ENDIAN_BITFIELD
801#define PKT_TYPE_MAX (7 << 5)
802#else
803#define PKT_TYPE_MAX 7
804#endif
805#define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset)
806
807 /* private: */
808 __u8 __pkt_type_offset[0];
809 /* public: */
810 __u8 pkt_type:3;
811 __u8 ignore_df:1;
812 __u8 nf_trace:1;
813 __u8 ip_summed:2;
814 __u8 ooo_okay:1;
815
816 __u8 l4_hash:1;
817 __u8 sw_hash:1;
818 __u8 wifi_acked_valid:1;
819 __u8 wifi_acked:1;
820 __u8 no_fcs:1;
821 /* Indicates the inner headers are valid in the skbuff. */
822 __u8 encapsulation:1;
823 __u8 encap_hdr_csum:1;
824 __u8 csum_valid:1;
825
826#ifdef __BIG_ENDIAN_BITFIELD
827#define PKT_VLAN_PRESENT_BIT 7
828#else
829#define PKT_VLAN_PRESENT_BIT 0
830#endif
831#define PKT_VLAN_PRESENT_OFFSET() offsetof(struct sk_buff, __pkt_vlan_present_offset)
832 /* private: */
833 __u8 __pkt_vlan_present_offset[0];
834 /* public: */
835 __u8 vlan_present:1;
836 __u8 csum_complete_sw:1;
837 __u8 csum_level:2;
838 __u8 csum_not_inet:1;
839 __u8 dst_pending_confirm:1;
840#ifdef CONFIG_IPV6_NDISC_NODETYPE
841 __u8 ndisc_nodetype:2;
842#endif
843
844 __u8 ipvs_property:1;
845 __u8 inner_protocol_type:1;
846 __u8 remcsum_offload:1;
847#ifdef CONFIG_NET_SWITCHDEV
848 __u8 offload_fwd_mark:1;
849 __u8 offload_l3_fwd_mark:1;
850#endif
851#ifdef CONFIG_NET_CLS_ACT
852 __u8 tc_skip_classify:1;
853 __u8 tc_at_ingress:1;
854#endif
855#ifdef CONFIG_NET_REDIRECT
856 __u8 redirected:1;
857 __u8 from_ingress:1;
858#endif
859#ifdef CONFIG_TLS_DEVICE
860 __u8 decrypted:1;
861#endif
862
863#ifdef CONFIG_NET_SCHED
864 __u16 tc_index; /* traffic control index */
865#endif
866
867 union {
868 __wsum csum;
869 struct {
870 __u16 csum_start;
871 __u16 csum_offset;
872 };
873 };
874 __u32 priority;
875 int skb_iif;
876 __u32 hash;
877 __be16 vlan_proto;
878 __u16 vlan_tci;
879#if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
880 union {
881 unsigned int napi_id;
882 unsigned int sender_cpu;
883 };
884#endif
885#ifdef CONFIG_NETWORK_SECMARK
886 __u32 secmark;
887#endif
888
889 union {
890 __u32 mark;
891 __u32 reserved_tailroom;
892 };
893
894 union {
895 __be16 inner_protocol;
896 __u8 inner_ipproto;
897 };
898
899 __u16 inner_transport_header;
900 __u16 inner_network_header;
901 __u16 inner_mac_header;
902
903 __be16 protocol;
904 __u16 transport_header;
905 __u16 network_header;
906 __u16 mac_header;
907
908#ifdef CONFIG_KCOV
909 u64 kcov_handle;
910#endif
911
912 /* private: */
913 __u32 headers_end[0];
914 /* public: */
915
916 /* These elements must be at the end, see alloc_skb() for details. */
917 sk_buff_data_t tail;
918 sk_buff_data_t end;
919 unsigned char *head,
920 *data;
921 unsigned int truesize;
922 refcount_t users;
923
924#ifdef CONFIG_SKB_EXTENSIONS
925 /* only useable after checking ->active_extensions != 0 */
926 struct skb_ext *extensions;
927#endif
928};
929
930#ifdef __KERNEL__
931/*
932 * Handling routines are only of interest to the kernel
933 */
934
935#define SKB_ALLOC_FCLONE 0x01
936#define SKB_ALLOC_RX 0x02
937#define SKB_ALLOC_NAPI 0x04
938
939/**
940 * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
941 * @skb: buffer
942 */
943static inline bool skb_pfmemalloc(const struct sk_buff *skb)
944{
945 return unlikely(skb->pfmemalloc);
946}
947
948/*
949 * skb might have a dst pointer attached, refcounted or not.
950 * _skb_refdst low order bit is set if refcount was _not_ taken
951 */
952#define SKB_DST_NOREF 1UL
953#define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
954
955/**
956 * skb_dst - returns skb dst_entry
957 * @skb: buffer
958 *
959 * Returns skb dst_entry, regardless of reference taken or not.
960 */
961static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
962{
963 /* If refdst was not refcounted, check we still are in a
964 * rcu_read_lock section
965 */
966 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
967 !rcu_read_lock_held() &&
968 !rcu_read_lock_bh_held());
969 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
970}
971
972/**
973 * skb_dst_set - sets skb dst
974 * @skb: buffer
975 * @dst: dst entry
976 *
977 * Sets skb dst, assuming a reference was taken on dst and should
978 * be released by skb_dst_drop()
979 */
980static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
981{
982 skb->_skb_refdst = (unsigned long)dst;
983}
984
985/**
986 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
987 * @skb: buffer
988 * @dst: dst entry
989 *
990 * Sets skb dst, assuming a reference was not taken on dst.
991 * If dst entry is cached, we do not take reference and dst_release
992 * will be avoided by refdst_drop. If dst entry is not cached, we take
993 * reference, so that last dst_release can destroy the dst immediately.
994 */
995static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
996{
997 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
998 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
999}
1000
1001/**
1002 * skb_dst_is_noref - Test if skb dst isn't refcounted
1003 * @skb: buffer
1004 */
1005static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1006{
1007 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1008}
1009
1010/**
1011 * skb_rtable - Returns the skb &rtable
1012 * @skb: buffer
1013 */
1014static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1015{
1016 return (struct rtable *)skb_dst(skb);
1017}
1018
1019/* For mangling skb->pkt_type from user space side from applications
1020 * such as nft, tc, etc, we only allow a conservative subset of
1021 * possible pkt_types to be set.
1022*/
1023static inline bool skb_pkt_type_ok(u32 ptype)
1024{
1025 return ptype <= PACKET_OTHERHOST;
1026}
1027
1028/**
1029 * skb_napi_id - Returns the skb's NAPI id
1030 * @skb: buffer
1031 */
1032static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1033{
1034#ifdef CONFIG_NET_RX_BUSY_POLL
1035 return skb->napi_id;
1036#else
1037 return 0;
1038#endif
1039}
1040
1041/**
1042 * skb_unref - decrement the skb's reference count
1043 * @skb: buffer
1044 *
1045 * Returns true if we can free the skb.
1046 */
1047static inline bool skb_unref(struct sk_buff *skb)
1048{
1049 if (unlikely(!skb))
1050 return false;
1051 if (likely(refcount_read(&skb->users) == 1))
1052 smp_rmb();
1053 else if (likely(!refcount_dec_and_test(&skb->users)))
1054 return false;
1055
1056 return true;
1057}
1058
1059void skb_release_head_state(struct sk_buff *skb);
1060void kfree_skb(struct sk_buff *skb);
1061void kfree_skb_list(struct sk_buff *segs);
1062void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1063void skb_tx_error(struct sk_buff *skb);
1064
1065#ifdef CONFIG_TRACEPOINTS
1066void consume_skb(struct sk_buff *skb);
1067#else
1068static inline void consume_skb(struct sk_buff *skb)
1069{
1070 return kfree_skb(skb);
1071}
1072#endif
1073
1074void __consume_stateless_skb(struct sk_buff *skb);
1075void __kfree_skb(struct sk_buff *skb);
1076extern struct kmem_cache *skbuff_head_cache;
1077
1078void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1079bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1080 bool *fragstolen, int *delta_truesize);
1081
1082struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1083 int node);
1084struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1085struct sk_buff *build_skb(void *data, unsigned int frag_size);
1086struct sk_buff *build_skb_around(struct sk_buff *skb,
1087 void *data, unsigned int frag_size);
1088
1089/**
1090 * alloc_skb - allocate a network buffer
1091 * @size: size to allocate
1092 * @priority: allocation mask
1093 *
1094 * This function is a convenient wrapper around __alloc_skb().
1095 */
1096static inline struct sk_buff *alloc_skb(unsigned int size,
1097 gfp_t priority)
1098{
1099 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1100}
1101
1102struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1103 unsigned long data_len,
1104 int max_page_order,
1105 int *errcode,
1106 gfp_t gfp_mask);
1107struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1108
1109/* Layout of fast clones : [skb1][skb2][fclone_ref] */
1110struct sk_buff_fclones {
1111 struct sk_buff skb1;
1112
1113 struct sk_buff skb2;
1114
1115 refcount_t fclone_ref;
1116};
1117
1118/**
1119 * skb_fclone_busy - check if fclone is busy
1120 * @sk: socket
1121 * @skb: buffer
1122 *
1123 * Returns true if skb is a fast clone, and its clone is not freed.
1124 * Some drivers call skb_orphan() in their ndo_start_xmit(),
1125 * so we also check that this didnt happen.
1126 */
1127static inline bool skb_fclone_busy(const struct sock *sk,
1128 const struct sk_buff *skb)
1129{
1130 const struct sk_buff_fclones *fclones;
1131
1132 fclones = container_of(skb, struct sk_buff_fclones, skb1);
1133
1134 return skb->fclone == SKB_FCLONE_ORIG &&
1135 refcount_read(&fclones->fclone_ref) > 1 &&
1136 fclones->skb2.sk == sk;
1137}
1138
1139/**
1140 * alloc_skb_fclone - allocate a network buffer from fclone cache
1141 * @size: size to allocate
1142 * @priority: allocation mask
1143 *
1144 * This function is a convenient wrapper around __alloc_skb().
1145 */
1146static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1147 gfp_t priority)
1148{
1149 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1150}
1151
1152struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1153void skb_headers_offset_update(struct sk_buff *skb, int off);
1154int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1155struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1156void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1157struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1158struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1159 gfp_t gfp_mask, bool fclone);
1160static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1161 gfp_t gfp_mask)
1162{
1163 return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1164}
1165
1166int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1167struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1168 unsigned int headroom);
1169struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1170 int newtailroom, gfp_t priority);
1171int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1172 int offset, int len);
1173int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1174 int offset, int len);
1175int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1176int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1177
1178/**
1179 * skb_pad - zero pad the tail of an skb
1180 * @skb: buffer to pad
1181 * @pad: space to pad
1182 *
1183 * Ensure that a buffer is followed by a padding area that is zero
1184 * filled. Used by network drivers which may DMA or transfer data
1185 * beyond the buffer end onto the wire.
1186 *
1187 * May return error in out of memory cases. The skb is freed on error.
1188 */
1189static inline int skb_pad(struct sk_buff *skb, int pad)
1190{
1191 return __skb_pad(skb, pad, true);
1192}
1193#define dev_kfree_skb(a) consume_skb(a)
1194
1195int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1196 int offset, size_t size);
1197
1198struct skb_seq_state {
1199 __u32 lower_offset;
1200 __u32 upper_offset;
1201 __u32 frag_idx;
1202 __u32 stepped_offset;
1203 struct sk_buff *root_skb;
1204 struct sk_buff *cur_skb;
1205 __u8 *frag_data;
1206 __u32 frag_off;
1207};
1208
1209void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1210 unsigned int to, struct skb_seq_state *st);
1211unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1212 struct skb_seq_state *st);
1213void skb_abort_seq_read(struct skb_seq_state *st);
1214
1215unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1216 unsigned int to, struct ts_config *config);
1217
1218/*
1219 * Packet hash types specify the type of hash in skb_set_hash.
1220 *
1221 * Hash types refer to the protocol layer addresses which are used to
1222 * construct a packet's hash. The hashes are used to differentiate or identify
1223 * flows of the protocol layer for the hash type. Hash types are either
1224 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1225 *
1226 * Properties of hashes:
1227 *
1228 * 1) Two packets in different flows have different hash values
1229 * 2) Two packets in the same flow should have the same hash value
1230 *
1231 * A hash at a higher layer is considered to be more specific. A driver should
1232 * set the most specific hash possible.
1233 *
1234 * A driver cannot indicate a more specific hash than the layer at which a hash
1235 * was computed. For instance an L3 hash cannot be set as an L4 hash.
1236 *
1237 * A driver may indicate a hash level which is less specific than the
1238 * actual layer the hash was computed on. For instance, a hash computed
1239 * at L4 may be considered an L3 hash. This should only be done if the
1240 * driver can't unambiguously determine that the HW computed the hash at
1241 * the higher layer. Note that the "should" in the second property above
1242 * permits this.
1243 */
1244enum pkt_hash_types {
1245 PKT_HASH_TYPE_NONE, /* Undefined type */
1246 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
1247 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
1248 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
1249};
1250
1251static inline void skb_clear_hash(struct sk_buff *skb)
1252{
1253 skb->hash = 0;
1254 skb->sw_hash = 0;
1255 skb->l4_hash = 0;
1256}
1257
1258static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1259{
1260 if (!skb->l4_hash)
1261 skb_clear_hash(skb);
1262}
1263
1264static inline void
1265__skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1266{
1267 skb->l4_hash = is_l4;
1268 skb->sw_hash = is_sw;
1269 skb->hash = hash;
1270}
1271
1272static inline void
1273skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1274{
1275 /* Used by drivers to set hash from HW */
1276 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1277}
1278
1279static inline void
1280__skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1281{
1282 __skb_set_hash(skb, hash, true, is_l4);
1283}
1284
1285void __skb_get_hash(struct sk_buff *skb);
1286u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1287u32 skb_get_poff(const struct sk_buff *skb);
1288u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1289 const struct flow_keys_basic *keys, int hlen);
1290__be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1291 void *data, int hlen_proto);
1292
1293static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1294 int thoff, u8 ip_proto)
1295{
1296 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1297}
1298
1299void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1300 const struct flow_dissector_key *key,
1301 unsigned int key_count);
1302
1303struct bpf_flow_dissector;
1304bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1305 __be16 proto, int nhoff, int hlen, unsigned int flags);
1306
1307bool __skb_flow_dissect(const struct net *net,
1308 const struct sk_buff *skb,
1309 struct flow_dissector *flow_dissector,
1310 void *target_container,
1311 void *data, __be16 proto, int nhoff, int hlen,
1312 unsigned int flags);
1313
1314static inline bool skb_flow_dissect(const struct sk_buff *skb,
1315 struct flow_dissector *flow_dissector,
1316 void *target_container, unsigned int flags)
1317{
1318 return __skb_flow_dissect(NULL, skb, flow_dissector,
1319 target_container, NULL, 0, 0, 0, flags);
1320}
1321
1322static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1323 struct flow_keys *flow,
1324 unsigned int flags)
1325{
1326 memset(flow, 0, sizeof(*flow));
1327 return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1328 flow, NULL, 0, 0, 0, flags);
1329}
1330
1331static inline bool
1332skb_flow_dissect_flow_keys_basic(const struct net *net,
1333 const struct sk_buff *skb,
1334 struct flow_keys_basic *flow, void *data,
1335 __be16 proto, int nhoff, int hlen,
1336 unsigned int flags)
1337{
1338 memset(flow, 0, sizeof(*flow));
1339 return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1340 data, proto, nhoff, hlen, flags);
1341}
1342
1343void skb_flow_dissect_meta(const struct sk_buff *skb,
1344 struct flow_dissector *flow_dissector,
1345 void *target_container);
1346
1347/* Gets a skb connection tracking info, ctinfo map should be a
1348 * map of mapsize to translate enum ip_conntrack_info states
1349 * to user states.
1350 */
1351void
1352skb_flow_dissect_ct(const struct sk_buff *skb,
1353 struct flow_dissector *flow_dissector,
1354 void *target_container,
1355 u16 *ctinfo_map,
1356 size_t mapsize);
1357void
1358skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1359 struct flow_dissector *flow_dissector,
1360 void *target_container);
1361
1362void skb_flow_dissect_hash(const struct sk_buff *skb,
1363 struct flow_dissector *flow_dissector,
1364 void *target_container);
1365
1366static inline __u32 skb_get_hash(struct sk_buff *skb)
1367{
1368 if (!skb->l4_hash && !skb->sw_hash)
1369 __skb_get_hash(skb);
1370
1371 return skb->hash;
1372}
1373
1374static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1375{
1376 if (!skb->l4_hash && !skb->sw_hash) {
1377 struct flow_keys keys;
1378 __u32 hash = __get_hash_from_flowi6(fl6, &keys);
1379
1380 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1381 }
1382
1383 return skb->hash;
1384}
1385
1386__u32 skb_get_hash_perturb(const struct sk_buff *skb,
1387 const siphash_key_t *perturb);
1388
1389static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1390{
1391 return skb->hash;
1392}
1393
1394static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1395{
1396 to->hash = from->hash;
1397 to->sw_hash = from->sw_hash;
1398 to->l4_hash = from->l4_hash;
1399};
1400
1401static inline void skb_copy_decrypted(struct sk_buff *to,
1402 const struct sk_buff *from)
1403{
1404#ifdef CONFIG_TLS_DEVICE
1405 to->decrypted = from->decrypted;
1406#endif
1407}
1408
1409#ifdef NET_SKBUFF_DATA_USES_OFFSET
1410static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1411{
1412 return skb->head + skb->end;
1413}
1414
1415static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1416{
1417 return skb->end;
1418}
1419#else
1420static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1421{
1422 return skb->end;
1423}
1424
1425static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1426{
1427 return skb->end - skb->head;
1428}
1429#endif
1430
1431/* Internal */
1432#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1433
1434static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1435{
1436 return &skb_shinfo(skb)->hwtstamps;
1437}
1438
1439static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1440{
1441 bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1442
1443 return is_zcopy ? skb_uarg(skb) : NULL;
1444}
1445
1446static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1447 bool *have_ref)
1448{
1449 if (skb && uarg && !skb_zcopy(skb)) {
1450 if (unlikely(have_ref && *have_ref))
1451 *have_ref = false;
1452 else
1453 sock_zerocopy_get(uarg);
1454 skb_shinfo(skb)->destructor_arg = uarg;
1455 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1456 }
1457}
1458
1459static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1460{
1461 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1462 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1463}
1464
1465static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1466{
1467 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1468}
1469
1470static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1471{
1472 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1473}
1474
1475/* Release a reference on a zerocopy structure */
1476static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1477{
1478 struct ubuf_info *uarg = skb_zcopy(skb);
1479
1480 if (uarg) {
1481 if (skb_zcopy_is_nouarg(skb)) {
1482 /* no notification callback */
1483 } else if (uarg->callback == sock_zerocopy_callback) {
1484 uarg->zerocopy = uarg->zerocopy && zerocopy;
1485 sock_zerocopy_put(uarg);
1486 } else {
1487 uarg->callback(uarg, zerocopy);
1488 }
1489
1490 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1491 }
1492}
1493
1494/* Abort a zerocopy operation and revert zckey on error in send syscall */
1495static inline void skb_zcopy_abort(struct sk_buff *skb)
1496{
1497 struct ubuf_info *uarg = skb_zcopy(skb);
1498
1499 if (uarg) {
1500 sock_zerocopy_put_abort(uarg, false);
1501 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1502 }
1503}
1504
1505static inline void skb_mark_not_on_list(struct sk_buff *skb)
1506{
1507 skb->next = NULL;
1508}
1509
1510/* Iterate through singly-linked GSO fragments of an skb. */
1511#define skb_list_walk_safe(first, skb, next_skb) \
1512 for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb); \
1513 (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1514
1515static inline void skb_list_del_init(struct sk_buff *skb)
1516{
1517 __list_del_entry(&skb->list);
1518 skb_mark_not_on_list(skb);
1519}
1520
1521/**
1522 * skb_queue_empty - check if a queue is empty
1523 * @list: queue head
1524 *
1525 * Returns true if the queue is empty, false otherwise.
1526 */
1527static inline int skb_queue_empty(const struct sk_buff_head *list)
1528{
1529 return list->next == (const struct sk_buff *) list;
1530}
1531
1532/**
1533 * skb_queue_empty_lockless - check if a queue is empty
1534 * @list: queue head
1535 *
1536 * Returns true if the queue is empty, false otherwise.
1537 * This variant can be used in lockless contexts.
1538 */
1539static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1540{
1541 return READ_ONCE(list->next) == (const struct sk_buff *) list;
1542}
1543
1544
1545/**
1546 * skb_queue_is_last - check if skb is the last entry in the queue
1547 * @list: queue head
1548 * @skb: buffer
1549 *
1550 * Returns true if @skb is the last buffer on the list.
1551 */
1552static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1553 const struct sk_buff *skb)
1554{
1555 return skb->next == (const struct sk_buff *) list;
1556}
1557
1558/**
1559 * skb_queue_is_first - check if skb is the first entry in the queue
1560 * @list: queue head
1561 * @skb: buffer
1562 *
1563 * Returns true if @skb is the first buffer on the list.
1564 */
1565static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1566 const struct sk_buff *skb)
1567{
1568 return skb->prev == (const struct sk_buff *) list;
1569}
1570
1571/**
1572 * skb_queue_next - return the next packet in the queue
1573 * @list: queue head
1574 * @skb: current buffer
1575 *
1576 * Return the next packet in @list after @skb. It is only valid to
1577 * call this if skb_queue_is_last() evaluates to false.
1578 */
1579static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1580 const struct sk_buff *skb)
1581{
1582 /* This BUG_ON may seem severe, but if we just return then we
1583 * are going to dereference garbage.
1584 */
1585 BUG_ON(skb_queue_is_last(list, skb));
1586 return skb->next;
1587}
1588
1589/**
1590 * skb_queue_prev - return the prev packet in the queue
1591 * @list: queue head
1592 * @skb: current buffer
1593 *
1594 * Return the prev packet in @list before @skb. It is only valid to
1595 * call this if skb_queue_is_first() evaluates to false.
1596 */
1597static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1598 const struct sk_buff *skb)
1599{
1600 /* This BUG_ON may seem severe, but if we just return then we
1601 * are going to dereference garbage.
1602 */
1603 BUG_ON(skb_queue_is_first(list, skb));
1604 return skb->prev;
1605}
1606
1607/**
1608 * skb_get - reference buffer
1609 * @skb: buffer to reference
1610 *
1611 * Makes another reference to a socket buffer and returns a pointer
1612 * to the buffer.
1613 */
1614static inline struct sk_buff *skb_get(struct sk_buff *skb)
1615{
1616 refcount_inc(&skb->users);
1617 return skb;
1618}
1619
1620/*
1621 * If users == 1, we are the only owner and can avoid redundant atomic changes.
1622 */
1623
1624/**
1625 * skb_cloned - is the buffer a clone
1626 * @skb: buffer to check
1627 *
1628 * Returns true if the buffer was generated with skb_clone() and is
1629 * one of multiple shared copies of the buffer. Cloned buffers are
1630 * shared data so must not be written to under normal circumstances.
1631 */
1632static inline int skb_cloned(const struct sk_buff *skb)
1633{
1634 return skb->cloned &&
1635 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1636}
1637
1638static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1639{
1640 might_sleep_if(gfpflags_allow_blocking(pri));
1641
1642 if (skb_cloned(skb))
1643 return pskb_expand_head(skb, 0, 0, pri);
1644
1645 return 0;
1646}
1647
1648/**
1649 * skb_header_cloned - is the header a clone
1650 * @skb: buffer to check
1651 *
1652 * Returns true if modifying the header part of the buffer requires
1653 * the data to be copied.
1654 */
1655static inline int skb_header_cloned(const struct sk_buff *skb)
1656{
1657 int dataref;
1658
1659 if (!skb->cloned)
1660 return 0;
1661
1662 dataref = atomic_read(&skb_shinfo(skb)->dataref);
1663 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1664 return dataref != 1;
1665}
1666
1667static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1668{
1669 might_sleep_if(gfpflags_allow_blocking(pri));
1670
1671 if (skb_header_cloned(skb))
1672 return pskb_expand_head(skb, 0, 0, pri);
1673
1674 return 0;
1675}
1676
1677/**
1678 * __skb_header_release - release reference to header
1679 * @skb: buffer to operate on
1680 */
1681static inline void __skb_header_release(struct sk_buff *skb)
1682{
1683 skb->nohdr = 1;
1684 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1685}
1686
1687
1688/**
1689 * skb_shared - is the buffer shared
1690 * @skb: buffer to check
1691 *
1692 * Returns true if more than one person has a reference to this
1693 * buffer.
1694 */
1695static inline int skb_shared(const struct sk_buff *skb)
1696{
1697 return refcount_read(&skb->users) != 1;
1698}
1699
1700/**
1701 * skb_share_check - check if buffer is shared and if so clone it
1702 * @skb: buffer to check
1703 * @pri: priority for memory allocation
1704 *
1705 * If the buffer is shared the buffer is cloned and the old copy
1706 * drops a reference. A new clone with a single reference is returned.
1707 * If the buffer is not shared the original buffer is returned. When
1708 * being called from interrupt status or with spinlocks held pri must
1709 * be GFP_ATOMIC.
1710 *
1711 * NULL is returned on a memory allocation failure.
1712 */
1713static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1714{
1715 might_sleep_if(gfpflags_allow_blocking(pri));
1716 if (skb_shared(skb)) {
1717 struct sk_buff *nskb = skb_clone(skb, pri);
1718
1719 if (likely(nskb))
1720 consume_skb(skb);
1721 else
1722 kfree_skb(skb);
1723 skb = nskb;
1724 }
1725 return skb;
1726}
1727
1728/*
1729 * Copy shared buffers into a new sk_buff. We effectively do COW on
1730 * packets to handle cases where we have a local reader and forward
1731 * and a couple of other messy ones. The normal one is tcpdumping
1732 * a packet thats being forwarded.
1733 */
1734
1735/**
1736 * skb_unshare - make a copy of a shared buffer
1737 * @skb: buffer to check
1738 * @pri: priority for memory allocation
1739 *
1740 * If the socket buffer is a clone then this function creates a new
1741 * copy of the data, drops a reference count on the old copy and returns
1742 * the new copy with the reference count at 1. If the buffer is not a clone
1743 * the original buffer is returned. When called with a spinlock held or
1744 * from interrupt state @pri must be %GFP_ATOMIC
1745 *
1746 * %NULL is returned on a memory allocation failure.
1747 */
1748static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1749 gfp_t pri)
1750{
1751 might_sleep_if(gfpflags_allow_blocking(pri));
1752 if (skb_cloned(skb)) {
1753 struct sk_buff *nskb = skb_copy(skb, pri);
1754
1755 /* Free our shared copy */
1756 if (likely(nskb))
1757 consume_skb(skb);
1758 else
1759 kfree_skb(skb);
1760 skb = nskb;
1761 }
1762 return skb;
1763}
1764
1765/**
1766 * skb_peek - peek at the head of an &sk_buff_head
1767 * @list_: list to peek at
1768 *
1769 * Peek an &sk_buff. Unlike most other operations you _MUST_
1770 * be careful with this one. A peek leaves the buffer on the
1771 * list and someone else may run off with it. You must hold
1772 * the appropriate locks or have a private queue to do this.
1773 *
1774 * Returns %NULL for an empty list or a pointer to the head element.
1775 * The reference count is not incremented and the reference is therefore
1776 * volatile. Use with caution.
1777 */
1778static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1779{
1780 struct sk_buff *skb = list_->next;
1781
1782 if (skb == (struct sk_buff *)list_)
1783 skb = NULL;
1784 return skb;
1785}
1786
1787/**
1788 * __skb_peek - peek at the head of a non-empty &sk_buff_head
1789 * @list_: list to peek at
1790 *
1791 * Like skb_peek(), but the caller knows that the list is not empty.
1792 */
1793static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
1794{
1795 return list_->next;
1796}
1797
1798/**
1799 * skb_peek_next - peek skb following the given one from a queue
1800 * @skb: skb to start from
1801 * @list_: list to peek at
1802 *
1803 * Returns %NULL when the end of the list is met or a pointer to the
1804 * next element. The reference count is not incremented and the
1805 * reference is therefore volatile. Use with caution.
1806 */
1807static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1808 const struct sk_buff_head *list_)
1809{
1810 struct sk_buff *next = skb->next;
1811
1812 if (next == (struct sk_buff *)list_)
1813 next = NULL;
1814 return next;
1815}
1816
1817/**
1818 * skb_peek_tail - peek at the tail of an &sk_buff_head
1819 * @list_: list to peek at
1820 *
1821 * Peek an &sk_buff. Unlike most other operations you _MUST_
1822 * be careful with this one. A peek leaves the buffer on the
1823 * list and someone else may run off with it. You must hold
1824 * the appropriate locks or have a private queue to do this.
1825 *
1826 * Returns %NULL for an empty list or a pointer to the tail element.
1827 * The reference count is not incremented and the reference is therefore
1828 * volatile. Use with caution.
1829 */
1830static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1831{
1832 struct sk_buff *skb = READ_ONCE(list_->prev);
1833
1834 if (skb == (struct sk_buff *)list_)
1835 skb = NULL;
1836 return skb;
1837
1838}
1839
1840/**
1841 * skb_queue_len - get queue length
1842 * @list_: list to measure
1843 *
1844 * Return the length of an &sk_buff queue.
1845 */
1846static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1847{
1848 return list_->qlen;
1849}
1850
1851/**
1852 * skb_queue_len_lockless - get queue length
1853 * @list_: list to measure
1854 *
1855 * Return the length of an &sk_buff queue.
1856 * This variant can be used in lockless contexts.
1857 */
1858static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
1859{
1860 return READ_ONCE(list_->qlen);
1861}
1862
1863/**
1864 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1865 * @list: queue to initialize
1866 *
1867 * This initializes only the list and queue length aspects of
1868 * an sk_buff_head object. This allows to initialize the list
1869 * aspects of an sk_buff_head without reinitializing things like
1870 * the spinlock. It can also be used for on-stack sk_buff_head
1871 * objects where the spinlock is known to not be used.
1872 */
1873static inline void __skb_queue_head_init(struct sk_buff_head *list)
1874{
1875 list->prev = list->next = (struct sk_buff *)list;
1876 list->qlen = 0;
1877}
1878
1879/*
1880 * This function creates a split out lock class for each invocation;
1881 * this is needed for now since a whole lot of users of the skb-queue
1882 * infrastructure in drivers have different locking usage (in hardirq)
1883 * than the networking core (in softirq only). In the long run either the
1884 * network layer or drivers should need annotation to consolidate the
1885 * main types of usage into 3 classes.
1886 */
1887static inline void skb_queue_head_init(struct sk_buff_head *list)
1888{
1889 spin_lock_init(&list->lock);
1890 __skb_queue_head_init(list);
1891}
1892
1893static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1894 struct lock_class_key *class)
1895{
1896 skb_queue_head_init(list);
1897 lockdep_set_class(&list->lock, class);
1898}
1899
1900/*
1901 * Insert an sk_buff on a list.
1902 *
1903 * The "__skb_xxxx()" functions are the non-atomic ones that
1904 * can only be called with interrupts disabled.
1905 */
1906static inline void __skb_insert(struct sk_buff *newsk,
1907 struct sk_buff *prev, struct sk_buff *next,
1908 struct sk_buff_head *list)
1909{
1910 /* See skb_queue_empty_lockless() and skb_peek_tail()
1911 * for the opposite READ_ONCE()
1912 */
1913 WRITE_ONCE(newsk->next, next);
1914 WRITE_ONCE(newsk->prev, prev);
1915 WRITE_ONCE(next->prev, newsk);
1916 WRITE_ONCE(prev->next, newsk);
1917 list->qlen++;
1918}
1919
1920static inline void __skb_queue_splice(const struct sk_buff_head *list,
1921 struct sk_buff *prev,
1922 struct sk_buff *next)
1923{
1924 struct sk_buff *first = list->next;
1925 struct sk_buff *last = list->prev;
1926
1927 WRITE_ONCE(first->prev, prev);
1928 WRITE_ONCE(prev->next, first);
1929
1930 WRITE_ONCE(last->next, next);
1931 WRITE_ONCE(next->prev, last);
1932}
1933
1934/**
1935 * skb_queue_splice - join two skb lists, this is designed for stacks
1936 * @list: the new list to add
1937 * @head: the place to add it in the first list
1938 */
1939static inline void skb_queue_splice(const struct sk_buff_head *list,
1940 struct sk_buff_head *head)
1941{
1942 if (!skb_queue_empty(list)) {
1943 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1944 head->qlen += list->qlen;
1945 }
1946}
1947
1948/**
1949 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1950 * @list: the new list to add
1951 * @head: the place to add it in the first list
1952 *
1953 * The list at @list is reinitialised
1954 */
1955static inline void skb_queue_splice_init(struct sk_buff_head *list,
1956 struct sk_buff_head *head)
1957{
1958 if (!skb_queue_empty(list)) {
1959 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1960 head->qlen += list->qlen;
1961 __skb_queue_head_init(list);
1962 }
1963}
1964
1965/**
1966 * skb_queue_splice_tail - join two skb lists, each list being a queue
1967 * @list: the new list to add
1968 * @head: the place to add it in the first list
1969 */
1970static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1971 struct sk_buff_head *head)
1972{
1973 if (!skb_queue_empty(list)) {
1974 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1975 head->qlen += list->qlen;
1976 }
1977}
1978
1979/**
1980 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1981 * @list: the new list to add
1982 * @head: the place to add it in the first list
1983 *
1984 * Each of the lists is a queue.
1985 * The list at @list is reinitialised
1986 */
1987static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1988 struct sk_buff_head *head)
1989{
1990 if (!skb_queue_empty(list)) {
1991 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1992 head->qlen += list->qlen;
1993 __skb_queue_head_init(list);
1994 }
1995}
1996
1997/**
1998 * __skb_queue_after - queue a buffer at the list head
1999 * @list: list to use
2000 * @prev: place after this buffer
2001 * @newsk: buffer to queue
2002 *
2003 * Queue a buffer int the middle of a list. This function takes no locks
2004 * and you must therefore hold required locks before calling it.
2005 *
2006 * A buffer cannot be placed on two lists at the same time.
2007 */
2008static inline void __skb_queue_after(struct sk_buff_head *list,
2009 struct sk_buff *prev,
2010 struct sk_buff *newsk)
2011{
2012 __skb_insert(newsk, prev, prev->next, list);
2013}
2014
2015void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2016 struct sk_buff_head *list);
2017
2018static inline void __skb_queue_before(struct sk_buff_head *list,
2019 struct sk_buff *next,
2020 struct sk_buff *newsk)
2021{
2022 __skb_insert(newsk, next->prev, next, list);
2023}
2024
2025/**
2026 * __skb_queue_head - queue a buffer at the list head
2027 * @list: list to use
2028 * @newsk: buffer to queue
2029 *
2030 * Queue a buffer at the start of a list. This function takes no locks
2031 * and you must therefore hold required locks before calling it.
2032 *
2033 * A buffer cannot be placed on two lists at the same time.
2034 */
2035static inline void __skb_queue_head(struct sk_buff_head *list,
2036 struct sk_buff *newsk)
2037{
2038 __skb_queue_after(list, (struct sk_buff *)list, newsk);
2039}
2040void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2041
2042/**
2043 * __skb_queue_tail - queue a buffer at the list tail
2044 * @list: list to use
2045 * @newsk: buffer to queue
2046 *
2047 * Queue a buffer at the end of a list. This function takes no locks
2048 * and you must therefore hold required locks before calling it.
2049 *
2050 * A buffer cannot be placed on two lists at the same time.
2051 */
2052static inline void __skb_queue_tail(struct sk_buff_head *list,
2053 struct sk_buff *newsk)
2054{
2055 __skb_queue_before(list, (struct sk_buff *)list, newsk);
2056}
2057void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2058
2059/*
2060 * remove sk_buff from list. _Must_ be called atomically, and with
2061 * the list known..
2062 */
2063void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
2064static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2065{
2066 struct sk_buff *next, *prev;
2067
2068 WRITE_ONCE(list->qlen, list->qlen - 1);
2069 next = skb->next;
2070 prev = skb->prev;
2071 skb->next = skb->prev = NULL;
2072 WRITE_ONCE(next->prev, prev);
2073 WRITE_ONCE(prev->next, next);
2074}
2075
2076/**
2077 * __skb_dequeue - remove from the head of the queue
2078 * @list: list to dequeue from
2079 *
2080 * Remove the head of the list. This function does not take any locks
2081 * so must be used with appropriate locks held only. The head item is
2082 * returned or %NULL if the list is empty.
2083 */
2084static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2085{
2086 struct sk_buff *skb = skb_peek(list);
2087 if (skb)
2088 __skb_unlink(skb, list);
2089 return skb;
2090}
2091struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2092
2093/**
2094 * __skb_dequeue_tail - remove from the tail of the queue
2095 * @list: list to dequeue from
2096 *
2097 * Remove the tail of the list. This function does not take any locks
2098 * so must be used with appropriate locks held only. The tail item is
2099 * returned or %NULL if the list is empty.
2100 */
2101static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2102{
2103 struct sk_buff *skb = skb_peek_tail(list);
2104 if (skb)
2105 __skb_unlink(skb, list);
2106 return skb;
2107}
2108struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2109
2110
2111static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2112{
2113 return skb->data_len;
2114}
2115
2116static inline unsigned int skb_headlen(const struct sk_buff *skb)
2117{
2118 return skb->len - skb->data_len;
2119}
2120
2121static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2122{
2123 unsigned int i, len = 0;
2124
2125 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2126 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2127 return len;
2128}
2129
2130static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2131{
2132 return skb_headlen(skb) + __skb_pagelen(skb);
2133}
2134
2135/**
2136 * __skb_fill_page_desc - initialise a paged fragment in an skb
2137 * @skb: buffer containing fragment to be initialised
2138 * @i: paged fragment index to initialise
2139 * @page: the page to use for this fragment
2140 * @off: the offset to the data with @page
2141 * @size: the length of the data
2142 *
2143 * Initialises the @i'th fragment of @skb to point to &size bytes at
2144 * offset @off within @page.
2145 *
2146 * Does not take any additional reference on the fragment.
2147 */
2148static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2149 struct page *page, int off, int size)
2150{
2151 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2152
2153 /*
2154 * Propagate page pfmemalloc to the skb if we can. The problem is
2155 * that not all callers have unique ownership of the page but rely
2156 * on page_is_pfmemalloc doing the right thing(tm).
2157 */
2158 frag->bv_page = page;
2159 frag->bv_offset = off;
2160 skb_frag_size_set(frag, size);
2161
2162 page = compound_head(page);
2163 if (page_is_pfmemalloc(page))
2164 skb->pfmemalloc = true;
2165}
2166
2167/**
2168 * skb_fill_page_desc - initialise a paged fragment in an skb
2169 * @skb: buffer containing fragment to be initialised
2170 * @i: paged fragment index to initialise
2171 * @page: the page to use for this fragment
2172 * @off: the offset to the data with @page
2173 * @size: the length of the data
2174 *
2175 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2176 * @skb to point to @size bytes at offset @off within @page. In
2177 * addition updates @skb such that @i is the last fragment.
2178 *
2179 * Does not take any additional reference on the fragment.
2180 */
2181static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2182 struct page *page, int off, int size)
2183{
2184 __skb_fill_page_desc(skb, i, page, off, size);
2185 skb_shinfo(skb)->nr_frags = i + 1;
2186}
2187
2188void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2189 int size, unsigned int truesize);
2190
2191void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2192 unsigned int truesize);
2193
2194#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
2195
2196#ifdef NET_SKBUFF_DATA_USES_OFFSET
2197static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2198{
2199 return skb->head + skb->tail;
2200}
2201
2202static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2203{
2204 skb->tail = skb->data - skb->head;
2205}
2206
2207static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2208{
2209 skb_reset_tail_pointer(skb);
2210 skb->tail += offset;
2211}
2212
2213#else /* NET_SKBUFF_DATA_USES_OFFSET */
2214static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2215{
2216 return skb->tail;
2217}
2218
2219static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2220{
2221 skb->tail = skb->data;
2222}
2223
2224static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2225{
2226 skb->tail = skb->data + offset;
2227}
2228
2229#endif /* NET_SKBUFF_DATA_USES_OFFSET */
2230
2231/*
2232 * Add data to an sk_buff
2233 */
2234void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2235void *skb_put(struct sk_buff *skb, unsigned int len);
2236static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2237{
2238 void *tmp = skb_tail_pointer(skb);
2239 SKB_LINEAR_ASSERT(skb);
2240 skb->tail += len;
2241 skb->len += len;
2242 return tmp;
2243}
2244
2245static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2246{
2247 void *tmp = __skb_put(skb, len);
2248
2249 memset(tmp, 0, len);
2250 return tmp;
2251}
2252
2253static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2254 unsigned int len)
2255{
2256 void *tmp = __skb_put(skb, len);
2257
2258 memcpy(tmp, data, len);
2259 return tmp;
2260}
2261
2262static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2263{
2264 *(u8 *)__skb_put(skb, 1) = val;
2265}
2266
2267static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2268{
2269 void *tmp = skb_put(skb, len);
2270
2271 memset(tmp, 0, len);
2272
2273 return tmp;
2274}
2275
2276static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2277 unsigned int len)
2278{
2279 void *tmp = skb_put(skb, len);
2280
2281 memcpy(tmp, data, len);
2282
2283 return tmp;
2284}
2285
2286static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2287{
2288 *(u8 *)skb_put(skb, 1) = val;
2289}
2290
2291void *skb_push(struct sk_buff *skb, unsigned int len);
2292static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2293{
2294 skb->data -= len;
2295 skb->len += len;
2296 return skb->data;
2297}
2298
2299void *skb_pull(struct sk_buff *skb, unsigned int len);
2300static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2301{
2302 skb->len -= len;
2303 BUG_ON(skb->len < skb->data_len);
2304 return skb->data += len;
2305}
2306
2307static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2308{
2309 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2310}
2311
2312void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2313
2314static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2315{
2316 if (len > skb_headlen(skb) &&
2317 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2318 return NULL;
2319 skb->len -= len;
2320 return skb->data += len;
2321}
2322
2323static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2324{
2325 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2326}
2327
2328static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2329{
2330 if (likely(len <= skb_headlen(skb)))
2331 return true;
2332 if (unlikely(len > skb->len))
2333 return false;
2334 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2335}
2336
2337void skb_condense(struct sk_buff *skb);
2338
2339/**
2340 * skb_headroom - bytes at buffer head
2341 * @skb: buffer to check
2342 *
2343 * Return the number of bytes of free space at the head of an &sk_buff.
2344 */
2345static inline unsigned int skb_headroom(const struct sk_buff *skb)
2346{
2347 return skb->data - skb->head;
2348}
2349
2350/**
2351 * skb_tailroom - bytes at buffer end
2352 * @skb: buffer to check
2353 *
2354 * Return the number of bytes of free space at the tail of an sk_buff
2355 */
2356static inline int skb_tailroom(const struct sk_buff *skb)
2357{
2358 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2359}
2360
2361/**
2362 * skb_availroom - bytes at buffer end
2363 * @skb: buffer to check
2364 *
2365 * Return the number of bytes of free space at the tail of an sk_buff
2366 * allocated by sk_stream_alloc()
2367 */
2368static inline int skb_availroom(const struct sk_buff *skb)
2369{
2370 if (skb_is_nonlinear(skb))
2371 return 0;
2372
2373 return skb->end - skb->tail - skb->reserved_tailroom;
2374}
2375
2376/**
2377 * skb_reserve - adjust headroom
2378 * @skb: buffer to alter
2379 * @len: bytes to move
2380 *
2381 * Increase the headroom of an empty &sk_buff by reducing the tail
2382 * room. This is only allowed for an empty buffer.
2383 */
2384static inline void skb_reserve(struct sk_buff *skb, int len)
2385{
2386 skb->data += len;
2387 skb->tail += len;
2388}
2389
2390/**
2391 * skb_tailroom_reserve - adjust reserved_tailroom
2392 * @skb: buffer to alter
2393 * @mtu: maximum amount of headlen permitted
2394 * @needed_tailroom: minimum amount of reserved_tailroom
2395 *
2396 * Set reserved_tailroom so that headlen can be as large as possible but
2397 * not larger than mtu and tailroom cannot be smaller than
2398 * needed_tailroom.
2399 * The required headroom should already have been reserved before using
2400 * this function.
2401 */
2402static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2403 unsigned int needed_tailroom)
2404{
2405 SKB_LINEAR_ASSERT(skb);
2406 if (mtu < skb_tailroom(skb) - needed_tailroom)
2407 /* use at most mtu */
2408 skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2409 else
2410 /* use up to all available space */
2411 skb->reserved_tailroom = needed_tailroom;
2412}
2413
2414#define ENCAP_TYPE_ETHER 0
2415#define ENCAP_TYPE_IPPROTO 1
2416
2417static inline void skb_set_inner_protocol(struct sk_buff *skb,
2418 __be16 protocol)
2419{
2420 skb->inner_protocol = protocol;
2421 skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2422}
2423
2424static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2425 __u8 ipproto)
2426{
2427 skb->inner_ipproto = ipproto;
2428 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2429}
2430
2431static inline void skb_reset_inner_headers(struct sk_buff *skb)
2432{
2433 skb->inner_mac_header = skb->mac_header;
2434 skb->inner_network_header = skb->network_header;
2435 skb->inner_transport_header = skb->transport_header;
2436}
2437
2438static inline void skb_reset_mac_len(struct sk_buff *skb)
2439{
2440 skb->mac_len = skb->network_header - skb->mac_header;
2441}
2442
2443static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2444 *skb)
2445{
2446 return skb->head + skb->inner_transport_header;
2447}
2448
2449static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2450{
2451 return skb_inner_transport_header(skb) - skb->data;
2452}
2453
2454static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2455{
2456 skb->inner_transport_header = skb->data - skb->head;
2457}
2458
2459static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2460 const int offset)
2461{
2462 skb_reset_inner_transport_header(skb);
2463 skb->inner_transport_header += offset;
2464}
2465
2466static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2467{
2468 return skb->head + skb->inner_network_header;
2469}
2470
2471static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2472{
2473 skb->inner_network_header = skb->data - skb->head;
2474}
2475
2476static inline void skb_set_inner_network_header(struct sk_buff *skb,
2477 const int offset)
2478{
2479 skb_reset_inner_network_header(skb);
2480 skb->inner_network_header += offset;
2481}
2482
2483static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2484{
2485 return skb->head + skb->inner_mac_header;
2486}
2487
2488static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2489{
2490 skb->inner_mac_header = skb->data - skb->head;
2491}
2492
2493static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2494 const int offset)
2495{
2496 skb_reset_inner_mac_header(skb);
2497 skb->inner_mac_header += offset;
2498}
2499static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2500{
2501 return skb->transport_header != (typeof(skb->transport_header))~0U;
2502}
2503
2504static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2505{
2506 return skb->head + skb->transport_header;
2507}
2508
2509static inline void skb_reset_transport_header(struct sk_buff *skb)
2510{
2511 skb->transport_header = skb->data - skb->head;
2512}
2513
2514static inline void skb_set_transport_header(struct sk_buff *skb,
2515 const int offset)
2516{
2517 skb_reset_transport_header(skb);
2518 skb->transport_header += offset;
2519}
2520
2521static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2522{
2523 return skb->head + skb->network_header;
2524}
2525
2526static inline void skb_reset_network_header(struct sk_buff *skb)
2527{
2528 skb->network_header = skb->data - skb->head;
2529}
2530
2531static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2532{
2533 skb_reset_network_header(skb);
2534 skb->network_header += offset;
2535}
2536
2537static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2538{
2539 return skb->head + skb->mac_header;
2540}
2541
2542static inline int skb_mac_offset(const struct sk_buff *skb)
2543{
2544 return skb_mac_header(skb) - skb->data;
2545}
2546
2547static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2548{
2549 return skb->network_header - skb->mac_header;
2550}
2551
2552static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2553{
2554 return skb->mac_header != (typeof(skb->mac_header))~0U;
2555}
2556
2557static inline void skb_unset_mac_header(struct sk_buff *skb)
2558{
2559 skb->mac_header = (typeof(skb->mac_header))~0U;
2560}
2561
2562static inline void skb_reset_mac_header(struct sk_buff *skb)
2563{
2564 skb->mac_header = skb->data - skb->head;
2565}
2566
2567static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2568{
2569 skb_reset_mac_header(skb);
2570 skb->mac_header += offset;
2571}
2572
2573static inline void skb_pop_mac_header(struct sk_buff *skb)
2574{
2575 skb->mac_header = skb->network_header;
2576}
2577
2578static inline void skb_probe_transport_header(struct sk_buff *skb)
2579{
2580 struct flow_keys_basic keys;
2581
2582 if (skb_transport_header_was_set(skb))
2583 return;
2584
2585 if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2586 NULL, 0, 0, 0, 0))
2587 skb_set_transport_header(skb, keys.control.thoff);
2588}
2589
2590static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2591{
2592 if (skb_mac_header_was_set(skb)) {
2593 const unsigned char *old_mac = skb_mac_header(skb);
2594
2595 skb_set_mac_header(skb, -skb->mac_len);
2596 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2597 }
2598}
2599
2600static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2601{
2602 return skb->csum_start - skb_headroom(skb);
2603}
2604
2605static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2606{
2607 return skb->head + skb->csum_start;
2608}
2609
2610static inline int skb_transport_offset(const struct sk_buff *skb)
2611{
2612 return skb_transport_header(skb) - skb->data;
2613}
2614
2615static inline u32 skb_network_header_len(const struct sk_buff *skb)
2616{
2617 return skb->transport_header - skb->network_header;
2618}
2619
2620static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2621{
2622 return skb->inner_transport_header - skb->inner_network_header;
2623}
2624
2625static inline int skb_network_offset(const struct sk_buff *skb)
2626{
2627 return skb_network_header(skb) - skb->data;
2628}
2629
2630static inline int skb_inner_network_offset(const struct sk_buff *skb)
2631{
2632 return skb_inner_network_header(skb) - skb->data;
2633}
2634
2635static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2636{
2637 return pskb_may_pull(skb, skb_network_offset(skb) + len);
2638}
2639
2640/*
2641 * CPUs often take a performance hit when accessing unaligned memory
2642 * locations. The actual performance hit varies, it can be small if the
2643 * hardware handles it or large if we have to take an exception and fix it
2644 * in software.
2645 *
2646 * Since an ethernet header is 14 bytes network drivers often end up with
2647 * the IP header at an unaligned offset. The IP header can be aligned by
2648 * shifting the start of the packet by 2 bytes. Drivers should do this
2649 * with:
2650 *
2651 * skb_reserve(skb, NET_IP_ALIGN);
2652 *
2653 * The downside to this alignment of the IP header is that the DMA is now
2654 * unaligned. On some architectures the cost of an unaligned DMA is high
2655 * and this cost outweighs the gains made by aligning the IP header.
2656 *
2657 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2658 * to be overridden.
2659 */
2660#ifndef NET_IP_ALIGN
2661#define NET_IP_ALIGN 2
2662#endif
2663
2664/*
2665 * The networking layer reserves some headroom in skb data (via
2666 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2667 * the header has to grow. In the default case, if the header has to grow
2668 * 32 bytes or less we avoid the reallocation.
2669 *
2670 * Unfortunately this headroom changes the DMA alignment of the resulting
2671 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2672 * on some architectures. An architecture can override this value,
2673 * perhaps setting it to a cacheline in size (since that will maintain
2674 * cacheline alignment of the DMA). It must be a power of 2.
2675 *
2676 * Various parts of the networking layer expect at least 32 bytes of
2677 * headroom, you should not reduce this.
2678 *
2679 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2680 * to reduce average number of cache lines per packet.
2681 * get_rps_cpu() for example only access one 64 bytes aligned block :
2682 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2683 */
2684#ifndef NET_SKB_PAD
2685#define NET_SKB_PAD max(32, L1_CACHE_BYTES)
2686#endif
2687
2688int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2689
2690static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2691{
2692 if (WARN_ON(skb_is_nonlinear(skb)))
2693 return;
2694 skb->len = len;
2695 skb_set_tail_pointer(skb, len);
2696}
2697
2698static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2699{
2700 __skb_set_length(skb, len);
2701}
2702
2703void skb_trim(struct sk_buff *skb, unsigned int len);
2704
2705static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2706{
2707 if (skb->data_len)
2708 return ___pskb_trim(skb, len);
2709 __skb_trim(skb, len);
2710 return 0;
2711}
2712
2713static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2714{
2715 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2716}
2717
2718/**
2719 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2720 * @skb: buffer to alter
2721 * @len: new length
2722 *
2723 * This is identical to pskb_trim except that the caller knows that
2724 * the skb is not cloned so we should never get an error due to out-
2725 * of-memory.
2726 */
2727static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2728{
2729 int err = pskb_trim(skb, len);
2730 BUG_ON(err);
2731}
2732
2733static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2734{
2735 unsigned int diff = len - skb->len;
2736
2737 if (skb_tailroom(skb) < diff) {
2738 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2739 GFP_ATOMIC);
2740 if (ret)
2741 return ret;
2742 }
2743 __skb_set_length(skb, len);
2744 return 0;
2745}
2746
2747/**
2748 * skb_orphan - orphan a buffer
2749 * @skb: buffer to orphan
2750 *
2751 * If a buffer currently has an owner then we call the owner's
2752 * destructor function and make the @skb unowned. The buffer continues
2753 * to exist but is no longer charged to its former owner.
2754 */
2755static inline void skb_orphan(struct sk_buff *skb)
2756{
2757 if (skb->destructor) {
2758 skb->destructor(skb);
2759 skb->destructor = NULL;
2760 skb->sk = NULL;
2761 } else {
2762 BUG_ON(skb->sk);
2763 }
2764}
2765
2766/**
2767 * skb_orphan_frags - orphan the frags contained in a buffer
2768 * @skb: buffer to orphan frags from
2769 * @gfp_mask: allocation mask for replacement pages
2770 *
2771 * For each frag in the SKB which needs a destructor (i.e. has an
2772 * owner) create a copy of that frag and release the original
2773 * page by calling the destructor.
2774 */
2775static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2776{
2777 if (likely(!skb_zcopy(skb)))
2778 return 0;
2779 if (!skb_zcopy_is_nouarg(skb) &&
2780 skb_uarg(skb)->callback == sock_zerocopy_callback)
2781 return 0;
2782 return skb_copy_ubufs(skb, gfp_mask);
2783}
2784
2785/* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
2786static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2787{
2788 if (likely(!skb_zcopy(skb)))
2789 return 0;
2790 return skb_copy_ubufs(skb, gfp_mask);
2791}
2792
2793/**
2794 * __skb_queue_purge - empty a list
2795 * @list: list to empty
2796 *
2797 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2798 * the list and one reference dropped. This function does not take the
2799 * list lock and the caller must hold the relevant locks to use it.
2800 */
2801static inline void __skb_queue_purge(struct sk_buff_head *list)
2802{
2803 struct sk_buff *skb;
2804 while ((skb = __skb_dequeue(list)) != NULL)
2805 kfree_skb(skb);
2806}
2807void skb_queue_purge(struct sk_buff_head *list);
2808
2809unsigned int skb_rbtree_purge(struct rb_root *root);
2810
2811void *netdev_alloc_frag(unsigned int fragsz);
2812
2813struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2814 gfp_t gfp_mask);
2815
2816/**
2817 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
2818 * @dev: network device to receive on
2819 * @length: length to allocate
2820 *
2821 * Allocate a new &sk_buff and assign it a usage count of one. The
2822 * buffer has unspecified headroom built in. Users should allocate
2823 * the headroom they think they need without accounting for the
2824 * built in space. The built in space is used for optimisations.
2825 *
2826 * %NULL is returned if there is no free memory. Although this function
2827 * allocates memory it can be called from an interrupt.
2828 */
2829static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2830 unsigned int length)
2831{
2832 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2833}
2834
2835/* legacy helper around __netdev_alloc_skb() */
2836static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2837 gfp_t gfp_mask)
2838{
2839 return __netdev_alloc_skb(NULL, length, gfp_mask);
2840}
2841
2842/* legacy helper around netdev_alloc_skb() */
2843static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2844{
2845 return netdev_alloc_skb(NULL, length);
2846}
2847
2848
2849static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2850 unsigned int length, gfp_t gfp)
2851{
2852 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2853
2854 if (NET_IP_ALIGN && skb)
2855 skb_reserve(skb, NET_IP_ALIGN);
2856 return skb;
2857}
2858
2859static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2860 unsigned int length)
2861{
2862 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2863}
2864
2865static inline void skb_free_frag(void *addr)
2866{
2867 page_frag_free(addr);
2868}
2869
2870void *napi_alloc_frag(unsigned int fragsz);
2871struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2872 unsigned int length, gfp_t gfp_mask);
2873static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2874 unsigned int length)
2875{
2876 return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2877}
2878void napi_consume_skb(struct sk_buff *skb, int budget);
2879
2880void __kfree_skb_flush(void);
2881void __kfree_skb_defer(struct sk_buff *skb);
2882
2883/**
2884 * __dev_alloc_pages - allocate page for network Rx
2885 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2886 * @order: size of the allocation
2887 *
2888 * Allocate a new page.
2889 *
2890 * %NULL is returned if there is no free memory.
2891*/
2892static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2893 unsigned int order)
2894{
2895 /* This piece of code contains several assumptions.
2896 * 1. This is for device Rx, therefor a cold page is preferred.
2897 * 2. The expectation is the user wants a compound page.
2898 * 3. If requesting a order 0 page it will not be compound
2899 * due to the check to see if order has a value in prep_new_page
2900 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2901 * code in gfp_to_alloc_flags that should be enforcing this.
2902 */
2903 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
2904
2905 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2906}
2907
2908static inline struct page *dev_alloc_pages(unsigned int order)
2909{
2910 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2911}
2912
2913/**
2914 * __dev_alloc_page - allocate a page for network Rx
2915 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2916 *
2917 * Allocate a new page.
2918 *
2919 * %NULL is returned if there is no free memory.
2920 */
2921static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2922{
2923 return __dev_alloc_pages(gfp_mask, 0);
2924}
2925
2926static inline struct page *dev_alloc_page(void)
2927{
2928 return dev_alloc_pages(0);
2929}
2930
2931/**
2932 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2933 * @page: The page that was allocated from skb_alloc_page
2934 * @skb: The skb that may need pfmemalloc set
2935 */
2936static inline void skb_propagate_pfmemalloc(struct page *page,
2937 struct sk_buff *skb)
2938{
2939 if (page_is_pfmemalloc(page))
2940 skb->pfmemalloc = true;
2941}
2942
2943/**
2944 * skb_frag_off() - Returns the offset of a skb fragment
2945 * @frag: the paged fragment
2946 */
2947static inline unsigned int skb_frag_off(const skb_frag_t *frag)
2948{
2949 return frag->bv_offset;
2950}
2951
2952/**
2953 * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
2954 * @frag: skb fragment
2955 * @delta: value to add
2956 */
2957static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
2958{
2959 frag->bv_offset += delta;
2960}
2961
2962/**
2963 * skb_frag_off_set() - Sets the offset of a skb fragment
2964 * @frag: skb fragment
2965 * @offset: offset of fragment
2966 */
2967static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
2968{
2969 frag->bv_offset = offset;
2970}
2971
2972/**
2973 * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
2974 * @fragto: skb fragment where offset is set
2975 * @fragfrom: skb fragment offset is copied from
2976 */
2977static inline void skb_frag_off_copy(skb_frag_t *fragto,
2978 const skb_frag_t *fragfrom)
2979{
2980 fragto->bv_offset = fragfrom->bv_offset;
2981}
2982
2983/**
2984 * skb_frag_page - retrieve the page referred to by a paged fragment
2985 * @frag: the paged fragment
2986 *
2987 * Returns the &struct page associated with @frag.
2988 */
2989static inline struct page *skb_frag_page(const skb_frag_t *frag)
2990{
2991 return frag->bv_page;
2992}
2993
2994/**
2995 * __skb_frag_ref - take an addition reference on a paged fragment.
2996 * @frag: the paged fragment
2997 *
2998 * Takes an additional reference on the paged fragment @frag.
2999 */
3000static inline void __skb_frag_ref(skb_frag_t *frag)
3001{
3002 get_page(skb_frag_page(frag));
3003}
3004
3005/**
3006 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
3007 * @skb: the buffer
3008 * @f: the fragment offset.
3009 *
3010 * Takes an additional reference on the @f'th paged fragment of @skb.
3011 */
3012static inline void skb_frag_ref(struct sk_buff *skb, int f)
3013{
3014 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3015}
3016
3017/**
3018 * __skb_frag_unref - release a reference on a paged fragment.
3019 * @frag: the paged fragment
3020 *
3021 * Releases a reference on the paged fragment @frag.
3022 */
3023static inline void __skb_frag_unref(skb_frag_t *frag)
3024{
3025 put_page(skb_frag_page(frag));
3026}
3027
3028/**
3029 * skb_frag_unref - release a reference on a paged fragment of an skb.
3030 * @skb: the buffer
3031 * @f: the fragment offset
3032 *
3033 * Releases a reference on the @f'th paged fragment of @skb.
3034 */
3035static inline void skb_frag_unref(struct sk_buff *skb, int f)
3036{
3037 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
3038}
3039
3040/**
3041 * skb_frag_address - gets the address of the data contained in a paged fragment
3042 * @frag: the paged fragment buffer
3043 *
3044 * Returns the address of the data within @frag. The page must already
3045 * be mapped.
3046 */
3047static inline void *skb_frag_address(const skb_frag_t *frag)
3048{
3049 return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3050}
3051
3052/**
3053 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3054 * @frag: the paged fragment buffer
3055 *
3056 * Returns the address of the data within @frag. Checks that the page
3057 * is mapped and returns %NULL otherwise.
3058 */
3059static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3060{
3061 void *ptr = page_address(skb_frag_page(frag));
3062 if (unlikely(!ptr))
3063 return NULL;
3064
3065 return ptr + skb_frag_off(frag);
3066}
3067
3068/**
3069 * skb_frag_page_copy() - sets the page in a fragment from another fragment
3070 * @fragto: skb fragment where page is set
3071 * @fragfrom: skb fragment page is copied from
3072 */
3073static inline void skb_frag_page_copy(skb_frag_t *fragto,
3074 const skb_frag_t *fragfrom)
3075{
3076 fragto->bv_page = fragfrom->bv_page;
3077}
3078
3079/**
3080 * __skb_frag_set_page - sets the page contained in a paged fragment
3081 * @frag: the paged fragment
3082 * @page: the page to set
3083 *
3084 * Sets the fragment @frag to contain @page.
3085 */
3086static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
3087{
3088 frag->bv_page = page;
3089}
3090
3091/**
3092 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
3093 * @skb: the buffer
3094 * @f: the fragment offset
3095 * @page: the page to set
3096 *
3097 * Sets the @f'th fragment of @skb to contain @page.
3098 */
3099static inline void skb_frag_set_page(struct sk_buff *skb, int f,
3100 struct page *page)
3101{
3102 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
3103}
3104
3105bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3106
3107/**
3108 * skb_frag_dma_map - maps a paged fragment via the DMA API
3109 * @dev: the device to map the fragment to
3110 * @frag: the paged fragment to map
3111 * @offset: the offset within the fragment (starting at the
3112 * fragment's own offset)
3113 * @size: the number of bytes to map
3114 * @dir: the direction of the mapping (``PCI_DMA_*``)
3115 *
3116 * Maps the page associated with @frag to @device.
3117 */
3118static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3119 const skb_frag_t *frag,
3120 size_t offset, size_t size,
3121 enum dma_data_direction dir)
3122{
3123 return dma_map_page(dev, skb_frag_page(frag),
3124 skb_frag_off(frag) + offset, size, dir);
3125}
3126
3127static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3128 gfp_t gfp_mask)
3129{
3130 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3131}
3132
3133
3134static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3135 gfp_t gfp_mask)
3136{
3137 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3138}
3139
3140
3141/**
3142 * skb_clone_writable - is the header of a clone writable
3143 * @skb: buffer to check
3144 * @len: length up to which to write
3145 *
3146 * Returns true if modifying the header part of the cloned buffer
3147 * does not requires the data to be copied.
3148 */
3149static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3150{
3151 return !skb_header_cloned(skb) &&
3152 skb_headroom(skb) + len <= skb->hdr_len;
3153}
3154
3155static inline int skb_try_make_writable(struct sk_buff *skb,
3156 unsigned int write_len)
3157{
3158 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3159 pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3160}
3161
3162static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3163 int cloned)
3164{
3165 int delta = 0;
3166
3167 if (headroom > skb_headroom(skb))
3168 delta = headroom - skb_headroom(skb);
3169
3170 if (delta || cloned)
3171 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3172 GFP_ATOMIC);
3173 return 0;
3174}
3175
3176/**
3177 * skb_cow - copy header of skb when it is required
3178 * @skb: buffer to cow
3179 * @headroom: needed headroom
3180 *
3181 * If the skb passed lacks sufficient headroom or its data part
3182 * is shared, data is reallocated. If reallocation fails, an error
3183 * is returned and original skb is not changed.
3184 *
3185 * The result is skb with writable area skb->head...skb->tail
3186 * and at least @headroom of space at head.
3187 */
3188static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3189{
3190 return __skb_cow(skb, headroom, skb_cloned(skb));
3191}
3192
3193/**
3194 * skb_cow_head - skb_cow but only making the head writable
3195 * @skb: buffer to cow
3196 * @headroom: needed headroom
3197 *
3198 * This function is identical to skb_cow except that we replace the
3199 * skb_cloned check by skb_header_cloned. It should be used when
3200 * you only need to push on some header and do not need to modify
3201 * the data.
3202 */
3203static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3204{
3205 return __skb_cow(skb, headroom, skb_header_cloned(skb));
3206}
3207
3208/**
3209 * skb_padto - pad an skbuff up to a minimal size
3210 * @skb: buffer to pad
3211 * @len: minimal length
3212 *
3213 * Pads up a buffer to ensure the trailing bytes exist and are
3214 * blanked. If the buffer already contains sufficient data it
3215 * is untouched. Otherwise it is extended. Returns zero on
3216 * success. The skb is freed on error.
3217 */
3218static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3219{
3220 unsigned int size = skb->len;
3221 if (likely(size >= len))
3222 return 0;
3223 return skb_pad(skb, len - size);
3224}
3225
3226/**
3227 * __skb_put_padto - increase size and pad an skbuff up to a minimal size
3228 * @skb: buffer to pad
3229 * @len: minimal length
3230 * @free_on_error: free buffer on error
3231 *
3232 * Pads up a buffer to ensure the trailing bytes exist and are
3233 * blanked. If the buffer already contains sufficient data it
3234 * is untouched. Otherwise it is extended. Returns zero on
3235 * success. The skb is freed on error if @free_on_error is true.
3236 */
3237static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3238 unsigned int len,
3239 bool free_on_error)
3240{
3241 unsigned int size = skb->len;
3242
3243 if (unlikely(size < len)) {
3244 len -= size;
3245 if (__skb_pad(skb, len, free_on_error))
3246 return -ENOMEM;
3247 __skb_put(skb, len);
3248 }
3249 return 0;
3250}
3251
3252/**
3253 * skb_put_padto - increase size and pad an skbuff up to a minimal size
3254 * @skb: buffer to pad
3255 * @len: minimal length
3256 *
3257 * Pads up a buffer to ensure the trailing bytes exist and are
3258 * blanked. If the buffer already contains sufficient data it
3259 * is untouched. Otherwise it is extended. Returns zero on
3260 * success. The skb is freed on error.
3261 */
3262static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3263{
3264 return __skb_put_padto(skb, len, true);
3265}
3266
3267static inline int skb_add_data(struct sk_buff *skb,
3268 struct iov_iter *from, int copy)
3269{
3270 const int off = skb->len;
3271
3272 if (skb->ip_summed == CHECKSUM_NONE) {
3273 __wsum csum = 0;
3274 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3275 &csum, from)) {
3276 skb->csum = csum_block_add(skb->csum, csum, off);
3277 return 0;
3278 }
3279 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3280 return 0;
3281
3282 __skb_trim(skb, off);
3283 return -EFAULT;
3284}
3285
3286static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3287 const struct page *page, int off)
3288{
3289 if (skb_zcopy(skb))
3290 return false;
3291 if (i) {
3292 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3293
3294 return page == skb_frag_page(frag) &&
3295 off == skb_frag_off(frag) + skb_frag_size(frag);
3296 }
3297 return false;
3298}
3299
3300static inline int __skb_linearize(struct sk_buff *skb)
3301{
3302 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3303}
3304
3305/**
3306 * skb_linearize - convert paged skb to linear one
3307 * @skb: buffer to linarize
3308 *
3309 * If there is no free memory -ENOMEM is returned, otherwise zero
3310 * is returned and the old skb data released.
3311 */
3312static inline int skb_linearize(struct sk_buff *skb)
3313{
3314 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3315}
3316
3317/**
3318 * skb_has_shared_frag - can any frag be overwritten
3319 * @skb: buffer to test
3320 *
3321 * Return true if the skb has at least one frag that might be modified
3322 * by an external entity (as in vmsplice()/sendfile())
3323 */
3324static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3325{
3326 return skb_is_nonlinear(skb) &&
3327 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
3328}
3329
3330/**
3331 * skb_linearize_cow - make sure skb is linear and writable
3332 * @skb: buffer to process
3333 *
3334 * If there is no free memory -ENOMEM is returned, otherwise zero
3335 * is returned and the old skb data released.
3336 */
3337static inline int skb_linearize_cow(struct sk_buff *skb)
3338{
3339 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3340 __skb_linearize(skb) : 0;
3341}
3342
3343static __always_inline void
3344__skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3345 unsigned int off)
3346{
3347 if (skb->ip_summed == CHECKSUM_COMPLETE)
3348 skb->csum = csum_block_sub(skb->csum,
3349 csum_partial(start, len, 0), off);
3350 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3351 skb_checksum_start_offset(skb) < 0)
3352 skb->ip_summed = CHECKSUM_NONE;
3353}
3354
3355/**
3356 * skb_postpull_rcsum - update checksum for received skb after pull
3357 * @skb: buffer to update
3358 * @start: start of data before pull
3359 * @len: length of data pulled
3360 *
3361 * After doing a pull on a received packet, you need to call this to
3362 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3363 * CHECKSUM_NONE so that it can be recomputed from scratch.
3364 */
3365static inline void skb_postpull_rcsum(struct sk_buff *skb,
3366 const void *start, unsigned int len)
3367{
3368 __skb_postpull_rcsum(skb, start, len, 0);
3369}
3370
3371static __always_inline void
3372__skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3373 unsigned int off)
3374{
3375 if (skb->ip_summed == CHECKSUM_COMPLETE)
3376 skb->csum = csum_block_add(skb->csum,
3377 csum_partial(start, len, 0), off);
3378}
3379
3380/**
3381 * skb_postpush_rcsum - update checksum for received skb after push
3382 * @skb: buffer to update
3383 * @start: start of data after push
3384 * @len: length of data pushed
3385 *
3386 * After doing a push on a received packet, you need to call this to
3387 * update the CHECKSUM_COMPLETE checksum.
3388 */
3389static inline void skb_postpush_rcsum(struct sk_buff *skb,
3390 const void *start, unsigned int len)
3391{
3392 __skb_postpush_rcsum(skb, start, len, 0);
3393}
3394
3395void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3396
3397/**
3398 * skb_push_rcsum - push skb and update receive checksum
3399 * @skb: buffer to update
3400 * @len: length of data pulled
3401 *
3402 * This function performs an skb_push on the packet and updates
3403 * the CHECKSUM_COMPLETE checksum. It should be used on
3404 * receive path processing instead of skb_push unless you know
3405 * that the checksum difference is zero (e.g., a valid IP header)
3406 * or you are setting ip_summed to CHECKSUM_NONE.
3407 */
3408static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3409{
3410 skb_push(skb, len);
3411 skb_postpush_rcsum(skb, skb->data, len);
3412 return skb->data;
3413}
3414
3415int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3416/**
3417 * pskb_trim_rcsum - trim received skb and update checksum
3418 * @skb: buffer to trim
3419 * @len: new length
3420 *
3421 * This is exactly the same as pskb_trim except that it ensures the
3422 * checksum of received packets are still valid after the operation.
3423 * It can change skb pointers.
3424 */
3425
3426static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3427{
3428 if (likely(len >= skb->len))
3429 return 0;
3430 return pskb_trim_rcsum_slow(skb, len);
3431}
3432
3433static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3434{
3435 if (skb->ip_summed == CHECKSUM_COMPLETE)
3436 skb->ip_summed = CHECKSUM_NONE;
3437 __skb_trim(skb, len);
3438 return 0;
3439}
3440
3441static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3442{
3443 if (skb->ip_summed == CHECKSUM_COMPLETE)
3444 skb->ip_summed = CHECKSUM_NONE;
3445 return __skb_grow(skb, len);
3446}
3447
3448#define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3449#define skb_rb_first(root) rb_to_skb(rb_first(root))
3450#define skb_rb_last(root) rb_to_skb(rb_last(root))
3451#define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode))
3452#define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode))
3453
3454#define skb_queue_walk(queue, skb) \
3455 for (skb = (queue)->next; \
3456 skb != (struct sk_buff *)(queue); \
3457 skb = skb->next)
3458
3459#define skb_queue_walk_safe(queue, skb, tmp) \
3460 for (skb = (queue)->next, tmp = skb->next; \
3461 skb != (struct sk_buff *)(queue); \
3462 skb = tmp, tmp = skb->next)
3463
3464#define skb_queue_walk_from(queue, skb) \
3465 for (; skb != (struct sk_buff *)(queue); \
3466 skb = skb->next)
3467
3468#define skb_rbtree_walk(skb, root) \
3469 for (skb = skb_rb_first(root); skb != NULL; \
3470 skb = skb_rb_next(skb))
3471
3472#define skb_rbtree_walk_from(skb) \
3473 for (; skb != NULL; \
3474 skb = skb_rb_next(skb))
3475
3476#define skb_rbtree_walk_from_safe(skb, tmp) \
3477 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \
3478 skb = tmp)
3479
3480#define skb_queue_walk_from_safe(queue, skb, tmp) \
3481 for (tmp = skb->next; \
3482 skb != (struct sk_buff *)(queue); \
3483 skb = tmp, tmp = skb->next)
3484
3485#define skb_queue_reverse_walk(queue, skb) \
3486 for (skb = (queue)->prev; \
3487 skb != (struct sk_buff *)(queue); \
3488 skb = skb->prev)
3489
3490#define skb_queue_reverse_walk_safe(queue, skb, tmp) \
3491 for (skb = (queue)->prev, tmp = skb->prev; \
3492 skb != (struct sk_buff *)(queue); \
3493 skb = tmp, tmp = skb->prev)
3494
3495#define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
3496 for (tmp = skb->prev; \
3497 skb != (struct sk_buff *)(queue); \
3498 skb = tmp, tmp = skb->prev)
3499
3500static inline bool skb_has_frag_list(const struct sk_buff *skb)
3501{
3502 return skb_shinfo(skb)->frag_list != NULL;
3503}
3504
3505static inline void skb_frag_list_init(struct sk_buff *skb)
3506{
3507 skb_shinfo(skb)->frag_list = NULL;
3508}
3509
3510#define skb_walk_frags(skb, iter) \
3511 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3512
3513
3514int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3515 int *err, long *timeo_p,
3516 const struct sk_buff *skb);
3517struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3518 struct sk_buff_head *queue,
3519 unsigned int flags,
3520 int *off, int *err,
3521 struct sk_buff **last);
3522struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3523 struct sk_buff_head *queue,
3524 unsigned int flags, int *off, int *err,
3525 struct sk_buff **last);
3526struct sk_buff *__skb_recv_datagram(struct sock *sk,
3527 struct sk_buff_head *sk_queue,
3528 unsigned int flags, int *off, int *err);
3529struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3530 int *err);
3531__poll_t datagram_poll(struct file *file, struct socket *sock,
3532 struct poll_table_struct *wait);
3533int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3534 struct iov_iter *to, int size);
3535static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3536 struct msghdr *msg, int size)
3537{
3538 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3539}
3540int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3541 struct msghdr *msg);
3542int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3543 struct iov_iter *to, int len,
3544 struct ahash_request *hash);
3545int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3546 struct iov_iter *from, int len);
3547int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3548void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3549void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3550static inline void skb_free_datagram_locked(struct sock *sk,
3551 struct sk_buff *skb)
3552{
3553 __skb_free_datagram_locked(sk, skb, 0);
3554}
3555int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3556int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3557int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3558__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3559 int len);
3560int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3561 struct pipe_inode_info *pipe, unsigned int len,
3562 unsigned int flags);
3563int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3564 int len);
3565void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3566unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3567int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3568 int len, int hlen);
3569void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3570int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3571void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3572bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3573bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3574struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3575struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
3576 unsigned int offset);
3577struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3578int skb_ensure_writable(struct sk_buff *skb, int write_len);
3579int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3580int skb_vlan_pop(struct sk_buff *skb);
3581int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3582int skb_eth_pop(struct sk_buff *skb);
3583int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
3584 const unsigned char *src);
3585int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
3586 int mac_len, bool ethernet);
3587int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
3588 bool ethernet);
3589int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
3590int skb_mpls_dec_ttl(struct sk_buff *skb);
3591struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3592 gfp_t gfp);
3593
3594static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3595{
3596 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3597}
3598
3599static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3600{
3601 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3602}
3603
3604struct skb_checksum_ops {
3605 __wsum (*update)(const void *mem, int len, __wsum wsum);
3606 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3607};
3608
3609extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3610
3611__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3612 __wsum csum, const struct skb_checksum_ops *ops);
3613__wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3614 __wsum csum);
3615
3616static inline void * __must_check
3617__skb_header_pointer(const struct sk_buff *skb, int offset,
3618 int len, void *data, int hlen, void *buffer)
3619{
3620 if (hlen - offset >= len)
3621 return data + offset;
3622
3623 if (!skb ||
3624 skb_copy_bits(skb, offset, buffer, len) < 0)
3625 return NULL;
3626
3627 return buffer;
3628}
3629
3630static inline void * __must_check
3631skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3632{
3633 return __skb_header_pointer(skb, offset, len, skb->data,
3634 skb_headlen(skb), buffer);
3635}
3636
3637/**
3638 * skb_needs_linearize - check if we need to linearize a given skb
3639 * depending on the given device features.
3640 * @skb: socket buffer to check
3641 * @features: net device features
3642 *
3643 * Returns true if either:
3644 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
3645 * 2. skb is fragmented and the device does not support SG.
3646 */
3647static inline bool skb_needs_linearize(struct sk_buff *skb,
3648 netdev_features_t features)
3649{
3650 return skb_is_nonlinear(skb) &&
3651 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3652 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3653}
3654
3655static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3656 void *to,
3657 const unsigned int len)
3658{
3659 memcpy(to, skb->data, len);
3660}
3661
3662static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3663 const int offset, void *to,
3664 const unsigned int len)
3665{
3666 memcpy(to, skb->data + offset, len);
3667}
3668
3669static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3670 const void *from,
3671 const unsigned int len)
3672{
3673 memcpy(skb->data, from, len);
3674}
3675
3676static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3677 const int offset,
3678 const void *from,
3679 const unsigned int len)
3680{
3681 memcpy(skb->data + offset, from, len);
3682}
3683
3684void skb_init(void);
3685
3686static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3687{
3688 return skb->tstamp;
3689}
3690
3691/**
3692 * skb_get_timestamp - get timestamp from a skb
3693 * @skb: skb to get stamp from
3694 * @stamp: pointer to struct __kernel_old_timeval to store stamp in
3695 *
3696 * Timestamps are stored in the skb as offsets to a base timestamp.
3697 * This function converts the offset back to a struct timeval and stores
3698 * it in stamp.
3699 */
3700static inline void skb_get_timestamp(const struct sk_buff *skb,
3701 struct __kernel_old_timeval *stamp)
3702{
3703 *stamp = ns_to_kernel_old_timeval(skb->tstamp);
3704}
3705
3706static inline void skb_get_new_timestamp(const struct sk_buff *skb,
3707 struct __kernel_sock_timeval *stamp)
3708{
3709 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3710
3711 stamp->tv_sec = ts.tv_sec;
3712 stamp->tv_usec = ts.tv_nsec / 1000;
3713}
3714
3715static inline void skb_get_timestampns(const struct sk_buff *skb,
3716 struct __kernel_old_timespec *stamp)
3717{
3718 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3719
3720 stamp->tv_sec = ts.tv_sec;
3721 stamp->tv_nsec = ts.tv_nsec;
3722}
3723
3724static inline void skb_get_new_timestampns(const struct sk_buff *skb,
3725 struct __kernel_timespec *stamp)
3726{
3727 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3728
3729 stamp->tv_sec = ts.tv_sec;
3730 stamp->tv_nsec = ts.tv_nsec;
3731}
3732
3733static inline void __net_timestamp(struct sk_buff *skb)
3734{
3735 skb->tstamp = ktime_get_real();
3736}
3737
3738static inline ktime_t net_timedelta(ktime_t t)
3739{
3740 return ktime_sub(ktime_get_real(), t);
3741}
3742
3743static inline ktime_t net_invalid_timestamp(void)
3744{
3745 return 0;
3746}
3747
3748static inline u8 skb_metadata_len(const struct sk_buff *skb)
3749{
3750 return skb_shinfo(skb)->meta_len;
3751}
3752
3753static inline void *skb_metadata_end(const struct sk_buff *skb)
3754{
3755 return skb_mac_header(skb);
3756}
3757
3758static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3759 const struct sk_buff *skb_b,
3760 u8 meta_len)
3761{
3762 const void *a = skb_metadata_end(skb_a);
3763 const void *b = skb_metadata_end(skb_b);
3764 /* Using more efficient varaiant than plain call to memcmp(). */
3765#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3766 u64 diffs = 0;
3767
3768 switch (meta_len) {
3769#define __it(x, op) (x -= sizeof(u##op))
3770#define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3771 case 32: diffs |= __it_diff(a, b, 64);
3772 fallthrough;
3773 case 24: diffs |= __it_diff(a, b, 64);
3774 fallthrough;
3775 case 16: diffs |= __it_diff(a, b, 64);
3776 fallthrough;
3777 case 8: diffs |= __it_diff(a, b, 64);
3778 break;
3779 case 28: diffs |= __it_diff(a, b, 64);
3780 fallthrough;
3781 case 20: diffs |= __it_diff(a, b, 64);
3782 fallthrough;
3783 case 12: diffs |= __it_diff(a, b, 64);
3784 fallthrough;
3785 case 4: diffs |= __it_diff(a, b, 32);
3786 break;
3787 }
3788 return diffs;
3789#else
3790 return memcmp(a - meta_len, b - meta_len, meta_len);
3791#endif
3792}
3793
3794static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3795 const struct sk_buff *skb_b)
3796{
3797 u8 len_a = skb_metadata_len(skb_a);
3798 u8 len_b = skb_metadata_len(skb_b);
3799
3800 if (!(len_a | len_b))
3801 return false;
3802
3803 return len_a != len_b ?
3804 true : __skb_metadata_differs(skb_a, skb_b, len_a);
3805}
3806
3807static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3808{
3809 skb_shinfo(skb)->meta_len = meta_len;
3810}
3811
3812static inline void skb_metadata_clear(struct sk_buff *skb)
3813{
3814 skb_metadata_set(skb, 0);
3815}
3816
3817struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3818
3819#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3820
3821void skb_clone_tx_timestamp(struct sk_buff *skb);
3822bool skb_defer_rx_timestamp(struct sk_buff *skb);
3823
3824#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3825
3826static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3827{
3828}
3829
3830static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3831{
3832 return false;
3833}
3834
3835#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3836
3837/**
3838 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3839 *
3840 * PHY drivers may accept clones of transmitted packets for
3841 * timestamping via their phy_driver.txtstamp method. These drivers
3842 * must call this function to return the skb back to the stack with a
3843 * timestamp.
3844 *
3845 * @skb: clone of the original outgoing packet
3846 * @hwtstamps: hardware time stamps
3847 *
3848 */
3849void skb_complete_tx_timestamp(struct sk_buff *skb,
3850 struct skb_shared_hwtstamps *hwtstamps);
3851
3852void __skb_tstamp_tx(struct sk_buff *orig_skb,
3853 struct skb_shared_hwtstamps *hwtstamps,
3854 struct sock *sk, int tstype);
3855
3856/**
3857 * skb_tstamp_tx - queue clone of skb with send time stamps
3858 * @orig_skb: the original outgoing packet
3859 * @hwtstamps: hardware time stamps, may be NULL if not available
3860 *
3861 * If the skb has a socket associated, then this function clones the
3862 * skb (thus sharing the actual data and optional structures), stores
3863 * the optional hardware time stamping information (if non NULL) or
3864 * generates a software time stamp (otherwise), then queues the clone
3865 * to the error queue of the socket. Errors are silently ignored.
3866 */
3867void skb_tstamp_tx(struct sk_buff *orig_skb,
3868 struct skb_shared_hwtstamps *hwtstamps);
3869
3870/**
3871 * skb_tx_timestamp() - Driver hook for transmit timestamping
3872 *
3873 * Ethernet MAC Drivers should call this function in their hard_xmit()
3874 * function immediately before giving the sk_buff to the MAC hardware.
3875 *
3876 * Specifically, one should make absolutely sure that this function is
3877 * called before TX completion of this packet can trigger. Otherwise
3878 * the packet could potentially already be freed.
3879 *
3880 * @skb: A socket buffer.
3881 */
3882static inline void skb_tx_timestamp(struct sk_buff *skb)
3883{
3884 skb_clone_tx_timestamp(skb);
3885 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3886 skb_tstamp_tx(skb, NULL);
3887}
3888
3889/**
3890 * skb_complete_wifi_ack - deliver skb with wifi status
3891 *
3892 * @skb: the original outgoing packet
3893 * @acked: ack status
3894 *
3895 */
3896void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3897
3898__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3899__sum16 __skb_checksum_complete(struct sk_buff *skb);
3900
3901static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3902{
3903 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3904 skb->csum_valid ||
3905 (skb->ip_summed == CHECKSUM_PARTIAL &&
3906 skb_checksum_start_offset(skb) >= 0));
3907}
3908
3909/**
3910 * skb_checksum_complete - Calculate checksum of an entire packet
3911 * @skb: packet to process
3912 *
3913 * This function calculates the checksum over the entire packet plus
3914 * the value of skb->csum. The latter can be used to supply the
3915 * checksum of a pseudo header as used by TCP/UDP. It returns the
3916 * checksum.
3917 *
3918 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
3919 * this function can be used to verify that checksum on received
3920 * packets. In that case the function should return zero if the
3921 * checksum is correct. In particular, this function will return zero
3922 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3923 * hardware has already verified the correctness of the checksum.
3924 */
3925static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3926{
3927 return skb_csum_unnecessary(skb) ?
3928 0 : __skb_checksum_complete(skb);
3929}
3930
3931static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3932{
3933 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3934 if (skb->csum_level == 0)
3935 skb->ip_summed = CHECKSUM_NONE;
3936 else
3937 skb->csum_level--;
3938 }
3939}
3940
3941static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3942{
3943 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3944 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3945 skb->csum_level++;
3946 } else if (skb->ip_summed == CHECKSUM_NONE) {
3947 skb->ip_summed = CHECKSUM_UNNECESSARY;
3948 skb->csum_level = 0;
3949 }
3950}
3951
3952static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
3953{
3954 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3955 skb->ip_summed = CHECKSUM_NONE;
3956 skb->csum_level = 0;
3957 }
3958}
3959
3960/* Check if we need to perform checksum complete validation.
3961 *
3962 * Returns true if checksum complete is needed, false otherwise
3963 * (either checksum is unnecessary or zero checksum is allowed).
3964 */
3965static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3966 bool zero_okay,
3967 __sum16 check)
3968{
3969 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3970 skb->csum_valid = 1;
3971 __skb_decr_checksum_unnecessary(skb);
3972 return false;
3973 }
3974
3975 return true;
3976}
3977
3978/* For small packets <= CHECKSUM_BREAK perform checksum complete directly
3979 * in checksum_init.
3980 */
3981#define CHECKSUM_BREAK 76
3982
3983/* Unset checksum-complete
3984 *
3985 * Unset checksum complete can be done when packet is being modified
3986 * (uncompressed for instance) and checksum-complete value is
3987 * invalidated.
3988 */
3989static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3990{
3991 if (skb->ip_summed == CHECKSUM_COMPLETE)
3992 skb->ip_summed = CHECKSUM_NONE;
3993}
3994
3995/* Validate (init) checksum based on checksum complete.
3996 *
3997 * Return values:
3998 * 0: checksum is validated or try to in skb_checksum_complete. In the latter
3999 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4000 * checksum is stored in skb->csum for use in __skb_checksum_complete
4001 * non-zero: value of invalid checksum
4002 *
4003 */
4004static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4005 bool complete,
4006 __wsum psum)
4007{
4008 if (skb->ip_summed == CHECKSUM_COMPLETE) {
4009 if (!csum_fold(csum_add(psum, skb->csum))) {
4010 skb->csum_valid = 1;
4011 return 0;
4012 }
4013 }
4014
4015 skb->csum = psum;
4016
4017 if (complete || skb->len <= CHECKSUM_BREAK) {
4018 __sum16 csum;
4019
4020 csum = __skb_checksum_complete(skb);
4021 skb->csum_valid = !csum;
4022 return csum;
4023 }
4024
4025 return 0;
4026}
4027
4028static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4029{
4030 return 0;
4031}
4032
4033/* Perform checksum validate (init). Note that this is a macro since we only
4034 * want to calculate the pseudo header which is an input function if necessary.
4035 * First we try to validate without any computation (checksum unnecessary) and
4036 * then calculate based on checksum complete calling the function to compute
4037 * pseudo header.
4038 *
4039 * Return values:
4040 * 0: checksum is validated or try to in skb_checksum_complete
4041 * non-zero: value of invalid checksum
4042 */
4043#define __skb_checksum_validate(skb, proto, complete, \
4044 zero_okay, check, compute_pseudo) \
4045({ \
4046 __sum16 __ret = 0; \
4047 skb->csum_valid = 0; \
4048 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
4049 __ret = __skb_checksum_validate_complete(skb, \
4050 complete, compute_pseudo(skb, proto)); \
4051 __ret; \
4052})
4053
4054#define skb_checksum_init(skb, proto, compute_pseudo) \
4055 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4056
4057#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
4058 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4059
4060#define skb_checksum_validate(skb, proto, compute_pseudo) \
4061 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4062
4063#define skb_checksum_validate_zero_check(skb, proto, check, \
4064 compute_pseudo) \
4065 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4066
4067#define skb_checksum_simple_validate(skb) \
4068 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4069
4070static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4071{
4072 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4073}
4074
4075static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4076{
4077 skb->csum = ~pseudo;
4078 skb->ip_summed = CHECKSUM_COMPLETE;
4079}
4080
4081#define skb_checksum_try_convert(skb, proto, compute_pseudo) \
4082do { \
4083 if (__skb_checksum_convert_check(skb)) \
4084 __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4085} while (0)
4086
4087static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4088 u16 start, u16 offset)
4089{
4090 skb->ip_summed = CHECKSUM_PARTIAL;
4091 skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4092 skb->csum_offset = offset - start;
4093}
4094
4095/* Update skbuf and packet to reflect the remote checksum offload operation.
4096 * When called, ptr indicates the starting point for skb->csum when
4097 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4098 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4099 */
4100static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4101 int start, int offset, bool nopartial)
4102{
4103 __wsum delta;
4104
4105 if (!nopartial) {
4106 skb_remcsum_adjust_partial(skb, ptr, start, offset);
4107 return;
4108 }
4109
4110 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4111 __skb_checksum_complete(skb);
4112 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4113 }
4114
4115 delta = remcsum_adjust(ptr, skb->csum, start, offset);
4116
4117 /* Adjust skb->csum since we changed the packet */
4118 skb->csum = csum_add(skb->csum, delta);
4119}
4120
4121static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4122{
4123#if IS_ENABLED(CONFIG_NF_CONNTRACK)
4124 return (void *)(skb->_nfct & NFCT_PTRMASK);
4125#else
4126 return NULL;
4127#endif
4128}
4129
4130static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4131{
4132#if IS_ENABLED(CONFIG_NF_CONNTRACK)
4133 return skb->_nfct;
4134#else
4135 return 0UL;
4136#endif
4137}
4138
4139static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4140{
4141#if IS_ENABLED(CONFIG_NF_CONNTRACK)
4142 skb->_nfct = nfct;
4143#endif
4144}
4145
4146#ifdef CONFIG_SKB_EXTENSIONS
4147enum skb_ext_id {
4148#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4149 SKB_EXT_BRIDGE_NF,
4150#endif
4151#ifdef CONFIG_XFRM
4152 SKB_EXT_SEC_PATH,
4153#endif
4154#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4155 TC_SKB_EXT,
4156#endif
4157#if IS_ENABLED(CONFIG_MPTCP)
4158 SKB_EXT_MPTCP,
4159#endif
4160 SKB_EXT_NUM, /* must be last */
4161};
4162
4163/**
4164 * struct skb_ext - sk_buff extensions
4165 * @refcnt: 1 on allocation, deallocated on 0
4166 * @offset: offset to add to @data to obtain extension address
4167 * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4168 * @data: start of extension data, variable sized
4169 *
4170 * Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4171 * to use 'u8' types while allowing up to 2kb worth of extension data.
4172 */
4173struct skb_ext {
4174 refcount_t refcnt;
4175 u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4176 u8 chunks; /* same */
4177 char data[] __aligned(8);
4178};
4179
4180struct skb_ext *__skb_ext_alloc(gfp_t flags);
4181void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4182 struct skb_ext *ext);
4183void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4184void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4185void __skb_ext_put(struct skb_ext *ext);
4186
4187static inline void skb_ext_put(struct sk_buff *skb)
4188{
4189 if (skb->active_extensions)
4190 __skb_ext_put(skb->extensions);
4191}
4192
4193static inline void __skb_ext_copy(struct sk_buff *dst,
4194 const struct sk_buff *src)
4195{
4196 dst->active_extensions = src->active_extensions;
4197
4198 if (src->active_extensions) {
4199 struct skb_ext *ext = src->extensions;
4200
4201 refcount_inc(&ext->refcnt);
4202 dst->extensions = ext;
4203 }
4204}
4205
4206static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4207{
4208 skb_ext_put(dst);
4209 __skb_ext_copy(dst, src);
4210}
4211
4212static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4213{
4214 return !!ext->offset[i];
4215}
4216
4217static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4218{
4219 return skb->active_extensions & (1 << id);
4220}
4221
4222static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4223{
4224 if (skb_ext_exist(skb, id))
4225 __skb_ext_del(skb, id);
4226}
4227
4228static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4229{
4230 if (skb_ext_exist(skb, id)) {
4231 struct skb_ext *ext = skb->extensions;
4232
4233 return (void *)ext + (ext->offset[id] << 3);
4234 }
4235
4236 return NULL;
4237}
4238
4239static inline void skb_ext_reset(struct sk_buff *skb)
4240{
4241 if (unlikely(skb->active_extensions)) {
4242 __skb_ext_put(skb->extensions);
4243 skb->active_extensions = 0;
4244 }
4245}
4246
4247static inline bool skb_has_extensions(struct sk_buff *skb)
4248{
4249 return unlikely(skb->active_extensions);
4250}
4251#else
4252static inline void skb_ext_put(struct sk_buff *skb) {}
4253static inline void skb_ext_reset(struct sk_buff *skb) {}
4254static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4255static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4256static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4257static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4258#endif /* CONFIG_SKB_EXTENSIONS */
4259
4260static inline void nf_reset_ct(struct sk_buff *skb)
4261{
4262#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4263 nf_conntrack_put(skb_nfct(skb));
4264 skb->_nfct = 0;
4265#endif
4266}
4267
4268static inline void nf_reset_trace(struct sk_buff *skb)
4269{
4270#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4271 skb->nf_trace = 0;
4272#endif
4273}
4274
4275static inline void ipvs_reset(struct sk_buff *skb)
4276{
4277#if IS_ENABLED(CONFIG_IP_VS)
4278 skb->ipvs_property = 0;
4279#endif
4280}
4281
4282/* Note: This doesn't put any conntrack info in dst. */
4283static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4284 bool copy)
4285{
4286#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4287 dst->_nfct = src->_nfct;
4288 nf_conntrack_get(skb_nfct(src));
4289#endif
4290#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4291 if (copy)
4292 dst->nf_trace = src->nf_trace;
4293#endif
4294}
4295
4296static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4297{
4298#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4299 nf_conntrack_put(skb_nfct(dst));
4300#endif
4301 __nf_copy(dst, src, true);
4302}
4303
4304#ifdef CONFIG_NETWORK_SECMARK
4305static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4306{
4307 to->secmark = from->secmark;
4308}
4309
4310static inline void skb_init_secmark(struct sk_buff *skb)
4311{
4312 skb->secmark = 0;
4313}
4314#else
4315static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4316{ }
4317
4318static inline void skb_init_secmark(struct sk_buff *skb)
4319{ }
4320#endif
4321
4322static inline int secpath_exists(const struct sk_buff *skb)
4323{
4324#ifdef CONFIG_XFRM
4325 return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4326#else
4327 return 0;
4328#endif
4329}
4330
4331static inline bool skb_irq_freeable(const struct sk_buff *skb)
4332{
4333 return !skb->destructor &&
4334 !secpath_exists(skb) &&
4335 !skb_nfct(skb) &&
4336 !skb->_skb_refdst &&
4337 !skb_has_frag_list(skb);
4338}
4339
4340static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4341{
4342 skb->queue_mapping = queue_mapping;
4343}
4344
4345static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4346{
4347 return skb->queue_mapping;
4348}
4349
4350static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4351{
4352 to->queue_mapping = from->queue_mapping;
4353}
4354
4355static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4356{
4357 skb->queue_mapping = rx_queue + 1;
4358}
4359
4360static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4361{
4362 return skb->queue_mapping - 1;
4363}
4364
4365static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4366{
4367 return skb->queue_mapping != 0;
4368}
4369
4370static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4371{
4372 skb->dst_pending_confirm = val;
4373}
4374
4375static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4376{
4377 return skb->dst_pending_confirm != 0;
4378}
4379
4380static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4381{
4382#ifdef CONFIG_XFRM
4383 return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4384#else
4385 return NULL;
4386#endif
4387}
4388
4389/* Keeps track of mac header offset relative to skb->head.
4390 * It is useful for TSO of Tunneling protocol. e.g. GRE.
4391 * For non-tunnel skb it points to skb_mac_header() and for
4392 * tunnel skb it points to outer mac header.
4393 * Keeps track of level of encapsulation of network headers.
4394 */
4395struct skb_gso_cb {
4396 union {
4397 int mac_offset;
4398 int data_offset;
4399 };
4400 int encap_level;
4401 __wsum csum;
4402 __u16 csum_start;
4403};
4404#define SKB_GSO_CB_OFFSET 32
4405#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET))
4406
4407static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4408{
4409 return (skb_mac_header(inner_skb) - inner_skb->head) -
4410 SKB_GSO_CB(inner_skb)->mac_offset;
4411}
4412
4413static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4414{
4415 int new_headroom, headroom;
4416 int ret;
4417
4418 headroom = skb_headroom(skb);
4419 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4420 if (ret)
4421 return ret;
4422
4423 new_headroom = skb_headroom(skb);
4424 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4425 return 0;
4426}
4427
4428static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4429{
4430 /* Do not update partial checksums if remote checksum is enabled. */
4431 if (skb->remcsum_offload)
4432 return;
4433
4434 SKB_GSO_CB(skb)->csum = res;
4435 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4436}
4437
4438/* Compute the checksum for a gso segment. First compute the checksum value
4439 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4440 * then add in skb->csum (checksum from csum_start to end of packet).
4441 * skb->csum and csum_start are then updated to reflect the checksum of the
4442 * resultant packet starting from the transport header-- the resultant checksum
4443 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4444 * header.
4445 */
4446static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4447{
4448 unsigned char *csum_start = skb_transport_header(skb);
4449 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4450 __wsum partial = SKB_GSO_CB(skb)->csum;
4451
4452 SKB_GSO_CB(skb)->csum = res;
4453 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4454
4455 return csum_fold(csum_partial(csum_start, plen, partial));
4456}
4457
4458static inline bool skb_is_gso(const struct sk_buff *skb)
4459{
4460 return skb_shinfo(skb)->gso_size;
4461}
4462
4463/* Note: Should be called only if skb_is_gso(skb) is true */
4464static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4465{
4466 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4467}
4468
4469/* Note: Should be called only if skb_is_gso(skb) is true */
4470static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4471{
4472 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4473}
4474
4475/* Note: Should be called only if skb_is_gso(skb) is true */
4476static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4477{
4478 return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4479}
4480
4481static inline void skb_gso_reset(struct sk_buff *skb)
4482{
4483 skb_shinfo(skb)->gso_size = 0;
4484 skb_shinfo(skb)->gso_segs = 0;
4485 skb_shinfo(skb)->gso_type = 0;
4486}
4487
4488static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4489 u16 increment)
4490{
4491 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4492 return;
4493 shinfo->gso_size += increment;
4494}
4495
4496static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4497 u16 decrement)
4498{
4499 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4500 return;
4501 shinfo->gso_size -= decrement;
4502}
4503
4504void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4505
4506static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4507{
4508 /* LRO sets gso_size but not gso_type, whereas if GSO is really
4509 * wanted then gso_type will be set. */
4510 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4511
4512 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4513 unlikely(shinfo->gso_type == 0)) {
4514 __skb_warn_lro_forwarding(skb);
4515 return true;
4516 }
4517 return false;
4518}
4519
4520static inline void skb_forward_csum(struct sk_buff *skb)
4521{
4522 /* Unfortunately we don't support this one. Any brave souls? */
4523 if (skb->ip_summed == CHECKSUM_COMPLETE)
4524 skb->ip_summed = CHECKSUM_NONE;
4525}
4526
4527/**
4528 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4529 * @skb: skb to check
4530 *
4531 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4532 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4533 * use this helper, to document places where we make this assertion.
4534 */
4535static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4536{
4537#ifdef DEBUG
4538 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4539#endif
4540}
4541
4542bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4543
4544int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4545struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4546 unsigned int transport_len,
4547 __sum16(*skb_chkf)(struct sk_buff *skb));
4548
4549/**
4550 * skb_head_is_locked - Determine if the skb->head is locked down
4551 * @skb: skb to check
4552 *
4553 * The head on skbs build around a head frag can be removed if they are
4554 * not cloned. This function returns true if the skb head is locked down
4555 * due to either being allocated via kmalloc, or by being a clone with
4556 * multiple references to the head.
4557 */
4558static inline bool skb_head_is_locked(const struct sk_buff *skb)
4559{
4560 return !skb->head_frag || skb_cloned(skb);
4561}
4562
4563/* Local Checksum Offload.
4564 * Compute outer checksum based on the assumption that the
4565 * inner checksum will be offloaded later.
4566 * See Documentation/networking/checksum-offloads.rst for
4567 * explanation of how this works.
4568 * Fill in outer checksum adjustment (e.g. with sum of outer
4569 * pseudo-header) before calling.
4570 * Also ensure that inner checksum is in linear data area.
4571 */
4572static inline __wsum lco_csum(struct sk_buff *skb)
4573{
4574 unsigned char *csum_start = skb_checksum_start(skb);
4575 unsigned char *l4_hdr = skb_transport_header(skb);
4576 __wsum partial;
4577
4578 /* Start with complement of inner checksum adjustment */
4579 partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4580 skb->csum_offset));
4581
4582 /* Add in checksum of our headers (incl. outer checksum
4583 * adjustment filled in by caller) and return result.
4584 */
4585 return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4586}
4587
4588static inline bool skb_is_redirected(const struct sk_buff *skb)
4589{
4590#ifdef CONFIG_NET_REDIRECT
4591 return skb->redirected;
4592#else
4593 return false;
4594#endif
4595}
4596
4597static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
4598{
4599#ifdef CONFIG_NET_REDIRECT
4600 skb->redirected = 1;
4601 skb->from_ingress = from_ingress;
4602 if (skb->from_ingress)
4603 skb->tstamp = 0;
4604#endif
4605}
4606
4607static inline void skb_reset_redirect(struct sk_buff *skb)
4608{
4609#ifdef CONFIG_NET_REDIRECT
4610 skb->redirected = 0;
4611#endif
4612}
4613
4614static inline void skb_set_kcov_handle(struct sk_buff *skb,
4615 const u64 kcov_handle)
4616{
4617#ifdef CONFIG_KCOV
4618 skb->kcov_handle = kcov_handle;
4619#endif
4620}
4621
4622static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
4623{
4624#ifdef CONFIG_KCOV
4625 return skb->kcov_handle;
4626#else
4627 return 0;
4628#endif
4629}
4630
4631#endif /* __KERNEL__ */
4632#endif /* _LINUX_SKBUFF_H */