at v5.11 36 kB view raw
1/* SPDX-License-Identifier: GPL-2.0+ */ 2/* 3 * Read-Copy Update mechanism for mutual exclusion 4 * 5 * Copyright IBM Corporation, 2001 6 * 7 * Author: Dipankar Sarma <dipankar@in.ibm.com> 8 * 9 * Based on the original work by Paul McKenney <paulmck@vnet.ibm.com> 10 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 11 * Papers: 12 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf 13 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) 14 * 15 * For detailed explanation of Read-Copy Update mechanism see - 16 * http://lse.sourceforge.net/locking/rcupdate.html 17 * 18 */ 19 20#ifndef __LINUX_RCUPDATE_H 21#define __LINUX_RCUPDATE_H 22 23#include <linux/types.h> 24#include <linux/compiler.h> 25#include <linux/atomic.h> 26#include <linux/irqflags.h> 27#include <linux/preempt.h> 28#include <linux/bottom_half.h> 29#include <linux/lockdep.h> 30#include <asm/processor.h> 31#include <linux/cpumask.h> 32 33#define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b)) 34#define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b)) 35#define ulong2long(a) (*(long *)(&(a))) 36 37/* Exported common interfaces */ 38void call_rcu(struct rcu_head *head, rcu_callback_t func); 39void rcu_barrier_tasks(void); 40void rcu_barrier_tasks_rude(void); 41void synchronize_rcu(void); 42 43#ifdef CONFIG_PREEMPT_RCU 44 45void __rcu_read_lock(void); 46void __rcu_read_unlock(void); 47 48/* 49 * Defined as a macro as it is a very low level header included from 50 * areas that don't even know about current. This gives the rcu_read_lock() 51 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other 52 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable. 53 */ 54#define rcu_preempt_depth() (current->rcu_read_lock_nesting) 55 56#else /* #ifdef CONFIG_PREEMPT_RCU */ 57 58#ifdef CONFIG_TINY_RCU 59#define rcu_read_unlock_strict() do { } while (0) 60#else 61void rcu_read_unlock_strict(void); 62#endif 63 64static inline void __rcu_read_lock(void) 65{ 66 preempt_disable(); 67} 68 69static inline void __rcu_read_unlock(void) 70{ 71 preempt_enable(); 72 rcu_read_unlock_strict(); 73} 74 75static inline int rcu_preempt_depth(void) 76{ 77 return 0; 78} 79 80#endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 81 82/* Internal to kernel */ 83void rcu_init(void); 84extern int rcu_scheduler_active __read_mostly; 85void rcu_sched_clock_irq(int user); 86void rcu_report_dead(unsigned int cpu); 87void rcutree_migrate_callbacks(int cpu); 88 89#ifdef CONFIG_TASKS_RCU_GENERIC 90void rcu_init_tasks_generic(void); 91#else 92static inline void rcu_init_tasks_generic(void) { } 93#endif 94 95#ifdef CONFIG_RCU_STALL_COMMON 96void rcu_sysrq_start(void); 97void rcu_sysrq_end(void); 98#else /* #ifdef CONFIG_RCU_STALL_COMMON */ 99static inline void rcu_sysrq_start(void) { } 100static inline void rcu_sysrq_end(void) { } 101#endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */ 102 103#ifdef CONFIG_NO_HZ_FULL 104void rcu_user_enter(void); 105void rcu_user_exit(void); 106#else 107static inline void rcu_user_enter(void) { } 108static inline void rcu_user_exit(void) { } 109#endif /* CONFIG_NO_HZ_FULL */ 110 111#ifdef CONFIG_RCU_NOCB_CPU 112void rcu_init_nohz(void); 113#else /* #ifdef CONFIG_RCU_NOCB_CPU */ 114static inline void rcu_init_nohz(void) { } 115#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ 116 117/** 118 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers 119 * @a: Code that RCU needs to pay attention to. 120 * 121 * RCU read-side critical sections are forbidden in the inner idle loop, 122 * that is, between the rcu_idle_enter() and the rcu_idle_exit() -- RCU 123 * will happily ignore any such read-side critical sections. However, 124 * things like powertop need tracepoints in the inner idle loop. 125 * 126 * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU()) 127 * will tell RCU that it needs to pay attention, invoke its argument 128 * (in this example, calling the do_something_with_RCU() function), 129 * and then tell RCU to go back to ignoring this CPU. It is permissible 130 * to nest RCU_NONIDLE() wrappers, but not indefinitely (but the limit is 131 * on the order of a million or so, even on 32-bit systems). It is 132 * not legal to block within RCU_NONIDLE(), nor is it permissible to 133 * transfer control either into or out of RCU_NONIDLE()'s statement. 134 */ 135#define RCU_NONIDLE(a) \ 136 do { \ 137 rcu_irq_enter_irqson(); \ 138 do { a; } while (0); \ 139 rcu_irq_exit_irqson(); \ 140 } while (0) 141 142/* 143 * Note a quasi-voluntary context switch for RCU-tasks's benefit. 144 * This is a macro rather than an inline function to avoid #include hell. 145 */ 146#ifdef CONFIG_TASKS_RCU_GENERIC 147 148# ifdef CONFIG_TASKS_RCU 149# define rcu_tasks_classic_qs(t, preempt) \ 150 do { \ 151 if (!(preempt) && READ_ONCE((t)->rcu_tasks_holdout)) \ 152 WRITE_ONCE((t)->rcu_tasks_holdout, false); \ 153 } while (0) 154void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func); 155void synchronize_rcu_tasks(void); 156# else 157# define rcu_tasks_classic_qs(t, preempt) do { } while (0) 158# define call_rcu_tasks call_rcu 159# define synchronize_rcu_tasks synchronize_rcu 160# endif 161 162# ifdef CONFIG_TASKS_RCU_TRACE 163# define rcu_tasks_trace_qs(t) \ 164 do { \ 165 if (!likely(READ_ONCE((t)->trc_reader_checked)) && \ 166 !unlikely(READ_ONCE((t)->trc_reader_nesting))) { \ 167 smp_store_release(&(t)->trc_reader_checked, true); \ 168 smp_mb(); /* Readers partitioned by store. */ \ 169 } \ 170 } while (0) 171# else 172# define rcu_tasks_trace_qs(t) do { } while (0) 173# endif 174 175#define rcu_tasks_qs(t, preempt) \ 176do { \ 177 rcu_tasks_classic_qs((t), (preempt)); \ 178 rcu_tasks_trace_qs((t)); \ 179} while (0) 180 181# ifdef CONFIG_TASKS_RUDE_RCU 182void call_rcu_tasks_rude(struct rcu_head *head, rcu_callback_t func); 183void synchronize_rcu_tasks_rude(void); 184# endif 185 186#define rcu_note_voluntary_context_switch(t) rcu_tasks_qs(t, false) 187void exit_tasks_rcu_start(void); 188void exit_tasks_rcu_finish(void); 189#else /* #ifdef CONFIG_TASKS_RCU_GENERIC */ 190#define rcu_tasks_qs(t, preempt) do { } while (0) 191#define rcu_note_voluntary_context_switch(t) do { } while (0) 192#define call_rcu_tasks call_rcu 193#define synchronize_rcu_tasks synchronize_rcu 194static inline void exit_tasks_rcu_start(void) { } 195static inline void exit_tasks_rcu_finish(void) { } 196#endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */ 197 198/** 199 * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU 200 * 201 * This macro resembles cond_resched(), except that it is defined to 202 * report potential quiescent states to RCU-tasks even if the cond_resched() 203 * machinery were to be shut off, as some advocate for PREEMPTION kernels. 204 */ 205#define cond_resched_tasks_rcu_qs() \ 206do { \ 207 rcu_tasks_qs(current, false); \ 208 cond_resched(); \ 209} while (0) 210 211/* 212 * Infrastructure to implement the synchronize_() primitives in 213 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU. 214 */ 215 216#if defined(CONFIG_TREE_RCU) 217#include <linux/rcutree.h> 218#elif defined(CONFIG_TINY_RCU) 219#include <linux/rcutiny.h> 220#else 221#error "Unknown RCU implementation specified to kernel configuration" 222#endif 223 224/* 225 * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls 226 * are needed for dynamic initialization and destruction of rcu_head 227 * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for 228 * dynamic initialization and destruction of statically allocated rcu_head 229 * structures. However, rcu_head structures allocated dynamically in the 230 * heap don't need any initialization. 231 */ 232#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 233void init_rcu_head(struct rcu_head *head); 234void destroy_rcu_head(struct rcu_head *head); 235void init_rcu_head_on_stack(struct rcu_head *head); 236void destroy_rcu_head_on_stack(struct rcu_head *head); 237#else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 238static inline void init_rcu_head(struct rcu_head *head) { } 239static inline void destroy_rcu_head(struct rcu_head *head) { } 240static inline void init_rcu_head_on_stack(struct rcu_head *head) { } 241static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { } 242#endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 243 244#if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) 245bool rcu_lockdep_current_cpu_online(void); 246#else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ 247static inline bool rcu_lockdep_current_cpu_online(void) { return true; } 248#endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ 249 250extern struct lockdep_map rcu_lock_map; 251extern struct lockdep_map rcu_bh_lock_map; 252extern struct lockdep_map rcu_sched_lock_map; 253extern struct lockdep_map rcu_callback_map; 254 255#ifdef CONFIG_DEBUG_LOCK_ALLOC 256 257static inline void rcu_lock_acquire(struct lockdep_map *map) 258{ 259 lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_); 260} 261 262static inline void rcu_lock_release(struct lockdep_map *map) 263{ 264 lock_release(map, _THIS_IP_); 265} 266 267int debug_lockdep_rcu_enabled(void); 268int rcu_read_lock_held(void); 269int rcu_read_lock_bh_held(void); 270int rcu_read_lock_sched_held(void); 271int rcu_read_lock_any_held(void); 272 273#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 274 275# define rcu_lock_acquire(a) do { } while (0) 276# define rcu_lock_release(a) do { } while (0) 277 278static inline int rcu_read_lock_held(void) 279{ 280 return 1; 281} 282 283static inline int rcu_read_lock_bh_held(void) 284{ 285 return 1; 286} 287 288static inline int rcu_read_lock_sched_held(void) 289{ 290 return !preemptible(); 291} 292 293static inline int rcu_read_lock_any_held(void) 294{ 295 return !preemptible(); 296} 297 298#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 299 300#ifdef CONFIG_PROVE_RCU 301 302/** 303 * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met 304 * @c: condition to check 305 * @s: informative message 306 */ 307#define RCU_LOCKDEP_WARN(c, s) \ 308 do { \ 309 static bool __section(".data.unlikely") __warned; \ 310 if (debug_lockdep_rcu_enabled() && !__warned && (c)) { \ 311 __warned = true; \ 312 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \ 313 } \ 314 } while (0) 315 316#if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU) 317static inline void rcu_preempt_sleep_check(void) 318{ 319 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map), 320 "Illegal context switch in RCU read-side critical section"); 321} 322#else /* #ifdef CONFIG_PROVE_RCU */ 323static inline void rcu_preempt_sleep_check(void) { } 324#endif /* #else #ifdef CONFIG_PROVE_RCU */ 325 326#define rcu_sleep_check() \ 327 do { \ 328 rcu_preempt_sleep_check(); \ 329 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), \ 330 "Illegal context switch in RCU-bh read-side critical section"); \ 331 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), \ 332 "Illegal context switch in RCU-sched read-side critical section"); \ 333 } while (0) 334 335#else /* #ifdef CONFIG_PROVE_RCU */ 336 337#define RCU_LOCKDEP_WARN(c, s) do { } while (0 && (c)) 338#define rcu_sleep_check() do { } while (0) 339 340#endif /* #else #ifdef CONFIG_PROVE_RCU */ 341 342/* 343 * Helper functions for rcu_dereference_check(), rcu_dereference_protected() 344 * and rcu_assign_pointer(). Some of these could be folded into their 345 * callers, but they are left separate in order to ease introduction of 346 * multiple pointers markings to match different RCU implementations 347 * (e.g., __srcu), should this make sense in the future. 348 */ 349 350#ifdef __CHECKER__ 351#define rcu_check_sparse(p, space) \ 352 ((void)(((typeof(*p) space *)p) == p)) 353#else /* #ifdef __CHECKER__ */ 354#define rcu_check_sparse(p, space) 355#endif /* #else #ifdef __CHECKER__ */ 356 357#define __rcu_access_pointer(p, space) \ 358({ \ 359 typeof(*p) *_________p1 = (typeof(*p) *__force)READ_ONCE(p); \ 360 rcu_check_sparse(p, space); \ 361 ((typeof(*p) __force __kernel *)(_________p1)); \ 362}) 363#define __rcu_dereference_check(p, c, space) \ 364({ \ 365 /* Dependency order vs. p above. */ \ 366 typeof(*p) *________p1 = (typeof(*p) *__force)READ_ONCE(p); \ 367 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \ 368 rcu_check_sparse(p, space); \ 369 ((typeof(*p) __force __kernel *)(________p1)); \ 370}) 371#define __rcu_dereference_protected(p, c, space) \ 372({ \ 373 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \ 374 rcu_check_sparse(p, space); \ 375 ((typeof(*p) __force __kernel *)(p)); \ 376}) 377#define rcu_dereference_raw(p) \ 378({ \ 379 /* Dependency order vs. p above. */ \ 380 typeof(p) ________p1 = READ_ONCE(p); \ 381 ((typeof(*p) __force __kernel *)(________p1)); \ 382}) 383 384/** 385 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable 386 * @v: The value to statically initialize with. 387 */ 388#define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v) 389 390/** 391 * rcu_assign_pointer() - assign to RCU-protected pointer 392 * @p: pointer to assign to 393 * @v: value to assign (publish) 394 * 395 * Assigns the specified value to the specified RCU-protected 396 * pointer, ensuring that any concurrent RCU readers will see 397 * any prior initialization. 398 * 399 * Inserts memory barriers on architectures that require them 400 * (which is most of them), and also prevents the compiler from 401 * reordering the code that initializes the structure after the pointer 402 * assignment. More importantly, this call documents which pointers 403 * will be dereferenced by RCU read-side code. 404 * 405 * In some special cases, you may use RCU_INIT_POINTER() instead 406 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due 407 * to the fact that it does not constrain either the CPU or the compiler. 408 * That said, using RCU_INIT_POINTER() when you should have used 409 * rcu_assign_pointer() is a very bad thing that results in 410 * impossible-to-diagnose memory corruption. So please be careful. 411 * See the RCU_INIT_POINTER() comment header for details. 412 * 413 * Note that rcu_assign_pointer() evaluates each of its arguments only 414 * once, appearances notwithstanding. One of the "extra" evaluations 415 * is in typeof() and the other visible only to sparse (__CHECKER__), 416 * neither of which actually execute the argument. As with most cpp 417 * macros, this execute-arguments-only-once property is important, so 418 * please be careful when making changes to rcu_assign_pointer() and the 419 * other macros that it invokes. 420 */ 421#define rcu_assign_pointer(p, v) \ 422do { \ 423 uintptr_t _r_a_p__v = (uintptr_t)(v); \ 424 rcu_check_sparse(p, __rcu); \ 425 \ 426 if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL) \ 427 WRITE_ONCE((p), (typeof(p))(_r_a_p__v)); \ 428 else \ 429 smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \ 430} while (0) 431 432/** 433 * rcu_replace_pointer() - replace an RCU pointer, returning its old value 434 * @rcu_ptr: RCU pointer, whose old value is returned 435 * @ptr: regular pointer 436 * @c: the lockdep conditions under which the dereference will take place 437 * 438 * Perform a replacement, where @rcu_ptr is an RCU-annotated 439 * pointer and @c is the lockdep argument that is passed to the 440 * rcu_dereference_protected() call used to read that pointer. The old 441 * value of @rcu_ptr is returned, and @rcu_ptr is set to @ptr. 442 */ 443#define rcu_replace_pointer(rcu_ptr, ptr, c) \ 444({ \ 445 typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c)); \ 446 rcu_assign_pointer((rcu_ptr), (ptr)); \ 447 __tmp; \ 448}) 449 450/** 451 * rcu_access_pointer() - fetch RCU pointer with no dereferencing 452 * @p: The pointer to read 453 * 454 * Return the value of the specified RCU-protected pointer, but omit the 455 * lockdep checks for being in an RCU read-side critical section. This is 456 * useful when the value of this pointer is accessed, but the pointer is 457 * not dereferenced, for example, when testing an RCU-protected pointer 458 * against NULL. Although rcu_access_pointer() may also be used in cases 459 * where update-side locks prevent the value of the pointer from changing, 460 * you should instead use rcu_dereference_protected() for this use case. 461 * 462 * It is also permissible to use rcu_access_pointer() when read-side 463 * access to the pointer was removed at least one grace period ago, as 464 * is the case in the context of the RCU callback that is freeing up 465 * the data, or after a synchronize_rcu() returns. This can be useful 466 * when tearing down multi-linked structures after a grace period 467 * has elapsed. 468 */ 469#define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu) 470 471/** 472 * rcu_dereference_check() - rcu_dereference with debug checking 473 * @p: The pointer to read, prior to dereferencing 474 * @c: The conditions under which the dereference will take place 475 * 476 * Do an rcu_dereference(), but check that the conditions under which the 477 * dereference will take place are correct. Typically the conditions 478 * indicate the various locking conditions that should be held at that 479 * point. The check should return true if the conditions are satisfied. 480 * An implicit check for being in an RCU read-side critical section 481 * (rcu_read_lock()) is included. 482 * 483 * For example: 484 * 485 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock)); 486 * 487 * could be used to indicate to lockdep that foo->bar may only be dereferenced 488 * if either rcu_read_lock() is held, or that the lock required to replace 489 * the bar struct at foo->bar is held. 490 * 491 * Note that the list of conditions may also include indications of when a lock 492 * need not be held, for example during initialisation or destruction of the 493 * target struct: 494 * 495 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) || 496 * atomic_read(&foo->usage) == 0); 497 * 498 * Inserts memory barriers on architectures that require them 499 * (currently only the Alpha), prevents the compiler from refetching 500 * (and from merging fetches), and, more importantly, documents exactly 501 * which pointers are protected by RCU and checks that the pointer is 502 * annotated as __rcu. 503 */ 504#define rcu_dereference_check(p, c) \ 505 __rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu) 506 507/** 508 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking 509 * @p: The pointer to read, prior to dereferencing 510 * @c: The conditions under which the dereference will take place 511 * 512 * This is the RCU-bh counterpart to rcu_dereference_check(). 513 */ 514#define rcu_dereference_bh_check(p, c) \ 515 __rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu) 516 517/** 518 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking 519 * @p: The pointer to read, prior to dereferencing 520 * @c: The conditions under which the dereference will take place 521 * 522 * This is the RCU-sched counterpart to rcu_dereference_check(). 523 */ 524#define rcu_dereference_sched_check(p, c) \ 525 __rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \ 526 __rcu) 527 528/* 529 * The tracing infrastructure traces RCU (we want that), but unfortunately 530 * some of the RCU checks causes tracing to lock up the system. 531 * 532 * The no-tracing version of rcu_dereference_raw() must not call 533 * rcu_read_lock_held(). 534 */ 535#define rcu_dereference_raw_check(p) __rcu_dereference_check((p), 1, __rcu) 536 537/** 538 * rcu_dereference_protected() - fetch RCU pointer when updates prevented 539 * @p: The pointer to read, prior to dereferencing 540 * @c: The conditions under which the dereference will take place 541 * 542 * Return the value of the specified RCU-protected pointer, but omit 543 * the READ_ONCE(). This is useful in cases where update-side locks 544 * prevent the value of the pointer from changing. Please note that this 545 * primitive does *not* prevent the compiler from repeating this reference 546 * or combining it with other references, so it should not be used without 547 * protection of appropriate locks. 548 * 549 * This function is only for update-side use. Using this function 550 * when protected only by rcu_read_lock() will result in infrequent 551 * but very ugly failures. 552 */ 553#define rcu_dereference_protected(p, c) \ 554 __rcu_dereference_protected((p), (c), __rcu) 555 556 557/** 558 * rcu_dereference() - fetch RCU-protected pointer for dereferencing 559 * @p: The pointer to read, prior to dereferencing 560 * 561 * This is a simple wrapper around rcu_dereference_check(). 562 */ 563#define rcu_dereference(p) rcu_dereference_check(p, 0) 564 565/** 566 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing 567 * @p: The pointer to read, prior to dereferencing 568 * 569 * Makes rcu_dereference_check() do the dirty work. 570 */ 571#define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0) 572 573/** 574 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing 575 * @p: The pointer to read, prior to dereferencing 576 * 577 * Makes rcu_dereference_check() do the dirty work. 578 */ 579#define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0) 580 581/** 582 * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism 583 * @p: The pointer to hand off 584 * 585 * This is simply an identity function, but it documents where a pointer 586 * is handed off from RCU to some other synchronization mechanism, for 587 * example, reference counting or locking. In C11, it would map to 588 * kill_dependency(). It could be used as follows:: 589 * 590 * rcu_read_lock(); 591 * p = rcu_dereference(gp); 592 * long_lived = is_long_lived(p); 593 * if (long_lived) { 594 * if (!atomic_inc_not_zero(p->refcnt)) 595 * long_lived = false; 596 * else 597 * p = rcu_pointer_handoff(p); 598 * } 599 * rcu_read_unlock(); 600 */ 601#define rcu_pointer_handoff(p) (p) 602 603/** 604 * rcu_read_lock() - mark the beginning of an RCU read-side critical section 605 * 606 * When synchronize_rcu() is invoked on one CPU while other CPUs 607 * are within RCU read-side critical sections, then the 608 * synchronize_rcu() is guaranteed to block until after all the other 609 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked 610 * on one CPU while other CPUs are within RCU read-side critical 611 * sections, invocation of the corresponding RCU callback is deferred 612 * until after the all the other CPUs exit their critical sections. 613 * 614 * Note, however, that RCU callbacks are permitted to run concurrently 615 * with new RCU read-side critical sections. One way that this can happen 616 * is via the following sequence of events: (1) CPU 0 enters an RCU 617 * read-side critical section, (2) CPU 1 invokes call_rcu() to register 618 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section, 619 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU 620 * callback is invoked. This is legal, because the RCU read-side critical 621 * section that was running concurrently with the call_rcu() (and which 622 * therefore might be referencing something that the corresponding RCU 623 * callback would free up) has completed before the corresponding 624 * RCU callback is invoked. 625 * 626 * RCU read-side critical sections may be nested. Any deferred actions 627 * will be deferred until the outermost RCU read-side critical section 628 * completes. 629 * 630 * You can avoid reading and understanding the next paragraph by 631 * following this rule: don't put anything in an rcu_read_lock() RCU 632 * read-side critical section that would block in a !PREEMPTION kernel. 633 * But if you want the full story, read on! 634 * 635 * In non-preemptible RCU implementations (pure TREE_RCU and TINY_RCU), 636 * it is illegal to block while in an RCU read-side critical section. 637 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPTION 638 * kernel builds, RCU read-side critical sections may be preempted, 639 * but explicit blocking is illegal. Finally, in preemptible RCU 640 * implementations in real-time (with -rt patchset) kernel builds, RCU 641 * read-side critical sections may be preempted and they may also block, but 642 * only when acquiring spinlocks that are subject to priority inheritance. 643 */ 644static __always_inline void rcu_read_lock(void) 645{ 646 __rcu_read_lock(); 647 __acquire(RCU); 648 rcu_lock_acquire(&rcu_lock_map); 649 RCU_LOCKDEP_WARN(!rcu_is_watching(), 650 "rcu_read_lock() used illegally while idle"); 651} 652 653/* 654 * So where is rcu_write_lock()? It does not exist, as there is no 655 * way for writers to lock out RCU readers. This is a feature, not 656 * a bug -- this property is what provides RCU's performance benefits. 657 * Of course, writers must coordinate with each other. The normal 658 * spinlock primitives work well for this, but any other technique may be 659 * used as well. RCU does not care how the writers keep out of each 660 * others' way, as long as they do so. 661 */ 662 663/** 664 * rcu_read_unlock() - marks the end of an RCU read-side critical section. 665 * 666 * In most situations, rcu_read_unlock() is immune from deadlock. 667 * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock() 668 * is responsible for deboosting, which it does via rt_mutex_unlock(). 669 * Unfortunately, this function acquires the scheduler's runqueue and 670 * priority-inheritance spinlocks. This means that deadlock could result 671 * if the caller of rcu_read_unlock() already holds one of these locks or 672 * any lock that is ever acquired while holding them. 673 * 674 * That said, RCU readers are never priority boosted unless they were 675 * preempted. Therefore, one way to avoid deadlock is to make sure 676 * that preemption never happens within any RCU read-side critical 677 * section whose outermost rcu_read_unlock() is called with one of 678 * rt_mutex_unlock()'s locks held. Such preemption can be avoided in 679 * a number of ways, for example, by invoking preempt_disable() before 680 * critical section's outermost rcu_read_lock(). 681 * 682 * Given that the set of locks acquired by rt_mutex_unlock() might change 683 * at any time, a somewhat more future-proofed approach is to make sure 684 * that that preemption never happens within any RCU read-side critical 685 * section whose outermost rcu_read_unlock() is called with irqs disabled. 686 * This approach relies on the fact that rt_mutex_unlock() currently only 687 * acquires irq-disabled locks. 688 * 689 * The second of these two approaches is best in most situations, 690 * however, the first approach can also be useful, at least to those 691 * developers willing to keep abreast of the set of locks acquired by 692 * rt_mutex_unlock(). 693 * 694 * See rcu_read_lock() for more information. 695 */ 696static inline void rcu_read_unlock(void) 697{ 698 RCU_LOCKDEP_WARN(!rcu_is_watching(), 699 "rcu_read_unlock() used illegally while idle"); 700 __release(RCU); 701 __rcu_read_unlock(); 702 rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */ 703} 704 705/** 706 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section 707 * 708 * This is equivalent of rcu_read_lock(), but also disables softirqs. 709 * Note that anything else that disables softirqs can also serve as 710 * an RCU read-side critical section. 711 * 712 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh() 713 * must occur in the same context, for example, it is illegal to invoke 714 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh() 715 * was invoked from some other task. 716 */ 717static inline void rcu_read_lock_bh(void) 718{ 719 local_bh_disable(); 720 __acquire(RCU_BH); 721 rcu_lock_acquire(&rcu_bh_lock_map); 722 RCU_LOCKDEP_WARN(!rcu_is_watching(), 723 "rcu_read_lock_bh() used illegally while idle"); 724} 725 726/** 727 * rcu_read_unlock_bh() - marks the end of a softirq-only RCU critical section 728 * 729 * See rcu_read_lock_bh() for more information. 730 */ 731static inline void rcu_read_unlock_bh(void) 732{ 733 RCU_LOCKDEP_WARN(!rcu_is_watching(), 734 "rcu_read_unlock_bh() used illegally while idle"); 735 rcu_lock_release(&rcu_bh_lock_map); 736 __release(RCU_BH); 737 local_bh_enable(); 738} 739 740/** 741 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section 742 * 743 * This is equivalent of rcu_read_lock(), but disables preemption. 744 * Read-side critical sections can also be introduced by anything else 745 * that disables preemption, including local_irq_disable() and friends. 746 * 747 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched() 748 * must occur in the same context, for example, it is illegal to invoke 749 * rcu_read_unlock_sched() from process context if the matching 750 * rcu_read_lock_sched() was invoked from an NMI handler. 751 */ 752static inline void rcu_read_lock_sched(void) 753{ 754 preempt_disable(); 755 __acquire(RCU_SCHED); 756 rcu_lock_acquire(&rcu_sched_lock_map); 757 RCU_LOCKDEP_WARN(!rcu_is_watching(), 758 "rcu_read_lock_sched() used illegally while idle"); 759} 760 761/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ 762static inline notrace void rcu_read_lock_sched_notrace(void) 763{ 764 preempt_disable_notrace(); 765 __acquire(RCU_SCHED); 766} 767 768/** 769 * rcu_read_unlock_sched() - marks the end of a RCU-classic critical section 770 * 771 * See rcu_read_lock_sched() for more information. 772 */ 773static inline void rcu_read_unlock_sched(void) 774{ 775 RCU_LOCKDEP_WARN(!rcu_is_watching(), 776 "rcu_read_unlock_sched() used illegally while idle"); 777 rcu_lock_release(&rcu_sched_lock_map); 778 __release(RCU_SCHED); 779 preempt_enable(); 780} 781 782/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ 783static inline notrace void rcu_read_unlock_sched_notrace(void) 784{ 785 __release(RCU_SCHED); 786 preempt_enable_notrace(); 787} 788 789/** 790 * RCU_INIT_POINTER() - initialize an RCU protected pointer 791 * @p: The pointer to be initialized. 792 * @v: The value to initialized the pointer to. 793 * 794 * Initialize an RCU-protected pointer in special cases where readers 795 * do not need ordering constraints on the CPU or the compiler. These 796 * special cases are: 797 * 798 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer *or* 799 * 2. The caller has taken whatever steps are required to prevent 800 * RCU readers from concurrently accessing this pointer *or* 801 * 3. The referenced data structure has already been exposed to 802 * readers either at compile time or via rcu_assign_pointer() *and* 803 * 804 * a. You have not made *any* reader-visible changes to 805 * this structure since then *or* 806 * b. It is OK for readers accessing this structure from its 807 * new location to see the old state of the structure. (For 808 * example, the changes were to statistical counters or to 809 * other state where exact synchronization is not required.) 810 * 811 * Failure to follow these rules governing use of RCU_INIT_POINTER() will 812 * result in impossible-to-diagnose memory corruption. As in the structures 813 * will look OK in crash dumps, but any concurrent RCU readers might 814 * see pre-initialized values of the referenced data structure. So 815 * please be very careful how you use RCU_INIT_POINTER()!!! 816 * 817 * If you are creating an RCU-protected linked structure that is accessed 818 * by a single external-to-structure RCU-protected pointer, then you may 819 * use RCU_INIT_POINTER() to initialize the internal RCU-protected 820 * pointers, but you must use rcu_assign_pointer() to initialize the 821 * external-to-structure pointer *after* you have completely initialized 822 * the reader-accessible portions of the linked structure. 823 * 824 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no 825 * ordering guarantees for either the CPU or the compiler. 826 */ 827#define RCU_INIT_POINTER(p, v) \ 828 do { \ 829 rcu_check_sparse(p, __rcu); \ 830 WRITE_ONCE(p, RCU_INITIALIZER(v)); \ 831 } while (0) 832 833/** 834 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer 835 * @p: The pointer to be initialized. 836 * @v: The value to initialized the pointer to. 837 * 838 * GCC-style initialization for an RCU-protected pointer in a structure field. 839 */ 840#define RCU_POINTER_INITIALIZER(p, v) \ 841 .p = RCU_INITIALIZER(v) 842 843/* 844 * Does the specified offset indicate that the corresponding rcu_head 845 * structure can be handled by kvfree_rcu()? 846 */ 847#define __is_kvfree_rcu_offset(offset) ((offset) < 4096) 848 849/* 850 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain. 851 */ 852#define __kvfree_rcu(head, offset) \ 853 do { \ 854 BUILD_BUG_ON(!__is_kvfree_rcu_offset(offset)); \ 855 kvfree_call_rcu(head, (rcu_callback_t)(unsigned long)(offset)); \ 856 } while (0) 857 858/** 859 * kfree_rcu() - kfree an object after a grace period. 860 * @ptr: pointer to kfree 861 * @rhf: the name of the struct rcu_head within the type of @ptr. 862 * 863 * Many rcu callbacks functions just call kfree() on the base structure. 864 * These functions are trivial, but their size adds up, and furthermore 865 * when they are used in a kernel module, that module must invoke the 866 * high-latency rcu_barrier() function at module-unload time. 867 * 868 * The kfree_rcu() function handles this issue. Rather than encoding a 869 * function address in the embedded rcu_head structure, kfree_rcu() instead 870 * encodes the offset of the rcu_head structure within the base structure. 871 * Because the functions are not allowed in the low-order 4096 bytes of 872 * kernel virtual memory, offsets up to 4095 bytes can be accommodated. 873 * If the offset is larger than 4095 bytes, a compile-time error will 874 * be generated in __kvfree_rcu(). If this error is triggered, you can 875 * either fall back to use of call_rcu() or rearrange the structure to 876 * position the rcu_head structure into the first 4096 bytes. 877 * 878 * Note that the allowable offset might decrease in the future, for example, 879 * to allow something like kmem_cache_free_rcu(). 880 * 881 * The BUILD_BUG_ON check must not involve any function calls, hence the 882 * checks are done in macros here. 883 */ 884#define kfree_rcu(ptr, rhf) \ 885do { \ 886 typeof (ptr) ___p = (ptr); \ 887 \ 888 if (___p) \ 889 __kvfree_rcu(&((___p)->rhf), offsetof(typeof(*(ptr)), rhf)); \ 890} while (0) 891 892/** 893 * kvfree_rcu() - kvfree an object after a grace period. 894 * 895 * This macro consists of one or two arguments and it is 896 * based on whether an object is head-less or not. If it 897 * has a head then a semantic stays the same as it used 898 * to be before: 899 * 900 * kvfree_rcu(ptr, rhf); 901 * 902 * where @ptr is a pointer to kvfree(), @rhf is the name 903 * of the rcu_head structure within the type of @ptr. 904 * 905 * When it comes to head-less variant, only one argument 906 * is passed and that is just a pointer which has to be 907 * freed after a grace period. Therefore the semantic is 908 * 909 * kvfree_rcu(ptr); 910 * 911 * where @ptr is a pointer to kvfree(). 912 * 913 * Please note, head-less way of freeing is permitted to 914 * use from a context that has to follow might_sleep() 915 * annotation. Otherwise, please switch and embed the 916 * rcu_head structure within the type of @ptr. 917 */ 918#define kvfree_rcu(...) KVFREE_GET_MACRO(__VA_ARGS__, \ 919 kvfree_rcu_arg_2, kvfree_rcu_arg_1)(__VA_ARGS__) 920 921#define KVFREE_GET_MACRO(_1, _2, NAME, ...) NAME 922#define kvfree_rcu_arg_2(ptr, rhf) kfree_rcu(ptr, rhf) 923#define kvfree_rcu_arg_1(ptr) \ 924do { \ 925 typeof(ptr) ___p = (ptr); \ 926 \ 927 if (___p) \ 928 kvfree_call_rcu(NULL, (rcu_callback_t) (___p)); \ 929} while (0) 930 931/* 932 * Place this after a lock-acquisition primitive to guarantee that 933 * an UNLOCK+LOCK pair acts as a full barrier. This guarantee applies 934 * if the UNLOCK and LOCK are executed by the same CPU or if the 935 * UNLOCK and LOCK operate on the same lock variable. 936 */ 937#ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE 938#define smp_mb__after_unlock_lock() smp_mb() /* Full ordering for lock. */ 939#else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */ 940#define smp_mb__after_unlock_lock() do { } while (0) 941#endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */ 942 943 944/* Has the specified rcu_head structure been handed to call_rcu()? */ 945 946/** 947 * rcu_head_init - Initialize rcu_head for rcu_head_after_call_rcu() 948 * @rhp: The rcu_head structure to initialize. 949 * 950 * If you intend to invoke rcu_head_after_call_rcu() to test whether a 951 * given rcu_head structure has already been passed to call_rcu(), then 952 * you must also invoke this rcu_head_init() function on it just after 953 * allocating that structure. Calls to this function must not race with 954 * calls to call_rcu(), rcu_head_after_call_rcu(), or callback invocation. 955 */ 956static inline void rcu_head_init(struct rcu_head *rhp) 957{ 958 rhp->func = (rcu_callback_t)~0L; 959} 960 961/** 962 * rcu_head_after_call_rcu() - Has this rcu_head been passed to call_rcu()? 963 * @rhp: The rcu_head structure to test. 964 * @f: The function passed to call_rcu() along with @rhp. 965 * 966 * Returns @true if the @rhp has been passed to call_rcu() with @func, 967 * and @false otherwise. Emits a warning in any other case, including 968 * the case where @rhp has already been invoked after a grace period. 969 * Calls to this function must not race with callback invocation. One way 970 * to avoid such races is to enclose the call to rcu_head_after_call_rcu() 971 * in an RCU read-side critical section that includes a read-side fetch 972 * of the pointer to the structure containing @rhp. 973 */ 974static inline bool 975rcu_head_after_call_rcu(struct rcu_head *rhp, rcu_callback_t f) 976{ 977 rcu_callback_t func = READ_ONCE(rhp->func); 978 979 if (func == f) 980 return true; 981 WARN_ON_ONCE(func != (rcu_callback_t)~0L); 982 return false; 983} 984 985/* kernel/ksysfs.c definitions */ 986extern int rcu_expedited; 987extern int rcu_normal; 988 989#endif /* __LINUX_RCUPDATE_H */